WO2022074842A1 - Terminal - Google Patents

Terminal Download PDF

Info

Publication number
WO2022074842A1
WO2022074842A1 PCT/JP2020/038373 JP2020038373W WO2022074842A1 WO 2022074842 A1 WO2022074842 A1 WO 2022074842A1 JP 2020038373 W JP2020038373 W JP 2020038373W WO 2022074842 A1 WO2022074842 A1 WO 2022074842A1
Authority
WO
WIPO (PCT)
Prior art keywords
simultaneous transmission
pucch
simultaneous
uplink
transmission
Prior art date
Application number
PCT/JP2020/038373
Other languages
French (fr)
Japanese (ja)
Inventor
優元 ▲高▼橋
慎也 熊谷
聡 永田
Original Assignee
株式会社Nttドコモ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Nttドコモ filed Critical 株式会社Nttドコモ
Priority to PCT/JP2020/038373 priority Critical patent/WO2022074842A1/en
Priority to JP2022555245A priority patent/JPWO2022074842A1/ja
Publication of WO2022074842A1 publication Critical patent/WO2022074842A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling

Definitions

  • the present disclosure relates to a terminal that executes wireless communication, particularly a terminal that executes simultaneous transmission of uplink signals via different component carriers.
  • the 3rd Generation Partnership Project (3GPP) specifies the 5th generation mobile communication system (also called 5G, New Radio (NR) or Next Generation (NG)), and next-generation specifications called Beyond 5G, 5G Evolution or 6G. We are also proceeding with the conversion.
  • 5G New Radio
  • NG Next Generation
  • PUSCH Physical Uplink Shared Channel
  • PUSCH Physical Uplink Shared Channel
  • PUCCH Physical Uplink Control Channel
  • PUCCH Physical Uplink Control Channel
  • UE Capability for example, twoPUSCH-Group
  • UE Capability for example, twoPUSCH-Group
  • Non-Patent Document 1 PUSCH and PUCCH (Simultaneous ULTX) in different cells.
  • the following disclosure was made in view of such a situation, and aims to provide a terminal capable of appropriately executing the simultaneous transmission of uplink signals.
  • One aspect of the present disclosure is a communication unit that is a terminal that simultaneously transmits an uplink signal using an uplink channel including at least a physical uplink control channel via different component carriers, and the uplink signal.
  • the control unit includes a control unit that controls the simultaneous transmission of the physical uplink control channel, and the control unit supports the number of groups of the physical uplink control channel groups related to the physical uplink control channel and the support of the component carrier that supports the simultaneous transmission of the uplink signal.
  • the gist is to determine the upper limit number of component carriers used for simultaneous transmission of the uplink signal based on the number.
  • FIG. 1 is an overall schematic configuration diagram of the wireless communication system 10.
  • FIG. 2 is a diagram showing a frequency range used in the wireless communication system 10.
  • FIG. 3 is a diagram showing a configuration example of a wireless frame, a subframe, and a slot used in the wireless communication system 10.
  • FIG. 4 is a functional block configuration diagram of the UE 200.
  • FIG. 5 is a diagram for explaining a method of determining the upper limit number.
  • FIG. 6 is a diagram for explaining a method of determining the upper limit number.
  • FIG. 7 is a diagram for explaining a method of determining the upper limit number.
  • FIG. 8 is a diagram showing an operation example.
  • FIG. 9 is a diagram showing an example of the hardware configuration of the UE 200.
  • FIG. 1 is an overall schematic configuration diagram of the wireless communication system 10 according to the embodiment.
  • the wireless communication system 10 is a wireless communication system according to 5G New Radio (NR), and includes a Next Generation-Radio Access Network 20 (hereinafter, NG-RAN20) and a terminal 200 (hereinafter, UE200).
  • NR 5G New Radio
  • NG-RAN20 Next Generation-Radio Access Network 20
  • UE200 terminal 200
  • the wireless communication system 10 may be a wireless communication system according to a method called Beyond 5G, 5G Evolution, or 6G.
  • NG-RAN20 includes a radio base station 100A (hereinafter, gNB100A) and a radio base station 100B (hereinafter, gNB100B).
  • gNB100A radio base station 100A
  • gNB100B radio base station 100B
  • the specific configuration of the wireless communication system 10 including the number of gNBs and UEs is not limited to the example shown in FIG.
  • NG-RAN20 actually includes multiple NG-RANNodes, specifically gNB (or ng-eNB), and is connected to a core network (5GC, not shown) according to 5G.
  • NG-RAN20 and 5GC may be simply expressed as "network”.
  • GNB100A and gNB100B are radio base stations according to 5G, and execute wireless communication according to UE200 and 5G.
  • gNB100A, gNB100B and UE200 are Massive MIMO (Multiple-Input Multiple-Output) and multiple component carriers (CC) that generate beam BM with higher directivity by controlling radio signals transmitted from multiple antenna elements.
  • CC multiple component carriers
  • the DC may include MR-DC (Multi-RAT Dual Connectivity) using MCG (Master Cell Group) and SCG (Secondary Cell Group).
  • MR-DC examples include EN-DC (E-UTRA-NR Dual Connectivity), NE-DC (NR-EUTRA Dual Connectivity) and NR-DC (NR-NR Dual Connectivity).
  • EN-DC E-UTRA-NR Dual Connectivity
  • NE-DC NR-EUTRA Dual Connectivity
  • NR-DC NR-NR Dual Connectivity
  • CC cell used in CA may be considered to constitute the same cell group set in UE200.
  • MCG and SCG may be considered to constitute the same cell group set in UE200.
  • the wireless communication system 10 supports a plurality of frequency ranges (FR).
  • FIG. 2 shows the frequency range used in the wireless communication system 10.
  • the wireless communication system 10 corresponds to FR1 and FR2.
  • the frequency bands of each FR are as follows.
  • FR1 uses a Sub-Carrier Spacing (SCS) of 15, 30 or 60 kHz and may use a bandwidth (BW) of 5-100 MHz.
  • FR2 has a higher frequency than FR1, and SCS of 60, or 120 kHz (240 kHz may be included) is used, and a bandwidth (BW) of 50 to 400 MHz may be used.
  • SCS may be interpreted as numerology. Numerology is defined in 3GPP TS38.300 and corresponds to one subcarrier interval in the frequency domain.
  • the wireless communication system 10 also supports a higher frequency band than the FR2 frequency band. Specifically, the wireless communication system 10 corresponds to a frequency band exceeding 52.6 GHz and up to 114.25 GHz. Such a high frequency band may be referred to as "FR2x" for convenience.
  • Cyclic Prefix-Orthogonal Frequency Division Multiplexing CP-OFDM
  • DFT- Discrete Fourier Transform-Spread
  • S-OFDM Discrete Fourier Transform-Spread
  • FIG. 3 shows a configuration example of a wireless frame, a subframe, and a slot used in the wireless communication system 10.
  • one slot is composed of 14 symbols, and the larger (wider) the SCS, the shorter the symbol period (and slot period).
  • the SCS is not limited to the interval (frequency) shown in FIG. For example, 480 kHz, 960 kHz, etc. may be used.
  • the number of symbols constituting one slot does not necessarily have to be 14 symbols (for example, 28, 56 symbols).
  • the number of slots per subframe may vary from SCS to SCS.
  • the time direction (t) shown in FIG. 3 may be referred to as a time domain, a symbol period, a symbol time, or the like.
  • the frequency direction may be referred to as a frequency domain, a resource block, a subcarrier, a BWP (Bandwidth Part), or the like.
  • FIG. 4 is a functional block configuration diagram of UE200.
  • the UE 200 includes a radio signal transmission / reception unit 210, an amplifier unit 220, a modulation / demodulation unit 230, a control signal / reference signal processing unit 240, a coding / decoding unit 250, a data transmission / reception unit 260, and a control unit 270. ..
  • the radio signal transmission / reception unit 210 transmits / receives a radio signal according to NR.
  • the radio signal transmission / reception unit 210 corresponds to Massive MIMO, a CA that bundles a plurality of CCs, and a DC that simultaneously communicates between the UE and each of the two NG-RAN Nodes.
  • the amplifier section 220 is composed of PA (Power Amplifier) / LNA (Low Noise Amplifier) and the like.
  • the amplifier unit 220 amplifies the signal output from the modulation / demodulation unit 230 to a predetermined power level. Further, the amplifier unit 220 amplifies the RF signal output from the radio signal transmission / reception unit 210.
  • the modulation / demodulation unit 230 executes data modulation / demodulation, transmission power setting, resource block allocation, etc. for each predetermined communication destination (gNB100 or other gNB).
  • Cyclic Prefix-Orthogonal Frequency Division Multiplexing (CP-OFDM) / Discrete Fourier Transform-Spread (DFT-S-OFDM) may be applied to the modulation / demodulation unit 230. Further, the DFT-S-OFDM may be used not only for the uplink (UL) but also for the downlink (DL).
  • the control signal / reference signal processing unit 240 executes processing related to various control signals transmitted / received by the UE 200 and processing related to various reference signals transmitted / received by the UE 200.
  • control signal / reference signal processing unit 240 receives various control signals transmitted from the gNB 100 via a predetermined control channel, for example, control signals of the radio resource control layer (RRC). Further, the control signal / reference signal processing unit 240 transmits various control signals to the gNB 100 via a predetermined control channel.
  • RRC radio resource control layer
  • the control signal / reference signal processing unit 240 executes processing using a reference signal (RS) such as Demodulation Reference Signal (DMRS) and Phase Tracking Reference Signal (PTRS).
  • RS reference signal
  • DMRS Demodulation Reference Signal
  • PTRS Phase Tracking Reference Signal
  • DMRS is a reference signal (pilot signal) known between the base station and the terminal of each terminal for estimating the fading channel used for data demodulation.
  • PTRS is a terminal-specific reference signal for the purpose of estimating phase noise, which is a problem in high frequency bands.
  • the reference signal may include ChannelStateInformation-ReferenceSignal (CSI-RS), SoundingReferenceSignal (SRS), and PositioningReferenceSignal (PRS) for location information.
  • CSI-RS ChannelStateInformation-ReferenceSignal
  • SRS SoundingReferenceSignal
  • PRS PositioningReferenceSignal
  • control channels include PDCCH (Physical Downlink Control Channel), PUCCH (Physical Uplink Control Channel), RACH (Random Access Channel), Random Access Radio Network Temporary Identifier (RA-RNTI), Downlink Control Information (DCI), and Physical Broadcast Channel (PBCH) etc. are included.
  • PDCCH Physical Downlink Control Channel
  • PUCCH Physical Uplink Control Channel
  • RACH Random Access Channel
  • RA-RNTI Random Access Radio Network Temporary Identifier
  • DCI Downlink Control Information
  • PBCH Physical Broadcast Channel
  • the data channels include PDSCH (Physical Downlink Shared Channel) and PUSCH (Physical Uplink Shared Channel).
  • Data means data transmitted over a data channel.
  • the data channel may be read as a shared channel.
  • the control signal / reference signal processing unit 240 executes simultaneous transmission of uplink signals using an uplink channel including at least a physical uplink control channel (PUCCH: Physical Uplink Control Channel) via different CCs.
  • PUCCH Physical Uplink Control Channel
  • Simultaneous transmission means a procedure for transmitting uplink signals via different CCs without multiplexing uplink channels.
  • the uplink channel may include a physical uplink shared channel (PUSCH: PhysicalUplink Shared Channel).
  • the uplink signal may include uplink control information (UCI: Uplink Control Information).
  • the UCI may include an acknowledgment (HARQ-ACK) for one or more TBs.
  • the UCI may include an SR (Scheduling Request) that requests the scheduling of resources, or may include a CSI (Channel State Information) that represents the state of the channel.
  • the UCI may be transmitted via PUCCH or may be transmitted via PUSCH.
  • the coding / decoding unit 250 executes data division / concatenation and channel coding / decoding for each predetermined communication destination (gNB100 or other gNB).
  • the coding / decoding unit 250 divides the data output from the data transmission / reception unit 260 into predetermined sizes, and executes channel coding for the divided data. Further, the coding / decoding unit 250 decodes the data output from the modulation / demodulation unit 230 and concatenates the decoded data.
  • the data transmission / reception unit 260 executes transmission / reception of Protocol Data Unit (PDU) and Service Data Unit (SDU).
  • the data transmitter / receiver 260 is a PDU / SDU in a plurality of layers (such as a medium access control layer (MAC), a radio link control layer (RLC), and a packet data convergence protocol layer (PDCP)). Assemble / disassemble the.
  • the data transmission / reception unit 260 executes data error correction and retransmission control based on the hybrid ARQ (Hybrid automatic repeat request).
  • the control unit 270 controls each functional block constituting the UE 200.
  • the control unit 270 controls the simultaneous transmission of the uplink signal.
  • the control unit 270 uses the upper limit of the CC used for the simultaneous transmission of the uplink signal based on the number of PUCCH Group groups related to the PUCCH and the number of CCs supported for the simultaneous transmission of the uplink signal. Determine the number.
  • UCI will be illustrated as an example of an uplink signal.
  • FIGS. 5 to 7 are diagrams for explaining a method for determining the upper limit number of CCs used for simultaneous transmission of uplink signals.
  • the first simultaneous transmission is a simultaneous transmission relating to the PUCCH Group relating to PUCCH.
  • the PUCCH Group belonging to the same cell group may include PUCCH Group # 1 and PUCCH Group # 2.
  • the CC belonging to PUCCH Group # 1 may include CCs such as CC # 1-0, CC # 1-1, CC # 1-2, and CC # 1-3.
  • the CC belonging to PUCCH Group # 2 may include CCs such as CC # 2-0, CC # 2-1, CC # 2-2, and CC # 2-3.
  • the simultaneous transmission of UCI may include simultaneous transmission of PUCCH (UCI) and PUCCH (UCI) (hereinafter, PUCCH-PUCCH simultaneous transmission).
  • the simultaneous transmission of UCI may include simultaneous transmission of PUSCH (UCI) and PUCCH (UCI) (hereinafter referred to as PUSCH-PUCCH simultaneous transmission).
  • the UCIs transmitted at the same time may include the same information element or may include different information elements.
  • PUCCH-PUCCH simultaneous transmission may be executed by the information element included in UE Capability.
  • PUSCH-PUCCH simultaneous transmission may be executed by the information element included in UE Capability.
  • the information element included in UE Capability may be referred to as twoPUCCH-Group (3GPP TS38.306 V15.7.0 ⁇ 4.2.7.7 “FeatureSetUplink parameter”).
  • the PUCCH-PUCCH simultaneous transmission may be executed, or the PUSCH-PUCCH simultaneous transmission may be executed.
  • the upper limit of CCs is the number of PUCCH Group groups.
  • the number of groups of PUCCHGroup may be specified by the information element included in UECapability, or may be a fixed value (for example, “2”).
  • two or more PUCCH Groups may be set by CA (NRCA).
  • the CCs belonging to two or more PUCCH Groups may be CCs using the same SCS (numerology).
  • Two or more PUCCH Groups may be set by DC (for example, EN-DC). In such a case, each PUCCH Group may be set in a different frequency range.
  • the second simultaneous transmission is the simultaneous transmission of PUSCH (UCI) and PUCCH (UCI) in different cells (CC) (hereinafter referred to as Simultaneous UL TX).
  • CCs belonging to the same cell group may include CC # 0, CC # 1, CC # 2, CC # 3, and the like.
  • Simultaneous ULTX may include the above-mentioned PUSCH-PUCCH simultaneous transmission.
  • Simultaneous ULTX may include the above-mentioned PUCCH-PUCCH simultaneous transmission.
  • Simultaneous ULTX may be applied by CA (hereinafter referred to as inter-CA) that bundles CCs of different frequency bands.
  • Simultaneous ULTX may be applied by CA (hereinafter referred to as intra-CA) that bundles CCs in the same frequency band.
  • Simultaneous ULTX may be applied in MR-DC.
  • Simultaneous ULTX may be applied when the above-mentioned first simultaneous transmission (PUCCHGroup) is not supported.
  • the number of CCs that support Simultaneous ULTX may be specified by the information elements contained in UE Capability.
  • Such an information element may include an information element indicating whether or not Simultaneous UL TX is supported, and may include an information element indicating the number of CC supports that can be used in Simultaneous UL TX.
  • PUSCH-PUCCH simultaneous transmission may be executed when the UE Capability received from the UE 200 includes an information element that supports Simultaneous UL TX.
  • the number of supports may be specified by the information element included in UE Capability, or may be a fixed value (for example, "4").
  • the number of supports may be defined for each PUCCH Group.
  • the number of supports may be defined for each cell group set in UE200.
  • the number of supports may be defined for each UE200.
  • the above-mentioned first simultaneous transmission (PUCCHGroup) is a procedure already introduced in Releases 15 and 16, but the second simultaneous transmission (Simultaneous ULTX) is a procedure newly introduced in Release17. Should be noted.
  • the third simultaneous transmission is a combination of the first simultaneous transmission (PUCCHGroup) and the second simultaneous transmission (Simultaneous ULTX).
  • the PUCCH Group belonging to the same cell group may include PUCCH Group # 1 and PUCCH Group # 2.
  • the CC belonging to PUCCH Group # 1 may include CCs such as CC # 1-0, CC # 1-1, CC # 1-2, and CC # 1-3.
  • the CC belonging to PUCCH Group # 2 may include CCs such as CC # 2-0, CC # 2-1, CC # 2-2, and CC # 2-3.
  • the third simultaneous transmission includes the first simultaneous transmission (PUCCHGroup)
  • the above-mentioned PUCCH-PUCCH simultaneous transmission may be included, or the above-mentioned PUSCH-PUCCH simultaneous transmission may be included.
  • the UE200 determines that the CC used for simultaneous transmission is based on the number of PUCCH Group groups and the number of CC supports for Simultaneous ULTX. Determine the maximum number.
  • the number of groups is "2" and the number of supports is "4" will be described as an example.
  • control unit 270 may determine the maximum number defined by the number of groups and the number of supports as the upper limit number.
  • the definition method of the maximum number is as shown below.
  • the control unit 270 may determine that "2" is the upper limit when the UE200 supports the first simultaneous transmission (PUCCHGroup) and the UE200 does not support the second simultaneous transmission (Simultaneous ULTX). ..
  • the control unit 270 determines that "4" is the upper limit when the UE200 does not support the first simultaneous transmission (PUCCHGroup) and the UE200 supports the second simultaneous transmission (Simultaneous ULTX). May be good.
  • the control unit 270 When the UE200 supports the third simultaneous transmission (PUCCH Group and Simultaneous ULTX) and the number of supports is defined for each cell group, the control unit 270 is the larger number among the number of groups and the number of supports ("4 (" 4 (" > 2 ”) may be determined to be the upper limit. In such a case, the control unit 270 may assign the number of CCs used for simultaneous transmission to each PUCCH Group. The control unit 270 may transmit simultaneously. The number of CCs used for is may be evenly assigned to each PUCCH Group. For example, the number of CCs assigned to PUCCH Group # 1 is "2" and the number of CCs assigned to PUCCH Group # 2 is "2".
  • control unit 270 may assign the number of CCs used for simultaneous transmission to each PUCCH Group based on the number of CCs belonging to each PUCCH Group. For example, the number of CCs belonging to PUCCH Group # 1 is ". When 2 ”and the number of CCs belonging to PUCCH Group # 2 is“ 2 ”, the number of CCs assigned to PUCCH Group # 1 is“ 2 ”and the number of CCs assigned to PUCCH Group # 2 is“ It may be 2 ”. CC assigned to PUCCH Group # 1 when the number of CCs belonging to PUCCH Group # 1 is“ 3 ”and the number of CCs belonging to PUCCH Group # 2 is“ 1 ”. The number may be "3" and the number of CCs assigned to PUCCH Group # 2 may be "1".
  • control unit 270 may determine the multiplication result of the number of groups and the number of supports as the upper limit number.
  • step S10 the UE 200 transmits a message including the UE Capability to the NG-RAN 20.
  • UECapability may include twoPUCCH-Group.
  • UE Capability may include an information element indicating whether or not Simultaneous UL TX is supported.
  • PUCCH-Config. May include an information element indicating whether or not to set the first simultaneous transmission (PUCCHGroup).
  • PUCCH-Config. May include an information element indicating whether or not to set the first simultaneous transmission (Simultaneous ULTX).
  • PUCCH-Config. May include an information element indicating whether or not to set the third simultaneous transmission (PUCCH Group and Simultaneous UL TX).
  • step S12 UE200 receives one or more DCIs from NG-RAN20 via PDCCH.
  • the NG-RAN20 may transmit DCI based on the UE Capability received in step S10.
  • the DCI may include an information element (for example, Frequency domain resource assignment, Time domain resource assignment) that specifies an uplink resource in consideration of UE Capability.
  • step S13 the UE 200 executes UCI simultaneous transmission (at least one of PUCCH-PUCCH simultaneous transmission and PUSCH-PUCCH simultaneous transmission) via different CCs.
  • the UE200 determines the maximum number of CCs to be used for simultaneous transmission based on the number of groups of PUCCHGroup and the number of CCs supported for Simultaneous ULTX.
  • the UE 200 determines the maximum number of CCs to be used for simultaneous transmission based on the number of groups of the PUCCH Group and the number of CCs supported for Simultaneous UL TX. With such a configuration, even if a case where Simultaneous UL TX is newly introduced is assumed, the upper limit of the number of CCs used for simultaneous transmission is clear, so it is possible to appropriately execute simultaneous transmission. can.
  • UCI was exemplified as an example of the uplink signal.
  • the uplink signal may include a data signal. That is, the above-mentioned disclosure may be applied to PUCCH-PUCCH simultaneous transmission and PUSCH-PUCCH simultaneous transmission.
  • simultaneous transmission of UCIs may be applied to UCIs with the same priority (PUCCH or PUSCH) or to UCIs with different priorities (PUCCH or PUSCH). May be good.
  • UCI was mainly explained, but the above-mentioned disclosure is not limited to this.
  • UCI may be read as HARQ-ACK, SR, or CSI.
