WO2021166044A1 - Communication device - Google Patents

Communication device Download PDF

Info

Publication number
WO2021166044A1
WO2021166044A1 PCT/JP2020/006107 JP2020006107W WO2021166044A1 WO 2021166044 A1 WO2021166044 A1 WO 2021166044A1 JP 2020006107 W JP2020006107 W JP 2020006107W WO 2021166044 A1 WO2021166044 A1 WO 2021166044A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
length
delay
communication device
window
Prior art date
Application number
PCT/JP2020/006107
Other languages
French (fr)
Japanese (ja)
Inventor
邦彦 手島
Original Assignee
株式会社Nttドコモ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Nttドコモ filed Critical 株式会社Nttドコモ
Priority to PCT/JP2020/006107 priority Critical patent/WO2021166044A1/en
Priority to CN202080096314.XA priority patent/CN115104365A/en
Publication of WO2021166044A1 publication Critical patent/WO2021166044A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W92/00Interfaces specially adapted for wireless communication networks
    • H04W92/16Interfaces between hierarchically similar devices

Definitions

  • the present invention relates to a communication device corresponding to a front hall interface.
  • the O-RAN Alliance was established with the aim of promoting the openness and intelligentization of wireless access networks (RAN) in the 5G era, and today many businesses / vendors are joining and discussing.
  • RAN wireless access networks
  • O-RAN Distributed Unit O-DU
  • O-RAN Radio Unit O-RU
  • O-RAN Distributed Unit O-DU
  • O-RU O-RAN Radio Unit
  • O-DU is a logical node that mainly hosts the wireless link control layer (RLC), medium access control layer (MAC), and PHY-High layer based on the lower layer functional.
  • the O-RU is mainly a logical node that hosts the PHY-Low layer and RF processing based on the low-level functional division.
  • Non-Patent Document 1 In O-RAN, since the function sharing points of O-DU / O-RU are placed in the physical (PHY) layer, strict timing accuracy is required. For this reason, FH delay management is performed, and a transmission window and a reception window are used as the method (Non-Patent Document 1).
  • ORAN-WG4.CUS.0-v02.00 O-RAN Fronthaul Working Group, Control, User and Synchronization Plane Specification, O-RAN Alliance, August 2019 "ORAN-WG4.MP.0-v02.00.00”, O-RAN Alliance Working Group 4, Management Plane Specification, O-RAN Alliance, July 2019
  • the optimum set of parameters related to the transmission window may differ depending on, for example, the difference in the length of the cyclic prefix (CP) provided between the symbols. For this reason, it is not always possible to apply the optimum set of parameters for the transmission window, and there are cases where a compromise must be made, such as applying a set of parameters according to a long CP length.
  • CP cyclic prefix
  • an object of the present invention is to provide a communication device to which more appropriate parameters related to window control can be applied when a front hall (FH) interface is used. ..
  • One aspect of the present disclosure is a communication device (for example, O-RU120), which acquires the subcarrier interval of any one of a plurality of subcarrier intervals, and is applied to the acquired subcarrier interval.
  • a control unit transmission window control unit 125
  • a transmission unit (parameter) that transmits the parameter set to other communication devices provided on the front hall.
  • a transmitter unit 127) is provided, and the control unit applies a plurality of the parameter sets to the same subcarrier interval.
  • FIG. 1 is an overall schematic configuration diagram of the wireless communication system 10.
  • FIG. 2 is a diagram showing an example of the internal configuration of the gNB 100 that employs the front hole (FH) interface.
  • FIG. 3 is a diagram showing a configuration example of a wireless frame, a subframe, and a slot used in the wireless communication system 10.
  • FIG. 4 is a diagram showing various signals and delay requirements in the front hole (FH) between O-DU110 and O-RU120.
  • FIG. 5 is a functional block configuration diagram of O-RU120.
  • FIG. 6 is a functional block configuration diagram of the O-DU110.
  • FIG. 7 is an explanatory diagram of delay management between O-DU110 and O-RU120.
  • FIG. 1 is an overall schematic configuration diagram of the wireless communication system 10.
  • FIG. 2 is a diagram showing an example of the internal configuration of the gNB 100 that employs the front hole (FH) interface.
  • FIG. 3 is a diagram showing a configuration example of a wireless frame, a
  • FIG. 8 is a diagram showing the relationship between the delay-related parameters defined in the O-RANFH specification and the transmission window and the reception window.
  • FIG. 9 is a diagram showing a communication sequence related to control of the transmission window according to the operation example 1.
  • FIG. 10 is a diagram showing a communication sequence related to the control of the reception window according to the operation example 2.
  • FIG. 11 is a diagram showing a communication sequence related to the control of the reception window according to the operation example 3.
  • FIG. 12A is a diagram showing a configuration example (No. 1) of the delay profile.
  • FIG. 12B is a diagram showing a configuration example (No. 2) of the delay profile.
  • FIG. 13 is a diagram showing an example of the hardware configuration of O-DU110 and O-RU120.
  • FIG. 1 is an overall schematic configuration diagram of the wireless communication system 10 according to the present embodiment.
  • the wireless communication system 10 is a wireless communication system according to 5G New Radio (NR), and is a Next Generation-Radio Access Network 20 (hereinafter, NG-RAN20, and a terminal 200 (hereinafter, User Equipment 200, hereinafter,).
  • NG-RAN20 Next Generation-Radio Access Network 20
  • UE200 User Equipment 200
  • NG-RAN20 includes a radio base station 100 (hereinafter, gNB100).
  • gNB100 radio base station 100
  • the specific configuration of the wireless communication system 10 including the number of gNBs and UEs is not limited to the example shown in FIG.
  • the NG-RAN20 actually includes multiple NG-RANNodes, specifically gNB (or ng-eNB), and is connected to a core network (5GC, not shown) according to 5G.
  • NG-RAN20 and 5GC may be simply expressed as a network.
  • GNB100 is a wireless base station that complies with 5G, and executes wireless communication according to UE200 and 5G.
  • the gNB100 and UE200 include Massive MIMO, which generates a beam with higher directivity by controlling radio signals transmitted from multiple antenna elements, and carrier aggregation (CA), which uses multiple component carriers (CC) in a bundle. It can also support dual connectivity (DC), which communicates simultaneously between the UE and multiple NG-RAN Nodes.
  • Massive MIMO which generates a beam with higher directivity by controlling radio signals transmitted from multiple antenna elements
  • CA carrier aggregation
  • DC dual connectivity
  • the gNB100 adopts the front hole (FH) interface specified by O-RAN.
  • FIG. 2 shows an example of the internal configuration of the gNB100 that employs a front hole (FH) interface.
  • the gNB100 includes an O-DU110 (O-RAN Distributed Unit) and an O-RU120 (O-RAN Radio Unit).
  • O-DU110 and O-RU120 are functionally separated within the physical (PHY) layer defined by 3GPP.
  • the O-DU110 may be called an O-RAN distribution unit.
  • the O-DU110 is a logical node that hosts a wireless link control layer (RLC), a medium access control layer (MAC), and a PHY-High layer based on the functions of the lower layers.
  • RLC wireless link control layer
  • MAC medium access control layer
  • PHY-High layer based on the functions of the lower layers.
  • O-RU120 may be called an O-RAN radio unit.
  • the O-RU120 is a logical node that hosts the PHY-Low layer and RF processing based on the low-level functional division.
  • the O-DU 110 and the O-RU 120 may form a communication device.
  • the PHY-High layer is the part of PHY processing on the O-DU110 side of the front hole interface, such as Forward Error Correction (FEC) encoding / decoding, scrambling, and modulation / demodulation.
  • FEC Forward Error Correction
  • the PHY-Low layer is the part of PHY processing on the O-RU120 side of the front hole interface, such as Fast Fourier Transform (FFT) / iFFT, digital beam forming, Physical Random Access Channel (PRACH) extraction and filtering.
  • FFT Fast Fourier Transform
  • PRACH Physical Random Access Channel
  • IQ sample strings of OFDM (Orthogonal Frequency Division Multiplexing) signals in the frequency domain are transmitted and received (in the case of Split Option 7-2x).
  • the IQ sample sequence may be interpreted as a sampling series of in-phase and quadrature components of a complex digital signal.
  • O-CU is an abbreviation for O-RANControlUnit, which is a logical node that hosts PacketDataConvergenceProtocol (PDCP), RadioResourceControl (RRC), ServiceDataAdaptationProtocol (SDAP), and other control functions. ..
  • PDCP PacketDataConvergenceProtocol
  • RRC RadioResourceControl
  • SDAP ServiceDataAdaptationProtocol
  • the front hall (FH) may be interpreted as a line between the baseband processing unit of the radio base station (base station device) and the radio device, and an optical fiber or the like is used.
  • FIG. 3 shows a configuration example of a wireless frame, a subframe, and a slot used in the wireless communication system 10.
  • a plurality of subcarrier intervals can be used. Specifically, 15, 30, 60, 120 and 240 kHz can be used.
  • the SCS value is not limited to the value shown in FIG. 3, and for example, 480 kHz, 960 kHz, or the like may be used, and as will be described later, a value smaller than 15 kHz is used for a specific channel or the like. It may be used.
  • the symbol (may be called an OFDM symbol) length is also different.
  • the SCS may be called a numerology, and the symbol length may be called a symbol period, a slot period, or the like.
  • the cyclic prefix (CP) length may differ depending on the type of signal (channel), etc. in order to reduce the influence of interference.
  • the cyclic prefix (CP) may be interpreted as a guard time provided between the symbols in order to suppress interference between the preceding and following symbols caused by multipath or the like in the OFDM signal.
  • the signal of this part may be a copy of a part of the latter half of the symbol, and may be called a guard interval.
  • Table 1 shows the correspondence between SCS and non-PRACH (Physical Random Access Channel) and PRACH.
  • 3GPP (TS38.211, etc.) specifies PRACH with a long CP length in the case of a narrow SCS. That is, the time it takes for the actual signal processing in the gNB100, specifically the O-DU110 and O-RU120, to begin may vary depending on the type of such signal (which may be referred to as the channel).
  • the processing time in O-DU110 and O-RU120 also depends on the processing capacity of the hardware of the device.
  • Table 2 shows an example of CP length for each type of signal (channel).
  • the non-PRACH is, for example, PUSCH (Physical Uplink Shared Channel), PDSCH (Physical Downlink Shared Channel), or the like.
  • the CP of PRACH is longer than that of non-PRACH.
  • the PRACH format is specified in TS38.211.
  • FIG. 4 shows various signals and delay requirements in the front hole (FH) between O-DU110 and O-RU120. As shown in FIG. 4, signals in a plurality of planes are transmitted and received between O-DU110 and O-RU120.
  • U / C / M / S-plane signals are transmitted and received.
  • C-Plane is a protocol for transferring control signals
  • U-Plane is a protocol for transferring user data.
  • S-Plane is a protocol for realizing synchronization between devices.
  • M-Plane is a management plane that handles maintenance and monitoring signals.
  • the U-Plane signal includes a (DL) signal transmitted by the O-RU120 to the radio section and a (UL) signal received from the radio section, and is exchanged by a digital IQ signal.
  • U-Plane signals data such as User Datagram Protocol (UDP) and Transmission Control Protocol (TCP)
  • C-Plane RRC, Non-Access Stratum (NAS), etc.
  • U-Planes from the viewpoint of FH.
  • the C-Plane signal includes signals necessary for various controls related to transmission / reception of U-Plane signals (signals for notifying information related to radio resource mapping and beamforming of the corresponding U-Plane). It should be noted that the signal is completely different from the C-Plane (RRC, NAS, etc.) defined in 3GPP.
  • the M-Plane signal includes the signal necessary for the management of O-DU110 / O-RU120. For example, it is a signal for notifying various hardware (HW) capabilities of O-RU120 to O-RU120 and notifying various setting values from O-DU110 to O-RU120.
  • HW hardware
  • the S-Plane signal is a signal required for synchronous control between O-DU110 / O-RU120.
  • the output point (which may be called the sender) toward O-RU120 of O-DU110 (which may be called the downward direction) is at R1 and O-DU110 of O-RU120.
  • the directed (may be called ascending) output point may be defined as R3.
  • the input point of the signal from the O-DU110 (which may be called the receiver) in the O-RU120 may be defined as R2, and the input point of the signal from the O-RU120 in the O-DU110 may be defined as R4.
  • the downlink (DL) from O-DU110 to O-RU120 may be defined as T12 and the uplink (DL) from O-RU120 to O-DU110 may be defined as T34.
  • the latency for O-DU110 and O-RU120 may be defined as shown in Table 3.
  • T1a and T2a are the delay times in the DL direction
  • T3a and T4a are the delay times in the UL direction.
  • each delay time may be set to a minimum value (Minimum) and a maximum value (Maximum) in consideration of the switching time in the network constituting the FH between O-DU110 and O-RU120.
  • Ra shown in FIG. 4 is a reference point for the delay time measurement and corresponds to the antenna of the O-RU.
  • FIG. 5 is a functional block configuration diagram of O-RU120. As shown in FIG. 5, the O-RU120 includes a communication unit 121, a CP length / channel type acquisition unit 123, a transmission window control unit 125, and a parameter transmission unit 127.
  • Communication unit 121 executes communication with O-DU110. Specifically, the communication unit 121 is connected to the FH line and can transmit and receive signals of various planes shown in FIG.
  • the CP length / channel type acquisition unit 123 can acquire the CP length applied to the signal (which may be a channel) transmitted / received via the FH.
  • the CP length / channel type acquisition unit 123 can acquire the type of channel transmitted / received via FH.
  • the channel includes, but is not limited to, PRACH, PUSCH, PDSCH, and the like.
  • the CP length may differ depending on the channel type, and even for the same channel, it may differ depending on the format.
  • the CP length / channel type acquisition unit 123 may acquire the CP length and / or the channel type autonomously, or may acquire the CP length and / or the channel type by being explicitly or implicitly notified from the O-DU 110.
  • the transmission window control unit 125 controls the transmission window of the signal transmitted to the O-DU 110. Specifically, the transmission window control unit 125 controls the transmission window indicating the time range in which the signal can be transmitted, based on the delay management of the FH.
  • the transmission window control unit 125 acquires any of the subcarrier intervals (SCS) among the plurality of subcarrier intervals (SCS). That is, the transmission window control unit 125 acquires the SCS of the signal applied to the signal transmitted / received via the FH.
  • the transmission window control unit 125 constitutes a control unit.
  • the transmission window control unit 125 can determine a parameter set indicating the delay time in the O-RU120 (communication device) applied to the acquired SCS. Specifically, the transmission window control unit 125 can determine Ta3_min and Ta3_max, which are delay times (which may be read as processing time) from Ra to R3 (see FIG. 4). Ta3_min and Ta3_max may be interpreted as measurement results from reception by the O-RU antenna to output by the O-RU port (R3). Further, the parameter set including Ta3_min and Ta3_max may be called a delay profile or the like.
  • the delay time may include the minimum and maximum values of the time from the reception of the signal at the antenna of the O-RU120 to the output of the signal to the O-DU110 (another communication device), but not necessarily both. Is not required.
  • the transmission window control unit 125 can apply a plurality of parameter sets to the same SCS.
  • a parameter set delay profile
  • Ta3_min and Ta3_max with different values can be associated with the SCS of 30 kHz.
  • the transmission window control unit 125 may apply a plurality of parameter sets according to the CP length of the signal transmitted and received by the O-RU 120. That is, the plurality of parameter sets associated with the same SCS may be based on the CP length of the signal transmitted and received by the O-RU120.
  • the transmission window control unit 125 may apply a plurality of parameter sets according to the type of signal (which may be read as a channel) transmitted / received by the O-RU120. That is, the plurality of parameter sets associated with the same SCS may be based on the type of signal (channel) transmitted / received by the O-RU120 (for example, PRACH, PUSCH, PDSCH, etc.).
  • the parameter transmission unit 127 transmits the parameter set determined by the transmission window control unit 125 to another communication device provided on the FH, specifically, the O-DU110.
  • the parameter transmission unit 127 constitutes a transmission unit.
  • the parameter transmission unit 127 may transmit the parameter set (delay profile) to the O-DU110 after setting the M-Plane.
  • the method of transmitting the parameter set is not necessarily limited to the M-Plane, and may be transmitted as a signal of another Plane.
  • FIG. 6 is a functional block configuration diagram of the O-DU110.
  • the O-DU 110 includes a communication unit 111, a CP length / channel type acquisition unit 113, a parameter reception unit 115, and a reception window control unit 117.
  • Communication unit 111 executes communication with O-RU120. Specifically, the communication unit 111 is connected to the FH line and can transmit and receive signals of various planes shown in FIG.
  • the CP length / channel type acquisition unit 113 can acquire the CP length applied to the signal (which may be a channel) transmitted / received via the FH. Further, the CP length / channel type acquisition unit 113 can acquire the type of the channel transmitted / received via the FH.
  • the function of the CP length / channel type acquisition unit 113 may be the same as that of the CP length / channel type acquisition unit 123 of the O-RU120 described above.
  • the parameter receiving unit 115 can receive the parameter set transmitted from the O-RU120. Specifically, the parameter receiving unit 115 may receive the parameter set (delay profile) from the O-RU 120 after setting the M-Plane. However, as described above, the method of transmitting and receiving the parameter set is not necessarily limited to the M-Plane, and may be transmitted as a signal of another Plane.
  • the reception window control unit 117 controls the reception window of the signal transmitted to the O-DU 110. Specifically, the reception window control unit 117 controls the reception window control unit 117 that indicates the time range in which the signal can be received, based on the delay management of the FH.
  • the reception window control unit 117 has a plurality of values having different values depending on the CP length and the channel type even when the SCS of the signal applied to the signal transmitted and received via the FH is the same. You can set the receive window.
  • the reception window control unit 117 transmits and receives a plurality of types of signals (or channels) having the same SCS but different CP lengths via the FH, the reception window control unit 117 has each CP length (or signal, channel). You may set the receive window.
  • the reception window control unit 117 transmits and receives a plurality of types of signals (or channels) having the same SCS but different CP lengths via the FH, among all the signals (or channels), You may set the worst receiving window.
  • the worst receiving window may be interpreted as the largest receiving window.
  • FIG. 7 is an explanatory diagram of delay management between O-DU110 and O-RU120.
  • PHY physical
  • FIG. 7 shows an example of a UL signal.
  • the DL signal is basically the same as the UL signal.
  • the UL signal will be described as an example.
  • the O-RU120 transmits an FH signal during the period of the transmission window.
  • the O-DU110 also receives the FH signal during the reception window. It is necessary to manage the delay in FH so that these two points are satisfied. If these two points do not hold, communication of the FH signal may be impossible.
  • delay management is performed based on the reception timing of the radio signal from UE200 in O-RU120.
  • FIG. 8 shows the relationship between the delay-related parameters specified in the O-RANFH specifications and the transmission window and the reception window.
  • the O-RAN FH specification defines parameters that represent both ends of the send window and receive window.
  • the O-DU110 manages the delay by determining its own transmission window (in the case of DL) and reception window (in the case of UL) according to the O-RU120.
  • O-RU120 notifies O-DU110 of Ta3_max and Ta3_min as its own ability values.
  • O-DU110 determines its own Ta4_max, Ta4_min based on the preset values of T34_max and T34_min and the notified Ta3_max and Ta3_min. At this time, as shown in FIG. 8, the following conditions must be satisfied.
  • the wireless communication system 10 even if the SCS of the signal applied to the signal transmitted / received via the FH is the same, a plurality of transmission windows having different values according to the CP length (and signal type). And / or the receive window can be set.
  • Operation example 1 In this operation example, even if the SCS of the signal applied to the signal transmitted / received via FH is the same, the O-RU120 is not one for the SCS but the CP length (and signal type). A parameter set (delay profile) with different delay times may be sent to the O-DU110.
  • FIG. 9 shows a communication sequence related to the control of the transmission window according to the operation example 1.
  • O-DU110 and O-RU120 execute the M-Plane connection establishment procedure (S10).
  • the procedure of M-Plane connection establishment is a procedure for setting M-Plane.
  • O-RU120 acquires the SCS of the signal applied to the signal transmitted and received via FH (S20). Specifically, the O-RU120 can acquire the SCS value (for example, 30 kHz) or identification information applied to the signal. When there are a plurality of types of the signals having different SCSs, the O-RU120 may acquire the SCSs for each signal. Also, the operation of S20 may be executed before S10.
  • O-RU120 acquires the CP length of the signal to which the same SCS is applied or the type of the signal (S30). As mentioned above, even if the SCS is the same, the CP length can vary depending on the type of signal (or channel) (see Tables 1 and 2). Therefore, the appropriate Ta3_min and Ta3_max values may differ. As a result, the appropriate size of the transmit window between O-DU110 and O-RU120 may also differ.
  • O-RU120 determines the delay profile for the signal to which the SCS and CP length is applied based on the acquired SCS and CP length (or signal type) (S40). Specifically, the O-RU120 determines the delay time parameter set (Ta3_min, Ta3_max) based on the acquired SCS and CP length (or signal type).
  • O-RU120 sends a delay profile including the determined Ta3_min and Ta3_max to O-DU110 (S50).
  • the delay profile may include parameters other than Ta3_min and Ta3_max, as will be described later.
  • O-DU110 executes window settings based on the received delay profile (S60). Specifically, the O-DU110 recognizes the transmission window of the O-RU120 (see FIG. 8 and the like) based on the received Ta3_min and Ta3_max, and sets the size of the reception window of the O-DU110.
  • O-DU110 and O-RU120 execute communication via FH after setting the window (S70).
  • O-DU110 is not one for the same SCS of the signal applied to the signal transmitted and received via FH, but the delay time with different values according to the CP length (and signal type). Multiple windows may be set corresponding to the parameter set (delay profile) of.
  • the parts different from the operation example 1 will be mainly described.
  • FIG. 10 shows a communication sequence related to the control of the reception window according to the operation example 2. As shown in FIG. 10, the operation of S110 is the same as that of S10 in operation example 1.
  • O-DU110 sets the reception window based on the CP length (x) of the signal transmitted and received via FH (S120). Specifically, the O-DU110 sets the size of the reception window (see FIG. 8 and the like) based on the CP length (x).
  • the O-DU110 may determine Ta4_min, Ta4_max based on the CP length (x), and determine the size of the receiving window based on the determined Ta4_min, Ta4_max values.
  • O-DU110 and O-RU120 execute communication via FH for the signal (S130).
  • the O-DU110 sets the reception window based on the CP length (y) of other signals transmitted and received via the FH (S140). Specifically, the O-DU110 sets the size of the reception window based on the CP length (y).
  • O-DU110 and O-RU120 execute communication via FH for the other signals after setting the window (S150).
  • the O-DU110 differs for each CP length (or signal (channel) type) regardless of whether or not the same SCS is applied to a plurality of types of signals transmitted and received via the FH. You may set the receive window.
  • O-DU110 is not one for the same SCS of the signal applied to the signal transmitted and received via FH, but the delay time with different values according to the CP length (and signal type).
  • a shared window corresponding to the parameter set (delay profile) of may be set.
  • FIG. 11 shows a communication sequence related to the control of the reception window according to the operation example 3. As shown in FIG. 11, the operation of S110 is the same as that of S110 of operation example 2.
  • the O-DU110 acquires the CP length (or signal type, the same applies hereinafter) for each of multiple signals transmitted and received via FH (S220).
  • O-DU110 sets the reception window based on the acquired multiple CP lengths (S230). Specifically, the O-DU110 may determine the Ta4_min, Ta4_max shared by the plurality of CP lengths, and determine the size of the shared reception window based on the determined Ta4_min, Ta4_max values.
  • the shared reception window may reflect the worst Ta4_min, Ta4_max among the plurality of CP lengths, or may reflect the average value of a plurality of Ta4_min, Ta4_max according to the CP length. As described above, the worst may be interpreted as the reception window having the largest size.
  • O-DU110 and O-RU120 execute communication via FH for the plurality of signals after setting the window (S240).
