WO2021009817A1 - Terminal - Google Patents

Terminal Download PDF

Info

Publication number
WO2021009817A1
WO2021009817A1 PCT/JP2019/027811 JP2019027811W WO2021009817A1 WO 2021009817 A1 WO2021009817 A1 WO 2021009817A1 JP 2019027811 W JP2019027811 W JP 2019027811W WO 2021009817 A1 WO2021009817 A1 WO 2021009817A1
Authority
WO
WIPO (PCT)
Prior art keywords
ssb
different
transmitted
index
frequency
Prior art date
Application number
PCT/JP2019/027811
Other languages
French (fr)
Japanese (ja)
Inventor
浩樹 原田
聡 永田
ジン ワン
ギョウリン コウ
Original Assignee
株式会社Nttドコモ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Nttドコモ filed Critical 株式会社Nttドコモ
Priority to PCT/JP2019/027811 priority Critical patent/WO2021009817A1/en
Priority to JP2021532575A priority patent/JPWO2021009817A1/ja
Publication of WO2021009817A1 publication Critical patent/WO2021009817A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation

Definitions

  • the present invention relates to a terminal that performs wireless communication, in particular a terminal that receives a sync signal block (SSB).
  • SSB sync signal block
  • LTE Long Term Evolution
  • NR New Radio
  • NG Next Generation
  • Non-Patent Document 1 The target frequency range for Study Item (SI) is 52.6GHz to 114.25GHz.
  • SSB SS / PBCH Block
  • SS Synchronization Signal
  • PBCH Physical Broadcast CHannel
  • the transmission cycle of SSB can be set for each cell in the range of 5, 10, 20, 40, 80, 160 milliseconds (the initial access terminal (User Equipment, UE) is assumed to have a transmission cycle of 20 milliseconds. To do).
  • Transmission of SSB within the transmission cycle time is limited to within 5 milliseconds (half frame), and each SSB can correspond to a different beam.
  • the number of SSB indexes is 64 (indexes from 0 to 63).
  • the terminal has a CORESET (control resource sets) for Type0-PDCCH CSS (Common Search Space) set based on the received master information block (MIB: Master Information Block)
  • CORESET control resource sets
  • RBs resource blocks
  • RMSI Remaining Minimum System Information
  • the terminal Based on the determined RB and symbol, the terminal provides a monitoring opportunity (MO) for the downlink control channel (PDCCH: Physical Downlink Control Channel), specifically, Type 0 PDCCH for system information block (SIB) decoding.
  • the pseudo-colocation (QCL: Quasi Co-Location) assumption is different from the network to the terminal. It is conceivable to transmit a plurality of SSBs at the same time using the same time position or the same frequency position.
  • Release 15 stipulates that the mapping from SSB to Type 0 PDCCH MO is one-to-one, and that SSB with different QCL assumptions are time-division multiplexed (TDM). Therefore, when multiple SSBs with different QCL assumptions are transmitted at the same time, the problem is how to map the Type 0 PDCCH MO.
  • TDM time-division multiplexed
  • the present invention has been made in view of such a situation, and provides a terminal capable of correctly recognizing a control resource set mapped to the SSB even when a plurality of SSBs having different QCL assumptions are transmitted.
  • the purpose is a terminal capable of correctly recognizing a control resource set mapped to the SSB even when a plurality of SSBs having different QCL assumptions are transmitted.
  • One aspect of the present disclosure is a first receiver (radio) that receives a synchronous signal block (SSB) in a different frequency band (for example, FR4) different from the frequency band including one or more frequency ranges (FR1, FR2).
  • a signal transmission / reception unit 210) and a second reception unit (radio signal transmission / reception unit 210) for receiving a system information block (SIB) using a control resource set (CORESET) associated with the synchronization signal block are provided.
  • the first receiver receives at least one of the plurality of synchronization signal blocks transmitted from the network using the same time position or the same frequency position and having different pseudo-colocation assumptions, and the second receiver is the same.
  • a terminal (UE200) that uses at least one of the plurality of control resource sets that are transmitted using the time position or the same frequency position and have different pseudo-colocation assumptions.
  • One aspect of the present disclosure is a first receiver (radio) that receives a synchronous signal block (SSB) in a different frequency band (for example, FR4) different from the frequency band including one or more frequency ranges (FR1, FR2).
  • a signal transmission / reception unit 210) and a second reception unit (radio signal transmission / reception unit 210) for receiving a system information block (SIB) using a control resource set (CORESET) associated with the synchronization signal block are provided.
  • the first receiver receives at least one of the plurality of synchronization signal blocks having different pseudo-colocation assumptions from the network, and the second receiver is transmitted from the network by time division multiplexing, and the pseudo-colocation assumptions are different.
  • a terminal (UE200) that uses at least one of the plurality of control resource sets.
  • One aspect of the present disclosure is a system information block using a control resource set (CORESET) associated with a sync signal block (SSB) when using a frequency band that includes one or more frequency ranges (FR1, FR2).
  • CORESET control resource set
  • SSB sync signal block
  • FR1, FR2 frequency ranges
  • the control unit determines that the system information block is not used. It is a terminal (UE200) equipped with.
  • FIG. 1 is an overall schematic configuration diagram of the wireless communication system 10.
  • FIG. 2 is a diagram showing a frequency range used in the wireless communication system 10.
  • FIG. 3 is a diagram showing a configuration example of a wireless frame, a subframe, and a slot used in the wireless communication system 10.
  • FIG. 4 is a diagram showing a configuration example of the SSB burst.
  • FIG. 5 is a diagram showing an example of partial arrangement of SSB when the number of SSB is expanded to a value exceeding 64.
  • FIG. 6 is a diagram showing a configuration example of a synchronization signal block (SSB).
  • FIG. 7 is an explanatory diagram of the relationship between the SSB allocation example and the beam BM on the radio frame.
  • FIG. 8 is a diagram showing a setting example of CORESET, SSB, and PDSCH.
  • FIG. 9 is a diagram showing a configuration example of Type 0 PDCCH MO.
  • FIG. 10 is a functional block configuration diagram of the UE 200.
  • FIG. 11 is a diagram showing a configuration example of SSB bursts in the case where 256 SSBs are sequentially transmitted without being simultaneously transmitted.
  • FIG. 12 is a diagram showing a configuration example of an SSB burst when a plurality of SSBs are simultaneously transmitted according to the operation example 1.
  • FIG. 13 is a diagram showing another configuration example of the SSB burst when a plurality of SSBs are simultaneously transmitted according to the operation example 1.
  • FIG. 14 is a diagram showing an example (No.
  • FIG. 15 is a diagram showing an example (No. 2) of the association between SSB and CORESET in the operation example 2-1.
  • FIG. 16 is a diagram showing an example of the association between SSB and CORESET in Operation Example 2-2.
  • FIG. 17 is a diagram showing an example of the association between SSB and CORESET in the operation example 2-2-2.
  • FIG. 18 is a diagram showing an example of the association between SSB and CORESET in Operation Example 2-2-3.
  • FIG. 19 is a diagram showing an example of the hardware configuration of the UE 200.
  • FIG. 1 is an overall schematic configuration diagram of the wireless communication system 10 according to the present embodiment.
  • the wireless communication system 10 is a wireless communication system according to 5G New Radio (NR), and includes a Next Generation-Radio Access Network 20 (hereinafter, NG-RAN20, and a terminal 200 (hereinafter, UE200)).
  • NR 5G New Radio
  • NG-RAN20 Next Generation-Radio Access Network
  • UE200 terminal 200
  • NG-RAN20 includes a radio base station 100 (hereinafter, gNB100).
  • gNB100 radio base station 100
  • the specific configuration of the wireless communication system 10 including the number of gNBs and UEs is not limited to the example shown in FIG.
  • NG-RAN20 actually includes multiple NG-RAN Nodes, specifically gNB (or ng-eNB), and is connected to a core network (5GC, not shown) according to 5G.
  • NG-RAN20 and 5GC may be simply expressed as "network”.
  • GNB100 is a wireless base station that complies with 5G, and executes wireless communication according to UE200 and 5G.
  • the gNB100 and UE200 use Massive MIMO (Multiple-Input Multiple-Output) and multiple component carriers (CC) to generate beam BM with higher directivity by controlling radio signals transmitted from multiple antenna elements. It can support carrier aggregation (CA) that is used in a bundle, and dual connectivity (DC) that communicates simultaneously between the UE and each of the two NG-RAN Nodes.
  • Massive MIMO Multiple-Input Multiple-Output
  • CC component carriers
  • CA carrier aggregation
  • DC dual connectivity
  • the wireless communication system 10 supports a plurality of frequency ranges (FR).
  • FIG. 2 shows the frequency range used in the wireless communication system 10.
  • the wireless communication system 10 corresponds to FR1 and FR2.
  • the frequency bands of each FR are as follows.
  • FR1 410 MHz to 7.125 GHz
  • FR2 24.25 GHz to 52.6 GHz
  • FR1 uses 15, 30 or 60 kHz
  • SCS Sub-Carrier Spacing
  • BW bandwidth
  • FR2 has a higher frequency than FR1, uses SCS of 60, or 120kHz (240kHz may be included), and uses a bandwidth (BW) of 50 to 400MHz.
  • SCS may be interpreted as numerology. Numerology is defined in 3GPP TS38.300 and corresponds to one subcarrier spacing in the frequency domain.
  • the wireless communication system 10 also supports a higher frequency band than the FR2 frequency band. Specifically, the wireless communication system 10 supports a frequency band exceeding 52.6 GHz and up to 114.25 GHz.
  • FR4 belongs to the so-called EHF (extremely high frequency, also called millimeter wave).
  • EHF extreme high frequency, also called millimeter wave.
  • FR4 is a tentative name and may be called by another name.
  • FR4 may be further classified. For example, FR4 may be divided into a frequency range of 70 GHz or less and a frequency range of 70 GHz or more. Alternatively, FR4 may be divided into more frequency ranges or frequencies other than 70 GHz.
  • FR3 is a frequency band above 7.125 GHz and below 24.25 GHz.
  • FR3 and FR4 are different from the frequency band including FR1 and FR2, and are referred to as different frequency bands.
  • phase noise between carriers becomes a problem as described above. This may require the application of larger (wider) SCS or single carrier waveforms.
  • a narrower beam that is, a larger number of beams
  • larger (wider) SCS (and / or fewer FFT points), PAPR reduction mechanisms, or single carrier waveforms may be required to be more sensitive to PAPR and power amplifier non-linearity.
  • CP-OFDM Cyclic Prefix-Orthogonal Frequency Division Multiplexing
  • SCS Sub-Carrier Spacing
  • DFT-S-OFDM Discrete Fourier Transform having a larger Sub-Carrier Spacing
  • FIG. 3 shows a configuration example of a wireless frame, a subframe, and a slot used in the wireless communication system 10.
  • Table 1 shows the relationship between the SCS and the symbol period.
  • FIG. 4 shows a configuration example of the SSB burst.
  • SSB is a block of synchronization signal / broadcast channel composed of SS (Synchronization Signal) and PBCH (Physical Broadcast CHannel).
  • SSB is also used to measure the reception quality of each cell.
  • the following contents are specified for the SSB setting of the serving cell.
  • the SSB transmission cycle (periodicity) is defined as 5, 10, 20, 40, 80, and 160 milliseconds.
  • the initial access UE200 is assumed to have a transmission cycle of 20 milliseconds.
  • the network notifies UE200 of the actually transmitted SSB index display (ssb-PositionsInBurst) by signaling system information (SIB1) or radio resource control layer (RRC).
  • SIB1 signaling system information
  • RRC radio resource control layer
  • FR1 it is notified by the 8-bit bitmap of RRC and SIB1.
  • FR2 it is notified by the 64-bit bitmap of RRC and the 8-bit and 8-bit group bitmaps of SSB in the group of SIB1.
  • FR4 high frequency band
  • a large-scale (massive) antenna having a large number of antenna elements is used. It is necessary to generate a narrow beam. That is, a large number of beams are required to cover a certain geographical area.
  • the maximum number of beams used for SSB transmission is 64, but it is preferable to increase the maximum number of beams (for example, 256) in order to cover a certain geographical area with a narrow beam. ..
  • the maximum number of beams used for SSB transmission is expanded to 256. Therefore, the number of SSB is also 256, and the index (SSB index) for identifying the SSB is also a value after # 64.
  • FIG. 5 shows an example of partial arrangement of SSB when the number of SSB is expanded to a value exceeding 64. Specifically, FIG. 5 shows a state in which SSBs having an SSB index of # 64 or later are added to the SSB burst configuration example shown in FIG. If a larger SCS is applied, the symbol period may be different, as shown in Table 1.
  • the SSB index can have a value after # 64.
  • the range of SSB index will be described below assuming that 0 to 255 is used.
  • the value of SSB index and the range of SSB index are not particularly limited to such an example, and the number of SSB may exceed 256, may exceed 64, and may be less than 256.
  • FIG. 6 shows a configuration example of a synchronization signal block (SSB).
  • the SSB is composed of a synchronization signal (SS: Synchronization Signal) and a downlink physical broadcast channel (PBCH: Physical Broadcast CHannel).
  • SS Synchronization Signal
  • PBCH Physical Broadcast CHannel
  • PSS Primary SS
  • SSS Secondary SS
  • PSS is a known signal that UE200 first attempts to detect in the cell search procedure.
  • the SSS is a known signal transmitted to detect the physical cell ID in the cell search procedure.
  • PBCH is an index for identifying the symbol position of multiple SS / PBCH Blocks in the radio frame number (SFN: SystemFrameNumber) and half frame (5 milliseconds). Contains the information necessary for the UE200 to establish frame synchronization with the NR cell formed by the gNB100.
  • SFN SystemFrameNumber
  • the PBCH can also include the system parameters required to receive system information (SIB). Further, the SSB also includes a reference signal for demodulation of the broadcast channel (DMRS for PBCH).
  • DMRS for PBCH is a known signal transmitted to measure the radio channel state for PBCH demodulation.
  • FIG. 7 is an explanatory diagram of the relationship between the SSB allocation example and the beam BM on the wireless frame.
  • the SSB specifically the sync signal (PSS / SSS) and PBCH shown in FIG. 6, are transmitted within either the first half or the second half of each radio frame (5 ms).
  • Fig. 7 shows an example of transmission in the first half frame).
  • the terminal also assumes that each SSB is associated with a different beam BM. That is, the terminal assumes that each SSB is associated with a beam BM having a different transmission direction (coverage).
  • the UE 200 located in the NR cell can receive any beam BM, acquire the SSB, and start the initial access and SSB detection / measurement.
  • the SSB transmission pattern varies depending on the SCS, frequency range (FR) or other parameters.
  • the SSB transmission pattern is notified to the UE 200 by the RRC IE (Information Element) called ssb-PositionsInBurst described above.
  • FIG. 8 shows a setting example of CORESET, SSB and PDSCH.
  • “1” to “3” (“Pattern” in the figure) are selected as the Multiplexing pattern of SSB and CORESET (may be called RMSI CORESET or CORESET # 0).
  • RMSI CORESET, SSB and PDSCH Physical Downlink Shared Channel
  • time direction which may be called the time domain
  • frequency direction which may be called the frequency domain
  • SSB and CORESET are mainly mapped, but SSB may be interpreted as being substantially mapped to Type 0 PDCCH MO. Good. That is, SSB can be mapped to CORESET and can also be mapped to Type 0 PDCCH MO.
  • mapping terms may be replaced with other synonymous terms such as associating and associating.
  • UE200 is a master information block (MIB) as shown in Tables 13-1 to 13-10 described in 3GPP TS38.213 v15 / 13 (that is, 3GPP Release 15).
  • MIB master information block
  • pdcch-ConfigSIB1 may be called RMSI-PDCCH-Config or the like.
  • the UE200 determines that a CORESET for Type0-PDCCH CSS set exists, it determines several consecutive resource blocks (RBs) and symbols for the CORESET.
  • RBs resource blocks
  • pdcch-ConfigSIB1 is "0", and the most significant bit (MSB) 4 bits and the least significant bit (LSB) 4 bits are "0".
  • Subcarrier spacing (SCS) is assumed to be 15 kHz. In this case, the following parameters can be obtained according to Table 1.
  • Tables 1 and 2 are reprints of Tables 13-1 and 13-11 of 3GPP TS38.213. “O” indicates the amount of offset from the transmission reference position of Type 0 PDCCH. In addition, “M” indicates a parameter for determining the slot in which the corresponding Type0-PDCCHMO is included according to the SSB index.
  • FIG. 9 shows a configuration example of Type 0 PDCCH MO. Specifically, FIG. 9 illustrates the configuration of the Type 0 PDCCH MO according to the above setting example.
  • the SCS is 15kHz
  • FIG. 10 is a functional block configuration diagram of the UE 200.
  • the UE 200 includes a radio signal transmission / reception unit 210, an amplifier unit 220, a modulation / demodulation unit 230, a control signal / reference signal processing unit 240, an encoding / decoding unit 250, a data transmission / reception unit 260, and a control unit 270. ..
  • the wireless signal transmitter / receiver 210 transmits / receives a wireless signal according to NR.
  • the radio signal transmitter / receiver 210 corresponds to Massive MIMO, a CA that bundles and uses a plurality of CCs, and a DC that simultaneously communicates between a UE and each of two NG-RAN Nodes.
  • the wireless signal transmission / reception unit 210 may transmit / receive a wireless signal using a slot having a larger number of symbols than when FR1 or FR2 is used.
  • the number of symbols is specifically the number of OFDM symbols constituting the slot shown in FIG.
  • the wireless signal transmission / reception unit 210 can transmit / receive a wireless signal using a slot having a 28-symbol / slot configuration.
  • the radio signal transmitter / receiver 210 has a synchronization signal block in one or more frequency ranges, specifically, in a different frequency band different from the frequency band including FR1 and FR2, that is, FR3 and FR4. , Specifically, SSB (SS / PBCH Block) can be received.
  • SSB SS / PBCH Block
  • the radio signal transmission / reception unit 210 can receive at least one of a plurality of SSBs transmitted from the network using the same time position or the same frequency position and having different indexes for identifying the SSBs.
  • the radio signal transmitter / receiver 210 can receive at least one of a plurality of SSBs having different QCL assumptions.
  • a QCL is, for example, when the characteristics of the channel on which the symbol on one antenna port is carried can be inferred from the channel on which the symbol on the other antenna port is carried, the two antenna ports are in pseudo-same location. It is supposed to be.
  • the SSBs of the same SSB index are assumed to be QCLs, and the other SSBs (that is, different SSB indexes) should not be assumed to be QCLs.
  • the QCL may be called a quasi-collocation.
  • the maximum number of SSBs (L) is expanded to 256, and as will be described later, the network (gNB100) may read a plurality of SSBs at the same time position (time resources, time domain, etc.). , Or can be transmitted at the same frequency position (which may be read as frequency resource, frequency band, frequency domain, etc.).
  • the radio signal transmitter / receiver 210 can receive any (that is, a plurality of may be received) of at least a plurality of SSBs transmitted at the same time position or frequency position.
  • a plurality of SSBs transmitted from the network may form a plurality of synchronization signal block sets (SSB sets). Also, a plurality of synchronized signal block sets transmitted at the same time position are synchronized with each other in the time direction and can be transmitted at the same timing.
  • the wireless signal transmitter / receiver 210 can receive at least one of a plurality of synchronization signal block sets or a plurality of synchronization signal block sets.
  • the radio signal transmission / reception unit 210 constitutes a first reception unit that receives SSB in a different frequency band such as FR4 (or FR3). Further, the radio signal transmission / reception unit 210 constitutes a second reception unit that receives a system information block using CORESET (control resource set) associated with the SSB.
  • CORESET control resource set
  • the system information block is a type of broadcast information that is broadcast from gNB100 (wireless base station) to UE200 all at once.
  • the system information block may be divided into a plurality of blocks, and the system information block may be any or all of the plurality of blocks.
  • the system information block includes SIB1.
  • uplink carrier information, random access signal configuration information, etc. are required, and the information required for initial access including these is notified to the terminals in the cell as SIB1. Random.
  • the radio signal transmitter / receiver 210 (first receiver) is transmitted from the network using the same time position or the same frequency position, and can receive at least one of a plurality of SSBs having different QCL assumptions.
  • the radio signal transmission / reception unit 210 (second reception unit) is transmitted using the same time position or the same frequency position, and at least one of a plurality of CORESETs having different QCL assumptions can be used. That is, the radio signal transmission / reception unit 210 can transmit the system information block by using at least one of a plurality of CORESETs that are transmitted using the same time position or the same frequency position and have different QCL assumptions.
  • the radio signal transmitter / receiver 210 may use at least one of a plurality of CORESETs transmitted from the network by time division multiplexing (TDM) and having different QCL assumptions. That is, the radio signal transmitter / receiver 210 is transmitted from the network by time division multiplexing (TDM), and can receive the system information block by using at least one of a plurality of CORESETs having different QCL assumptions.
  • TDM time division multiplexing
  • the plurality of CORESETs are transmitted using the same time position (may be time domain) or frequency position (may be frequency domain).
  • RMSI CORESET # 0 and RMSI CORESET # 1 may be transmitted using the same time position or frequency position.
  • the radio signal transmission / reception unit 210 may receive the master information block (MIB) transmitted from the network before the system information block (SIB1).
  • MIB master information block
  • SIB1 system information block
  • the MIB contains SSB information transmitted from the network.
  • one SSB may be associated with a plurality of CORESETs, or a plurality of SSBs may be associated with one control resource set.
  • the radio signal transmission / reception unit 210 (first reception unit) uses the frequency band including FR1 and FR2, the system information block (1st reception unit) uses CORESET associated with SSB as specified in Release 15. Can receive SIB1).
  • the amplifier unit 220 is composed of PA (Power Amplifier) / LNA (Low Noise Amplifier) and the like.
  • the amplifier unit 220 amplifies the signal output from the modulation / demodulation unit 230 to a predetermined power level. Further, the amplifier unit 220 amplifies the RF signal output from the radio signal transmission / reception unit 210.
  • the modulation / demodulation unit 230 executes data modulation / demodulation, transmission power setting, resource block allocation, etc. for each predetermined communication destination (gNB100 or other gNB).
  • CP-OFDM and DFT-S-OFDM can be applied in this embodiment. Further, in the present embodiment, the DFT-S-OFDM can be used not only for the uplink (UL) but also for the downlink (DL).
  • the control signal / reference signal processing unit 240 executes processing related to various control signals transmitted / received by the UE 200 and processing related to various reference signals transmitted / received by the UE 200.
  • control signal / reference signal processing unit 240 receives various control signals transmitted from the gNB 100 via a predetermined control channel, for example, control signals of the radio resource control layer (RRC). Further, the control signal / reference signal processing unit 240 transmits various control signals to the gNB 100 via a predetermined control channel.
  • a predetermined control channel for example, control signals of the radio resource control layer (RRC).
  • RRC radio resource control layer
  • control signal / reference signal processing unit 240 executes processing using a reference signal (RS) such as Demodulation reference signal (DMRS) and Phase Tracking Reference Signal (PTRS).
  • RS reference signal
  • DMRS Demodulation reference signal
  • PTRS Phase Tracking Reference Signal
  • DMRS is a known reference signal (pilot signal) between a terminal-specific base station and a terminal for estimating a fading channel used for data demodulation.
  • PTRS is a terminal-specific reference signal for the purpose of estimating phase noise, which is a problem in high frequency bands.
  • the reference signals also include Channel State Information-Reference Signal (CSI-RS) and Sounding Reference Signal (SRS).
  • Channels also include control channels and data channels.
  • Control channels include PDCCH (Physical Downlink Control Channel), PUCCH (Physical Uplink Control Channel), RACH (Random Access Channel, Downlink Control Information (DCI) including Random Access Radio Network Temporary Identifier (RA-RNTI)), and Physical. Broadcast Channel (PBCH) etc. are included.
  • the data channels include PDSCH (Physical Downlink Shared Channel) and PUSCH (Physical Downlink Shared Channel).
  • Data means data transmitted over a data channel.
  • the coding / decoding unit 250 executes data division / concatenation and channel coding / decoding for each predetermined communication destination (gNB100 or other gNB).
  • the coding / decoding unit 250 divides the data output from the data transmitting / receiving unit 260 into a predetermined size, and executes channel coding for the divided data. Further, the coding / decoding unit 250 decodes the data output from the modulation / demodulation unit 230 and concatenates the decoded data.
  • the data transmission / reception unit 260 executes transmission / reception of Protocol Data Unit (PDU) and Service Data Unit (SDU).
  • the data transmitter / receiver 260 is a PDU / SDU in a plurality of layers (such as a medium access control layer (MAC), a wireless link control layer (RLC), and a packet data convergence protocol layer (PDCP)). Assemble / disassemble the.
  • the data transmission / reception unit 260 executes data error correction and retransmission control based on the hybrid ARQ (Hybrid automatic repeat request).
  • the control unit 270 controls each functional block constituting the UE 200.
  • the control unit 270 executes control regarding the synchronization signal block (SSB), the control resource set (CORESET), and the system information block.
  • SSB synchronization signal block
  • CORESET control resource set
  • system information block the system information block.
  • control unit 270 may determine that the system information block (SIB1) is not used when the network is non-standalone operation and different frequency bands such as FR3 and FR4 are used.
  • SIB1 system information block
  • Non-standalone operation means, for example, interworking between NRFR1 and / or FR2 and NRFR3 or FR4 (CA, DC), or interworking between LTE and NRFR3 or FR4, specifically. In other words, it means that it is not operated by NR FR3 or FR4 alone, such as E-UTRA-NR Dual Connectivity (EN-DC).
  • EN-DC E-UTRA-NR Dual Connectivity
  • the network can transmit a plurality of SSBs at the same time. Specifically, the network transmits a synchronous signal block set (SSB set) including a plurality of SSBs at the same position in the time direction or the frequency direction.
  • SSB set synchronous signal block set
  • FIG. 11 shows a configuration example of SSB burst in the case where 256 SSBs are sequentially transmitted without being transmitted simultaneously.
  • FIG. 12 shows a configuration example of an SSB burst when a plurality of SSBs are simultaneously transmitted according to the operation example 1.
  • the configuration example shown in FIG. 11 shows an image in which 256 SSBs, that is, 256 beam BMs are transmitted by time division (TDM) beam sweeping.
  • TDM time division
  • the configuration example shown in FIG. 12 is a case where the maximum number of SSB sets (M) in the SSB set is 64 and the number of SSB sets (N) is 4. Specifically, 0 to 255 may be used for the SSB index, and 0 to 3 may be used for the index of the SSB set.
  • the SSB (maximum number: L) in the SSB burst can be classified into different SSB sets.
  • the SSB set may be called by another name such as SSB group.
  • a plurality of SSBs having different SSB indexes in the SSB set may be transmitted at different positions in the time direction or the frequency direction. Further, a plurality of SSBs included in different SSB sets may be transmitted at the same position in the time direction or the frequency direction.
  • SSB set 0 includes SSBs having an SSB index of 0 to 63.
  • SSB set 1 contains SSB with SSB index of 64-127
  • SSB set 2 contains SSB with SSB index of 128-191
  • SSB set 3 contains SSB with SSB index of 192 to 255. .. That is, the value of SSB index included in each SSB set may be different for each SSB set.
  • the beam BM associated with the SSB having the SSB index preferably has a different transmission direction so as to cover all directions of the NR cell.
  • each SSB set is an image corresponding to the antenna panel forming the beam BM.
  • a plurality of SSBs can be simultaneously transmitted by different beam BMs.
  • This operation example can also be applied to analog beamforming as specified in Release 15.
  • FIG. 13 is a diagram showing another configuration example of the SSB burst. As shown in FIG. 13, the SSB index (SSB index of SSB transmitted at the same time) included in each of the SSB sets is common among the SSB sets.
  • SSB index 0 to 63 are repeated in each SSB set.
  • 2 bits specifically 00, 01, 10, 11 are used as the Set index for identifying the SSB set.
  • the mapping from SSB to Type 0 PDCCH MO is one-to-one, and it is stipulated that SSB with different QCL assumptions are time-division multiplexed (TDM). Therefore, when multiple SSBs with different QCL assumptions are transmitted at the same time, the UE200 needs to recognize how the RMSI CORESET is mapped.
  • TDM time-division multiplexed