  • the UCI that can be transmitted using multiple CCs may be any parameter selected from HARQ-ACK, SR and CSI.
  • the block configuration diagram (FIG. 4) used in the description of the above-described embodiment shows a block of functional units.
  • These functional blocks are realized by any combination of at least one of hardware and software.
  • the method of realizing each functional block is not particularly limited. That is, each functional block may be realized using one physically or logically coupled device, or two or more physically or logically separated devices can be directly or indirectly (eg, for example). , Wired, wireless, etc.) and may be realized using these plurality of devices.
  • the functional block may be realized by combining the software with the one device or the plurality of devices.
  • Functions include judgment, decision, judgment, calculation, calculation, processing, derivation, investigation, search, confirmation, reception, transmission, output, access, solution, selection, selection, establishment, comparison, assumption, expectation, and assumption. Broadcasting, notifying, communicating, forwarding, configuring, reconfiguring, allocating, mapping, assigning, etc., but limited to these I can't.
  • a functional block (configuration unit) that makes transmission function is called a transmitting unit (transmitting unit) or a transmitter (transmitter).
  • the realization method is not particularly limited.
  • FIG. 9 is a diagram showing an example of the hardware configuration of the device.
  • the device may be configured as a computer device including a processor 1001, a memory 1002, a storage 1003, a communication device 1004, an input device 1005, an output device 1006, a bus 1007, and the like.
  • the word “device” can be read as a circuit, device, unit, etc.
  • the hardware configuration of the device may be configured to include one or more of each of the devices shown in the figure, or may be configured not to include some of the devices.
  • Each functional block of the device (see FIG. 4) is realized by any hardware element of the computer device or a combination of the hardware elements.
  • each function in the device is such that the processor 1001 performs an operation by loading predetermined software (program) on the hardware such as the processor 1001 and the memory 1002, and controls the communication by the communication device 1004, or the memory. It is realized by controlling at least one of reading and writing of data in 1002 and storage 1003.
  • predetermined software program
  • Processor 1001 operates, for example, an operating system to control the entire computer.
  • the processor 1001 may be configured by a central processing unit (CPU) including an interface with peripheral devices, a control device, an arithmetic unit, a register, and the like.
  • CPU central processing unit
  • the processor 1001 reads a program (program code), a software module, data, etc. from at least one of the storage 1003 and the communication device 1004 into the memory 1002, and executes various processes according to these.
  • a program program code
  • a program that causes a computer to execute at least a part of the operations described in the above-described embodiment is used.
  • the various processes described above may be executed by one processor 1001 or may be executed simultaneously or sequentially by two or more processors 1001.
  • Processor 1001 may be implemented by one or more chips.
  • the program may be transmitted from the network via a telecommunication line.
  • the memory 1002 is a computer-readable recording medium, and is composed of at least one such as ReadOnlyMemory (ROM), ErasableProgrammableROM (EPROM), Electrically ErasableProgrammableROM (EEPROM), and RandomAccessMemory (RAM). May be done.
  • the memory 1002 may be referred to as a register, a cache, a main memory (main storage device), or the like.
  • the memory 1002 can store a program (program code), a software module, or the like that can execute the method according to the embodiment of the present disclosure.
  • the storage 1003 is a computer-readable recording medium, for example, an optical disk such as Compact Disc ROM (CD-ROM), a hard disk drive, a flexible disk, an optical magnetic disk (for example, a compact disk, a digital versatile disk, or a Blu-ray). It may consist of at least one (registered trademark) disk), smart card, flash memory (eg, card, stick, key drive), floppy (registered trademark) disk, magnetic strip, and the like.
  • Storage 1003 may be referred to as auxiliary storage.
  • the recording medium described above may be, for example, a database, server or other suitable medium containing at least one of the memory 1002 and the storage 1003.
  • the communication device 1004 is hardware (transmission / reception device) for communicating between computers via at least one of a wired network and a wireless network, and is also referred to as, for example, a network device, a network controller, a network card, a communication module, or the like.
  • the communication device 1004 includes, for example, a high frequency switch, a duplexer, a filter, a frequency synthesizer, etc. in order to realize at least one of frequency division duplex (FDD) and time division duplex (TDD). It may be composed of.
  • FDD frequency division duplex
  • TDD time division duplex
  • the input device 1005 is an input device (for example, a keyboard, a mouse, a microphone, a switch, a button, a sensor, etc.) that accepts an input from the outside.
  • the output device 1006 is an output device (for example, a display, a speaker, an LED lamp, etc.) that outputs to the outside.
  • the input device 1005 and the output device 1006 may have an integrated configuration (for example, a touch panel).
  • Bus 1007 may be configured using a single bus or may be configured using different buses for each device.
  • the device includes hardware such as a microprocessor, a digital signal processor (Digital Signal Processor: DSP), ApplicationSpecific IntegratedCircuit (ASIC), ProgrammableLogicDevice (PLD), and FieldProgrammableGateArray (FPGA).
  • the hardware may implement some or all of each functional block.
  • processor 1001 may be implemented using at least one of these hardware.
  • information notification includes physical layer signaling (eg Downlink Control Information (DCI), Uplink Control Information (UCI), higher layer signaling (eg RRC signaling, Medium Access Control (MAC) signaling, Master Information Block). (MIB), System Information Block (SIB)), other signals or combinations thereof.
  • DCI Downlink Control Information
  • UCI Uplink Control Information
  • RRC signaling eg RRC signaling, Medium Access Control (MAC) signaling, Master Information Block). (MIB), System Information Block (SIB)
  • RRC signaling may also be referred to as an RRC message, eg, RRC Connection Setup. ) Message, RRC Connection Reconfiguration message, etc. may be used.
  • LTE LongTermEvolution
  • LTE-A LTE-Advanced
  • SUPER3G IMT-Advanced
  • 4G 4th generation mobile communication system
  • 5G 5th generation mobile communication system
  • FutureRadioAccess FAA
  • NewRadio NR
  • W-CDMA registered trademark
  • GSM registered trademark
  • CDMA2000 Code Division Multiple Access 2000
  • UMB UltraMobileBroadband
  • IEEE802.11 Wi-Fi (registered trademark)
  • IEEE802.16 WiMAX®
  • IEEE802.20 Ultra-WideBand
  • Bluetooth® Ultra-WideBand
  • other systems that utilize appropriate systems and at least one of the next-generation systems extended based on them. It may be applied to one.
  • a plurality of systems may be applied in combination (for example, a combination of at least one of LTE and LTE-A and 5G).
  • the specific operation performed by the base station in this disclosure may be performed by its upper node (upper node).
  • various operations performed for communication with the terminal are the base station and other network nodes other than the base station (eg, MME or). It is clear that it can be done by at least one of (but not limited to, S-GW, etc.).
  • S-GW network node
  • the case where there is one network node other than the base station is illustrated above, it may be a combination of a plurality of other network nodes (for example, MME and S-GW).
  • Information and signals can be output from the upper layer (or lower layer) to the lower layer (or upper layer).
  • Input / output may be performed via a plurality of network nodes.
  • the input / output information may be stored in a specific location (for example, memory) or may be managed using a management table.
  • the input / output information may be overwritten, updated, or added.
  • the output information may be deleted.
  • the entered information may be transmitted to other devices.
  • the determination may be made by a value represented by 1 bit (0 or 1), by a boolean value (Boolean: true or false), or by comparing numerical values (for example, a predetermined value). It may be done by comparison with the value).
  • the notification of predetermined information (for example, the notification of "being X") is not limited to the explicit one, but is performed implicitly (for example, the notification of the predetermined information is not performed). May be good.
  • software, instructions, information, etc. may be transmitted and received via a transmission medium.
  • a transmission medium For example, a website, where the software uses at least one of wired technology (coaxial cable, fiber optic cable, twisted pair, Digital Subscriber Line (DSL), etc.) and wireless technology (infrared, microwave, etc.).
  • wired technology coaxial cable, fiber optic cable, twisted pair, Digital Subscriber Line (DSL), etc.
  • wireless technology infrared, microwave, etc.
  • the information, signals, etc. described in this disclosure may be represented using any of a variety of different techniques.
  • data, instructions, commands, information, signals, bits, symbols, chips, etc. that may be referred to throughout the above description are voltages, currents, electromagnetic waves, magnetic fields or magnetic particles, light fields or photons, or any of these. It may be represented by a combination of.
  • a channel and a symbol may be a signal (signaling).
  • the signal may be a message.
  • the component carrier (CC) may be referred to as a carrier frequency, a cell, a frequency carrier, or the like.
  • system and “network” used in this disclosure are used interchangeably.
  • the information, parameters, etc. described in the present disclosure may be expressed using an absolute value, a relative value from a predetermined value, or another corresponding information. It may be represented.
  • the radio resource may be one indicated by an index.
  • Base Station BS
  • Wireless Base Station Wireless Base Station
  • Fixed Station NodeB
  • eNodeB eNodeB
  • gNodeB gNodeB
  • Access point "transmission point”
  • reception point "transmission / reception point”
  • cell “sector”
  • Cell group “cell group”
  • Terms such as “carrier” and “component carrier” may be used interchangeably.
  • Base stations are sometimes referred to by terms such as macrocells, small cells, femtocells, and picocells.
  • the base station can accommodate one or more (for example, three) cells (also called sectors). When a base station accommodates multiple cells, the entire base station coverage area can be divided into multiple smaller areas, each smaller area being a base station subsystem (eg, a remote radio for indoor use). Communication services can also be provided by Head: RRH).
  • RRH Remote Radio Head
  • cell refers to a part or all of the coverage area of at least one of the base station providing communication services in this coverage and the base station subsystem.
  • MS Mobile Station
  • UE user equipment
  • terminal terminal
  • Mobile stations can be used by those skilled in the art as subscriber stations, mobile units, subscriber units, wireless units, remote units, mobile devices, wireless devices, wireless communication devices, remote devices, mobile subscriber stations, access terminals, mobile terminals, wireless. It may also be referred to as a terminal, remote terminal, handset, user agent, mobile client, client, or some other suitable term.
  • At least one of the base station and the mobile station may be called a transmitting device, a receiving device, a communication device, or the like.
  • At least one of the base station and the mobile station may be a device mounted on the mobile body, a mobile body itself, or the like.
  • the moving body may be a vehicle (eg, car, airplane, etc.), an unmanned moving body (eg, drone, self-driving car, etc.), or a robot (manned or unmanned). ) May be.
  • at least one of the base station and the mobile station includes a device that does not necessarily move during communication operation.
  • at least one of a base station and a mobile station may be an Internet of Things (IoT) device such as a sensor.
  • IoT Internet of Things
  • the base station in the present disclosure may be read as a mobile station (user terminal, the same shall apply hereinafter).
  • communication between a base station and a mobile station has been replaced with communication between a plurality of mobile stations (for example, it may be called Device-to-Device (D2D), Vehicle-to-Everything (V2X), etc.).
  • D2D Device-to-Device
  • V2X Vehicle-to-Everything
  • Each aspect / embodiment of the present disclosure may be applied to the configuration.
  • the mobile station may have the functions of the base station.
  • words such as "up” and “down” may be read as words corresponding to communication between terminals (for example, "side”).
  • the upstream channel, the downstream channel, and the like may be read as a side channel.
  • the mobile station in the present disclosure may be read as a base station.
  • the base station may have the functions of the mobile station.
  • the wireless frame may be composed of one or more frames in the time domain. Each one or more frames in the time domain may be referred to as a subframe.
  • the subframe may be further composed of one or more slots in the time domain.
  • the subframe may have a fixed time length (eg, 1 ms) that does not depend on numerology.
  • the numerology may be a communication parameter applied to at least one of transmission and reception of a signal or channel.
  • Numerology includes, for example, SubCarrier Spacing (SCS), bandwidth, symbol length, cyclic prefix length, transmission time interval (Transmission Time Interval: TTI), number of symbols per TTI, wireless frame configuration, transmission / reception. It may indicate at least one of a specific filtering process performed by the machine in the frequency domain, a specific windowing process performed by the transmitter / receiver in the time domain, and the like.
  • the slot may be composed of one or more symbols (Orthogonal Frequency Division Multiplexing (OFDM) symbol, Single Carrier Frequency Division Multiple Access (SC-FDMA) symbol, etc.) in the time region. Slots may be unit of time based on numerology.
  • OFDM Orthogonal Frequency Division Multiplexing
  • SC-FDMA Single Carrier Frequency Division Multiple Access
  • the slot may include a plurality of mini slots. Each minislot may be composed of one or more symbols in the time domain. Further, the mini slot may be referred to as a sub slot. The minislot may consist of a smaller number of symbols than the slot.
  • PDSCH (or PUSCH) transmitted in time units larger than the minislot may be referred to as PDSCH (or PUSCH) mapping type A.
  • the PDSCH (or PUSCH) transmitted using the minislot may be referred to as PDSCH (or PUSCH) mapping type B.
  • the wireless frame, subframe, slot, minislot and symbol all represent the time unit when transmitting a signal.
  • the radio frame, subframe, slot, minislot and symbol may use different names corresponding to each.
  • one subframe may be referred to as a transmission time interval (TTI)
  • TTI transmission time interval
  • TTI transmission time interval
  • TTI transmission time interval
  • TTI transmission time interval
  • TTI transmission time interval
  • TTI slot or one minislot
  • at least one of the subframe and TTI may be a subframe (1ms) in existing LTE, a period shorter than 1ms (eg, 1-13 symbols), or a period longer than 1ms. May be.
  • the unit representing TTI may be called a slot, a mini slot, or the like instead of a subframe.
  • TTI refers to, for example, the minimum time unit of scheduling in wireless communication.
  • a base station schedules each user terminal to allocate wireless resources (frequency bandwidth that can be used in each user terminal, transmission power, etc.) in TTI units.
  • the definition of TTI is not limited to this.
  • TTI may be a transmission time unit such as a channel-encoded data packet (transport block), a code block, or a code word, or may be a processing unit such as scheduling or link adaptation.
  • the time interval for example, the number of symbols
  • the transport block, code block, code word, etc. may be shorter than the TTI.
  • one or more TTIs may be the minimum time unit for scheduling. Further, the number of slots (number of mini-slots) constituting the minimum time unit of the scheduling may be controlled.
  • TTI with a time length of 1 ms may be called normal TTI (TTI in LTE Rel.8-12), normal TTI, long TTI, normal subframe, normal subframe, long subframe, slot, etc.
  • a TTI shorter than a normal TTI may be referred to as a shortened TTI, a short TTI, a partial TTI (partial or fractional TTI), a shortened subframe, a short subframe, a minislot, a subslot, a slot, and the like.
  • the long TTI (for example, normal TTI, subframe, etc.) may be read as a TTI having a time length of more than 1 ms
  • the short TTI (for example, shortened TTI, etc.) may be read as a TTI less than the TTI length of the long TTI and 1 ms. It may be read as a TTI having the above TTI length.
  • the resource block (RB) is a resource allocation unit in the time domain and the frequency domain, and may include one or a plurality of continuous subcarriers in the frequency domain.
  • the number of subcarriers contained in RB may be the same regardless of numerology, and may be, for example, 12.
  • the number of subcarriers contained in the RB may be determined based on numerology.
  • the time domain of RB may include one or more symbols, and may have a length of 1 slot, 1 mini slot, 1 subframe, or 1 TTI.
  • Each 1TTI, 1 subframe, etc. may be composed of one or a plurality of resource blocks.
  • One or more RBs are physical resource blocks (Physical RB: PRB), sub-carrier groups (Sub-Carrier Group: SCG), resource element groups (Resource Element Group: REG), PRB pairs, RB pairs, etc. May be called.
  • Physical RB Physical RB: PRB
  • sub-carrier groups Sub-Carrier Group: SCG
  • resource element groups Resource Element Group: REG
  • PRB pairs RB pairs, etc. May be called.
  • the resource block may be composed of one or a plurality of resource elements (ResourceElement: RE).
  • RE resource elements
  • 1RE may be a radio resource area of 1 subcarrier and 1 symbol.
  • Bandwidth Part (which may also be called partial bandwidth, etc.) may represent a subset of consecutive common resource blocks (RBs) for a neurology in a carrier. good.
  • the common RB may be specified by the index of the RB with respect to the common reference point of the carrier.
  • PRBs may be defined in a BWP and numbered within that BWP.
  • BWP may include BWP for UL (UL BWP) and BWP for DL (DL BWP).
  • BWP for UL
  • DL BWP BWP for DL
  • One or more BWPs may be set in one carrier for the UE.
  • At least one of the configured BWPs may be active, and the UE may not expect to send or receive a given signal / channel outside the active BWP.
  • “cell”, “carrier” and the like in this disclosure may be read as “BWP”.
  • the above-mentioned structures such as wireless frames, subframes, slots, mini-slots and symbols are merely examples.
  • the number of subframes contained in a wireless frame the number of slots per subframe or wireless frame, the number of minislots contained within a slot, the number of symbols and RBs contained in a slot or minislot, included in RB.
  • the number of subcarriers, as well as the number of symbols in the TTI, the symbol length, the cyclic prefix (CP) length, and other configurations can be changed in various ways.
  • connection means any direct or indirect connection or connection between two or more elements and each other. It can include the presence of one or more intermediate elements between two “connected” or “combined” elements.
  • the connection or connection between the elements may be physical, logical, or a combination thereof.
  • connection may be read as "access”.
  • the two elements use at least one of one or more wires, cables and printed electrical connections, and as some non-limiting and non-comprehensive examples, the radio frequency domain. Can be considered to be “connected” or “coupled” to each other using electromagnetic energy having wavelengths in the microwave and light (both visible and invisible) regions.
  • the reference signal may also be abbreviated as Reference Signal (RS) and may be referred to as a pilot (Pilot) depending on the applied standard.
  • RS Reference Signal
  • Pilot pilot
  • each of the above devices may be replaced with a "part”, a “circuit”, a “device”, or the like.
  • references to elements using designations such as “first” and “second” as used in this disclosure does not generally limit the quantity or order of those elements. These designations can be used in the present disclosure as a convenient way to distinguish between two or more elements. Therefore, references to the first and second elements do not mean that only two elements can be adopted there, or that the first element must somehow precede the second element.
  • determining and “determining” used in this disclosure may include a wide variety of actions.
  • “Judgment” and “decision” are, for example, judgment (judging), calculation (calculating), calculation (computing), processing (processing), derivation (deriving), investigation (investigating), search (looking up, search, inquiry). It may include (eg, searching in a table, database or another data structure), ascertaining as “judgment” or “decision”.
  • judgment and “decision” are receiving (for example, receiving information), transmitting (for example, transmitting information), input (input), output (output), and access. It may include (for example, accessing data in memory) to be regarded as “judgment” or “decision”.
  • judgment and “decision” are considered to be “judgment” and “decision” when the things such as solving, selecting, choosing, establishing, and comparing are regarded as “judgment” and “decision”. Can include. That is, “judgment” and “decision” may include considering some action as “judgment” and “decision”. Further, “judgment (decision)” may be read as “assuming", “expecting”, “considering” and the like.
  • the term "A and B are different” may mean “A and B are different from each other”.
  • the term may mean that "A and B are different from C”.
  • Terms such as “separate” and “combined” may be interpreted in the same way as “different”.
  • Radio communication system 20 NG-RAN 100 gNB 200 UE 210 Wireless signal transmitter / receiver 220 Amplifier 230 Modulator / demodulator 240 Control signal / reference signal processing 250 Encoding / decoding 260 Data transmitter / receiver 270 Control 1001 Processor 1002 Memory 1003 Storage 1004 Communication device 1005 Input device 1006 Output device 1007 Bus