  • FIG. 12A and FIG. 12B show a configuration example of the delay profile according to the present embodiment. Specifically, FIGS. 12A and 12B show a configuration example of the delay profile of O-RU.
  • the delay profile (ro ru-delay-profile) is specified in D.5.2 o-ran-delay-management.yang Module of ORAN-WG4.MP.0-v02.00.00.
  • a plurality of ro ru-delay-profiles (ro ru-delay-profile (1) and ro ru-delay-profile (2) in the figure, etc.) are used for the same SCS. ) Can be associated and set.
  • the ro ru-delay-profile (1) and ro ru-delay-profile (2) may be associated with different CP lengths (or signal (channel) types).
  • a plurality of parameters of the same type may be included in one roru-delay-profile.
  • ro ta3-min (1) and ro ta3-min (2) may be included in the ro ru-delay-profile.
  • ro ta3-min (1) and ro ta3-min (2) may be associated with different CP lengths (or signal (channel) types).
  • the O-RU120 acquires one of the SCSs applied to the signals transmitted and received via the FH among the plurality of SCSs, and the O-RU120 is applied to the acquired SCSs.
  • the parameter set (Ta3_min, Ta3_max) indicating the delay time of can be determined. Further, the O-RU120 can transmit the determined parameter set to the O-DU110 provided on the FH.
  • the optimum parameter set for the transmission window may differ depending on the difference in CP length, but such a case can also be dealt with.
  • signals (channels) having different CP lengths may be defined even in the same SCS, and in particular, there is a large difference in CP length between PRACH and non-PRACH such as PUSCH and PDSCH ( See Table 2). Furthermore, there may be a large difference in CP length between different preamble formats in PRACH (see Table 2).
  • the window size is simply determined according to the longest CP length, the delay time (maximum delay time) based on the long CP length is assumed even for the signal (channel) that can be processed by the shorter delay time. It becomes necessary to set the window, which causes a problem that a delay longer than the originally required processing delay time may occur.
  • the communication devices constituting the FH are required to have excessive hardware capability, which poses a problem in implementation. According to O-DU110 and O-RU120 according to the present embodiment, such a problem can be avoided.
  • a plurality of parameter sets according to the CP length of the signal transmitted / received by the O-RU120 may be applied, or a plurality of parameters may be applied according to the type of signal (or channel) transmitted / received by the O-RU120. Parameter set of can be applied. Therefore, even if the same SCS has different optimum parameter sets, more appropriate parameters related to window control can be applied.
  • the delay time may include the minimum value and the maximum value (Ta3_min, Ta3_max) of the time from the reception of the signal at the antenna of the O-RU120 (Ra) to the output of the signal to the O-DU110. .. Therefore, a more appropriate size of the transmission window can be determined based on the minimum and maximum values.
  • a parameter set in the UL direction including Ta3_min and Ta3_max has been described, but the same operation may be applied to the parameter set (Ta2) in the DL direction, and the O-DU 110 is DL.
  • the directional parameter set may be determined.
  • a reception window for each of a plurality of different CP lengths may be set, or a reception window shared by the plurality of different CP lengths may be set.
  • a configuration using a device for bundling O-RUs (FHM: Fronthaul Multiplexing) (FHM configuration) and a configuration for continuously connecting O-RUs (cascade configuration), a so-called Shared Cell configuration, may be applied.
  • FHM Fronthaul Multiplexing
  • the configuration of the FH according to the specifications of the O-RAN has been described, but the FH does not necessarily have to comply with the specifications of the O-RAN.
  • the FH does not necessarily have to comply with the specifications of the O-RAN.
  • at least a portion of O-DU110 and O-RU120 may comply with the FH specifications specified in 3GPP.
  • each functional block may be realized using one physically or logically coupled device, or two or more physically or logically separated devices can be directly or indirectly (eg, for example). , Wired, wireless, etc.) and may be realized using these plurality of devices.
  • the functional block may be realized by combining the software with the one device or the plurality of devices.
  • Functions include judgment, decision, judgment, calculation, calculation, processing, derivation, investigation, search, confirmation, reception, transmission, output, access, solution, selection, selection, establishment, comparison, assumption, expectation, and assumption. Broadcasting, notifying, communicating, forwarding, configuring, reconfiguring, allocating, mapping, assigning, etc., but limited to these I can't.
  • a functional block that makes transmission function is called a transmitting unit (transmitting unit) or a transmitter (transmitter).
  • transmitting unit transmitting unit
  • transmitter transmitter
  • FIG. 13 is a diagram showing an example of the hardware configuration of the device.
  • the device may be configured as a computer device including a processor 1001, a memory 1002, a storage 1003, a communication device 1004, an input device 1005, an output device 1006, a bus 1007, and the like.
  • the word “device” can be read as a circuit, device, unit, etc.
  • the hardware configuration of the device may be configured to include one or more of the devices shown in the figure, or may be configured not to include some of the devices.
  • Each functional block of the device (see FIGS. 5 and 6) is realized by any hardware element of the computer device or a combination of the hardware elements.
  • the processor 1001 performs an operation by loading predetermined software (program) on the hardware such as the processor 1001 and the memory 1002, and controls the communication by the communication device 1004, or the memory. It is realized by controlling at least one of reading and writing of data in 1002 and storage 1003.
  • predetermined software program
  • Processor 1001 operates, for example, an operating system to control the entire computer.
  • the processor 1001 may be composed of a central processing unit (CPU) including an interface with peripheral devices, a control device, an arithmetic unit, a register, and the like.
  • CPU central processing unit
  • the processor 1001 reads a program (program code), a software module, data, etc. from at least one of the storage 1003 and the communication device 1004 into the memory 1002, and executes various processes according to these.
  • a program program code
  • a program that causes a computer to execute at least a part of the operations described in the above-described embodiment is used.
  • the various processes described above may be executed by one processor 1001 or may be executed simultaneously or sequentially by two or more processors 1001.
  • Processor 1001 may be implemented by one or more chips.
  • the program may be transmitted from the network via a telecommunication line.
  • the memory 1002 is a computer-readable recording medium, and is composed of at least one such as ReadOnlyMemory (ROM), ErasableProgrammableROM (EPROM), Electrically ErasableProgrammableROM (EEPROM), and RandomAccessMemory (RAM). May be done.
  • the memory 1002 may be referred to as a register, a cache, a main memory (main storage device), or the like.
  • the memory 1002 can store a program (program code), a software module, or the like that can execute the method according to the embodiment of the present disclosure.
  • the storage 1003 is a computer-readable recording medium, for example, an optical disk such as a Compact Disc ROM (CD-ROM), a hard disk drive, a flexible disk, an optical magnetic disk (for example, a compact disk, a digital versatile disk, or a Blu-ray). It may consist of at least one (registered trademark) disk), smart card, flash memory (eg, card, stick, key drive), floppy (registered trademark) disk, magnetic strip, and the like.
  • Storage 1003 may be referred to as auxiliary storage.
  • the recording medium described above may be, for example, a database, server or other suitable medium containing at least one of memory 1002 and storage 1003.
  • the communication device 1004 is hardware (transmission / reception device) for communicating between computers via at least one of a wired network and a wireless network, and is also referred to as, for example, a network device, a network controller, a network card, a communication module, or the like.
  • the communication device 1004 includes, for example, a high frequency switch, a duplexer, a filter, a frequency synthesizer, etc. in order to realize at least one of frequency division duplex (FDD) and time division duplex (TDD). It may be composed of.
  • FDD frequency division duplex
  • TDD time division duplex
  • the input device 1005 is an input device (for example, keyboard, mouse, microphone, switch, button, sensor, etc.) that accepts input from the outside.
  • the output device 1006 is an output device (for example, a display, a speaker, an LED lamp, etc.) that outputs to the outside.
  • the input device 1005 and the output device 1006 may have an integrated configuration (for example, a touch panel).
  • Bus 1007 may be configured using a single bus or may be configured using different buses for each device.
  • the device includes hardware such as a microprocessor, a digital signal processor (Digital Signal Processor: DSP), an Application Specific Integrated Circuit (ASIC), a Programmable Logic Device (PLD), and a Field Programmable Gate Array (FPGA).
  • the hardware may implement some or all of each functional block.
  • processor 1001 may be implemented using at least one of these hardware.
  • information notification includes physical layer signaling (for example, Downlink Control Information (DCI), Uplink Control Information (UCI), upper layer signaling (eg, RRC signaling, Medium Access Control (MAC) signaling, broadcast information (Master Information Block)). (MIB), System Information Block (SIB)), other signals or a combination thereof.
  • DCI Downlink Control Information
  • UCI Uplink Control Information
  • RRC signaling may also be referred to as an RRC message, for example, RRC Connection Setup. ) Message, RRC Connection Reconfiguration message, etc. may be used.
  • LTE LongTermEvolution
  • LTE-A LTE-Advanced
  • SUPER3G IMT-Advanced
  • 4G 4th generation mobile communication system
  • 5G 5th generation mobile communication system
  • FutureRadioAccess FAA
  • NewRadio NR
  • W-CDMA registered trademark
  • GSM registered trademark
  • CDMA2000 Code Division Multiple Access 2000
  • UMB UltraMobileBroadband
  • IEEE802.11 Wi-Fi (registered trademark)
  • IEEE802.16 WiMAX®
  • IEEE802.20 Ultra-WideBand
  • Bluetooth® Ultra-WideBand
  • other systems that utilize appropriate systems and at least one of the next generation systems extended based on them. It may be applied to one.
  • a plurality of systems may be applied in combination (for example, a combination of at least one of LTE and LTE-A and 5G).
  • the specific operation performed by the base station in the present disclosure may be performed by its upper node.
  • various operations performed for communication with a terminal are performed by the base station and other network nodes other than the base station (for example, MME or). It is clear that it can be done by at least one of (but not limited to, S-GW, etc.).
  • S-GW network node
  • the case where there is one network node other than the base station is illustrated above, it may be a combination of a plurality of other network nodes (for example, MME and S-GW).
  • Information and signals can be output from the upper layer (or lower layer) to the lower layer (or upper layer).
  • Input / output may be performed via a plurality of network nodes.
  • the input / output information may be stored in a specific location (for example, memory) or may be managed using a management table. Input / output information can be overwritten, updated, or added. The output information may be deleted. The input information may be transmitted to another device.
  • the determination may be made by a value represented by 1 bit (0 or 1), by a true / false value (Boolean: true or false), or by comparing numerical values (for example, a predetermined value). It may be done by comparison with the value).
  • the notification of predetermined information (for example, the notification of "being X") is not limited to the explicit one, but is performed implicitly (for example, the notification of the predetermined information is not performed). May be good.
  • Software whether referred to as software, firmware, middleware, microcode, hardware description language, or by any other name, is an instruction, instruction set, code, code segment, program code, program, subprogram, software module.
  • Applications, software applications, software packages, routines, subroutines, objects, executable files, execution threads, procedures, features, etc. should be broadly interpreted.
  • software, instructions, information, etc. may be transmitted and received via a transmission medium.
  • a transmission medium For example, a website, where the software uses at least one of wired technology (coaxial cable, fiber optic cable, twisted pair, Digital Subscriber Line (DSL), etc.) and wireless technology (infrared, microwave, etc.).
  • wired technology coaxial cable, fiber optic cable, twisted pair, Digital Subscriber Line (DSL), etc.
  • wireless technology infrared, microwave, etc.
  • the information, signals, etc. described in this disclosure may be represented using any of a variety of different techniques.
  • data, instructions, commands, information, signals, bits, symbols, chips, etc. that may be referred to throughout the above description are voltages, currents, electromagnetic waves, magnetic fields or magnetic particles, light fields or photons, or any of these. It may be represented by a combination of.
  • a channel and a symbol may be a signal (signaling).
  • the signal may be a message.
  • the component carrier (CC) may be referred to as a carrier frequency, a cell, a frequency carrier, or the like.
  • system and “network” used in this disclosure are used interchangeably.
  • the information, parameters, etc. described in the present disclosure may be expressed using absolute values, relative values from predetermined values, or using other corresponding information. It may be represented.
  • the radio resource may be one indicated by an index.
  • Base Station BS
  • Wireless Base Station Wireless Base Station
  • NodeB NodeB
  • eNodeB eNodeB
  • gNodeB gNodeB
  • Base stations are sometimes referred to by terms such as macrocells, small cells, femtocells, and picocells.
  • the base station can accommodate one or more (for example, three) cells (also called sectors). When a base station accommodates multiple cells, the entire base station coverage area can be divided into multiple smaller areas, each smaller area being a base station subsystem (eg, a small indoor base station (Remote Radio)). Communication services can also be provided by Head: RRH).
  • a base station subsystem eg, a small indoor base station (Remote Radio)
  • Communication services can also be provided by Head: RRH).
  • cell refers to a base station that provides communication services in this coverage, and part or all of the coverage area of at least one of the base station subsystems.
  • MS Mobile Station
  • UE User Equipment
  • Mobile stations can be used by those skilled in the art as subscriber stations, mobile units, subscriber units, wireless units, remote units, mobile devices, wireless devices, wireless communication devices, remote devices, mobile subscriber stations, access terminals, mobile terminals, wireless. It may also be referred to as a terminal, remote terminal, handset, user agent, mobile client, client, or some other suitable term.
  • At least one of the base station and the mobile station may be called a transmitting device, a receiving device, a communication device, or the like.
  • At least one of the base station and the mobile station may be a device mounted on the mobile body, the mobile body itself, or the like.
  • the moving body may be a vehicle (eg, car, airplane, etc.), an unmanned moving body (eg, drone, self-driving car, etc.), or a robot (manned or unmanned). ) May be.
  • at least one of the base station and the mobile station includes a device that does not necessarily move during communication operation.
  • at least one of a base station and a mobile station may be an Internet of Things (IoT) device such as a sensor.
  • IoT Internet of Things
  • the base station in the present disclosure may be read as a mobile station (user terminal, the same applies hereinafter).
  • communication between a base station and a mobile station has been replaced with communication between a plurality of mobile stations (for example, it may be called Device-to-Device (D2D), Vehicle-to-Everything (V2X), etc.).
  • D2D Device-to-Device
  • V2X Vehicle-to-Everything
  • Each aspect / embodiment of the present disclosure may be applied to the configuration.
  • the mobile station may have the functions of the base station.
  • words such as "up” and “down” may be read as words corresponding to communication between terminals (for example, "side”).
  • the upstream channel, the downstream channel, and the like may be read as a side channel.
  • the mobile station in the present disclosure may be read as a base station.
  • the base station may have the functions of the mobile station.
  • the radio frame may be composed of one or more frames in the time domain. Each one or more frames in the time domain may be referred to as a subframe. Subframes may further consist of one or more slots in the time domain.
  • the subframe may have a fixed time length (eg, 1 ms) that is independent of numerology.
  • the numerology may be a communication parameter that applies to at least one of the transmission and reception of a signal or channel.
  • Numerology includes, for example, SubCarrier Spacing (SCS), bandwidth, symbol length, cyclic prefix length, transmission time interval (TTI), number of symbols per TTI, radio frame configuration, transmission / reception.
  • SCS SubCarrier Spacing
  • TTI transmission time interval
  • At least one of a specific filtering process performed by the machine in the frequency domain, a specific windowing process performed by the transceiver in the time domain, and the like may be indicated.
  • the slot may be composed of one or more symbols (Orthogonal Frequency Division Multiple Access (OFDM) symbol, Single Carrier Frequency Division Multiple Access (SC-FDMA) symbol, etc.) in the time domain. Slots may be in numerology-based time units.
  • OFDM Orthogonal Frequency Division Multiple Access
  • SC-FDMA Single Carrier Frequency Division Multiple Access
  • the slot may include a plurality of mini slots. Each minislot may consist of one or more symbols in the time domain. Further, the mini slot may be referred to as a sub slot. A minislot may consist of a smaller number of symbols than the slot.
  • PDSCH (or PUSCH) transmitted in time units larger than the minislot may be referred to as PDSCH (or PUSCH) mapping type A.
  • the PDSCH (or PUSCH) transmitted using the minislot may be referred to as PDSCH (or PUSCH) mapping type B.
  • the wireless frame, subframe, slot, minislot and symbol all represent the time unit when transmitting a signal.
  • the radio frame, subframe, slot, minislot and symbol may have different names corresponding to each.
  • one subframe may be referred to as a transmission time interval (TTI)
  • TTI transmission time interval
  • TTI transmission time interval
  • TTI transmission time interval
  • TTI transmission time interval
  • TTI transmission time interval
  • TTI transmission time interval
  • TTI slot or one minislot
  • at least one of the subframe and TTI may be a subframe (1ms) in existing LTE, a period shorter than 1ms (eg, 1-13 symbols), or a period longer than 1ms. It may be.
  • the unit representing TTI may be called a slot, a mini slot, or the like instead of a subframe.
  • TTI refers to, for example, the minimum time unit of scheduling in wireless communication.
  • the base station schedules each user terminal to allocate radio resources (frequency bandwidth that can be used in each user terminal, transmission power, etc.) in TTI units.
  • the definition of TTI is not limited to this.
  • the TTI may be a transmission time unit such as a channel-encoded data packet (transport block), a code block, or a code word, or may be a processing unit such as scheduling or link adaptation.
  • the time interval for example, the number of symbols
  • the transport block, code block, code word, etc. may be shorter than the TTI.
  • one or more TTIs may be the minimum time unit for scheduling. Further, the number of slots (number of mini-slots) constituting the minimum time unit of the scheduling may be controlled.
  • a TTI having a time length of 1 ms may be called a normal TTI (TTI in LTE Rel.8-12), a normal TTI, a long TTI, a normal subframe, a normal subframe, a long subframe, a slot, or the like.
  • TTIs shorter than normal TTIs may also be referred to as shortened TTIs, short TTIs, partial TTIs (partial or fractional TTIs), shortened subframes, short subframes, minislots, subslots, slots, and the like.
  • the long TTI (for example, normal TTI, subframe, etc.) may be read as a TTI having a time length of more than 1 ms
  • the short TTI (for example, shortened TTI, etc.) may be read as less than the TTI length of the long TTI and 1 ms. It may be read as a TTI having the above TTI length.
  • the resource block (RB) is a resource allocation unit in the time domain and the frequency domain, and may include one or a plurality of continuous subcarriers in the frequency domain.
  • the number of subcarriers contained in RB may be the same regardless of numerology, and may be, for example, 12.
  • the number of subcarriers contained in the RB may be determined based on numerology.
  • the time domain of RB may include one or more symbols, and may have a length of 1 slot, 1 mini slot, 1 subframe, or 1 TTI.
  • Each 1TTI, 1 subframe, etc. may be composed of one or a plurality of resource blocks.
  • One or more RBs include a physical resource block (Physical RB: PRB), a sub-carrier group (Sub-Carrier Group: SCG), a resource element group (Resource Element Group: REG), a PRB pair, an RB pair, and the like. May be called.
  • Physical RB Physical RB: PRB
  • SCG sub-carrier Group
  • REG resource element group
  • PRB pair an RB pair, and the like. May be called.
  • the resource block may be composed of one or a plurality of resource elements (ResourceElement: RE).
  • RE resource elements
  • 1RE may be a radio resource area of 1 subcarrier and 1 symbol.
  • Bandwidth Part (which may also be called partial bandwidth, etc.) may represent a subset of consecutive common RBs (common resource blocks) for a neurology in a carrier. good.
  • the common RB may be specified by the index of the RB with respect to the common reference point of the carrier.
  • PRBs may be defined in a BWP and numbered within that BWP.
  • BWP may include BWP for UL (UL BWP) and BWP for DL (DL BWP).
  • BWP for UL
  • DL BWP BWP for DL
  • One or more BWPs may be set in one carrier for the UE.
  • At least one of the configured BWPs may be active, and the UE may not expect to send or receive a given signal / channel outside the active BWP.
  • “cell”, “carrier” and the like in this disclosure may be read as “BWP”.
  • the above-mentioned structures such as wireless frames, subframes, slots, minislots and symbols are merely examples.
  • the number of subframes contained in a wireless frame the number of slots per subframe or wireless frame, the number of minislots contained within a slot, the number of symbols and RBs contained in a slot or minislot, and the number of RBs.
  • the number of subcarriers, the number of symbols in the TTI, the symbol length, the cyclic prefix (CP) length, and other configurations can be changed in various ways.
  • connection means any direct or indirect connection or connection between two or more elements, and each other. It can include the presence of one or more intermediate elements between two “connected” or “combined” elements.
  • the connection or connection between the elements may be physical, logical, or a combination thereof.
  • connection may be read as "access”.
  • the two elements use at least one of one or more wires, cables and printed electrical connections, and, as some non-limiting and non-comprehensive examples, the radio frequency domain.
  • Electromagnetic energies with wavelengths in the microwave and light (both visible and invisible) regions, etc. can be considered to be “connected” or “coupled” to each other.
  • the reference signal can also be abbreviated as Reference Signal (RS), and may be called a pilot (Pilot) depending on the applicable standard.
  • RS Reference Signal
  • Pilot pilot
  • each of the above devices may be replaced with a "part”, a “circuit”, a “device”, or the like.
  • references to elements using designations such as “first”, “second” as used in this disclosure does not generally limit the quantity or order of those elements. These designations can be used in the present disclosure as a convenient way to distinguish between two or more elements. Therefore, references to the first and second elements do not mean that only two elements can be adopted there, or that the first element must somehow precede the second element.
  • determining and “determining” used in this disclosure may include a wide variety of actions.
  • “Judgment” and “decision” are, for example, judgment (judging), calculation (calculating), calculation (computing), processing (processing), derivation (deriving), investigation (investigating), search (looking up, search, inquiry). (For example, searching in a table, database or another data structure), ascertaining may be regarded as “judgment” or “decision”.
  • judgment and “decision” are receiving (for example, receiving information), transmitting (for example, transmitting information), input (input), output (output), and access.
  • Accessing (for example, accessing data in memory) may be regarded as "judgment” or “decision”.
  • judgment and “decision” mean that the things such as solving, selecting, choosing, establishing, and comparing are regarded as “judgment” and “decision”. Can include. That is, “judgment” and “decision” may include considering some action as “judgment” and “decision”. Further, “judgment (decision)” may be read as “assuming”, “expecting”, “considering” and the like.
  • the term "A and B are different” may mean “A and B are different from each other”.
  • the term may mean that "A and B are different from C”.
  • Terms such as “separate” and “combined” may be interpreted in the same way as “different”.
  • Radio communication system 20 NG-RAN 100 gNB 110 O-DU 111 Communication unit 113 CP length / channel type acquisition unit 115 Parameter reception 117 Reception window control unit 120 O-RU 121 Communication unit 123 CP length / channel type acquisition unit 125 Transmission window control unit 127 Parameter transmission unit 200 UE 1001 Processor 1002 Memory 1003 Storage 1004 Communication Device 1005 Input Device 1006 Output Device 1007 Bus