  • pdcch-ConfigSIB1 (RMSI-PDCCH-Config) are the same between different SSB sets (PBCH).
  • the index that identifies SSB (SSB index or Set index that identifies SSB set, the same applies hereinafter) is 64 or more, that is, the T / F resource of controlResourceSetZero and searchSpaceZero is SSB x (x ⁇ M).
  • the QCL of the SSB is different.
  • the RS assumed as the QCL source of the DMRS of the PDCCH may be associated with a different SSB index.
  • the index that identifies SSB is 64 or more when the index of SSB that can be identified by the combination of Set index and the index of SSB itself (SSB index) is 64 or more. including.
  • the maximum value of the index that identifies the SSB is 63, that is, the maximum number of SSBs (M) is 64, and there is a Set index that identifies the SSB set, T of controlResourceSetZero and searchSpaceZero between different SSB sets.
  • the / F resource may be the same in SSB x (x ⁇ M).
  • the QCL of the SSB is different.
  • the RS assumed as the QCL source of the DMRS of the PDCCH may be associated with the combination of the Set index and the SSB index.
  • the contents of PBCH except SSB index or Set index are the same for all SSBs in the SSB burst set at the same center frequency. It is preferred that all RMSICORESETs associated with the SSB in the SSB burst have the same settings (including time domain), except for the QCL property and the property related to the time domain position.
  • FIG. 14 shows an example (No. 1) of the association between SSB and CORESET in the operation example 2-1.
  • FIG. 14 corresponds to the SSB burst configuration example shown in FIG. That is, FIG. 14 shows an example of the association between SSB and CORESET when the maximum number of SSB sets (M) in the SSB set is 64 and the number of SSB sets (N) is 4.
  • M maximum number of SSB sets
  • N number of SSB sets
  • the SSB index of 0 to 255 is used, and the additional X bit of the MSB is also used to display the SSB index.
  • CORESET (RMSI CORESET, CORESET # 0) associated with SSB transmitted at the same time is assigned to the same T / F resource.
  • QCL and Transmission Configuration Indication are different among the plurality of RMSI CORESETs.
  • FIG. 15 shows an example (No. 2) of the association between SSB and CORESET in the operation example 2-1.
  • An example of the association between SSB and CORESET is shown.
  • CORESET RMSI CORESET, CORESET # 0
  • T / F resource Similar to FIG. 14
  • i 0 to 63 (i mod M) can be used to calculate the index (n0) of the slot in the wireless frame (SFN).
  • the UE 200 monitors the PDCCH in the TType 0 PDCCH CSS set over two consecutive slots starting from slot n0.
  • "I” indicates the index of SSB (SS / PBCH block).
  • the contents of pdcch-ConfigSIB1 are the same between different SSB sets (PBCH) as in the operation example 2-1.
  • FIG. 16 shows an example of the association between SSB and CORESET in the operation example 2-2.
  • An example of the association between SSB and CORESET is shown.
  • i 0 to 255 (i mod M + Set index * M) can be used to calculate the index (n0) of the slot in the wireless frame (SFN).
  • Type 0 PDCCH MO is placed in consecutive slots without gaps (see Fig. 9).
  • the adjacent SSBs in the time direction are arranged with a gap (see FIG. 4 and the like). Therefore, Type 0 PDCCH MO mapping can cause long-term scheduling (beam) limitations.
  • the MIB can include information about the SSB actually transmitted (for example, a group bitmap).
  • the UE200 defines and assumes Type 0 PDCCH MO based on such information about the SSB that is actually transmitted.
  • Type 0 PDCCH MO for SSB (group) not indicated by MIB is not defined, that is, it may be skipped.
  • Type 0 PDCCH MO when using a high frequency band such as FR4, even in Multiplexing pattern 1, slots containing Type 0 PDCCH MO are not arranged in order according to the SSB index in consecutive slots, but Type 0 PDCCH MO is included in the middle. No slots may be inserted and the non-contiguous slots may be defined to contain Type 0 PDCCH MO. As a result, the slot that does not include the Type 0 PDCCH MO can be used by using an arbitrary beam, and the scheduling (beam) restriction can be relaxed.
  • the association between SSB and Type 0 PDCCH MO can be made one-to-many (1: N).
  • the factor N for the association can be indicated by the MIB.
  • FIG. 17 shows an example of the association between SSB and CORESET in the operation example 2-2-2.
  • An example of the association between SSB and CORESET is shown.
  • a plurality of RMSI CORESET that is, a plurality of Type 0 PDCCH MOs are associated with one SSB.
  • a terminal that is grouped by N SSB indexes and detects SSB index # A (A is a tentative identification, the same applies hereinafter) is an SSB that constitutes a group including SSB index # A. Monitor the Type 0 PDCCH MO associated with the index.
  • the terminal that detects SSB index # A is the Type associated with the SSB index in the range from (SSB index # AN / 2) to (SSB index # A + N / 2-1). 0 Monitor PDCCHMO.
  • the association between SSB and Type 0 PDCCH MO can be made many-to-one (N: 1).
  • N Such an operation is the reverse pattern of the operation example 2-2-2 (1: N).
  • the factor N for the association can be indicated by the MIB.
  • FIG. 18 shows an example of the association between SSB and CORESET in the operation example 2-2-3.
  • An example of the association between SSB and CORESET is shown.
  • one RMSI CORESET that is, one Type 0 PDCCH MO is associated with a plurality of SSBs.
  • Type 0 PDCCH MO is defined and assumed only for each N SSB index (for example, 0, N, 2N, ).
  • N SSB index for example, 0, N, 2N, .
  • beam cycling may be applied to the transmission of Type 0 PDCCH in different periods. For example, as shown in FIG. 18, the above-mentioned association between SSB and RMSI CORESET may be repeated for each beam (# 0 to (N-1)).
  • SIB system information block
  • SIB1 may be used only when the wireless communication system 10 is in stand-alone operation of NR FR3 or FR4.
  • the bits used to set Type 0 PDCCH may be called RMSI PDCCH
  • 8 bits of pdcch-ConfigSIB1 may be used for other purposes.
  • the bit may be used for a part of the SSB index or for the Set index, or may not be used in particular to reduce the size of the MIB.
  • the following action / effect can be obtained.
  • the UE200 can use at least one of a plurality of RMSI CORESETs transmitted using the same time position or the same frequency position and having different QCL assumptions. Therefore, the UE200 can correctly recognize the RMSI CORESET mapped to the SSB even when a plurality of SSBs having different QCL assumptions are transmitted at the same time.
  • the UE200 can use at least one of a plurality of RMSI CORESETs transmitted from the network by time division multiplexing (TDM) and having different QCL assumptions. Therefore, even when a large number of SSBs with different QCL assumptions are transmitted by TDM, the RMSI CORESET mapped to the SSB can be correctly recognized.
  • TDM time division multiplexing
  • the MIB may include SSB information transmitted from the network. Therefore, the UE200 can flexibly set the RMSI CORESET information corresponding to the SSB transmitted from the network by TDM. Further, it may be assumed that the slots including the Type 0 PDCCH MO are discontinuous. Therefore, it is possible to relax the limitation of the schedule (beam) over a long period of time due to the Type 0 PDCCH MO being arranged in consecutive slots without a gap as in Multiplexing pattern 1 of Release 15.
  • one SSB may be associated with a plurality of RMSI CORESET (1: N), or a plurality of SSBs may be associated with one RMSI CORESET (N: 1).
  • UE200 can determine that the system information block, specifically SIB1, is not used when the network is non-standalone operation (NSA) and different frequency bands such as FR3 and FR4 are used.
  • SIB1 system information block
  • NSA non-standalone operation
  • control information can be correctly recognized via other nodes (NR FR1 / FR2, LTE, etc.) in the case of non-standalone operation (NSA). ..
  • a high frequency band such as FR4 that is, a frequency band exceeding 52.6 GHz has been described as an example, but at least one of the above-mentioned operation examples is applied to another frequency range such as FR3. It doesn't matter if it is done.
  • FR4 may be divided into a frequency range of 70 GHz or less and a frequency range of 70 GHz or more, and (Proposal 1) to (Proposal 3) are applied to the frequency range of 70 GHz or more, and 70 GHz or less.
  • the correspondence between the proposal and the frequency range may be changed as appropriate, such as the proposal being partially applied to the frequency range of.
  • each functional block is realized by any combination of at least one of hardware and software.
  • the method of realizing each functional block is not particularly limited. That is, each functional block may be realized by using one device that is physically or logically connected, or directly or indirectly (for example, by using two or more physically or logically separated devices). , Wired, wireless, etc.) and may be realized using these plurality of devices.
  • the functional block may be realized by combining the software with the one device or the plurality of devices.
  • Functions include judgment, decision, judgment, calculation, calculation, processing, derivation, investigation, search, confirmation, reception, transmission, output, access, solution, selection, selection, establishment, comparison, assumption, expectation, and assumption.
  • broadcasting notifying, communicating, forwarding, configuring, reconfiguring, allocating, mapping, assigning, etc., but only these.
  • a functional block that makes transmission function is called a transmitting unit or a transmitter.
  • the method of realizing each is not particularly limited.
  • FIG. 19 is a diagram showing an example of the hardware configuration of the UE 200.
  • the UE 200 may be configured as a computer device including a processor 1001, a memory 1002, a storage 1003, a communication device 1004, an input device 1005, an output device 1006, a bus 1007, and the like.
  • the word “device” can be read as a circuit, device, unit, etc.
  • the hardware configuration of the device may be configured to include one or more of the devices shown in the figure, or may be configured not to include some of the devices.
  • Each functional block of the UE 200 (see FIG. 10) is realized by any hardware element of the computer device or a combination of the hardware elements.
  • each function in the UE 200 is such that the processor 1001 performs an operation by loading predetermined software (program) on the hardware such as the processor 1001 and the memory 1002 to control the communication by the communication device 1004 and the memory 1002. And by controlling at least one of reading and writing of data in the storage 1003.
  • predetermined software program
  • Processor 1001 operates, for example, an operating system to control the entire computer.
  • the processor 1001 may be composed of a central processing unit (CPU) including an interface with peripheral devices, a control device, an arithmetic unit, a register, and the like.
  • CPU central processing unit
  • the processor 1001 reads a program (program code), a software module, data, etc. from at least one of the storage 1003 and the communication device 1004 into the memory 1002, and executes various processes according to these.
  • a program program code
  • a program that causes a computer to execute at least a part of the operations described in the above-described embodiment is used.
  • the various processes described above may be executed by one processor 1001 or may be executed simultaneously or sequentially by two or more processors 1001.
  • Processor 1001 may be implemented by one or more chips.
  • the program may be transmitted from the network via a telecommunication line.
  • the memory 1002 is a computer-readable recording medium, and is composed of at least one such as ReadOnlyMemory (ROM), ErasableProgrammableROM (EPROM), Electrically ErasableProgrammableROM (EEPROM), and RandomAccessMemory (RAM). May be done.
  • the memory 1002 may be called a register, a cache, a main memory (main storage device), or the like.
  • the memory 1002 can store a program (program code), a software module, or the like that can execute the method according to the embodiment of the present disclosure.
  • the storage 1003 is a computer-readable recording medium, for example, an optical disk such as Compact Disc ROM (CD-ROM), a hard disk drive, a flexible disk, an optical magnetic disk (for example, a compact disk, a digital versatile disk, or a Blu-ray). It may consist of at least one (registered trademark) disk), smart card, flash memory (eg, card, stick, key drive), floppy (registered trademark) disk, magnetic strip, and the like.
  • Storage 1003 may be referred to as auxiliary storage.
  • the recording medium described above may be, for example, a database, server or other suitable medium containing at least one of the memory 1002 and the storage 1003.
  • the communication device 1004 is hardware (transmission / reception device) for communicating between computers via at least one of a wired network and a wireless network, and is also referred to as, for example, a network device, a network controller, a network card, a communication module, or the like.
  • Communication device 1004 includes, for example, a high frequency switch, a duplexer, a filter, a frequency synthesizer, etc. in order to realize at least one of frequency division duplex (FDD) and time division duplex (TDD). It may be composed of.
  • FDD frequency division duplex
  • TDD time division duplex
  • the input device 1005 is an input device (for example, keyboard, mouse, microphone, switch, button, sensor, etc.) that accepts input from the outside.
  • the output device 1006 is an output device (for example, a display, a speaker, an LED lamp, etc.) that outputs to the outside.
  • the input device 1005 and the output device 1006 may have an integrated configuration (for example, a touch panel).
  • Bus 1007 may be configured using a single bus, or may be configured using different buses for each device.
  • the device includes hardware such as a microprocessor, a digital signal processor (Digital Signal Processor: DSP), an Application Specific Integrated Circuit (ASIC), a Programmable Logic Device (PLD), and a Field Programmable Gate Array (FPGA).
  • the hardware may implement some or all of each functional block.
  • processor 1001 may be implemented using at least one of these hardware.
  • information notification includes physical layer signaling (for example, Downlink Control Information (DCI), Uplink Control Information (UCI), upper layer signaling (eg, RRC signaling, Medium Access Control (MAC) signaling, broadcast information (Master Information Block)). (MIB), System Information Block (SIB)), other signals or combinations thereof.
  • DCI Downlink Control Information
  • UCI Uplink Control Information
  • RRC signaling may also be referred to as an RRC message, for example, RRC Connection Setup. ) Message, RRC Connection Reconfiguration message, etc. may be used.
  • LTE LongTermEvolution
  • LTE-A LTE-Advanced
  • SUPER3G IMT-Advanced
  • 4G 4th generation mobile communication system
  • 5G 5th generation mobile communication system
  • FutureRadioAccess FAA
  • NewRadio NR
  • W-CDMA registered trademark
  • GSM registered trademark
  • CDMA2000 Code Division Multiple Access 2000
  • UMB UltraMobile Broadband
  • IEEE802.11 Wi-Fi (registered trademark)
  • IEEE802.16 WiMAX®
  • IEEE802.20 Ultra-WideBand (UWB), Bluetooth®, and other systems that utilize appropriate systems and at least one of the next generation systems extended based on them.
  • a plurality of systems may be applied in combination (for example, a combination of at least one of LTE and LTE-A and 5G).
  • the specific operation performed by the base station in the present disclosure may be performed by its upper node (upper node).
  • various operations performed for communication with the terminal are performed by the base station and other network nodes other than the base station (for example, MME or). It is clear that it can be done by at least one of (but not limited to, S-GW, etc.).
  • S-GW network nodes
  • the case where there is one network node other than the base station is illustrated above, it may be a combination of a plurality of other network nodes (for example, MME and S-GW).
  • Information and signals can be output from the upper layer (or lower layer) to the lower layer (or upper layer).
  • Input / output may be performed via a plurality of network nodes.
  • the input / output information may be stored in a specific location (for example, memory) or may be managed using a management table.
  • the input / output information can be overwritten, updated, or added.
  • the output information may be deleted.
  • the input information may be transmitted to another device.
  • the determination may be made by a value represented by 1 bit (0 or 1), by a boolean value (Boolean: true or false), or by comparing numerical values (for example, a predetermined value). It may be done by comparison with the value).
  • the notification of predetermined information (for example, the notification of "being X") is not limited to the explicit one, but is performed implicitly (for example, the notification of the predetermined information is not performed). May be good.
  • Software is an instruction, instruction set, code, code segment, program code, program, subprogram, software module, whether called software, firmware, middleware, microcode, hardware description language, or another name.
  • Applications, software applications, software packages, routines, subroutines, objects, executable files, execution threads, procedures, features, etc. should be broadly interpreted to mean.
  • software, instructions, information, etc. may be transmitted and received via a transmission medium.
  • a transmission medium For example, a website where the software uses at least one of wired technology (coaxial cable, fiber optic cable, twisted pair, Digital Subscriber Line (DSL), etc.) and wireless technology (infrared, microwave, etc.).
  • wired technology coaxial cable, fiber optic cable, twisted pair, Digital Subscriber Line (DSL), etc.
  • wireless technology infrared, microwave, etc.
  • the information, signals, etc. described in this disclosure may be represented using any of a variety of different techniques.
  • data, instructions, commands, information, signals, bits, symbols, chips, etc. that may be referred to throughout the above description are voltages, currents, electromagnetic waves, magnetic fields or magnetic particles, light fields or photons, or any of these. It may be represented by a combination of.
  • a channel and a symbol may be a signal (signaling).
  • the signal may be a message.
  • the component carrier (CC) may be referred to as a carrier frequency, a cell, a frequency carrier, or the like.
  • system and “network” used in this disclosure are used interchangeably.
  • the information, parameters, etc. described in the present disclosure may be expressed using absolute values, relative values from predetermined values, or using other corresponding information. It may be represented.
  • the radio resource may be one indicated by an index.
  • Base Station BS
  • Wireless Base Station Wireless Base Station
  • NodeB NodeB
  • eNodeB eNodeB
  • gNodeB gNodeB
  • Base stations are sometimes referred to by terms such as macrocells, small cells, femtocells, and picocells.
  • the base station can accommodate one or more (for example, three) cells (also called sectors). When a base station accommodates multiple cells, the entire coverage area of the base station can be divided into multiple smaller areas, each smaller area being a base station subsystem (eg, a small indoor base station (Remote Radio)). Communication services can also be provided by Head: RRH).
  • a base station subsystem eg, a small indoor base station (Remote Radio)
  • Communication services can also be provided by Head: RRH).
  • cell refers to a base station that provides communication services in this coverage, and part or all of the coverage area of at least one of the base station subsystems.
  • MS mobile station
  • UE user equipment
  • terminal terminal
  • Mobile stations can be subscriber stations, mobile units, subscriber units, wireless units, remote units, mobile devices, wireless devices, wireless communication devices, remote devices, mobile subscriber stations, access terminals, mobile terminals, wireless, depending on the trader. It may also be referred to as a terminal, remote terminal, handset, user agent, mobile client, client, or some other suitable term.
  • At least one of the base station and the mobile station may be called a transmitting device, a receiving device, a communication device, or the like.
  • At least one of the base station and the mobile station may be a device mounted on the mobile body, the mobile body itself, or the like.
  • the moving body may be a vehicle (eg, car, airplane, etc.), an unmanned moving body (eg, drone, self-driving car, etc.), or a robot (manned or unmanned). ) May be.
  • at least one of the base station and the mobile station includes a device that does not necessarily move during communication operation.
  • at least one of a base station and a mobile station may be an Internet of Things (IoT) device such as a sensor.
  • IoT Internet of Things
  • the base station in the present disclosure may be read as a mobile station (user terminal, the same applies hereinafter).
  • communication between a base station and a mobile station has been replaced with communication between a plurality of mobile stations (for example, it may be called Device-to-Device (D2D), Vehicle-to-Everything (V2X), etc.).
  • D2D Device-to-Device
  • V2X Vehicle-to-Everything
  • Each aspect / embodiment of the present disclosure may be applied to the configuration.
  • the mobile station may have the function of the base station.
  • words such as "up” and “down” may be read as words corresponding to communication between terminals (for example, "side”).
  • the uplink, downlink, and the like may be read as side channels.
  • the mobile station in the present disclosure may be read as a base station.
  • the base station may have the functions of the mobile station.
  • the radio frame may be composed of one or more frames in the time domain. Each one or more frames in the time domain may be referred to as a subframe. Subframes may further consist of one or more slots in the time domain.
  • the subframe may have a fixed time length (eg, 1 ms) that is independent of numerology.
  • the numerology may be a communication parameter that applies to at least one of the transmission and reception of a signal or channel.
  • Numerology includes, for example, SubCarrier Spacing (SCS), bandwidth, symbol length, cyclic prefix length, transmission time interval (TTI), number of symbols per TTI, wireless frame configuration, transmission / reception.
  • SCS SubCarrier Spacing
  • TTI transmission time interval
  • At least one of a specific filtering process performed by the machine in the frequency domain, a specific windowing process performed by the transmitter / receiver in the time domain, and the like may be indicated.
  • the slot may be composed of one or more symbols (Orthogonal Frequency Division Multiple Access (OFDM) symbol, Single Carrier Frequency Division Multiple Access (SC-FDMA) symbol, etc.) in the time domain. Slots may be unit of time based on numerology.
  • OFDM Orthogonal Frequency Division Multiple Access
  • SC-FDMA Single Carrier Frequency Division Multiple Access
  • the slot may include a plurality of mini slots. Each minislot may consist of one or more symbols in the time domain. Further, the mini slot may be called a sub slot. A minislot may consist of a smaller number of symbols than the slot.
  • PDSCH (or PUSCH) transmitted in time units larger than the minislot may be referred to as PDSCH (or PUSCH) mapping type A.
  • PDSCH (or PUSCH) transmitted using the minislot may be referred to as PDSCH (or PUSCH) mapping type B.
  • the wireless frame, subframe, slot, mini slot and symbol all represent the time unit when transmitting a signal.
  • the radio frame, subframe, slot, minislot and symbol may have different names corresponding to each.
  • one subframe may be referred to as a transmission time interval (TTI)
  • TTI transmission time interval
  • TTI transmission time interval
  • TTI transmission time interval
  • TTI transmission time interval
  • TTI transmission time interval
  • TTI transmission time interval
  • TTI slot or one minislot
  • at least one of the subframe and TTI may be a subframe (1ms) in existing LTE, a period shorter than 1ms (eg, 1-13 symbols), or a period longer than 1ms. It may be.
  • the unit representing TTI may be called a slot, a mini slot, or the like instead of a subframe.
  • TTI refers to, for example, the minimum time unit of scheduling in wireless communication.
  • the base station schedules each user terminal to allocate wireless resources (frequency bandwidth that can be used in each user terminal, transmission power, etc.) in TTI units.
  • the definition of TTI is not limited to this.
  • the TTI may be a transmission time unit such as a channel-encoded data packet (transport block), a code block, or a code word, or may be a processing unit such as scheduling or link adaptation.
  • the time interval for example, the number of symbols
  • the transport block, code block, code word, etc. may be shorter than the TTI.
  • one or more TTIs may be the minimum time unit for scheduling. Further, the number of slots (number of mini-slots) constituting the minimum time unit of the scheduling may be controlled.
  • a TTI having a time length of 1 ms may be called a normal TTI (TTI in LTE Rel.8-12), a normal TTI, a long TTI, a normal subframe, a normal subframe, a long subframe, a slot, or the like.
  • TTIs shorter than normal TTIs may also be referred to as shortened TTIs, short TTIs, partial TTIs (partial or fractional TTIs), shortened subframes, short subframes, minislots, subslots, slots, and the like.
  • long TTIs eg, normal TTIs, subframes, etc.
  • short TTIs eg, shortened TTIs, etc.
  • TTI length the TTI length of long TTIs and 1 ms. It may be read as a TTI having the above TTI length.
  • a resource block is a resource allocation unit in the time domain and the frequency domain, and may include one or a plurality of continuous subcarriers in the frequency domain.
  • the number of subcarriers contained in the RB may be the same regardless of the numerology, and may be, for example, 12.
  • the number of subcarriers contained in the RB may be determined based on numerology.
  • the time domain of RB may include one or more symbols, and may have a length of 1 slot, 1 mini slot, 1 subframe, or 1 TTI.
  • Each 1TTI, 1 subframe, etc. may be composed of one or a plurality of resource blocks.
  • One or more RBs include a physical resource block (Physical RB: PRB), a sub-carrier group (Sub-Carrier Group: SCG), a resource element group (Resource Element Group: REG), a PRB pair, an RB pair, and the like. May be called.
  • Physical RB Physical RB: PRB
  • SCG sub-carrier Group
  • REG resource element group
  • PRB pair an RB pair, and the like. May be called.
  • the resource block may be composed of one or a plurality of resource elements (ResourceElement: RE).
  • RE resource elements
  • 1RE may be a radio resource area of 1 subcarrier and 1 symbol.
  • Bandwidth Part (which may also be called partial bandwidth, etc.) can also represent a subset of consecutive common resource blocks (RBs) for a neurology in a carrier.
  • RBs common resource blocks
  • PRBs may be defined in a BWP and numbered within that BWP.
  • BWP may include BWP for UL (UL BWP) and BWP for DL (DL BWP).
  • BWP for UL
  • DL BWP BWP for DL
  • One or more BWPs may be set in one carrier for the UE.
  • At least one of the configured BWPs may be active, and the UE may not expect to send or receive a given signal / channel outside the active BWP.
  • “cell”, “carrier” and the like in this disclosure may be read as “BWP”.
  • the above-mentioned structures such as wireless frames, subframes, slots, mini slots and symbols are merely examples.
  • the number of subframes contained in a wireless frame the number of slots per subframe or wireless frame, the number of minislots contained within a slot, the number of symbols and RBs contained in a slot or minislot, included in RB.
  • the number of subcarriers, the number of symbols in the TTI, the symbol length, the cyclic prefix (CP) length, and other configurations can be changed in various ways.
  • connection means any direct or indirect connection or connection between two or more elements, and each other. It can include the presence of one or more intermediate elements between two “connected” or “combined” elements.
  • the connection or connection between the elements may be physical, logical, or a combination thereof.
  • connection may be read as "access”.
  • the two elements use at least one of one or more wires, cables and printed electrical connections, and as some non-limiting and non-comprehensive examples, the radio frequency domain.
  • Electromagnetic energies with wavelengths in the microwave and light (both visible and invisible) regions, etc. can be considered to be “connected” or “coupled” to each other.
  • the reference signal can also be abbreviated as Reference Signal (RS), and may be called a pilot (Pilot) depending on the applicable standard.
  • RS Reference Signal
  • Pilot pilot
  • references to elements using designations such as “first”, “second” as used in this disclosure does not generally limit the quantity or order of those elements. These designations can be used in the present disclosure as a convenient way to distinguish between two or more elements. Thus, references to the first and second elements do not mean that only two elements can be adopted there, or that the first element must somehow precede the second element.
  • determining and “determining” used in this disclosure may include a wide variety of actions.
  • “Judgment” and “decision” are, for example, judgment (judging), calculation (calculating), calculation (computing), processing (processing), derivation (deriving), investigation (investigating), search (looking up, search, inquiry). It may include (eg, searching in a table, database or another data structure), ascertaining as “judgment” or “decision”.
  • judgment and “decision” are receiving (for example, receiving information), transmitting (for example, transmitting information), input (input), output (output), and access. (Accessing) (for example, accessing data in memory) may be regarded as “judgment” or “decision”.
  • judgment and “decision” mean that “resolving”, “selecting”, “choosing”, “establishing”, “comparing”, etc. are regarded as “judgment” and “decision”. Can include. That is, “judgment” and “decision” may include that some action is regarded as “judgment” and “decision”. Further, “judgment (decision)” may be read as “assuming”, “expecting”, “considering” and the like.
  • the term "A and B are different” may mean “A and B are different from each other”.
  • the term may mean that "A and B are different from C”.
  • Terms such as “separate” and “combined” may be interpreted in the same way as “different”.
  • Radio communication system 20 NG-RAN 100 gNB 200 UE 210 Radio signal transmission / reception unit 220 Amplifier unit 230 Modulation / demodulation unit 240 Control signal / reference signal processing unit 250 Coding / decoding unit 260 Data transmission / reception unit 270 Control unit 1001 Processor 1002 Memory 1003 Storage 1004 Communication device 1005 Input device 1006 Output device 1007 Bus