Abstract

This terminal comprises: a communication unit that executes simultaneous transmission of uplink signals by using uplink channels which include at least physical uplink control channels through different component carriers; and a control unit that controls the simultaneous transmission of the uplink signals. The control unit determines the upper limit number of component carriers for use in the simultaneous transmission of the uplink signals on the basis of the number of physical uplink control channel groups regarding the physical uplink control channels and the number of supports by the component carriers for supporting the simultaneous transmission of the uplink signals.

Description

端末Terminal
 本開示は、無線通信を実行する端末、特に、異なるコンポーネントキャリアを介して上りリンク信号の同時送信を実行する端末に関する。 The present disclosure relates to a terminal that executes wireless communication, particularly a terminal that executes simultaneous transmission of uplink signals via different component carriers.
 3rd Generation Partnership Project(3GPP)は、5th generation mobile communication system(5G、New Radio(NR)またはNext Generation(NG)とも呼ばれる)を仕様化し、さらに、Beyond 5G、5G Evolution或いは6Gと呼ばれる次世代の仕様化も進めている。 The 3rd Generation Partnership Project (3GPP) specifies the 5th generation mobile communication system (also called 5G, New Radio (NR) or Next Generation (NG)), and next-generation specifications called Beyond 5G, 5G Evolution or 6G. We are also proceeding with the conversion.
 3GPPのRelease 15及びRelease 16(NR)では、同一セルグループに属するコンポーネントキャリア(CC)の異なるCCにおいてPUSCH(Physical Uplink Shared Channel)及びPUSCHの同時送信がUE Capabilityによらずにサポートされる。同一セルグループに属するCCの異なるCCにおいてPUCCH(Physical Uplink Control Channel)及びPUCCHの同時送信がUE Capability(例えば、twoPUSCH-Group)によってサポートされる。同一セルグループに属するCCの異なるCCにおいてPUSCH及びPUCCHの同時送信がUE Capability(例えば、twoPUSCH-Group)によってサポートされる。 In 3GPP Release 15 and Release 16 (NR), simultaneous transmission of PUSCH (Physical Uplink Shared Channel) and PUSCH is supported regardless of UE Capability in CCs with different component carriers (CC) belonging to the same cell group. Simultaneous transmission of PUCCH (Physical Uplink Control Channel) and PUCCH in different CCs belonging to the same cell group is supported by UE Capability (for example, twoPUSCH-Group). Simultaneous transmission of PUSCH and PUCCH is supported by UE Capability (eg, twoPUSCH-Group) in different CCs belonging to the same cell group.
 さらに、3GPPのRelease 17では、異なるセルにおけるPUSCH及びPUCCHの同時送信(Simultaneous UL TX)をサポートすることが合意された(例えば、非特許文献1)。 Furthermore, it was agreed that Release 17 of 3GPP will support simultaneous transmission of PUSCH and PUCCH (Simultaneous ULTX) in different cells (for example, Non-Patent Document 1).
 このような背景下において、発明者等は、鋭意検討の結果、Simultaneous UL TXのサポートを想定したケースにおいて、PUSCH及びPUCCHを含む上りリンクチャネルを用いた上りリンク信号の同時送信において、同時送信に用いることが可能なCCの上限数を明確にする必要性を見出した。言い換えると、発明者等は、同時送信に用いることが可能なCCの上限数が明確ではないと、上りリンク信号の同時送信を適切に実行することができないことを見出した。 Against this background, as a result of diligent studies, the inventors have made simultaneous transmission of uplink signals using uplink channels including PUSCH and PUCCH in cases where support for Simultaneous ULTX is assumed. We have found the need to clarify the maximum number of CCs that can be used. In other words, the inventors have found that the simultaneous transmission of uplink signals cannot be properly executed unless the upper limit of the number of CCs that can be used for simultaneous transmission is clear.
 そこで、以下の開示は、このような状況に鑑みてなされたものであり、上りリンク信号の同時送信を適切に実行し得る端末の提供を目的とする。 Therefore, the following disclosure was made in view of such a situation, and aims to provide a terminal capable of appropriately executing the simultaneous transmission of uplink signals.
 本開示の一態様は、端末であって、異なるコンポーネントキャリアを介して、物理上りリンク制御チャネルを少なくとも含む上りリンクチャネルを用いて上りリンク信号の同時送信を実行する通信部と、前記上りリンク信号の同時送信を制御する制御部と、を備え、前記制御部は、前記物理上りリンク制御チャネルに関する物理上りリンク制御チャネルグループのグループ数と、前記上りリンク信号の同時送信をサポートするコンポーネントキャリアのサポート数と、に基づいて、前記上りリンク信号の同時送信に用いるコンポーネントキャリアの上限数を決定する、ことを要旨とする。 One aspect of the present disclosure is a communication unit that is a terminal that simultaneously transmits an uplink signal using an uplink channel including at least a physical uplink control channel via different component carriers, and the uplink signal. The control unit includes a control unit that controls the simultaneous transmission of the physical uplink control channel, and the control unit supports the number of groups of the physical uplink control channel groups related to the physical uplink control channel and the support of the component carrier that supports the simultaneous transmission of the uplink signal. The gist is to determine the upper limit number of component carriers used for simultaneous transmission of the uplink signal based on the number.
図1は、無線通信システム10の全体概略構成図である。FIG. 1 is an overall schematic configuration diagram of the wireless communication system 10. 図2は、無線通信システム10において用いられる周波数レンジを示す図である。FIG. 2 is a diagram showing a frequency range used in the wireless communication system 10. 図3は、無線通信システム10において用いられる無線フレーム、サブフレーム及びスロットの構成例を示す図である。FIG. 3 is a diagram showing a configuration example of a wireless frame, a subframe, and a slot used in the wireless communication system 10. 図4は、UE200の機能ブロック構成図である。FIG. 4 is a functional block configuration diagram of the UE 200. 図5は、上限数の決定方法について説明するための図である。FIG. 5 is a diagram for explaining a method of determining the upper limit number. 図6は、上限数の決定方法について説明するための図である。FIG. 6 is a diagram for explaining a method of determining the upper limit number. 図7は、上限数の決定方法について説明するための図である。FIG. 7 is a diagram for explaining a method of determining the upper limit number. 図8は、動作例を示す図である。FIG. 8 is a diagram showing an operation example. 図9は、UE200のハードウェア構成の一例を示す図である。FIG. 9 is a diagram showing an example of the hardware configuration of the UE 200.
 以下、実施形態を図面に基づいて説明する。なお、同一の機能や構成には、同一または類似の符号を付して、その説明を適宜省略する。 Hereinafter, embodiments will be described based on the drawings. The same functions and configurations are designated by the same or similar reference numerals, and the description thereof will be omitted as appropriate.
 [実施形態]
 (1)無線通信システムの全体概略構成
 図1は、実施形態に係る無線通信システム10の全体概略構成図である。無線通信システム10は、5G New Radio(NR)に従った無線通信システムであり、Next Generation-Radio Access Network 20(以下、NG-RAN20)、及び端末200(以下、UE200)を含む。
[Embodiment]
(1) Overall Schematic Configuration of Wireless Communication System FIG. 1 is an overall schematic configuration diagram of the wireless communication system 10 according to the embodiment. The wireless communication system 10 is a wireless communication system according to 5G New Radio (NR), and includes a Next Generation-Radio Access Network 20 (hereinafter, NG-RAN20) and a terminal 200 (hereinafter, UE200).
 なお、無線通信システム10は、Beyond 5G、5G Evolution或いは6Gと呼ばれる方式に従った無線通信システムでもよい。 The wireless communication system 10 may be a wireless communication system according to a method called Beyond 5G, 5G Evolution, or 6G.
 NG-RAN20は、無線基地局100A(以下、gNB100A)及び無線基地局100B(以下、gNB100B)を含む。なお、gNB及びUEの数を含む無線通信システム10の具体的な構成は、図1に示した例に限定されない。 NG-RAN20 includes a radio base station 100A (hereinafter, gNB100A) and a radio base station 100B (hereinafter, gNB100B). The specific configuration of the wireless communication system 10 including the number of gNBs and UEs is not limited to the example shown in FIG.
 NG-RAN20は、実際には複数のNG-RAN Node、具体的には、gNB(またはng-eNB)を含み、5Gに従ったコアネットワーク(5GC、不図示)と接続される。なお、NG-RAN20及び5GCは、単に「ネットワーク」と表現されてもよい。 NG-RAN20 actually includes multiple NG-RANNodes, specifically gNB (or ng-eNB), and is connected to a core network (5GC, not shown) according to 5G. In addition, NG-RAN20 and 5GC may be simply expressed as "network".
 gNB100A及びgNB100Bは、5Gに従った無線基地局であり、UE200と5Gに従った無線通信を実行する。gNB100A、gNB100B及びUE200は、複数のアンテナ素子から送信される無線信号を制御することによって、より指向性の高いビームBMを生成するMassive MIMO(Multiple-Input Multiple-Output)、複数のコンポーネントキャリア(CC)を束ねて用いるキャリアアグリゲーション(CA)、及びUEと2つのNG-RAN Nodeそれぞれとの間において同時に通信を行うデュアルコネクティビティ(DC)などに対応することができる。DCは、MCG(Master Cell Group)及びSCG(Secondary Cell Group)を用いたMR-DC(Multi-RAT Dual Connectivity)を含んでもよい。MR-DCとしては、EN-DC(E-UTRA-NR Dual Connectivity)、NE-DC(NR-EUTRA Dual Connectivity)及びNR-DC(NR-NR Dual Connectivity)などが挙げられる。ここで、CAで用いるCC(セル)は、UE200に設定された同一セルグループを構成すると考えてもよい。MCG及びSCGは、UE200に設定された同一のセルグループを構成すると考えてもよい。 GNB100A and gNB100B are radio base stations according to 5G, and execute wireless communication according to UE200 and 5G. gNB100A, gNB100B and UE200 are Massive MIMO (Multiple-Input Multiple-Output) and multiple component carriers (CC) that generate beam BM with higher directivity by controlling radio signals transmitted from multiple antenna elements. ) Can be bundled and used for carrier aggregation (CA), and dual connectivity (DC) for simultaneous communication between the UE and each of the two NG-RAN Nodes. The DC may include MR-DC (Multi-RAT Dual Connectivity) using MCG (Master Cell Group) and SCG (Secondary Cell Group). Examples of MR-DC include EN-DC (E-UTRA-NR Dual Connectivity), NE-DC (NR-EUTRA Dual Connectivity) and NR-DC (NR-NR Dual Connectivity). Here, CC (cell) used in CA may be considered to constitute the same cell group set in UE200. MCG and SCG may be considered to constitute the same cell group set in UE200.
 また、無線通信システム10は、複数の周波数レンジ(FR)に対応する。図2は、無線通信システム10において用いられる周波数レンジを示す。 In addition, the wireless communication system 10 supports a plurality of frequency ranges (FR). FIG. 2 shows the frequency range used in the wireless communication system 10.
 図2に示すように、無線通信システム10は、FR1及びFR2に対応する。各FRの周波数帯は、次のとおりである。 As shown in FIG. 2, the wireless communication system 10 corresponds to FR1 and FR2. The frequency bands of each FR are as follows.
 ・FR1:410 MHz~7.125 GHz
 ・FR2:24.25 GHz~52.6 GHz
 FR1では、15, 30または60kHzのSub-Carrier Spacing(SCS)が用いられ、5~100MHzの帯域幅(BW)が用いられてもよい。FR2は、FR1よりも高周波数であり、60,または120kHz(240kHzが含まれてもよい)のSCSが用いられ、50~400MHzの帯域幅(BW)が用いられてもよい。
・ FR1: 410 MHz to 7.125 GHz
・ FR2: 24.25 GHz to 52.6 GHz
FR1 uses a Sub-Carrier Spacing (SCS) of 15, 30 or 60 kHz and may use a bandwidth (BW) of 5-100 MHz. FR2 has a higher frequency than FR1, and SCS of 60, or 120 kHz (240 kHz may be included) is used, and a bandwidth (BW) of 50 to 400 MHz may be used.
 なお、SCSは、numerologyと解釈されてもよい。numerologyは、3GPP TS38.300において定義されており、周波数ドメインにおける一つのサブキャリア間隔と対応する。 SCS may be interpreted as numerology. Numerology is defined in 3GPP TS38.300 and corresponds to one subcarrier interval in the frequency domain.
 さらに、無線通信システム10は、FR2の周波数帯よりも高周波数帯にも対応する。具体的には、無線通信システム10は、52.6GHzを超え、114.25GHzまでの周波数帯に対応する。このような高周波数帯は、便宜上「FR2x」と呼ばれてもよい。 Furthermore, the wireless communication system 10 also supports a higher frequency band than the FR2 frequency band. Specifically, the wireless communication system 10 corresponds to a frequency band exceeding 52.6 GHz and up to 114.25 GHz. Such a high frequency band may be referred to as "FR2x" for convenience.
 このような問題を解決するため、52.6GHzを超える帯域を用いる場合、より大きなSub-Carrier Spacing(SCS)を有するCyclic Prefix-Orthogonal Frequency Division Multiplexing(CP-OFDM)/Discrete Fourier Transform - Spread(DFT-S-OFDM)を適用してもよい。 To solve this problem, when using a band exceeding 52.6 GHz, Cyclic Prefix-Orthogonal Frequency Division Multiplexing (CP-OFDM) / Discrete Fourier Transform-Spread (DFT-) with a larger Sub-Carrier Spacing (SCS). S-OFDM) may be applied.
 図3は、無線通信システム10において用いられる無線フレーム、サブフレーム及びスロットの構成例を示す。 FIG. 3 shows a configuration example of a wireless frame, a subframe, and a slot used in the wireless communication system 10.
 図3に示すように、1スロットは、14シンボルで構成され、SCSが大きく(広く)なる程、シンボル期間(及びスロット期間)は短くなる。SCSは、図3に示す間隔(周波数)に限定されない。例えば、480kHz、960kHzなどが用いられてもよい。 As shown in FIG. 3, one slot is composed of 14 symbols, and the larger (wider) the SCS, the shorter the symbol period (and slot period). The SCS is not limited to the interval (frequency) shown in FIG. For example, 480 kHz, 960 kHz, etc. may be used.
 また、1スロットを構成するシンボル数は、必ずしも14シンボルでなくてもよい(例えば、28、56シンボル)。さらに、サブフレーム当たりのスロット数は、SCSによって異なっていてよい。 Further, the number of symbols constituting one slot does not necessarily have to be 14 symbols (for example, 28, 56 symbols). In addition, the number of slots per subframe may vary from SCS to SCS.
 なお、図3に示す時間方向(t)は、時間領域、シンボル期間またはシンボル時間などと呼ばれてもよい。また、周波数方向は、周波数領域、リソースブロック、サブキャリア、BWP (Bandwidth Part)などと呼ばれてもよい。 The time direction (t) shown in FIG. 3 may be referred to as a time domain, a symbol period, a symbol time, or the like. Further, the frequency direction may be referred to as a frequency domain, a resource block, a subcarrier, a BWP (Bandwidth Part), or the like.
 (2)無線通信システムの機能ブロック構成
 次に、無線通信システム10の機能ブロック構成について説明する。具体的には、UE200の機能ブロック構成について説明する。
(2) Functional block configuration of the wireless communication system Next, the functional block configuration of the wireless communication system 10 will be described. Specifically, the functional block configuration of UE200 will be described.
 図4は、UE200の機能ブロック構成図である。図4に示すように、UE200は、無線信号送受信部210、アンプ部220、変復調部230、制御信号・参照信号処理部240、符号化/復号部250、データ送受信部260及び制御部270を備える。 FIG. 4 is a functional block configuration diagram of UE200. As shown in FIG. 4, the UE 200 includes a radio signal transmission / reception unit 210, an amplifier unit 220, a modulation / demodulation unit 230, a control signal / reference signal processing unit 240, a coding / decoding unit 250, a data transmission / reception unit 260, and a control unit 270. ..
 無線信号送受信部210は、NRに従った無線信号を送受信する。無線信号送受信部210は、Massive MIMO、複数のCCを束ねて用いるCA、及びUEと2つのNG-RAN Nodeそれぞれとの間において同時に通信を行うDCなどに対応する。 The radio signal transmission / reception unit 210 transmits / receives a radio signal according to NR. The radio signal transmission / reception unit 210 corresponds to Massive MIMO, a CA that bundles a plurality of CCs, and a DC that simultaneously communicates between the UE and each of the two NG-RAN Nodes.
 アンプ部220は、PA (Power Amplifier)/LNA (Low Noise Amplifier)などによって構成される。アンプ部220は、変復調部230から出力された信号を所定の電力レベルに増幅する。また、アンプ部220は、無線信号送受信部210から出力されたRF信号を増幅する。 The amplifier section 220 is composed of PA (Power Amplifier) / LNA (Low Noise Amplifier) and the like. The amplifier unit 220 amplifies the signal output from the modulation / demodulation unit 230 to a predetermined power level. Further, the amplifier unit 220 amplifies the RF signal output from the radio signal transmission / reception unit 210.
 変復調部230は、所定の通信先(gNB100または他のgNB)毎に、データ変調/復調、送信電力設定及びリソースブロック割当などを実行する。変復調部230では、Cyclic Prefix-Orthogonal Frequency Division Multiplexing(CP-OFDM)/Discrete Fourier Transform - Spread(DFT-S-OFDM)が適用されてもよい。また、DFT-S-OFDMは、上りリンク(UL)だけでなく、下りリンク(DL)にも用いられてもよい。 The modulation / demodulation unit 230 executes data modulation / demodulation, transmission power setting, resource block allocation, etc. for each predetermined communication destination (gNB100 or other gNB). Cyclic Prefix-Orthogonal Frequency Division Multiplexing (CP-OFDM) / Discrete Fourier Transform-Spread (DFT-S-OFDM) may be applied to the modulation / demodulation unit 230. Further, the DFT-S-OFDM may be used not only for the uplink (UL) but also for the downlink (DL).
 制御信号・参照信号処理部240は、UE200が送受信する各種の制御信号に関する処理、及びUE200が送受信する各種の参照信号に関する処理を実行する。  The control signal / reference signal processing unit 240 executes processing related to various control signals transmitted / received by the UE 200 and processing related to various reference signals transmitted / received by the UE 200. The
 具体的には、制御信号・参照信号処理部240は、gNB100から所定の制御チャネルを介して送信される各種の制御信号、例えば、無線リソース制御レイヤ(RRC)の制御信号を受信する。また、制御信号・参照信号処理部240は、gNB100に向けて、所定の制御チャネルを介して各種の制御信号を送信する。  Specifically, the control signal / reference signal processing unit 240 receives various control signals transmitted from the gNB 100 via a predetermined control channel, for example, control signals of the radio resource control layer (RRC). Further, the control signal / reference signal processing unit 240 transmits various control signals to the gNB 100 via a predetermined control channel. The
 制御信号・参照信号処理部240は、Demodulation Reference Signal(DMRS)、及びPhase Tracking Reference Signal (PTRS)などの参照信号(RS)を用いた処理を実行する。 The control signal / reference signal processing unit 240 executes processing using a reference signal (RS) such as Demodulation Reference Signal (DMRS) and Phase Tracking Reference Signal (PTRS).
 DMRSは、データ復調に用いるフェージングチャネルを推定するための端末個別の基地局~端末間において既知の参照信号(パイロット信号)である。PTRSは、高い周波数帯で課題となる位相雑音の推定を目的した端末個別の参照信号である。 DMRS is a reference signal (pilot signal) known between the base station and the terminal of each terminal for estimating the fading channel used for data demodulation. PTRS is a terminal-specific reference signal for the purpose of estimating phase noise, which is a problem in high frequency bands.
 なお、参照信号には、DMRS及びPTRS以外に、Channel State Information-Reference Signal(CSI-RS)、Sounding Reference Signal(SRS)、及び位置情報用のPositioning Reference Signal(PRS)が含まれてもよい。 In addition to DMRS and PTRS, the reference signal may include ChannelStateInformation-ReferenceSignal (CSI-RS), SoundingReferenceSignal (SRS), and PositioningReferenceSignal (PRS) for location information.
 また、チャネルには、制御チャネルとデータチャネルとが含まれる。制御チャネルには、PDCCH(Physical Downlink Control Channel)、PUCCH(Physical Uplink Control Channel)、RACH(Random Access Channel)、Random Access Radio Network Temporary Identifier(RA-RNTI)を含むDownlink Control Information (DCI))、及びPhysical Broadcast Channel(PBCH)などが含まれる。 Further, the channel includes a control channel and a data channel. Control channels include PDCCH (Physical Downlink Control Channel), PUCCH (Physical Uplink Control Channel), RACH (Random Access Channel), Random Access Radio Network Temporary Identifier (RA-RNTI), Downlink Control Information (DCI), and Physical Broadcast Channel (PBCH) etc. are included.
 また、データチャネルには、PDSCH(Physical Downlink Shared Channel)、及びPUSCH(Physical Uplink Shared Channel)などが含まれる。データとは、データチャネルを介して送信されるデータを意味する。データチャネルは、共有チャネルと読み替えられてもよい。 The data channels include PDSCH (Physical Downlink Shared Channel) and PUSCH (Physical Uplink Shared Channel). Data means data transmitted over a data channel. The data channel may be read as a shared channel.