Abstract

According to the present invention, an O-RU (120) acquires any subcarrier interval from among a plurality of subcarrier intervals, and determines a parameter set indicating a delay time within the O-RU (120), which is to be applied to the acquired subcarrier interval. The O-RU (120) transmits the determined parameter set to an O-DU (110) provided on a fronthaul. The O-RU (120) can apply a plurality of parameter sets to the same subcarrier interval.

Description

通信装置Communication device
 本発明は、フロントホールインタフェースに対応した通信装置に関する。 The present invention relates to a communication device corresponding to a front hall interface.
 5G時代の無線アクセスネットワーク(RAN)のオープン化とインテリジェント化の推進を目的に、O-RAN Allianceが設立され、今日では多くの事業者/ベンダが加盟し議論が行われている。 The O-RAN Alliance was established with the aim of promoting the openness and intelligentization of wireless access networks (RAN) in the 5G era, and today many businesses / vendors are joining and discussing.
 O-RANでは複数のアーキテクチャが議論されており、その中の一つとして、異なるベンダ間のベースバンド処理部と無線部の相互接続を実現するオープンなフロントホール(FH)インタフェースが議論されている。 Multiple architectures are being discussed at O-RAN, one of which is the open fronthaul (FH) interface that enables the interconnection of baseband processing and radio between different vendors. ..
 具体的には、O-RANでは、レイヤ2機能、ベースバンド信号処理、及び無線信号処理を行う機能群としてO-RAN Distributed Unit(O-DU)及びO-RAN Radio Unit(O-RU)が定義されており、O-DUとO-RUと間のインタフェースとして議論されている。 Specifically, in O-RAN, O-RAN Distributed Unit (O-DU) and O-RAN Radio Unit (O-RU) are function groups that perform layer 2 functions, baseband signal processing, and radio signal processing. It is defined and discussed as an interface between O-DU and O-RU.
 O-DUは、主として、下位層の機能(lower layer functional)に基づいた無線リンク制御レイヤ(RLC)、媒体アクセス制御レイヤ(MAC)及びPHY-Highレイヤをホストする論理ノードである。O-RUは、主として、低層の機能分割に基づいたPHY-LowレイヤとRF処理とをホストする論理ノードである。 O-DU is a logical node that mainly hosts the wireless link control layer (RLC), medium access control layer (MAC), and PHY-High layer based on the lower layer functional. The O-RU is mainly a logical node that hosts the PHY-Low layer and RF processing based on the low-level functional division.
 O-RANでは、物理(PHY)レイヤ内にO-DU/O-RUの機能分担点が置かれているため、厳しいタイミング精度が求められる。このため、FHの遅延管理が行われており、その方法として送信ウインドウ、受信ウインドウが用いられている(非特許文献1)。 In O-RAN, since the function sharing points of O-DU / O-RU are placed in the physical (PHY) layer, strict timing accuracy is required. For this reason, FH delay management is performed, and a transmission window and a reception window are used as the method (Non-Patent Document 1).
 また、3rd Generation Partnership Project(3GPP)の5G(New Radio(NR))の仕様では、複数のサブキャリア間隔(SCS)が規定されていることを踏まえ、O-RANでも、SCS毎に、送信ウインドウに関するパラメータのセット、例えば、装置内部における処理による遅延時間などをO-RUからO-DUに通知できるようになっている(非特許文献2)。SCSが異なるとシンボル長も異なるためである。 In addition, based on the fact that multiple subcarrier intervals (SCS) are specified in the 5G (New Radio (NR)) specifications of the 3rd Generation Partnership Project (3GPP), even in O-RAN, the transmission window is displayed for each SCS. It is possible to notify O-DU from O-RU of a set of parameters related to, for example, a delay time due to processing inside the device (Non-Patent Document 2). This is because different SCSs have different symbol lengths.
 上述したO-RANの仕様によれば、同一SCS(例えば、30kHz)については、一つの当該パラメータのセットのみ通知することができる。 According to the above-mentioned O-RAN specifications, only one set of the relevant parameters can be notified for the same SCS (for example, 30 kHz).
 しかしながら、同一SCSの場合でも、例えば、シンボル間に設けられるサイクリックプレフィックス(CP)の長さの違いによって、送信ウインドウに関する最適なパラメータのセットは異なり得る。このため、必ずしも常に送信ウインドウに関する最適なパラメータのセットを適用することができず、長いCP長に合わせたパラメータのセットを適用するなど、妥協せざるを得ない場合がある。 However, even in the case of the same SCS, the optimum set of parameters related to the transmission window may differ depending on, for example, the difference in the length of the cyclic prefix (CP) provided between the symbols. For this reason, it is not always possible to apply the optimum set of parameters for the transmission window, and there are cases where a compromise must be made, such as applying a set of parameters according to a long CP length.
 そこで、以下の開示は、このような状況に鑑みてなされたものであり、フロントホール(FH)インタフェースを用いる場合において、より適切なウィンドウ制御に関するパラメータを適用し得る通信装置の提供を目的とする。 Therefore, the following disclosure has been made in view of such a situation, and an object of the present invention is to provide a communication device to which more appropriate parameters related to window control can be applied when a front hall (FH) interface is used. ..
 本開示の一態様は、通信装置(例えば、O-RU120)であって、複数のサブキャリア間隔のうち、何れかの前記サブキャリア間隔を取得し、取得した前記サブキャリア間隔に対して適用される前記通信装置内の遅延時間を示すパラメータセットを決定する制御部(送信ウィンドウ制御部125)と、前記パラメータセットを、フロントホール上に設けられる他の通信装置に対して送信する送信部(パラメータ送信部127)とを備え、前記制御部は、同一の前記サブキャリア間隔に対して、複数の前記パラメータセットを適用する。 One aspect of the present disclosure is a communication device (for example, O-RU120), which acquires the subcarrier interval of any one of a plurality of subcarrier intervals, and is applied to the acquired subcarrier interval. A control unit (transmission window control unit 125) that determines a parameter set indicating a delay time in the communication device, and a transmission unit (parameter) that transmits the parameter set to other communication devices provided on the front hall. A transmitter unit 127) is provided, and the control unit applies a plurality of the parameter sets to the same subcarrier interval.
図1は、無線通信システム10の全体概略構成図である。FIG. 1 is an overall schematic configuration diagram of the wireless communication system 10. 図2は、フロントホール(FH)インタフェースを採用するgNB100の内部構成例を示す図である。FIG. 2 is a diagram showing an example of the internal configuration of the gNB 100 that employs the front hole (FH) interface. 図3は、無線通信システム10において用いられる無線フレーム、サブフレーム及びスロットの構成例を示す図である。FIG. 3 is a diagram showing a configuration example of a wireless frame, a subframe, and a slot used in the wireless communication system 10. 図4は、O-DU110~O-RU120間のフロントホール(FH)における各種信号及び遅延要件を示す図である。FIG. 4 is a diagram showing various signals and delay requirements in the front hole (FH) between O-DU110 and O-RU120. 図5は、O-RU120の機能ブロック構成図である。FIG. 5 is a functional block configuration diagram of O-RU120. 図6は、O-DU110の機能ブロック構成図である。FIG. 6 is a functional block configuration diagram of the O-DU110. 図7は、O-DU110~O-RU120間における遅延管理の説明図である。FIG. 7 is an explanatory diagram of delay management between O-DU110 and O-RU120. 図8は、O-RANFH仕様において規定される遅延関連のパラメータと、送信ウインドウ及び受信ウインドウとの関連を示す図である。FIG. 8 is a diagram showing the relationship between the delay-related parameters defined in the O-RANFH specification and the transmission window and the reception window. 図9は、動作例1に係る送信ウインドウの制御に関する通信シーケンスを示す図である。FIG. 9 is a diagram showing a communication sequence related to control of the transmission window according to the operation example 1. 図10は、動作例2に係る受信ウインドウの制御に関する通信シーケンスを示す図である。FIG. 10 is a diagram showing a communication sequence related to the control of the reception window according to the operation example 2. 図11は、動作例3に係る受信ウインドウの制御に関する通信シーケンスを示す図である。FIG. 11 is a diagram showing a communication sequence related to the control of the reception window according to the operation example 3. 図12Aは、遅延プロファイルの構成例(その1)を示す図である。FIG. 12A is a diagram showing a configuration example (No. 1) of the delay profile. 図12Bは、遅延プロファイルの構成例(その2)を示す図である。FIG. 12B is a diagram showing a configuration example (No. 2) of the delay profile. 図13は、O-DU110及びO-RU120のハードウェア構成の一例を示す図である。FIG. 13 is a diagram showing an example of the hardware configuration of O-DU110 and O-RU120.
 以下、実施形態を図面に基づいて説明する。なお、同一の機能や構成には、同一または類似の符号を付して、その説明を適宜省略する。 Hereinafter, embodiments will be described based on the drawings. The same functions and configurations are designated by the same or similar reference numerals, and the description thereof will be omitted as appropriate.
 (1)無線通信システムの全体概略構成
 図1は、本実施形態に係る無線通信システム10の全体概略構成図である。本実施形態では、無線通信システム10は、5G New Radio(NR)に従った無線通信システムであり、Next Generation-Radio Access Network 20(以下、NG-RAN20、及び端末200(User Equipment 200、以下、UE200)を含む。
(1) Overall Schematic Configuration of Wireless Communication System FIG. 1 is an overall schematic configuration diagram of the wireless communication system 10 according to the present embodiment. In the present embodiment, the wireless communication system 10 is a wireless communication system according to 5G New Radio (NR), and is a Next Generation-Radio Access Network 20 (hereinafter, NG-RAN20, and a terminal 200 (hereinafter, User Equipment 200, hereinafter,). UE200) is included.
 NG-RAN20は、無線基地局100(以下、gNB100)を含む。なお、gNB及びUEの数を含む無線通信システム10の具体的な構成は、図1に示した例に限定されない。 NG-RAN20 includes a radio base station 100 (hereinafter, gNB100). The specific configuration of the wireless communication system 10 including the number of gNBs and UEs is not limited to the example shown in FIG.
 NG-RAN20は、実際には複数のNG-RAN Node、具体的には、gNB(またはng-eNB)を含み、5Gに従ったコアネットワーク(5GC、不図示)と接続される。なお、NG-RAN20及び5GCは、単にネットワークと表現されてもよい。 The NG-RAN20 actually includes multiple NG-RANNodes, specifically gNB (or ng-eNB), and is connected to a core network (5GC, not shown) according to 5G. In addition, NG-RAN20 and 5GC may be simply expressed as a network.
 gNB100は、5Gに従った無線基地局であり、UE200と5Gに従った無線通信を実行する。gNB100及びUE200は、複数のアンテナ素子から送信される無線信号を制御することによって、より指向性の高いビームを生成するMassive MIMO、複数のコンポーネントキャリア(CC)を束ねて用いるキャリアアグリゲーション(CA)、及びUEと複数のNG-RAN Nodeそれぞれとの間において同時に通信を行うデュアルコネクティビティ(DC)などに対応することができる。 GNB100 is a wireless base station that complies with 5G, and executes wireless communication according to UE200 and 5G. The gNB100 and UE200 include Massive MIMO, which generates a beam with higher directivity by controlling radio signals transmitted from multiple antenna elements, and carrier aggregation (CA), which uses multiple component carriers (CC) in a bundle. It can also support dual connectivity (DC), which communicates simultaneously between the UE and multiple NG-RAN Nodes.
 また、本実施形態では、gNB100は、O-RANによって規定されているフロントホール(FH)インタフェースを採用する。 Further, in the present embodiment, the gNB100 adopts the front hole (FH) interface specified by O-RAN.
 (2)フロントホールの構成
 図2は、フロントホール(FH)インタフェースを採用するgNB100の内部構成例を示す。図2に示すように、gNB100は、O-DU110(O-RAN Distributed Unit)及びO-RU120(O-RAN Radio Unit)を含む。O-DU110とO-RU120とは、3GPPで規定されている物理(PHY)レイヤ内において機能的に分離(Function split)されている。
(2) Front Hall Configuration Figure 2 shows an example of the internal configuration of the gNB100 that employs a front hole (FH) interface. As shown in FIG. 2, the gNB100 includes an O-DU110 (O-RAN Distributed Unit) and an O-RU120 (O-RAN Radio Unit). O-DU110 and O-RU120 are functionally separated within the physical (PHY) layer defined by 3GPP.
 O-DU110は、O-RAN分散ユニットと呼ばれてもよい。O-DU110は、下位層の機能に基づいた無線リンク制御レイヤ(RLC)、媒体アクセス制御レイヤ(MAC)及びPHY-Highレイヤをホストする論理ノードである。 O-DU110 may be called an O-RAN distribution unit. The O-DU110 is a logical node that hosts a wireless link control layer (RLC), a medium access control layer (MAC), and a PHY-High layer based on the functions of the lower layers.
 O-RU120は、O-RAN無線ユニットと呼ばれてもよい。O-RU120は、低層の機能分割に基づいたPHY-LowレイヤとRF処理とをホストする論理ノードである。 O-RU120 may be called an O-RAN radio unit. The O-RU120 is a logical node that hosts the PHY-Low layer and RF processing based on the low-level functional division.
 本実施形態において、O-DU110及びO-RU120は、通信装置を構成してよい。 In the present embodiment, the O-DU 110 and the O-RU 120 may form a communication device.
 PHY-Highレイヤは、Forward Error Correction(FEC)エンコード/デコード、スクランブル、変調/復調など、フロントホールインタフェースのO-DU110側でのPHY処理の部分である。 The PHY-High layer is the part of PHY processing on the O-DU110 side of the front hole interface, such as Forward Error Correction (FEC) encoding / decoding, scrambling, and modulation / demodulation.
 PHY-Lowレイヤは、Fast Fourier Transform(FFT)/iFFT、デジタルビームフォーミング、Physical Random Access Channel(PRACH)抽出及びフィルタリングなど、フロントホールインタフェースのO-RU120側でのPHY処理の部分である。 The PHY-Low layer is the part of PHY processing on the O-RU120 side of the front hole interface, such as Fast Fourier Transform (FFT) / iFFT, digital beam forming, Physical Random Access Channel (PRACH) extraction and filtering.
 O-DU110とO-RU120との間では、周波数領域のOFDM(Orthogonal Frequency Division Multiplexing)信号のIQサンプル列が送受信される(Split Option 7-2xの場合)。なお、IQサンプル列は、複素デジタル信号の同相(In-phase)および直交(Quadrature)成分のサンプリング系列と解釈されてよい。 Between O-DU110 and O-RU120, IQ sample strings of OFDM (Orthogonal Frequency Division Multiplexing) signals in the frequency domain are transmitted and received (in the case of Split Option 7-2x). The IQ sample sequence may be interpreted as a sampling series of in-phase and quadrature components of a complex digital signal.
 O-CUは、O-RAN Control Unitの略であり、Packet Data Convergence Protocol(PDCP)、Radio Resource Control(RRC)、Service Data Adaptation Protocol(SDAP)、及びその他の制御機能をホストする論理ノードである。 O-CU is an abbreviation for O-RANControlUnit, which is a logical node that hosts PacketDataConvergenceProtocol (PDCP), RadioResourceControl (RRC), ServiceDataAdaptationProtocol (SDAP), and other control functions. ..
 なお、フロントホール(FH)は、無線基地局(基地局装置)のベースバンド処理部と無線装置間の回線と解釈されてもよく、光ファイバなどが用いられる。 The front hall (FH) may be interpreted as a line between the baseband processing unit of the radio base station (base station device) and the radio device, and an optical fiber or the like is used.
 図3は、無線通信システム10において用いられる無線フレーム、サブフレーム及びスロットの構成例を示す。 FIG. 3 shows a configuration example of a wireless frame, a subframe, and a slot used in the wireless communication system 10.
 図3に示すように、無線通信システム10では、複数のサブキャリア間隔(SCS)を用いることができる。具体的には、15, 30, 60, 120及び240kHzを用いることができる。なお、SCSの値は、図3に示した値に限定されず、例えば、480kHz, 960kHzなどが用いられてもよく、また、後述するように、特定のチャネル用などとして、15kHzより小さい値が用いられてもよい。 As shown in FIG. 3, in the wireless communication system 10, a plurality of subcarrier intervals (SCS) can be used. Specifically, 15, 30, 60, 120 and 240 kHz can be used. The SCS value is not limited to the value shown in FIG. 3, and for example, 480 kHz, 960 kHz, or the like may be used, and as will be described later, a value smaller than 15 kHz is used for a specific channel or the like. It may be used.
 SCSが異なる場合、シンボル(OFDMシンボルと呼んでもよい)長も異なる。なお、SCSは、ニューメロロジーと呼ばれてもよく、シンボル長は、シンボル期間或いはスロット期間などと呼ばれてもよい。 If the SCS is different, the symbol (may be called an OFDM symbol) length is also different. The SCS may be called a numerology, and the symbol length may be called a symbol period, a slot period, or the like.
 例えば、SCSが2倍になると、シンボル長は、1/2に短縮される(15kHzSCS=66.6μ秒、30kHzSCS=33.3μ秒)。つまり、SCSが大きい程、シンボル長が短くなる(14シンボル/スロットの構成が維持される場合)。 For example, if the SCS is doubled, the symbol length will be shortened to 1/2 (15kHz SCS = 66.6μsec, 30kHzSCS = 33.3μsec). That is, the larger the SCS, the shorter the symbol length (if the 14 symbol / slot configuration is maintained).
 また、サイクリックプレフィックス(CP)長も、干渉による影響の軽減などのため、信号(チャネル)の種類などによって異なり得る。サイクリックプレフィックス(CP)は、OFDM信号において,マルチパスなどに起因する前後シンボル間の干渉を抑圧するために、シンボル間に設けられたガードタイムと解釈されてよい。この部分の信号は、シンボル後半の一部分をコピーしたものでもよく、ガードインターバルと呼ばれてもよい。 Also, the cyclic prefix (CP) length may differ depending on the type of signal (channel), etc. in order to reduce the influence of interference. The cyclic prefix (CP) may be interpreted as a guard time provided between the symbols in order to suppress interference between the preceding and following symbols caused by multipath or the like in the OFDM signal. The signal of this part may be a copy of a part of the latter half of the symbol, and may be called a guard interval.
 表1は、SCSと、非PRACH(Physical Random Access Channel)及びPRACHとの対応関係を示す。 Table 1 shows the correspondence between SCS and non-PRACH (Physical Random Access Channel) and PRACH.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1に示すように、3GPP(TS38.211など)では、狭いSCSの場合、CP長が長いPRACHが規定されている。すなわち、gNB100、具体的には、O-DU110及びO-RU120内における実際の信号の処理が開始されるまでの時間は、このような信号(チャネルと呼んでもよい)の種類によって異なり得る。 As shown in Table 1, 3GPP (TS38.211, etc.) specifies PRACH with a long CP length in the case of a narrow SCS. That is, the time it takes for the actual signal processing in the gNB100, specifically the O-DU110 and O-RU120, to begin may vary depending on the type of such signal (which may be referred to as the channel).
 また、O-DU110及びO-RU120内における処理時間は、当該装置のハードウェアの処理能力にも依存する。 The processing time in O-DU110 and O-RU120 also depends on the processing capacity of the hardware of the device.
 表2は、信号(チャネル)の種類毎のCP長の一例を示す。 Table 2 shows an example of CP length for each type of signal (channel).
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表2に示す非PRACH(Non-PRACH)のCP長は、FFTサンプル数=4096、SCS=30kHzの場合である。非PRACHとは、例えば、PUSCH(Physical Uplink Shared Channel)、PDSCH(Physical Downlink Shared Channel)などである。 The CP length of non-PRACH (Non-PRACH) shown in Table 2 is when the number of FFT samples = 4096 and SCS = 30kHz. The non-PRACH is, for example, PUSCH (Physical Uplink Shared Channel), PDSCH (Physical Downlink Shared Channel), or the like.
 表2に示すように、非PRACHと比較すると、PRACHのCPは長い。なお、PRACHのフォーマットは、TS38.211において規定されている。特に、long format(format=0~3)の場合のCP長が極めて長い。このように、同一SCSにおいても、CP長の異なる信号(チャネル)が規定され得る。 As shown in Table 2, the CP of PRACH is longer than that of non-PRACH. The PRACH format is specified in TS38.211. In particular, the CP length is extremely long in the case of long format (format = 0 to 3). In this way, signals (channels) with different CP lengths can be defined even in the same SCS.
 (3)O-DU~O-RU間における各種信号及び遅延要件
 図4は、O-DU110~O-RU120間のフロントホール(FH)における各種信号及び遅延要件を示す。図4に示すように、O-DU110~O-RU120間では、複数のプレーンにおける信号が送受信される。
(3) Various signals and delay requirements between O-DU and O-RU Fig. 4 shows various signals and delay requirements in the front hole (FH) between O-DU110 and O-RU120. As shown in FIG. 4, signals in a plurality of planes are transmitted and received between O-DU110 and O-RU120.
 具体的には、U/C/M/S-planeの信号が送受信される。C-Planeは、制御信号を転送するためのプロトコルであり、U-Planeは、ユーザデータを転送するためのプロトコルである。また、S-Planeは、装置間の同期(Synchronization)を実現するためのプロトコルである。M-Planeは、保守監視信号を扱うマネージメントプレーンである。 Specifically, U / C / M / S-plane signals are transmitted and received. C-Plane is a protocol for transferring control signals, and U-Plane is a protocol for transferring user data. In addition, S-Plane is a protocol for realizing synchronization between devices. M-Plane is a management plane that handles maintenance and monitoring signals.
 より具体的には、U-Plane信号は、O-RU120が無線区間に送信する(DL)、無線区間より受信する(UL)信号を含み、digital IQ signalでやり取りされる。なお、いわゆるU-Plane信号(User Datagram Protocol (UDP)及びTransmission Control Protocol (TCP)などのデータ)に加え、3GPPで定義されているC-Plane(RRC, Non-Access Stratum (NAS)など)も、FH観点では全てU-Planeとなることに留意する必要がある。 More specifically, the U-Plane signal includes a (DL) signal transmitted by the O-RU120 to the radio section and a (UL) signal received from the radio section, and is exchanged by a digital IQ signal. In addition to so-called U-Plane signals (data such as User Datagram Protocol (UDP) and Transmission Control Protocol (TCP)), C-Plane (RRC, Non-Access Stratum (NAS), etc.) defined by 3GPP is also available. , It should be noted that all are U-Planes from the viewpoint of FH.