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

This terminal receives a synchronization signal block (SSB) in a different frequency band different from frequency bands including one or a plurality of frequency ranges. The terminal further receives a system information block (SIB) using a control resource set (CORESET) associated with the synchronization signal block. The terminal receives at least one of a plurality of synchronization signal blocks transmitted from a network using the same time position or the same frequency position and having different quasi-collocation assumptions. The terminal further uses at least one of a plurality of control resource sets transmitted using the same time position or the same frequency position and having different quasi-collocation assumptions.

Description

端末Terminal
 本発明は、無線通信を実行する端末、特に、同期信号ブロック(SSB)を受信する端末
に関する。
The present invention relates to a terminal that performs wireless communication, in particular a terminal that receives a sync signal block (SSB).
 3rd Generation Partnership Project(3GPP)は、Long Term Evolution(LTE)を仕様化し、LTEのさらなる高速化を目的としてLTE-Advanced(以下、LTE-Advancedを含めてLTEという)、さらに、5th generation mobile communication system(5G、New Radio(NR)またはNext Generation(NG)とも呼ばれる)の仕様化も進められている。 The 3rd Generation Partnership Project (3GPP) has specified Long Term Evolution (LTE), and aims to further speed up LTE with LTE-Advanced (hereinafter referred to as LTE including LTE-Advanced), and the 5th generation mobile communication system. Specifications (also called 5G, New Radio (NR) or Next Generation (NG)) are also underway.
 3GPPのRelease 15及びRelease 16(NR)では、FR1(410 MHz~7.125 GHz)及びFR2,(24.25 GHz~52.6 GHz)を含む帯域の動作が仕様化されている。また、Release 16以降の仕様では、52.6GHzを超える帯域での動作も検討されている(非特許文献1)。Study Item(SI)での目標周波数範囲は52.6GHz~114.25GHzである。 In 3GPP Release 15 and Release 16 (NR), the operation of the band including FR1 (410MHz-7.125GHz) and FR2, (24.25GHz-52.6GHz) is specified. In addition, in the specifications of Release 16 or later, operation in a band exceeding 52.6 GHz is also studied (Non-Patent Document 1). The target frequency range for Study Item (SI) is 52.6GHz to 114.25GHz.
 このようにキャリア周波数が非常に高い場合、位相雑音及び伝搬損失の増大が問題となる。また、ピーク対平均電力比(PAPR)及びパワーアンプの非線形性に対してより敏感となる。 When the carrier frequency is very high like this, the increase of phase noise and propagation loss becomes a problem. It also makes it more sensitive to peak-to-average power ratio (PAPR) and power amplifier non-linearity.
 また、NRでは、同期信号(SS:Synchronization Signal)、及び下り物理報知チャネル(PBCH:Physical Broadcast CHannel)から構成されるSSB(SS/PBCH Block)を用いて初期アクセスやセルの検出及び受信品質の測定が行われる(非特許文献2)。SSBの送信周期は,5,10,20,40,80,160ミリ秒の範囲でセル毎に設定可能である(初期アクセスの端末(User Equipment, UE)は、20ミリ秒の送信周期と仮定する)。 In NR, SSB (SS / PBCH Block) composed of synchronization signal (SS: Synchronization Signal) and downlink physical broadcast channel (PBCH: Physical Broadcast CHannel) is used for initial access, cell detection and reception quality. The measurement is performed (Non-Patent Document 2). The transmission cycle of SSB can be set for each cell in the range of 5, 10, 20, 40, 80, 160 milliseconds (the initial access terminal (User Equipment, UE) is assumed to have a transmission cycle of 20 milliseconds. To do).
 送信周期時間内でのSSBの送信は、5ミリ秒(ハーフフレーム)内に制限されており、各SSBは、異なるビームと対応させることができる。Release 15では、SSBインデックスの数は、64(0~63のインデックス)である。 Transmission of SSB within the transmission cycle time is limited to within 5 milliseconds (half frame), and each SSB can correspond to a different beam. In Release 15, the number of SSB indexes is 64 (indexes from 0 to 63).
 また、端末は、受信したマスタ情報ブロック(MIB:Master Information Block)に基づいて、Type0-PDCCH CSS(Common Search Space:共通検索スペース) set用のCORESET(control resource sets:制御リソースセット)が存在すると決定した場合、当該CORESET(Remaining Minimum System Information (RMSI) CORESETと呼ばれてもよい)用の幾つかの連続したリソースブロック(RB)及びシンボルを決定する(非特許文献3)。端末は、決定したRB及びシンボルに基づいて、下り制御チャネル(PDCCH:Physical Downlink Control Channel)、具体的には、システム情報ブロック(SIB)復号化のためのType 0 PDCCHのモニタリング機会(MO)を設定する。 In addition, if the terminal has a CORESET (control resource sets) for Type0-PDCCH CSS (Common Search Space) set based on the received master information block (MIB: Master Information Block), If determined, several contiguous resource blocks (RBs) and symbols for the CORESET (which may be referred to as Remaining Minimum System Information (RMSI) CORESET) are determined (Non-Patent Document 3). Based on the determined RB and symbol, the terminal provides a monitoring opportunity (MO) for the downlink control channel (PDCCH: Physical Downlink Control Channel), specifically, Type 0 PDCCH for system information block (SIB) decoding. Set.
 上述したような52.6GHzを超えるような高周波数帯域など、FR1/FR2と異なる異周波数帯域を用いる場合、広い帯域幅と大きな伝搬損失とに対応するため、多数のアンテナ素子を有する大規模(massive)なアンテナを用いて、より狭いビームを生成する必要がある。すなわち、一定の地理的なエリアをカバーするためには、多数のビームが必要となる。 When using a different frequency band different from FR1 / FR2, such as the high frequency band exceeding 52.6 GHz as described above, a large scale (massive) with a large number of antenna elements in order to cope with a wide bandwidth and a large propagation loss. ) It is necessary to generate a narrower beam by using an antenna. That is, a large number of beams are required to cover a certain geographical area.
 そこで、SSBのシグナリングに関わるオーバーヘッドを抑制し、データスケジューリング遅延、SSB検出・測定の時間及び消費電力を低減するため、ネットワークから端末に向けて、擬似コロケーション(QCL:Quasi Co-Location)想定が異なる複数のSSBを、同一の時間位置または同一の周波数位置を用いて同時に送信することが考えられる。 Therefore, in order to suppress the overhead related to SSB signaling and reduce the data scheduling delay, SSB detection / measurement time and power consumption, the pseudo-colocation (QCL: Quasi Co-Location) assumption is different from the network to the terminal. It is conceivable to transmit a plurality of SSBs at the same time using the same time position or the same frequency position.
 しかしながら、Release 15では、SSBからType 0 PDCCH MOへのマッピングは、1対1であり、QCL想定が異なるSSBが時分割多重(TDM)されることが規定されている。このため、QCL想定が異なる複数のSSBが同時に送信されると、Type 0 PDCCH MOをどのようにマッピングするかが問題となる。 However, Release 15 stipulates that the mapping from SSB to Type 0 PDCCH MO is one-to-one, and that SSB with different QCL assumptions are time-division multiplexed (TDM). Therefore, when multiple SSBs with different QCL assumptions are transmitted at the same time, the problem is how to map the Type 0 PDCCH MO.
 そこで、本発明は、このような状況に鑑みてなされたものであり、QCL想定が異なる複数のSSBが送信される場合でも、当該SSBとマッピングされる制御リソースセットを正しく認識できる端末の提供を目的とする。 Therefore, the present invention has been made in view of such a situation, and provides a terminal capable of correctly recognizing a control resource set mapped to the SSB even when a plurality of SSBs having different QCL assumptions are transmitted. The purpose.
 本開示の一態様は、一つまたは複数の周波数レンジ(FR1, FR2)を含む周波数帯域と異なる異周波数帯域(例えば、FR4)において、同期信号ブロック(SSB)を受信する第1受信部(無線信号送受信部210)と、前記同期信号ブロックと関連付けられている制御リソースセット(CORESET)を用いてシステム情報ブロック(SIB)を受信する第2受信部(無線信号送受信部210)とを備え、前記第1受信部は、ネットワークから同一の時間位置または同一の周波数位置を用いて送信され、擬似コロケーション想定が異なる複数の前記同期信号ブロックの少なくとも何れかを受信し、前記第2受信部は、同一の時間位置または同一の周波数位置を用いて送信され、前記擬似コロケーション想定が異なる複数の前記制御リソースセットの少なくとも何れかを用いる端末(UE200)である。 One aspect of the present disclosure is a first receiver (radio) that receives a synchronous signal block (SSB) in a different frequency band (for example, FR4) different from the frequency band including one or more frequency ranges (FR1, FR2). A signal transmission / reception unit 210) and a second reception unit (radio signal transmission / reception unit 210) for receiving a system information block (SIB) using a control resource set (CORESET) associated with the synchronization signal block are provided. The first receiver receives at least one of the plurality of synchronization signal blocks transmitted from the network using the same time position or the same frequency position and having different pseudo-colocation assumptions, and the second receiver is the same. A terminal (UE200) that uses at least one of the plurality of control resource sets that are transmitted using the time position or the same frequency position and have different pseudo-colocation assumptions.
 本開示の一態様は、一つまたは複数の周波数レンジ(FR1, FR2)を含む周波数帯域と異なる異周波数帯域(例えば、FR4)において、同期信号ブロック(SSB)を受信する第1受信部(無線信号送受信部210)と、前記同期信号ブロックと関連付けられている制御リソースセット(CORESET)を用いてシステム情報ブロック(SIB)を受信する第2受信部(無線信号送受信部210)とを備え、前記第1受信部は、ネットワークから擬似コロケーション想定が異なる複数の前記同期信号ブロックの少なくとも何れかを受信し、前記第2受信部は、前記ネットワークから時分割多重によって送信され、前記擬似コロケーション想定が異なる複数の前記制御リソースセットの少なくとも何れかを用いる端末(UE200)である。 One aspect of the present disclosure is a first receiver (radio) that receives a synchronous signal block (SSB) in a different frequency band (for example, FR4) different from the frequency band including one or more frequency ranges (FR1, FR2). A signal transmission / reception unit 210) and a second reception unit (radio signal transmission / reception unit 210) for receiving a system information block (SIB) using a control resource set (CORESET) associated with the synchronization signal block are provided. The first receiver receives at least one of the plurality of synchronization signal blocks having different pseudo-colocation assumptions from the network, and the second receiver is transmitted from the network by time division multiplexing, and the pseudo-colocation assumptions are different. A terminal (UE200) that uses at least one of the plurality of control resource sets.
 本開示の一態様は、一つまたは複数の周波数レンジ(FR1, FR2)を含む周波数帯域を用いる場合、同期信号ブロック(SSB)と関連付けられている制御リソースセット(CORESET)を用いてシステム情報ブロック(SIB)を受信する第1受信部と、ネットワークが非スタンドアローン運用であり、前記周波数帯域と異なる異周波数帯域を用いる場合、前記システム情報ブロックを使用しないと判定する制御部(制御部270)とを備える端末(UE200)である。 One aspect of the present disclosure is a system information block using a control resource set (CORESET) associated with a sync signal block (SSB) when using a frequency band that includes one or more frequency ranges (FR1, FR2). When the first receiving unit that receives (SIB) and the network are in non-standalone operation and a different frequency band different from the frequency band is used, the control unit (control unit 270) determines that the system information block is not used. It is a terminal (UE200) equipped with.
図1は、無線通信システム10の全体概略構成図である。FIG. 1 is an overall schematic configuration diagram of the wireless communication system 10. 図2は、無線通信システム10において用いられる周波数レンジを示す図である。FIG. 2 is a diagram showing a frequency range used in the wireless communication system 10. 図3は、無線通信システム10において用いられる無線フレーム、サブフレーム及びスロットの構成例を示す図である。FIG. 3 is a diagram showing a configuration example of a wireless frame, a subframe, and a slot used in the wireless communication system 10. 図4は、SSBバーストの構成例を示す図である。FIG. 4 is a diagram showing a configuration example of the SSB burst. 図5は、SSB数が64を超える値まで拡張した場合におけるSSBの一部配置例を示す図である。FIG. 5 is a diagram showing an example of partial arrangement of SSB when the number of SSB is expanded to a value exceeding 64. 図6は、同期信号ブロック(SSB)の構成例を示す図である。FIG. 6 is a diagram showing a configuration example of a synchronization signal block (SSB). 図7は、無線フレーム上におけるSSBの割当例とビームBMとの関係の説明図である。FIG. 7 is an explanatory diagram of the relationship between the SSB allocation example and the beam BM on the radio frame. 図8は、CORESET、SSB及びPDSCHの設定例を示す図である。FIG. 8 is a diagram showing a setting example of CORESET, SSB, and PDSCH. 図9は、Type 0 PDCCH MOの構成例を示す図である。FIG. 9 is a diagram showing a configuration example of Type 0 PDCCH MO. 図10は、UE200の機能ブロック構成図である。FIG. 10 is a functional block configuration diagram of the UE 200. 図11は、256のSSBを同時送信せずに順次送信する場合におけるSSBバーストの構成例を示す図である。FIG. 11 is a diagram showing a configuration example of SSB bursts in the case where 256 SSBs are sequentially transmitted without being simultaneously transmitted. 図12は、動作例1に従って複数のSSBを同時送信する場合におけるSSBバーストの構成例を示す図である。FIG. 12 is a diagram showing a configuration example of an SSB burst when a plurality of SSBs are simultaneously transmitted according to the operation example 1. 図13は、動作例1に従って複数のSSBを同時送信する場合におけるSSBバーストの他の構成例を示す図である。FIG. 13 is a diagram showing another configuration example of the SSB burst when a plurality of SSBs are simultaneously transmitted according to the operation example 1. 図14は、動作例2-1におけるSSBとCORESETとの関連付けの例(その1)を示す図である。FIG. 14 is a diagram showing an example (No. 1) of the association between SSB and CORESET in the operation example 2-1. 図15は、動作例2-1におけるSSBとCORESETとの関連付けの例(その2)を示す図である。FIG. 15 is a diagram showing an example (No. 2) of the association between SSB and CORESET in the operation example 2-1. 図16は、動作例2-2におけるSSBとCORESETとの関連付けの例を示す図である。FIG. 16 is a diagram showing an example of the association between SSB and CORESET in Operation Example 2-2. 図17は、動作例2-2-2におけるSSBとCORESETとの関連付けの例を示す図である。FIG. 17 is a diagram showing an example of the association between SSB and CORESET in the operation example 2-2-2. 図18は、動作例2-2-3におけるSSBとCORESETとの関連付けの例を示す図である。FIG. 18 is a diagram showing an example of the association between SSB and CORESET in Operation Example 2-2-3. 図19は、UE200のハードウェア構成の一例を示す図である。FIG. 19 is a diagram showing an example of the hardware configuration of the UE 200.
 以下、実施形態を図面に基づいて説明する。なお、同一の機能や構成には、同一または類似の符号を付して、その説明を適宜省略する。 Hereinafter, embodiments will be described based on the drawings. The same functions and configurations are designated by the same or similar reference numerals, and the description thereof will be omitted as appropriate.
 (1)無線通信システムの全体概略構成
 図1は、本実施形態に係る無線通信システム10の全体概略構成図である。無線通信システム10は、5G New Radio(NR)に従った無線通信システムであり、Next Generation-Radio Access Network 20(以下、NG-RAN20、及び端末200(以下、UE200)を含む。
(1) Overall Schematic Configuration of Wireless Communication System FIG. 1 is an overall schematic configuration diagram of the wireless communication system 10 according to the present embodiment. The wireless communication system 10 is a wireless communication system according to 5G New Radio (NR), and includes a Next Generation-Radio Access Network 20 (hereinafter, NG-RAN20, and a terminal 200 (hereinafter, UE200)).
 NG-RAN20は、無線基地局100(以下、gNB100)を含む。なお、gNB及びUEの数を含む無線通信システム10の具体的な構成は、図1に示した例に限定されない。 NG-RAN20 includes a radio base station 100 (hereinafter, gNB100). The specific configuration of the wireless communication system 10 including the number of gNBs and UEs is not limited to the example shown in FIG.
 NG-RAN20は、実際には複数のNG-RAN Node、具体的には、gNB(またはng-eNB)を含み、5Gに従ったコアネットワーク(5GC、不図示)と接続される。なお、NG-RAN20及び5GCは、単に「ネットワーク」と表現されてもよい。 NG-RAN20 actually includes multiple NG-RAN Nodes, specifically gNB (or ng-eNB), and is connected to a core network (5GC, not shown) according to 5G. In addition, NG-RAN20 and 5GC may be simply expressed as "network".
 gNB100は、5Gに従った無線基地局であり、UE200と5Gに従った無線通信を実行する。gNB100及びUE200は、複数のアンテナ素子から送信される無線信号を制御することによって、より指向性の高いビームBMを生成するMassive MIMO(Multiple-Input Multiple-Output)、複数のコンポーネントキャリア(CC)を束ねて用いるキャリアアグリゲーション(CA)、及びUEと2つのNG-RAN Nodeそれぞれとの間において同時に通信を行うデュアルコネクティビティ(DC)などに対応することができる。 GNB100 is a wireless base station that complies with 5G, and executes wireless communication according to UE200 and 5G. The gNB100 and UE200 use Massive MIMO (Multiple-Input Multiple-Output) and multiple component carriers (CC) to generate beam BM with higher directivity by controlling radio signals transmitted from multiple antenna elements. It can support carrier aggregation (CA) that is used in a bundle, and dual connectivity (DC) that communicates simultaneously between the UE and each of the two NG-RAN Nodes.
 また、無線通信システム10は、複数の周波数レンジ(FR)に対応する。図2は、無線通信システム10において用いられる周波数レンジを示す。 In addition, the wireless communication system 10 supports a plurality of frequency ranges (FR). FIG. 2 shows the frequency range used in the wireless communication system 10.
 図2に示すように、無線通信システム10は、FR1及びFR2に対応する。各FRの周波数帯は、次のとおりである。 As shown in FIG. 2, the wireless communication system 10 corresponds to FR1 and FR2. The frequency bands of each FR are as follows.
  ・FR1:410 MHz~7.125 GHz
  ・FR2:24.25 GHz~52.6 GHz
 FR1では、15, 30または60kHzのSub-Carrier Spacing(SCS)が用いられ、5~100MHzの帯域幅(BW)が用いられる。FR2は、FR1よりも高周波数であり、60,または120kHz(240kHzが含まれてもよい)のSCSが用いられ、50~400MHzの帯域幅(BW)が用いられる。
・ FR1: 410 MHz to 7.125 GHz
・ FR2: 24.25 GHz to 52.6 GHz
FR1 uses 15, 30 or 60 kHz Sub-Carrier Spacing (SCS) and uses a bandwidth (BW) of 5-100 MHz. FR2 has a higher frequency than FR1, uses SCS of 60, or 120kHz (240kHz may be included), and uses a bandwidth (BW) of 50 to 400MHz.
 なお、SCSは、numerologyと解釈されてもよい。numerologyは、3GPP TS38.300において定義されており、周波数ドメインにおける一つのサブキャリアスペーシングと対応する。 SCS may be interpreted as numerology. Numerology is defined in 3GPP TS38.300 and corresponds to one subcarrier spacing in the frequency domain.
 さらに、無線通信システム10は、FR2の周波数帯域よりも高周波数帯域にも対応する。具体的には、無線通信システム10は、52.6GHzを超え、114.25GHzまでの周波数帯域に対応する。ここでは、このような高周波数帯域を、便宜上「FR4」と呼ぶ。FR4は、いわゆるEHF(extremely high frequency、ミリ波とも呼ばれる)に属する。なお、FR4は仮称であり、別の名称で呼ばれても構わない。 Furthermore, the wireless communication system 10 also supports a higher frequency band than the FR2 frequency band. Specifically, the wireless communication system 10 supports a frequency band exceeding 52.6 GHz and up to 114.25 GHz. Here, such a high frequency band is referred to as "FR4" for convenience. FR4 belongs to the so-called EHF (extremely high frequency, also called millimeter wave). FR4 is a tentative name and may be called by another name.
 また、FR4は、さらに区分されても構わない。例えば、FR4は、70GHz以下の周波数レンジと、70GHz以上の周波数レンジとに区分されてもよい。或いは、FR4は、さらに多くの周波数レンジに区分されてもよいし、70GHz以外の周波数において区分されてもよい。 Also, FR4 may be further classified. For example, FR4 may be divided into a frequency range of 70 GHz or less and a frequency range of 70 GHz or more. Alternatively, FR4 may be divided into more frequency ranges or frequencies other than 70 GHz.
 また、ここでは、FR1とFR2との間の周波数帯は、便宜上「FR3」と呼ぶ。FR3は、7.125 GHzを超え、24.25 GHz未満の周波数帯である。 Also, here, the frequency band between FR1 and FR2 is referred to as "FR3" for convenience. FR3 is a frequency band above 7.125 GHz and below 24.25 GHz.
 本実施形態では、FR3及びFR4は、FR1及びFR2を含む周波数帯域と異なっており、異周波数帯域と呼ぶ。 In this embodiment, FR3 and FR4 are different from the frequency band including FR1 and FR2, and are referred to as different frequency bands.
 特に、FR4のような高周波数帯域では、上述したように、キャリア間の位相雑音の増大が問題となる。このため、より大きな(広い)SCS、またはシングルキャリア波形の適用が必要となり得る。 Especially in a high frequency band such as FR4, an increase in phase noise between carriers becomes a problem as described above. This may require the application of larger (wider) SCS or single carrier waveforms.
 また、伝搬損失が大きくなるため、より狭いビーム(すなわち、より多数のビーム)が必要となり得る。さらに、PAPR及びパワーアンプの非線形性に対してより敏感となるため、より大きな(広い)SCS(及び/または、より少ない数のFFTポイント)、PAPR低減メカニズム、またはシングルキャリア波形が必要となり得る。 Also, since the propagation loss becomes large, a narrower beam (that is, a larger number of beams) may be required. In addition, larger (wider) SCS (and / or fewer FFT points), PAPR reduction mechanisms, or single carrier waveforms may be required to be more sensitive to PAPR and power amplifier non-linearity.
 このような問題を解決するため、本実施形態では、52.6GHzを超える帯域を用いる場合、より大きなSub-Carrier Spacing(SCS)を有するCyclic Prefix-Orthogonal Frequency Division Multiplexing(CP-OFDM)/Discrete Fourier Transform - Spread(DFT-S-OFDM)を適用しえる。 In order to solve such a problem, in the present embodiment, when a band exceeding 52.6 GHz is used, Cyclic Prefix-Orthogonal Frequency Division Multiplexing (CP-OFDM) / Discrete Fourier Transform having a larger Sub-Carrier Spacing (SCS) is used. -Spread (DFT-S-OFDM) can be applied.
 しかしながら、SCSが大きい程、シンボル/CP(Cyclic Prefix)期間及びスロット期間が短くなる(14シンボル/スロットの構成が維持される場合)。 However, the larger the SCS, the shorter the symbol / CP (Cyclic Prefix) period and slot period (when the 14 symbol / slot configuration is maintained).
 図3は、無線通信システム10において用いられる無線フレーム、サブフレーム及びスロットの構成例を示す。また、表1は、SCSとシンボル期間との関係を示す。 FIG. 3 shows a configuration example of a wireless frame, a subframe, and a slot used in the wireless communication system 10. Table 1 shows the relationship between the SCS and the symbol period.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1に示すように、14シンボル/スロットの構成が維持される場合、SCSが大きく(広く)なる程、シンボル期間(及びスロット期間)は短くなる。また、SS/PBCH Block(SSB)のタイムドメイン期間も同様に短くなる。 As shown in Table 1, when the 14-symbol / slot configuration is maintained, the larger (wider) the SCS, the shorter the symbol period (and slot period). In addition, the time domain period of SS / PBCH Block (SSB) will be shortened as well.
 図4は、SSBバーストの構成例を示す。SSBは、SS (Synchronization Signal),PBCH (Physical Broadcast CHannel)から構成される同期信号/報知チャネルのブロックである。主に、UE200が通信開始時にセルIDや受信タイミング検出を実行するために周期的に送信される。5Gでは、SSBは、各セルの受信品質測定にも流用される。 FIG. 4 shows a configuration example of the SSB burst. SSB is a block of synchronization signal / broadcast channel composed of SS (Synchronization Signal) and PBCH (Physical Broadcast CHannel). Mainly, the UE 200 is periodically transmitted to execute cell ID and reception timing detection at the start of communication. In 5G, SSB is also used to measure the reception quality of each cell.
 Release 15の場合、サービングセルのSSBの設定について、次のような内容が規定されている。具体的には、SSBの送信周期(periodicity)としては、5、10、20、40、80、160ミリ秒が規定されている。なお、初期アクセスのUE200は、20ミリ秒の送信周期と仮定する。 In the case of Release 15, the following contents are specified for the SSB setting of the serving cell. Specifically, the SSB transmission cycle (periodicity) is defined as 5, 10, 20, 40, 80, and 160 milliseconds. The initial access UE200 is assumed to have a transmission cycle of 20 milliseconds.
 ネットワーク(NG-RAN20)は、実際に送信したSSBのインデックス表示(ssb-PositionsInBurst)をシステム情報(SIB1)または無線リソース制御レイヤ(RRC)のシグナリングによってUE200に通知する。 The network (NG-RAN20) notifies UE200 of the actually transmitted SSB index display (ssb-PositionsInBurst) by signaling system information (SIB1) or radio resource control layer (RRC).
 具体的には、FR1の場合、RRC及びSIB1の8ビットのビットマップによって通知される。また、FR2の場合、RRCの64ビットのビットマップ、及びSIB1のグループ内のSSBの8ビットのビットマップと8ビットグループビットマップによって通知される。 Specifically, in the case of FR1, it is notified by the 8-bit bitmap of RRC and SIB1. In the case of FR2, it is notified by the 64-bit bitmap of RRC and the 8-bit and 8-bit group bitmaps of SSB in the group of SIB1.
 また、上述したように、FR4(高周波数帯域)などに対応する場合、広い帯域幅と大きな伝搬損失とに対応するため、多数のアンテナ素子を有する大規模(massive)なアンテナを用いて、より狭いビームを生成する必要がある。すなわち、一定の地理的なエリアをカバーするためには、多数のビームが必要となる。 Further, as described above, when supporting FR4 (high frequency band) or the like, in order to support a wide bandwidth and a large propagation loss, a large-scale (massive) antenna having a large number of antenna elements is used. It is necessary to generate a narrow beam. That is, a large number of beams are required to cover a certain geographical area.
 Release 15 (FR2)の場合、SSB送信に用いられる最大ビーム数は64であるが、狭いビームで一定の地理的なエリアをカバーするため、最大ビーム数を拡張(例えば、256)することが好ましい。 In the case of Release 15 (FR2), the maximum number of beams used for SSB transmission is 64, but it is preferable to increase the maximum number of beams (for example, 256) in order to cover a certain geographical area with a narrow beam. ..
 そこで、本実施形態では、SSB送信に用いられる最大ビーム数が256まで拡張される。このため、SSBの数も256となり、SSBを識別するインデックス(SSB index)も#64以降の値が用いられる。 Therefore, in this embodiment, the maximum number of beams used for SSB transmission is expanded to 256. Therefore, the number of SSB is also 256, and the index (SSB index) for identifying the SSB is also a value after # 64.
 図5は、SSB数が64を超える値まで拡張した場合におけるSSBの一部配置例を示す。具体的には、図5は、図4に示したSSBバーストの構成例に、SSB indexが#64以降のSSBが追加された状態を示す。なお、さらに大きいSCSが適用された場合には、表1に示したように、シンボル期間は異なり得る。 FIG. 5 shows an example of partial arrangement of SSB when the number of SSB is expanded to a value exceeding 64. Specifically, FIG. 5 shows a state in which SSBs having an SSB index of # 64 or later are added to the SSB burst configuration example shown in FIG. If a larger SCS is applied, the symbol period may be different, as shown in Table 1.
 図5に示すように、SSB indexは、#64以降の値を有し得る。本実施形態では、SSB indexの範囲は、0~255が用いられるものとして、以下説明する。但し、SSB indexの値、及びSSB indexの範囲は、特にこのような例に限定されず、SSBの数は、256を超えてもよいし、64を超え、256未満でもよい。 As shown in FIG. 5, the SSB index can have a value after # 64. In the present embodiment, the range of SSB index will be described below assuming that 0 to 255 is used. However, the value of SSB index and the range of SSB index are not particularly limited to such an example, and the number of SSB may exceed 256, may exceed 64, and may be less than 256.