 実施形態では、制御信号・参照信号処理部240は、異なるCCを介して、物理上りリンク制御チャネル(PUCCH: Physical Uplink Control Channel)を少なくとも含む上りリンクチャネルを用いて上りリンク信号の同時送信を実行する通信部を構成する。同時送信は、上りリンクチャネルの多重を行わずに、異なるCCを介して上りリンク信号を送信する手順を意味する。上りリンクチャネルは、物理上りリンク共有チャネル(PUSCH: Physical Uplink Shared Channel)を含んでもよい。上りリンク信号は、上りリンク制御情報(UCI: Uplink Control Information)を含んでもよい。UCIは、1以上のTBに対する確認応答(HARQ-ACK)を含んでもよい。UCIは、リソースのスケジューリングを要求するSR(Scheduling Request)を含んでもよく、チャネルの状態を表すCSI(Channel State Information)を含んでもよい。UCIは、PUCCHを介して送信されてもよく、PUSCHを介して送信されてもよい。 In the embodiment, the control signal / reference signal processing unit 240 executes simultaneous transmission of uplink signals using an uplink channel including at least a physical uplink control channel (PUCCH: Physical Uplink Control Channel) via different CCs. Configure the communication unit. Simultaneous transmission means a procedure for transmitting uplink signals via different CCs without multiplexing uplink channels. The uplink channel may include a physical uplink shared channel (PUSCH: PhysicalUplink Shared Channel). The uplink signal may include uplink control information (UCI: Uplink Control Information). The UCI may include an acknowledgment (HARQ-ACK) for one or more TBs. The UCI may include an SR (Scheduling Request) that requests the scheduling of resources, or may include a CSI (Channel State Information) that represents the state of the channel. The UCI may be transmitted via PUCCH or may be transmitted via PUSCH.
 符号化/復号部250は、所定の通信先(gNB100または他のgNB)毎に、データの分割/連結及びチャネルコーディング/復号などを実行する。 The coding / decoding unit 250 executes data division / concatenation and channel coding / decoding for each predetermined communication destination (gNB100 or other gNB).
 具体的には、符号化/復号部250は、データ送受信部260から出力されたデータを所定のサイズに分割し、分割されたデータに対してチャネルコーディングを実行する。また、符号化/復号部250は、変復調部230から出力されたデータを復号し、復号したデータを連結する。 Specifically, the coding / decoding unit 250 divides the data output from the data transmission / reception unit 260 into predetermined sizes, and executes channel coding for the divided data. Further, the coding / decoding unit 250 decodes the data output from the modulation / demodulation unit 230 and concatenates the decoded data.
 データ送受信部260は、Protocol Data Unit (PDU)ならびにService Data Unit (SDU)の送受信を実行する。具体的には、データ送受信部260は、複数のレイヤ(媒体アクセス制御レイヤ(MAC)、無線リンク制御レイヤ(RLC)、及びパケット・データ・コンバージェンス・プロトコル・レイヤ(PDCP)など)におけるPDU/SDUの組み立て/分解などを実行する。また、データ送受信部260は、ハイブリッドARQ(Hybrid automatic repeat request)に基づいて、データの誤り訂正及び再送制御を実行する。 The data transmission / reception unit 260 executes transmission / reception of Protocol Data Unit (PDU) and Service Data Unit (SDU). Specifically, the data transmitter / receiver 260 is a PDU / SDU in a plurality of layers (such as a medium access control layer (MAC), a radio link control layer (RLC), and a packet data convergence protocol layer (PDCP)). Assemble / disassemble the. Further, the data transmission / reception unit 260 executes data error correction and retransmission control based on the hybrid ARQ (Hybrid automatic repeat request).
 制御部270は、UE200を構成する各機能ブロックを制御する。特に、実施形態では、制御部270は、上りリンク信号の同時送信を制御する。このようなケースにおいて、制御部270は、PUCCHに関するPUCCH Groupのグループ数と、上りリンク信号の同時送信をサポートするCCのサポート数と、に基づいて、上りリンク信号の同時送信に用いるCCの上限数を決定する。以下においては、上りリンク信号の一例としてUCIを例示する。 The control unit 270 controls each functional block constituting the UE 200. In particular, in the embodiment, the control unit 270 controls the simultaneous transmission of the uplink signal. In such a case, the control unit 270 uses the upper limit of the CC used for the simultaneous transmission of the uplink signal based on the number of PUCCH Group groups related to the PUCCH and the number of CCs supported for the simultaneous transmission of the uplink signal. Determine the number. In the following, UCI will be illustrated as an example of an uplink signal.
 (3)上限数の決定方法
 図5~図7は、上りリンク信号の同時送信に用いるCCの上限数の決定方法を説明するための図である。
(3) Method for determining the upper limit number FIGS. 5 to 7 are diagrams for explaining a method for determining the upper limit number of CCs used for simultaneous transmission of uplink signals.
 第1に、第1同時送信について図5を参照しながら説明する。第1同時送信は、PUCCHに関するPUCCH Groupに関する同時送信である。図5に示すように、同一セルグループに属するPUCCH Groupは、PUCCH Group#1及びPUCCH Group#2を含んでもよい。PUCCH Group#1に属するCCは、CC#1-0、CC#1-1、CC#1-2、CC#1-3などのCCを含んでもよい。PUCCH Group#2に属するCCは、CC#2-0、CC#2-1、CC#2-2、CC#2-3などのCCを含んでもよい。 First, the first simultaneous transmission will be described with reference to FIG. The first simultaneous transmission is a simultaneous transmission relating to the PUCCH Group relating to PUCCH. As shown in FIG. 5, the PUCCH Group belonging to the same cell group may include PUCCH Group # 1 and PUCCH Group # 2. The CC belonging to PUCCH Group # 1 may include CCs such as CC # 1-0, CC # 1-1, CC # 1-2, and CC # 1-3. The CC belonging to PUCCH Group # 2 may include CCs such as CC # 2-0, CC # 2-1, CC # 2-2, and CC # 2-3.
 このようなケースにおいて、PUCCH Groupのそれぞれに属する1つのCCを介してUCIの同時送信を実行することが可能である。例えば、CC#1-0及びCC#2-0を用いてUCIの同時送信を実行することが可能である。 In such a case, it is possible to execute UCI simultaneous transmission via one CC belonging to each PUCCH Group. For example, it is possible to perform simultaneous UCI transmission using CC # 1-0 and CC # 2-0.
 ここで、UCIの同時送信は、PUCCH(UCI)とPUCCH(UCI)との同時送信(以下、PUCCH-PUCCH同時送信)を含んでもよい。UCIの同時送信は、PUSCH(UCI)とPUCCH(UCI)との同時送信(以下、PUSCH-PUCCH同時送信)を含んでもよい。なお、同時送信されるUCIは、同じ情報要素を含むものであってもよいし、異なる情報要素を含むものであってもよい。PUCCH-PUCCH同時送信は、UE Capabilityに含まれる情報要素によって実行されてもよい。同様に、PUSCH-PUCCH同時送信は、UE Capabilityに含まれる情報要素によって実行されてもよい。UE Capabilityに含まれる情報要素は、twoPUCCH-Groupと呼称されてもよい(3GPP TS38.306 V15.7.0 §4.2.7.7 ”FeatureSetUplink parameter”)。 Here, the simultaneous transmission of UCI may include simultaneous transmission of PUCCH (UCI) and PUCCH (UCI) (hereinafter, PUCCH-PUCCH simultaneous transmission). The simultaneous transmission of UCI may include simultaneous transmission of PUSCH (UCI) and PUCCH (UCI) (hereinafter referred to as PUSCH-PUCCH simultaneous transmission). The UCIs transmitted at the same time may include the same information element or may include different information elements. PUCCH-PUCCH simultaneous transmission may be executed by the information element included in UE Capability. Similarly, PUSCH-PUCCH simultaneous transmission may be executed by the information element included in UE Capability. The information element included in UE Capability may be referred to as twoPUCCH-Group (3GPP TS38.306 V15.7.0 §4.2.7.7 “FeatureSetUplink parameter”).
 UE200から受信するUE CapabilityがtwoPUCCH-Groupを含む場合に、PUCCH-PUCCH同時送信が実行されてもよく、PUSCH-PUCCH同時送信が実行されてもよい。このような同時送信においては、PUCCH Groupのそれぞれに属する1つのCCが用いられるため、CCの上限数はPUCCH Groupのグループ数である。PUCCH Groupのグループ数は、UE Capabilityに含まれる情報要素によって特定されてもよく、固定的な値(例えば”2”)であってもよい。 When the UE Capability received from the UE 200 includes two PUCCH-Group, the PUCCH-PUCCH simultaneous transmission may be executed, or the PUSCH-PUCCH simultaneous transmission may be executed. In such simultaneous transmission, one CC belonging to each PUCCH Group is used, so the upper limit of CCs is the number of PUCCH Group groups. The number of groups of PUCCHGroup may be specified by the information element included in UECapability, or may be a fixed value (for example, “2”).
 なお、2以上のPUCCH Groupは、CA(NR CA)で設定されてもよい。このようなケースにおいて、2以上のPUCCH Groupに属するCCは、同一のSCS(numerology)が用いられるCCであってもよい。2以上のPUCCH Groupは、DC(例えば、EN-DC)で設定されてもよい。このようなケースにおいて、各PUCCH Groupは、異なる周波数レンジで設定されてもよい。 Note that two or more PUCCH Groups may be set by CA (NRCA). In such a case, the CCs belonging to two or more PUCCH Groups may be CCs using the same SCS (numerology). Two or more PUCCH Groups may be set by DC (for example, EN-DC). In such a case, each PUCCH Group may be set in a different frequency range.
 第2に、第2同時送信について図6を参照しながら説明する。第2同時送信は、異なるセル(CC)におけるPUSCH(UCI)及びPUCCH(UCI)の同時送信(以下、Simultaneous UL TX)である。図6に示すように、同一セルグループに属するCCは、CC#0、CC#1、CC#2、CC#3などを含んでもよい。 Second, the second simultaneous transmission will be described with reference to FIG. The second simultaneous transmission is the simultaneous transmission of PUSCH (UCI) and PUCCH (UCI) in different cells (CC) (hereinafter referred to as Simultaneous UL TX). As shown in FIG. 6, CCs belonging to the same cell group may include CC # 0, CC # 1, CC # 2, CC # 3, and the like.
 このようなケースにおいて、同一セルグループに属する2以上のCCを介してUCIの同時送信を実行することが可能である。例えば、CC#0~CC#3を用いてUCIの同時送信を実行することが可能である。 In such a case, it is possible to execute UCI simultaneous transmission via two or more CCs belonging to the same cell group. For example, it is possible to execute UCI simultaneous transmission using CC # 0 to CC # 3.
 ここで、Simultaneous UL TXは、上述したPUSCH-PUCCH同時送信を含んでもよい。但し、Simultaneous UL TXは、上述したPUCCH-PUCCH同時送信を含んでもよい。Simultaneous UL TXは、異なる周波数バンドのCCを束ねるCA(以下、inter-CA)で適用されてもよい。Simultaneous UL TXは、同一の周波数バンドのCCを束ねるCA(以下、intra-CA)で適用されてもよい。Simultaneous UL TXは、MR-DCで適用されてもよい。Simultaneous UL TXは、上述した第1同時送信(PUCCH Group)がサポートされない場合に適用されてもよい。Simultaneous UL TXをサポートするCCのサポート数は、UE Capabilityに含まれる情報要素によって特定されてもよい。このような情報要素は、Simultaneous UL TXをサポートするか否かを示す情報要素を含んでもよく、Simultaneous UL TXで用いることが可能なCCのサポート数を示す情報要素を含んでもよい。 Here, Simultaneous ULTX may include the above-mentioned PUSCH-PUCCH simultaneous transmission. However, Simultaneous ULTX may include the above-mentioned PUCCH-PUCCH simultaneous transmission. Simultaneous ULTX may be applied by CA (hereinafter referred to as inter-CA) that bundles CCs of different frequency bands. Simultaneous ULTX may be applied by CA (hereinafter referred to as intra-CA) that bundles CCs in the same frequency band. Simultaneous ULTX may be applied in MR-DC. Simultaneous ULTX may be applied when the above-mentioned first simultaneous transmission (PUCCHGroup) is not supported. The number of CCs that support Simultaneous ULTX may be specified by the information elements contained in UE Capability. Such an information element may include an information element indicating whether or not Simultaneous UL TX is supported, and may include an information element indicating the number of CC supports that can be used in Simultaneous UL TX.
 UE200から受信するUE CapabilityがSimultaneous UL TXをサポートする情報要素を含む場合に、PUSCH-PUCCH同時送信が実行されてもよい。このような同時送信においては、サポート数は、UE Capabilityに含まれる情報要素によって特定されてもよく、固定的な値(例えば”4”)であってもよい。 PUSCH-PUCCH simultaneous transmission may be executed when the UE Capability received from the UE 200 includes an information element that supports Simultaneous UL TX. In such simultaneous transmission, the number of supports may be specified by the information element included in UE Capability, or may be a fixed value (for example, "4").
 さらに、サポート数は、PUCCH Group毎に定義されてもよい。サポート数は、UE200に設定されたセルグループ毎に定義されてもよい。サポート数は、UE200毎に定義されてもよい。 Furthermore, the number of supports may be defined for each PUCCH Group. The number of supports may be defined for each cell group set in UE200. The number of supports may be defined for each UE200.
 なお、上述した第1同時送信(PUCCH Group)は、Release 15,16で導入済みの手順であるが、第2同時送信(Simultaneous UL TX)は、Release 17で新たに導入される手順であることに留意すべきである。 The above-mentioned first simultaneous transmission (PUCCHGroup) is a procedure already introduced in Releases 15 and 16, but the second simultaneous transmission (Simultaneous ULTX) is a procedure newly introduced in Release17. Should be noted.
 第3に、第3同時送信について図7を参照しながら説明する。第3同時送信は、第1同時送信(PUCCH Group)及び第2同時送信(Simultaneous UL TX)の組合せである。図7に示すように、同一のセルグループに属するPUCCH Groupは、PUCCH Group#1及びPUCCH Group#2を含んでもよい。PUCCH Group#1に属するCCは、CC#1-0、CC#1-1、CC#1-2、CC#1-3などのCCを含んでもよい。PUCCH Group#2に属するCCは、CC#2-0、CC#2-1、CC#2-2、CC#2-3などのCCを含んでもよい。 Third, the third simultaneous transmission will be described with reference to FIG. 7. The third simultaneous transmission is a combination of the first simultaneous transmission (PUCCHGroup) and the second simultaneous transmission (Simultaneous ULTX). As shown in FIG. 7, the PUCCH Group belonging to the same cell group may include PUCCH Group # 1 and PUCCH Group # 2. The CC belonging to PUCCH Group # 1 may include CCs such as CC # 1-0, CC # 1-1, CC # 1-2, and CC # 1-3. The CC belonging to PUCCH Group # 2 may include CCs such as CC # 2-0, CC # 2-1, CC # 2-2, and CC # 2-3.
 このようなケースにおいて、PUCCH Groupのそれぞれに属する2以上のCCを介してUCIの同時送信を実行することが可能である。例えば、CC#1-0~CC#1-3及びCC#2-0~CC#2-3を用いてUCIの同時送信を実行することが可能である。 In such a case, it is possible to execute UCI simultaneous transmission via two or more CCs belonging to each of the PUCCH Group. For example, it is possible to execute UCI simultaneous transmission using CC # 1-0 to CC # 1-3 and CC # 2-0 to CC # 2-3.
 ここで、第3同時送信は、第1同時送信(PUCCH Group)を含むため、上述したPUCCH-PUCCH同時送信を含んでもよく、上述したPUSCH-PUCCH同時送信を含んでもよい。 Here, since the third simultaneous transmission includes the first simultaneous transmission (PUCCHGroup), the above-mentioned PUCCH-PUCCH simultaneous transmission may be included, or the above-mentioned PUSCH-PUCCH simultaneous transmission may be included.
 このような第1同時送信~第3同時送信を想定した場合において、UE200(制御部270)は、PUCCH Groupのグループ数及びSimultaneous UL TXに関するCCのサポート数に基づいて、同時送信に用いるCCの上限数を決定する。ここでは、グループ数が”2”であり、サポート数が”4”であるケースを例に挙げて説明する。 In the case of assuming such first simultaneous transmission to third simultaneous transmission, the UE200 (control unit 270) determines that the CC used for simultaneous transmission is based on the number of PUCCH Group groups and the number of CC supports for Simultaneous ULTX. Determine the maximum number. Here, a case where the number of groups is "2" and the number of supports is "4" will be described as an example.
 具体的には、制御部270は、グループ数及びサポート数によって定義される最大数を上限数として決定してもよい。最大数の定義方法は以下に示す通りである。 Specifically, the control unit 270 may determine the maximum number defined by the number of groups and the number of supports as the upper limit number. The definition method of the maximum number is as shown below.
 制御部270は、UE200が第1同時送信(PUCCH Group)をサポートし、UE200が第2同時送信(Simultaneous UL TX)をサポートしない場合に、”2”が上限数であると決定してもよい。 The control unit 270 may determine that "2" is the upper limit when the UE200 supports the first simultaneous transmission (PUCCHGroup) and the UE200 does not support the second simultaneous transmission (Simultaneous ULTX). ..
 制御部270は、UE200が第1同時送信(PUCCH Group)をサポートせずに、UE200が第2同時送信(Simultaneous UL TX)をサポートする場合に、”4”が上限数であると決定してもよい。 The control unit 270 determines that "4" is the upper limit when the UE200 does not support the first simultaneous transmission (PUCCHGroup) and the UE200 supports the second simultaneous transmission (Simultaneous ULTX). May be good.
 制御部270は、UE200が第3同時送信(PUCCH Group及びSimultaneous UL TX)をサポートし、サポート数がPUCCH Group毎に定義される場合には、グループ数及サポート数の乗算結果(”8(=2×4”)が上限数であると決定してもよい。 When the UE200 supports the third simultaneous transmission (PUCCHGroup and SimultaneousULTX) and the number of supports is defined for each PUCCHGroup, the control unit 270 multiplies the number of groups and the number of supports ("8 (="). It may be determined that 2 × 4 ”) is the upper limit.
 制御部270は、UE200が第3同時送信(PUCCH Group及びSimultaneous UL TX)をサポートし、サポート数がセルグループ毎に定義される場合には、グループ数及サポート数のうち大きい数(”4(>2”)が上限数であると決定してもよい。このようなケースにおいて、制御部270は、同時送信に用いるCC数を各PUCCH Groupに割り当ててもよい。制御部270は、同時送信に用いるCC数を各PUCCH Groupに均等に割り当ててもよい。例えば、PUCCH Group#1に割り当てられるCC数が”2”であり、PUCCH Group#2に割り当てられるCC数が”2”であってもよい。或いは、制御部270は、各PUCCH Groupに属するCC数に基づいて、同時送信に用いるCC数を各PUCCH Groupに割り当ててもよい。例えば、PUCCH Group#1に属するCCの数が”2”であり、PUCCH Group#2に属するCCの数が”2”である場合に、PUCCH Group#1に割り当てられるCC数が”2”であり、PUCCH Group#2に割り当てられるCC数が”2”であってもよい。PUCCH Group#1に属するCCの数が”3”であり、PUCCH Group#2に属するCCの数が”1”である場合に、PUCCH Group#1に割り当てられるCC数が”3”であり、PUCCH Group#2に割り当てられるCC数が”1”であってもよい。 When the UE200 supports the third simultaneous transmission (PUCCH Group and Simultaneous ULTX) and the number of supports is defined for each cell group, the control unit 270 is the larger number among the number of groups and the number of supports ("4 (" 4 (" > 2 ”) may be determined to be the upper limit. In such a case, the control unit 270 may assign the number of CCs used for simultaneous transmission to each PUCCH Group. The control unit 270 may transmit simultaneously. The number of CCs used for is may be evenly assigned to each PUCCH Group. For example, the number of CCs assigned to PUCCH Group # 1 is "2" and the number of CCs assigned to PUCCH Group # 2 is "2". Alternatively, the control unit 270 may assign the number of CCs used for simultaneous transmission to each PUCCH Group based on the number of CCs belonging to each PUCCH Group. For example, the number of CCs belonging to PUCCH Group # 1 is ". When 2 ”and the number of CCs belonging to PUCCH Group # 2 is“ 2 ”, the number of CCs assigned to PUCCH Group # 1 is“ 2 ”and the number of CCs assigned to PUCCH Group # 2 is“ It may be 2 ”. CC assigned to PUCCH Group # 1 when the number of CCs belonging to PUCCH Group # 1 is“ 3 ”and the number of CCs belonging to PUCCH Group # 2 is“ 1 ”. The number may be "3" and the number of CCs assigned to PUCCH Group # 2 may be "1".
 或いは、制御部270は、グループ数及びサポート数の乗算結果を上限数として決定してもよい。 Alternatively, the control unit 270 may determine the multiplication result of the number of groups and the number of supports as the upper limit number.
 制御部270は、UE200が第3同時送信(PUCCH Group及びSimultaneous UL TX)をサポートし、サポート数がPUCCH Group毎に定義される場合には、グループ数及サポート数の乗算結果(”8(=2×4”)が上限数であると決定してもよい。このような上限数の決定方法は、最大数の定義方法と同様である。 When the UE200 supports the third simultaneous transmission (PUCCHGroup and SimultaneousULTX) and the number of supports is defined for each PUCCHGroup, the control unit 270 multiplies the number of groups and the number of supports ("8 (="). It may be determined that 2 × 4 ”) is the upper limit number. Such a method for determining the upper limit number is the same as the method for defining the maximum number.
 一方で、制御部270は、UE200が第3同時送信(PUCCH Group及びSimultaneous UL TX)をサポートし、サポート数がセルグループ毎に定義される場合であっても、グループ数及サポート数の乗算結果(”8(=2×4”)が上限数であると決定してもよい。 On the other hand, the control unit 270 supports the third simultaneous transmission (PUCCH Group and Simultaneous UL TX), and even if the number of supports is defined for each cell group, the result of multiplying the number of groups and the number of supports. It may be determined that (“8 (= 2 × 4”) is the upper limit.
 (4)動作例
 以下において、実施形態の動作例について説明する。以下においては、第1同時送信(PUCCH Group)、第2同時送信(Simultaneous UL TX)及び第3同時送信(PUCCH Group及びSimultaneous UL TX)のいずれかが実行されるケースについて説明する。
(4) Operation Example The operation example of the embodiment will be described below. In the following, a case where any one of the first simultaneous transmission (PUCCH Group), the second simultaneous transmission (Simultaneous UL TX), and the third simultaneous transmission (PUCCH Group and Simultaneous UL TX) is executed will be described.
 図8に示すように、ステップS10において、UE200は、UE Capabilityを含むメッセージをNG-RAN20に送信する。UE Capabilityは、twoPUCCH-Groupを含んでもよい。UE Capabilityは、Simultaneous UL TXをサポートしているか否かを示す情報要素を含んでもよい。 As shown in FIG. 8, in step S10, the UE 200 transmits a message including the UE Capability to the NG-RAN 20. UECapability may include twoPUCCH-Group. UE Capability may include an information element indicating whether or not Simultaneous UL TX is supported.
 ステップS11において、UE100は、複数のCCに関連するPUCCH-Config.を含むRRCメッセージをNG-RAN20から受信する。PUCCH-Config.は、第1同時送信(PUCCH Group)を設定するか否かを示す情報要素を含んでもよい。PUCCH-Config.は、第1同時送信(Simultaneous UL TX)を設定するか否かを示す情報要素を含んでもよい。PUCCH-Config.は、第3同時送信(PUCCH Group及びSimultaneous UL TX)を設定するか否かを示す情報要素を含んでもよい。 In step S11, UE100 receives an RRC message including PUCCH-Config. Related to multiple CCs from NG-RAN20. PUCCH-Config. May include an information element indicating whether or not to set the first simultaneous transmission (PUCCHGroup). PUCCH-Config. May include an information element indicating whether or not to set the first simultaneous transmission (Simultaneous ULTX). PUCCH-Config. May include an information element indicating whether or not to set the third simultaneous transmission (PUCCH Group and Simultaneous UL TX).
 ステップS12において、UE200は、PDCCHを介して1以上のDCIをNG-RAN20から受信する。NG-RAN20は、ステップS10で受信するUE Capabilityに基づいてDCIを送信してもよい。言い換えると、DCIは、UE Capabilityを考慮した上りリンクリソースを指定する情報要素(例えば、Frequency domain resource assignment、Time domain resource assignment)を含んでもよい。 In step S12, UE200 receives one or more DCIs from NG-RAN20 via PDCCH. The NG-RAN20 may transmit DCI based on the UE Capability received in step S10. In other words, the DCI may include an information element (for example, Frequency domain resource assignment, Time domain resource assignment) that specifies an uplink resource in consideration of UE Capability.
 ステップS13において、UE200は、異なるCCを介してUCIの同時送信(PUCCH-PUCCH同時送信及びPUSCH-PUCCH同時送信の少なくともいずれか1つ)を実行する。このようなケースにおいて、UE200は、PUCCH Groupのグループ数及びSimultaneous UL TXに関するCCのサポート数に基づいて、同時送信に用いるCCの上限数を決定する。 In step S13, the UE 200 executes UCI simultaneous transmission (at least one of PUCCH-PUCCH simultaneous transmission and PUSCH-PUCCH simultaneous transmission) via different CCs. In such a case, the UE200 determines the maximum number of CCs to be used for simultaneous transmission based on the number of groups of PUCCHGroup and the number of CCs supported for Simultaneous ULTX.
 (5)作用・効果
 実施形態では、UE200は、PUCCH Groupのグループ数及びSimultaneous UL TXに関するCCのサポート数に基づいて、同時送信に用いるCCの上限数を決定する。このような構成によれば、Simultaneous UL TXが新たに導入されるケースを想定した場合であっても、同時送信に用いるCCの上限数が明確であるため、適切に同時送信を実行することができる。
(5) Action / Effect In the embodiment, the UE 200 determines the maximum number of CCs to be used for simultaneous transmission based on the number of groups of the PUCCH Group and the number of CCs supported for Simultaneous UL TX. With such a configuration, even if a case where Simultaneous UL TX is newly introduced is assumed, the upper limit of the number of CCs used for simultaneous transmission is clear, so it is possible to appropriately execute simultaneous transmission. can.
 [その他の実施形態]
 以上、実施形態に沿って本発明の内容を説明したが、本発明はこれらの記載に限定されるものではなく、種々の変形及び改良が可能であることは、当業者には自明である。
[Other embodiments]
Although the contents of the present invention have been described above according to the embodiments, it is obvious to those skilled in the art that the present invention is not limited to these descriptions and can be modified and improved in various ways.
 上述した開示では、上りリンク信号の一例としてUCIを例示した。しかしながら、上述した開示はこれに限定されるものではない。上りリンク信号は、データ信号を含んでもよい。すなわち、上述した開示は、PUCCH-PUCCH同時送信、PUSCH-PUCCH同時送信に適用されればよい。 In the above disclosure, UCI was exemplified as an example of the uplink signal. However, the above disclosure is not limited to this. The uplink signal may include a data signal. That is, the above-mentioned disclosure may be applied to PUCCH-PUCCH simultaneous transmission and PUSCH-PUCCH simultaneous transmission.
 上述した開示では特に触れていないが、UCIの同時送信は、同一の優先度を有するUCI(PUCCH又はPUSCH)に適用されてもよく、異なる優先度を有するUCI(PUCCH又はPUSCH)に適用されてもよい。 Although not specifically mentioned in the above disclosure, simultaneous transmission of UCIs may be applied to UCIs with the same priority (PUCCH or PUSCH) or to UCIs with different priorities (PUCCH or PUSCH). May be good.
 上述した開示では、UCIについて主として説明したが、上述した開示はこれに限定されるものではない。UCIは、HARQ-ACKと読み替えられてもよく、SRと読み替えられてもよく、CSIと読み替えられてもよい。複数のCCを用いて送信可能なUCIは、HARQ-ACK、SR及びCSIの中から選択されたいずれかのパラメータであってもよい。 In the above-mentioned disclosure, UCI was mainly explained, but the above-mentioned disclosure is not limited to this. UCI may be read as HARQ-ACK, SR, or CSI. The UCI that can be transmitted using multiple CCs may be any parameter selected from HARQ-ACK, SR and CSI.
 上述した実施形態の説明に用いたブロック構成図(図4)は、機能単位のブロックを示している。これらの機能ブロック(構成部)は、ハードウェア及びソフトウェアの少なくとも一方の任意の組み合わせによって実現される。また、各機能ブロックの実現方法は特に限定されない。すなわち、各機能ブロックは、物理的又は論理的に結合した1つの装置を用いて実現されてもよいし、物理的又は論理的に分離した2つ以上の装置を直接的又は間接的に(例えば、有線、無線などを用いて)接続し、これら複数の装置を用いて実現されてもよい。機能ブロックは、上記1つの装置又は上記複数の装置にソフトウェアを組み合わせて実現されてもよい。 The block configuration diagram (FIG. 4) used in the description of the above-described embodiment shows a block of functional units. These functional blocks (components) are realized by any combination of at least one of hardware and software. Further, the method of realizing each functional block is not particularly limited. That is, each functional block may be realized using one physically or logically coupled device, or two or more physically or logically separated devices can be directly or indirectly (eg, for example). , Wired, wireless, etc.) and may be realized using these plurality of devices. The functional block may be realized by combining the software with the one device or the plurality of devices.
 機能には、判断、決定、判定、計算、算出、処理、導出、調査、探索、確認、受信、送信、出力、アクセス、解決、選択、選定、確立、比較、想定、期待、見做し、報知(broadcasting)、通知(notifying)、通信(communicating)、転送(forwarding)、構成(configuring)、再構成(reconfiguring)、割り当て(allocating、mapping)、割り振り(assigning)などがあるが、これらに限られない。例えば、送信を機能させる機能ブロック(構成部)は、送信部(transmitting unit)や送信機(transmitter)と呼ばれる。何れも、上述したとおり、実現方法は特に限定されない。 Functions include judgment, decision, judgment, calculation, calculation, processing, derivation, investigation, search, confirmation, reception, transmission, output, access, solution, selection, selection, establishment, comparison, assumption, expectation, and assumption. Broadcasting, notifying, communicating, forwarding, configuring, reconfiguring, allocating, mapping, assigning, etc., but limited to these I can't. For example, a functional block (configuration unit) that makes transmission function is called a transmitting unit (transmitting unit) or a transmitter (transmitter). In each case, as described above, the realization method is not particularly limited.
 さらに、上述したUE200(当該装置)は、本開示の無線通信方法の処理を行うコンピュータとして機能してもよい。図9は、当該装置のハードウェア構成の一例を示す図である。図9に示すように、当該装置は、プロセッサ1001、メモリ1002、ストレージ1003、通信装置1004、入力装置1005、出力装置1006及びバス1007などを含むコンピュータ装置として構成されてもよい。 Further, the above-mentioned UE200 (the device) may function as a computer that processes the wireless communication method of the present disclosure. FIG. 9 is a diagram showing an example of the hardware configuration of the device. As shown in FIG. 9, the device may be configured as a computer device including a processor 1001, a memory 1002, a storage 1003, a communication device 1004, an input device 1005, an output device 1006, a bus 1007, and the like.
 なお、以下の説明では、「装置」という文言は、回路、デバイス、ユニットなどに読み替えることができる。当該装置のハードウェア構成は、図に示した各装置を1つ又は複数含むように構成されてもよいし、一部の装置を含まずに構成されてもよい。 In the following explanation, the word "device" can be read as a circuit, device, unit, etc. The hardware configuration of the device may be configured to include one or more of each of the devices shown in the figure, or may be configured not to include some of the devices.
 当該装置の各機能ブロック(図4参照)は、当該コンピュータ装置の何れかのハードウェア要素、又は当該ハードウェア要素の組み合わせによって実現される。 Each functional block of the device (see FIG. 4) is realized by any hardware element of the computer device or a combination of the hardware elements.
 また、当該装置における各機能は、プロセッサ1001、メモリ1002などのハードウェア上に所定のソフトウェア(プログラム)を読み込ませることによって、プロセッサ1001が演算を行い、通信装置1004による通信を制御したり、メモリ1002及びストレージ1003におけるデータの読み出し及び書き込みの少なくとも一方を制御したりすることによって実現される。 In addition, each function in the device is such that the processor 1001 performs an operation by loading predetermined software (program) on the hardware such as the processor 1001 and the memory 1002, and controls the communication by the communication device 1004, or the memory. It is realized by controlling at least one of reading and writing of data in 1002 and storage 1003.
 プロセッサ1001は、例えば、オペレーティングシステムを動作させてコンピュータ全体を制御する。プロセッサ1001は、周辺装置とのインタフェース、制御装置、演算装置、レジスタなどを含む中央処理装置(CPU)によって構成されてもよい。 Processor 1001 operates, for example, an operating system to control the entire computer. The processor 1001 may be configured by a central processing unit (CPU) including an interface with peripheral devices, a control device, an arithmetic unit, a register, and the like.
 また、プロセッサ1001は、プログラム(プログラムコード)、ソフトウェアモジュール、データなどを、ストレージ1003及び通信装置1004の少なくとも一方からメモリ1002に読み出し、これらに従って各種の処理を実行する。プログラムとしては、上述の実施の形態において説明した動作の少なくとも一部をコンピュータに実行させるプログラムが用いられる。さらに、上述の各種処理は、1つのプロセッサ1001によって実行されてもよいし、2つ以上のプロセッサ1001により同時又は逐次に実行されてもよい。プロセッサ1001は、1以上のチップによって実装されてもよい。なお、プログラムは、電気通信回線を介してネットワークから送信されてもよい。 Further, the processor 1001 reads a program (program code), a software module, data, etc. from at least one of the storage 1003 and the communication device 1004 into the memory 1002, and executes various processes according to these. As the program, a program that causes a computer to execute at least a part of the operations described in the above-described embodiment is used. Further, the various processes described above may be executed by one processor 1001 or may be executed simultaneously or sequentially by two or more processors 1001. Processor 1001 may be implemented by one or more chips. The program may be transmitted from the network via a telecommunication line.
 メモリ1002は、コンピュータ読み取り可能な記録媒体であり、例えば、Read Only Memory(ROM)、Erasable Programmable ROM(EPROM)、Electrically Erasable Programmable ROM(EEPROM)、Random Access Memory(RAM)などの少なくとも1つによって構成されてもよい。メモリ1002は、レジスタ、キャッシュ、メインメモリ(主記憶装置)などと呼ばれてもよい。メモリ1002は、本開示の一実施形態に係る方法を実行可能なプログラム(プログラムコード)、ソフトウェアモジュールなどを保存することができる。 The memory 1002 is a computer-readable recording medium, and is composed of at least one such as ReadOnlyMemory (ROM), ErasableProgrammableROM (EPROM), Electrically ErasableProgrammableROM (EEPROM), and RandomAccessMemory (RAM). May be done. The memory 1002 may be referred to as a register, a cache, a main memory (main storage device), or the like. The memory 1002 can store a program (program code), a software module, or the like that can execute the method according to the embodiment of the present disclosure.
 ストレージ1003は、コンピュータ読み取り可能な記録媒体であり、例えば、Compact Disc ROM(CD-ROM)などの光ディスク、ハードディスクドライブ、フレキシブルディスク、光磁気ディスク(例えば、コンパクトディスク、デジタル多用途ディスク、Blu-ray(登録商標)ディスク)、スマートカード、フラッシュメモリ(例えば、カード、スティック、キードライブ)、フロッピー(登録商標)ディスク、磁気ストリップなどの少なくとも1つによって構成されてもよい。ストレージ1003は、補助記憶装置と呼ばれてもよい。上述の記録媒体は、例えば、メモリ1002及びストレージ1003の少なくとも一方を含むデータベース、サーバその他の適切な媒体であってもよい。 The storage 1003 is a computer-readable recording medium, for example, an optical disk such as Compact Disc ROM (CD-ROM), a hard disk drive, a flexible disk, an optical magnetic disk (for example, a compact disk, a digital versatile disk, or a Blu-ray). It may consist of at least one (registered trademark) disk), smart card, flash memory (eg, card, stick, key drive), floppy (registered trademark) disk, magnetic strip, and the like. Storage 1003 may be referred to as auxiliary storage. The recording medium described above may be, for example, a database, server or other suitable medium containing at least one of the memory 1002 and the storage 1003.
 通信装置1004は、有線ネットワーク及び無線ネットワークの少なくとも一方を介してコンピュータ間の通信を行うためのハードウェア(送受信デバイス)であり、例えばネットワークデバイス、ネットワークコントローラ、ネットワークカード、通信モジュールなどともいう。 The communication device 1004 is hardware (transmission / reception device) for communicating between computers via at least one of a wired network and a wireless network, and is also referred to as, for example, a network device, a network controller, a network card, a communication module, or the like.
 通信装置1004は、例えば周波数分割複信(Frequency Division Duplex:FDD)及び時分割複信(Time Division Duplex:TDD)の少なくとも一方を実現するために、高周波スイッチ、デュプレクサ、フィルタ、周波数シンセサイザなどを含んで構成されてもよい。 The communication device 1004 includes, for example, a high frequency switch, a duplexer, a filter, a frequency synthesizer, etc. in order to realize at least one of frequency division duplex (FDD) and time division duplex (TDD). It may be composed of.
 入力装置1005は、外部からの入力を受け付ける入力デバイス(例えば、キーボード、マウス、マイクロフォン、スイッチ、ボタン、センサなど)である。出力装置1006は、外部への出力を実施する出力デバイス(例えば、ディスプレイ、スピーカー、LEDランプなど)である。なお、入力装置1005及び出力装置1006は、一体となった構成(例えば、タッチパネル)であってもよい。 The input device 1005 is an input device (for example, a keyboard, a mouse, a microphone, a switch, a button, a sensor, etc.) that accepts an input from the outside. The output device 1006 is an output device (for example, a display, a speaker, an LED lamp, etc.) that outputs to the outside. The input device 1005 and the output device 1006 may have an integrated configuration (for example, a touch panel).
 また、プロセッサ1001及びメモリ1002などの各装置は、情報を通信するためのバス1007で接続される。バス1007は、単一のバスを用いて構成されてもよいし、装置間ごとに異なるバスを用いて構成されてもよい。 In addition, each device such as the processor 1001 and the memory 1002 is connected by the bus 1007 for communicating information. Bus 1007 may be configured using a single bus or may be configured using different buses for each device.
 さらに、当該装置は、マイクロプロセッサ、デジタル信号プロセッサ(Digital Signal Processor: DSP)、Application Specific Integrated Circuit(ASIC)、Programmable Logic Device(PLD)、Field Programmable Gate Array(FPGA)などのハードウェアを含んで構成されてもよく、当該ハードウェアにより、各機能ブロックの一部又は全てが実現されてもよい。例えば、プロセッサ1001は、これらのハードウェアの少なくとも1つを用いて実装されてもよい。 Furthermore, the device includes hardware such as a microprocessor, a digital signal processor (Digital Signal Processor: DSP), ApplicationSpecific IntegratedCircuit (ASIC), ProgrammableLogicDevice (PLD), and FieldProgrammableGateArray (FPGA). The hardware may implement some or all of each functional block. For example, processor 1001 may be implemented using at least one of these hardware.
 また、情報の通知は、本開示において説明した態様/実施形態に限られず、他の方法を用いて行われてもよい。例えば、情報の通知は、物理レイヤシグナリング(例えば、Downlink Control Information(DCI)、Uplink Control Information(UCI)、上位レイヤシグナリング(例えば、RRCシグナリング、Medium Access Control(MAC)シグナリング、報知情報(Master Information Block(MIB)、System Information Block(SIB))、その他の信号又はこれらの組み合わせによって実施されてもよい。また、RRCシグナリングは、RRCメッセージと呼ばれてもよく、例えば、RRC接続セットアップ(RRC Connection Setup)メッセージ、RRC接続再構成(RRC Connection Reconfiguration)メッセージなどであってもよい。 Further, the notification of information is not limited to the embodiment / embodiment described in the present disclosure, and may be performed by using another method. For example, information notification includes physical layer signaling (eg Downlink Control Information (DCI), Uplink Control Information (UCI), higher layer signaling (eg RRC signaling, Medium Access Control (MAC) signaling, Master Information Block). (MIB), System Information Block (SIB)), other signals or combinations thereof. RRC signaling may also be referred to as an RRC message, eg, RRC Connection Setup. ) Message, RRC Connection Reconfiguration message, etc. may be used.
 本開示において説明した各態様/実施形態は、Long Term Evolution(LTE)、LTE-Advanced(LTE-A)、SUPER 3G、IMT-Advanced、4th generation mobile communication system(4G)、5th generation mobile communication system(5G)、Future Radio Access(FRA)、New Radio(NR)、W-CDMA(登録商標)、GSM(登録商標)、CDMA2000、Ultra Mobile Broadband(UMB)、IEEE 802.11(Wi-Fi(登録商標))、IEEE 802.16(WiMAX(登録商標))、IEEE 802.20、Ultra-WideBand(UWB)、Bluetooth(登録商標)、その他の適切なシステムを利用するシステム及びこれらに基づいて拡張された次世代システムの少なくとも一つに適用されてもよい。また、複数のシステムが組み合わされて(例えば、LTE及びLTE-Aの少なくとも一方と5Gとの組み合わせなど)適用されてもよい。 Each aspect / embodiment described in the present disclosure includes LongTermEvolution (LTE), LTE-Advanced (LTE-A), SUPER3G, IMT-Advanced, 4th generation mobile communication system (4G), 5th generation mobile communication system ( 5G), FutureRadioAccess (FRA), NewRadio (NR), W-CDMA (registered trademark), GSM (registered trademark), CDMA2000, UltraMobileBroadband (UMB), IEEE802.11 (Wi-Fi (registered trademark)) , IEEE802.16 (WiMAX®), IEEE802.20, Ultra-WideBand (UWB), Bluetooth®, and other systems that utilize appropriate systems and at least one of the next-generation systems extended based on them. It may be applied to one. In addition, a plurality of systems may be applied in combination (for example, a combination of at least one of LTE and LTE-A and 5G).
 本開示において説明した各態様/実施形態の処理手順、シーケンス、フローチャートなどは、矛盾の無い限り、順序を入れ替えてもよい。例えば、本開示において説明した方法については、例示的な順序を用いて様々なステップの要素を提示しており、提示した特定の順序に限定されない。 The order of the processing procedures, sequences, flowcharts, etc. of each aspect / embodiment described in the present disclosure may be changed as long as there is no contradiction. For example, the methods described in the present disclosure present elements of various steps using exemplary order, and are not limited to the particular order presented.
 本開示において基地局によって行われるとした特定動作は、場合によってはその上位ノード(upper node)によって行われることもある。基地局を有する1つ又は複数のネットワークノード(network nodes)からなるネットワークにおいて、端末との通信のために行われる様々な動作は、基地局及び基地局以外の他のネットワークノード(例えば、MME又はS-GWなどが考えられるが、これらに限られない)の少なくとも1つによって行われ得ることは明らかである。上記において基地局以外の他のネットワークノードが1つである場合を例示したが、複数の他のネットワークノードの組み合わせ(例えば、MME及びS-GW)であってもよい。 In some cases, the specific operation performed by the base station in this disclosure may be performed by its upper node (upper node). In a network consisting of one or more network nodes having a base station, various operations performed for communication with the terminal are the base station and other network nodes other than the base station (eg, MME or). It is clear that it can be done by at least one of (but not limited to, S-GW, etc.). Although the case where there is one network node other than the base station is illustrated above, it may be a combination of a plurality of other network nodes (for example, MME and S-GW).
 情報、信号(情報等)は、上位レイヤ(又は下位レイヤ)から下位レイヤ(又は上位レイヤ)へ出力され得る。複数のネットワークノードを介して入出力されてもよい。 Information and signals (information, etc.) can be output from the upper layer (or lower layer) to the lower layer (or upper layer). Input / output may be performed via a plurality of network nodes.
 入出力された情報は、特定の場所(例えば、メモリ)に保存されてもよいし、管理テーブルを用いて管理してもよい。入出力される情報は、上書き、更新、又は追記され得る。出力された情報は削除されてもよい。入力された情報は他の装置へ送信されてもよい。 The input / output information may be stored in a specific location (for example, memory) or may be managed using a management table. The input / output information may be overwritten, updated, or added. The output information may be deleted. The entered information may be transmitted to other devices.
 判定は、1ビットで表される値(0か1か)によって行われてもよいし、真偽値(Boolean:true又はfalse)によって行われてもよいし、数値の比較(例えば、所定の値との比較)によって行われてもよい。 The determination may be made by a value represented by 1 bit (0 or 1), by a boolean value (Boolean: true or false), or by comparing numerical values (for example, a predetermined value). It may be done by comparison with the value).
 本開示において説明した各態様/実施形態は単独で用いてもよいし、組み合わせて用いてもよいし、実行に伴って切り替えて用いてもよい。また、所定の情報の通知(例えば、「Xであること」の通知)は、明示的に行うものに限られず、暗黙的(例えば、当該所定の情報の通知を行わない)ことによって行われてもよい。 Each aspect / embodiment described in the present disclosure may be used alone, in combination, or may be switched and used according to the execution. Further, the notification of predetermined information (for example, the notification of "being X") is not limited to the explicit one, but is performed implicitly (for example, the notification of the predetermined information is not performed). May be good.
 ソフトウェアは、ソフトウェア、ファームウェア、ミドルウェア、マイクロコード、ハードウェア記述言語と呼ばれるか、他の名称で呼ばれるかを問わず、命令、命令セット、コード、コードセグメント、プログラムコード、プログラム、サブプログラム、ソフトウェアモジュール、アプリケーション、ソフトウェアアプリケーション、ソフトウェアパッケージ、ルーチン、サブルーチン、オブジェクト、実行可能ファイル、実行スレッド、手順、機能などを意味するよう広く解釈されるべきである。 Software, whether called software, firmware, middleware, microcode, hardware description language, or other names, instructions, instruction sets, codes, code segments, program codes, programs, subprograms, software modules. , Applications, software applications, software packages, routines, subroutines, objects, executable files, execution threads, procedures, features, etc. should be broadly interpreted.
 また、ソフトウェア、命令、情報などは、伝送媒体を介して送受信されてもよい。例えば、ソフトウェアが、有線技術(同軸ケーブル、光ファイバケーブル、ツイストペア、デジタル加入者回線(Digital Subscriber Line:DSL)など)及び無線技術(赤外線、マイクロ波など)の少なくとも一方を使用してウェブサイト、サーバ、又は他のリモートソースから送信される場合、これらの有線技術及び無線技術の少なくとも一方は、伝送媒体の定義内に含まれる。 Further, software, instructions, information, etc. may be transmitted and received via a transmission medium. For example, a website, where the software uses at least one of wired technology (coaxial cable, fiber optic cable, twisted pair, Digital Subscriber Line (DSL), etc.) and wireless technology (infrared, microwave, etc.). When transmitted from a server or other remote source, at least one of these wired and wireless technologies is included within the definition of transmission medium.
 本開示において説明した情報、信号などは、様々な異なる技術の何れかを使用して表されてもよい。例えば、上記の説明全体に渡って言及され得るデータ、命令、コマンド、情報、信号、ビット、シンボル、チップなどは、電圧、電流、電磁波、磁界若しくは磁性粒子、光場若しくは光子、又はこれらの任意の組み合わせによって表されてもよい。 The information, signals, etc. described in this disclosure may be represented using any of a variety of different techniques. For example, data, instructions, commands, information, signals, bits, symbols, chips, etc. that may be referred to throughout the above description are voltages, currents, electromagnetic waves, magnetic fields or magnetic particles, light fields or photons, or any of these. It may be represented by a combination of.
 なお、本開示において説明した用語及び本開示の理解に必要な用語については、同一の又は類似する意味を有する用語と置き換えてもよい。例えば、チャネル及びシンボルの少なくとも一方は信号(シグナリング)であってもよい。また、信号はメッセージであってもよい。また、コンポーネントキャリア(Component Carrier:CC)は、キャリア周波数、セル、周波数キャリアなどと呼ばれてもよい。 The terms described in the present disclosure and the terms necessary for understanding the present disclosure may be replaced with terms having the same or similar meanings. For example, at least one of a channel and a symbol may be a signal (signaling). Also, the signal may be a message. Further, the component carrier (CC) may be referred to as a carrier frequency, a cell, a frequency carrier, or the like.
 本開示において使用する「システム」及び「ネットワーク」という用語は、互換的に使用される。 The terms "system" and "network" used in this disclosure are used interchangeably.
 また、本開示において説明した情報、パラメータなどは、絶対値を用いて表されてもよいし、所定の値からの相対値を用いて表されてもよいし、対応する別の情報を用いて表されてもよい。例えば、無線リソースはインデックスによって指示されるものであってもよい。 Further, the information, parameters, etc. described in the present disclosure may be expressed using an absolute value, a relative value from a predetermined value, or another corresponding information. It may be represented. For example, the radio resource may be one indicated by an index.
 上述したパラメータに使用する名称はいかなる点においても限定的な名称ではない。さらに、これらのパラメータを使用する数式等は、本開示で明示的に開示したものと異なる場合もある。様々なチャネル(例えば、PUCCH、PDCCHなど)及び情報要素は、あらゆる好適な名称によって識別できるため、これらの様々なチャネル及び情報要素に割り当てている様々な名称は、いかなる点においても限定的な名称ではない。 The names used for the above parameters are not limited in any respect. Further, mathematical formulas and the like using these parameters may differ from those expressly disclosed in this disclosure. Since various channels (eg, PUCCH, PDCCH, etc.) and information elements can be identified by any suitable name, the various names assigned to these various channels and information elements are in any respect limited names. is not.
 本開示においては、「基地局(Base Station:BS)」、「無線基地局」、「固定局(fixed station)」、「NodeB」、「eNodeB(eNB)」、「gNodeB(gNB)」、「アクセスポイント(access point)」、「送信ポイント(transmission point)」、「受信ポイント(reception point)、「送受信ポイント(transmission/reception point)」、「セル」、「セクタ」、「セルグループ」、「キャリア」、「コンポーネントキャリア」などの用語は、互換的に使用され得る。基地局は、マクロセル、スモールセル、フェムトセル、ピコセルなどの用語で呼ばれる場合もある。 In this disclosure, "Base Station (BS)", "Wireless Base Station", "Fixed Station", "NodeB", "eNodeB (eNB)", "gNodeB (gNB)", " "Access point", "transmission point", "reception point", "transmission / reception point", "cell", "sector", "cell group", " Terms such as "carrier" and "component carrier" may be used interchangeably. Base stations are sometimes referred to by terms such as macrocells, small cells, femtocells, and picocells.
 基地局は、1つ又は複数(例えば、3つ)のセル(セクタとも呼ばれる)を収容することができる。基地局が複数のセルを収容する場合、基地局のカバレッジエリア全体は複数のより小さいエリアに区分でき、各々のより小さいエリアは、基地局サブシステム(例えば、屋内用の小型基地局(Remote Radio Head:RRH)によって通信サービスを提供することもできる。 The base station can accommodate one or more (for example, three) cells (also called sectors). When a base station accommodates multiple cells, the entire base station coverage area can be divided into multiple smaller areas, each smaller area being a base station subsystem (eg, a remote radio for indoor use). Communication services can also be provided by Head: RRH).
 「セル」又は「セクタ」という用語は、このカバレッジにおいて通信サービスを行う基地局、及び基地局サブシステムの少なくとも一方のカバレッジエリアの一部又は全体を指す。 The term "cell" or "sector" refers to a part or all of the coverage area of at least one of the base station providing communication services in this coverage and the base station subsystem.
 本開示においては、「移動局(Mobile Station:MS)」、「ユーザ端末(user terminal)」、「ユーザ装置(User Equipment:UE)」、「端末」などの用語は、互換的に使用され得る。 In the present disclosure, terms such as "Mobile Station (MS)", "user terminal", "user equipment (UE)", and "terminal" may be used interchangeably. ..
 移動局は、当業者によって、加入者局、モバイルユニット、加入者ユニット、ワイヤレスユニット、リモートユニット、モバイルデバイス、ワイヤレスデバイス、ワイヤレス通信デバイス、リモートデバイス、モバイル加入者局、アクセス端末、モバイル端末、ワイヤレス端末、リモート端末、ハンドセット、ユーザエージェント、モバイルクライアント、クライアント、又はいくつかの他の適切な用語で呼ばれる場合もある。 Mobile stations can be used by those skilled in the art as subscriber stations, mobile units, subscriber units, wireless units, remote units, mobile devices, wireless devices, wireless communication devices, remote devices, mobile subscriber stations, access terminals, mobile terminals, wireless. It may also be referred to as a terminal, remote terminal, handset, user agent, mobile client, client, or some other suitable term.
 基地局及び移動局の少なくとも一方は、送信装置、受信装置、通信装置などと呼ばれてもよい。なお、基地局及び移動局の少なくとも一方は、移動体に搭載されたデバイス、移動体自体などであってもよい。当該移動体は、乗り物(例えば、車、飛行機など)であってもよいし、無人で動く移動体(例えば、ドローン、自動運転車など)であってもよいし、ロボット(有人型又は無人型)であってもよい。なお、基地局及び移動局の少なくとも一方は、必ずしも通信動作時に移動しない装置も含む。例えば、基地局及び移動局の少なくとも一方は、センサなどのInternet of Things(IoT)機器であってもよい。 At least one of the base station and the mobile station may be called a transmitting device, a receiving device, a communication device, or the like. At least one of the base station and the mobile station may be a device mounted on the mobile body, a mobile body itself, or the like. The moving body may be a vehicle (eg, car, airplane, etc.), an unmanned moving body (eg, drone, self-driving car, etc.), or a robot (manned or unmanned). ) May be. It should be noted that at least one of the base station and the mobile station includes a device that does not necessarily move during communication operation. For example, at least one of a base station and a mobile station may be an Internet of Things (IoT) device such as a sensor.
 また、本開示における基地局は、移動局(ユーザ端末、以下同)として読み替えてもよい。例えば、基地局及び移動局間の通信を、複数の移動局間の通信(例えば、Device-to-Device(D2D)、Vehicle-to-Everything(V2X)などと呼ばれてもよい)に置き換えた構成について、本開示の各態様/実施形態を適用してもよい。この場合、基地局が有する機能を移動局が有する構成としてもよい。また、「上り」及び「下り」などの文言は、端末間通信に対応する文言(例えば、「サイド(side)」)で読み替えられてもよい。例えば、上りチャネル、下りチャネルなどは、サイドチャネルで読み替えられてもよい。 Further, the base station in the present disclosure may be read as a mobile station (user terminal, the same shall apply hereinafter). For example, communication between a base station and a mobile station has been replaced with communication between a plurality of mobile stations (for example, it may be called Device-to-Device (D2D), Vehicle-to-Everything (V2X), etc.). Each aspect / embodiment of the present disclosure may be applied to the configuration. In this case, the mobile station may have the functions of the base station. Further, words such as "up" and "down" may be read as words corresponding to communication between terminals (for example, "side"). For example, the upstream channel, the downstream channel, and the like may be read as a side channel.
 同様に、本開示における移動局は、基地局として読み替えてもよい。この場合、移動局が有する機能を基地局が有する構成としてもよい。 Similarly, the mobile station in the present disclosure may be read as a base station. In this case, the base station may have the functions of the mobile station.
 無線フレームは時間領域において1つ又は複数のフレームによって構成されてもよい。時間領域において1つ又は複数の各フレームはサブフレームと呼ばれてもよい。 The wireless frame may be composed of one or more frames in the time domain. Each one or more frames in the time domain may be referred to as a subframe.
 サブフレームはさらに時間領域において1つ又は複数のスロットによって構成されてもよい。サブフレームは、ニューメロロジー(numerology)に依存しない固定の時間長(例えば、1ms)であってもよい。 The subframe may be further composed of one or more slots in the time domain. The subframe may have a fixed time length (eg, 1 ms) that does not depend on numerology.
 ニューメロロジーは、ある信号又はチャネルの送信及び受信の少なくとも一方に適用される通信パラメータであってもよい。ニューメロロジーは、例えば、サブキャリア間隔(SubCarrier Spacing:SCS)、帯域幅、シンボル長、サイクリックプレフィックス長、送信時間間隔(Transmission Time Interval:TTI)、TTIあたりのシンボル数、無線フレーム構成、送受信機が周波数領域において行う特定のフィルタリング処理、送受信機が時間領域において行う特定のウィンドウイング処理などの少なくとも1つを示してもよい。 The numerology may be a communication parameter applied to at least one of transmission and reception of a signal or channel. Numerology includes, for example, SubCarrier Spacing (SCS), bandwidth, symbol length, cyclic prefix length, transmission time interval (Transmission Time Interval: TTI), number of symbols per TTI, wireless frame configuration, transmission / reception. It may indicate at least one of a specific filtering process performed by the machine in the frequency domain, a specific windowing process performed by the transmitter / receiver in the time domain, and the like.
 スロットは、時間領域において1つ又は複数のシンボル(Orthogonal Frequency Division Multiplexing(OFDM))シンボル、Single Carrier Frequency Division Multiple Access(SC-FDMA)シンボルなど)で構成されてもよい。スロットは、ニューメロロジーに基づく時間単位であってもよい。 The slot may be composed of one or more symbols (Orthogonal Frequency Division Multiplexing (OFDM) symbol, Single Carrier Frequency Division Multiple Access (SC-FDMA) symbol, etc.) in the time region. Slots may be unit of time based on numerology.
 スロットは、複数のミニスロットを含んでもよい。各ミニスロットは、時間領域において1つ又は複数のシンボルによって構成されてもよい。また、ミニスロットは、サブスロットと呼ばれてもよい。ミニスロットは、スロットよりも少ない数のシンボルによって構成されてもよい。ミニスロットより大きい時間単位で送信されるPDSCH(又はPUSCH)は、PDSCH(又はPUSCH)マッピングタイプAと呼ばれてもよい。ミニスロットを用いて送信されるPDSCH(又はPUSCH)は、PDSCH(又はPUSCH)マッピングタイプBと呼ばれてもよい。 The slot may include a plurality of mini slots. Each minislot may be composed of one or more symbols in the time domain. Further, the mini slot may be referred to as a sub slot. The minislot may consist of a smaller number of symbols than the slot. PDSCH (or PUSCH) transmitted in time units larger than the minislot may be referred to as PDSCH (or PUSCH) mapping type A. The PDSCH (or PUSCH) transmitted using the minislot may be referred to as PDSCH (or PUSCH) mapping type B.
 無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルは、何れも信号を伝送する際の時間単位を表す。無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルは、それぞれに対応する別の呼称が用いられてもよい。 The wireless frame, subframe, slot, minislot and symbol all represent the time unit when transmitting a signal. The radio frame, subframe, slot, minislot and symbol may use different names corresponding to each.
 例えば、1サブフレームは送信時間間隔(TTI)と呼ばれてもよいし、複数の連続したサブフレームがTTIと呼ばれてよいし、1スロット又は1ミニスロットがTTIと呼ばれてもよい。つまり、サブフレーム及びTTIの少なくとも一方は、既存のLTEにおけるサブフレーム(1ms)であってもよいし、1msより短い期間(例えば、1-13シンボル)であってもよいし、1msより長い期間であってもよい。なお、TTIを表す単位は、サブフレームではなくスロット、ミニスロットなどと呼ばれてもよい。 For example, one subframe may be referred to as a transmission time interval (TTI), a plurality of consecutive subframes may be referred to as TTI, and one slot or one minislot may be referred to as TTI. That is, at least one of the subframe and TTI may be a subframe (1ms) in existing LTE, a period shorter than 1ms (eg, 1-13 symbols), or a period longer than 1ms. May be. The unit representing TTI may be called a slot, a mini slot, or the like instead of a subframe.
 ここで、TTIは、例えば、無線通信におけるスケジューリングの最小時間単位のことをいう。例えば、LTEシステムでは、基地局が各ユーザ端末に対して、無線リソース(各ユーザ端末において使用することが可能な周波数帯域幅、送信電力など)を、TTI単位で割り当てるスケジューリングを行う。なお、TTIの定義はこれに限られない。 Here, TTI refers to, for example, the minimum time unit of scheduling in wireless communication. For example, in an LTE system, a base station schedules each user terminal to allocate wireless resources (frequency bandwidth that can be used in each user terminal, transmission power, etc.) in TTI units. The definition of TTI is not limited to this.
 TTIは、チャネル符号化されたデータパケット(トランスポートブロック)、コードブロック、コードワードなどの送信時間単位であってもよいし、スケジューリング、リンクアダプテーションなどの処理単位となってもよい。なお、TTIが与えられたとき、実際にトランスポートブロック、コードブロック、コードワードなどがマッピングされる時間区間(例えば、シンボル数)は、当該TTIよりも短くてもよい。 TTI may be a transmission time unit such as a channel-encoded data packet (transport block), a code block, or a code word, or may be a processing unit such as scheduling or link adaptation. When a TTI is given, the time interval (for example, the number of symbols) to which the transport block, code block, code word, etc. are actually mapped may be shorter than the TTI.
 なお、1スロット又は1ミニスロットがTTIと呼ばれる場合、1以上のTTI(すなわち、1以上のスロット又は1以上のミニスロット)が、スケジューリングの最小時間単位となってもよい。また、当該スケジューリングの最小時間単位を構成するスロット数(ミニスロット数)は制御されてもよい。 When one slot or one mini slot is called TTI, one or more TTIs (that is, one or more slots or one or more mini slots) may be the minimum time unit for scheduling. Further, the number of slots (number of mini-slots) constituting the minimum time unit of the scheduling may be controlled.
 1msの時間長を有するTTIは、通常TTI(LTE Rel.8-12におけるTTI)、ノーマルTTI、ロングTTI、通常サブフレーム、ノーマルサブフレーム、ロングサブフレーム、スロットなどと呼ばれてもよい。通常TTIより短いTTIは、短縮TTI、ショートTTI、部分TTI(partial又はfractional TTI)、短縮サブフレーム、ショートサブフレーム、ミニスロット、サブスロット、スロットなどと呼ばれてもよい。 TTI with a time length of 1 ms may be called normal TTI (TTI in LTE Rel.8-12), normal TTI, long TTI, normal subframe, normal subframe, long subframe, slot, etc. A TTI shorter than a normal TTI may be referred to as a shortened TTI, a short TTI, a partial TTI (partial or fractional TTI), a shortened subframe, a short subframe, a minislot, a subslot, a slot, and the like.
 なお、ロングTTI(例えば、通常TTI、サブフレームなど)は、1msを超える時間長を有するTTIで読み替えてもよいし、ショートTTI(例えば、短縮TTIなど)は、ロングTTIのTTI長未満かつ1ms以上のTTI長を有するTTIで読み替えてもよい。 The long TTI (for example, normal TTI, subframe, etc.) may be read as a TTI having a time length of more than 1 ms, and the short TTI (for example, shortened TTI, etc.) may be read as a TTI less than the TTI length of the long TTI and 1 ms. It may be read as a TTI having the above TTI length.
 リソースブロック(RB)は、時間領域及び周波数領域のリソース割当単位であり、周波数領域において、1つ又は複数個の連続した副搬送波(subcarrier)を含んでもよい。RBに含まれるサブキャリアの数は、ニューメロロジーに関わらず同じであってもよく、例えば12であってもよい。RBに含まれるサブキャリアの数は、ニューメロロジーに基づいて決定されてもよい。 The resource block (RB) is a resource allocation unit in the time domain and the frequency domain, and may include one or a plurality of continuous subcarriers in the frequency domain. The number of subcarriers contained in RB may be the same regardless of numerology, and may be, for example, 12. The number of subcarriers contained in the RB may be determined based on numerology.
 また、RBの時間領域は、1つ又は複数個のシンボルを含んでもよく、1スロット、1ミニスロット、1サブフレーム、又は1TTIの長さであってもよい。1TTI、1サブフレームなどは、それぞれ1つ又は複数のリソースブロックで構成されてもよい。 Further, the time domain of RB may include one or more symbols, and may have a length of 1 slot, 1 mini slot, 1 subframe, or 1 TTI. Each 1TTI, 1 subframe, etc. may be composed of one or a plurality of resource blocks.
 なお、1つ又は複数のRBは、物理リソースブロック(Physical RB:PRB)、サブキャリアグループ(Sub-Carrier Group:SCG)、リソースエレメントグループ(Resource Element Group:REG)、PRBペア、RBペアなどと呼ばれてもよい。 One or more RBs are physical resource blocks (Physical RB: PRB), sub-carrier groups (Sub-Carrier Group: SCG), resource element groups (Resource Element Group: REG), PRB pairs, RB pairs, etc. May be called.
 また、リソースブロックは、1つ又は複数のリソースエレメント(Resource Element:RE)によって構成されてもよい。例えば、1REは、1サブキャリア及び1シンボルの無線リソース領域であってもよい。 Further, the resource block may be composed of one or a plurality of resource elements (ResourceElement: RE). For example, 1RE may be a radio resource area of 1 subcarrier and 1 symbol.
 帯域幅部分(Bandwidth Part:BWP)(部分帯域幅などと呼ばれてもよい)は、あるキャリアにおいて、あるニューメロロジー用の連続する共通RB(common resource blocks)のサブセットのことを表してもよい。ここで、共通RBは、当該キャリアの共通参照ポイントを基準としたRBのインデックスによって特定されてもよい。PRBは、あるBWPで定義され、当該BWP内で番号付けされてもよい。 Bandwidth Part (BWP) (which may also be called partial bandwidth, etc.) may represent a subset of consecutive common resource blocks (RBs) for a neurology in a carrier. good. Here, the common RB may be specified by the index of the RB with respect to the common reference point of the carrier. PRBs may be defined in a BWP and numbered within that BWP.
 BWPには、UL用のBWP(UL BWP)と、DL用のBWP(DL BWP)とが含まれてもよい。UEに対して、1キャリア内に1つ又は複数のBWPが設定されてもよい。 BWP may include BWP for UL (UL BWP) and BWP for DL (DL BWP). One or more BWPs may be set in one carrier for the UE.
 設定されたBWPの少なくとも1つがアクティブであってもよく、UEは、アクティブなBWPの外で所定の信号/チャネルを送受信することを想定しなくてもよい。なお、本開示における「セル」、「キャリア」などは、「BWP」で読み替えられてもよい。 At least one of the configured BWPs may be active, and the UE may not expect to send or receive a given signal / channel outside the active BWP. In addition, "cell", "carrier" and the like in this disclosure may be read as "BWP".
 上述した無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルなどの構造は例示に過ぎない。例えば、無線フレームに含まれるサブフレームの数、サブフレーム又は無線フレームあたりのスロットの数、スロット内に含まれるミニスロットの数、スロット又はミニスロットに含まれるシンボル及びRBの数、RBに含まれるサブキャリアの数、並びにTTI内のシンボル数、シンボル長、サイクリックプレフィックス(Cyclic Prefix:CP)長などの構成は、様々に変更することができる。 The above-mentioned structures such as wireless frames, subframes, slots, mini-slots and symbols are merely examples. For example, the number of subframes contained in a wireless frame, the number of slots per subframe or wireless frame, the number of minislots contained within a slot, the number of symbols and RBs contained in a slot or minislot, included in RB. The number of subcarriers, as well as the number of symbols in the TTI, the symbol length, the cyclic prefix (CP) length, and other configurations can be changed in various ways.
 「接続された(connected)」、「結合された(coupled)」という用語、又はこれらのあらゆる変形は、2又はそれ以上の要素間の直接的又は間接的なあらゆる接続又は結合を意味し、互いに「接続」又は「結合」された2つの要素間に1又はそれ以上の中間要素が存在することを含むことができる。要素間の結合又は接続は、物理的なものであっても、論理的なものであっても、或いはこれらの組み合わせであってもよい。例えば、「接続」は「アクセス」で読み替えられてもよい。本開示で使用する場合、2つの要素は、1又はそれ以上の電線、ケーブル及びプリント電気接続の少なくとも一つを用いて、並びにいくつかの非限定的かつ非包括的な例として、無線周波数領域、マイクロ波領域及び光(可視及び不可視の両方)領域の波長を有する電磁エネルギーなどを用いて、互いに「接続」又は「結合」されると考えることができる。

 参照信号は、Reference Signal(RS)と略称することもでき、適用される標準によってパイロット(Pilot)と呼ばれてもよい。
The terms "connected", "coupled", or any variation thereof, mean any direct or indirect connection or connection between two or more elements and each other. It can include the presence of one or more intermediate elements between two "connected" or "combined" elements. The connection or connection between the elements may be physical, logical, or a combination thereof. For example, "connection" may be read as "access". As used in the present disclosure, the two elements use at least one of one or more wires, cables and printed electrical connections, and as some non-limiting and non-comprehensive examples, the radio frequency domain. Can be considered to be "connected" or "coupled" to each other using electromagnetic energy having wavelengths in the microwave and light (both visible and invisible) regions.

The reference signal may also be abbreviated as Reference Signal (RS) and may be referred to as a pilot (Pilot) depending on the applied standard.
 本開示において使用する「に基づいて」という記載は、別段に明記されていない限り、「のみに基づいて」を意味しない。言い換えれば、「に基づいて」という記載は、「のみに基づいて」と「に少なくとも基づいて」の両方を意味する。 The statement "based on" used in this disclosure does not mean "based on" unless otherwise stated. In other words, the statement "based on" means both "based only" and "at least based on".
 上記の各装置の構成における「手段」を、「部」、「回路」、「デバイス」等に置き換えてもよい。 The "means" in the configuration of each of the above devices may be replaced with a "part", a "circuit", a "device", or the like.
 本開示において使用する「第1」、「第2」などの呼称を使用した要素へのいかなる参照も、それらの要素の量又は順序を全般的に限定しない。これらの呼称は、2つ以上の要素間を区別する便利な方法として本開示において使用され得る。したがって、第1及び第2の要素への参照は、2つの要素のみがそこで採用され得ること、又は何らかの形で第1の要素が第2の要素に先行しなければならないことを意味しない。 Any reference to elements using designations such as "first" and "second" as used in this disclosure does not generally limit the quantity or order of those elements. These designations can be used in the present disclosure as a convenient way to distinguish between two or more elements. Therefore, references to the first and second elements do not mean that only two elements can be adopted there, or that the first element must somehow precede the second element.
 本開示において、「含む(include)」、「含んでいる(including)」及びそれらの変形が使用されている場合、これらの用語は、用語「備える(comprising)」と同様に、包括的であることが意図される。さらに、本開示において使用されている用語「又は(or)」は、排他的論理和ではないことが意図される。 When "include", "including" and variations thereof are used in the present disclosure, these terms are as comprehensive as the term "comprising". Is intended. Moreover, the term "or" used in the present disclosure is intended not to be an exclusive OR.
 本開示において、例えば、英語でのa, an及びtheのように、翻訳により冠詞が追加された場合、本開示は、これらの冠詞の後に続く名詞が複数形であることを含んでもよい。 In the present disclosure, if articles are added by translation, for example, a, an and the in English, the disclosure may include the plural nouns following these articles.
 本開示で使用する「判断(determining)」、「決定(determining)」という用語は、多種多様な動作を包含する場合がある。「判断」、「決定」は、例えば、判定(judging)、計算(calculating)、算出(computing)、処理(processing)、導出(deriving)、調査(investigating)、探索(looking up、search、inquiry)(例えば、テーブル、データベース又は別のデータ構造での探索)、確認(ascertaining)した事を「判断」「決定」したとみなす事などを含み得る。また、「判断」、「決定」は、受信(receiving)(例えば、情報を受信すること)、送信(transmitting)(例えば、情報を送信すること)、入力(input)、出力(output)、アクセス(accessing)(例えば、メモリ中のデータにアクセスすること)した事を「判断」「決定」したとみなす事などを含み得る。また、「判断」、「決定」は、解決(resolving)、選択(selecting)、選定(choosing)、確立(establishing)、比較(comparing)などした事を「判断」「決定」したとみなす事を含み得る。つまり、「判断」「決定」は、何らかの動作を「判断」「決定」したとみなす事を含み得る。また、「判断(決定)」は、「想定する(assuming)」、「期待する(expecting)」、「みなす(considering)」などで読み替えられてもよい。 The terms "determining" and "determining" used in this disclosure may include a wide variety of actions. "Judgment" and "decision" are, for example, judgment (judging), calculation (calculating), calculation (computing), processing (processing), derivation (deriving), investigation (investigating), search (looking up, search, inquiry). It may include (eg, searching in a table, database or another data structure), ascertaining as "judgment" or "decision". Also, "judgment" and "decision" are receiving (for example, receiving information), transmitting (for example, transmitting information), input (input), output (output), and access. It may include (for example, accessing data in memory) to be regarded as "judgment" or "decision". In addition, "judgment" and "decision" are considered to be "judgment" and "decision" when the things such as solving, selecting, choosing, establishing, and comparing are regarded as "judgment" and "decision". Can include. That is, "judgment" and "decision" may include considering some action as "judgment" and "decision". Further, "judgment (decision)" may be read as "assuming", "expecting", "considering" and the like.
 本開示において、「AとBが異なる」という用語は、「AとBが互いに異なる」ことを意味してもよい。なお、当該用語は、「AとBがそれぞれCと異なる」ことを意味してもよい。「離れる」、「結合される」などの用語も、「異なる」と同様に解釈されてもよい。 In the present disclosure, the term "A and B are different" may mean "A and B are different from each other". The term may mean that "A and B are different from C". Terms such as "separate" and "combined" may be interpreted in the same way as "different".
 以上、本開示について詳細に説明したが、当業者にとっては、本開示が本開示中に説明した実施形態に限定されるものではないということは明らかである。本開示は、請求の範囲の記載により定まる本開示の趣旨及び範囲を逸脱することなく修正及び変更態様として実施することができる。したがって、本開示の記載は、例示説明を目的とするものであり、本開示に対して何ら制限的な意味を有するものではない。 Although the present disclosure has been described in detail above, it is clear to those skilled in the art that the present disclosure is not limited to the embodiments described in the present disclosure. The present disclosure may be implemented as amendments and modifications without departing from the spirit and scope of the present disclosure as determined by the description of the scope of claims. Therefore, the description of this disclosure is for purposes of illustration and does not have any limiting meaning to this disclosure.
 10 無線通信システム
 20 NG-RAN
 100 gNB
 200 UE
 210 無線信号送受信部
 220 アンプ部
 230 変復調部
 240 制御信号・参照信号処理部
 250 符号化/復号部
 260 データ送受信部
 270 制御部
 1001 プロセッサ
 1002 メモリ
 1003 ストレージ
 1004 通信装置
 1005 入力装置
 1006 出力装置
 1007 バス
10 Radio communication system 20 NG-RAN
100 gNB
200 UE
210 Wireless signal transmitter / receiver 220 Amplifier 230 Modulator / demodulator 240 Control signal / reference signal processing 250 Encoding / decoding 260 Data transmitter / receiver 270 Control 1001 Processor 1002 Memory 1003 Storage 1004 Communication device 1005 Input device 1006 Output device 1007 Bus