 C-Plane信号は、U-Plane信号の送受信に関する各種制御のために必要な信号(対応するU-Planeの無線リソースマッピング及びビームフォーミングに関わる情報を通知するための信号)を含む。なお、3GPPで定義されているC-Plane(RRC, NASなど)とは、完全に別の信号を指すことに留意する必要がある。 The C-Plane signal includes signals necessary for various controls related to transmission / reception of U-Plane signals (signals for notifying information related to radio resource mapping and beamforming of the corresponding U-Plane). It should be noted that the signal is completely different from the C-Plane (RRC, NAS, etc.) defined in 3GPP.
 M-Plane信号は、O-DU110/O-RU120の管理のために必要な信号を含む。例えば、O-RU120からO-RU120の各種ハードウェア(HW)能力を通知したり、O-DU110からO-RU120へ各種設定値を通知したりするための信号である。 The M-Plane signal includes the signal necessary for the management of O-DU110 / O-RU120. For example, it is a signal for notifying various hardware (HW) capabilities of O-RU120 to O-RU120 and notifying various setting values from O-DU110 to O-RU120.
 S-Plane信号は、O-DU110/O-RU120間の同期制御のために必要な信号である。 The S-Plane signal is a signal required for synchronous control between O-DU110 / O-RU120.
 図4に示すように、O-DU110のO-RU120に向けて(下り方向と呼ばれてもよい)の出力点(senderと呼ばれてもよい)はR1、O-RU120のO-DU110に向けて(上り方向と呼ばれてもよい)の出力点はR3と定義されてよい。 As shown in FIG. 4, the output point (which may be called the sender) toward O-RU120 of O-DU110 (which may be called the downward direction) is at R1 and O-DU110 of O-RU120. The directed (may be called ascending) output point may be defined as R3.
 また、O-RU120におけるO-DU110からの信号の入力点(receiverと呼ばれてもよい)はR2、O-DU110におけるO-RU120からの信号の入力点はR4と定義されてよい。さらに、O-DU110からO-RU120への下りリンク(DL)はT12と定義され、O-RU120からO-DU110への上りリンク(DL)はT34と定義されてよい。 Further, the input point of the signal from the O-DU110 (which may be called the receiver) in the O-RU120 may be defined as R2, and the input point of the signal from the O-RU120 in the O-DU110 may be defined as R4. In addition, the downlink (DL) from O-DU110 to O-RU120 may be defined as T12 and the uplink (DL) from O-RU120 to O-DU110 may be defined as T34.
 O-DU110及びO-RU120に関する遅延時間(Latency)は、表3のように定義されてよい。 The latency for O-DU110 and O-RU120 may be defined as shown in Table 3.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 表3に示すように、T1a及びT2aは、DL方向の遅延時間であり、T3a及びT4aは、UL方向の遅延時間である。また、各遅延時間には、O-DU110~O-RU120間のFHを構成するネットワーク内のスイッチング時間などを考慮し、最小値(Minimum)及び最大値(Maximum)が設けられてよい。図4に示すRaは、当該遅延時間測定の参照点であり、O-RUのアンテナと対応する。 As shown in Table 3, T1a and T2a are the delay times in the DL direction, and T3a and T4a are the delay times in the UL direction. Further, each delay time may be set to a minimum value (Minimum) and a maximum value (Maximum) in consideration of the switching time in the network constituting the FH between O-DU110 and O-RU120. Ra shown in FIG. 4 is a reference point for the delay time measurement and corresponds to the antenna of the O-RU.
 (4)無線通信システムの機能ブロック構成
 次に、無線通信システム10の機能ブロック構成について説明する。具体的には、O-DU110及びO-RU120の機能ブロック構成について説明する。便宜上、O-RU120の機能ブロック構成から説明する。
(4) Functional Block Configuration of Wireless Communication System Next, the functional block configuration of the wireless communication system 10 will be described. Specifically, the functional block configuration of O-DU110 and O-RU120 will be described. For convenience, the functional block configuration of O-RU120 will be described first.
 (4.1)O-RU120
 図5は、O-RU120の機能ブロック構成図である。図5に示すように、O-RU120は、通信部121、CP長/チャネル種別取得部123、送信ウィンドウ制御部125及びパラメータ送信部127を備える。
(4.1) O-RU120
FIG. 5 is a functional block configuration diagram of O-RU120. As shown in FIG. 5, the O-RU120 includes a communication unit 121, a CP length / channel type acquisition unit 123, a transmission window control unit 125, and a parameter transmission unit 127.
 通信部121は、O-DU110との通信を実行する。具体的には、通信部121は、FH回線と接続され、図4に示した各種プレーンの信号を送受信することができる。 Communication unit 121 executes communication with O-DU110. Specifically, the communication unit 121 is connected to the FH line and can transmit and receive signals of various planes shown in FIG.
 CP長/チャネル種別取得部123は、FHを介して送受信される信号(チャネルでもよい)に適用されるCP長を取得できる。また、CP長/チャネル種別取得部123は、FHを介して送受信されるチャネルの種類を取得できる。チャネルとは、上述したように、PRACH、PUSCH及びPDSCHなどが挙げられるが、これらのチャネルに限定されない。 The CP length / channel type acquisition unit 123 can acquire the CP length applied to the signal (which may be a channel) transmitted / received via the FH. In addition, the CP length / channel type acquisition unit 123 can acquire the type of channel transmitted / received via FH. As described above, the channel includes, but is not limited to, PRACH, PUSCH, PDSCH, and the like.
 上述したように、CP長は、チャネル種類で異なる場合があり、また、同一のチャネルでも、フォーマットによって異なる場合がある。CP長/チャネル種別取得部123は、CP長及び/またはチャネル種類を自律的に取得してもよいし、O-DU110から明示的または暗黙的に通知されることによって取得してもよい。 As mentioned above, the CP length may differ depending on the channel type, and even for the same channel, it may differ depending on the format. The CP length / channel type acquisition unit 123 may acquire the CP length and / or the channel type autonomously, or may acquire the CP length and / or the channel type by being explicitly or implicitly notified from the O-DU 110.
 送信ウィンドウ制御部125は、O-DU110に向けて送信される信号の送信ウインドウを制御する。具体的には、送信ウィンドウ制御部125は、FHの遅延管理に基づいて、当該信号が送信できる時間的な範囲を示す送信ウインドウを制御する。 The transmission window control unit 125 controls the transmission window of the signal transmitted to the O-DU 110. Specifically, the transmission window control unit 125 controls the transmission window indicating the time range in which the signal can be transmitted, based on the delay management of the FH.
 特に、本実施形態では、送信ウィンドウ制御部125は、複数のサブキャリア間隔(SCS)のうち、何れかのサブキャリア間隔を取得する。つまり、送信ウィンドウ制御部125は、FHを介して送受信される信号に適用されている信号のSCSを取得する。本実施形態において、送信ウィンドウ制御部125は、制御部を構成する。 In particular, in the present embodiment, the transmission window control unit 125 acquires any of the subcarrier intervals (SCS) among the plurality of subcarrier intervals (SCS). That is, the transmission window control unit 125 acquires the SCS of the signal applied to the signal transmitted / received via the FH. In the present embodiment, the transmission window control unit 125 constitutes a control unit.
 送信ウィンドウ制御部125は、取得したSCSに対して適用されるO-RU120(通信装置)内の遅延時間を示すパラメータセットを決定できる。具体的には、送信ウィンドウ制御部125は、RaからR3(図4参照)までの遅延時間(処理時間と読み替えてよい)であるTa3_min, Ta3_maxを決定できる。Ta3_min, Ta3_maxは、O-RUアンテナでの受信からO-RUポート(R3)での出力まで測定結果と解釈されてもよい。また、Ta3_min, Ta3_maxを含むパラメータセットは、遅延プロファイルなどと呼ばれてもよい。 The transmission window control unit 125 can determine a parameter set indicating the delay time in the O-RU120 (communication device) applied to the acquired SCS. Specifically, the transmission window control unit 125 can determine Ta3_min and Ta3_max, which are delay times (which may be read as processing time) from Ra to R3 (see FIG. 4). Ta3_min and Ta3_max may be interpreted as measurement results from reception by the O-RU antenna to output by the O-RU port (R3). Further, the parameter set including Ta3_min and Ta3_max may be called a delay profile or the like.
 このように、遅延時間は、O-RU120のアンテナでの信号の受信からO-DU110(他の通信装置)への信号の出力までの時間の最小値及び最大値を含んでよいが、必ずしも両方が必須ではない。 Thus, the delay time may include the minimum and maximum values of the time from the reception of the signal at the antenna of the O-RU120 to the output of the signal to the O-DU110 (another communication device), but not necessarily both. Is not required.
 送信ウィンドウ制御部125は、同一のSCSに対して、複数のパラメータセットを適用することができる。例えば、30kHzのSCSに対して、値が異なるTa3_min, Ta3_maxを含むパラメータセット(遅延プロファイル)を対応付けることができる。 The transmission window control unit 125 can apply a plurality of parameter sets to the same SCS. For example, a parameter set (delay profile) including Ta3_min and Ta3_max with different values can be associated with the SCS of 30 kHz.
 また、送信ウィンドウ制御部125は、O-RU120が送受信する信号のCP長に応じた複数のパラメータセットを適用してもよい。つまり、同一のSCSに対して対応付けられる複数のパラメータセットは、O-RU120が送受信する信号のCP長に基づいてよい。 Further, the transmission window control unit 125 may apply a plurality of parameter sets according to the CP length of the signal transmitted and received by the O-RU 120. That is, the plurality of parameter sets associated with the same SCS may be based on the CP length of the signal transmitted and received by the O-RU120.
 さらに、送信ウィンドウ制御部125は、O-RU120が送受信する信号(チャネルと読み替えてもよい)の種類に応じた複数のパラメータセットを適用してもよい。つまり、同一のSCSに対して対応付けられる複数のパラメータセットは、O-RU120が送受信する信号(チャネル)の種類(例えば、PRACH、PUSCH及びPDSCHなど)に基づいてよい。 Further, the transmission window control unit 125 may apply a plurality of parameter sets according to the type of signal (which may be read as a channel) transmitted / received by the O-RU120. That is, the plurality of parameter sets associated with the same SCS may be based on the type of signal (channel) transmitted / received by the O-RU120 (for example, PRACH, PUSCH, PDSCH, etc.).
 パラメータ送信部127は、送信ウィンドウ制御部125によって決定されたパラメータセットを、FH上に設けられる他の通信装置、具体的には、O-DU110に対して送信する。本実施形態において、パラメータ送信部127は、送信部を構成する。 The parameter transmission unit 127 transmits the parameter set determined by the transmission window control unit 125 to another communication device provided on the FH, specifically, the O-DU110. In the present embodiment, the parameter transmission unit 127 constitutes a transmission unit.
 パラメータ送信部127は、当該パラメータセット(遅延プロファイル)をM-Plane設定後に、O-DU110に対して送信してよい。但し、パラメータセットの送信方法は、必ずしもM-Planeに限定されず、他のPlaneの信号として送信されても構わない。 The parameter transmission unit 127 may transmit the parameter set (delay profile) to the O-DU110 after setting the M-Plane. However, the method of transmitting the parameter set is not necessarily limited to the M-Plane, and may be transmitted as a signal of another Plane.
 (4.2)O-DU110
 図6は、O-DU110の機能ブロック構成図である。図6に示すように、O-DU110は、通信部111、CP長/チャネル種別取得部113、パラメータ受信部115及び受信ウィンドウ制御部117を備える。
(4.2) O-DU110
FIG. 6 is a functional block configuration diagram of the O-DU110. As shown in FIG. 6, the O-DU 110 includes a communication unit 111, a CP length / channel type acquisition unit 113, a parameter reception unit 115, and a reception window control unit 117.
 通信部111は、O-RU120との通信を実行する。具体的には、通信部111は、FH回線と接続され、図4に示した各種プレーンの信号を送受信することができる。 Communication unit 111 executes communication with O-RU120. Specifically, the communication unit 111 is connected to the FH line and can transmit and receive signals of various planes shown in FIG.
 CP長/チャネル種別取得部113は、FHを介して送受信される信号(チャネルでもよい)に適用されるCP長を取得できる。また、CP長/チャネル種別取得部113は、FHを介して送受信されるチャネルの種類を取得できる。CP長/チャネル種別取得部113の機能は、上述したO-RU120のCP長/チャネル種別取得部123と同様でもよい。 The CP length / channel type acquisition unit 113 can acquire the CP length applied to the signal (which may be a channel) transmitted / received via the FH. Further, the CP length / channel type acquisition unit 113 can acquire the type of the channel transmitted / received via the FH. The function of the CP length / channel type acquisition unit 113 may be the same as that of the CP length / channel type acquisition unit 123 of the O-RU120 described above.
 パラメータ受信部115は、O-RU120から送信されるパラメータセットを受信できる。具体的には、パラメータ受信部115は、当該パラメータセット(遅延プロファイル)をM-Plane設定後に、O-RU120から受信してよい。但し、上述したように、パラメータセットの送受信方法は、必ずしもM-Planeに限定されず、他のPlaneの信号として送信されても構わない。 The parameter receiving unit 115 can receive the parameter set transmitted from the O-RU120. Specifically, the parameter receiving unit 115 may receive the parameter set (delay profile) from the O-RU 120 after setting the M-Plane. However, as described above, the method of transmitting and receiving the parameter set is not necessarily limited to the M-Plane, and may be transmitted as a signal of another Plane.
 受信ウィンドウ制御部117は、O-DU110に向けて送信される信号の受信ウインドウを制御する。具体的には、受信ウィンドウ制御部117は、FHの遅延管理に基づいて、当該信号が受信できる時間的な範囲を示す受信ウィンドウ制御部117を制御する。 The reception window control unit 117 controls the reception window of the signal transmitted to the O-DU 110. Specifically, the reception window control unit 117 controls the reception window control unit 117 that indicates the time range in which the signal can be received, based on the delay management of the FH.
 特に、本実施形態では、受信ウィンドウ制御部117は、FHを介して送受信される信号に適用されている信号のSCSが同一の場合でも、CP長またチャネルの種類に応じた値の異なる複数の受信ウインドウを設定できる。 In particular, in the present embodiment, the reception window control unit 117 has a plurality of values having different values depending on the CP length and the channel type even when the SCS of the signal applied to the signal transmitted and received via the FH is the same. You can set the receive window.
 つまり、受信ウィンドウ制御部117は、FHを介してSCSが同一であるが、CP長が異なる複数種類の信号(またはチャネル)が送受信されている場合、当該CP長(または信号、チャネル)毎に受信ウインドウを設定してよい。 That is, when the reception window control unit 117 transmits and receives a plurality of types of signals (or channels) having the same SCS but different CP lengths via the FH, the reception window control unit 117 has each CP length (or signal, channel). You may set the receive window.
 或いは、受信ウィンドウ制御部117は、FHを介してSCSが同一であるが、CP長が異なる複数種類の信号(またはチャネル)が送受信されている場合、全ての信号(またはチャネル)の中で、最悪となる受信ウインドウを設定してもよい。最悪となる受信ウインドウとは、サイズが最も大きくなる受信ウインドウと解釈されてもよい。 Alternatively, when the reception window control unit 117 transmits and receives a plurality of types of signals (or channels) having the same SCS but different CP lengths via the FH, among all the signals (or channels), You may set the worst receiving window. The worst receiving window may be interpreted as the largest receiving window.
 (5)無線通信システムの動作
 次に、無線通信システム10の動作について説明する。具体的には、O-DU110~O-RU120間における送信ウインドウ及び受信ウインドウの制御に関する動作について説明する。
(5) Operation of Wireless Communication System Next, the operation of the wireless communication system 10 will be described. Specifically, the operation related to the control of the transmission window and the reception window between O-DU110 and O-RU120 will be described.
 (5.1)フロントホールにおける遅延管理
 図7は、O-DU110~O-RU120間における遅延管理の説明図である。上述したように、物理(PHY)レイヤ内にO-DU110/O-RU120の機能分担点が置かれているため、厳しいタイミング精度が求められる。このため、FHの遅延管理が行われており、その方法として送信ウインドウ、受信ウインドウが用いられている。
(5.1) Delay Management in Front Hall FIG. 7 is an explanatory diagram of delay management between O-DU110 and O-RU120. As described above, since the function sharing points of O-DU110 / O-RU120 are placed in the physical (PHY) layer, strict timing accuracy is required. For this reason, FH delay management is performed, and a transmission window and a reception window are used as the method.
 図7では、UL信号の例が示されている。なお、DL信号についても基本的には、UL信号と同様である。以下では、UL信号を例として説明する。 FIG. 7 shows an example of a UL signal. The DL signal is basically the same as the UL signal. In the following, the UL signal will be described as an example.
 伝搬遅延は、FHの構成により揺らぎが生じるため、遅延の最大値及び最小値を考慮する必要がある。図7では、図示を容易にするため、FH信号が以下の条件を満たすと想定する。 Propagation delay fluctuates depending on the FH configuration, so it is necessary to consider the maximum and minimum values of the delay. In FIG. 7, it is assumed that the FH signal satisfies the following conditions in order to facilitate the illustration.
  ・送信ウインドウ端で送信する
  ・FHの伝搬遅延が最大である
 図7に示すように、O-RU120は、送信ウインドウの期間中にFH信号を送信する。また、O-DU110は、受信ウインドウの期間中にFH信号を受信する。この2点が成立するように、FHにおける遅延管理を行う必要がある。この2点が成立しない場合、FH信号の疎通が不可となり得る。
-Transmit at the edge of the transmission window-Maximum FH propagation delay As shown in FIG. 7, the O-RU120 transmits an FH signal during the period of the transmission window. The O-DU110 also receives the FH signal during the reception window. It is necessary to manage the delay in FH so that these two points are satisfied. If these two points do not hold, communication of the FH signal may be impossible.
 なお、ここでの遅延管理とは、次の両方を含むものとする。 Note that the delay management here shall include both of the following.
  ・FH遅延自体の管理
  ・送信ウインドウ及び受信ウインドウの大きさの管理
 また、遅延管理は、O-RU120におけるUE200からの無線信号の受信タイミングを基準として行われる。
-Management of FH delay itself-Management of size of transmission window and reception window In addition, delay management is performed based on the reception timing of the radio signal from UE200 in O-RU120.
 図8は、O-RANFH仕様において規定される遅延関連のパラメータと、送信ウインドウ及び受信ウインドウとの関連を示す。 FIG. 8 shows the relationship between the delay-related parameters specified in the O-RANFH specifications and the transmission window and the reception window.
 O-RAN FH仕様では、送信ウインドウ、受信ウインドウの両端を表すパラメータが定義されている。O-DU110は、O-RU120に合わせて、自身の送信ウインドウ(DLの場合)・受信ウインドウ(ULの場合)を決定することによって、遅延管理を行っている。 The O-RAN FH specification defines parameters that represent both ends of the send window and receive window. The O-DU110 manages the delay by determining its own transmission window (in the case of DL) and reception window (in the case of UL) according to the O-RU120.
 具体的には、O-RU120は、自身の能力値として、Ta3_max, Ta3_minをO-DU110に通知する。 Specifically, O-RU120 notifies O-DU110 of Ta3_max and Ta3_min as its own ability values.
 O-DU110は、事前に設定されているT34_max, T34_minの値と、通知されたTa3_max, Ta3_minとに基づいて、自身のTa4_max, Ta4_minを決定する。この際、図8に示すように、以下の条件を満たす必要がある。 O-DU110 determines its own Ta4_max, Ta4_min based on the preset values of T34_max and T34_min and the notified Ta3_max and Ta3_min. At this time, as shown in FIG. 8, the following conditions must be satisfied.
  ・Ta4_min <= Ta3_min + T34_min
  ・Ta4_max >= T34_max + Ta3_max
 このような遅延管理によれば、O-RU120は、自身の能力値に基づき動作するのみであり、遅延管理(制御)はO-DU110によって行われる。これにより、O-RU120が様々に置局される場合においても、O-DU110側のみで遅延管理を考慮すればよいメリットがある。
・ Ta4_min <= Ta3_min + T34_min
・ Ta4_max> = T34_max + Ta3_max
According to such delay management, the O-RU120 only operates based on its own ability value, and the delay management (control) is performed by the O-DU110. As a result, even when the O-RU120 is stationed in various ways, there is an advantage that delay management needs to be considered only on the O-DU110 side.
 (5.2)動作例
 次に、O-DU110~O-RU120間における送信ウインドウ及び受信ウインドウの制御動作例について説明する。
(5.2) Operation example Next, an operation example of controlling the transmission window and the reception window between O-DU110 and O-RU120 will be described.
 上述したように、無線通信システム10では、FHを介して送受信される信号に適用されている信号のSCSが同一の場合でも、CP長(また信号種類)に応じた値の異なる複数の送信ウインドウ及び/または受信ウインドウを設定できる。 As described above, in the wireless communication system 10, even if the SCS of the signal applied to the signal transmitted / received via the FH is the same, a plurality of transmission windows having different values according to the CP length (and signal type). And / or the receive window can be set.
 (5.2.1)動作例1
 本動作例では、FHを介して送受信される信号に適用されている信号のSCSが同一の場合でも、O-RU120が、当該SCSに対して1つではなく、CP長(また信号種類)に応じた値の異なる遅延時間のパラメータセット(遅延プロファイル)をO-DU110に送信してよい。
(5.2.1) Operation example 1