 図6は、同期信号ブロック(SSB)の構成例を示す。図6に示すように、SSBは、同期信号(SS:Synchronization Signal)、及び下り物理報知チャネル(PBCH:Physical Broadcast CHannel)から構成される。 FIG. 6 shows a configuration example of a synchronization signal block (SSB). As shown in FIG. 6, the SSB is composed of a synchronization signal (SS: Synchronization Signal) and a downlink physical broadcast channel (PBCH: Physical Broadcast CHannel).
 SSは、プライマリ同期信号(PSS:Primary SS)及びセカンダリ同期信号(SSS:Secondary SS)によって構成される。 SS is composed of a primary synchronization signal (PSS: Primary SS) and a secondary synchronization signal (SSS: Secondary SS).
 PSSは、セルサーチ手順においてUE200が最初に検出を試みる既知の信号である。SSSは、セルサーチ手順において物理セルIDを検出するために送信される既知の信号である。 PSS is a known signal that UE200 first attempts to detect in the cell search procedure. The SSS is a known signal transmitted to detect the physical cell ID in the cell search procedure.
 PBCHは、は無線フレーム番号(SFN:System Frame Number)、及びハーフフレーム(5ミリ秒)内の複数のSS/PBCH Blockのシンボル位置を識別するためのインデックスなど、SS/PBCH Blockを検出した後にUE200が、gNB100が形成するNRセルとのフレーム同期を確立するために必要な情報を含む。 After detecting SS / PBCH Block, PBCH is an index for identifying the symbol position of multiple SS / PBCH Blocks in the radio frame number (SFN: SystemFrameNumber) and half frame (5 milliseconds). Contains the information necessary for the UE200 to establish frame synchronization with the NR cell formed by the gNB100.
 また、PBCHは、システム情報(SIB)を受信するために必要となるシステムパラメータも含むことができる。さらに、SSBには、報知チャネル復調用参照信号(DMRS for PBCH)も含まれる。DMRS for PBCHは、PBCH復調のための無線チャネル状態を測定するために送信される既知の信号である。 The PBCH can also include the system parameters required to receive system information (SIB). Further, the SSB also includes a reference signal for demodulation of the broadcast channel (DMRS for PBCH). DMRS for PBCH is a known signal transmitted to measure the radio channel state for PBCH demodulation.
 図7は、無線フレーム上におけるSSBの割当例とビームBMとの関係の説明図である。上述したように、SSB、具体的には、図6に示した同期信号(PSS/SSS)及びPBCHは、各無線フレームの前半もしくは後半のいずれかのハーフフレーム(5ミリ秒)内において送信される(図7は前半のハーフフレームで送信される例)。また、各SSBは、異なるビームBMと対応付けられると端末は想定する。つまり、各SSBは、送信方向(カバレッジ)の異なるビームBMと対応付けられると端末は想定する。これにより、NRセル内に在圏するUE200は、何れかのビームBMを受信し、SSBを取得して初期アクセス及びSSB検出・測定を開始できる。 FIG. 7 is an explanatory diagram of the relationship between the SSB allocation example and the beam BM on the wireless frame. As mentioned above, the SSB, specifically the sync signal (PSS / SSS) and PBCH shown in FIG. 6, are transmitted within either the first half or the second half of each radio frame (5 ms). (Fig. 7 shows an example of transmission in the first half frame). The terminal also assumes that each SSB is associated with a different beam BM. That is, the terminal assumes that each SSB is associated with a beam BM having a different transmission direction (coverage). As a result, the UE 200 located in the NR cell can receive any beam BM, acquire the SSB, and start the initial access and SSB detection / measurement.
 なお、SSBの送信パターンは、SCS、周波数レンジ(FR)またはその他のパラメータに応じて様々である。また、必ずしも全てのSSBが送信されなくてもよく、ネットワークの要件、状態などに応じて、少数のSSBのみを選択的に送信し、何れのSSBが送信され、何れのSSBが送信されないかが、UE200に通知されてもよい。 The SSB transmission pattern varies depending on the SCS, frequency range (FR) or other parameters. In addition, not all SSBs need to be transmitted, and only a small number of SSBs are selectively transmitted according to network requirements, conditions, etc., which SSBs are transmitted and which SSBs are not transmitted. , UE200 may be notified.
 SSBの送信パターンは、上述したssb-PositionsInBurstと呼ばれるRRC IE(Information Element)によってUE200に通知される。 The SSB transmission pattern is notified to the UE 200 by the RRC IE (Information Element) called ssb-PositionsInBurst described above.
 図8は、CORESET、SSB及びPDSCHの設定例を示す。具体的には、図8は、SSBと、CORESET(RMSI CORESET或いはCORESET#0と呼ばれてもよい)とのMultiplexing patternとして、「1」~「3」(図中の"Pattern")が選択された場合における時間方向(時間領域と呼んでもよい)及び周波数方向(周波数領域と呼んでもよい)のRMSI CORESET、SSB及びPDSCH(Physical Downlink Shared Channel)の設定例を示す。 FIG. 8 shows a setting example of CORESET, SSB and PDSCH. Specifically, in FIG. 8, “1” to “3” (“Pattern” in the figure) are selected as the Multiplexing pattern of SSB and CORESET (may be called RMSI CORESET or CORESET # 0). An example of setting RMSI CORESET, SSB and PDSCH (Physical Downlink Shared Channel) in the time direction (which may be called the time domain) and the frequency direction (which may be called the frequency domain) in the case where the data is set is shown.
 なお、本実施形態では、SSBとCORESET(RMSI CORESET或いはCORESET#0)とがマッピングされるものとして主に説明するが、SSBは、実質的にType 0 PDCCH MOとマッピングされると解釈してもよい。つまり、SSBは、CORESETとマッピングされ得るし、Type 0 PDCCH MOともマッピングされ得る。また、マッピングの用語は、対応付ける、関連付けるなど、他の同義の用語に置き換えられても構わない。 In this embodiment, SSB and CORESET (RMSI CORESET or CORESET # 0) are mainly mapped, but SSB may be interpreted as being substantially mapped to Type 0 PDCCH MO. Good. That is, SSB can be mapped to CORESET and can also be mapped to Type 0 PDCCH MO. In addition, mapping terms may be replaced with other synonymous terms such as associating and associating.
 UE200は、3GPP TS38.213 v15/13章(つまり、3GPPのRelease 15)に記載されているTable 13-1~13-10に示されているように、マスタ情報ブロック(MIB:Master Information Block)に含まれるpdcch-ConfigSIB1の4つの最上位ビット(controlResourceSetZero)からRMSI CORESETの連続するリソースブロック(RB)数及び連続するシンボル数などを決定し、MIBに含まれるpdcch-ConfigSIB1の4つの最下位ビット(searchSpaceZero)からPDCCH(Type 0 PDCCHを含む)のモニタリング機会(MO)の周期やタイミングなどを決定する。なお、pdcch-ConfigSIB1は、RMSI-PDCCH-Configなどと呼ばれてもよい。 UE200 is a master information block (MIB) as shown in Tables 13-1 to 13-10 described in 3GPP TS38.213 v15 / 13 (that is, 3GPP Release 15). Determines the number of consecutive resource blocks (RB) and consecutive symbols of RMSI CORESET from the four most significant bits (controlResourceSetZero) of pdcch-ConfigSIB1 included in the MIB, and the four least significant bits of pdcch-ConfigSIB1 included in the MIB. Determine the cycle and timing of monitoring opportunities (MO) for PDCCH (including Type 0 PDCCH) from (searchSpaceZero). Note that pdcch-ConfigSIB1 may be called RMSI-PDCCH-Config or the like.
 より具体的には、UE200は、Type0-PDCCH CSS set用のCORESETが存在すると決定した場合、当該CORESET用の幾つかの連続したリソースブロック(RB)及びシンボルを決定する。 More specifically, when the UE200 determines that a CORESET for Type0-PDCCH CSS set exists, it determines several consecutive resource blocks (RBs) and symbols for the CORESET.
 例えば、pdcch-ConfigSIB1が「0」であり、最上位ビット(MSB)4ビット及び最下位ビット(LSB)4ビットが「0」である。また、サブキャリアスペーシング(SCS)は、15kHzと仮定する。この場合、表1に従って、次のようなパラメータを得ることができる。 For example, pdcch-ConfigSIB1 is "0", and the most significant bit (MSB) 4 bits and the least significant bit (LSB) 4 bits are "0". Subcarrier spacing (SCS) is assumed to be 15 kHz. In this case, the following parameters can be obtained according to Table 1.
 ・RB=24, シンボル=2, オフセット=0, Multiplexing pattern=1 ・ RB = 24, Symbol = 2, Offset = 0, Multiplexing pattern = 1
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 さらに、表2に従って、SSBに関して、次のようなパラメータを得ることができる。 Furthermore, according to Table 2, the following parameters can be obtained for SSB.
  ・O=0, M=1, 最初のシンボルインデックス=0, スロット毎のCSSセット数=1 ・ O = 0, M = 1, first symbol index = 0, number of CSS sets per slot = 1
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 表1及び表2は、3GPP TS38.213のTable 13-1及び13-11の再掲である。なお、「O」は、Type 0 PDCCHの送信基準位置からのオフセット量を示す。また、「M」は、SSB indexに応じて対応するType0-PDCCH MOが含まれるスロットを決定するためのパラメータを示す。 Tables 1 and 2 are reprints of Tables 13-1 and 13-11 of 3GPP TS38.213. “O” indicates the amount of offset from the transmission reference position of Type 0 PDCCH. In addition, "M" indicates a parameter for determining the slot in which the corresponding Type0-PDCCHMO is included according to the SSB index.
 このように、SSBとCORESETとのMultiplexing pattern、及びType 0 PDCCH MOが決定される。 In this way, the Multiplexing pattern of SSB and CORESET and the Type 0 PDCCH MO are determined.
 なお、図8には、Multiplexing pattern=1以外に、Multiplexing pattern=2, 3の場合の設定例についても示されている。図8に示すように、CORESET、SSB及びPDSCHの設定には、時分割多重(TDM)のみの場合(Multiplexing pattern=1)、TDM及び周波数分割多重(FDM)の場合(Multiplexing pattern=2)、及びFDMのみの場合(Multiplexing pattern=3)がある。 Note that FIG. 8 also shows a setting example in the case of Multiplexing pattern = 2, 3 in addition to Multiplexing pattern = 1. As shown in FIG. 8, CORESET, SSB, and PDSCH are set in the case of time division multiplexing (TDM) only (Multiplexing pattern = 1) and in the case of TDM and frequency division multiplexing (FDM) (Multiplexing pattern = 2). And there is a case of FDM only (Multiplexing pattern = 3).
 図9は、Type 0 PDCCH MOの構成例を示す。具体的には、図9は、上述した設定例に沿ったType 0 PDCCH MOの構成例示している。SCSが15kHzの場合、SSB indexは、0, 1, 2, 3となり、3GPP TS38.213の13章において規定されるように、UE200は、無線フレーム(SFN)内のスロットのインデックスn0=0, 1, 2, 3と決定する。 FIG. 9 shows a configuration example of Type 0 PDCCH MO. Specifically, FIG. 9 illustrates the configuration of the Type 0 PDCCH MO according to the above setting example. When the SCS is 15kHz, the SSB index is 0,1,2,3, and as specified in Chapter 13 of 3GPP TS38.213, the UE200 has a slot index n0 = 0, in the radio frame (SFN). Decide 1, 2, and 3.
 すなわち、UE200は、n0=0, 1, 2, 3から始まる2つの連続するスロットにおいて、PDCCH(Type 0 PDCCH)を監視する。 That is, the UE200 monitors PDCCH (Type 0 PDCCH) in two consecutive slots starting with n0 = 0, 1, 2, and 3.
 (2)無線通信システムの機能ブロック構成
 次に、無線通信システム10の機能ブロック構成について説明する。具体的には、UE200の機能ブロック構成について説明する。
(2) Functional block configuration of the wireless communication system Next, the functional block configuration of the wireless communication system 10 will be described. Specifically, the functional block configuration of UE200 will be described.
 図10は、UE200の機能ブロック構成図である。図10に示すように、UE200は、無線信号送受信部210、アンプ部220、変復調部230、制御信号・参照信号処理部240、符号化/復号部250、データ送受信部260及び制御部270を備える。 FIG. 10 is a functional block configuration diagram of the UE 200. As shown in FIG. 10, the UE 200 includes a radio signal transmission / reception unit 210, an amplifier unit 220, a modulation / demodulation unit 230, a control signal / reference signal processing unit 240, an encoding / decoding unit 250, a data transmission / reception unit 260, and a control unit 270. ..
 無線信号送受信部210は、NRに従った無線信号を送受信する。無線信号送受信部210は、Massive MIMO、複数のCCを束ねて用いるCA、及びUEと2つのNG-RAN Nodeそれぞれとの間において同時に通信を行うDCなどに対応する。 The wireless signal transmitter / receiver 210 transmits / receives a wireless signal according to NR. The radio signal transmitter / receiver 210 corresponds to Massive MIMO, a CA that bundles and uses a plurality of CCs, and a DC that simultaneously communicates between a UE and each of two NG-RAN Nodes.
 また、無線信号送受信部210は、FR1またFR2を用いる場合よりもシンボル数が多くなったスロットを用いて無線信号を送受信してもよい。なお、シンボル数とは、具体的には、図3に示すスロットを構成するOFDMシンボルの数である。 Further, the wireless signal transmission / reception unit 210 may transmit / receive a wireless signal using a slot having a larger number of symbols than when FR1 or FR2 is used. The number of symbols is specifically the number of OFDM symbols constituting the slot shown in FIG.
 例えば、無線信号送受信部210は、28シンボル/スロット構成のスロットを用いて無線信号を送受信することができる。 For example, the wireless signal transmission / reception unit 210 can transmit / receive a wireless signal using a slot having a 28-symbol / slot configuration.
 また、本実施形態では、無線信号送受信部210は、一つまたは複数の周波数レンジ、具体的には、FR1, FR2を含む周波数帯域と異なる異周波数帯域、つまり、FR3, FR4において、同期信号ブロック、具体的には、SSB(SS/PBCH Block)を受信することができる。 Further, in the present embodiment, the radio signal transmitter / receiver 210 has a synchronization signal block in one or more frequency ranges, specifically, in a different frequency band different from the frequency band including FR1 and FR2, that is, FR3 and FR4. , Specifically, SSB (SS / PBCH Block) can be received.
 具体的には、無線信号送受信部210は、ネットワークから同一の時間位置または同一の周波数位置を用いて送信され、SSBを識別するインデックスが異なる複数のSSBの少なくとも何れかを受信することができる。 Specifically, the radio signal transmission / reception unit 210 can receive at least one of a plurality of SSBs transmitted from the network using the same time position or the same frequency position and having different indexes for identifying the SSBs.
 なお、SSBを識別するインデックスが異なるとは、擬似コロケーション(QCL:Quasi-Colocation)想定が異なると解釈されてもよい。つまり、無線信号送受信部210(UE200)は、QCL想定が異なる複数のSSBの少なくとも何れかを受信することができる。 Note that different indexes that identify SSBs may be interpreted as different pseudo-collocation (QCL: Quasi-Colocation) assumptions. That is, the radio signal transmitter / receiver 210 (UE200) can receive at least one of a plurality of SSBs having different QCL assumptions.
 QCLとは、例えば、一方のアンテナポート上のシンボルが搬送されるチャネルの特性が、他方のアンテナポート上のシンボルが搬送されるチャネルから推測できる場合、2つのアンテナポートは擬似的に同じ場所にあるとするものである。 A QCL is, for example, when the characteristics of the channel on which the symbol on one antenna port is carried can be inferred from the channel on which the symbol on the other antenna port is carried, the two antenna ports are in pseudo-same location. It is supposed to be.
 また、同じSSB indexのSSB間はQCLであると想定し、それ以外のSSB間(すなわち、異なるSSB index)はQCLを想定してはいけないと解釈できる。なお、QCLは、準コロケーションと呼ばれてもよい。 Also, it can be interpreted that the SSBs of the same SSB index are assumed to be QCLs, and the other SSBs (that is, different SSB indexes) should not be assumed to be QCLs. The QCL may be called a quasi-collocation.
 本実施形態では、最大SSB数(L)は、256まで拡張され、後述するように、ネットワーク(gNB100)は、複数のSSBを同一の時間位置(時間リソース、時間領域などと読み替えてもよい)、または同一の周波数位置(周波数リソース、周波数帯、周波数領域などと読み替えてもよい)において送信できる。 In this embodiment, the maximum number of SSBs (L) is expanded to 256, and as will be described later, the network (gNB100) may read a plurality of SSBs at the same time position (time resources, time domain, etc.). , Or can be transmitted at the same frequency position (which may be read as frequency resource, frequency band, frequency domain, etc.).
 無線信号送受信部210は、これら同一の時間位置または周波数位置において送信された複数のSSBの少なくともに何れか(つまり、複数受信してもよい)を受信できる。 The radio signal transmitter / receiver 210 can receive any (that is, a plurality of may be received) of at least a plurality of SSBs transmitted at the same time position or frequency position.
 また、後述するように、ネットワークから送信される複数のSSBは、同期信号ブロックセット(SSBセット)を複数構成し得る。また、同一の時間位置において送信される複数の同期信号ブロックセットは、時間方向において互いに同期しており、同一のタイミングで送信され得る。 Further, as described later, a plurality of SSBs transmitted from the network may form a plurality of synchronization signal block sets (SSB sets). Also, a plurality of synchronized signal block sets transmitted at the same time position are synchronized with each other in the time direction and can be transmitted at the same timing.
 無線信号送受信部210は、複数の同期信号ブロックセットの少なくとも何れか、または複数の同期信号ブロックセットを受信できる。 The wireless signal transmitter / receiver 210 can receive at least one of a plurality of synchronization signal block sets or a plurality of synchronization signal block sets.
 また、本実施形態では、無線信号送受信部210は、FR4(またはFR3)などの異周波数帯域において、SSBを受信する第1受信部を構成する。さらに、無線信号送受信部210は、SSBと関連付けられているCORESET(制御リソースセット)を用いてシステム情報ブロックを受信する第2受信部を構成する。 Further, in the present embodiment, the radio signal transmission / reception unit 210 constitutes a first reception unit that receives SSB in a different frequency band such as FR4 (or FR3). Further, the radio signal transmission / reception unit 210 constitutes a second reception unit that receives a system information block using CORESET (control resource set) associated with the SSB.
 システム情報ブロックとは、gNB100(無線基地局)からUE200に向けて一斉同報される報知情報の一種である。システム情報ブロックは、複数のブロックに分割されていてもよく、システム情報ブロックは、複数のブロックの何れかまたは全てであってもよい。本実施形態では、システム情報ブロックには、SIB1が含まれる。UE200がランダムアクセスを実行するためには、上りリンクキャリア情報、ランダムアクセス信号構成情報などが必要であり、これらを含む初期アクセス時に必要となる情報は、SIB1としてセル内の端末に向けて報知される。 The system information block is a type of broadcast information that is broadcast from gNB100 (wireless base station) to UE200 all at once. The system information block may be divided into a plurality of blocks, and the system information block may be any or all of the plurality of blocks. In this embodiment, the system information block includes SIB1. In order for the UE200 to execute random access, uplink carrier information, random access signal configuration information, etc. are required, and the information required for initial access including these is notified to the terminals in the cell as SIB1. Random.
 無線信号送受信部210(第1受信部)は、ネットワークから同一の時間位置または同一の周波数位置を用いて送信され、QCL想定が異なる複数のSSBの少なくとも何れかを受信することができる。 The radio signal transmitter / receiver 210 (first receiver) is transmitted from the network using the same time position or the same frequency position, and can receive at least one of a plurality of SSBs having different QCL assumptions.
 また、無線信号送受信部210(第2受信部)は、同一の時間位置または同一の周波数位置を用いて送信され、QCL想定が異なる複数のCORESETの少なくとも何れかを用いることができる。つまり、無線信号送受信部210は、同一の時間位置または同一の周波数位置を用いて送信され、QCL想定が異なる複数のCORESETの少なくとも何れかを用いて、システム情報ブロックを受信できる。 Further, the radio signal transmission / reception unit 210 (second reception unit) is transmitted using the same time position or the same frequency position, and at least one of a plurality of CORESETs having different QCL assumptions can be used. That is, the radio signal transmission / reception unit 210 can transmit the system information block by using at least one of a plurality of CORESETs that are transmitted using the same time position or the same frequency position and have different QCL assumptions.
 或いは、無線信号送受信部210(第2受信部)は、ネットワークから時分割多重(TDM)によって送信され、QCL想定が異なる複数のCORESETの少なくとも何れかを用いることもできる。つまり、無線信号送受信部210は、ネットワークから時分割多重(TDM)によって送信され、QCL想定が異なる複数のCORESETの少なくとも何れかを用いて、システム情報ブロックを受信できる。 Alternatively, the radio signal transmitter / receiver 210 (second receiver) may use at least one of a plurality of CORESETs transmitted from the network by time division multiplexing (TDM) and having different QCL assumptions. That is, the radio signal transmitter / receiver 210 is transmitted from the network by time division multiplexing (TDM), and can receive the system information block by using at least one of a plurality of CORESETs having different QCL assumptions.
 より具体的には、当該複数のCORESET(RMSI CORESET)は、同一の時間位置(時間領域でもよい)または周波数位置(周波数領域でもよい)を用いて送信される。例えば、RMSI CORESET #0とRMSI CORESET #1とが、同一の時間位置または周波数位置を用いて送信されてよい。 More specifically, the plurality of CORESETs (RMSI CORESETs) are transmitted using the same time position (may be time domain) or frequency position (may be frequency domain). For example, RMSI CORESET # 0 and RMSI CORESET # 1 may be transmitted using the same time position or frequency position.
 この場合、無線信号送受信部210(第2受信部)は、システム情報ブロック(SIB1)よりも先にネットワークから送信されるマスタ情報ブロック(MIB)を受信してもよい。当該MIBには、ネットワークから送信されるSSBの情報が含まれる。さらに、この場合、1つのSSBは、複数のCORESETと対応付けられていてもよいし、または複数のSSBは、1つの制御リソースセットと対応付けられていてもよい。 In this case, the radio signal transmission / reception unit 210 (second reception unit) may receive the master information block (MIB) transmitted from the network before the system information block (SIB1). The MIB contains SSB information transmitted from the network. Further, in this case, one SSB may be associated with a plurality of CORESETs, or a plurality of SSBs may be associated with one control resource set.
 また、無線信号送受信部210(第1受信部)は、FR1, FR2を含む周波数帯域を用いる場合、Release 15において規定されているように、SSBと関連付けられているCORESETを用いてシステム情報ブロック(SIB1)を受信できる。 Further, when the radio signal transmission / reception unit 210 (first reception unit) uses the frequency band including FR1 and FR2, the system information block (1st reception unit) uses CORESET associated with SSB as specified in Release 15. Can receive SIB1).
 アンプ部220は、PA (Power Amplifier)/LNA (Low Noise Amplifier)などによって構成される。アンプ部220は、変復調部230から出力された信号を所定の電力レベルに増幅する。また、アンプ部220は、無線信号送受信部210から出力されたRF信号を増幅する。 The amplifier unit 220 is composed of PA (Power Amplifier) / LNA (Low Noise Amplifier) and the like. The amplifier unit 220 amplifies the signal output from the modulation / demodulation unit 230 to a predetermined power level. Further, the amplifier unit 220 amplifies the RF signal output from the radio signal transmission / reception unit 210.
 変復調部230は、所定の通信先(gNB100または他のgNB)毎に、データ変調/復調、送信電力設定及びリソースブロック割当などを実行する。 The modulation / demodulation unit 230 executes data modulation / demodulation, transmission power setting, resource block allocation, etc. for each predetermined communication destination (gNB100 or other gNB).
 上述したように、本実施形態では、CP-OFDM及びDFT-S-OFDMを適用し得る。また、本実施形態では、DFT-S-OFDMは、上りリンク(UL)だけでなく、下りリンク(DL)にも用い得る。 As described above, CP-OFDM and DFT-S-OFDM can be applied in this embodiment. Further, in the present embodiment, the DFT-S-OFDM can be used not only for the uplink (UL) but also for the downlink (DL).
 制御信号・参照信号処理部240は、UE200が送受信する各種の制御信号に関する処理、及びUE200が送受信する各種の参照信号に関する処理を実行する。 The control signal / reference signal processing unit 240 executes processing related to various control signals transmitted / received by the UE 200 and processing related to various reference signals transmitted / received by the UE 200.
 具体的には、制御信号・参照信号処理部240は、gNB100から所定の制御チャネルを介して送信される各種の制御信号、例えば、無線リソース制御レイヤ(RRC)の制御信号を受信する。また、制御信号・参照信号処理部240は、gNB100に向けて、所定の制御チャネルを介して各種の制御信号を送信する。 Specifically, the control signal / reference signal processing unit 240 receives various control signals transmitted from the gNB 100 via a predetermined control channel, for example, control signals of the radio resource control layer (RRC). Further, the control signal / reference signal processing unit 240 transmits various control signals to the gNB 100 via a predetermined control channel.
 また、制御信号・参照信号処理部240は、Demodulation reference signal(DMRS)、及びPhase Tracking Reference Signal (PTRS)などの参照信号(RS)を用いた処理を実行する。 In addition, the control signal / reference signal processing unit 240 executes processing using a reference signal (RS) such as Demodulation reference signal (DMRS) and Phase Tracking Reference Signal (PTRS).
 DMRSは、データ復調に用いるフェージングチャネルを推定するための端末個別の基地局~端末間において既知の参照信号(パイロット信号)である。PTRSは、高い周波数帯で課題となる位相雑音の推定を目的した端末個別の参照信号である。 DMRS is a known reference signal (pilot signal) between a terminal-specific base station and a terminal for estimating a fading channel used for data demodulation. PTRS is a terminal-specific reference signal for the purpose of estimating phase noise, which is a problem in high frequency bands.
 なお、参照信号には、DMRS及びPTRS以外に、Channel State Information-Reference Signal(CSI-RS)及びSounding Reference Signal(SRS)も含まれる。
また、チャネルには、制御チャネルとデータチャネルとが含まれる。制御チャネルには、PDCCH(Physical Downlink Control Channel)、PUCCH(Physical Uplink Control Channel)、RACH(Random Access Channel、Random Access Radio Network Temporary Identifier(RA-RNTI)を含むDownlink Control Information (DCI))、及びPhysical Broadcast Channel(PBCH)などが含まれる。
In addition to DMRS and PTRS, the reference signals also include Channel State Information-Reference Signal (CSI-RS) and Sounding Reference Signal (SRS).
Channels also include control channels and data channels. Control channels include PDCCH (Physical Downlink Control Channel), PUCCH (Physical Uplink Control Channel), RACH (Random Access Channel, Downlink Control Information (DCI) including Random Access Radio Network Temporary Identifier (RA-RNTI)), and Physical. Broadcast Channel (PBCH) etc. are included.
 また、データチャネルには、PDSCH(Physical Downlink Shared Channel)、及びPUSCH(Physical Downlink Shared Channel)などが含まれる。データとは、データチャネルを介して送信されるデータを意味する。 In addition, the data channels include PDSCH (Physical Downlink Shared Channel) and PUSCH (Physical Downlink Shared Channel). Data means data transmitted over a data channel.
 符号化/復号部250は、所定の通信先(gNB100または他のgNB)毎に、データの分割/連結及びチャネルコーディング/復号などを実行する。 The coding / decoding unit 250 executes data division / concatenation and channel coding / decoding for each predetermined communication destination (gNB100 or other gNB).
 具体的には、符号化/復号部250は、データ送受信部260から出力されたデータを所定のサイズに分割し、分割されたデータに対してチャネルコーディングを実行する。また、符号化/復号部250は、変復調部230から出力されたデータを復号し、復号したデータを連結する。 Specifically, the coding / decoding unit 250 divides the data output from the data transmitting / receiving unit 260 into a predetermined size, and executes channel coding for the divided data. Further, the coding / decoding unit 250 decodes the data output from the modulation / demodulation unit 230 and concatenates the decoded data.