Claims (5)

  1.  異なるコンポーネントキャリアを介して、物理上りリンク制御チャネルを少なくとも含む上りリンクチャネルを用いて上りリンク信号の同時送信を実行する通信部と、
     前記上りリンク信号の同時送信を制御する制御部と、を備え、
     前記制御部は、前記物理上りリンク制御チャネルに関する物理上りリンク制御チャネルグループのグループ数と、前記上りリンク信号の同時送信をサポートするコンポーネントキャリアのサポート数と、に基づいて、前記上りリンク信号の同時送信に用いるコンポーネントキャリアの上限数を決定する、端末。
    A communication unit that performs simultaneous transmission of uplink signals using uplink channels, including at least physical uplink control channels, via different component carriers.
    A control unit that controls simultaneous transmission of the uplink signal is provided.
    The control unit simultaneously performs the uplink signal based on the number of groups of the physical uplink control channel group related to the physical uplink control channel and the number of component carriers supporting the simultaneous transmission of the uplink signal. A terminal that determines the maximum number of component carriers used for transmission.
  2.  前記サポート数は、前記物理上りリンク制御チャネルグループ毎に定義され、前記前記端末に設定されたセルグループ毎に定義される、請求項1に記載の端末。 The terminal according to claim 1, wherein the number of supports is defined for each physical uplink control channel group and is defined for each cell group set for the terminal.
  3.  前記制御部は、前記サポート数が前記物理上りリンク制御チャネルグループ毎に定義される場合に、前記グループ数及び前記サポート数の乗算結果を前記上限数として決定する、請求項2に記載の端末。 The terminal according to claim 2, wherein the control unit determines, when the support number is defined for each physical uplink control channel group, the multiplication result of the group number and the support number as the upper limit number.
  4.  前記制御部は、前記サポート数が前記セルグループ毎に定義される場合に、前記グループ数及び前記サポート数のうち大きい数を前記上限数として決定する、端末。 The control unit is a terminal that, when the number of supports is defined for each cell group, determines a larger number among the number of groups and the number of supports as the upper limit number.
  5.  前記制御部は、前記サポート数が前記セルグループ毎に定義される場合に、前記グループ数及び前記サポート数の乗算結果を前記上限数として決定する、請求項2に記載の端末。 The terminal according to claim 2, wherein the control unit determines the multiplication result of the group number and the support number as the upper limit number when the support number is defined for each cell group.
PCT/JP2020/038373 2020-10-09 2020-10-09 Terminal WO2022074842A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2020/038373 WO2022074842A1 (en) 2020-10-09 2020-10-09 Terminal
JP2022555245A JPWO2022074842A1 (en) 2020-10-09 2020-10-09

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/038373 WO2022074842A1 (en) 2020-10-09 2020-10-09 Terminal

Publications (1)

Publication Number Publication Date
WO2022074842A1 true WO2022074842A1 (en) 2022-04-14

Family

ID=81125781

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/038373 WO2022074842A1 (en) 2020-10-09 2020-10-09 Terminal

Country Status (2)

Country Link
JP (1) JPWO2022074842A1 (en)
WO (1) WO2022074842A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019220595A1 (en) * 2018-05-17 2019-11-21 株式会社Nttドコモ User terminal and wireless base station
WO2020008649A1 (en) * 2018-07-06 2020-01-09 株式会社Nttドコモ User equipment and wireless communication method
JP2020519085A (en) * 2017-05-05 2020-06-25 クアルコム,インコーポレイテッド Short transmission time interval configuration based on user equipment capability

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020519085A (en) * 2017-05-05 2020-06-25 クアルコム,インコーポレイテッド Short transmission time interval configuration based on user equipment capability
WO2019220595A1 (en) * 2018-05-17 2019-11-21 株式会社Nttドコモ User terminal and wireless base station
WO2020008649A1 (en) * 2018-07-06 2020-01-09 株式会社Nttドコモ User equipment and wireless communication method

Also Published As

Publication number Publication date
JPWO2022074842A1 (en) 2022-04-14

Similar Documents

Publication Publication Date Title
WO2021005663A1 (en) Terminal
WO2020261463A1 (en) Terminal
WO2022079876A1 (en) Terminal
WO2022149267A1 (en) Radio base station and terminal
WO2021214920A1 (en) Terminal
WO2021199348A1 (en) Terminal
WO2022074842A1 (en) Terminal
WO2022085156A1 (en) Terminal
WO2022079872A1 (en) Terminal
WO2022097724A1 (en) Terminal
WO2022074843A1 (en) Terminal
WO2022102669A1 (en) Terminal
WO2022029972A1 (en) Terminal
WO2021192063A1 (en) Terminal
WO2022102718A1 (en) Terminal
WO2022029973A1 (en) Terminal
WO2021199388A1 (en) Terminal
WO2022102714A1 (en) Terminal
WO2022153505A1 (en) Terminal and radio base station
WO2022079861A1 (en) Terminal
WO2022102670A1 (en) Terminal
WO2021191982A1 (en) Terminal
WO2022149287A1 (en) Terminal and radio base station
WO2021192064A1 (en) Terminal
WO2022085201A1 (en) Terminal

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20956789

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022555245

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20956789

Country of ref document: EP

Kind code of ref document: A1