In this operation example, even if the SCS of the signal applied to the signal transmitted / received via FH is the same, the O-RU120 is not one for the SCS but the CP length (and signal type). A parameter set (delay profile) with different delay times may be sent to the O-DU110.
 図9は、動作例1に係る送信ウインドウの制御に関する通信シーケンスを示す。図9に示すように、O-DU110及びO-RU120は、M-Plane connection establishment手順を実行する(S10)。M-Plane connection establishmentの手順は、M-Planeを設定するための手順である。 FIG. 9 shows a communication sequence related to the control of the transmission window according to the operation example 1. As shown in FIG. 9, O-DU110 and O-RU120 execute the M-Plane connection establishment procedure (S10). The procedure of M-Plane connection establishment is a procedure for setting M-Plane.
 O-RU120は、FHを介して送受信される信号に適用されている信号のSCSを取得する(S20)。具体的には、O-RU120は、当該信号に適用されているSCSの値(例えば、30kHz)または識別情報を取得できる。なお、SCSが異なる当該信号が複数種類ある場合、O-RU120は、信号毎のSCSを取得してよい。また、S20の動作は、S10よりも前に実行されても構わない。 O-RU120 acquires the SCS of the signal applied to the signal transmitted and received via FH (S20). Specifically, the O-RU120 can acquire the SCS value (for example, 30 kHz) or identification information applied to the signal. When there are a plurality of types of the signals having different SCSs, the O-RU120 may acquire the SCSs for each signal. Also, the operation of S20 may be executed before S10.
 O-RU120は、同一SCSが適用される当該信号のCP長または当該信号の種類を取得する(S30)。上述したように、SCSが同一の場合でも、CP長は、信号(またはチャネル)の種類によって異なり得る(表1及び表2参照)。このため、適切なTa3_min, Ta3_maxの値も異なり得る。この結果、O-DU110~O-RU120間における適切な送信ウインドウのサイズも異なり得る。 O-RU120 acquires the CP length of the signal to which the same SCS is applied or the type of the signal (S30). As mentioned above, even if the SCS is the same, the CP length can vary depending on the type of signal (or channel) (see Tables 1 and 2). Therefore, the appropriate Ta3_min and Ta3_max values may differ. As a result, the appropriate size of the transmit window between O-DU110 and O-RU120 may also differ.
 O-RU120は、取得したSCS及びCP長(または信号種類)に基づいて、当該SCS及びCP長が適用される信号用の遅延プロファイルを決定する(S40)。具体的には、O-RU120は、取得したSCS及びCP長(または信号種類)に基づいて、遅延時間のパラメータセット(Ta3_min, Ta3_max)を決定する。 O-RU120 determines the delay profile for the signal to which the SCS and CP length is applied based on the acquired SCS and CP length (or signal type) (S40). Specifically, the O-RU120 determines the delay time parameter set (Ta3_min, Ta3_max) based on the acquired SCS and CP length (or signal type).
 O-RU120は、決定したTa3_min, Ta3_maxを含む遅延プロファイルをO-DU110に送信する(S50)。なお、遅延プロファイルには、後述するように、Ta3_min, Ta3_max以外のパラメータが含まれてもよい。 O-RU120 sends a delay profile including the determined Ta3_min and Ta3_max to O-DU110 (S50). The delay profile may include parameters other than Ta3_min and Ta3_max, as will be described later.
 O-DU110は、受信した遅延プロファイルに基づいて、ウィンドウ設定を実行する(S60)。具体的には、O-DU110は、受信したTa3_min, Ta3_maxに基づいて、O-RU120の送信ウインドウ(図8など参照)を認識するとともに、O-DU110の受信ウインドウのサイズを設定する。 O-DU110 executes window settings based on the received delay profile (S60). Specifically, the O-DU110 recognizes the transmission window of the O-RU120 (see FIG. 8 and the like) based on the received Ta3_min and Ta3_max, and sets the size of the reception window of the O-DU110.
 O-DU110及びO-RU120は、ウィンドウ設定後、FHを介した通信を実行する(S70)。 O-DU110 and O-RU120 execute communication via FH after setting the window (S70).
 (5.2.2)動作例2
 本動作例では、O-DU110が、FHを介して送受信される信号に適用されている信号の同一SCSに対して1つではなく、CP長(また信号種類)に応じた値の異なる遅延時間のパラメータセット(遅延プロファイル)に対応する複数のウィンドウを設定してよい。以下、動作例1と異なる部分について主に説明する。
(5.2.2) Operation example 2
In this operation example, O-DU110 is not one for the same SCS of the signal applied to the signal transmitted and received via FH, but the delay time with different values according to the CP length (and signal type). Multiple windows may be set corresponding to the parameter set (delay profile) of. Hereinafter, the parts different from the operation example 1 will be mainly described.
 図10は、動作例2に係る受信ウインドウの制御に関する通信シーケンスを示す。図10に示すように、S110の動作は、動作例1のS10と同様である。 FIG. 10 shows a communication sequence related to the control of the reception window according to the operation example 2. As shown in FIG. 10, the operation of S110 is the same as that of S10 in operation example 1.
 O-DU110は、FHを介して送受信される信号のCP長(x)に基づいて、受信ウインドウを設定する(S120)。具体的には、O-DU110は、当該CP長(x)に基づいて、受信ウインドウ(図8など参照)のサイズを設定する。 O-DU110 sets the reception window based on the CP length (x) of the signal transmitted and received via FH (S120). Specifically, the O-DU110 sets the size of the reception window (see FIG. 8 and the like) based on the CP length (x).
 より具体的には、O-DU110は、当該CP長(x)に基づいてTa4_min, Ta4_maxを決定し、決定したTa4_min, Ta4_maxの値に基づいて受信ウインドウのサイズを決定してよい。 More specifically, the O-DU110 may determine Ta4_min, Ta4_max based on the CP length (x), and determine the size of the receiving window based on the determined Ta4_min, Ta4_max values.
 O-DU110及びO-RU120は、ウィンドウ設定後、当該信号について、FHを介した通信を実行する(S130)。 After setting the window, O-DU110 and O-RU120 execute communication via FH for the signal (S130).
 その後、O-DU110は、FHを介して送受信される他の信号のCP長(y)に基づいて、受信ウインドウを設定する(S140)。具体的には、O-DU110は、当該CP長(y)に基づいて、受信ウインドウのサイズを設定する。 After that, the O-DU110 sets the reception window based on the CP length (y) of other signals transmitted and received via the FH (S140). Specifically, the O-DU110 sets the size of the reception window based on the CP length (y).
 O-DU110及びO-RU120は、ウィンドウ設定後、当該他の信号について、FHを介した通信を実行する(S150)。 O-DU110 and O-RU120 execute communication via FH for the other signals after setting the window (S150).
 このように、O-DU110は、FHを介して送受信される複数種類の信号について、同一のSCSが適用されるか否かに関わらず、CP長(または信号(チャネル)種類)毎に、異なる受信ウインドウを設定してもよい。 In this way, the O-DU110 differs for each CP length (or signal (channel) type) regardless of whether or not the same SCS is applied to a plurality of types of signals transmitted and received via the FH. You may set the receive window.
 (5.2.3)動作例3
 本動作例では、O-DU110が、FHを介して送受信される信号に適用されている信号の同一SCSに対して1つではなく、CP長(また信号種類)に応じた値の異なる遅延時間のパラメータセット(遅延プロファイル)に対応する共用のウィンドウを設定してよい。以下、動作例2と異なる部分について主に説明する。
(5.2.3) Operation example 3
In this operation example, O-DU110 is not one for the same SCS of the signal applied to the signal transmitted and received via FH, but the delay time with different values according to the CP length (and signal type). A shared window corresponding to the parameter set (delay profile) of may be set. Hereinafter, the parts different from the operation example 2 will be mainly described.
 図11は、動作例3に係る受信ウインドウの制御に関する通信シーケンスを示す。図11に示すように、S110の動作は、動作例2のS110と同様である。 FIG. 11 shows a communication sequence related to the control of the reception window according to the operation example 3. As shown in FIG. 11, the operation of S110 is the same as that of S110 of operation example 2.
 O-DU110は、FHを介して送受信される複数の信号について、それぞれCP長(または信号種類、以下同)を取得する(S220)。 The O-DU110 acquires the CP length (or signal type, the same applies hereinafter) for each of multiple signals transmitted and received via FH (S220).
 O-DU110は、取得した複数のCP長に基づいて、受信ウインドウを設定する(S230)。具体的には、O-DU110は、当該複数のCP長に共用されるTa4_min, Ta4_maxを決定し、決定したTa4_min, Ta4_maxの値に基づいて、共用される受信ウインドウのサイズを決定してよい。 O-DU110 sets the reception window based on the acquired multiple CP lengths (S230). Specifically, the O-DU110 may determine the Ta4_min, Ta4_max shared by the plurality of CP lengths, and determine the size of the shared reception window based on the determined Ta4_min, Ta4_max values.
 共用される受信ウインドウは、複数のCP長のうち、最悪であるTa4_min, Ta4_maxが反映されてもよいし、CP長に応じた複数のTa4_min, Ta4_maxの平均値が反映されてもよい。なお、最悪とは、上述したように、サイズが最も大きくなる受信ウインドウと解釈されてもよい。 The shared reception window may reflect the worst Ta4_min, Ta4_max among the plurality of CP lengths, or may reflect the average value of a plurality of Ta4_min, Ta4_max according to the CP length. As described above, the worst may be interpreted as the reception window having the largest size.
 O-DU110及びO-RU120は、ウィンドウ設定後、当該複数の信号について、FHを介した通信を実行する(S240)。 O-DU110 and O-RU120 execute communication via FH for the plurality of signals after setting the window (S240).
 (5.2.4)遅延プロファイルの構成例
 図12A及び図12Bは、本実施形態に係る遅延プロファイルの構成例を示す。具体的には、図12A及び図12Bは、O-RUの遅延プロファイルの構成例を示す。当該遅延プロファイル(ro ru-delay-profile)は、ORAN-WG4.MP.0-v02.00.00のD.5.2 o-ran-delay-management.yang Moduleにおいて規定されている。
(5.2.4) Configuration Example of Delay Profile FIG. 12A and FIG. 12B show a configuration example of the delay profile according to the present embodiment. Specifically, FIGS. 12A and 12B show a configuration example of the delay profile of O-RU. The delay profile (ro ru-delay-profile) is specified in D.5.2 o-ran-delay-management.yang Module of ORAN-WG4.MP.0-v02.00.00.
 図12Aに示すように、本実施形態では、同一SCSに対して、複数のro ru-delay-profile(図中のro ru-delay-profile (1)及びro ru-delay-profile (2)など)を対応付けて設定することができる。 As shown in FIG. 12A, in the present embodiment, a plurality of ro ru-delay-profiles (ro ru-delay-profile (1) and ro ru-delay-profile (2) in the figure, etc.) are used for the same SCS. ) Can be associated and set.
 ro ru-delay-profile (1)及びro ru-delay-profile (2)は、異なるCP長(または信号(チャネル)種類)と対応付けられてよい。 The ro ru-delay-profile (1) and ro ru-delay-profile (2) may be associated with different CP lengths (or signal (channel) types).
 或いは、図12Bに示すように、1つのro ru-delay-profileの中に、同一種類の複数のパラメータが含まれるようにしてもよい。例えば、ro ru-delay-profileの中に、ro ta3-min (1)及びro ta3-min (2)が含まれてもよい。ro ta3-min (1)及びro ta3-min (2)は、異なるCP長(または信号(チャネル)種類)と対応付けられてよい。 Alternatively, as shown in FIG. 12B, a plurality of parameters of the same type may be included in one roru-delay-profile. For example, ro ta3-min (1) and ro ta3-min (2) may be included in the ro ru-delay-profile. ro ta3-min (1) and ro ta3-min (2) may be associated with different CP lengths (or signal (channel) types).
 (6)作用・効果
 上述した実施形態によれば、以下の作用効果が得られる。具体的には、O-RU120は、複数のSCSのうち、FHを介して送受信される信号に適用されている何れかのSCSを取得し、取得したSCSに対して適用されるO-RU120内の遅延時間を示すパラメータセット(Ta3_min, Ta3_max)を決定できる。また、O-RU120は、決定したパラメータセットを、FH上に設けられるO-DU110に対して送信できる。
(6) Action / Effect According to the above-described embodiment, the following action / effect can be obtained. Specifically, the O-RU120 acquires one of the SCSs applied to the signals transmitted and received via the FH among the plurality of SCSs, and the O-RU120 is applied to the acquired SCSs. The parameter set (Ta3_min, Ta3_max) indicating the delay time of can be determined. Further, the O-RU120 can transmit the determined parameter set to the O-DU110 provided on the FH.
 このため、同一SCSの場合でも、例えば、CP長の違いによって、送信ウインドウに関する最適なパラメータセットは異なり得るが、このようなケースにも対応することができる。これにより、常に送信ウインドウに関する最適なパラメータセットを適用することが可能となり、より適切なウィンドウ制御に関するパラメータを適用し得る。 Therefore, even in the case of the same SCS, for example, the optimum parameter set for the transmission window may differ depending on the difference in CP length, but such a case can also be dealt with. As a result, it is possible to always apply the optimum parameter set for the transmission window, and it is possible to apply more appropriate parameters for window control.
 上述したように、同一SCSにおいても、CP長の異なる信号(チャネル)が規定され得るる場合があり、特に、PRACHと、PUSCH及びPDSCHなどの非PRACHとでは、CP長に大きな差がある(表2参照)。更に、PRACHにおける異なるpreamble format間でも、CP長に大きな差が生じる場合がある(表2参照)。 As described above, signals (channels) having different CP lengths may be defined even in the same SCS, and in particular, there is a large difference in CP length between PRACH and non-PRACH such as PUSCH and PDSCH ( See Table 2). Furthermore, there may be a large difference in CP length between different preamble formats in PRACH (see Table 2).
 このため、単純に最も長いCP長に合わせてウィンドウのサイズを決定すると、より短い遅延時間によって処理可能な信号(チャネル)についても、長いCP長に基づく遅延時間(最長の遅延時間)を想定したウィンドウを設定する必要が生じ、本来必要とする処理遅延時間以上の遅延が生じうる問題となる。また、FHを構成する通信装置に対して過剰なハードウェアの能力を要求することなるため、実装上の問題となる。本実施形態に係るO-DU110及びO-RU120によれば、このような問題を回避し得る。 Therefore, if the window size is simply determined according to the longest CP length, the delay time (maximum delay time) based on the long CP length is assumed even for the signal (channel) that can be processed by the shorter delay time. It becomes necessary to set the window, which causes a problem that a delay longer than the originally required processing delay time may occur. In addition, the communication devices constituting the FH are required to have excessive hardware capability, which poses a problem in implementation. According to O-DU110 and O-RU120 according to the present embodiment, such a problem can be avoided.
 本実施形態では、同一SCSを前提として、O-RU120が送受信する信号のCP長に応じた複数のパラメータセットを適用したり、O-RU120が送受信する信号(またはチャネル)の種類に応じた複数のパラメータセットを適用したりすることができる。このため、同一SCSでも最適なパラメータセットが異なる場合でも、より適切なウィンドウ制御に関するパラメータを適用し得る。 In this embodiment, assuming the same SCS, a plurality of parameter sets according to the CP length of the signal transmitted / received by the O-RU120 may be applied, or a plurality of parameters may be applied according to the type of signal (or channel) transmitted / received by the O-RU120. Parameter set of can be applied. Therefore, even if the same SCS has different optimum parameter sets, more appropriate parameters related to window control can be applied.
 本実施形態では、遅延時間は、O-RU120のアンテナでの信号の受信(Ra)からO-DU110への当該信号の出力までの時間の最小値及び最大値(Ta3_min, Ta3_max)を含んでよい。このため、当該最小値及び最大値に基づいて、より適切な送信ウインドウのサイズを決定し得る。 In the present embodiment, the delay time may include the minimum value and the maximum value (Ta3_min, Ta3_max) of the time from the reception of the signal at the antenna of the O-RU120 (Ra) to the output of the signal to the O-DU110. .. Therefore, a more appropriate size of the transmission window can be determined based on the minimum and maximum values.
 (7)その他の実施形態
 以上、実施形態について説明したが、当該実施形態の記載に限定されるものではなく、種々の変形及び改良が可能であることは、当業者には自明である。
(7) Other Embodiments Although the embodiments have been described above, it is obvious to those skilled in the art that various modifications and improvements are possible without being limited to the description of the embodiments.
 例えば、上述した実施形態では、Ta3_min, Ta3_maxを含むUL方向のパラメータセットの例について説明したが、DL方向のパラメータセット(Ta2)にも同様の動作が適用されてもよく、O-DU110がDL方向のパラメータセットを決定してもよい。 For example, in the above-described embodiment, an example of a parameter set in the UL direction including Ta3_min and Ta3_max has been described, but the same operation may be applied to the parameter set (Ta2) in the DL direction, and the O-DU 110 is DL. The directional parameter set may be determined.
 また、上述した実施形態では、同一SCSにおいて、複数の遅延プロファイル(パラメータセット)が対応付けられる例について説明したが、特に、O-DU110の場合、同一SCSであるか否かを意識せずに、異なる複数のCP長毎の受信ウインドウを設定したり、当該異なる複数のCP長に共用される受信ウインドウを設定したりしてもよい。 Further, in the above-described embodiment, an example in which a plurality of delay profiles (parameter sets) are associated with each other in the same SCS has been described, but in particular, in the case of O-DU110, it is not necessary to be aware of whether or not the SCSs are the same. , A reception window for each of a plurality of different CP lengths may be set, or a reception window shared by the plurality of different CP lengths may be set.
 また、O-RUを束ねる装置(FHM:Fronthaul Multiplexing)を用いる構成(FHM構成)、及び連続してO-RUを接続する構成(カスケード構成)、いわゆるShared Cellの構成が適用されてもよい。 Further, a configuration using a device for bundling O-RUs (FHM: Fronthaul Multiplexing) (FHM configuration) and a configuration for continuously connecting O-RUs (cascade configuration), a so-called Shared Cell configuration, may be applied.
 また、上述した実施形態では、O-RANの仕様に従ったFHの構成について説明したが、FHは、必ずしもO-RANの仕様に従っていなくてもよい。例えば、O-DU110及びO-RU120の少なくとも一部は、3GPPにおいて規定されるFHの仕様に従っていてもよい。 Further, in the above-described embodiment, the configuration of the FH according to the specifications of the O-RAN has been described, but the FH does not necessarily have to comply with the specifications of the O-RAN. For example, at least a portion of O-DU110 and O-RU120 may comply with the FH specifications specified in 3GPP.
 上述した実施形態の説明に用いたブロック構成図(図5,6)は、機能単位のブロックを示している。これらの機能ブロック(構成部)は、ハードウェア及びソフトウェアの少なくとも一方の任意の組み合わせによって実現される。また、各機能ブロックの実現方法は特に限定されない。すなわち、各機能ブロックは、物理的または論理的に結合した1つの装置を用いて実現されてもよいし、物理的または論理的に分離した2つ以上の装置を直接的または間接的に(例えば、有線、無線などを用いて)接続し、これら複数の装置を用いて実現されてもよい。機能ブロックは、上記1つの装置または上記複数の装置にソフトウェアを組み合わせて実現されてもよい。 The block configuration diagrams (FIGS. 5 and 6) used in the description of the above-described embodiment show blocks for functional units. These functional blocks (components) are realized by any combination of at least one of hardware and software. Further, the method of realizing each functional block is not particularly limited. That is, each functional block may be realized using one physically or logically coupled device, or two or more physically or logically separated devices can be directly or indirectly (eg, for example). , Wired, wireless, etc.) and may be realized using these plurality of devices. The functional block may be realized by combining the software with the one device or the plurality of devices.
 機能には、判断、決定、判定、計算、算出、処理、導出、調査、探索、確認、受信、送信、出力、アクセス、解決、選択、選定、確立、比較、想定、期待、見做し、報知(broadcasting)、通知(notifying)、通信(communicating)、転送(forwarding)、構成(configuring)、再構成(reconfiguring)、割り当て(allocating、mapping)、割り振り(assigning)などがあるが、これらに限られない。例えば、送信を機能させる機能ブロック(構成部)は、送信部(transmitting unit)や送信機(transmitter)と呼称される。何れも、上述したとおり、実現方法は特に限定されない。 Functions include judgment, decision, judgment, calculation, calculation, processing, derivation, investigation, search, confirmation, reception, transmission, output, access, solution, selection, selection, establishment, comparison, assumption, expectation, and assumption. Broadcasting, notifying, communicating, forwarding, configuring, reconfiguring, allocating, mapping, assigning, etc., but limited to these I can't. For example, a functional block (constituent unit) that makes transmission function is called a transmitting unit (transmitting unit) or a transmitter (transmitter). As described above, the method of realizing each of them is not particularly limited.
 さらに、上述したO-DU110及びO-RU120(当該装置)は、本開示の無線通信方法の処理を行うコンピュータとして機能してもよい。図13は、当該装置のハードウェア構成の一例を示す図である。図13に示すように、当該装置は、プロセッサ1001、メモリ1002、ストレージ1003、通信装置1004、入力装置1005、出力装置1006及びバス1007などを含むコンピュータ装置として構成されてもよい。 Further, the above-mentioned O-DU110 and O-RU120 (the device) may function as a computer that processes the wireless communication method of the present disclosure. FIG. 13 is a diagram showing an example of the hardware configuration of the device. As shown in FIG. 13, the device may be configured as a computer device including a processor 1001, a memory 1002, a storage 1003, a communication device 1004, an input device 1005, an output device 1006, a bus 1007, and the like.