 データ送受信部260は、Protocol Data Unit (PDU)ならびにService Data Unit (SDU)の送受信を実行する。具体的には、データ送受信部260は、複数のレイヤ(媒体アクセス制御レイヤ(MAC)、無線リンク制御レイヤ(RLC)、及びパケット・データ・コンバージェンス・プロトコル・レイヤ(PDCP)など)におけるPDU/SDUの組み立て/分解などを実行する。また、データ送受信部260は、ハイブリッドARQ(Hybrid automatic repeat request)に基づいて、データの誤り訂正及び再送制御を実行する。 The data transmission / reception unit 260 executes transmission / reception of Protocol Data Unit (PDU) and Service Data Unit (SDU). Specifically, the data transmitter / receiver 260 is a PDU / SDU in a plurality of layers (such as a medium access control layer (MAC), a wireless link control layer (RLC), and a packet data convergence protocol layer (PDCP)). Assemble / disassemble the. Further, the data transmission / reception unit 260 executes data error correction and retransmission control based on the hybrid ARQ (Hybrid automatic repeat request).
 制御部270は、UE200を構成する各機能ブロックを制御する。本実施形態では、制御部270は、同期信号ブロック(SSB)、制御リソースセット(CORESET)及びシステム情報ブロックに関する制御を実行する。 The control unit 270 controls each functional block constituting the UE 200. In this embodiment, the control unit 270 executes control regarding the synchronization signal block (SSB), the control resource set (CORESET), and the system information block.
 特に、制御部270は、ネットワークが非スタンドアローン運用であり、FR3, FR4などの異周波数帯域を用いる場合、システム情報ブロック(SIB1)を使用しないと判定してもよい。 In particular, the control unit 270 may determine that the system information block (SIB1) is not used when the network is non-standalone operation and different frequency bands such as FR3 and FR4 are used.
 非スタンドアローン運用(Non-SA, NSA)とは、例えば、NR FR1及び/またはFR2とNR FR3またはFR4とのインターワーキング(CA、DC)や、LTEとNR FR3またはFR4とのインターワーキング、具体的には、E-UTRA-NR Dual Connectivity(EN-DC)など、NR FR3またはFR4単独での運用ではないことを意味する。 Non-standalone operation (Non-SA, NSA) means, for example, interworking between NRFR1 and / or FR2 and NRFR3 or FR4 (CA, DC), or interworking between LTE and NRFR3 or FR4, specifically. In other words, it means that it is not operated by NR FR3 or FR4 alone, such as E-UTRA-NR Dual Connectivity (EN-DC).
 (3)無線通信システムの動作
 次に、無線通信システム10の動作について説明する。具体的には、gNB100による同期信号ブロック(SSB)の送信、及びUE200による当該同期信号ブロックの受信動作について説明する。さらに、UE200による制御リソースセット(CORESET)の決定動作について説明する。
(3) Operation of Wireless Communication System Next, the operation of the wireless communication system 10 will be described. Specifically, the transmission of the synchronization signal block (SSB) by the gNB100 and the reception operation of the synchronization signal block by the UE200 will be described. Further, the operation of determining the control resource set (CORESET) by the UE 200 will be described.
 (3.1)動作例1
 本動作例では、ネットワーク(gNB100)は、複数のSSBを同時に送信することができる。具体的には、ネットワークは、複数のSSBを含む同期信号ブロックセット(SSBセット)を時間方向または周波数方向における同一位置において送信する。
(3.1) Operation example 1
In this operation example, the network (gNB100) can transmit a plurality of SSBs at the same time. Specifically, the network transmits a synchronous signal block set (SSB set) including a plurality of SSBs at the same position in the time direction or the frequency direction.
 図11は、256のSSBを同時送信せずに順次送信する場合におけるSSBバーストの構成例を示す。図12は、動作例1に従って複数のSSBを同時送信する場合におけるSSBバーストの構成例を示す。 FIG. 11 shows a configuration example of SSB burst in the case where 256 SSBs are sequentially transmitted without being transmitted simultaneously. FIG. 12 shows a configuration example of an SSB burst when a plurality of SSBs are simultaneously transmitted according to the operation example 1.
 図11に示す構成例は、256のSSB、つまり、256のビームBMを時分割(TDM)のビームスイーピングによって送信する場合のイメージを示す。256のSSBのうち、どのSSBを検出したのかを識別するため、SSB indexとしては、8ビット(28)が必要である。 The configuration example shown in FIG. 11 shows an image in which 256 SSBs, that is, 256 beam BMs are transmitted by time division (TDM) beam sweeping. Of 256 SSB, for identifying whether the detected any SSB, as the SSB index, 8-bit (2 8) is required.
 図12に示す構成例は、SSBセット内の最大SSB数(M)を64とし、SSBセット数(N)を4とした場合である。具体的には、SSB indexには、0~255が用いられ、SSBセットのインデックスには、0~3が用いられてもよい。 The configuration example shown in FIG. 12 is a case where the maximum number of SSB sets (M) in the SSB set is 64 and the number of SSB sets (N) is 4. Specifically, 0 to 255 may be used for the SSB index, and 0 to 3 may be used for the index of the SSB set.
 このように、SSBバースト内のSSB(最大数:L)は、異なるSSBセットに分類することができる。なお、SSBセットは、SSBグループなど、別の名称で呼ばれてもよい。 In this way, the SSB (maximum number: L) in the SSB burst can be classified into different SSB sets. The SSB set may be called by another name such as SSB group.
 図12に示すように、SSBセット内において異なるSSB indexを有する複数のSSBは、時間方向または周波数方向における異なる位置において送信されてもよい。また、異なるSSBセットに含まれる複数のSSBは、時間方向または周波数方向における同一位置において送信されてもよい。 As shown in FIG. 12, a plurality of SSBs having different SSB indexes in the SSB set may be transmitted at different positions in the time direction or the frequency direction. Further, a plurality of SSBs included in different SSB sets may be transmitted at the same position in the time direction or the frequency direction.
 図12に示す例では、SSBセット0には、SSB indexが0~63のSSBが含まれる。同様に、SSBセット1には、SSB indexが64~127のSSB、SSBセット2には、SSB indexが128~191のSSB、SSBセット3には、SSB indexが192~255のSSBが含まれる。つまり、SSBセットの各々に含まれるSSB indexの値は、SSBセット毎に異なってもよい。 In the example shown in FIG. 12, SSB set 0 includes SSBs having an SSB index of 0 to 63. Similarly, SSB set 1 contains SSB with SSB index of 64-127, SSB set 2 contains SSB with SSB index of 128-191, and SSB set 3 contains SSB with SSB index of 192 to 255. .. That is, the value of SSB index included in each SSB set may be different for each SSB set.
 例えば、SSB index=0, 64, 128, 192のSSBは、当該同一位置において送信できる。当該SSB indexを有するSSBと対応付けられたビームBMは、図12に示すように、NRセルの全方位をカバーできるように送信方向が異なっていることが好ましい。 For example, SSB index = 0, 64, 128, 192 SSB can be transmitted at the same position. As shown in FIG. 12, the beam BM associated with the SSB having the SSB index preferably has a different transmission direction so as to cover all directions of the NR cell.
 例えば、各SSBセットは、ビームBMを形成するアンテナパネルと対応するイメージである。複数のアンテナパネルを異なるSSBセットの送信に用いることで、複数のSSBを異なるビームBMによって同時に送信することができる。本動作例は、Release 15において規定されているようなアナログのビームフォーミングにも適用可能である。
図13は、SSBバーストの他の構成例を示す図である。図13に示すように、SSBセットの各々に含まれるSSBのインデックス(同時に送信されるSSBのSSB index)は、SSBセット間において共通である。
For example, each SSB set is an image corresponding to the antenna panel forming the beam BM. By using a plurality of antenna panels for transmitting different SSB sets, a plurality of SSBs can be simultaneously transmitted by different beam BMs. This operation example can also be applied to analog beamforming as specified in Release 15.
FIG. 13 is a diagram showing another configuration example of the SSB burst. As shown in FIG. 13, the SSB index (SSB index of SSB transmitted at the same time) included in each of the SSB sets is common among the SSB sets.
 具体的には、動作例1などと比較すると、各SSBセットにおいて、SSB index=0~63が繰り返される。 Specifically, compared with operation example 1 and the like, SSB index = 0 to 63 are repeated in each SSB set.
 一方、SSBセットを識別するSet indexとして、2ビット、具体的には、00, 01, 10, 11が用いられる。 On the other hand, 2 bits, specifically 00, 01, 10, 11 are used as the Set index for identifying the SSB set.
 (3.2)動作例2
 上述した動作例1のように、SSB indexが255まで拡張され、複数のSSBは、時間方向または周波数方向における同一位置において送信される場合に、次のような点に留意する必要がある。
(3.2) Operation example 2
When the SSB index is extended to 255 and a plurality of SSBs are transmitted at the same position in the time direction or the frequency direction as in the operation example 1 described above, it is necessary to pay attention to the following points.
 具体的には、Release 15のFR2では、SSBからType 0 PDCCH MOへのマッピングは、1対1であり、QCL想定が異なるSSBが時分割多重(TDM)されることが規定されている。このため、QCL想定が異なる複数のSSBが同時に送信される場合、UE200は、RMSI CORESETがどのようにマッピングされているかを認識する必要がある。 Specifically, in FR2 of Release 15, the mapping from SSB to Type 0 PDCCH MO is one-to-one, and it is stipulated that SSB with different QCL assumptions are time-division multiplexed (TDM). Therefore, when multiple SSBs with different QCL assumptions are transmitted at the same time, the UE200 needs to recognize how the RMSI CORESET is mapped.
 以下では、このような場合でも、UE200が正しくRMSI CORESETを認識し得る幾つかの動作例について説明する。 In the following, some operation examples in which the UE200 can correctly recognize RMSI CORESET even in such a case will be described.
 (3.2.1)動作例2-1
 本動作例では、時間方向または周波数方向における同一位置において送信されるSSB、
つまり、同時に送信されるSSBに関連付けられるRMSI CORESETには、異なるQCLを有するが、同一の時間方向及び周波数方向のリソース(T/Fリソース)が用いられる。
(3.2.1) Operation example 2-1
In this operation example, the SSB transmitted at the same position in the time direction or the frequency direction,
That is, resources (T / F resources) in the same time direction and frequency direction are used for the RMSI CORESET associated with the SSB transmitted at the same time, although they have different QCLs.
 異なるSSBセット(PBCH)間において、pdcch-ConfigSIB1(RMSI-PDCCH-Config)の内容は、同じであることが好ましい。 It is preferable that the contents of pdcch-ConfigSIB1 (RMSI-PDCCH-Config) are the same between different SSB sets (PBCH).
 具体的には、SSBを識別するインデックス(SSB indexまたはSSBセットを識別するSet index、以下同)が64以上となる場合、つまり、controlResourceSetZero及びsearchSpaceZeroのT/Fリソースは、SSB x(x<M)と、SSB yとにおいて同じ(y mod M=x, M:セット内最大SSB数)にしてよい。但し、当該SSBのQCLは、異なっていることが好ましい。例えば、同一のT/Fリソースにマッピングされる複数のRMSI CORESETにおいて、PDCCHのDMRSのQCLソースとして想定するRSは、異なるSSB indexと対応付けられてよい。なお、Set indexが定義される場合、SSBを識別するインデックスが64以上とは、Set indexと、SSB自体のインデックス(SSB index)との組み合わせによって識別し得るSSBのインデックスが、64以上となる場合を含む。 Specifically, when the index that identifies SSB (SSB index or Set index that identifies SSB set, the same applies hereinafter) is 64 or more, that is, the T / F resource of controlResourceSetZero and searchSpaceZero is SSB x (x <M). ) And SSB y may be the same (y mod M = x, M: maximum number of SSB in the set). However, it is preferable that the QCL of the SSB is different. For example, in a plurality of RMSI CORESETs mapped to the same T / F resource, the RS assumed as the QCL source of the DMRS of the PDCCH may be associated with a different SSB index. When Set index is defined, the index that identifies SSB is 64 or more when the index of SSB that can be identified by the combination of Set index and the index of SSB itself (SSB index) is 64 or more. including.
 また、SSBを識別するインデックスの最大値が63、つまり、最大SSB数(M)が64の場合であり、SSBセットを識別するSet indexを有する場合、異なるSSBセット間において、controlResourceSetZero及びsearchSpaceZeroのT/Fリソースは、SSB x(x<M)において同じにしてよい。但し、当該SSBのQCLは、異なっていることが好ましい。例えば、同一のT/Fリソースにマッピングされる複数のRMSI CORESETにおいて、PDCCHのDMRSのQCLソースとして想定するRSは、Set indexとSSB indexとの組み合わせに対応付けられてよい。 Also, when the maximum value of the index that identifies the SSB is 63, that is, the maximum number of SSBs (M) is 64, and there is a Set index that identifies the SSB set, T of controlResourceSetZero and searchSpaceZero between different SSB sets. The / F resource may be the same in SSB x (x <M). However, it is preferable that the QCL of the SSB is different. For example, in a plurality of RMSI CORESETs mapped to the same T / F resource, the RS assumed as the QCL source of the DMRS of the PDCCH may be associated with the combination of the Set index and the SSB index.
 なお、SSB indexまたはSet indexを除くPBCHの内容は、同一の中心周波数に設定されたSSBバースト内の全てのSSBにおいて同じであることが好ましい。当該SSBバースト内のSSBに関連付けられている全てのRMSI CORESETは、QCLプロパティ及び時間領域の位置に関連するプロパティを除いて、同じ設定(期間を含む)を有することが好ましい。 It is preferable that the contents of PBCH except SSB index or Set index are the same for all SSBs in the SSB burst set at the same center frequency. It is preferred that all RMSICORESETs associated with the SSB in the SSB burst have the same settings (including time domain), except for the QCL property and the property related to the time domain position.
 本動作例では、UE200は、CORESET内のPDCCH受信に関連するDM-RSアンテナポートが、対応するSSBとほぼ同じ場所に配置されている、つまり、擬似コロケーションであると想定する。また、本動作例は、SSBとCORESETとのMultiplexing pattern=1, 2, 3の何れにも適用し得る。 In this operation example, UE200 assumes that the DM-RS antenna port related to PDCCH reception in CORESET is located at almost the same location as the corresponding SSB, that is, pseudo-collocation. Further, this operation example can be applied to any of Multiplexing pattern = 1, 2, and 3 of SSB and CORESET.
 図14は、動作例2-1におけるSSBとCORESETとの関連付けの例(その1)を示す。具体的には、図14は、図12に示したSSBバーストの構成例と対応する。つまり、図14は、SSBセット内の最大SSB数(M)を64とし、SSBセット数(N)を4とした場合におけるSSBとCORESETとの関連付けの例を示す。図14では、0~255のSSB indexが用いられる、MSBの追加XビットがSSB indexの表示にも用いられる。 FIG. 14 shows an example (No. 1) of the association between SSB and CORESET in the operation example 2-1. Specifically, FIG. 14 corresponds to the SSB burst configuration example shown in FIG. That is, FIG. 14 shows an example of the association between SSB and CORESET when the maximum number of SSB sets (M) in the SSB set is 64 and the number of SSB sets (N) is 4. In FIG. 14, the SSB index of 0 to 255 is used, and the additional X bit of the MSB is also used to display the SSB index.
 図14に示すように、同時に送信されたSSBと関連付けられるCORESET(RMSI CORESET, CORESET#0)には、同一のT/Fリソースに割り当てられる。但し、当該複数のRMSI CORESET間において、QCL及びTransmission Configuration Indication(TCI)は、異なっている。 As shown in FIG. 14, CORESET (RMSI CORESET, CORESET # 0) associated with SSB transmitted at the same time is assigned to the same T / F resource. However, the QCL and Transmission Configuration Indication (TCI) are different among the plurality of RMSI CORESETs.
 図15は、動作例2-1におけるSSBとCORESETとの関連付けの例(その2)を示す。具体的には、図15は、図13に示したSSBバーストの構成例と対応する。つまり、図15は、各SSBセットにおいて、SSB index=0~63が繰り返され、SSBセットを識別するSet indexとして、2ビット、具体的には、00, 01, 10, 11が用いられる場合におけるSSBとCORESETとの関連付けの例を示す。 FIG. 15 shows an example (No. 2) of the association between SSB and CORESET in the operation example 2-1. Specifically, FIG. 15 corresponds to the configuration example of the SSB burst shown in FIG. That is, FIG. 15 shows a case where SSB index = 0 to 63 are repeated in each SSB set and 2 bits, specifically 00, 01, 10, 11 are used as the Set index for identifying the SSB set. An example of the association between SSB and CORESET is shown.
 図15に示すように、同時に送信されたSSBと関連付けられるCORESET(RMSI CORESET, CORESET#0)には、同一のT/Fリソースに割り当てられる(図14と同様である)。なお、無線フレーム(SFN)内のスロットのインデックス(n0)の計算には、i=0~63(i mod M)を用い得る。 As shown in FIG. 15, CORESET (RMSI CORESET, CORESET # 0) associated with SSB transmitted at the same time is assigned to the same T / F resource (similar to FIG. 14). Note that i = 0 to 63 (i mod M) can be used to calculate the index (n0) of the slot in the wireless frame (SFN).
 具体的には、Multiplexing pattern=1(表2及び図8参照)の場合、UE200は、スロットn0から始まる2つの連続したスロットに亘って設定されたTType 0 PDCCH CSS内のPDCCHを監視する。「i」は、SSB(SS/PBCHブロック)のインデックスを示す。 Specifically, when Multiplexing pattern = 1 (see Table 2 and FIG. 8), the UE 200 monitors the PDCCH in the TType 0 PDCCH CSS set over two consecutive slots starting from slot n0. "I" indicates the index of SSB (SS / PBCH block).
 (3.2.2)動作例2-2
 本動作例では、同時に送信されるSSBに関連付けられるRMSI CORESETは、異なるQCLを有し、ネットワークから時分割多重(TDM)によって送信される。
(3.2.2) Operation example 2-2
In this example of operation, the RMSI CORESET associated with the SSB transmitted simultaneously has a different QCL and is transmitted from the network by time division multiplexing (TDM).
 本動作例では、動作例2-1と同様に、異なるSSBセット(PBCH)間において、pdcch-ConfigSIB1(RMSI-PDCCH-Config)の内容は、同じであることが好ましい。また、UE200は、CORESET内のPDCCH受信に関連するDM-RSアンテナポートが、対応するSSBとほぼ同じ場所に配置されている、つまり、擬似コロケーションであると想定する。また、本動作例は、SSBとCORESETとのMultiplexing pattern=1のみに適用し得る。 In this operation example, it is preferable that the contents of pdcch-ConfigSIB1 (RMSI-PDCCH-Config) are the same between different SSB sets (PBCH) as in the operation example 2-1. The UE 200 also assumes that the DM-RS antenna port associated with PDCCH reception in CORESET is located at about the same location as the corresponding SSB, that is, pseudo-collocation. Further, this operation example can be applied only to Multiplexing pattern = 1 between SSB and CORESET.
 図16は、動作例2-2におけるSSBとCORESETとの関連付けの例を示す。具体的には、図16は、図13に示したSSBバーストの構成例と対応する。つまり、図16は、各SSBセットにおいて、SSB index=0~63が繰り返され、SSBセットを識別するSet indexとして、2ビット、具体的には、00, 01, 10, 11が用いられる場合におけるSSBとCORESETとの関連付けの例を示す。 FIG. 16 shows an example of the association between SSB and CORESET in the operation example 2-2. Specifically, FIG. 16 corresponds to the SSB burst configuration example shown in FIG. That is, FIG. 16 shows a case where SSB index = 0 to 63 are repeated in each SSB set and 2 bits, specifically 00, 01, 10, 11 are used as the Set index for identifying the SSB set. An example of the association between SSB and CORESET is shown.
 図16に示す例では、最初にSet index=00に含まれるSSB(SSB index=0~63)と関連付けられるCORESETが割り当てられ、次いで、Set index=01, 10, 11と関連付けられるCORESETが割り当てられる。 In the example shown in FIG. 16, CORESET associated with SSB (SSB index = 0 to 63) included in Set index = 00 is first assigned, and then CORESET associated with Set index = 01, 10, 11 is assigned. ..
 本動作例では、無線フレーム(SFN)内のスロットのインデックス(n0)の計算には、i=0~255(i mod M + Set index*M)を用い得る。 In this operation example, i = 0 to 255 (i mod M + Set index * M) can be used to calculate the index (n0) of the slot in the wireless frame (SFN).
 (3.2.2.1)動作例2-2-1
 上述した動作例2-2の場合、MIBには、実際に送信されたSSBのインデックス(SSB index, Set index)の情報は含まれないため、Type 0 PDCCH MO(RMSI PDCCH MOと呼ばれてもよい)は、全てのインデックスを対象として、定義、想定される。例えば、SSB index=0, 4のみが用いられる場合であっても、SSB indexは、0, 1, 2, 3, 4…を対象として、定義される。従って、SSB index=0, 4のSSBと対応するType 0 PDCCH MOを含むスロットは、分離されることとなる。
(3.2.2.1) Operation example 2-2-1
In the case of the above-mentioned operation example 2-2, since the MIB does not include the information of the SSB index (SSB index, Set index) actually transmitted, it may be called Type 0 PDCCH MO (RMSI PDCCH MO). Good) is defined and assumed for all indexes. For example, even if only SSB index = 0, 4 is used, SSB index is defined for 0, 1, 2, 3, 4 ... Therefore, the slots containing the SSB with SSB index = 0, 4 and the corresponding Type 0 PDCCH MO will be separated.
 また、Release 15のMultiplexing pattern 1の場合、Type 0 PDCCH MOは、連続したスロットにギャップなしに配置される(図9参照)。但し、時間方向において隣接するSSBは、ギャップを設けて配置される(図4など参照)。従って、Type 0 PDCCH MOのマッピングは、長時間に亘るスケジューリング(ビーム)の制限を引き起こし得る。 Also, in the case of Release 15 Multiplexing pattern 1, Type 0 PDCCH MO is placed in consecutive slots without gaps (see Fig. 9). However, the adjacent SSBs in the time direction are arranged with a gap (see FIG. 4 and the like). Therefore, Type 0 PDCCH MO mapping can cause long-term scheduling (beam) limitations.
 本動作例では、このような問題を解決すべく、FR4のような高周波数帯域を用いる場合、MIBは、実際に送信されるSSBに関する情報(例えばグループビットマップ)を含むことができる。UE200は、このような、実際に送信されるSSBに関する情報に基づいて、Type 0 PDCCH MOを定義、想定する。 In this operation example, when a high frequency band such as FR4 is used to solve such a problem, the MIB can include information about the SSB actually transmitted (for example, a group bitmap). The UE200 defines and assumes Type 0 PDCCH MO based on such information about the SSB that is actually transmitted.
 例えば、MIBによって示されていないSSB(グループ)に対するType 0 PDCCH MOは定義されない、すなわちスキップされてよい。 For example, Type 0 PDCCH MO for SSB (group) not indicated by MIB is not defined, that is, it may be skipped.
 これにより、FR4のような高周波数帯域を用いる場合において、Multiplexing pattern 1でもType 0 PDCCH MOを含むスロットは、実際に送信されるSSBに対応するもののみを集約して配置できる。 As a result, when using a high frequency band such as FR4, slots including Type 0 PDCCH MO even in Multiplexing pattern 1 can be aggregated and arranged only for those corresponding to the SSB actually transmitted.
 また、FR4のような高周波数帯域を用いる場合、Multiplexing pattern 1でもType 0 PDCCH MOを含むスロットは連続したスロットにSSB indexに応じて順に配置されるのではなく、途中にType 0 PDCCH MOを含まないスロットを挿入し、非連続のスロットにType 0 PDCCH MOが含まれるように定義されてもよい。これにより、Type 0 PDCCH MOを含まないスロットを任意のビームを用いて利用し、スケジューリング(ビーム)の制限を緩和できる。 Also, when using a high frequency band such as FR4, even in Multiplexing pattern 1, slots containing Type 0 PDCCH MO are not arranged in order according to the SSB index in consecutive slots, but Type 0 PDCCH MO is included in the middle. No slots may be inserted and the non-contiguous slots may be defined to contain Type 0 PDCCH MO. As a result, the slot that does not include the Type 0 PDCCH MO can be used by using an arbitrary beam, and the scheduling (beam) restriction can be relaxed.
 (3.2.2.2)動作例2-2-2
 上述したように、FR4のような高周波数帯域を用いる場合、SSB及びPDCCHの送信に用いられるビームは、かなり狭くなる。このため、UE200がSSBを検出したとしても、UE200が少しでも移動したり、回転したりすると、対応するPDCCHを検出できない可能性がある。
(3.2.2.2) Operation example 2-2-2
As mentioned above, when using a high frequency band such as FR4, the beam used for SSB and PDCCH transmission is considerably narrower. Therefore, even if the UE200 detects the SSB, if the UE200 moves or rotates even a little, the corresponding PDCCH may not be detected.
 本動作例では、このような問題を解決すべく、SSBとType 0 PDCCH MOとの関連付けを、一対多(1:N)とすることができる。当該関連付けに関するファクタNは、MIBによって示すことができる。 In this operation example, in order to solve such a problem, the association between SSB and Type 0 PDCCH MO can be made one-to-many (1: N). The factor N for the association can be indicated by the MIB.
 図17は、動作例2-2-2におけるSSBとCORESETとの関連付けの例を示す。具体的には、図17は、図13に示したSSBバーストの構成例と対応する。つまり、図17は、各SSBセットにおいて、SSB index=0~63が繰り返され、SSBセットを識別するSet indexとして、2ビット、具体的には、00, 01, 10, 11が用いられる場合におけるSSBとCORESETとの関連付けの例を示す。 FIG. 17 shows an example of the association between SSB and CORESET in the operation example 2-2-2. Specifically, FIG. 17 corresponds to the configuration example of the SSB burst shown in FIG. That is, FIG. 17 shows a case where SSB index = 0 to 63 are repeated in each SSB set and 2 bits, specifically 00, 01, 10, 11 are used as the Set index for identifying the SSB set. An example of the association between SSB and CORESET is shown.
 図17に示す例では、1つのSSBに対して複数のRMSI CORESET、つまり、複数のType 0 PDCCH MOが関連付けられている。 In the example shown in FIG. 17, a plurality of RMSI CORESET, that is, a plurality of Type 0 PDCCH MOs are associated with one SSB.
 より具体的には、次のようなオプションを適用し得る。 More specifically, the following options can be applied.
  ・(オプション1): N個のSSB index毎にグループ化され、例えば、SSB index #A(Aは仮の識別、以下同)を検出する端末は、SSB index #Aを含むグループを構成するSSB indexと関連付けられているType 0 PDCCH MOを監視する。 -(Option 1): A terminal that is grouped by N SSB indexes and detects SSB index # A (A is a tentative identification, the same applies hereinafter) is an SSB that constitutes a group including SSB index # A. Monitor the Type 0 PDCCH MO associated with the index.
 例えば、N=8であり、端末がSSB index=10を検出した場合、当該端末は、SSB index=8~15に関連付けられているType 0 PDCCH MOを監視する。 For example, when N = 8 and the terminal detects SSB index = 10, the terminal monitors Type 0 PDCCH MO associated with SSB index = 8 to 15.
  ・(オプション2): SSB index #Aを検出する端末は、(SSB index #A-N/2)から(SSB index #A+N/2-1)に該当する範囲のSSB indexと関連付けられているType 0 PDCCH MOを監視する。 -(Option 2): The terminal that detects SSB index # A is the Type associated with the SSB index in the range from (SSB index # AN / 2) to (SSB index # A + N / 2-1). 0 Monitor PDCCHMO.
 例えば、N=8であり、端末がSSB index=10を検出した場合、当該端末は、SSB index=6~13(SSB index #10-8/2=6, SSB index #10+8/2-1=13)に関連付けられているType 0 PDCCH MOを監視する。 For example, if N = 8 and the terminal detects SSB index = 10, the terminal will have SSB index = 6 to 13 (SSB index # 10-8 / 2 = 6, SSB index # 10 + 8 / 2- Monitor Type 0 PDCCH MO associated with 1 = 13).
 (3.2.2.3)動作例2-2-3
 上述した動作例2-2の場合、多数のCORESETが時分割多重されるため、Type 0 PDCCH MOのマッピングは、長時間に亘るスケジュール(ビーム)の制限を引き起こし得る。
(3.2.2.3) Operation example 2-2-3
In the case of Operation Example 2-2 described above, since a large number of CORESETs are time-division-multiplexed, the mapping of Type 0 PDCCH MO can cause a long-term schedule (beam) limitation.
 本動作例では、このような問題を解決すべく、SSBとType 0 PDCCH MOとの関連付けを、多対一(N:1)とすることができる。このような動作は、動作例2-2-2(1:N)と逆のパターンである。当該関連付けに関するファクタNは、MIBによって示すことができる。 In this operation example, in order to solve such a problem, the association between SSB and Type 0 PDCCH MO can be made many-to-one (N: 1). Such an operation is the reverse pattern of the operation example 2-2-2 (1: N). The factor N for the association can be indicated by the MIB.
 図18は、動作例2-2-3におけるSSBとCORESETとの関連付けの例を示す。具体的には、図18は、図13に示したSSBバーストの構成例と対応する。つまり、図18は、各SSBセットにおいて、SSB index=0~63が繰り返され、SSBセットを識別するSet indexとして、2ビット、具体的には、00, 01, 10, 11が用いられる場合におけるSSBとCORESETとの関連付けの例を示す。 FIG. 18 shows an example of the association between SSB and CORESET in the operation example 2-2-3. Specifically, FIG. 18 corresponds to the configuration example of the SSB burst shown in FIG. That is, FIG. 18 shows a case where SSB index = 0 to 63 are repeated in each SSB set and 2 bits, specifically 00, 01, 10, 11 are used as the Set index for identifying the SSB set. An example of the association between SSB and CORESET is shown.
 図18に示す例では、複数ののSSBに対して1つのRMSI CORESET、つまり、1つのType 0 PDCCH MOが関連付けられている。 In the example shown in FIG. 18, one RMSI CORESET, that is, one Type 0 PDCCH MO is associated with a plurality of SSBs.
 具体的には、Type 0 PDCCH MOは、N SSB index(例えば、0, N, 2N,…)毎にのみ定義、想定される。例えば、SSB index #Aを検出する端末は、SSB index i*N(ここで、i=floor (A/N))と関連付けられているType 0 PDCCH MOを監視する。 Specifically, Type 0 PDCCH MO is defined and assumed only for each N SSB index (for example, 0, N, 2N, ...). For example, a terminal that detects SSB index # A monitors Type 0 PDCCH MO associated with SSB index i * N (here, i = floor (A / N)).
 例えば、N=8であり、端末がSSB index=10を検出した場合、当該端末は、SSB index=8(floor (10/8)=2)に関連付けられているType 0 PDCCH MOを監視する。 For example, when N = 8 and the terminal detects SSB index = 10, the terminal monitors Type 0 PDCCH MO associated with SSB index = 8 (floor (10/8) = 2).
 また、異なる期間におけるType 0 PDCCHの送信には、ビームサイクリングを適用してもよい。例えば、図18に示すように、ビーム毎(#0~(N-1))に、上述したSSBとRMSI CORESETとの関連付けが繰り返されてもよい。 Also, beam cycling may be applied to the transmission of Type 0 PDCCH in different periods. For example, as shown in FIG. 18, the above-mentioned association between SSB and RMSI CORESET may be repeated for each beam (# 0 to (N-1)).
 なお、上述した動作例2-2-1~2-2-3は、複数のSSBが同時送信される場合だけでなく、複数のSSBがTDMによって送信される場合にも適用し得る。 Note that the above-mentioned operation examples 2-2-1 to 2-2-3 can be applied not only when a plurality of SSBs are simultaneously transmitted but also when a plurality of SSBs are transmitted by TDM.
 (3.2.3)動作例2-3
 FR3, FR4などの異周波数帯域を用いる場合、ネットワークが非スタンドアローン運用であることを前提とし、システム情報ブロック(SIB)、SIB1を不要としてもよい。つまり、SIB1は、無線通信システム10が、NR FR3またはFR4のスタンドアローン運用の場合のみ用いられるようにしてもよい。
(3.2.3) Operation example 2-3
When using different frequency bands such as FR3 and FR4, the system information block (SIB) and SIB1 may not be required, assuming that the network is non-standalone operation. That is, SIB1 may be used only when the wireless communication system 10 is in stand-alone operation of NR FR3 or FR4.
 非スタンドアローン運用の場合、Type 0 PDCCH(RMSI PDCCHと呼ばれてもよい)の設定に用いられるビット、具体的には、pdcch-ConfigSIB1の8ビットは、他の目的に用いられてもよい。 In the case of non-standalone operation, the bits used to set Type 0 PDCCH (may be called RMSI PDCCH), specifically, 8 bits of pdcch-ConfigSIB1 may be used for other purposes.
 例えば、当該ビットは、SSB indexの一部、またはSet indexのために使用されてもよいし、MIBのサイズを小さくするために、特に用いられなくてもよい。 For example, the bit may be used for a part of the SSB index or for the Set index, or may not be used in particular to reduce the size of the MIB.
 (4)作用・効果
 上述した実施形態によれば、以下の作用効果が得られる。具体的には、UE200は、同一の時間位置または同一の周波数位置を用いて送信され、QCL想定が異なる複数のRMSI CORESETの少なくとも何れかを用いることができる。このため、UE200は、QCL想定が異なる複数のSSBが同時に送信される場合でも、当該SSBとマッピングされるRMSI CORESETを正しく認識できる。
(4) Action / Effect According to the above-described embodiment, the following action / effect can be obtained. Specifically, the UE200 can use at least one of a plurality of RMSI CORESETs transmitted using the same time position or the same frequency position and having different QCL assumptions. Therefore, the UE200 can correctly recognize the RMSI CORESET mapped to the SSB even when a plurality of SSBs having different QCL assumptions are transmitted at the same time.
 また、UE200は、ネットワークから時分割多重(TDM)によって送信され、QCL想定が異なる複数のRMSI CORESETの少なくとも何れかを用いることができる。このため、QCL想定が異なる複数のSSBが多数TDMによって送信される場合でも、当該SSBとマッピングされるRMSI CORESETを正しく認識できる。 In addition, the UE200 can use at least one of a plurality of RMSI CORESETs transmitted from the network by time division multiplexing (TDM) and having different QCL assumptions. Therefore, even when a large number of SSBs with different QCL assumptions are transmitted by TDM, the RMSI CORESET mapped to the SSB can be correctly recognized.
 この場合、MIBは、ネットワークから送信されるSSBの情報を含んでもよい。このため、UE200は、ネットワークからTDMによって送信されるSSBに対応するRMSI CORESETの情報を柔軟に設定できる。また、Type 0 PDCCH MOを含むスロットが非連続となるように想定されてもよい。このため、Release 15のMultiplexing pattern 1のようにType 0 PDCCH MOが連続したスロットにギャップなしに配置されることに起因する長時間に亘るスケジュール(ビーム)の制限を緩和し得る。 In this case, the MIB may include SSB information transmitted from the network. Therefore, the UE200 can flexibly set the RMSI CORESET information corresponding to the SSB transmitted from the network by TDM. Further, it may be assumed that the slots including the Type 0 PDCCH MO are discontinuous. Therefore, it is possible to relax the limitation of the schedule (beam) over a long period of time due to the Type 0 PDCCH MO being arranged in consecutive slots without a gap as in Multiplexing pattern 1 of Release 15.
 また、1つのSSBは、複数のRMSI CORESETと対応付けられている(1:N)、または複数のSSBは、1つのRMSI CORESETと対応付けられていてもよい(N:1)。 Further, one SSB may be associated with a plurality of RMSI CORESET (1: N), or a plurality of SSBs may be associated with one RMSI CORESET (N: 1).
 SSB:RMSI CORESET=1:Nが適用される場合、UE200がSSBを検出したとしても、UE200が少しでも移動したり、回転したりすると、対応するPDCCHを検出できない可能性を低減できる。また、SSB:RMSI CORESET=N:1が適用される場合、Type 0 PDCCH MOのマッピングによる長時間に亘るスケジュール(ビーム)の制限を緩和し得る。 When SSB: RMSI CORESET = 1: N is applied, even if UE200 detects SSB, if the UE200 moves or rotates even a little, the possibility that the corresponding PDCCH cannot be detected can be reduced. Further, when SSB: RMSICORESET = N: 1 is applied, the limitation of the long-term schedule (beam) due to the mapping of Type 0 PDCCH MO can be relaxed.
 さらに、UE200は、ネットワークが非スタンドアローン運用(NSA)であり、FR3, FR4のような異周波数帯域を用いる場合、システム情報ブロック、具体的には、SIB1を使用しないと判定できる。 Furthermore, UE200 can determine that the system information block, specifically SIB1, is not used when the network is non-standalone operation (NSA) and different frequency bands such as FR3 and FR4 are used.
 このため、QCL想定が異なる複数のSSBが送信される場合でも、非スタンドアローン運用(NSA)の場合には、他のノード(NR FR1/FR2やLTEなど)を介して制御情報を正しく認識できる。 Therefore, even if multiple SSBs with different QCL assumptions are transmitted, the control information can be correctly recognized via other nodes (NR FR1 / FR2, LTE, etc.) in the case of non-standalone operation (NSA). ..
 (5)その他の実施形態
 以上、実施例に沿って本発明の内容を説明したが、本発明はこれらの記載に限定されるものではなく、種々の変形及び改良が可能であることは、当業者には自明である。
(5) Other Embodiments Although the contents of the present invention have been described above with reference to Examples, the present invention is not limited to these descriptions, and various modifications and improvements are possible. It is self-evident to the trader.
 例えば、上述した実施形態では、FR4のような高周波数帯域、つまり、52.6GHzを超える周波数帯域を例として説明したが、上述した動作例の少なくとも何れかは、FR3など、他の周波数レンジに適用されても構わない。 For example, in the above-described embodiment, a high frequency band such as FR4, that is, a frequency band exceeding 52.6 GHz has been described as an example, but at least one of the above-mentioned operation examples is applied to another frequency range such as FR3. It doesn't matter if it is done.
 さらに上述したように、FR4は、70GHz以下の周波数レンジと、70GHz以上の周波数レンジとに区分されてもよく、70GHz以上の周波数レンジに(提案1)~(提案3)が適用され、70GHz以下の周波数レンジに当該提案が部分的に適用されるなど、当該提案と、周波数レンジとの対応は、適宜変更されてもよい。 Further, as described above, FR4 may be divided into a frequency range of 70 GHz or less and a frequency range of 70 GHz or more, and (Proposal 1) to (Proposal 3) are applied to the frequency range of 70 GHz or more, and 70 GHz or less. The correspondence between the proposal and the frequency range may be changed as appropriate, such as the proposal being partially applied to the frequency range of.
 また、上述した実施形態の説明に用いたブロック構成図(図10)は、機能単位のブロックを示している。これらの機能ブロック(構成部)は、ハードウェア及びソフトウェアの少なくとも一方の任意の組み合わせによって実現される。また、各機能ブロックの実現方法は特に限定されない。すなわち、各機能ブロックは、物理的または論理的に結合した1つの装置を用いて実現されてもよいし、物理的または論理的に分離した2つ以上の装置を直接的または間接的に(例えば、有線、無線などを用いて)接続し、これら複数の装置を用いて実現されてもよい。機能ブロックは、上記1つの装置または上記複数の装置にソフトウェアを組み合わせて実現されてもよい。 Further, the block configuration diagram (FIG. 10) used in the description of the above-described embodiment shows a block for each functional unit. These functional blocks (components) are realized by any combination of at least one of hardware and software. Further, the method of realizing each functional block is not particularly limited. That is, each functional block may be realized by using one device that is physically or logically connected, or directly or indirectly (for example, by using two or more physically or logically separated devices). , Wired, wireless, etc.) and may be realized using these plurality of devices. The functional block may be realized by combining the software with the one device or the plurality of devices.
 機能には、判断、決定、判定、計算、算出、処理、導出、調査、探索、確認、受信、送信、出力、アクセス、解決、選択、選定、確立、比較、想定、期待、見做し、報知(broadcasting)、通知(notifying)、通信(communicating)、転送(forwarding)、構成(configuring)、再構成(reconfiguring)、割り当て(allocating、mapping)、割り振り(assigning)などがあるが、これらに限られない。例えば、送信を機能させる機能ブロック(構成部)は、送信部(transmitting unit)や送信機(transmitter)と呼称される。何れも、上述したとおり、実現方法は特に限定されない。 Functions include judgment, decision, judgment, calculation, calculation, processing, derivation, investigation, search, confirmation, reception, transmission, output, access, solution, selection, selection, establishment, comparison, assumption, expectation, and assumption. There are broadcasting, notifying, communicating, forwarding, configuring, reconfiguring, allocating, mapping, assigning, etc., but only these. I can't. For example, a functional block (constituent unit) that makes transmission function is called a transmitting unit or a transmitter. As described above, the method of realizing each is not particularly limited.
 さらに、上述したUE200は、本開示の無線通信方法の処理を行うコンピュータとして機能してもよい。図19は、UE200のハードウェア構成の一例を示す図である。図19に示すように、UE200は、プロセッサ1001、メモリ1002、ストレージ1003、通信装置1004、入力装置1005、出力装置1006及びバス1007などを含むコンピュータ装置として構成されてもよい。 Further, the UE 200 described above may function as a computer that processes the wireless communication method of the present disclosure. FIG. 19 is a diagram showing an example of the hardware configuration of the UE 200. As shown in FIG. 19, the UE 200 may be configured as a computer device including a processor 1001, a memory 1002, a storage 1003, a communication device 1004, an input device 1005, an output device 1006, a bus 1007, and the like.
 なお、以下の説明では、「装置」という文言は、回路、デバイス、ユニットなどに読み替えることができる。当該装置のハードウェア構成は、図に示した各装置を1つまたは複数含むように構成されてもよいし、一部の装置を含まずに構成されてもよい。 In the following explanation, the word "device" can be read as a circuit, device, unit, etc. The hardware configuration of the device may be configured to include one or more of the devices shown in the figure, or may be configured not to include some of the devices.
 UE200の各機能ブロック(図10参照)は、当該コンピュータ装置の何れかのハードウェア要素、または当該ハードウェア要素の組み合わせによって実現される。 Each functional block of the UE 200 (see FIG. 10) is realized by any hardware element of the computer device or a combination of the hardware elements.
 また、UE200における各機能は、プロセッサ1001、メモリ1002などのハードウェア上に所定のソフトウェア(プログラム)を読み込ませることによって、プロセッサ1001が演算を行い、通信装置1004による通信を制御したり、メモリ1002及びストレージ1003におけるデータの読み出し及び書き込みの少なくとも一方を制御したりすることによって実現される。 In addition, each function in the UE 200 is such that the processor 1001 performs an operation by loading predetermined software (program) on the hardware such as the processor 1001 and the memory 1002 to control the communication by the communication device 1004 and the memory 1002. And by controlling at least one of reading and writing of data in the storage 1003.
 プロセッサ1001は、例えば、オペレーティングシステムを動作させてコンピュータ全体を制御する。プロセッサ1001は、周辺装置とのインタフェース、制御装置、演算装置、レジスタなどを含む中央処理装置(CPU)によって構成されてもよい。 Processor 1001 operates, for example, an operating system to control the entire computer. The processor 1001 may be composed of a central processing unit (CPU) including an interface with peripheral devices, a control device, an arithmetic unit, a register, and the like.
 また、プロセッサ1001は、プログラム(プログラムコード)、ソフトウェアモジュール、データなどを、ストレージ1003及び通信装置1004の少なくとも一方からメモリ1002に読み出し、これらに従って各種の処理を実行する。プログラムとしては、上述の実施の形態において説明した動作の少なくとも一部をコンピュータに実行させるプログラムが用いられる。さらに、上述の各種処理は、1つのプロセッサ1001によって実行されてもよいし、2つ以上のプロセッサ1001により同時または逐次に実行されてもよい。プロセッサ1001は、1以上のチップによって実装されてもよい。なお、プログラムは、電気通信回線を介してネットワークから送信されてもよい。 Further, the processor 1001 reads a program (program code), a software module, data, etc. from at least one of the storage 1003 and the communication device 1004 into the memory 1002, and executes various processes according to these. As the program, a program that causes a computer to execute at least a part of the operations described in the above-described embodiment is used. Further, the various processes described above may be executed by one processor 1001 or may be executed simultaneously or sequentially by two or more processors 1001. Processor 1001 may be implemented by one or more chips. The program may be transmitted from the network via a telecommunication line.
 メモリ1002は、コンピュータ読み取り可能な記録媒体であり、例えば、Read Only Memory(ROM)、Erasable Programmable ROM(EPROM)、Electrically Erasable Programmable ROM(EEPROM)、Random Access Memory(RAM)などの少なくとも1つによって構成されてもよい。メモリ1002は、レジスタ、キャッシュ、メインメモリ(主記憶装置)などと呼ばれてもよい。メモリ1002は、本開示の一実施形態に係る方法を実行可能なプログラム(プログラムコード)、ソフトウェアモジュールなどを保存することができる。 The memory 1002 is a computer-readable recording medium, and is composed of at least one such as ReadOnlyMemory (ROM), ErasableProgrammableROM (EPROM), Electrically ErasableProgrammableROM (EEPROM), and RandomAccessMemory (RAM). May be done. The memory 1002 may be called a register, a cache, a main memory (main storage device), or the like. The memory 1002 can store a program (program code), a software module, or the like that can execute the method according to the embodiment of the present disclosure.
 ストレージ1003は、コンピュータ読み取り可能な記録媒体であり、例えば、Compact Disc ROM(CD-ROM)などの光ディスク、ハードディスクドライブ、フレキシブルディスク、光磁気ディスク(例えば、コンパクトディスク、デジタル多用途ディスク、Blu-ray(登録商標)ディスク)、スマートカード、フラッシュメモリ(例えば、カード、スティック、キードライブ)、フロッピー(登録商標)ディスク、磁気ストリップなどの少なくとも1つによって構成されてもよい。ストレージ1003は、補助記憶装置と呼ばれてもよい。上述の記録媒体は、例えば、メモリ1002及びストレージ1003の少なくとも一方を含むデータベース、サーバその他の適切な媒体であってもよい。 The storage 1003 is a computer-readable recording medium, for example, an optical disk such as Compact Disc ROM (CD-ROM), a hard disk drive, a flexible disk, an optical magnetic disk (for example, a compact disk, a digital versatile disk, or a Blu-ray). It may consist of at least one (registered trademark) disk), smart card, flash memory (eg, card, stick, key drive), floppy (registered trademark) disk, magnetic strip, and the like. Storage 1003 may be referred to as auxiliary storage. The recording medium described above may be, for example, a database, server or other suitable medium containing at least one of the memory 1002 and the storage 1003.
 通信装置1004は、有線ネットワーク及び無線ネットワークの少なくとも一方を介してコンピュータ間の通信を行うためのハードウェア(送受信デバイス)であり、例えばネットワークデバイス、ネットワークコントローラ、ネットワークカード、通信モジュールなどともいう。 The communication device 1004 is hardware (transmission / reception device) for communicating between computers via at least one of a wired network and a wireless network, and is also referred to as, for example, a network device, a network controller, a network card, a communication module, or the like.
 通信装置1004は、例えば周波数分割複信(Frequency Division Duplex:FDD)及び時分割複信(Time Division Duplex:TDD)の少なくとも一方を実現するために、高周波スイッチ、デュプレクサ、フィルタ、周波数シンセサイザなどを含んで構成されてもよい。 Communication device 1004 includes, for example, a high frequency switch, a duplexer, a filter, a frequency synthesizer, etc. in order to realize at least one of frequency division duplex (FDD) and time division duplex (TDD). It may be composed of.
 入力装置1005は、外部からの入力を受け付ける入力デバイス(例えば、キーボード、マウス、マイクロフォン、スイッチ、ボタン、センサなど)である。出力装置1006は、外部への出力を実施する出力デバイス(例えば、ディスプレイ、スピーカー、LEDランプなど)である。なお、入力装置1005及び出力装置1006は、一体となった構成(例えば、タッチパネル)であってもよい。 The input device 1005 is an input device (for example, keyboard, mouse, microphone, switch, button, sensor, etc.) that accepts input from the outside. The output device 1006 is an output device (for example, a display, a speaker, an LED lamp, etc.) that outputs to the outside. The input device 1005 and the output device 1006 may have an integrated configuration (for example, a touch panel).
 また、プロセッサ1001及びメモリ1002などの各装置は、情報を通信するためのバス1007で接続される。バス1007は、単一のバスを用いて構成されてもよいし、装置間ごとに異なるバスを用いて構成されてもよい。 In addition, each device such as the processor 1001 and the memory 1002 is connected by the bus 1007 for communicating information. Bus 1007 may be configured using a single bus, or may be configured using different buses for each device.
 さらに、当該装置は、マイクロプロセッサ、デジタル信号プロセッサ(Digital Signal Processor: DSP)、Application Specific Integrated Circuit(ASIC)、Programmable Logic Device(PLD)、Field Programmable Gate Array(FPGA)などのハードウェアを含んで構成されてもよく、当該ハードウェアにより、各機能ブロックの一部または全てが実現されてもよい。例えば、プロセッサ1001は、これらのハードウェアの少なくとも1つを用いて実装されてもよい。 Further, the device includes hardware such as a microprocessor, a digital signal processor (Digital Signal Processor: DSP), an Application Specific Integrated Circuit (ASIC), a Programmable Logic Device (PLD), and a Field Programmable Gate Array (FPGA). The hardware may implement some or all of each functional block. For example, processor 1001 may be implemented using at least one of these hardware.
 また、情報の通知は、本開示において説明した態様/実施形態に限られず、他の方法を用いて行われてもよい。例えば、情報の通知は、物理レイヤシグナリング(例えば、Downlink Control Information(DCI)、Uplink Control Information(UCI)、上位レイヤシグナリング(例えば、RRCシグナリング、Medium Access Control(MAC)シグナリング、報知情報(Master Information Block(MIB)、System Information Block(SIB))、その他の信号またはこれらの組み合わせによって実施されてもよい。また、RRCシグナリングは、RRCメッセージと呼ばれてもよく、例えば、RRC接続セットアップ(RRC Connection Setup)メッセージ、RRC接続再構成(RRC Connection Reconfiguration)メッセージなどであってもよい。 Further, the notification of information is not limited to the mode / embodiment described in the present disclosure, and may be performed by using another method. For example, information notification includes physical layer signaling (for example, Downlink Control Information (DCI), Uplink Control Information (UCI), upper layer signaling (eg, RRC signaling, Medium Access Control (MAC) signaling, broadcast information (Master Information Block)). (MIB), System Information Block (SIB)), other signals or combinations thereof. RRC signaling may also be referred to as an RRC message, for example, RRC Connection Setup. ) Message, RRC Connection Reconfiguration message, etc. may be used.
 本開示において説明した各態様/実施形態は、Long Term Evolution(LTE)、LTE-Advanced(LTE-A)、SUPER 3G、IMT-Advanced、4th generation mobile communication system(4G)、5th generation mobile communication system(5G)、Future Radio Access(FRA)、New Radio(NR)、W-CDMA(登録商標)、GSM(登録商標)、CDMA2000、Ultra Mobile Broadband(UMB)、IEEE 802.11(Wi-Fi(登録商標))、IEEE 802.16(WiMAX(登録商標))、IEEE 802.20、Ultra-WideBand(UWB)、Bluetooth(登録商標)、その他の適切なシステムを利用するシステム及びこれらに基づいて拡張された次世代システムの少なくとも一つに適用されてもよい。また、複数のシステムが組み合わされて(例えば、LTE及びLTE-Aの少なくとも一方と5Gとの組み合わせなど)適用されてもよい。 Each aspect / embodiment described in the present disclosure includes LongTermEvolution (LTE), LTE-Advanced (LTE-A), SUPER3G, IMT-Advanced, 4th generation mobile communication system (4G), 5th generation mobile communication system ( 5G), FutureRadioAccess (FRA), NewRadio (NR), W-CDMA (registered trademark), GSM (registered trademark), CDMA2000, UltraMobile Broadband (UMB), IEEE802.11 (Wi-Fi (registered trademark)) , IEEE802.16 (WiMAX®), IEEE802.20, Ultra-WideBand (UWB), Bluetooth®, and other systems that utilize appropriate systems and at least one of the next generation systems extended based on them. It may be applied to one. In addition, a plurality of systems may be applied in combination (for example, a combination of at least one of LTE and LTE-A and 5G).
 本開示において説明した各態様/実施形態の処理手順、シーケンス、フローチャートなどは、矛盾の無い限り、順序を入れ替えてもよい。例えば、本開示において説明した方法については、例示的な順序を用いて様々なステップの要素を提示しており、提示した特定の順序に限定されない。 The order of the processing procedures, sequences, flowcharts, etc. of each aspect / embodiment described in the present disclosure may be changed as long as there is no contradiction. For example, the methods described in the present disclosure present elements of various steps using exemplary order, and are not limited to the particular order presented.
 本開示において基地局によって行われるとした特定動作は、場合によってはその上位ノード(upper node)によって行われることもある。基地局を有する1つまたは複数のネットワークノード(network nodes)からなるネットワークにおいて、端末との通信のために行われる様々な動作は、基地局及び基地局以外の他のネットワークノード(例えば、MMEまたはS-GWなどが考えられるが、これらに限られない)の少なくとも1つによって行われ得ることは明らかである。上記において基地局以外の他のネットワークノードが1つである場合を例示したが、複数の他のネットワークノードの組み合わせ(例えば、MME及びS-GW)であってもよい。 In some cases, the specific operation performed by the base station in the present disclosure may be performed by its upper node (upper node). In a network consisting of one or more network nodes having a base station, various operations performed for communication with the terminal are performed by the base station and other network nodes other than the base station (for example, MME or). It is clear that it can be done by at least one of (but not limited to, S-GW, etc.). Although the case where there is one network node other than the base station is illustrated above, it may be a combination of a plurality of other network nodes (for example, MME and S-GW).
 情報、信号(情報等)は、上位レイヤ(または下位レイヤ)から下位レイヤ(または上位レイヤ)へ出力され得る。複数のネットワークノードを介して入出力されてもよい。 Information and signals (information, etc.) can be output from the upper layer (or lower layer) to the lower layer (or upper layer). Input / output may be performed via a plurality of network nodes.
 入出力された情報は、特定の場所(例えば、メモリ)に保存されてもよいし、管理テーブルを用いて管理してもよい。入出力される情報は、上書き、更新、または追記され得る。出力された情報は削除されてもよい。入力された情報は他の装置へ送信されてもよい。 The input / output information may be stored in a specific location (for example, memory) or may be managed using a management table. The input / output information can be overwritten, updated, or added. The output information may be deleted. The input information may be transmitted to another device.
 判定は、1ビットで表される値(0か1か)によって行われてもよいし、真偽値(Boolean:trueまたはfalse)によって行われてもよいし、数値の比較(例えば、所定の値との比較)によって行われてもよい。 The determination may be made by a value represented by 1 bit (0 or 1), by a boolean value (Boolean: true or false), or by comparing numerical values (for example, a predetermined value). It may be done by comparison with the value).
 本開示において説明した各態様/実施形態は単独で用いてもよいし、組み合わせて用いてもよいし、実行に伴って切り替えて用いてもよい。また、所定の情報の通知(例えば、「Xであること」の通知)は、明示的に行うものに限られず、暗黙的(例えば、当該所定の情報の通知を行わない)ことによって行われてもよい。 Each aspect / embodiment described in the present disclosure may be used alone, in combination, or switched with execution. Further, the notification of predetermined information (for example, the notification of "being X") is not limited to the explicit one, but is performed implicitly (for example, the notification of the predetermined information is not performed). May be good.
 ソフトウェアは、ソフトウェア、ファームウェア、ミドルウェア、マイクロコード、ハードウェア記述言語と呼ばれるか、他の名称で呼ばれるかを問わず、命令、命令セット、コード、コードセグメント、プログラムコード、プログラム、サブプログラム、ソフトウェアモジュール、アプリケーション、ソフトウェアアプリケーション、ソフトウェアパッケージ、ルーチン、サブルーチン、オブジェクト、実行可能ファイル、実行スレッド、手順、機能などを意味するよう広く解釈されるべきである。 Software is an instruction, instruction set, code, code segment, program code, program, subprogram, software module, whether called software, firmware, middleware, microcode, hardware description language, or another name. , Applications, software applications, software packages, routines, subroutines, objects, executable files, execution threads, procedures, features, etc. should be broadly interpreted to mean.
 また、ソフトウェア、命令、情報などは、伝送媒体を介して送受信されてもよい。例えば、ソフトウェアが、有線技術(同軸ケーブル、光ファイバケーブル、ツイストペア、デジタル加入者回線(Digital Subscriber Line:DSL)など)及び無線技術(赤外線、マイクロ波など)の少なくとも一方を使用してウェブサイト、サーバ、または他のリモートソースから送信される場合、これらの有線技術及び無線技術の少なくとも一方は、伝送媒体の定義内に含まれる。 In addition, software, instructions, information, etc. may be transmitted and received via a transmission medium. For example, a website where the software uses at least one of wired technology (coaxial cable, fiber optic cable, twisted pair, Digital Subscriber Line (DSL), etc.) and wireless technology (infrared, microwave, etc.). When transmitted from a server, or other remote source, at least one of these wired and wireless technologies is included within the definition of transmission medium.
 本開示において説明した情報、信号などは、様々な異なる技術の何れかを使用して表されてもよい。例えば、上記の説明全体に渡って言及され得るデータ、命令、コマンド、情報、信号、ビット、シンボル、チップなどは、電圧、電流、電磁波、磁界若しくは磁性粒子、光場若しくは光子、またはこれらの任意の組み合わせによって表されてもよい。 The information, signals, etc. described in this disclosure may be represented using any of a variety of different techniques. For example, data, instructions, commands, information, signals, bits, symbols, chips, etc. that may be referred to throughout the above description are voltages, currents, electromagnetic waves, magnetic fields or magnetic particles, light fields or photons, or any of these. It may be represented by a combination of.
 なお、本開示において説明した用語及び本開示の理解に必要な用語については、同一のまたは類似する意味を有する用語と置き換えてもよい。例えば、チャネル及びシンボルの少なくとも一方は信号(シグナリング)であってもよい。また、信号はメッセージであってもよい。また、コンポーネントキャリア(Component Carrier:CC)は、キャリア周波数、セル、周波数キャリアなどと呼ばれてもよい。 Note that the terms explained in the present disclosure and the terms necessary for understanding the present disclosure may be replaced with terms having the same or similar meanings. For example, at least one of a channel and a symbol may be a signal (signaling). Also, the signal may be a message. Further, the component carrier (CC) may be referred to as a carrier frequency, a cell, a frequency carrier, or the like.
 本開示において使用する「システム」及び「ネットワーク」という用語は、互換的に使用される。 The terms "system" and "network" used in this disclosure are used interchangeably.
 また、本開示において説明した情報、パラメータなどは、絶対値を用いて表されてもよいし、所定の値からの相対値を用いて表されてもよいし、対応する別の情報を用いて表されてもよい。例えば、無線リソースはインデックスによって指示されるものであってもよい。 In addition, the information, parameters, etc. described in the present disclosure may be expressed using absolute values, relative values from predetermined values, or using other corresponding information. It may be represented. For example, the radio resource may be one indicated by an index.
 上述したパラメータに使用する名称はいかなる点においても限定的な名称ではない。さらに、これらのパラメータを使用する数式等は、本開示で明示的に開示したものと異なる場合もある。様々なチャネル(例えば、PUCCH、PDCCHなど)及び情報要素は、あらゆる好適な名称によって識別できるため、これらの様々なチャネル及び情報要素に割り当てている様々な名称は、いかなる点においても限定的な名称ではない。 The names used for the above parameters are not limited in any respect. Further, mathematical formulas and the like using these parameters may differ from those explicitly disclosed in this disclosure. Since the various channels (eg PUCCH, PDCCH, etc.) and information elements can be identified by any suitable name, the various names assigned to these various channels and information elements are in any respect limited names. is not.
 本開示においては、「基地局(Base Station:BS)」、「無線基地局」、「固定局(fixed station)」、「NodeB」、「eNodeB(eNB)」、「gNodeB(gNB)」、「アクセスポイント(access point)」、「送信ポイント(transmission point)」、「受信ポイント(reception point)、「送受信ポイント(transmission/reception point)」、「セル」、「セクタ」、「セルグループ」、「キャリア」、「コンポーネントキャリア」などの用語は、互換的に使用され得る。基地局は、マクロセル、スモールセル、フェムトセル、ピコセルなどの用語で呼ばれる場合もある。 In this disclosure, "Base Station (BS)", "Wireless Base Station", "Fixed Station", "NodeB", "eNodeB (eNB)", "gNodeB (gNB)", " "Access point", "transmission point", "reception point", "transmission / reception point", "cell", "sector", "cell group", "cell group" Terms such as "carrier" and "component carrier" can be used interchangeably. Base stations are sometimes referred to by terms such as macrocells, small cells, femtocells, and picocells.
 基地局は、1つまたは複数(例えば、3つ)のセル(セクタとも呼ばれる)を収容することができる。基地局が複数のセルを収容する場合、基地局のカバレッジエリア全体は複数のより小さいエリアに区分でき、各々のより小さいエリアは、基地局サブシステム(例えば、屋内用の小型基地局(Remote Radio Head:RRH)によって通信サービスを提供することもできる。 The base station can accommodate one or more (for example, three) cells (also called sectors). When a base station accommodates multiple cells, the entire coverage area of the base station can be divided into multiple smaller areas, each smaller area being a base station subsystem (eg, a small indoor base station (Remote Radio)). Communication services can also be provided by Head: RRH).
 「セル」または「セクタ」という用語は、このカバレッジにおいて通信サービスを行う基地局、及び基地局サブシステムの少なくとも一方のカバレッジエリアの一部または全体を指す。 The term "cell" or "sector" refers to a base station that provides communication services in this coverage, and part or all of the coverage area of at least one of the base station subsystems.
 本開示においては、「移動局(Mobile Station:MS)」、「ユーザ端末(user terminal)」、「ユーザ装置(User Equipment:UE)」、「端末」などの用語は、互換的に使用され得る。 In the present disclosure, terms such as "mobile station (MS)", "user terminal", "user equipment (UE)", and "terminal" may be used interchangeably. ..
 移動局は、当業者によって、加入者局、モバイルユニット、加入者ユニット、ワイヤレスユニット、リモートユニット、モバイルデバイス、ワイヤレスデバイス、ワイヤレス通信デバイス、リモートデバイス、モバイル加入者局、アクセス端末、モバイル端末、ワイヤレス端末、リモート端末、ハンドセット、ユーザエージェント、モバイルクライアント、クライアント、またはいくつかの他の適切な用語で呼ばれる場合もある。 Mobile stations can be subscriber stations, mobile units, subscriber units, wireless units, remote units, mobile devices, wireless devices, wireless communication devices, remote devices, mobile subscriber stations, access terminals, mobile terminals, wireless, depending on the trader. It may also be referred to as a terminal, remote terminal, handset, user agent, mobile client, client, or some other suitable term.
 基地局及び移動局の少なくとも一方は、送信装置、受信装置、通信装置などと呼ばれてもよい。なお、基地局及び移動局の少なくとも一方は、移動体に搭載されたデバイス、移動体自体などであってもよい。当該移動体は、乗り物(例えば、車、飛行機など)であってもよいし、無人で動く移動体(例えば、ドローン、自動運転車など)であってもよいし、ロボット(有人型または無人型)であってもよい。なお、基地局及び移動局の少なくとも一方は、必ずしも通信動作時に移動しない装置も含む。例えば、基地局及び移動局の少なくとも一方は、センサなどのInternet of Things(IoT)機器であってもよい。 At least one of the base station and the mobile station may be called a transmitting device, a receiving device, a communication device, or the like. At least one of the base station and the mobile station may be a device mounted on the mobile body, the mobile body itself, or the like. The moving body may be a vehicle (eg, car, airplane, etc.), an unmanned moving body (eg, drone, self-driving car, etc.), or a robot (manned or unmanned). ) May be. It should be noted that at least one of the base station and the mobile station includes a device that does not necessarily move during communication operation. For example, at least one of a base station and a mobile station may be an Internet of Things (IoT) device such as a sensor.
 また、本開示における基地局は、移動局(ユーザ端末、以下同)として読み替えてもよい。例えば、基地局及び移動局間の通信を、複数の移動局間の通信(例えば、Device-to-Device(D2D)、Vehicle-to-Everything(V2X)などと呼ばれてもよい)に置き換えた構成について、本開示の各態様/実施形態を適用してもよい。この場合、基地局が有する機能を移動局が有する構成としてもよい。また、「上り」及び「下り」などの文言は、端末間通信に対応する文言(例えば、「サイド(side)」)で読み替えられてもよい。例えば、上りチャネル、下りチャネルなどは、サイドチャネルで読み替えられてもよい。 Further, the base station in the present disclosure may be read as a mobile station (user terminal, the same applies hereinafter). For example, communication between a base station and a mobile station has been replaced with communication between a plurality of mobile stations (for example, it may be called Device-to-Device (D2D), Vehicle-to-Everything (V2X), etc.). Each aspect / embodiment of the present disclosure may be applied to the configuration. In this case, the mobile station may have the function of the base station. In addition, words such as "up" and "down" may be read as words corresponding to communication between terminals (for example, "side"). For example, the uplink, downlink, and the like may be read as side channels.
 同様に、本開示における移動局は、基地局として読み替えてもよい。この場合、移動局が有する機能を基地局が有する構成としてもよい。
無線フレームは時間領域において1つまたは複数のフレームによって構成されてもよい。時間領域において1つまたは複数の各フレームはサブフレームと呼ばれてもよい。
サブフレームはさらに時間領域において1つまたは複数のスロットによって構成されてもよい。サブフレームは、ニューメロロジー(numerology)に依存しない固定の時間長(例えば、1ms)であってもよい。
Similarly, the mobile station in the present disclosure may be read as a base station. In this case, the base station may have the functions of the mobile station.
The radio frame may be composed of one or more frames in the time domain. Each one or more frames in the time domain may be referred to as a subframe.
Subframes may further consist of one or more slots in the time domain. The subframe may have a fixed time length (eg, 1 ms) that is independent of numerology.
 ニューメロロジーは、ある信号またはチャネルの送信及び受信の少なくとも一方に適用される通信パラメータであってもよい。ニューメロロジーは、例えば、サブキャリア間隔(SubCarrier Spacing:SCS)、帯域幅、シンボル長、サイクリックプレフィックス長、送信時間間隔(Transmission Time Interval:TTI)、TTIあたりのシンボル数、無線フレーム構成、送受信機が周波数領域において行う特定のフィルタリング処理、送受信機が時間領域において行う特定のウィンドウイング処理などの少なくとも1つを示してもよい。 The numerology may be a communication parameter that applies to at least one of the transmission and reception of a signal or channel. Numerology includes, for example, SubCarrier Spacing (SCS), bandwidth, symbol length, cyclic prefix length, transmission time interval (TTI), number of symbols per TTI, wireless frame configuration, transmission / reception. At least one of a specific filtering process performed by the machine in the frequency domain, a specific windowing process performed by the transmitter / receiver in the time domain, and the like may be indicated.
 スロットは、時間領域において1つまたは複数のシンボル(Orthogonal Frequency Division Multiplexing(OFDM))シンボル、Single Carrier Frequency Division Multiple Access(SC-FDMA)シンボルなど)で構成されてもよい。スロットは、ニューメロロジーに基づく時間単位であってもよい。 The slot may be composed of one or more symbols (Orthogonal Frequency Division Multiple Access (OFDM) symbol, Single Carrier Frequency Division Multiple Access (SC-FDMA) symbol, etc.) in the time domain. Slots may be unit of time based on numerology.
 スロットは、複数のミニスロットを含んでもよい。各ミニスロットは、時間領域において1つまたは複数のシンボルによって構成されてもよい。また、ミニスロットは、サブスロットと呼ばれてもよい。ミニスロットは、スロットよりも少ない数のシンボルによって構成されてもよい。ミニスロットより大きい時間単位で送信されるPDSCH(またはPUSCH)は、PDSCH(またはPUSCH)マッピングタイプAと呼ばれてもよい。ミニスロットを用いて送信されるPDSCH(またはPUSCH)は、PDSCH(またはPUSCH)マッピングタイプBと呼ばれてもよい。 The slot may include a plurality of mini slots. Each minislot may consist of one or more symbols in the time domain. Further, the mini slot may be called a sub slot. A minislot may consist of a smaller number of symbols than the slot. PDSCH (or PUSCH) transmitted in time units larger than the minislot may be referred to as PDSCH (or PUSCH) mapping type A. PDSCH (or PUSCH) transmitted using the minislot may be referred to as PDSCH (or PUSCH) mapping type B.
 無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルは、何れも信号を伝送する際の時間単位を表す。無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルは、それぞれに対応する別の呼称が用いられてもよい。 The wireless frame, subframe, slot, mini slot and symbol all represent the time unit when transmitting a signal. The radio frame, subframe, slot, minislot and symbol may have different names corresponding to each.
 例えば、1サブフレームは送信時間間隔(TTI)と呼ばれてもよいし、複数の連続したサブフレームがTTIと呼ばれてよいし、1スロットまたは1ミニスロットがTTIと呼ばれてもよい。つまり、サブフレーム及びTTIの少なくとも一方は、既存のLTEにおけるサブフレーム(1ms)であってもよいし、1msより短い期間(例えば、1-13シンボル)であってもよいし、1msより長い期間であってもよい。なお、TTIを表す単位は、サブフレームではなくスロット、ミニスロットなどと呼ばれてもよい。 For example, one subframe may be referred to as a transmission time interval (TTI), a plurality of consecutive subframes may be referred to as TTI, and one slot or one minislot may be referred to as TTI. That is, at least one of the subframe and TTI may be a subframe (1ms) in existing LTE, a period shorter than 1ms (eg, 1-13 symbols), or a period longer than 1ms. It may be. The unit representing TTI may be called a slot, a mini slot, or the like instead of a subframe.
 ここで、TTIは、例えば、無線通信におけるスケジューリングの最小時間単位のことをいう。例えば、LTEシステムでは、基地局が各ユーザ端末に対して、無線リソース(各ユーザ端末において使用することが可能な周波数帯域幅、送信電力など)を、TTI単位で割り当てるスケジューリングを行う。なお、TTIの定義はこれに限られない。 Here, TTI refers to, for example, the minimum time unit of scheduling in wireless communication. For example, in the LTE system, the base station schedules each user terminal to allocate wireless resources (frequency bandwidth that can be used in each user terminal, transmission power, etc.) in TTI units. The definition of TTI is not limited to this.
 TTIは、チャネル符号化されたデータパケット(トランスポートブロック)、コードブロック、コードワードなどの送信時間単位であってもよいし、スケジューリング、リンクアダプテーションなどの処理単位となってもよい。なお、TTIが与えられたとき、実際にトランスポートブロック、コードブロック、コードワードなどがマッピングされる時間区間(例えば、シンボル数)は、当該TTIよりも短くてもよい。 The TTI may be a transmission time unit such as a channel-encoded data packet (transport block), a code block, or a code word, or may be a processing unit such as scheduling or link adaptation. When a TTI is given, the time interval (for example, the number of symbols) to which the transport block, code block, code word, etc. are actually mapped may be shorter than the TTI.
 なお、1スロットまたは1ミニスロットがTTIと呼ばれる場合、1以上のTTI(すなわち、1以上のスロットまたは1以上のミニスロット)が、スケジューリングの最小時間単位となってもよい。また、当該スケジューリングの最小時間単位を構成するスロット数(ミニスロット数)は制御されてもよい。 When one slot or one mini slot is called TTI, one or more TTIs (that is, one or more slots or one or more mini slots) may be the minimum time unit for scheduling. Further, the number of slots (number of mini-slots) constituting the minimum time unit of the scheduling may be controlled.
 1msの時間長を有するTTIは、通常TTI(LTE Rel.8-12におけるTTI)、ノーマルTTI、ロングTTI、通常サブフレーム、ノーマルサブフレーム、ロングサブフレーム、スロットなどと呼ばれてもよい。通常TTIより短いTTIは、短縮TTI、ショートTTI、部分TTI(partialまたはfractional TTI)、短縮サブフレーム、ショートサブフレーム、ミニスロット、サブスロット、スロットなどと呼ばれてもよい。 A TTI having a time length of 1 ms may be called a normal TTI (TTI in LTE Rel.8-12), a normal TTI, a long TTI, a normal subframe, a normal subframe, a long subframe, a slot, or the like. TTIs shorter than normal TTIs may also be referred to as shortened TTIs, short TTIs, partial TTIs (partial or fractional TTIs), shortened subframes, short subframes, minislots, subslots, slots, and the like.
 なお、ロングTTI(例えば、通常TTI、サブフレームなど)は、1msを超える時間長を有するTTIで読み替えてもよいし、ショートTTI(例えば、短縮TTIなど)は、ロングTTIのTTI長未満かつ1ms以上のTTI長を有するTTIで読み替えてもよい。 Note that long TTIs (eg, normal TTIs, subframes, etc.) may be read as TTIs with a time length of more than 1 ms, and short TTIs (eg, shortened TTIs, etc.) are less than the TTI length of long TTIs and 1 ms. It may be read as a TTI having the above TTI length.
 リソースブロック(RB)は、時間領域及び周波数領域のリソース割当単位であり、周波数領域において、1つまたは複数個の連続した副搬送波(subcarrier)を含んでもよい。RBに含まれるサブキャリアの数は、ニューメロロジーに関わらず同じであってもよく、例えば12であってもよい。RBに含まれるサブキャリアの数は、ニューメロロジーに基づいて決定されてもよい。 A resource block (RB) is a resource allocation unit in the time domain and the frequency domain, and may include one or a plurality of continuous subcarriers in the frequency domain. The number of subcarriers contained in the RB may be the same regardless of the numerology, and may be, for example, 12. The number of subcarriers contained in the RB may be determined based on numerology.
 また、RBの時間領域は、1つまたは複数個のシンボルを含んでもよく、1スロット、1ミニスロット、1サブフレーム、または1TTIの長さであってもよい。1TTI、1サブフレームなどは、それぞれ1つまたは複数のリソースブロックで構成されてもよい。 Further, the time domain of RB may include one or more symbols, and may have a length of 1 slot, 1 mini slot, 1 subframe, or 1 TTI. Each 1TTI, 1 subframe, etc. may be composed of one or a plurality of resource blocks.
 なお、1つまたは複数のRBは、物理リソースブロック(Physical RB:PRB)、サブキャリアグループ(Sub-Carrier Group:SCG)、リソースエレメントグループ(Resource Element Group:REG)、PRBペア、RBペアなどと呼ばれてもよい。 One or more RBs include a physical resource block (Physical RB: PRB), a sub-carrier group (Sub-Carrier Group: SCG), a resource element group (Resource Element Group: REG), a PRB pair, an RB pair, and the like. May be called.
 また、リソースブロックは、1つまたは複数のリソースエレメント(Resource Element:RE)によって構成されてもよい。例えば、1REは、1サブキャリア及び1シンボルの無線リソース領域であってもよい。 Further, the resource block may be composed of one or a plurality of resource elements (ResourceElement: RE). For example, 1RE may be a radio resource area of 1 subcarrier and 1 symbol.
 帯域幅部分(Bandwidth Part:BWP)(部分帯域幅などと呼ばれてもよい)は、あるキャリアにおいて、あるニューメロロジー用の連続する共通RB(common resource blocks)のサブセットのことを表してもよい。ここで、共通RBは、当該キャリアの共通参照ポイントを基準としたRBのインデックスによって特定されてもよい。PRBは、あるBWPで定義され、当該BWP内で番号付けされてもよい。 Bandwidth Part (BWP) (which may also be called partial bandwidth, etc.) can also represent a subset of consecutive common resource blocks (RBs) for a neurology in a carrier. Good. Here, the common RB may be specified by the index of the RB with respect to the common reference point of the carrier. PRBs may be defined in a BWP and numbered within that BWP.
 BWPには、UL用のBWP(UL BWP)と、DL用のBWP(DL BWP)とが含まれてもよい。UEに対して、1キャリア内に1つまたは複数のBWPが設定されてもよい。 BWP may include BWP for UL (UL BWP) and BWP for DL (DL BWP). One or more BWPs may be set in one carrier for the UE.
 設定されたBWPの少なくとも1つがアクティブであってもよく、UEは、アクティブなBWPの外で所定の信号/チャネルを送受信することを想定しなくてもよい。なお、本開示における「セル」、「キャリア」などは、「BWP」で読み替えられてもよい。 At least one of the configured BWPs may be active, and the UE may not expect to send or receive a given signal / channel outside the active BWP. In addition, "cell", "carrier" and the like in this disclosure may be read as "BWP".
 上述した無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルなどの構造は例示に過ぎない。例えば、無線フレームに含まれるサブフレームの数、サブフレームまたは無線フレームあたりのスロットの数、スロット内に含まれるミニスロットの数、スロットまたはミニスロットに含まれるシンボル及びRBの数、RBに含まれるサブキャリアの数、並びにTTI内のシンボル数、シンボル長、サイクリックプレフィックス(Cyclic Prefix:CP)長などの構成は、様々に変更することができる。 The above-mentioned structures such as wireless frames, subframes, slots, mini slots and symbols are merely examples. For example, the number of subframes contained in a wireless frame, the number of slots per subframe or wireless frame, the number of minislots contained within a slot, the number of symbols and RBs contained in a slot or minislot, included in RB. The number of subcarriers, the number of symbols in the TTI, the symbol length, the cyclic prefix (CP) length, and other configurations can be changed in various ways.
 「接続された(connected)」、「結合された(coupled)」という用語、またはこれらのあらゆる変形は、2またはそれ以上の要素間の直接的または間接的なあらゆる接続または結合を意味し、互いに「接続」または「結合」された2つの要素間に1またはそれ以上の中間要素が存在することを含むことができる。要素間の結合または接続は、物理的なものであっても、論理的なものであっても、或いはこれらの組み合わせであってもよい。例えば、「接続」は「アクセス」で読み替えられてもよい。本開示で使用する場合、2つの要素は、1またはそれ以上の電線、ケーブル及びプリント電気接続の少なくとも一つを用いて、並びにいくつかの非限定的かつ非包括的な例として、無線周波数領域、マイクロ波領域及び光(可視及び不可視の両方)領域の波長を有する電磁エネルギーなどを用いて、互いに「接続」または「結合」されると考えることができる。 The terms "connected", "coupled", or any variation thereof, mean any direct or indirect connection or connection between two or more elements, and each other. It can include the presence of one or more intermediate elements between two "connected" or "combined" elements. The connection or connection between the elements may be physical, logical, or a combination thereof. For example, "connection" may be read as "access". As used in the present disclosure, the two elements use at least one of one or more wires, cables and printed electrical connections, and as some non-limiting and non-comprehensive examples, the radio frequency domain. , Electromagnetic energies with wavelengths in the microwave and light (both visible and invisible) regions, etc., can be considered to be "connected" or "coupled" to each other.
 参照信号は、Reference Signal(RS)と略称することもでき、適用される標準によってパイロット(Pilot)と呼ばれてもよい。 The reference signal can also be abbreviated as Reference Signal (RS), and may be called a pilot (Pilot) depending on the applicable standard.
 本開示において使用する「に基づいて」という記載は、別段に明記されていない限り、「のみに基づいて」を意味しない。言い換えれば、「に基づいて」という記載は、「のみに基づいて」と「に少なくとも基づいて」の両方を意味する。 The phrase "based on" as used in this disclosure does not mean "based on" unless otherwise stated. In other words, the statement "based on" means both "based only" and "at least based on".
 上記の各装置の構成における「手段」を、「部」、「回路」、「デバイス」等に置き換えてもよい。 The "means" in the configuration of each of the above devices may be replaced with "part", "circuit", "device" and the like.
 本開示において使用する「第1」、「第2」などの呼称を使用した要素へのいかなる参照も、それらの要素の量または順序を全般的に限定しない。これらの呼称は、2つ以上の要素間を区別する便利な方法として本開示において使用され得る。したがって、第1及び第2の要素への参照は、2つの要素のみがそこで採用され得ること、または何らかの形で第1の要素が第2の要素に先行しなければならないことを意味しない。 Any reference to elements using designations such as "first", "second" as used in this disclosure does not generally limit the quantity or order of those elements. These designations can be used in the present disclosure as a convenient way to distinguish between two or more elements. Thus, references to the first and second elements do not mean that only two elements can be adopted there, or that the first element must somehow precede the second element.
 本開示において、「含む(include)」、「含んでいる(including)」及びそれらの変形が使用されている場合、これらの用語は、用語「備える(comprising)」と同様に、包括的であることが意図される。さらに、本開示において使用されている用語「または(or)」は、排他的論理和ではないことが意図される。 When "include", "including" and variations thereof are used in the present disclosure, these terms are as comprehensive as the term "comprising". Is intended. Moreover, the term "or" used in the present disclosure is intended not to be an exclusive OR.
 本開示において、例えば、英語でのa, an及びtheのように、翻訳により冠詞が追加された場合、本開示は、これらの冠詞の後に続く名詞が複数形であることを含んでもよい。 In the present disclosure, if articles are added by translation, for example, a, an and the in English, the disclosure may include that the nouns following these articles are in the plural.
 本開示で使用する「判断(determining)」、「決定(determining)」という用語は、多種多様な動作を包含する場合がある。「判断」、「決定」は、例えば、判定(judging)、計算(calculating)、算出(computing)、処理(processing)、導出(deriving)、調査(investigating)、探索(looking up、search、inquiry)(例えば、テーブル、データベース又は別のデータ構造での探索)、確認(ascertaining)した事を「判断」「決定」したとみなす事などを含み得る。また、「判断」、「決定」は、受信(receiving)(例えば、情報を受信すること)、送信(transmitting)(例えば、情報を送信すること)、入力(input)、出力(output)、アクセス(accessing)(例えば、メモリ中のデータにアクセスすること)した事を「判断」「決定」したとみなす事などを含み得る。また、「判断」、「決定」は、解決(resolving)、選択(selecting)、選定(choosing)、確立(establishing)、比較(comparing)などした事を「判断」「決定」したとみなす事を含み得る。つまり、「判断」「決定」は、何らかの動作を「判断」「決定」したとみなす事を含み得る。また、「判断(決定)」は、「想定する(assuming)」、「期待する(expecting)」、「みなす(considering)」などで読み替えられてもよい。 The terms "determining" and "determining" used in this disclosure may include a wide variety of actions. "Judgment" and "decision" are, for example, judgment (judging), calculation (calculating), calculation (computing), processing (processing), derivation (deriving), investigation (investigating), search (looking up, search, inquiry). It may include (eg, searching in a table, database or another data structure), ascertaining as "judgment" or "decision". Also, "judgment" and "decision" are receiving (for example, receiving information), transmitting (for example, transmitting information), input (input), output (output), and access. (Accessing) (for example, accessing data in memory) may be regarded as "judgment" or "decision". In addition, "judgment" and "decision" mean that "resolving", "selecting", "choosing", "establishing", "comparing", etc. are regarded as "judgment" and "decision". Can include. That is, "judgment" and "decision" may include that some action is regarded as "judgment" and "decision". Further, "judgment (decision)" may be read as "assuming", "expecting", "considering" and the like.
 本開示において、「AとBが異なる」という用語は、「AとBが互いに異なる」ことを意味してもよい。なお、当該用語は、「AとBがそれぞれCと異なる」ことを意味してもよい。「離れる」、「結合される」などの用語も、「異なる」と同様に解釈されてもよい。 In the present disclosure, the term "A and B are different" may mean "A and B are different from each other". The term may mean that "A and B are different from C". Terms such as "separate" and "combined" may be interpreted in the same way as "different".
 以上、本開示について詳細に説明したが、当業者にとっては、本開示が本開示中に説明した実施形態に限定されるものではないということは明らかである。本開示は、請求の範囲の記載により定まる本開示の趣旨及び範囲を逸脱することなく修正及び変更態様として実施することができる。したがって、本開示の記載は、例示説明を目的とするものであり、本開示に対して何ら制限的な意味を有するものではない。 Although the present disclosure has been described in detail above, it is clear to those skilled in the art that the present disclosure is not limited to the embodiments described in the present disclosure. The present disclosure may be implemented as an amendment or modification without departing from the purpose and scope of the present disclosure, which is determined by the description of the scope of claims. Therefore, the description of this disclosure is for purposes of illustration only and does not have any restrictive meaning to this disclosure.
 10 無線通信システム
 20 NG-RAN
 100 gNB
 200 UE
 210 無線信号送受信部
 220 アンプ部
 230 変復調部
 240 制御信号・参照信号処理部
 250 符号化/復号部
 260 データ送受信部
 270 制御部
 1001 プロセッサ
 1002 メモリ
 1003 ストレージ
 1004 通信装置
 1005 入力装置
 1006 出力装置
 1007 バス
 
10 Radio communication system 20 NG-RAN
100 gNB
200 UE
210 Radio signal transmission / reception unit 220 Amplifier unit 230 Modulation / demodulation unit 240 Control signal / reference signal processing unit 250 Coding / decoding unit 260 Data transmission / reception unit 270 Control unit 1001 Processor 1002 Memory 1003 Storage 1004 Communication device 1005 Input device 1006 Output device 1007 Bus

Claims (5)

  1.  一つまたは複数の周波数レンジを含む周波数帯域と異なる異周波数帯域において、同期信号ブロックを受信する第1受信部と、
     前記同期信号ブロックと関連付けられている制御リソースセットを用いてシステム情報ブロックを受信する第2受信部と
    を備え、
     前記第1受信部は、ネットワークから同一の時間位置または同一の周波数位置を用いて送信され、擬似コロケーション想定が異なる複数の前記同期信号ブロックの少なくとも何れかを受信し、
     前記第2受信部は、同一の時間位置または同一の周波数位置を用いて送信され、前記擬似コロケーション想定が異なる複数の前記制御リソースセットの少なくとも何れかを用いる端末。
    A first receiver that receives a sync signal block in a different frequency band that is different from the frequency band that includes one or more frequency ranges.
    It includes a second receiver that receives the system information block using the control resource set associated with the sync signal block.
    The first receiver receives at least one of a plurality of the synchronous signal blocks transmitted from the network using the same time position or the same frequency position and having different pseudo-collocation assumptions.
    The second receiver is a terminal that is transmitted using the same time position or the same frequency position and uses at least one of the plurality of control resource sets having different pseudo-collocation assumptions.
  2.  一つまたは複数の周波数レンジを含む周波数帯域と異なる異周波数帯域において、同期信号ブロックを受信する第1受信部と、
     前記同期信号ブロックと関連付けられている制御リソースセットを用いてシステム情報ブロックを受信する第2受信部と
    を備え、
     前記第1受信部は、ネットワークから擬似コロケーション想定が異なる複数の前記同期信号ブロックの少なくとも何れかを受信し、
     前記第2受信部は、前記ネットワークから時分割多重によって送信され、前記擬似コロケーション想定が異なる複数の前記制御リソースセットの少なくとも何れかを用いる端末。
    A first receiver that receives a sync signal block in a different frequency band that is different from the frequency band that includes one or more frequency ranges.
    It includes a second receiver that receives the system information block using the control resource set associated with the sync signal block.
    The first receiving unit receives at least one of the plurality of synchronization signal blocks having different pseudo-collocation assumptions from the network, and receives the first receiving unit.
    The second receiving unit is a terminal that is transmitted from the network by time division multiplexing and uses at least one of the plurality of control resource sets having different pseudo-collocation assumptions.
  3.  前記第2受信部は、前記ネットワークから送信される前記同期信号ブロックの情報を含み、前記システム情報ブロックよりも先に前記ネットワークから送信されるマスタ情報ブロックを受信する請求項2に記載の端末。 The terminal according to claim 2, wherein the second receiving unit includes information of the synchronization signal block transmitted from the network, and receives a master information block transmitted from the network before the system information block.
  4.  1つの前記同期信号ブロックは、複数の前記制御リソースセットと対応付けられている、または複数の前記同期信号ブロックは、1つの前記制御リソースセットと対応付けられている請求項2に記載の端末。 The terminal according to claim 2, wherein the one synchronization signal block is associated with the plurality of control resource sets, or the plurality of synchronization signal blocks are associated with one control resource set.
  5.  一つまたは複数の周波数レンジを含む周波数帯域を用いる場合、同期信号ブロックと関連付けられている制御リソースセットを用いてシステム情報ブロックを受信する第1受信部と、
     ネットワークが非スタンドアローン運用であり、前記周波数帯域と異なる異周波数帯域を用いる場合、前記システム情報ブロックを使用しないと判定する制御部と
    を備える端末。
     
    When using a frequency band that includes one or more frequency ranges, a first receiver that receives the system information block using the control resource set associated with the sync signal block, and
    A terminal including a control unit that determines that the system information block is not used when the network is a non-standalone operation and uses a different frequency band different from the frequency band.
PCT/JP2019/027811 2019-07-12 2019-07-12 Terminal WO2021009817A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2019/027811 WO2021009817A1 (en) 2019-07-12 2019-07-12 Terminal
JP2021532575A JPWO2021009817A1 (en) 2019-07-12 2019-07-12

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/027811 WO2021009817A1 (en) 2019-07-12 2019-07-12 Terminal

Publications (1)

Publication Number Publication Date
WO2021009817A1 true WO2021009817A1 (en) 2021-01-21

Family

ID=74210259

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/027811 WO2021009817A1 (en) 2019-07-12 2019-07-12 Terminal

Country Status (2)

Country Link
JP (1) JPWO2021009817A1 (en)
WO (1) WO2021009817A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022194289A1 (en) * 2021-03-19 2022-09-22 华为技术有限公司 Communication method and apparatus
WO2022215351A1 (en) * 2021-04-05 2022-10-13 ソニーグループ株式会社 Communication device, and communication method

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
NTT DOCOMO, INC.: "Enhancements to initial access procedure for NR-U", 3GPP DRAFT; R1-1900954_ENHANCEMENTS TO INITIAL ACCESS PROCEDURE FOR NR-U_FINAL, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Taipei; 20190121 - 20190125, 12 January 2019 (2019-01-12), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP051576490 *
NTT DOCOMO, INC.: "Initial access signals and channels for NR-U", 3GPP DRAFT; R1-1900950_INITIAL ACCESS SIGNALS AND CHANNELS FOR NR-U_FINAL, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Taipei; 20190121 - 20190125, 12 January 2019 (2019-01-12), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP051576486 *
QUALCOMM INCORPORATED: "Feature lead summary on initial access signals and channels for NR-U", 3GPP DRAFT; R1-1907883 FL SUMMARY 7.2.2.1.1_V2, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Reno, USA; 20190513 - 20190517, 17 May 2019 (2019-05-17), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP051740144 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022194289A1 (en) * 2021-03-19 2022-09-22 华为技术有限公司 Communication method and apparatus
WO2022215351A1 (en) * 2021-04-05 2022-10-13 ソニーグループ株式会社 Communication device, and communication method

Also Published As

Publication number Publication date
JPWO2021009817A1 (en) 2021-01-21

Similar Documents

Publication Publication Date Title
WO2018110618A1 (en) User terminal and wireless communication method
WO2020261524A1 (en) Terminal
WO2018128183A1 (en) User terminal and wireless communication method
WO2021005663A1 (en) Terminal
WO2021009821A1 (en) Terminal
WO2021009817A1 (en) Terminal
WO2021171594A1 (en) Terminal
WO2018124031A1 (en) User terminal and wireless communications method
WO2021199348A1 (en) Terminal
WO2022003785A1 (en) Wireless base station and terminal
WO2021199200A1 (en) Terminal
WO2021019698A1 (en) Terminal
WO2021033328A1 (en) Terminal
WO2021019696A1 (en) Terminal
WO2021079529A1 (en) Terminal
WO2021019695A1 (en) Terminal
WO2022029982A1 (en) Terminal
WO2022029981A1 (en) Terminal
WO2022249721A1 (en) Terminal, wireless communication system, and wireless communication method
WO2022190289A1 (en) Terminal, wireless communication system, and wireless communication method
WO2022153505A1 (en) Terminal and radio base station
WO2022190287A1 (en) Terminal, wireless communication system, and wireless communication method
WO2022074843A1 (en) Terminal
WO2022137559A1 (en) Terminal and wireless communication method
WO2022029980A1 (en) Terminal

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19937690

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021532575

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19937690

Country of ref document: EP

Kind code of ref document: A1