 なお、以下の説明では、「装置」という文言は、回路、デバイス、ユニットなどに読み替えることができる。当該装置のハードウェア構成は、図に示した各装置を1つまたは複数含むように構成されてもよいし、一部の装置を含まずに構成されてもよい。 In the following explanation, the word "device" can be read as a circuit, device, unit, etc. The hardware configuration of the device may be configured to include one or more of the devices shown in the figure, or may be configured not to include some of the devices.
 当該装置の各機能ブロック(図5,6参照)は、当該コンピュータ装置の何れかのハードウェア要素、または当該ハードウェア要素の組み合わせによって実現される。 Each functional block of the device (see FIGS. 5 and 6) is realized by any hardware element of the computer device or a combination of the hardware elements.
 また、当該装置における各機能は、プロセッサ1001、メモリ1002などのハードウェア上に所定のソフトウェア(プログラム)を読み込ませることによって、プロセッサ1001が演算を行い、通信装置1004による通信を制御したり、メモリ1002及びストレージ1003におけるデータの読み出し及び書き込みの少なくとも一方を制御したりすることによって実現される。 Further, for each function in the device, the processor 1001 performs an operation by loading predetermined software (program) on the hardware such as the processor 1001 and the memory 1002, and controls the communication by the communication device 1004, or the memory. It is realized by controlling at least one of reading and writing of data in 1002 and storage 1003.
 プロセッサ1001は、例えば、オペレーティングシステムを動作させてコンピュータ全体を制御する。プロセッサ1001は、周辺装置とのインタフェース、制御装置、演算装置、レジスタなどを含む中央処理装置(CPU)によって構成されてもよい。 Processor 1001 operates, for example, an operating system to control the entire computer. The processor 1001 may be composed of a central processing unit (CPU) including an interface with peripheral devices, a control device, an arithmetic unit, a register, and the like.
 また、プロセッサ1001は、プログラム(プログラムコード)、ソフトウェアモジュール、データなどを、ストレージ1003及び通信装置1004の少なくとも一方からメモリ1002に読み出し、これらに従って各種の処理を実行する。プログラムとしては、上述の実施の形態において説明した動作の少なくとも一部をコンピュータに実行させるプログラムが用いられる。さらに、上述の各種処理は、1つのプロセッサ1001によって実行されてもよいし、2つ以上のプロセッサ1001により同時または逐次に実行されてもよい。プロセッサ1001は、1以上のチップによって実装されてもよい。なお、プログラムは、電気通信回線を介してネットワークから送信されてもよい。 Further, the processor 1001 reads a program (program code), a software module, data, etc. from at least one of the storage 1003 and the communication device 1004 into the memory 1002, and executes various processes according to these. As the program, a program that causes a computer to execute at least a part of the operations described in the above-described embodiment is used. Further, the various processes described above may be executed by one processor 1001 or may be executed simultaneously or sequentially by two or more processors 1001. Processor 1001 may be implemented by one or more chips. The program may be transmitted from the network via a telecommunication line.
 メモリ1002は、コンピュータ読み取り可能な記録媒体であり、例えば、Read Only Memory(ROM)、Erasable Programmable ROM(EPROM)、Electrically Erasable Programmable ROM(EEPROM)、Random Access Memory(RAM)などの少なくとも1つによって構成されてもよい。メモリ1002は、レジスタ、キャッシュ、メインメモリ(主記憶装置)などと呼ばれてもよい。メモリ1002は、本開示の一実施形態に係る方法を実行可能なプログラム(プログラムコード)、ソフトウェアモジュールなどを保存することができる。 The memory 1002 is a computer-readable recording medium, and is composed of at least one such as ReadOnlyMemory (ROM), ErasableProgrammableROM (EPROM), Electrically ErasableProgrammableROM (EEPROM), and RandomAccessMemory (RAM). May be done. The memory 1002 may be referred to as a register, a cache, a main memory (main storage device), or the like. The memory 1002 can store a program (program code), a software module, or the like that can execute the method according to the embodiment of the present disclosure.
 ストレージ1003は、コンピュータ読み取り可能な記録媒体であり、例えば、Compact Disc ROM(CD-ROM)などの光ディスク、ハードディスクドライブ、フレキシブルディスク、光磁気ディスク(例えば、コンパクトディスク、デジタル多用途ディスク、Blu-ray(登録商標)ディスク)、スマートカード、フラッシュメモリ(例えば、カード、スティック、キードライブ)、フロッピー(登録商標)ディスク、磁気ストリップなどの少なくとも1つによって構成されてもよい。ストレージ1003は、補助記憶装置と呼ばれてもよい。上述の記録媒体は、例えば、メモリ1002及びストレージ1003の少なくとも一方を含むデータベース、サーバその他の適切な媒体であってもよい。 The storage 1003 is a computer-readable recording medium, for example, an optical disk such as a Compact Disc ROM (CD-ROM), a hard disk drive, a flexible disk, an optical magnetic disk (for example, a compact disk, a digital versatile disk, or a Blu-ray). It may consist of at least one (registered trademark) disk), smart card, flash memory (eg, card, stick, key drive), floppy (registered trademark) disk, magnetic strip, and the like. Storage 1003 may be referred to as auxiliary storage. The recording medium described above may be, for example, a database, server or other suitable medium containing at least one of memory 1002 and storage 1003.
 通信装置1004は、有線ネットワーク及び無線ネットワークの少なくとも一方を介してコンピュータ間の通信を行うためのハードウェア(送受信デバイス)であり、例えばネットワークデバイス、ネットワークコントローラ、ネットワークカード、通信モジュールなどともいう。 The communication device 1004 is hardware (transmission / reception device) for communicating between computers via at least one of a wired network and a wireless network, and is also referred to as, for example, a network device, a network controller, a network card, a communication module, or the like.
 通信装置1004は、例えば周波数分割複信(Frequency Division Duplex:FDD)及び時分割複信(Time Division Duplex:TDD)の少なくとも一方を実現するために、高周波スイッチ、デュプレクサ、フィルタ、周波数シンセサイザなどを含んで構成されてもよい。 The communication device 1004 includes, for example, a high frequency switch, a duplexer, a filter, a frequency synthesizer, etc. in order to realize at least one of frequency division duplex (FDD) and time division duplex (TDD). It may be composed of.
 入力装置1005は、外部からの入力を受け付ける入力デバイス(例えば、キーボード、マウス、マイクロフォン、スイッチ、ボタン、センサなど)である。出力装置1006は、外部への出力を実施する出力デバイス(例えば、ディスプレイ、スピーカー、LEDランプなど)である。なお、入力装置1005及び出力装置1006は、一体となった構成(例えば、タッチパネル)であってもよい。 The input device 1005 is an input device (for example, keyboard, mouse, microphone, switch, button, sensor, etc.) that accepts input from the outside. The output device 1006 is an output device (for example, a display, a speaker, an LED lamp, etc.) that outputs to the outside. The input device 1005 and the output device 1006 may have an integrated configuration (for example, a touch panel).
 また、プロセッサ1001及びメモリ1002などの各装置は、情報を通信するためのバス1007で接続される。バス1007は、単一のバスを用いて構成されてもよいし、装置間ごとに異なるバスを用いて構成されてもよい。 In addition, each device such as the processor 1001 and the memory 1002 is connected by the bus 1007 for communicating information. Bus 1007 may be configured using a single bus or may be configured using different buses for each device.
 さらに、当該装置は、マイクロプロセッサ、デジタル信号プロセッサ(Digital Signal Processor: DSP)、Application Specific Integrated Circuit(ASIC)、Programmable Logic Device(PLD)、Field Programmable Gate Array(FPGA)などのハードウェアを含んで構成されてもよく、当該ハードウェアにより、各機能ブロックの一部または全てが実現されてもよい。例えば、プロセッサ1001は、これらのハードウェアの少なくとも1つを用いて実装されてもよい。 Further, the device includes hardware such as a microprocessor, a digital signal processor (Digital Signal Processor: DSP), an Application Specific Integrated Circuit (ASIC), a Programmable Logic Device (PLD), and a Field Programmable Gate Array (FPGA). The hardware may implement some or all of each functional block. For example, processor 1001 may be implemented using at least one of these hardware.
 また、情報の通知は、本開示において説明した態様/実施形態に限られず、他の方法を用いて行われてもよい。例えば、情報の通知は、物理レイヤシグナリング(例えば、Downlink Control Information(DCI)、Uplink Control Information(UCI)、上位レイヤシグナリング(例えば、RRCシグナリング、Medium Access Control(MAC)シグナリング、報知情報(Master Information Block(MIB)、System Information Block(SIB))、その他の信号またはこれらの組み合わせによって実施されてもよい。また、RRCシグナリングは、RRCメッセージと呼ばれてもよく、例えば、RRC接続セットアップ(RRC Connection Setup)メッセージ、RRC接続再構成(RRC Connection Reconfiguration)メッセージなどであってもよい。 Further, the notification of information is not limited to the mode / embodiment described in the present disclosure, and may be performed by using another method. For example, information notification includes physical layer signaling (for example, Downlink Control Information (DCI), Uplink Control Information (UCI), upper layer signaling (eg, RRC signaling, Medium Access Control (MAC) signaling, broadcast information (Master Information Block)). (MIB), System Information Block (SIB)), other signals or a combination thereof. RRC signaling may also be referred to as an RRC message, for example, RRC Connection Setup. ) Message, RRC Connection Reconfiguration message, etc. may be used.
 本開示において説明した各態様/実施形態は、Long Term Evolution(LTE)、LTE-Advanced(LTE-A)、SUPER 3G、IMT-Advanced、4th generation mobile communication system(4G)、5th generation mobile communication system(5G)、Future Radio Access(FRA)、New Radio(NR)、W-CDMA(登録商標)、GSM(登録商標)、CDMA2000、Ultra Mobile Broadband(UMB)、IEEE 802.11(Wi-Fi(登録商標))、IEEE 802.16(WiMAX(登録商標))、IEEE 802.20、Ultra-WideBand(UWB)、Bluetooth(登録商標)、その他の適切なシステムを利用するシステム及びこれらに基づいて拡張された次世代システムの少なくとも一つに適用されてもよい。また、複数のシステムが組み合わされて(例えば、LTE及びLTE-Aの少なくとも一方と5Gとの組み合わせなど)適用されてもよい。 Each aspect / embodiment described in the present disclosure includes LongTermEvolution (LTE), LTE-Advanced (LTE-A), SUPER3G, IMT-Advanced, 4th generation mobile communication system (4G), 5th generation mobile communication system ( 5G), FutureRadioAccess (FRA), NewRadio (NR), W-CDMA (registered trademark), GSM (registered trademark), CDMA2000, UltraMobileBroadband (UMB), IEEE802.11 (Wi-Fi (registered trademark)) , IEEE802.16 (WiMAX®), IEEE802.20, Ultra-WideBand (UWB), Bluetooth®, and other systems that utilize appropriate systems and at least one of the next generation systems extended based on them. It may be applied to one. In addition, a plurality of systems may be applied in combination (for example, a combination of at least one of LTE and LTE-A and 5G).
 本開示において説明した各態様/実施形態の処理手順、シーケンス、フローチャートなどは、矛盾の無い限り、順序を入れ替えてもよい。例えば、本開示において説明した方法については、例示的な順序を用いて様々なステップの要素を提示しており、提示した特定の順序に限定されない。 The order of the processing procedures, sequences, flowcharts, etc. of each aspect / embodiment described in the present disclosure may be changed as long as there is no contradiction. For example, the methods described in the present disclosure present elements of various steps using exemplary order, and are not limited to the particular order presented.
 本開示において基地局によって行われるとした特定動作は、場合によってはその上位ノード(upper node)によって行われることもある。基地局を有する1つまたは複数のネットワークノード(network nodes)からなるネットワークにおいて、端末との通信のために行われる様々な動作は、基地局及び基地局以外の他のネットワークノード(例えば、MMEまたはS-GWなどが考えられるが、これらに限られない)の少なくとも1つによって行われ得ることは明らかである。上記において基地局以外の他のネットワークノードが1つである場合を例示したが、複数の他のネットワークノードの組み合わせ(例えば、MME及びS-GW)であってもよい。 In some cases, the specific operation performed by the base station in the present disclosure may be performed by its upper node. In a network consisting of one or more network nodes having a base station, various operations performed for communication with a terminal are performed by the base station and other network nodes other than the base station (for example, MME or). It is clear that it can be done by at least one of (but not limited to, S-GW, etc.). Although the case where there is one network node other than the base station is illustrated above, it may be a combination of a plurality of other network nodes (for example, MME and S-GW).
 情報、信号(情報等)は、上位レイヤ(または下位レイヤ)から下位レイヤ(または上位レイヤ)へ出力され得る。複数のネットワークノードを介して入出力されてもよい。 Information and signals (information, etc.) can be output from the upper layer (or lower layer) to the lower layer (or upper layer). Input / output may be performed via a plurality of network nodes.
 入出力された情報は、特定の場所(例えば、メモリ)に保存されてもよいし、管理テーブルを用いて管理してもよい。入出力される情報は、上書き、更新、または追記され得る。出力された情報は削除されてもよい。入力された情報は他の装置へ送信されてもよい。 The input / output information may be stored in a specific location (for example, memory) or may be managed using a management table. Input / output information can be overwritten, updated, or added. The output information may be deleted. The input information may be transmitted to another device.
 判定は、1ビットで表される値(0か1か)によって行われてもよいし、真偽値(Boolean:trueまたはfalse)によって行われてもよいし、数値の比較(例えば、所定の値との比較)によって行われてもよい。 The determination may be made by a value represented by 1 bit (0 or 1), by a true / false value (Boolean: true or false), or by comparing numerical values (for example, a predetermined value). It may be done by comparison with the value).
 本開示において説明した各態様/実施形態は単独で用いてもよいし、組み合わせて用いてもよいし、実行に伴って切り替えて用いてもよい。また、所定の情報の通知(例えば、「Xであること」の通知)は、明示的に行うものに限られず、暗黙的(例えば、当該所定の情報の通知を行わない)ことによって行われてもよい。 Each aspect / embodiment described in the present disclosure may be used alone, in combination, or switched with execution. Further, the notification of predetermined information (for example, the notification of "being X") is not limited to the explicit one, but is performed implicitly (for example, the notification of the predetermined information is not performed). May be good.
 ソフトウェアは、ソフトウェア、ファームウェア、ミドルウェア、マイクロコード、ハードウェア記述言語と呼ばれるか、他の名称で呼ばれるかを問わず、命令、命令セット、コード、コードセグメント、プログラムコード、プログラム、サブプログラム、ソフトウェアモジュール、アプリケーション、ソフトウェアアプリケーション、ソフトウェアパッケージ、ルーチン、サブルーチン、オブジェクト、実行可能ファイル、実行スレッド、手順、機能などを意味するよう広く解釈されるべきである。 Software, whether referred to as software, firmware, middleware, microcode, hardware description language, or by any other name, is an instruction, instruction set, code, code segment, program code, program, subprogram, software module. , Applications, software applications, software packages, routines, subroutines, objects, executable files, execution threads, procedures, features, etc. should be broadly interpreted.
 また、ソフトウェア、命令、情報などは、伝送媒体を介して送受信されてもよい。例えば、ソフトウェアが、有線技術(同軸ケーブル、光ファイバケーブル、ツイストペア、デジタル加入者回線(Digital Subscriber Line:DSL)など)及び無線技術(赤外線、マイクロ波など)の少なくとも一方を使用してウェブサイト、サーバ、または他のリモートソースから送信される場合、これらの有線技術及び無線技術の少なくとも一方は、伝送媒体の定義内に含まれる。 Further, software, instructions, information, etc. may be transmitted and received via a transmission medium. For example, a website, where the software uses at least one of wired technology (coaxial cable, fiber optic cable, twisted pair, Digital Subscriber Line (DSL), etc.) and wireless technology (infrared, microwave, etc.). When transmitted from a server, or other remote source, at least one of these wired and wireless technologies is included within the definition of transmission medium.
 本開示において説明した情報、信号などは、様々な異なる技術の何れかを使用して表されてもよい。例えば、上記の説明全体に渡って言及され得るデータ、命令、コマンド、情報、信号、ビット、シンボル、チップなどは、電圧、電流、電磁波、磁界若しくは磁性粒子、光場若しくは光子、またはこれらの任意の組み合わせによって表されてもよい。 The information, signals, etc. described in this disclosure may be represented using any of a variety of different techniques. For example, data, instructions, commands, information, signals, bits, symbols, chips, etc. that may be referred to throughout the above description are voltages, currents, electromagnetic waves, magnetic fields or magnetic particles, light fields or photons, or any of these. It may be represented by a combination of.
 なお、本開示において説明した用語及び本開示の理解に必要な用語については、同一のまたは類似する意味を有する用語と置き換えてもよい。例えば、チャネル及びシンボルの少なくとも一方は信号(シグナリング)であってもよい。また、信号はメッセージであってもよい。また、コンポーネントキャリア(Component Carrier:CC)は、キャリア周波数、セル、周波数キャリアなどと呼ばれてもよい。 Note that the terms explained in the present disclosure and the terms necessary for understanding the present disclosure may be replaced with terms having the same or similar meanings. For example, at least one of a channel and a symbol may be a signal (signaling). Also, the signal may be a message. Further, the component carrier (CC) may be referred to as a carrier frequency, a cell, a frequency carrier, or the like.
 本開示において使用する「システム」及び「ネットワーク」という用語は、互換的に使用される。 The terms "system" and "network" used in this disclosure are used interchangeably.
 また、本開示において説明した情報、パラメータなどは、絶対値を用いて表されてもよいし、所定の値からの相対値を用いて表されてもよいし、対応する別の情報を用いて表されてもよい。例えば、無線リソースはインデックスによって指示されるものであってもよい。 In addition, the information, parameters, etc. described in the present disclosure may be expressed using absolute values, relative values from predetermined values, or using other corresponding information. It may be represented. For example, the radio resource may be one indicated by an index.
 上述したパラメータに使用する名称はいかなる点においても限定的な名称ではない。さらに、これらのパラメータを使用する数式等は、本開示で明示的に開示したものと異なる場合もある。様々なチャネル(例えば、PUCCH、PDCCHなど)及び情報要素は、あらゆる好適な名称によって識別できるため、これらの様々なチャネル及び情報要素に割り当てている様々な名称は、いかなる点においても限定的な名称ではない。 The names used for the above parameters are not limited in any respect. Further, mathematical formulas and the like using these parameters may differ from those explicitly disclosed in this disclosure. Since various channels (eg, PUCCH, PDCCH, etc.) and information elements can be identified by any suitable name, the various names assigned to these various channels and information elements are in any respect limited names. is not it.
 本開示においては、「基地局(Base Station:BS)」、「無線基地局」、「固定局(fixed station)」、「NodeB」、「eNodeB(eNB)」、「gNodeB(gNB)」、「アクセスポイント(access point)」、「送信ポイント(transmission point)」、「受信ポイント(reception point)、「送受信ポイント(transmission/reception point)」、「セル」、「セクタ」、「セルグループ」、「キャリア」、「コンポーネントキャリア」などの用語は、互換的に使用され得る。基地局は、マクロセル、スモールセル、フェムトセル、ピコセルなどの用語で呼ばれる場合もある。 In this disclosure, "Base Station (BS)", "Wireless Base Station", "Fixed Station", "NodeB", "eNodeB (eNB)", "gNodeB (gNB)", " "Access point", "transmission point", "reception point", "transmission / reception point", "cell", "sector", "cell group", "cell group" Terms such as "carrier" and "component carrier" can be used interchangeably. Base stations are sometimes referred to by terms such as macrocells, small cells, femtocells, and picocells.
 基地局は、1つまたは複数(例えば、3つ)のセル(セクタとも呼ばれる)を収容することができる。基地局が複数のセルを収容する場合、基地局のカバレッジエリア全体は複数のより小さいエリアに区分でき、各々のより小さいエリアは、基地局サブシステム(例えば、屋内用の小型基地局(Remote Radio Head:RRH)によって通信サービスを提供することもできる。 The base station can accommodate one or more (for example, three) cells (also called sectors). When a base station accommodates multiple cells, the entire base station coverage area can be divided into multiple smaller areas, each smaller area being a base station subsystem (eg, a small indoor base station (Remote Radio)). Communication services can also be provided by Head: RRH).
 「セル」または「セクタ」という用語は、このカバレッジにおいて通信サービスを行う基地局、及び基地局サブシステムの少なくとも一方のカバレッジエリアの一部または全体を指す。 The term "cell" or "sector" refers to a base station that provides communication services in this coverage, and part or all of the coverage area of at least one of the base station subsystems.
 本開示においては、「移動局(Mobile Station:MS)」、「ユーザ端末(user terminal)」、「ユーザ装置(User Equipment:UE)」、「端末」などの用語は、互換的に使用され得る。 In the present disclosure, terms such as "Mobile Station (MS)", "user terminal", "User Equipment (UE)", and "terminal" may be used interchangeably. ..
 移動局は、当業者によって、加入者局、モバイルユニット、加入者ユニット、ワイヤレスユニット、リモートユニット、モバイルデバイス、ワイヤレスデバイス、ワイヤレス通信デバイス、リモートデバイス、モバイル加入者局、アクセス端末、モバイル端末、ワイヤレス端末、リモート端末、ハンドセット、ユーザエージェント、モバイルクライアント、クライアント、またはいくつかの他の適切な用語で呼ばれる場合もある。 Mobile stations can be used by those skilled in the art as subscriber stations, mobile units, subscriber units, wireless units, remote units, mobile devices, wireless devices, wireless communication devices, remote devices, mobile subscriber stations, access terminals, mobile terminals, wireless. It may also be referred to as a terminal, remote terminal, handset, user agent, mobile client, client, or some other suitable term.
 基地局及び移動局の少なくとも一方は、送信装置、受信装置、通信装置などと呼ばれてもよい。なお、基地局及び移動局の少なくとも一方は、移動体に搭載されたデバイス、移動体自体などであってもよい。当該移動体は、乗り物(例えば、車、飛行機など)であってもよいし、無人で動く移動体(例えば、ドローン、自動運転車など)であってもよいし、ロボット(有人型または無人型)であってもよい。なお、基地局及び移動局の少なくとも一方は、必ずしも通信動作時に移動しない装置も含む。例えば、基地局及び移動局の少なくとも一方は、センサなどのInternet of Things(IoT)機器であってもよい。 At least one of the base station and the mobile station may be called a transmitting device, a receiving device, a communication device, or the like. At least one of the base station and the mobile station may be a device mounted on the mobile body, the mobile body itself, or the like. The moving body may be a vehicle (eg, car, airplane, etc.), an unmanned moving body (eg, drone, self-driving car, etc.), or a robot (manned or unmanned). ) May be. It should be noted that at least one of the base station and the mobile station includes a device that does not necessarily move during communication operation. For example, at least one of a base station and a mobile station may be an Internet of Things (IoT) device such as a sensor.
 また、本開示における基地局は、移動局(ユーザ端末、以下同)として読み替えてもよい。例えば、基地局及び移動局間の通信を、複数の移動局間の通信(例えば、Device-to-Device(D2D)、Vehicle-to-Everything(V2X)などと呼ばれてもよい)に置き換えた構成について、本開示の各態様/実施形態を適用してもよい。この場合、基地局が有する機能を移動局が有する構成としてもよい。また、「上り」及び「下り」などの文言は、端末間通信に対応する文言(例えば、「サイド(side)」)で読み替えられてもよい。例えば、上りチャネル、下りチャネルなどは、サイドチャネルで読み替えられてもよい。 Further, the base station in the present disclosure may be read as a mobile station (user terminal, the same applies hereinafter). For example, communication between a base station and a mobile station has been replaced with communication between a plurality of mobile stations (for example, it may be called Device-to-Device (D2D), Vehicle-to-Everything (V2X), etc.). Each aspect / embodiment of the present disclosure may be applied to the configuration. In this case, the mobile station may have the functions of the base station. In addition, words such as "up" and "down" may be read as words corresponding to communication between terminals (for example, "side"). For example, the upstream channel, the downstream channel, and the like may be read as a side channel.
 同様に、本開示における移動局は、基地局として読み替えてもよい。この場合、移動局が有する機能を基地局が有する構成としてもよい。
無線フレームは時間領域において1つまたは複数のフレームによって構成されてもよい。時間領域において1つまたは複数の各フレームはサブフレームと呼ばれてもよい。
サブフレームはさらに時間領域において1つまたは複数のスロットによって構成されてもよい。サブフレームは、ニューメロロジー(numerology)に依存しない固定の時間長(例えば、1ms)であってもよい。
Similarly, the mobile station in the present disclosure may be read as a base station. In this case, the base station may have the functions of the mobile station.
The radio frame may be composed of one or more frames in the time domain. Each one or more frames in the time domain may be referred to as a subframe.
Subframes may further consist of one or more slots in the time domain. The subframe may have a fixed time length (eg, 1 ms) that is independent of numerology.
 ニューメロロジーは、ある信号またはチャネルの送信及び受信の少なくとも一方に適用される通信パラメータであってもよい。ニューメロロジーは、例えば、サブキャリア間隔(SubCarrier Spacing:SCS)、帯域幅、シンボル長、サイクリックプレフィックス長、送信時間間隔(Transmission Time Interval:TTI)、TTIあたりのシンボル数、無線フレーム構成、送受信機が周波数領域において行う特定のフィルタリング処理、送受信機が時間領域において行う特定のウィンドウイング処理などの少なくとも1つを示してもよい。 The numerology may be a communication parameter that applies to at least one of the transmission and reception of a signal or channel. Numerology includes, for example, SubCarrier Spacing (SCS), bandwidth, symbol length, cyclic prefix length, transmission time interval (TTI), number of symbols per TTI, radio frame configuration, transmission / reception. At least one of a specific filtering process performed by the machine in the frequency domain, a specific windowing process performed by the transceiver in the time domain, and the like may be indicated.
 スロットは、時間領域において1つまたは複数のシンボル(Orthogonal Frequency Division Multiplexing(OFDM))シンボル、Single Carrier Frequency Division Multiple Access(SC-FDMA)シンボルなど)で構成されてもよい。スロットは、ニューメロロジーに基づく時間単位であってもよい。 The slot may be composed of one or more symbols (Orthogonal Frequency Division Multiple Access (OFDM) symbol, Single Carrier Frequency Division Multiple Access (SC-FDMA) symbol, etc.) in the time domain. Slots may be in numerology-based time units.
 スロットは、複数のミニスロットを含んでもよい。各ミニスロットは、時間領域において1つまたは複数のシンボルによって構成されてもよい。また、ミニスロットは、サブスロットと呼ばれてもよい。ミニスロットは、スロットよりも少ない数のシンボルによって構成されてもよい。ミニスロットより大きい時間単位で送信されるPDSCH(またはPUSCH)は、PDSCH(またはPUSCH)マッピングタイプAと呼ばれてもよい。ミニスロットを用いて送信されるPDSCH(またはPUSCH)は、PDSCH(またはPUSCH)マッピングタイプBと呼ばれてもよい。 The slot may include a plurality of mini slots. Each minislot may consist of one or more symbols in the time domain. Further, the mini slot may be referred to as a sub slot. A minislot may consist of a smaller number of symbols than the slot. PDSCH (or PUSCH) transmitted in time units larger than the minislot may be referred to as PDSCH (or PUSCH) mapping type A. The PDSCH (or PUSCH) transmitted using the minislot may be referred to as PDSCH (or PUSCH) mapping type B.
 無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルは、何れも信号を伝送する際の時間単位を表す。無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルは、それぞれに対応する別の呼称が用いられてもよい。 The wireless frame, subframe, slot, minislot and symbol all represent the time unit when transmitting a signal. The radio frame, subframe, slot, minislot and symbol may have different names corresponding to each.
 例えば、1サブフレームは送信時間間隔(TTI)と呼ばれてもよいし、複数の連続したサブフレームがTTIと呼ばれてよいし、1スロットまたは1ミニスロットがTTIと呼ばれてもよい。つまり、サブフレーム及びTTIの少なくとも一方は、既存のLTEにおけるサブフレーム(1ms)であってもよいし、1msより短い期間(例えば、1-13シンボル)であってもよいし、1msより長い期間であってもよい。なお、TTIを表す単位は、サブフレームではなくスロット、ミニスロットなどと呼ばれてもよい。 For example, one subframe may be referred to as a transmission time interval (TTI), a plurality of consecutive subframes may be referred to as TTI, and one slot or one minislot may be referred to as TTI. That is, at least one of the subframe and TTI may be a subframe (1ms) in existing LTE, a period shorter than 1ms (eg, 1-13 symbols), or a period longer than 1ms. It may be. The unit representing TTI may be called a slot, a mini slot, or the like instead of a subframe.
 ここで、TTIは、例えば、無線通信におけるスケジューリングの最小時間単位のことをいう。例えば、LTEシステムでは、基地局が各ユーザ端末に対して、無線リソース(各ユーザ端末において使用することが可能な周波数帯域幅、送信電力など)を、TTI単位で割り当てるスケジューリングを行う。なお、TTIの定義はこれに限られない。 Here, TTI refers to, for example, the minimum time unit of scheduling in wireless communication. For example, in the LTE system, the base station schedules each user terminal to allocate radio resources (frequency bandwidth that can be used in each user terminal, transmission power, etc.) in TTI units. The definition of TTI is not limited to this.
 TTIは、チャネル符号化されたデータパケット(トランスポートブロック)、コードブロック、コードワードなどの送信時間単位であってもよいし、スケジューリング、リンクアダプテーションなどの処理単位となってもよい。なお、TTIが与えられたとき、実際にトランスポートブロック、コードブロック、コードワードなどがマッピングされる時間区間(例えば、シンボル数)は、当該TTIよりも短くてもよい。 The TTI may be a transmission time unit such as a channel-encoded data packet (transport block), a code block, or a code word, or may be a processing unit such as scheduling or link adaptation. When a TTI is given, the time interval (for example, the number of symbols) to which the transport block, code block, code word, etc. are actually mapped may be shorter than the TTI.
 なお、1スロットまたは1ミニスロットがTTIと呼ばれる場合、1以上のTTI(すなわち、1以上のスロットまたは1以上のミニスロット)が、スケジューリングの最小時間単位となってもよい。また、当該スケジューリングの最小時間単位を構成するスロット数(ミニスロット数)は制御されてもよい。 When one slot or one minislot is called a TTI, one or more TTIs (that is, one or more slots or one or more minislots) may be the minimum time unit for scheduling. Further, the number of slots (number of mini-slots) constituting the minimum time unit of the scheduling may be controlled.
 1msの時間長を有するTTIは、通常TTI(LTE Rel.8-12におけるTTI)、ノーマルTTI、ロングTTI、通常サブフレーム、ノーマルサブフレーム、ロングサブフレーム、スロットなどと呼ばれてもよい。通常TTIより短いTTIは、短縮TTI、ショートTTI、部分TTI(partialまたはfractional TTI)、短縮サブフレーム、ショートサブフレーム、ミニスロット、サブスロット、スロットなどと呼ばれてもよい。 A TTI having a time length of 1 ms may be called a normal TTI (TTI in LTE Rel.8-12), a normal TTI, a long TTI, a normal subframe, a normal subframe, a long subframe, a slot, or the like. TTIs shorter than normal TTIs may also be referred to as shortened TTIs, short TTIs, partial TTIs (partial or fractional TTIs), shortened subframes, short subframes, minislots, subslots, slots, and the like.
 なお、ロングTTI(例えば、通常TTI、サブフレームなど)は、1msを超える時間長を有するTTIで読み替えてもよいし、ショートTTI(例えば、短縮TTIなど)は、ロングTTIのTTI長未満かつ1ms以上のTTI長を有するTTIで読み替えてもよい。 The long TTI (for example, normal TTI, subframe, etc.) may be read as a TTI having a time length of more than 1 ms, and the short TTI (for example, shortened TTI, etc.) may be read as less than the TTI length of the long TTI and 1 ms. It may be read as a TTI having the above TTI length.
 リソースブロック(RB)は、時間領域及び周波数領域のリソース割当単位であり、周波数領域において、1つまたは複数個の連続した副搬送波(subcarrier)を含んでもよい。RBに含まれるサブキャリアの数は、ニューメロロジーに関わらず同じであってもよく、例えば12であってもよい。RBに含まれるサブキャリアの数は、ニューメロロジーに基づいて決定されてもよい。 The resource block (RB) is a resource allocation unit in the time domain and the frequency domain, and may include one or a plurality of continuous subcarriers in the frequency domain. The number of subcarriers contained in RB may be the same regardless of numerology, and may be, for example, 12. The number of subcarriers contained in the RB may be determined based on numerology.
 また、RBの時間領域は、1つまたは複数個のシンボルを含んでもよく、1スロット、1ミニスロット、1サブフレーム、または1TTIの長さであってもよい。1TTI、1サブフレームなどは、それぞれ1つまたは複数のリソースブロックで構成されてもよい。 Further, the time domain of RB may include one or more symbols, and may have a length of 1 slot, 1 mini slot, 1 subframe, or 1 TTI. Each 1TTI, 1 subframe, etc. may be composed of one or a plurality of resource blocks.
 なお、1つまたは複数のRBは、物理リソースブロック(Physical RB:PRB)、サブキャリアグループ(Sub-Carrier Group:SCG)、リソースエレメントグループ(Resource Element Group:REG)、PRBペア、RBペアなどと呼ばれてもよい。 One or more RBs include a physical resource block (Physical RB: PRB), a sub-carrier group (Sub-Carrier Group: SCG), a resource element group (Resource Element Group: REG), a PRB pair, an RB pair, and the like. May be called.
 また、リソースブロックは、1つまたは複数のリソースエレメント(Resource Element:RE)によって構成されてもよい。例えば、1REは、1サブキャリア及び1シンボルの無線リソース領域であってもよい。 Further, the resource block may be composed of one or a plurality of resource elements (ResourceElement: RE). For example, 1RE may be a radio resource area of 1 subcarrier and 1 symbol.
 帯域幅部分(Bandwidth Part:BWP)(部分帯域幅などと呼ばれてもよい)は、あるキャリアにおいて、あるニューメロロジー用の連続する共通RB(common resource blocks)のサブセットのことを表してもよい。ここで、共通RBは、当該キャリアの共通参照ポイントを基準としたRBのインデックスによって特定されてもよい。PRBは、あるBWPで定義され、当該BWP内で番号付けされてもよい。 Bandwidth Part (BWP) (which may also be called partial bandwidth, etc.) may represent a subset of consecutive common RBs (common resource blocks) for a neurology in a carrier. good. Here, the common RB may be specified by the index of the RB with respect to the common reference point of the carrier. PRBs may be defined in a BWP and numbered within that BWP.
 BWPには、UL用のBWP(UL BWP)と、DL用のBWP(DL BWP)とが含まれてもよい。UEに対して、1キャリア内に1つまたは複数のBWPが設定されてもよい。 BWP may include BWP for UL (UL BWP) and BWP for DL (DL BWP). One or more BWPs may be set in one carrier for the UE.
 設定されたBWPの少なくとも1つがアクティブであってもよく、UEは、アクティブなBWPの外で所定の信号/チャネルを送受信することを想定しなくてもよい。なお、本開示における「セル」、「キャリア」などは、「BWP」で読み替えられてもよい。 At least one of the configured BWPs may be active, and the UE may not expect to send or receive a given signal / channel outside the active BWP. In addition, "cell", "carrier" and the like in this disclosure may be read as "BWP".
 上述した無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルなどの構造は例示に過ぎない。例えば、無線フレームに含まれるサブフレームの数、サブフレームまたは無線フレームあたりのスロットの数、スロット内に含まれるミニスロットの数、スロットまたはミニスロットに含まれるシンボル及びRBの数、RBに含まれるサブキャリアの数、並びにTTI内のシンボル数、シンボル長、サイクリックプレフィックス(Cyclic Prefix:CP)長などの構成は、様々に変更することができる。 The above-mentioned structures such as wireless frames, subframes, slots, minislots and symbols are merely examples. For example, the number of subframes contained in a wireless frame, the number of slots per subframe or wireless frame, the number of minislots contained within a slot, the number of symbols and RBs contained in a slot or minislot, and the number of RBs. The number of subcarriers, the number of symbols in the TTI, the symbol length, the cyclic prefix (CP) length, and other configurations can be changed in various ways.
 「接続された(connected)」、「結合された(coupled)」という用語、またはこれらのあらゆる変形は、2またはそれ以上の要素間の直接的または間接的なあらゆる接続または結合を意味し、互いに「接続」または「結合」された2つの要素間に1またはそれ以上の中間要素が存在することを含むことができる。要素間の結合または接続は、物理的なものであっても、論理的なものであっても、或いはこれらの組み合わせであってもよい。例えば、「接続」は「アクセス」で読み替えられてもよい。本開示で使用する場合、2つの要素は、1またはそれ以上の電線、ケーブル及びプリント電気接続の少なくとも一つを用いて、並びにいくつかの非限定的かつ非包括的な例として、無線周波数領域、マイクロ波領域及び光(可視及び不可視の両方)領域の波長を有する電磁エネルギーなどを用いて、互いに「接続」または「結合」されると考えることができる。 The terms "connected", "coupled", or any variation thereof, mean any direct or indirect connection or connection between two or more elements, and each other. It can include the presence of one or more intermediate elements between two "connected" or "combined" elements. The connection or connection between the elements may be physical, logical, or a combination thereof. For example, "connection" may be read as "access". As used in the present disclosure, the two elements use at least one of one or more wires, cables and printed electrical connections, and, as some non-limiting and non-comprehensive examples, the radio frequency domain. , Electromagnetic energies with wavelengths in the microwave and light (both visible and invisible) regions, etc., can be considered to be "connected" or "coupled" to each other.
 参照信号は、Reference Signal(RS)と略称することもでき、適用される標準によってパイロット(Pilot)と呼ばれてもよい。 The reference signal can also be abbreviated as Reference Signal (RS), and may be called a pilot (Pilot) depending on the applicable standard.
 本開示において使用する「に基づいて」という記載は、別段に明記されていない限り、「のみに基づいて」を意味しない。言い換えれば、「に基づいて」という記載は、「のみに基づいて」と「に少なくとも基づいて」の両方を意味する。 The phrase "based on" as used in this disclosure does not mean "based on" unless otherwise stated. In other words, the statement "based on" means both "based only" and "at least based on".
 上記の各装置の構成における「手段」を、「部」、「回路」、「デバイス」等に置き換えてもよい。 The "means" in the configuration of each of the above devices may be replaced with a "part", a "circuit", a "device", or the like.
 本開示において使用する「第1」、「第2」などの呼称を使用した要素へのいかなる参照も、それらの要素の量または順序を全般的に限定しない。これらの呼称は、2つ以上の要素間を区別する便利な方法として本開示において使用され得る。したがって、第1及び第2の要素への参照は、2つの要素のみがそこで採用され得ること、または何らかの形で第1の要素が第2の要素に先行しなければならないことを意味しない。 Any reference to elements using designations such as "first", "second" as used in this disclosure does not generally limit the quantity or order of those elements. These designations can be used in the present disclosure as a convenient way to distinguish between two or more elements. Therefore, references to the first and second elements do not mean that only two elements can be adopted there, or that the first element must somehow precede the second element.
 本開示において、「含む(include)」、「含んでいる(including)」及びそれらの変形が使用されている場合、これらの用語は、用語「備える(comprising)」と同様に、包括的であることが意図される。さらに、本開示において使用されている用語「または(or)」は、排他的論理和ではないことが意図される。 When "include", "including" and variations thereof are used in the present disclosure, these terms are as comprehensive as the term "comprising". Is intended. Moreover, the term "or" used in the present disclosure is intended not to be an exclusive OR.
 本開示において、例えば、英語でのa, an及びtheのように、翻訳により冠詞が追加された場合、本開示は、これらの冠詞の後に続く名詞が複数形であることを含んでもよい。 In the present disclosure, if articles are added by translation, for example, a, an and the in English, the disclosure may include that the nouns following these articles are plural.
 本開示で使用する「判断(determining)」、「決定(determining)」という用語は、多種多様な動作を包含する場合がある。「判断」、「決定」は、例えば、判定(judging)、計算(calculating)、算出(computing)、処理(processing)、導出(deriving)、調査(investigating)、探索(looking up、search、inquiry)(例えば、テーブル、データベース又は別のデータ構造での探索)、確認(ascertaining)した事を「判断」「決定」したとみなす事などを含み得る。また、「判断」、「決定」は、受信(receiving)(例えば、情報を受信すること)、送信(transmitting)(例えば、情報を送信すること)、入力(input)、出力(output)、アクセス(accessing)(例えば、メモリ中のデータにアクセスすること)した事を「判断」「決定」したとみなす事などを含み得る。また、「判断」、「決定」は、解決(resolving)、選択(selecting)、選定(choosing)、確立(establishing)、比較(comparing)などした事を「判断」「決定」したとみなす事を含み得る。つまり、「判断」「決定」は、何らかの動作を「判断」「決定」したとみなす事を含み得る。また、「判断(決定)」は、「想定する(assuming)」、「期待する(expecting)」、「みなす(considering)」などで読み替えられてもよい。 The terms "determining" and "determining" used in this disclosure may include a wide variety of actions. "Judgment" and "decision" are, for example, judgment (judging), calculation (calculating), calculation (computing), processing (processing), derivation (deriving), investigation (investigating), search (looking up, search, inquiry). (For example, searching in a table, database or another data structure), ascertaining may be regarded as "judgment" or "decision". Also, "judgment" and "decision" are receiving (for example, receiving information), transmitting (for example, transmitting information), input (input), output (output), and access. (Accessing) (for example, accessing data in memory) may be regarded as "judgment" or "decision". In addition, "judgment" and "decision" mean that the things such as solving, selecting, choosing, establishing, and comparing are regarded as "judgment" and "decision". Can include. That is, "judgment" and "decision" may include considering some action as "judgment" and "decision". Further, "judgment (decision)" may be read as "assuming", "expecting", "considering" and the like.
 本開示において、「AとBが異なる」という用語は、「AとBが互いに異なる」ことを意味してもよい。なお、当該用語は、「AとBがそれぞれCと異なる」ことを意味してもよい。「離れる」、「結合される」などの用語も、「異なる」と同様に解釈されてもよい。 In the present disclosure, the term "A and B are different" may mean "A and B are different from each other". The term may mean that "A and B are different from C". Terms such as "separate" and "combined" may be interpreted in the same way as "different".
 以上、本開示について詳細に説明したが、当業者にとっては、本開示が本開示中に説明した実施形態に限定されるものではないということは明らかである。本開示は、請求の範囲の記載により定まる本開示の趣旨及び範囲を逸脱することなく修正及び変更態様として実施することができる。したがって、本開示の記載は、例示説明を目的とするものであり、本開示に対して何ら制限的な意味を有するものではない。 Although the present disclosure has been described in detail above, it is clear to those skilled in the art that the present disclosure is not limited to the embodiments described in the present disclosure. The present disclosure may be implemented as an amendment or modification without departing from the purpose and scope of the present disclosure, which is determined by the description of the scope of claims. Therefore, the description of the present disclosure is for the purpose of exemplary explanation and does not have any limiting meaning to the present disclosure.
 10 無線通信システム
 20 NG-RAN
 100 gNB
 110 O-DU
 111 通信部
 113 CP長/チャネル種別取得部
 115 パラメータ受信
 117 受信ウィンドウ制御部
 120 O-RU
 121 通信部
 123 CP長/チャネル種別取得部
 125 送信ウィンドウ制御部
 127 パラメータ送信部
 200 UE
 1001 プロセッサ
 1002 メモリ
 1003 ストレージ
 1004 通信装置
 1005 入力装置
 1006 出力装置
 1007 バス
 
10 Radio communication system 20 NG-RAN
100 gNB
110 O-DU
111 Communication unit 113 CP length / channel type acquisition unit 115 Parameter reception 117 Reception window control unit 120 O-RU
121 Communication unit 123 CP length / channel type acquisition unit 125 Transmission window control unit 127 Parameter transmission unit 200 UE
1001 Processor 1002 Memory 1003 Storage 1004 Communication Device 1005 Input Device 1006 Output Device 1007 Bus

Claims (4)

  1.  通信装置であって、
     複数のサブキャリア間隔のうち、何れかの前記サブキャリア間隔を取得し、取得した前記サブキャリア間隔に対して適用される前記通信装置内の遅延時間を示すパラメータセットを決定する制御部と、
     前記パラメータセットを、フロントホール上に設けられる他の通信装置に対して送信する送信部と
    を備え、
     前記制御部は、同一の前記サブキャリア間隔に対して、複数の前記パラメータセットを適用する通信装置。
    It ’s a communication device,
    A control unit that acquires one of the subcarrier intervals among the plurality of subcarrier intervals and determines a parameter set indicating a delay time in the communication device applied to the acquired subcarrier interval.
    It includes a transmitter that transmits the parameter set to other communication devices provided on the front hall.
    The control unit is a communication device that applies a plurality of the parameter sets to the same subcarrier interval.
  2.  前記制御部は、前記通信装置が送受信する信号のサイクリックプレフィックスの長さに応じた複数の前記パラメータセットを適用する請求項1に記載の通信装置。 The communication device according to claim 1, wherein the control unit applies a plurality of the parameter sets according to the length of cyclic prefixes of signals transmitted and received by the communication device.
  3.  前記制御部は、前記通信装置が送受信する信号の種類に応じた複数の前記パラメータセットを適用する請求項1に記載の通信装置。 The communication device according to claim 1, wherein the control unit applies a plurality of the parameter sets according to the types of signals transmitted and received by the communication device.
  4.  前記遅延時間は、前記通信装置のアンテナでの信号の受信から前記他の通信装置への前記信号の出力までの時間の最小値及び最大値を含む請求項1に記載の通信装置。 The communication device according to claim 1, wherein the delay time includes a minimum value and a maximum value of a time from reception of a signal by the antenna of the communication device to output of the signal to the other communication device.
PCT/JP2020/006107 2020-02-17 2020-02-17 Communication device WO2021166044A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2020/006107 WO2021166044A1 (en) 2020-02-17 2020-02-17 Communication device
CN202080096314.XA CN115104365A (en) 2020-02-17 2020-02-17 Communication device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/006107 WO2021166044A1 (en) 2020-02-17 2020-02-17 Communication device

Publications (1)

Publication Number Publication Date
WO2021166044A1 true WO2021166044A1 (en) 2021-08-26

Family

ID=77390646

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/006107 WO2021166044A1 (en) 2020-02-17 2020-02-17 Communication device

Country Status (2)

Country Link
CN (1) CN115104365A (en)
WO (1) WO2021166044A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210385686A1 (en) * 2020-06-03 2021-12-09 Mavenir Systems, Inc. Traffic timing control for an open radio access network in a cloud radio access network system

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015510338A (en) * 2012-01-30 2015-04-02 クゥアルコム・インコーポレイテッドQualcomm Incorporated Cyclic prefix in high transmission power evolved multimedia broadcast multicast service

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015510338A (en) * 2012-01-30 2015-04-02 クゥアルコム・インコーポレイテッドQualcomm Incorporated Cyclic prefix in high transmission power evolved multimedia broadcast multicast service

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
UMESH ANIL, TATSURO YAJIMA, TORU UCHINO, SUGURU OKUYAMA: "Overview of o-RAN Fronthaul Specifications (Special Articles on Standardization Trends toward Open en Intelligent Radio Access Networks)", NTT DOCOMO TECHNICAL JOURNAL, 1 April 2019 (2019-04-01), XP055849188, Retrieved from the Internet <URL:https://www.nttdocomo.co.jp/english/binary/pdf/corporate/technology/rd/technical_journal/bn/vol21_1/vol21_1_007en.pdf> [retrieved on 20211008] *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210385686A1 (en) * 2020-06-03 2021-12-09 Mavenir Systems, Inc. Traffic timing control for an open radio access network in a cloud radio access network system

Also Published As

Publication number Publication date
CN115104365A (en) 2022-09-23

Similar Documents

Publication Publication Date Title
WO2021005663A1 (en) Terminal
WO2021144976A1 (en) Communication device
JP2023156440A (en) Terminal, base station, and communication method
WO2021001946A1 (en) Terminal
JP7443488B2 (en) Terminal, wireless base station and wireless communication method
WO2021144972A1 (en) Communication device
JP7407833B2 (en) Communication device
WO2021149110A1 (en) Terminal and communication method
WO2021166044A1 (en) Communication device
WO2022149267A1 (en) Radio base station and terminal
WO2022149194A1 (en) Terminal, base station, and communication method
JP7170842B2 (en) User equipment and base station equipment
WO2021029002A1 (en) Terminal
WO2022102669A1 (en) Terminal
WO2022085156A1 (en) Terminal
WO2022074842A1 (en) Terminal
WO2022085201A1 (en) Terminal
WO2022079872A1 (en) Terminal
WO2023053393A1 (en) Terminal and wireless communication method
JP7373559B2 (en) User equipment and wireless communication systems
WO2022029980A1 (en) Terminal
WO2022070364A1 (en) Terminal, and radio communication method
WO2022153422A1 (en) Terminal and communication method
WO2022201548A1 (en) Transmission node and transmission method
WO2022149287A1 (en) Terminal and radio base station

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20919484

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20919484

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP