WO2021199388A1 - Terminal - Google Patents

Terminal Download PDF

Info

Publication number
WO2021199388A1
WO2021199388A1 PCT/JP2020/015113 JP2020015113W WO2021199388A1 WO 2021199388 A1 WO2021199388 A1 WO 2021199388A1 JP 2020015113 W JP2020015113 W JP 2020015113W WO 2021199388 A1 WO2021199388 A1 WO 2021199388A1
Authority
WO
WIPO (PCT)
Prior art keywords
pucch
ccs
uci
uplink control
information
Prior art date
Application number
PCT/JP2020/015113
Other languages
French (fr)
Japanese (ja)
Inventor
翔平 吉岡
浩樹 原田
聡 永田
Original Assignee
株式会社Nttドコモ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Nttドコモ filed Critical 株式会社Nttドコモ
Priority to JP2022511448A priority Critical patent/JPWO2021199388A1/ja
Priority to PCT/JP2020/015113 priority patent/WO2021199388A1/en
Publication of WO2021199388A1 publication Critical patent/WO2021199388A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation

Definitions

  • the present disclosure relates to a terminal that executes wireless communication, particularly a terminal that executes wireless communication using a large number of component carriers.
  • the 3rd Generation Partnership Project (3GPP) specifies the 5th generation mobile communication system (also called 5G, New Radio (NR) or Next Generation (NG)), and next-generation specifications called Beyond 5G, 5G Evolution or 6G. We are also proceeding with the conversion.
  • 5G New Radio
  • NG Next Generation
  • Release 15 and Release 16 (NR) of 3GPP specify the operation of multiple frequency ranges, specifically, bands including FR1 (410MHz to 7.125GHz) and FR2 (24.25GHz to 52.6GHz). ..
  • Non-Patent Document 1 studies are underway on NR that supports up to 71 GHz beyond 52.6 GHz.
  • 5G Evolution or 6G aims to support frequency bands above 71GHz.
  • Carrier Aggregation stipulates the number of CCs that can be set. For example, in 3GPP Release 15 and Release 16, the maximum number of CCs that can be set for a terminal (User Equipment, UE) is 16 for downlink (DL) and uplink (UL), respectively.
  • the inventors can improve the flexibility of communication control using a plurality of CCs by paying attention to the assumption that the channel qualities of a large number of CCs are similar as a result of diligent studies. I found that.
  • the following disclosure was made in view of such a situation, and aims to provide a terminal capable of improving the flexibility of communication control when a large number of component carriers (CC) are set. do.
  • CC component carriers
  • One aspect of the present disclosure is a terminal comprising a communication unit that executes data communication via one or more component carriers, the communication unit being based on the setting of one or more physical uplink control channels.
  • the gist is to use one or more component carriers to perform predetermined transmission to transmit uplink control information to the network.
  • FIG. 1 is an overall schematic configuration diagram of the wireless communication system 10.
  • FIG. 2 is a diagram showing a frequency range used in the wireless communication system 10.
  • FIG. 3 is a diagram showing a configuration example of a wireless frame, a subframe, and a slot used in the wireless communication system 10.
  • FIG. 4 is a functional block configuration diagram of the UE 200.
  • FIG. 5 is a diagram for explaining the resource setting of PUCCH.
  • FIG. 6 is a diagram for explaining the resource setting of PUCCH.
  • FIG. 7 is a diagram for explaining the resource setting of PUCCH.
  • FIG. 8 is a diagram showing an operation example 1.
  • FIG. 9 is a diagram showing an operation example 2.
  • FIG. 10 is a diagram for explaining modification 1.
  • FIG. 11 is a diagram showing an example of the hardware configuration of the UE 200.
  • FIG. 1 is an overall schematic configuration diagram of the wireless communication system 10 according to the present embodiment.
  • the wireless communication system 10 is a wireless communication system according to 5G New Radio (NR), and includes a Next Generation-Radio Access Network 20 (hereinafter, NG-RAN20) and a terminal 200 (hereinafter, UE200).
  • NR 5G New Radio
  • NG-RAN20 Next Generation-Radio Access Network 20
  • UE200 terminal 200
  • the wireless communication system 10 may be a wireless communication system according to a method called Beyond 5G, 5G Evolution or 6G.
  • NG-RAN20 includes a radio base station 100A (hereinafter, gNB100A) and a radio base station 100B (hereinafter, gNB100B).
  • gNB100A radio base station 100A
  • gNB100B radio base station 100B
  • the specific configuration of the wireless communication system 10 including the number of gNBs and UEs is not limited to the example shown in FIG.
  • the NG-RAN20 actually includes multiple NG-RANNodes, specifically gNB (or ng-eNB), and is connected to a core network (5GC, not shown) according to 5G.
  • NG-RAN20 and 5GC may be simply expressed as "network”.
  • GNB100 and gNB100B are radio base stations that comply with 5G, and execute wireless communication according to UE200 and 5G.
  • the gNB100, gNB100B and UE200 are Massive MIMO (Multiple-Input Multiple-Output) and multiple component carriers (CC) that generate more directional beam BM by controlling radio signals transmitted from multiple antenna elements. ) Can be bundled and used for carrier aggregation (CA), and dual connectivity (DC) for simultaneous communication between the UE and each of the two NG-RAN Nodes.
  • Massive MIMO Multiple-Input Multiple-Output
  • CC component carriers
  • CA carrier aggregation
  • DC dual connectivity
  • the wireless communication system 10 supports a plurality of frequency ranges (FR).
  • FIG. 2 shows the frequency range used in the wireless communication system 10.
  • the wireless communication system 10 corresponds to FR1 and FR2.
  • the frequency bands of each FR are as follows.
  • FR1 410 MHz to 7.125 GHz
  • FR2 24.25 GHz to 52.6 GHz
  • SCS Sub-Carrier Spacing
  • BW bandwidth
  • FR2 has a higher frequency than FR1, SCS of 60, or 120kHz (240kHz may be included) is used, and a bandwidth (BW) of 50 to 400MHz may be used.
  • SCS may be interpreted as numerology. Numerology is defined in 3GPP TS38.300 and corresponds to one subcarrier spacing in the frequency domain.
  • the wireless communication system 10 also supports a higher frequency band than the FR2 frequency band. Specifically, the wireless communication system 10 corresponds to a frequency band exceeding 52.6 GHz and up to 114.25 GHz. Such a high frequency band may be referred to as "FR2x" for convenience.
  • Cyclic Prefix-Orthogonal Frequency Division Multiplexing CP-OFDM
  • DFT- Discrete Fourier Transform-Spread
  • SCS Sub-Carrier Spacing
  • FIG. 3 shows a configuration example of a wireless frame, a subframe, and a slot used in the wireless communication system 10.
  • one slot is composed of 14 symbols, and the larger (wider) the SCS, the shorter the symbol period (and slot period).
  • the SCS is not limited to the interval (frequency) shown in FIG. For example, 480kHz, 960kHz and the like may be used.
  • the number of symbols constituting one slot does not necessarily have to be 14 symbols (for example, 28, 56 symbols).
  • the number of slots per subframe may vary from SCS to SCS.
  • the time direction (t) shown in FIG. 3 may be referred to as a time domain, a symbol period, a symbol time, or the like.
  • the frequency direction may be referred to as a frequency domain, a resource block, a subcarrier, a BWP (Bandwidth part), or the like.
  • FIG. 4 is a functional block configuration diagram of the UE 200.
  • the UE 200 includes a radio signal transmission / reception unit 210, an amplifier unit 220, a modulation / demodulation unit 230, a control signal / reference signal processing unit 240, a coding / decoding unit 250, a data transmission / reception unit 260, and a control unit 270. ..
  • the wireless signal transmitter / receiver 210 transmits / receives a wireless signal according to NR.
  • the radio signal transmitter / receiver 210 corresponds to Massive MIMO, a CA that bundles a plurality of CCs, and a DC that simultaneously communicates between the UE and each of the two NG-RAN Nodes.
  • the amplifier unit 220 is composed of PA (Power Amplifier) / LNA (Low Noise Amplifier) and the like.
  • the amplifier unit 220 amplifies the signal output from the modulation / demodulation unit 230 to a predetermined power level. Further, the amplifier unit 220 amplifies the RF signal output from the radio signal transmission / reception unit 210.
  • the modulation / demodulation unit 230 executes data modulation / demodulation, transmission power setting, resource block allocation, etc. for each predetermined communication destination (gNB100 or other gNB).
  • Cyclic Prefix-Orthogonal Frequency Division Multiplexing (CP-OFDM) / Discrete Fourier Transform-Spread (DFT-S-OFDM) may be applied to the modulation / demodulation unit 230. Further, DFT-S-OFDM may be used not only for uplink (UL) but also for downlink (DL).
  • the control signal / reference signal processing unit 240 executes processing related to various control signals transmitted / received by the UE 200 and processing related to various reference signals transmitted / received by the UE 200.
  • control signal / reference signal processing unit 240 receives various control signals transmitted from the gNB 100 via a predetermined control channel, for example, control signals of the radio resource control layer (RRC). Further, the control signal / reference signal processing unit 240 transmits various control signals to the gNB 100 via a predetermined control channel.
  • a predetermined control channel for example, control signals of the radio resource control layer (RRC).
  • RRC radio resource control layer
  • the control signal / reference signal processing unit 240 executes processing using a reference signal (RS) such as Demodulation Reference Signal (DMRS) and Phase Tracking Reference Signal (PTRS).
  • RS reference signal
  • DMRS Demodulation Reference Signal
  • PTRS Phase Tracking Reference Signal
  • DMRS is a known reference signal (pilot signal) between the base station and the terminal of each terminal for estimating the fading channel used for data demodulation.
  • PTRS is a terminal-specific reference signal for the purpose of estimating phase noise, which is a problem in high frequency bands.
  • the reference signal may include ChannelStateInformation-ReferenceSignal (CSI-RS), SoundingReferenceSignal (SRS), and PositioningReferenceSignal (PRS) for position information.
  • CSI-RS ChannelStateInformation-ReferenceSignal
  • SRS SoundingReferenceSignal
  • PRS PositioningReferenceSignal
  • control channels include PDCCH (Physical Downlink Control Channel), PUCCH (Physical Uplink Control Channel), RACH (Random Access Channel), Random Access Radio Network Temporary Identifier (RA-RNTI), Downlink Control Information (DCI), and Physical Broadcast Channel (PBCH) etc. are included.
  • PDCCH Physical Downlink Control Channel
  • PUCCH Physical Uplink Control Channel
  • RACH Random Access Channel
  • RA-RNTI Random Access Radio Network Temporary Identifier
  • DCI Downlink Control Information
  • PBCH Physical Broadcast Channel
  • the data channels include PDSCH (Physical Downlink Shared Channel) and PUSCH (Physical Uplink Shared Channel).
  • Data means data transmitted over a data channel.
  • the data channel may be read as a shared channel.
  • the control signal / reference signal processing unit 240 constitutes a communication unit that executes data communication via one or more CCs.
  • the control signal / reference signal processing unit 240 uses one or more CCs to execute predetermined transmission for transmitting uplink control information (UCI: Uplink Control Information) to a network (for example, NG-RAN20).
  • the UCI may include an acknowledgment (HARQ-ACK) for one or more TBs.
  • the UCI may include an SR (Scheduling Request) that requests resource scheduling, or may include a CSI (Channel State Information) that indicates the state of the channel.
  • the UCI may be transmitted via a physical uplink control channel (PUCCH: Physical Uplink Control Channel) or may be transmitted via a physical uplink shared channel (PUSCH: Physical Uplink Shared Channel).
  • PUCCH Physical Uplink Control Channel
  • PUSCH Physical Uplink Shared Channel
  • the coding / decoding unit 250 executes data division / concatenation and channel coding / decoding for each predetermined communication destination (gNB100 or other gNB).
  • the coding / decoding unit 250 divides the data output from the data transmitting / receiving unit 260 into a predetermined size, and executes channel coding for the divided data. Further, the coding / decoding unit 250 decodes the data output from the modulation / demodulation unit 230 and concatenates the decoded data.
  • the data transmission / reception unit 260 executes transmission / reception of Protocol Data Unit (PDU) and Service Data Unit (SDU).
  • the data transmitter / receiver 260 is a PDU / SDU in a plurality of layers (such as a medium access control layer (MAC), a wireless link control layer (RLC), and a packet data convergence protocol layer (PDCP)). Assemble / disassemble.
  • the data transmission / reception unit 260 executes data error correction and retransmission control based on the hybrid ARQ (Hybrid automatic repeat request).
  • the control unit 270 controls each functional block constituting the UE 200.
  • the control unit 270 controls the communication of one or more CCs by using one or more DCIs received via a predetermined CC.
  • the predetermined CC may be one or more CCs included in the plurality of CCs. Communication of one or more CCs may include transmission of UCI using one or more CCs.
  • FIGS. 5 to 7 are diagrams showing PUCCH resource settings in a case where UCI is transmitted via PUCCH or PUSCH. 5 to 7 illustrate a case where UCI is transmitted via CC # 0 and CC # 1.
  • the resources used for PUCCH (hereinafter referred to as PUCCH resources) are set by the upper layer.
  • PUCCH resource is set by the information element contained in the RRC message. Such an information element may be referred to as PUCCH-Config.
  • PUCCH-Config. One or more PUCCH resource sets and one or more PUCCH resources are set, and one or more PUCCH resource sets include information elements that specify one or more PUCCH resources.
  • the upper layer parameter that sets the PUCCH resource for SR and CSI transmission may be set separately from the above PUCCH resource set. In this disclosure, PUCCH-Config. Or PUCCH resource may be replaced by PUCCH resource set.
  • PUCCH-Config. May be an information element capable of specifying a PUCCH resource that spans a plurality of CCs.
  • PUCCH-Config. One or more PUCCH resource sets may be set, and one or more PUCCH resource may be set.
  • Each PUCCH resource may be set for one or more CCs of a plurality of CCs, and a PUCCH resource straddling a plurality of CCs can be specified.
  • PUCCH-Config. May be a setting that targets the PUCCH resource of CC # 0, or may be a setting that targets the PUCCH resource of CC # 1.
  • a PUCCH straddles a plurality of CCs may mean that a certain PUCCH is mapped to a plurality of CCs, and may be transmitted or received via the plurality of CCs.
  • PUCCH-Config. May be an information element that cannot specify a PUCCH resource that spans a plurality of CCs.
  • PUCCH-Config. One or more PUCCH resource sets may be set, and one or more PUCCH resource may be set.
  • Each PUCCH resource may be set for any one CC of a plurality of CCs, and may not span a plurality of CCs.
  • the CC of any one of the plurality of CCs may be any CC or may be limited to a specific CC.
  • PUCCH-Config. Is a setting that targets the PUCCH resource of CC # 0.
  • PUCCH resource is not allowed to span multiple CCs, but in UCI transmission, PUCCH based on the PUCCH resource may span multiple CCs.
  • PUCCH based on the PUCCH resource may span multiple CCs.
  • UE200 and NG-RAN20 are based on one or more parameters selected from the UCI payload size, UCI coding rate, UCI modulation sequence, and Indication indicating transmission across multiple CCs. It may be decided whether or not to straddle a plurality of CCs.
  • PUCCH-Config. May be an information element that cannot specify a PUCCH resource that spans a plurality of CCs.
  • PUCCH-Config. One or more PUCCH resource sets may be set, and one or more PUCCH resource may be set.
  • Each PUCCH resource may be set for any one CC of a plurality of CCs, and may not span a plurality of CCs.
  • the CC of any one of the plurality of CCs may be any CC or may be limited to a specific CC.
  • PUCCH-Config. Is a setting that targets the PUCCH resource of CC # 0.
  • whether or not to apply PUCCH-Config. And / or PUCCH resource related to a plurality of CCs may be applied to UE200 by the information element included in the RRC message, and UE200 by the information element included in DCI. May be applied to.
  • the application may be referred to as enable or activate.
  • Non-application may be referred to as disable or inactivate.
  • two upper layer parameter groups may be set.
  • one upper layer parameter group is PUCCH-Config.
  • PUCCH-Config Related to a plurality of CCs, and may include a parameter that specifies a PUCCH resource in different CCs, and a parameter that specifies a PUCCH resource that spans a plurality of CCs. It may be included.
  • the other upper layer parameter group is PUCCH-Config. Associated with a single CC and may include parameters that specify PUCCH resources in a single CC (ie, similar to traditional PUCCH-Config.). ).
  • the plurality of CCs may be consecutive CCs in the intra-band.
  • the plurality of CCs may be CCs included in the scheduling cell or CCs included in the search space of PDCCH.
  • PDCCH search space is SI (System Information) -RNTI (Radio Network Temporary Identifier), RA (Random Access) -RNTI, TC (Temporary Cell) -RNTI, C (Cell) -RNTI, P (Paging) -RNTI, INT (Interruption) -RNTI, SFI (Slot Format Indication) -RNTI, TPC (Transmit Power Control) -PUSCH-RNTI, TPC-PUCCH-RNTI, TPC-SRS-RNTI, SP (Semi Persistent) -CSI (Channel State Information) )- May be defined by an RNTI such as RNTI.
  • the plurality of CCs may be CCs to which the serving cell settings are commonly applied. Serving cell settings may include
  • the UE 200 may receive an RRC message from the NG-RAN 20 containing an information element instructing the application of PUCCH-Config. And / or PUCCH resource related to a plurality of CCs.
  • the information elements that indicate the application of PUCCH-Config. And / or PUCCH resource related to multiple CCs are the identification information of the CC to which PUCCH-Config. And / or PUCCH resource is applied and the PUCCH-related to multiple CCs. It may include the fact that Config. And / or PUCCH resource is applied (for example, enable).
  • the UE 200 may receive an RRC message from the NG-RAN 20 containing an information element indicating the non-application of PUCCH-Config.
  • the information element that indicates the non-application of PUCCH-Config. And / or PUCCH resource related to multiple CCs is PUCCH-Config. And / or PUCCH-related to CCs to which PUCCH resource is not applied and multiple CCs. It may include the fact that Config. And / or PUCCH resource is not applied (for example, disable).
  • the above table elements that indicate the application or non-application of PUCCH-Config. And / or PUCCH resource are bitmap information that can specify CC by bit position, and each bit has multiple CCs corresponding to bit positions. It may be an information element indicating whether or not PUCCH-Config. And / or PUCCH resource related to is applicable.
  • UE200 may specify the CC to which PUCCH-Config. And / or PUCCH resource related to a plurality of CCs is applied based on the information element included in DCI. For example, UE200 identifies the CC to which PUCCH-Config. And / or PUCCH resource is applied based on the CI stored in the CI (Channel Indicator) field included in DCI. For example, in the case shown in FIG. 5, when CI is a value indicating CC # 0 and CC # 1, PUCCH-Config. And / or CC to which PUCCH resource is applied is CC # 0. And CC # 1.
  • CI Channel Indicator
  • PUCCH mapping may be executed for the Guard Subcarrier (s) between the two CCs.
  • Guard Subcarrier (s) between consecutive CCs may be used as a resource.
  • the Guard Subcarrier (s) between the two CCs may be Rate Matched. That is, PUCCH may not be mapped to Guard Subcarrier (s), but may be mapped in order beyond Guard Subcarrier (s).
  • TDD setting In the case where PUCCH-Config. Related to multiple CCs and / or PUCCH resource spanning multiple CCs can be applied, the TDD setting may be defined as follows.
  • the TDD setting is an example of an information element (upper layer parameter) of an RRC message, and may be called TDD UL / DL Common Configuration or TDD UL / DL Dedicated Configuration.
  • the TDD setting may be dictated by a particular DCI (eg SFI).
  • the symbol pattern (hereinafter, D / U Type) to which DL and UL are assigned in the time domain may be the same among a plurality of CCs.
  • the PUCCH that can be used may be limited to resources that span one or more CCs with the same D / U Type.
  • the existing control for mapping PUCCH to one CC may be executed.
  • mapping PUCCH to multiple CCs is n + 1 included in the time domain after mapping PUCCH to the frequency domain across multiple CCs in the nth unit included in the time domain.
  • PUCCH may be mapped to a frequency domain across multiple CCs (see, eg, FIG. 9).
  • the order of mapping PUCCH to multiple CCs is to map PUCCH to the frequency domain in the nth unit contained in the time domain in the mth CC, and then PUCCH in the n + 1th unit contained in the time domain. May be mapped to the frequency domain, and this may be repeated in the m + 1th CC.
  • UCI type may include types such as HARQ-ACK, SR, and CSI.
  • HARQ-ACK may be transmitted via CC # 0 and SR and CSI may be transmitted via CC # 1.
  • the frequency hopping may not be set. Moreover, even if FH is set, FH does not have to be applied.
  • the information element that sets FH is an example of the information element (upper layer parameter) included in the RRC message.
  • the PRB Index will be in a format that spans multiple CCs. It may be defined by.
  • the PRB Index included in CC # 0 and CC # 1 may be defined in a continuous format between CCs instead of being independent for each CC.
  • the PRB that initiates FH may be defined by the CC Index of the CC and the PRB Index within the CC.
  • Operation example (7.1) Operation example 1 As shown in FIG. 8, in step S10, the UE 100 receives an RRC message including PUCCH-Config. Related to a plurality of CCs from the NG-RAN 20.
  • the RRC message may include an information element indicating the application of PUCCH-Config. Related to multiple CCs (see FIG. 5).
  • step S11 the UE 200 receives one or more DCIs from the NG-RAN 20 via the PDCCH mapped to the predetermined CC.
  • step S12 the UE 200 receives data via the PDSCH mapped to one or more CCs based on the DCI received in step S11.
  • step S13 the UE 200 transmits data via PUCCH based on the DCI received in step S11.
  • the UE 200 transmits a UCI via a PUCCH that spans multiple CCs.
  • UCI may include HARQ-ACK for data received via PDSCH.
  • FIG. 8 illustrates a case where PUCCH-Config. Can specify one PUCCH resource that spans a plurality of CCs (see FIG. 5). However, as shown in FIG. 6, PUCCH-Config. May be an information element that cannot specify one PUCCH resource that spans a plurality of CCs.
  • step S20 the UE 100 receives an RRC message containing PUCCH-Config. Related to a plurality of CCs from the NG-RAN 20 (see FIG. 5).
  • the UE 200 receives one or more DCIs from the NG-RAN 20 via the PDCCH mapped to the predetermined CC.
  • UE200 may identify the CC to which PUCCH-Config. Related to multiple CCs is applied based on the information elements contained in DCI. For example, UE200 identifies the CC to which PUCCH-Config. Applies based on the CI stored in the CI field contained in DCI.
  • step S22 the UE 200 receives data via the PDSCH mapped to one or more CCs based on the DCI received in step S21.
  • step S23 the UE 200 transmits data via PUCCH based on the DCI received in step S21.
  • the UE 200 transmits a UCI via a PUCCH that spans multiple CCs.
  • UCI may include HARQ-ACK for data received via PDSCH.
  • FIG. 9 illustrates a case where PUCCH-Config. Can specify one PUCCH resource that spans a plurality of CCs (see FIG. 5). However, as shown in FIG. 6, PUCCH-Config. May be an information element that cannot specify one PUCCH resource that spans a plurality of CCs.
  • the UE 200 executes a predetermined transmission for transmitting the UCI to the network using one or a plurality of CCs. According to such a configuration, it is possible to improve the flexibility of communication control when a large number of CCs are set. In addition, it is possible to reduce the coding rate applied to UCI and to transmit UCI with an increased number of bits in a short time.
  • the UE 200 transmits an information element indicating whether or not it has the ability to execute a predetermined transmission to the network (NG-RAN20). Specifically, as shown in FIG. 10, in step S30, the UE 200 transmits (reports) a UE capability including an information element indicating whether or not it has the ability to execute a predetermined transmission to the NG-RAN 20.
  • UE200 may execute step S30 when an RRC connection is set with NG-RAN20.
  • step S30 may be executed before the process shown in FIG. 8 or 9.
  • the predetermined condition may be that a plurality of CCs are controlled based on one or more DCIs received via the predetermined CCs included in the plurality of CCs.
  • the predetermined condition may be to instruct that one or more DCIs received via the predetermined CC apply the predetermined transmission (first predetermined condition).
  • the predetermined transmission may be applied to a plurality of CCs used for receiving the DCI instructing that the predetermined transmission is applied.
  • the DCI may include an information element (enable) indicating that the predetermined transmission is applied.
  • the DCI may include an information element (disable) indicating that the predetermined transmission is not applied.
  • the plurality of CCs to which the predetermined transmission can be applied may be set by the RRC message or may be predetermined.
  • the predetermined condition may be that the RRC message indicates that the predetermined transmission is applied (second predetermined condition).
  • the RRC message may include an information element (enable) indicating that the predetermined transmission is applied.
  • the RRC message may include an information element (disable) indicating that the predetermined transmission is not applied.
  • the RRC message is bitmap information that can identify the CC by the bit position, and each bit may include an information element indicating whether or not a predetermined transmission is applied to the CC corresponding to the bit position.
  • the RRC message may include the identification information of the CC to which the predetermined transmission is applied.
  • the plurality of CCs to which the predetermined transmission can be applied may be set by the RRC message or may be predetermined.
  • the UE 200 determines whether or not a predetermined condition (for example, the second predetermined condition described above) is satisfied based on an RRC message including an information element indicating whether or not to apply the predetermined transmission. You may.
  • the UE 200 may determine whether or not the predetermined conditions are satisfied based on the RRC message and DCI. For example, the UE 200 may set a plurality of CCs to which the predetermined transmission can be applied by the RRC message, and specify the CC to which the predetermined transmission is applied based on the DCI from the set CCs.
  • the case where UCI is transmitted via PUCCH is illustrated.
  • the third modification a case where the UCI is transmitted via the PUSCH straddling a plurality of CCs will be described.
  • the case where the UCI is transmitted via the PUSCH across multiple CCs may be the case where the PUCCH to be used for UCI transmission collides with the PUSCH in the time domain and the UCI is multiplexed with the PUSCH. It may be the case instructed to send the UCI via.
  • the UCI may be mapped to and transmitted to a specific CC of the PUSCH.
  • the specific CC may be one CC.
  • the UCI may be mapped and transmitted across multiple CCs of the PUSCH.
  • the order of mapping UCI (RE of PUSCH used for UCI transmission) to multiple CCs may be considered in the same order as mapping PUCCH (UCI) to multiple CCs. That is, the order of mapping UCI to multiple CCs is the n + 1th unit included in the time domain after mapping UCI to the frequency domain across multiple CCs in the nth unit included in the time domain. The order may be such that UCI is mapped to a frequency domain across multiple CCs in units.
  • the order of mapping UCI to multiple CCs is to map UCI to the frequency domain in the nth unit contained in the time domain at the mth CC, and then UCI in the n + 1th unit contained in the time domain. May be mapped to the frequency domain, and this may be repeated in the m + 1th CC.
  • the number of REs in each CC of PUSCH used for UCI transmission may be limited to a predetermined number or less.
  • the PUSCH RE used for UCI transmission may be discretely mapped or locally mapped in the frequency domains contained in the plurality of CCs.
  • the first option and the second option may be switched by the upper layer parameter.
  • the first option and the second option may be switched by an RRC message containing an information element that specifies either the first option or the second option.
  • the first and second options are whether or not the PUCCH spans multiple CCs in the case where the PUCCH to be used to transmit the UCI collides with the PUSCH in the time domain and the UCI is multiplexed over the PUSCH. It may be switched based on. For example, if the PUCCH mapping across multiple CCs is not applied, the first option is adopted for PUSCH, and if the PUCCH mapping across multiple CCs is applied, PUSCH The second option may be adopted for.
  • the first option and the second option may be switched based on the UCI type.
  • UCI type may include types such as HARQ-ACK, SR, and CSI.
  • the first option may be applied for HARQ-ACK and the second option may be applied for SR and CSI.
  • different values may be set as the beta-offset applied to the UCI transmitted via PUSCH.
  • the beta-offset may be a value used to determine the UCI coding rate.
  • the UE 200 may apply a predetermined transmission of UCI across a plurality of CCs based on an information element used in MAC CE (Control Element).
  • the information element (upper layer parameter) included in the RRC message used in the case where the UCI is transmitted using a plurality of CCs is the case where the UCI is transmitted using one CC. It may be defined separately from the information element (upper layer parameter) included in the RRC message used.
  • the UCI when a plurality of CCs are included in one BWP, the UCI may be transmitted using the plurality of CCs.
  • the predetermined conditions described above may include the inclusion of a plurality of CCs in one BWP.
  • UCI has been mainly described, but the embodiment is not limited to this.
  • UCI may be read as HARQ-ACK, SR, or CSI.
  • the UCI that can be transmitted using multiple CCs may be any parameter selected from HARQ-ACK, SR and CSI.
  • each functional block is realized by any combination of at least one of hardware and software.
  • the method of realizing each functional block is not particularly limited. That is, each functional block may be realized by using one device that is physically or logically connected, or directly or indirectly (for example, by two or more devices that are physically or logically separated). , Wired, wireless, etc.) and may be realized using these plurality of devices.
  • the functional block may be realized by combining the software with the one device or the plurality of devices.
  • Functions include judgment, decision, judgment, calculation, calculation, processing, derivation, investigation, search, confirmation, reception, transmission, output, access, solution, selection, selection, establishment, comparison, assumption, expectation, and assumption. Broadcasting, notifying, communicating, forwarding, configuring, reconfiguring, allocating, mapping, assigning, etc., but limited to these I can't.
  • a functional block that makes transmission function is called a transmitting unit (transmitting unit) or a transmitter (transmitter).
  • transmitting unit transmitting unit
  • transmitter transmitter
  • FIG. 11 is a diagram showing an example of the hardware configuration of the device.
  • the device may be configured as a computer device including a processor 1001, a memory 1002, a storage 1003, a communication device 1004, an input device 1005, an output device 1006, a bus 1007, and the like.
  • the word “device” can be read as a circuit, device, unit, etc.
  • the hardware configuration of the device may be configured to include one or more of the devices shown in the figure, or may be configured not to include some of the devices.
  • Each functional block of the device (see FIG. 4) is realized by any hardware element of the computer device or a combination of the hardware elements.
  • the processor 1001 performs an operation by loading predetermined software (program) on the hardware such as the processor 1001 and the memory 1002, and controls the communication by the communication device 1004, or the memory. It is realized by controlling at least one of reading and writing of data in 1002 and storage 1003.
  • predetermined software program
  • Processor 1001 operates, for example, an operating system to control the entire computer.
  • the processor 1001 may be composed of a central processing unit (CPU) including an interface with peripheral devices, a control device, an arithmetic unit, a register, and the like.
  • CPU central processing unit
  • the processor 1001 reads a program (program code), a software module, data, etc. from at least one of the storage 1003 and the communication device 1004 into the memory 1002, and executes various processes according to these.
  • a program program code
  • a program that causes a computer to execute at least a part of the operations described in the above-described embodiment is used.
  • the various processes described above may be executed by one processor 1001 or may be executed simultaneously or sequentially by two or more processors 1001.
  • Processor 1001 may be implemented by one or more chips.
  • the program may be transmitted from the network via a telecommunication line.
  • the memory 1002 is a computer-readable recording medium, and is composed of at least one such as ReadOnlyMemory (ROM), ErasableProgrammableROM (EPROM), Electrically ErasableProgrammableROM (EEPROM), and RandomAccessMemory (RAM). May be done.
  • the memory 1002 may be referred to as a register, a cache, a main memory (main storage device), or the like.
  • the memory 1002 can store a program (program code), a software module, or the like that can execute the method according to the embodiment of the present disclosure.
  • the storage 1003 is a computer-readable recording medium, for example, an optical disk such as Compact Disc ROM (CD-ROM), a hard disk drive, a flexible disk, an optical magnetic disk (for example, a compact disk, a digital versatile disk, or a Blu-ray). It may consist of at least one (registered trademark) disk), smart card, flash memory (eg, card, stick, key drive), floppy (registered trademark) disk, magnetic strip, and the like.
  • Storage 1003 may be referred to as auxiliary storage.
  • the recording medium described above may be, for example, a database, server or other suitable medium containing at least one of memory 1002 and storage 1003.
  • the communication device 1004 is hardware (transmission / reception device) for communicating between computers via at least one of a wired network and a wireless network, and is also referred to as, for example, a network device, a network controller, a network card, a communication module, or the like.
  • the communication device 1004 includes, for example, a high frequency switch, a duplexer, a filter, a frequency synthesizer, etc. in order to realize at least one of frequency division duplex (FDD) and time division duplex (TDD). It may be composed of.
  • FDD frequency division duplex
  • TDD time division duplex
  • the input device 1005 is an input device (for example, keyboard, mouse, microphone, switch, button, sensor, etc.) that accepts input from the outside.
  • the output device 1006 is an output device (for example, a display, a speaker, an LED lamp, etc.) that outputs to the outside.
  • the input device 1005 and the output device 1006 may have an integrated configuration (for example, a touch panel).
  • Bus 1007 may be configured using a single bus or may be configured using different buses for each device.
  • the device includes hardware such as a microprocessor, a digital signal processor (Digital Signal Processor: DSP), an Application Specific Integrated Circuit (ASIC), a Programmable Logic Device (PLD), and a Field Programmable Gate Array (FPGA).
  • DSP Digital Signal Processor
  • ASIC Application Specific Integrated Circuit
  • PLD Programmable Logic Device
  • FPGA Field Programmable Gate Array
  • the hardware may realize a part or all of each functional block.
  • processor 1001 may be implemented using at least one of these hardware.
  • information notification includes physical layer signaling (for example, Downlink Control Information (DCI), Uplink Control Information (UCI), upper layer signaling (eg, RRC signaling, Medium Access Control (MAC) signaling, broadcast information (Master Information Block)). (MIB), System Information Block (SIB)), other signals or a combination thereof.
  • DCI Downlink Control Information
  • UCI Uplink Control Information
  • RRC signaling may also be referred to as an RRC message, for example, RRC Connection Setup. ) Message, RRC Connection Reconfiguration message, etc. may be used.
  • LTE LongTermEvolution
  • LTE-A LTE-Advanced
  • SUPER3G IMT-Advanced
  • 4G 4th generation mobile communication system
  • 5G 5th generation mobile communication system
  • FutureRadioAccess FAA
  • NewRadio NR
  • W-CDMA registered trademark
  • GSM registered trademark
  • CDMA2000 Code Division Multiple Access 2000
  • UMB UltraMobile Broadband
  • IEEE802.11 Wi-Fi (registered trademark)
  • IEEE802.16 WiMAX®
  • IEEE802.20 Ultra-WideBand (UWB), Bluetooth®, and other systems that utilize appropriate systems and at least one of the next-generation systems extended based on them.
  • a plurality of systems may be applied in combination (for example, a combination of at least one of LTE and LTE-A and 5G).
  • the specific operation performed by the base station in the present disclosure may be performed by its upper node.
  • various operations performed for communication with a terminal are performed by the base station and other network nodes other than the base station (for example, MME or). It is clear that it can be done by at least one of (but not limited to, S-GW, etc.).
  • S-GW network node
  • the case where there is one network node other than the base station is illustrated above, it may be a combination of a plurality of other network nodes (for example, MME and S-GW).
  • Information and signals can be output from the upper layer (or lower layer) to the lower layer (or upper layer).
  • Input / output may be performed via a plurality of network nodes.
  • the input / output information may be stored in a specific location (for example, memory) or may be managed using a management table.
  • the input / output information can be overwritten, updated, or added.
  • the output information may be deleted.
  • the input information may be transmitted to another device.
  • the determination may be made by a value represented by 1 bit (0 or 1), by a boolean value (Boolean: true or false), or by comparing numerical values (for example, a predetermined value). It may be done by comparison with the value).
  • the notification of predetermined information (for example, the notification of "being X") is not limited to the explicit one, but is performed implicitly (for example, the notification of the predetermined information is not performed). May be good.
  • Software whether referred to as software, firmware, middleware, microcode, hardware description language, or other names, is an instruction, instruction set, code, code segment, program code, program, subprogram, software module.
  • Applications, software applications, software packages, routines, subroutines, objects, executable files, execution threads, procedures, functions, etc. should be broadly interpreted.
  • software, instructions, information, etc. may be transmitted and received via a transmission medium.
  • a transmission medium For example, a website, where the software uses at least one of wired technology (coaxial cable, fiber optic cable, twisted pair, Digital Subscriber Line (DSL), etc.) and wireless technology (infrared, microwave, etc.).
  • wired technology coaxial cable, fiber optic cable, twisted pair, Digital Subscriber Line (DSL), etc.
  • wireless technology infrared, microwave, etc.
  • the information, signals, etc. described in this disclosure may be represented using any of a variety of different techniques.
  • data, instructions, commands, information, signals, bits, symbols, chips, etc. that may be referred to throughout the above description are voltages, currents, electromagnetic waves, magnetic fields or magnetic particles, light fields or photons, or any of these. It may be represented by a combination of.
  • a channel and a symbol may be a signal (signaling).
  • the signal may be a message.
  • the component carrier (CC) may be referred to as a carrier frequency, a cell, a frequency carrier, or the like.
  • system and “network” used in this disclosure are used interchangeably.
  • the information, parameters, etc. described in the present disclosure may be expressed using absolute values, relative values from predetermined values, or using other corresponding information. It may be represented.
  • the radio resource may be one indicated by an index.
  • Base Station BS
  • Wireless Base Station Wireless Base Station
  • NodeB NodeB
  • eNodeB eNodeB
  • gNodeB gNodeB
  • Base stations are sometimes referred to by terms such as macrocells, small cells, femtocells, and picocells.
  • the base station can accommodate one or more (for example, three) cells (also called sectors). When a base station accommodates multiple cells, the entire coverage area of the base station can be divided into multiple smaller areas, each smaller area being a base station subsystem (eg, a small indoor base station (Remote Radio)). Communication services can also be provided by Head: RRH).
  • a base station subsystem eg, a small indoor base station (Remote Radio)
  • Communication services can also be provided by Head: RRH).
  • cell refers to a part or all of a base station that provides communication services in this coverage and at least one of the coverage areas of a base station subsystem.
  • MS mobile station
  • UE user equipment
  • terminal terminal
  • Mobile stations can be used by those skilled in the art as subscriber stations, mobile units, subscriber units, wireless units, remote units, mobile devices, wireless devices, wireless communication devices, remote devices, mobile subscriber stations, access terminals, mobile terminals, wireless. It may also be referred to as a terminal, remote terminal, handset, user agent, mobile client, client, or some other suitable term.
  • At least one of the base station and the mobile station may be called a transmitting device, a receiving device, a communication device, or the like. At least one of the base station and the mobile station may be a device mounted on the mobile body, the mobile body itself, or the like.
  • the moving body may be a vehicle (for example, a car, an airplane, etc.), an unmanned moving body (for example, a drone, an autonomous vehicle, etc.), or a robot (manned or unmanned type). ) May be.
  • at least one of the base station and the mobile station includes a device that does not necessarily move during communication operation.
  • at least one of a base station and a mobile station may be an Internet of Things (IoT) device such as a sensor.
  • IoT Internet of Things
  • the base station in the present disclosure may be read as a mobile station (user terminal, the same applies hereinafter).
  • communication between a base station and a mobile station has been replaced with communication between a plurality of mobile stations (for example, it may be called Device-to-Device (D2D), Vehicle-to-Everything (V2X), etc.).
  • D2D Device-to-Device
  • V2X Vehicle-to-Everything
  • Each aspect / embodiment of the present disclosure may be applied to the configuration.
  • the mobile station may have the functions of the base station.
  • words such as "up” and “down” may be read as words corresponding to communication between terminals (for example, "side”).
  • the upstream channel, the downstream channel, and the like may be read as a side channel.
  • the mobile station in the present disclosure may be read as a base station.
  • the base station may have the functions of the mobile station.
  • the wireless frame may be composed of one or more frames in the time domain. Each one or more frames in the time domain may be referred to as a subframe.
  • the subframe may be further composed of one or more slots in the time domain.
  • the subframe may have a fixed time length (eg, 1 ms) that is independent of numerology.
  • the numerology may be a communication parameter that applies to at least one of the transmission and reception of a signal or channel.
  • Numerology includes, for example, SubCarrier Spacing (SCS), bandwidth, symbol length, cyclic prefix length, transmission time interval (TTI), number of symbols per TTI, wireless frame configuration, transmission / reception.
  • SCS SubCarrier Spacing
  • TTI transmission time interval
  • At least one of a specific filtering process performed by the machine in the frequency domain, a specific windowing process performed by the transmitter / receiver in the time domain, and the like may be indicated.
  • the slot may be composed of one or more symbols (Orthogonal Frequency Division Multiplexing (OFDM) symbol, Single Carrier Frequency Division Multiple Access (SC-FDMA) symbol, etc.) in the time domain. Slots may be in numerology-based time units.
  • OFDM Orthogonal Frequency Division Multiplexing
  • SC-FDMA Single Carrier Frequency Division Multiple Access
  • the slot may include a plurality of mini slots. Each minislot may consist of one or more symbols in the time domain. Further, the mini slot may be referred to as a sub slot. A minislot may consist of a smaller number of symbols than the slot.
  • PDSCH (or PUSCH) transmitted in time units larger than the minislot may be referred to as PDSCH (or PUSCH) mapping type A.
  • the PDSCH (or PUSCH) transmitted using the minislot may be referred to as PDSCH (or PUSCH) mapping type B.
  • the wireless frame, subframe, slot, minislot and symbol all represent the time unit when transmitting a signal.
  • the radio frame, subframe, slot, minislot and symbol may have different names corresponding to each.
  • one subframe may be referred to as a transmission time interval (TTI)
  • TTI transmission time interval
  • TTI transmission time interval
  • TTI transmission time interval
  • TTI transmission time interval
  • TTI transmission time interval
  • TTI transmission time interval
  • TTI slot or one minislot
  • at least one of the subframe and TTI may be a subframe (1ms) in existing LTE, a period shorter than 1ms (eg, 1-13 symbols), or a period longer than 1ms. It may be.
  • the unit representing TTI may be called a slot, a mini slot, or the like instead of a subframe.
  • TTI refers to, for example, the minimum time unit of scheduling in wireless communication.
  • a base station schedules each user terminal to allocate radio resources (frequency bandwidth that can be used in each user terminal, transmission power, etc.) in TTI units.
  • the definition of TTI is not limited to this.
  • the TTI may be a transmission time unit such as a channel-encoded data packet (transport block), a code block, or a code word, or may be a processing unit such as scheduling or link adaptation.
  • the time interval for example, the number of symbols
  • the transport block, code block, code word, etc. may be shorter than the TTI.
  • one or more TTIs may be the minimum time unit for scheduling. Further, the number of slots (number of mini-slots) constituting the minimum time unit of the scheduling may be controlled.
  • a TTI having a time length of 1 ms may be called a normal TTI (TTI in LTE Rel.8-12), a normal TTI, a long TTI, a normal subframe, a normal subframe, a long subframe, a slot, or the like.
  • TTIs shorter than normal TTIs may be referred to as shortened TTIs, short TTIs, partial TTIs (partial or fractional TTIs), shortened subframes, short subframes, minislots, subslots, slots, and the like.
  • the long TTI (for example, normal TTI, subframe, etc.) may be read as a TTI having a time length of more than 1 ms
  • the short TTI (for example, shortened TTI, etc.) may be read as less than the TTI length of the long TTI and 1 ms. It may be read as a TTI having the above TTI length.
  • the resource block (RB) is a resource allocation unit in the time domain and the frequency domain, and may include one or a plurality of continuous subcarriers in the frequency domain.
  • the number of subcarriers contained in RB may be the same regardless of numerology, and may be, for example, 12.
  • the number of subcarriers contained in the RB may be determined based on numerology.
  • the time domain of RB may include one or more symbols, and may have a length of 1 slot, 1 mini slot, 1 subframe, or 1 TTI.
  • Each 1TTI, 1 subframe, etc. may be composed of one or a plurality of resource blocks.
  • One or more RBs include a physical resource block (Physical RB: PRB), a sub-carrier group (Sub-Carrier Group: SCG), a resource element group (Resource Element Group: REG), a PRB pair, an RB pair, and the like. May be called.
  • Physical RB Physical RB: PRB
  • SCG sub-carrier Group
  • REG resource element group
  • PRB pair an RB pair, and the like. May be called.
  • the resource block may be composed of one or a plurality of resource elements (ResourceElement: RE).
  • RE resource elements
  • 1RE may be a radio resource area of 1 subcarrier and 1 symbol.
  • Bandwidth Part (which may also be called partial bandwidth, etc.) may represent a subset of consecutive common RBs (common resource blocks) for a neurology in a carrier. good.
  • the common RB may be specified by the index of the RB with respect to the common reference point of the carrier.
  • PRBs may be defined in a BWP and numbered within that BWP.
  • BWP may include BWP for UL (UL BWP) and BWP for DL (DL BWP).
  • BWP for UL
  • DL BWP BWP for DL
  • One or more BWPs may be set in one carrier for the UE.
  • At least one of the configured BWPs may be active, and the UE may not expect to send or receive a given signal / channel outside the active BWP.
  • “cell”, “carrier” and the like in this disclosure may be read as “BWP”.
  • the above-mentioned structures such as wireless frames, subframes, slots, minislots and symbols are merely examples.
  • the number of subframes contained in a wireless frame the number of slots per subframe or wireless frame, the number of minislots contained within a slot, the number of symbols and RBs contained in a slot or minislot, and the number of RBs.
  • the number of subcarriers, the number of symbols in the TTI, the symbol length, the cyclic prefix (CP) length, and other configurations can be changed in various ways.
  • connection means any direct or indirect connection or connection between two or more elements, and each other. It can include the presence of one or more intermediate elements between two “connected” or “combined” elements.
  • the connections or connections between the elements may be physical, logical, or a combination thereof. For example, “connection” may be read as "access”.
  • the two elements use at least one of one or more wires, cables and printed electrical connections, and, as some non-limiting and non-comprehensive examples, the radio frequency domain. Can be considered to be “connected” or “coupled” to each other using electromagnetic energy having wavelengths in the microwave and light (both visible and invisible) regions.
  • the reference signal may also be abbreviated as Reference Signal (RS) and may be referred to as the Pilot depending on the applied standard.
  • RS Reference Signal
  • references to elements using designations such as “first” and “second” as used in this disclosure does not generally limit the quantity or order of those elements. These designations can be used in the present disclosure as a convenient way to distinguish between two or more elements. Thus, references to the first and second elements do not mean that only two elements can be adopted there, or that the first element must somehow precede the second element.
  • determining and “determining” used in this disclosure may include a wide variety of actions.
  • “Judgment” and “decision” are, for example, judgment (judging), calculation (calculating), calculation (computing), processing (processing), derivation (deriving), investigation (investigating), search (looking up, search, inquiry). (For example, searching in a table, database or another data structure), ascertaining may be regarded as “judgment” or “decision”.
  • judgment and “decision” are receiving (for example, receiving information), transmitting (for example, transmitting information), input (input), output (output), and access.
  • Accessing (for example, accessing data in memory) may be regarded as "judgment” or “decision”.
  • judgment and “decision” mean that the things such as solving, selecting, choosing, establishing, and comparing are regarded as “judgment” and “decision”. Can include. That is, “judgment” and “decision” may include considering some action as “judgment” and “decision”. Further, “judgment (decision)” may be read as “assuming”, “expecting”, “considering” and the like.
  • the term "A and B are different” may mean “A and B are different from each other”.
  • the term may mean that "A and B are different from C”.
  • Terms such as “separate” and “combined” may be interpreted in the same way as “different”.
  • Radio communication system 20 NG-RAN 100 gNB 200 UE 210 Radio signal transmission / reception unit 220 Amplifier unit 230 Modulation / demodulation unit 240 Control signal / reference signal processing unit 250 Coding / decoding unit 260 Data transmission / reception unit 270 Control unit 1001 Processor 1002 Memory 1003 Storage 1004 Communication device 1005 Input device 1006 Output device 1007 Bus

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

In the present invention, a terminal comprises a communication unit for executing data communication via one or more component carriers, the communication unit executing a prescribed transmission to transmit uplink control information to a network using the one or more component carriers on the basis of the setting of one or more physical uplink control channels.

Description

端末Terminal
 本開示は、無線通信を実行する端末、特に、多数のコンポーネントキャリアを用いて無線通信を実行する端末に関する。 The present disclosure relates to a terminal that executes wireless communication, particularly a terminal that executes wireless communication using a large number of component carriers.
 3rd Generation Partnership Project(3GPP)は、5th generation mobile communication system(5G、New Radio(NR)またはNext Generation(NG)とも呼ばれる)を仕様化し、さらに、Beyond 5G、5G Evolution或いは6Gと呼ばれる次世代の仕様化も進めている。 The 3rd Generation Partnership Project (3GPP) specifies the 5th generation mobile communication system (also called 5G, New Radio (NR) or Next Generation (NG)), and next-generation specifications called Beyond 5G, 5G Evolution or 6G. We are also proceeding with the conversion.
 3GPPのRelease 15及びRelease 16(NR)では、複数の周波数レンジ、具体的には、FR1(410 MHz~7.125 GHz)及びFR2(24.25 GHz~52.6 GHz)を含む帯域の動作が仕様化されている。 Release 15 and Release 16 (NR) of 3GPP specify the operation of multiple frequency ranges, specifically, bands including FR1 (410MHz to 7.125GHz) and FR2 (24.25GHz to 52.6GHz). ..
 また、52.6GHzを超え、71GHzまでをサポートするNRについても検討が進められている(非特許文献1)。さらに、Beyond 5G、5G Evolution或いは6G(Release-18以降)は、71GHzを超える周波数帯もサポートすることを目標としている。 In addition, studies are underway on NR that supports up to 71 GHz beyond 52.6 GHz (Non-Patent Document 1). In addition, Beyond 5G, 5G Evolution or 6G (Release-18 or later) aims to support frequency bands above 71GHz.
 上述したように、使用可能な周波数帯が拡張されると、より多くのコンポーネントキャリア(CC)が設定される可能性が高まると想定される。 As mentioned above, it is expected that the possibility that more component carriers (CC) will be set will increase as the usable frequency band is expanded.
 キャリアアグリゲーション(CA)では、設定できるCC数が規定されている。例えば、3GPPのRelease 15及びRelease 16では、端末(User Equipment, UE)に対して設定できるCCの最大数は、下りリンク(DL)及び上りリンク(UL)において、それぞれ16である。 Carrier Aggregation (CA) stipulates the number of CCs that can be set. For example, in 3GPP Release 15 and Release 16, the maximum number of CCs that can be set for a terminal (User Equipment, UE) is 16 for downlink (DL) and uplink (UL), respectively.
 このような背景下において、発明者等は、鋭意検討の結果、多数のCCに関するチャネル品質が類似するという想定に着目し、複数のCCを用いる通信制御の柔軟性を向上することが可能であることを見出した。 Against this background, the inventors can improve the flexibility of communication control using a plurality of CCs by paying attention to the assumption that the channel qualities of a large number of CCs are similar as a result of diligent studies. I found that.
 そこで、以下の開示は、このような状況に鑑みてなされたものであり、多数のコンポーネントキャリア(CC)が設定される場合において通信制御の柔軟性の向上を実現し得る端末の提供を目的とする。 Therefore, the following disclosure was made in view of such a situation, and aims to provide a terminal capable of improving the flexibility of communication control when a large number of component carriers (CC) are set. do.
 本開示の一態様は、端末であって、1以上のコンポーネントキャリアを介してデータの通信を実行する通信部を備え、前記通信部は、1以上の物理上りリンク制御チャネルの設定に基づいて、1以上のコンポーネントキャリアを用いて、上りリンク制御情報をネットワークに送信する所定送信を実行することを要旨とする。 One aspect of the present disclosure is a terminal comprising a communication unit that executes data communication via one or more component carriers, the communication unit being based on the setting of one or more physical uplink control channels. The gist is to use one or more component carriers to perform predetermined transmission to transmit uplink control information to the network.
図1は、無線通信システム10の全体概略構成図である。FIG. 1 is an overall schematic configuration diagram of the wireless communication system 10. 図2は、無線通信システム10において用いられる周波数レンジを示す図である。FIG. 2 is a diagram showing a frequency range used in the wireless communication system 10. 図3は、無線通信システム10において用いられる無線フレーム、サブフレーム及びスロットの構成例を示す図である。FIG. 3 is a diagram showing a configuration example of a wireless frame, a subframe, and a slot used in the wireless communication system 10. 図4は、UE200の機能ブロック構成図である。FIG. 4 is a functional block configuration diagram of the UE 200. 図5は、PUCCHのリソース設定について説明するための図である。FIG. 5 is a diagram for explaining the resource setting of PUCCH. 図6は、PUCCHのリソース設定について説明するための図である。FIG. 6 is a diagram for explaining the resource setting of PUCCH. 図7は、PUCCHのリソース設定について説明するための図である。FIG. 7 is a diagram for explaining the resource setting of PUCCH. 図8は、動作例1を示す図である。FIG. 8 is a diagram showing an operation example 1. 図9は、動作例2を示す図である。FIG. 9 is a diagram showing an operation example 2. 図10は、変更例1を説明するための図である。FIG. 10 is a diagram for explaining modification 1. 図11は、UE200のハードウェア構成の一例を示す図である。FIG. 11 is a diagram showing an example of the hardware configuration of the UE 200.
 以下、実施形態を図面に基づいて説明する。なお、同一の機能や構成には、同一または類似の符号を付して、その説明を適宜省略する。 Hereinafter, embodiments will be described based on the drawings. The same functions and configurations are designated by the same or similar reference numerals, and the description thereof will be omitted as appropriate.
 [実施形態]
 (1)無線通信システムの全体概略構成
 図1は、本実施形態に係る無線通信システム10の全体概略構成図である。無線通信システム10は、5G New Radio(NR)に従った無線通信システムであり、Next Generation-Radio Access Network 20(以下、NG-RAN20)、及び端末200(以下、UE200)を含む。
[Embodiment]
(1) Overall Schematic Configuration of Wireless Communication System FIG. 1 is an overall schematic configuration diagram of the wireless communication system 10 according to the present embodiment. The wireless communication system 10 is a wireless communication system according to 5G New Radio (NR), and includes a Next Generation-Radio Access Network 20 (hereinafter, NG-RAN20) and a terminal 200 (hereinafter, UE200).
 なお、無線通信システム10は、Beyond 5G、5G Evolution或いは6Gと呼ばれる方式に従った無線通信システムでもよい。 Note that the wireless communication system 10 may be a wireless communication system according to a method called Beyond 5G, 5G Evolution or 6G.
 NG-RAN20は、無線基地局100A(以下、gNB100A)及び無線基地局100B(以下、gNB100B)を含む。なお、gNB及びUEの数を含む無線通信システム10の具体的な構成は、図1に示した例に限定されない。 NG-RAN20 includes a radio base station 100A (hereinafter, gNB100A) and a radio base station 100B (hereinafter, gNB100B). The specific configuration of the wireless communication system 10 including the number of gNBs and UEs is not limited to the example shown in FIG.
 NG-RAN20は、実際には複数のNG-RAN Node、具体的には、gNB(またはng-eNB)を含み、5Gに従ったコアネットワーク(5GC、不図示)と接続される。なお、NG-RAN20及び5GCは、単に「ネットワーク」と表現されてもよい。 The NG-RAN20 actually includes multiple NG-RANNodes, specifically gNB (or ng-eNB), and is connected to a core network (5GC, not shown) according to 5G. In addition, NG-RAN20 and 5GC may be simply expressed as "network".
 gNB100及びgNB100Bは、5Gに従った無線基地局であり、UE200と5Gに従った無線通信を実行する。gNB100、gNB100B及びUE200は、複数のアンテナ素子から送信される無線信号を制御することによって、より指向性の高いビームBMを生成するMassive MIMO(Multiple-Input Multiple-Output)、複数のコンポーネントキャリア(CC)を束ねて用いるキャリアアグリゲーション(CA)、及びUEと2つのNG-RAN Nodeそれぞれとの間において同時に通信を行うデュアルコネクティビティ(DC)などに対応することができる。 GNB100 and gNB100B are radio base stations that comply with 5G, and execute wireless communication according to UE200 and 5G. The gNB100, gNB100B and UE200 are Massive MIMO (Multiple-Input Multiple-Output) and multiple component carriers (CC) that generate more directional beam BM by controlling radio signals transmitted from multiple antenna elements. ) Can be bundled and used for carrier aggregation (CA), and dual connectivity (DC) for simultaneous communication between the UE and each of the two NG-RAN Nodes.
 また、無線通信システム10は、複数の周波数レンジ(FR)に対応する。図2は、無線通信システム10において用いられる周波数レンジを示す。 In addition, the wireless communication system 10 supports a plurality of frequency ranges (FR). FIG. 2 shows the frequency range used in the wireless communication system 10.
 図2に示すように、無線通信システム10は、FR1及びFR2に対応する。各FRの周波数帯は、次のとおりである。 As shown in FIG. 2, the wireless communication system 10 corresponds to FR1 and FR2. The frequency bands of each FR are as follows.
 ・FR1:410 MHz~7.125 GHz
 ・FR2:24.25 GHz~52.6 GHz
 FR1では、15, 30または60kHzのSub-Carrier Spacing(SCS)が用いられ、5~100MHzの帯域幅(BW)が用いられてもよい。FR2は、FR1よりも高周波数であり、60,または120kHz(240kHzが含まれてもよい)のSCSが用いられ、50~400MHzの帯域幅(BW)が用いられてもよい。
・ FR1: 410 MHz to 7.125 GHz
・ FR2: 24.25 GHz to 52.6 GHz
In FR1, Sub-Carrier Spacing (SCS) of 15, 30 or 60kHz is used, and a bandwidth (BW) of 5 to 100MHz may be used. FR2 has a higher frequency than FR1, SCS of 60, or 120kHz (240kHz may be included) is used, and a bandwidth (BW) of 50 to 400MHz may be used.
 なお、SCSは、numerologyと解釈されてもよい。numerologyは、3GPP TS38.300において定義されており、周波数ドメインにおける一つのサブキャリア間隔と対応する。 SCS may be interpreted as numerology. Numerology is defined in 3GPP TS38.300 and corresponds to one subcarrier spacing in the frequency domain.
 さらに、無線通信システム10は、FR2の周波数帯よりも高周波数帯にも対応する。具体的には、無線通信システム10は、52.6GHzを超え、114.25GHzまでの周波数帯に対応する。このような高周波数帯は、便宜上「FR2x」と呼ばれてもよい。 Furthermore, the wireless communication system 10 also supports a higher frequency band than the FR2 frequency band. Specifically, the wireless communication system 10 corresponds to a frequency band exceeding 52.6 GHz and up to 114.25 GHz. Such a high frequency band may be referred to as "FR2x" for convenience.
 このような問題を解決するため、52.6GHzを超える帯域を用いる場合、より大きなSub-Carrier Spacing(SCS)を有するCyclic Prefix-Orthogonal Frequency Division Multiplexing(CP-OFDM)/Discrete Fourier Transform - Spread(DFT-S-OFDM)を適用してもよい。 To solve this problem, when using a band exceeding 52.6 GHz, Cyclic Prefix-Orthogonal Frequency Division Multiplexing (CP-OFDM) / Discrete Fourier Transform-Spread (DFT-) with a larger Sub-Carrier Spacing (SCS) S-OFDM) may be applied.
 図3は、無線通信システム10において用いられる無線フレーム、サブフレーム及びスロットの構成例を示す。 FIG. 3 shows a configuration example of a wireless frame, a subframe, and a slot used in the wireless communication system 10.
 図3に示すように、1スロットは、14シンボルで構成され、SCSが大きく(広く)なる程、シンボル期間(及びスロット期間)は短くなる。SCSは、図3に示す間隔(周波数)に限定されない。例えば、480kHz、960kHzなどが用いられてもよい。 As shown in FIG. 3, one slot is composed of 14 symbols, and the larger (wider) the SCS, the shorter the symbol period (and slot period). The SCS is not limited to the interval (frequency) shown in FIG. For example, 480kHz, 960kHz and the like may be used.
 また、1スロットを構成するシンボル数は、必ずしも14シンボルでなくてもよい(例えば、28、56シンボル)。さらに、サブフレーム当たりのスロット数は、SCSによって異なっていてよい。 Further, the number of symbols constituting one slot does not necessarily have to be 14 symbols (for example, 28, 56 symbols). In addition, the number of slots per subframe may vary from SCS to SCS.
 なお、図3に示す時間方向(t)は、時間領域、シンボル期間またはシンボル時間などと呼ばれてもよい。また、周波数方向は、周波数領域、リソースブロック、サブキャリア、BWP (Bandwidth part)などと呼ばれてもよい。 The time direction (t) shown in FIG. 3 may be referred to as a time domain, a symbol period, a symbol time, or the like. Further, the frequency direction may be referred to as a frequency domain, a resource block, a subcarrier, a BWP (Bandwidth part), or the like.
 (2)無線通信システムの機能ブロック構成
 次に、無線通信システム10の機能ブロック構成について説明する。具体的には、UE200の機能ブロック構成について説明する。
(2) Functional block configuration of the wireless communication system Next, the functional block configuration of the wireless communication system 10 will be described. Specifically, the functional block configuration of UE200 will be described.
 図4は、UE200の機能ブロック構成図である。図4に示すように、UE200は、無線信号送受信部210、アンプ部220、変復調部230、制御信号・参照信号処理部240、符号化/復号部250、データ送受信部260及び制御部270を備える。 FIG. 4 is a functional block configuration diagram of the UE 200. As shown in FIG. 4, the UE 200 includes a radio signal transmission / reception unit 210, an amplifier unit 220, a modulation / demodulation unit 230, a control signal / reference signal processing unit 240, a coding / decoding unit 250, a data transmission / reception unit 260, and a control unit 270. ..
 無線信号送受信部210は、NRに従った無線信号を送受信する。無線信号送受信部210は、Massive MIMO、複数のCCを束ねて用いるCA、及びUEと2つのNG-RAN Nodeそれぞれとの間において同時に通信を行うDCなどに対応する。 The wireless signal transmitter / receiver 210 transmits / receives a wireless signal according to NR. The radio signal transmitter / receiver 210 corresponds to Massive MIMO, a CA that bundles a plurality of CCs, and a DC that simultaneously communicates between the UE and each of the two NG-RAN Nodes.
 アンプ部220は、PA (Power Amplifier)/LNA (Low Noise Amplifier)などによって構成される。アンプ部220は、変復調部230から出力された信号を所定の電力レベルに増幅する。また、アンプ部220は、無線信号送受信部210から出力されたRF信号を増幅する。 The amplifier unit 220 is composed of PA (Power Amplifier) / LNA (Low Noise Amplifier) and the like. The amplifier unit 220 amplifies the signal output from the modulation / demodulation unit 230 to a predetermined power level. Further, the amplifier unit 220 amplifies the RF signal output from the radio signal transmission / reception unit 210.
 変復調部230は、所定の通信先(gNB100または他のgNB)毎に、データ変調/復調、送信電力設定及びリソースブロック割当などを実行する。変復調部230では、Cyclic Prefix-Orthogonal Frequency Division Multiplexing(CP-OFDM)/Discrete Fourier Transform - Spread(DFT-S-OFDM)が適用されてもよい。また、DFT-S-OFDMは、上りリンク(UL)だけでなく、下りリンク(DL)にも用いられてもよい。 The modulation / demodulation unit 230 executes data modulation / demodulation, transmission power setting, resource block allocation, etc. for each predetermined communication destination (gNB100 or other gNB). Cyclic Prefix-Orthogonal Frequency Division Multiplexing (CP-OFDM) / Discrete Fourier Transform-Spread (DFT-S-OFDM) may be applied to the modulation / demodulation unit 230. Further, DFT-S-OFDM may be used not only for uplink (UL) but also for downlink (DL).
 制御信号・参照信号処理部240は、UE200が送受信する各種の制御信号に関する処理、及びUE200が送受信する各種の参照信号に関する処理を実行する。  The control signal / reference signal processing unit 240 executes processing related to various control signals transmitted / received by the UE 200 and processing related to various reference signals transmitted / received by the UE 200.
 具体的には、制御信号・参照信号処理部240は、gNB100から所定の制御チャネルを介して送信される各種の制御信号、例えば、無線リソース制御レイヤ(RRC)の制御信号を受信する。また、制御信号・参照信号処理部240は、gNB100に向けて、所定の制御チャネルを介して各種の制御信号を送信する。  Specifically, the control signal / reference signal processing unit 240 receives various control signals transmitted from the gNB 100 via a predetermined control channel, for example, control signals of the radio resource control layer (RRC). Further, the control signal / reference signal processing unit 240 transmits various control signals to the gNB 100 via a predetermined control channel.
 制御信号・参照信号処理部240は、Demodulation Reference Signal(DMRS)、及びPhase Tracking Reference Signal (PTRS)などの参照信号(RS)を用いた処理を実行する。 The control signal / reference signal processing unit 240 executes processing using a reference signal (RS) such as Demodulation Reference Signal (DMRS) and Phase Tracking Reference Signal (PTRS).
 DMRSは、データ復調に用いるフェージングチャネルを推定するための端末個別の基地局~端末間において既知の参照信号(パイロット信号)である。PTRSは、高い周波数帯で課題となる位相雑音の推定を目的した端末個別の参照信号である。 DMRS is a known reference signal (pilot signal) between the base station and the terminal of each terminal for estimating the fading channel used for data demodulation. PTRS is a terminal-specific reference signal for the purpose of estimating phase noise, which is a problem in high frequency bands.
 なお、参照信号には、DMRS及びPTRS以外に、Channel State Information-Reference Signal(CSI-RS)、Sounding Reference Signal(SRS)、及び位置情報用のPositioning Reference Signal(PRS)が含まれてもよい。 In addition to DMRS and PTRS, the reference signal may include ChannelStateInformation-ReferenceSignal (CSI-RS), SoundingReferenceSignal (SRS), and PositioningReferenceSignal (PRS) for position information.
 また、チャネルには、制御チャネルとデータチャネルとが含まれる。制御チャネルには、PDCCH(Physical Downlink Control Channel)、PUCCH(Physical Uplink Control Channel)、RACH(Random Access Channel)、Random Access Radio Network Temporary Identifier(RA-RNTI)を含むDownlink Control Information (DCI))、及びPhysical Broadcast Channel(PBCH)などが含まれる。 In addition, the channel includes a control channel and a data channel. Control channels include PDCCH (Physical Downlink Control Channel), PUCCH (Physical Uplink Control Channel), RACH (Random Access Channel), Random Access Radio Network Temporary Identifier (RA-RNTI), Downlink Control Information (DCI), and Physical Broadcast Channel (PBCH) etc. are included.
 また、データチャネルには、PDSCH(Physical Downlink Shared Channel)、及びPUSCH(Physical Uplink Shared Channel)などが含まれる。データとは、データチャネルを介して送信されるデータを意味する。データチャネルは、共有チャネルと読み替えられてもよい。 The data channels include PDSCH (Physical Downlink Shared Channel) and PUSCH (Physical Uplink Shared Channel). Data means data transmitted over a data channel. The data channel may be read as a shared channel.
 実施形態では、制御信号・参照信号処理部240は、1以上のCCを介してデータの通信を実行する通信部を構成する。制御信号・参照信号処理部240は、1以上のCCを用いて、上りリンク制御情報(UCI: Uplink Control Information)をネットワーク(例えば、NG-RAN20)に送信する所定送信を実行する。UCIは、1以上のTBに対する確認応答(HARQ-ACK)を含んでもよい。UCIは、リソースのスケジューリングを要求するSR(Scheduling Request)を含んでもよく、チャネルの状態を表すCSI(Channel State Information)を含んでもよい。UCIは、物理上りリンク制御チャネル(PUCCH: Physical Uplink Control Channel)を介して送信されてもよく、物理上りリンク共有チャネル(PUSCH: Physical Uplink Shared Channel)を介して送信されてもよい。 In the embodiment, the control signal / reference signal processing unit 240 constitutes a communication unit that executes data communication via one or more CCs. The control signal / reference signal processing unit 240 uses one or more CCs to execute predetermined transmission for transmitting uplink control information (UCI: Uplink Control Information) to a network (for example, NG-RAN20). The UCI may include an acknowledgment (HARQ-ACK) for one or more TBs. The UCI may include an SR (Scheduling Request) that requests resource scheduling, or may include a CSI (Channel State Information) that indicates the state of the channel. The UCI may be transmitted via a physical uplink control channel (PUCCH: Physical Uplink Control Channel) or may be transmitted via a physical uplink shared channel (PUSCH: Physical Uplink Shared Channel).
 符号化/復号部250は、所定の通信先(gNB100または他のgNB)毎に、データの分割/連結及びチャネルコーディング/復号などを実行する。 The coding / decoding unit 250 executes data division / concatenation and channel coding / decoding for each predetermined communication destination (gNB100 or other gNB).
 具体的には、符号化/復号部250は、データ送受信部260から出力されたデータを所定のサイズに分割し、分割されたデータに対してチャネルコーディングを実行する。また、符号化/復号部250は、変復調部230から出力されたデータを復号し、復号したデータを連結する。 Specifically, the coding / decoding unit 250 divides the data output from the data transmitting / receiving unit 260 into a predetermined size, and executes channel coding for the divided data. Further, the coding / decoding unit 250 decodes the data output from the modulation / demodulation unit 230 and concatenates the decoded data.
 データ送受信部260は、Protocol Data Unit (PDU)ならびにService Data Unit (SDU)の送受信を実行する。具体的には、データ送受信部260は、複数のレイヤ(媒体アクセス制御レイヤ(MAC)、無線リンク制御レイヤ(RLC)、及びパケット・データ・コンバージェンス・プロトコル・レイヤ(PDCP)など)におけるPDU/SDUの組み立て/分解などを実行する。また、データ送受信部260は、ハイブリッドARQ(Hybrid automatic repeat request)に基づいて、データの誤り訂正及び再送制御を実行する。 The data transmission / reception unit 260 executes transmission / reception of Protocol Data Unit (PDU) and Service Data Unit (SDU). Specifically, the data transmitter / receiver 260 is a PDU / SDU in a plurality of layers (such as a medium access control layer (MAC), a wireless link control layer (RLC), and a packet data convergence protocol layer (PDCP)). Assemble / disassemble. Further, the data transmission / reception unit 260 executes data error correction and retransmission control based on the hybrid ARQ (Hybrid automatic repeat request).
 制御部270は、UE200を構成する各機能ブロックを制御する。特に、本実施形態では、制御部270は、所定のCCを介して受信する1以上のDCIを用いて、1以上のCCの通信を制御する。所定のCCは、複数のCCに含まれる1以上のCCであってもよい。1以上のCCの通信は、1以上のCCを用いたUCIの送信を含んでもよい。 The control unit 270 controls each functional block constituting the UE 200. In particular, in the present embodiment, the control unit 270 controls the communication of one or more CCs by using one or more DCIs received via a predetermined CC. The predetermined CC may be one or more CCs included in the plurality of CCs. Communication of one or more CCs may include transmission of UCI using one or more CCs.
 (3)PUCCHリソース設定
 図5~図7は、UCIがPUCCH又はPUSCHを介して送信されるケースにおけるPUCCHのリソース設定について示す図である。図5~図7では、CC#0及びCC#1を介してUCIが送信されるケースが例示されている。PUCCHに用いるリソース(以下、PUCCH resource)は、上位レイヤによって設定される。PUCCH resourceは、RRCメッセージに含まれる情報要素によって設定される。このような情報要素は、PUCCH-Config.と呼称されてもよい。PUCCH-Config.には、1以上のPUCCH resource set及び1以上のPUCCH resourceが設定され、1以上のPUCCH resource setは、1以上のPUCCH resourceを指定する情報要素を含む。SR、CSI送信用のPUCCH resourceを設定する上位レイヤパラメータが上記PUCCH resource setと別に設定されてもよい。本開示において、PUCCH-Config.又はPUCCH resourceは、PUCCH resource setに置き換えられてもよい。
(3) PUCCH resource settings FIGS. 5 to 7 are diagrams showing PUCCH resource settings in a case where UCI is transmitted via PUCCH or PUSCH. 5 to 7 illustrate a case where UCI is transmitted via CC # 0 and CC # 1. The resources used for PUCCH (hereinafter referred to as PUCCH resources) are set by the upper layer. PUCCH resource is set by the information element contained in the RRC message. Such an information element may be referred to as PUCCH-Config. In PUCCH-Config., One or more PUCCH resource sets and one or more PUCCH resources are set, and one or more PUCCH resource sets include information elements that specify one or more PUCCH resources. The upper layer parameter that sets the PUCCH resource for SR and CSI transmission may be set separately from the above PUCCH resource set. In this disclosure, PUCCH-Config. Or PUCCH resource may be replaced by PUCCH resource set.
 第1に、図5に示すように、PUCCH-Config.は、複数のCCに跨るPUCCH resourceを指定可能な情報要素であってもよい。PUCCH-Config.には、1以上のPUCCH resource setが設定され、また、1以上のPUCCH resourceが設定されてもよい。各PUCCH resourceは、複数のCCのいずれか1以上のCCについて設定されてもよく、複数のCCに跨るPUCCH resourceを指定可能である。図5に示す例では、PUCCH-Config.は、CC#0のPUCCH resourceを対象とする設定であってもよく、CC#1のPUCCH resourceを対象とする設定であってもよい。PUCCH-Config.は、CC#0及びCC#1の双方に跨るPUCCH resourceを対象とする設定であってもよい。このようなケースにおいて、UCIは、CC#0及びCC#1に跨がるPUCCHを介して送信される。なお、本開示において、複数のCCにPUCCHが跨がるとは、あるPUCCHが複数のCCにマッピングされることであってもよく、複数のCCを介して送信又は受信されてもよい。 First, as shown in FIG. 5, PUCCH-Config. May be an information element capable of specifying a PUCCH resource that spans a plurality of CCs. In PUCCH-Config., One or more PUCCH resource sets may be set, and one or more PUCCH resource may be set. Each PUCCH resource may be set for one or more CCs of a plurality of CCs, and a PUCCH resource straddling a plurality of CCs can be specified. In the example shown in FIG. 5, PUCCH-Config. May be a setting that targets the PUCCH resource of CC # 0, or may be a setting that targets the PUCCH resource of CC # 1. PUCCH-Config. May be a setting for PUCCH resource that straddles both CC # 0 and CC # 1. In such cases, the UCI is transmitted via PUCCH across CC # 0 and CC # 1. In the present disclosure, the fact that a PUCCH straddles a plurality of CCs may mean that a certain PUCCH is mapped to a plurality of CCs, and may be transmitted or received via the plurality of CCs.
 第2に、図6に示すように、PUCCH-Config.は、複数のCCに跨がるPUCCH resourceを指定できない情報要素であってもよい。PUCCH-Config.には、1以上のPUCCH resource setが設定され、また、1以上のPUCCH resourceが設定されてもよい。各PUCCH resourceは、複数のCCのいずれか1つのCCについて設定されてもよく、複数のCCに跨り得なくてもよい。複数のCCのいずれか1つのCCは、いずれのCCであってもよく、特定のCCに限定されてもよい。図6に示す例では、PUCCH-Config.は、CC#0のPUCCH resourceを対象とする設定である。PUCCH resourceの設定において、PUCCH resourceが複数のCCに跨ることは許容されていないが、UCIの送信においては、当該PUCCH resourceに基づくPUCCHが複数のCCに跨ってもよい。例えば、UE200及びNG-RAN20は、UCIのペイロードサイズ、UCIのコーディングレート、UCIの変調順序、及び、複数のCCに跨がった送信を示すIndicationの中から選択された1以上のパラメータに基づいて、複数のCCに跨がるか否かを決定してもよい。 Secondly, as shown in FIG. 6, PUCCH-Config. May be an information element that cannot specify a PUCCH resource that spans a plurality of CCs. In PUCCH-Config., One or more PUCCH resource sets may be set, and one or more PUCCH resource may be set. Each PUCCH resource may be set for any one CC of a plurality of CCs, and may not span a plurality of CCs. The CC of any one of the plurality of CCs may be any CC or may be limited to a specific CC. In the example shown in FIG. 6, PUCCH-Config. Is a setting that targets the PUCCH resource of CC # 0. In the setting of PUCCH resource, PUCCH resource is not allowed to span multiple CCs, but in UCI transmission, PUCCH based on the PUCCH resource may span multiple CCs. For example, UE200 and NG-RAN20 are based on one or more parameters selected from the UCI payload size, UCI coding rate, UCI modulation sequence, and Indication indicating transmission across multiple CCs. It may be decided whether or not to straddle a plurality of CCs.
 第3に、図7に示すように、PUCCH-Config.は、複数のCCに跨がるPUCCH resourceを指定できない情報要素であってもよい。PUCCH-Config.には、1以上のPUCCH resource setが設定され、また、1以上のPUCCH resourceが設定されてもよい。各PUCCH resourceは、複数のCCのいずれか1つのCCについて設定されてもよく、複数のCCに跨り得なくてもよい。複数のCCのいずれか1つのCCは、いずれのCCであってもよく、特定のCCに限定されてもよい。図7に示す例では、PUCCH-Config.は、CC#0のPUCCH resourceを対象とする設定である。PUCCH resourceの設定においてPUCCH resourceが複数のCCに跨ることは許容されなくてもよい。このようなケースにおいて、CC#0及びCC#1に跨がるPUCCHを介したUCIの送信が許容されなくてもよい。すなわち、UCIは、CC#0にマッピングされるPUCCHを介して送信される。 Third, as shown in FIG. 7, PUCCH-Config. May be an information element that cannot specify a PUCCH resource that spans a plurality of CCs. In PUCCH-Config., One or more PUCCH resource sets may be set, and one or more PUCCH resource may be set. Each PUCCH resource may be set for any one CC of a plurality of CCs, and may not span a plurality of CCs. The CC of any one of the plurality of CCs may be any CC or may be limited to a specific CC. In the example shown in FIG. 7, PUCCH-Config. Is a setting that targets the PUCCH resource of CC # 0. It is not necessary to allow PUCCH resource to span multiple CCs in the setting of PUCCH resource. In such cases, transmission of UCI via PUCCH across CC # 0 and CC # 1 may not be allowed. That is, UCI is transmitted via PUCCH, which is mapped to CC # 0.
 ここで、複数のCCに関連するPUCCH-Config.及び/又はPUCCH resourceを適用するか否かは、RRCメッセージに含まれる情報要素によってUE200に適用されてもよく、DCIに含まれる情報要素によってUE200に適用されてもよい。適用は、enable又はactivateと称されてもよい。非適用は、disable又はinactivateと称されてもよい。 Here, whether or not to apply PUCCH-Config. And / or PUCCH resource related to a plurality of CCs may be applied to UE200 by the information element included in the RRC message, and UE200 by the information element included in DCI. May be applied to. The application may be referred to as enable or activate. Non-application may be referred to as disable or inactivate.
 また、2つの上位レイヤパラメータ群が設定されてもよい。例えば、一方の上位レイヤパラメータ群は、複数のCCに関連するPUCCH-Config.であって、異なるCCにおけるPUCCH resourceを指定するパラメータを含んでもよく、複数のCCに跨るPUCCH resourceを指定するパラメータを含んでもよい。もう一方の上位レイヤパラメータ群は、単一のCCに関連するPUCCH-Config.であって、単一のCCにおけるPUCCH resourceを指定するパラメータを含んでもよい(すなわち、従来のPUCCH-Config.と同様)。 Also, two upper layer parameter groups may be set. For example, one upper layer parameter group is PUCCH-Config. Related to a plurality of CCs, and may include a parameter that specifies a PUCCH resource in different CCs, and a parameter that specifies a PUCCH resource that spans a plurality of CCs. It may be included. The other upper layer parameter group is PUCCH-Config. Associated with a single CC and may include parameters that specify PUCCH resources in a single CC (ie, similar to traditional PUCCH-Config.). ).
 なお、複数のCCは、intra-bandにおいて連続するCCであってもよい。複数のCCは、スケジューリングセルに含まれるCCであってもよく、PDCCHのsearch spaceに含まれるCCであってもよい。PDCCHのsearch spaceは、SI(System Information)-RNTI(Radio Network Temporary Identifier)、RA(Random Access)-RNTI、TC(Temporary Cell)-RNTI、C(Cell)-RNTI、P(Paging)-RNTI、INT(Interruption)-RNTI、SFI(Slot Format Indication)-RNTI、TPC(Transmit Power Control)-PUSCH-RNTI、TPC-PUCCH-RNTI、TPC-SRS-RNTI, SP(Semi Persistent)-CSI(Channel State Information)-RNTIなどのRNTIによって定義されてもよい。複数のCCは、サービングセルの設定が共通して適用されるCCであってもよい。サービングセルの設定は、TDD DL/UL Configuration、SCS specific carrier listを含んでもよい。 Note that the plurality of CCs may be consecutive CCs in the intra-band. The plurality of CCs may be CCs included in the scheduling cell or CCs included in the search space of PDCCH. PDCCH search space is SI (System Information) -RNTI (Radio Network Temporary Identifier), RA (Random Access) -RNTI, TC (Temporary Cell) -RNTI, C (Cell) -RNTI, P (Paging) -RNTI, INT (Interruption) -RNTI, SFI (Slot Format Indication) -RNTI, TPC (Transmit Power Control) -PUSCH-RNTI, TPC-PUCCH-RNTI, TPC-SRS-RNTI, SP (Semi Persistent) -CSI (Channel State Information) )-May be defined by an RNTI such as RNTI. The plurality of CCs may be CCs to which the serving cell settings are commonly applied. Serving cell settings may include TDD DL / UL Configuration, SCS specific carrier list.
 このような背景下において、UE200は、複数のCCに関連するPUCCH-Config.及び/又はPUCCH resourceの適用を指示する情報要素を含むRRCメッセージをNG-RAN20から受信してもよい。複数のCCに関連するPUCCH-Config.及び/又はPUCCH resourceの適用を指示する情報要素は、PUCCH-Config.及び/又はPUCCH resourceが適用されるCCの識別情報及び複数のCCに関連するPUCCH-Config.及び/又はPUCCH resourceを適用する旨(例えば、enable)を含んでもよい。UE200は、複数のCCに関連するPUCCH-Config.及び/又はPUCCH resourceの非適用を指示する情報要素を含むRRCメッセージをNG-RAN20から受信してもよい。複数のCCに関連するPUCCH-Config.及び/又はPUCCH resourceの非適用を指示する情報要素は、PUCCH-Config.及び/又はPUCCH resourceが非適用とされるCC及び複数のCCに関連するPUCCH-Config.及び/又はPUCCH resourceを非適用とする旨(例えば、disable)を含んでもよい。PUCCH-Config.及び/又はPUCCH resourceの適用又は非適用を指示する上表要素は、ビット位置によってCCを特定可能なビットマップ情報であり、各ビットは、ビット位置に対応するCCが複数のCCに関連するPUCCH-Config.及び/又はPUCCH resourceを適用可能であるか否かを示す情報要素であってもよい。 Under such a background, the UE 200 may receive an RRC message from the NG-RAN 20 containing an information element instructing the application of PUCCH-Config. And / or PUCCH resource related to a plurality of CCs. The information elements that indicate the application of PUCCH-Config. And / or PUCCH resource related to multiple CCs are the identification information of the CC to which PUCCH-Config. And / or PUCCH resource is applied and the PUCCH-related to multiple CCs. It may include the fact that Config. And / or PUCCH resource is applied (for example, enable). The UE 200 may receive an RRC message from the NG-RAN 20 containing an information element indicating the non-application of PUCCH-Config. And / or PUCCH resource related to a plurality of CCs. The information element that indicates the non-application of PUCCH-Config. And / or PUCCH resource related to multiple CCs is PUCCH-Config. And / or PUCCH-related to CCs to which PUCCH resource is not applied and multiple CCs. It may include the fact that Config. And / or PUCCH resource is not applied (for example, disable). The above table elements that indicate the application or non-application of PUCCH-Config. And / or PUCCH resource are bitmap information that can specify CC by bit position, and each bit has multiple CCs corresponding to bit positions. It may be an information element indicating whether or not PUCCH-Config. And / or PUCCH resource related to is applicable.
 UE200は、DCIに含まれる情報要素に基づいて、複数のCCに関連するPUCCH-Config.及び/又はPUCCH resourceを適用するCCを特定してもよい。例えば、UE200は、DCIに含まれるCI(Channel Indicator)フィールドに格納されるCIに基づいて、PUCCH-Config.及び/又はPUCCH resourceを適用するCCを特定する。例えば、図5に示すケースを例に挙げると、CIがCC#0及びCC#1を示す値である場合には、PUCCH-Config.及び/又はPUCCH resourceが適用されるCCは、CC#0及びCC#1である。 UE200 may specify the CC to which PUCCH-Config. And / or PUCCH resource related to a plurality of CCs is applied based on the information element included in DCI. For example, UE200 identifies the CC to which PUCCH-Config. And / or PUCCH resource is applied based on the CI stored in the CI (Channel Indicator) field included in DCI. For example, in the case shown in FIG. 5, when CI is a value indicating CC # 0 and CC # 1, PUCCH-Config. And / or CC to which PUCCH resource is applied is CC # 0. And CC # 1.
 さらに、複数のCCに含まれる2つのCCが周波数ドメインにおいて隣り合っている場合には、2つのCCの間のGuard Subcarrier(s)についてPUCCHのマッピングが実行されてもよい。言い換えると、連続するCC間のGuard Subcarrier(s)がリソースとして用いられてもよい。或いは、2つのCCの間のGuard Subcarrier(s)は、Rate Matchingされてもよい。すなわち、PUCCHは、Guard Subcarrier(s)にマッピングされず、Guard Subcarrier(s)を超えて順番にマッピングされてもよい。 Furthermore, when two CCs included in a plurality of CCs are adjacent to each other in the frequency domain, PUCCH mapping may be executed for the Guard Subcarrier (s) between the two CCs. In other words, Guard Subcarrier (s) between consecutive CCs may be used as a resource. Alternatively, the Guard Subcarrier (s) between the two CCs may be Rate Matched. That is, PUCCH may not be mapped to Guard Subcarrier (s), but may be mapped in order beyond Guard Subcarrier (s).
 (4)TDD設定
 複数のCCに関連するPUCCH-Config.及び/又は複数のCCに跨がるPUCCH resourceが適用され得るケースにおいては、TDD設定は以下のように定められてもよい。
(4) TDD setting In the case where PUCCH-Config. Related to multiple CCs and / or PUCCH resource spanning multiple CCs can be applied, the TDD setting may be defined as follows.
 第1に、同一のTDD(Time Division Duplex)設定が複数のCCに適用されていることが期待されてもよい。すなわち、同一のTDD(Time Division Duplex)設定が複数のCCに適用されている場合にのみ、複数のCCに関連するPUCCH-Config.及び/又は複数のCCに跨がるPUCCH resourceが適用されてもよい。TDD設定は、RRCメッセージの情報要素(上位レイヤパラメータ)の一例であり、TDD UL/DL Common Configurationと呼称されてもよく、TDD UL/DL Dedicated Configurationと呼称されてもよい。または、TDD設定は特定のDCI(例えば、SFI)によって指示されてもよい。 First, it may be expected that the same TDD (Time Division Duplex) settings will be applied to multiple CCs. That is, only when the same TDD (Time Division Duplex) setting is applied to multiple CCs, PUCCH-Config. Related to multiple CCs and / or PUCCH resource spanning multiple CCs is applied. May be good. The TDD setting is an example of an information element (upper layer parameter) of an RRC message, and may be called TDD UL / DL Common Configuration or TDD UL / DL Dedicated Configuration. Alternatively, the TDD setting may be dictated by a particular DCI (eg SFI).
 第2に、時間ドメインにおいてDL及びULが割り当てられるシンボルのパターン(以下、D/U Type)が複数のCC間で同一であってもよい。使用できるPUCCHは、D/U Typeが同一である1以上のCCに跨がったリソースに限定されてもよい。なお、異なるD/U TypeのCCが複数のCCに含まれる場合には、PUCCHを1つのCCにマッピングする既存の制御が実行されてもよい。 Second, the symbol pattern (hereinafter, D / U Type) to which DL and UL are assigned in the time domain may be the same among a plurality of CCs. The PUCCH that can be used may be limited to resources that span one or more CCs with the same D / U Type. When CCs of different D / U Type are included in a plurality of CCs, the existing control for mapping PUCCH to one CC may be executed.
 (5)マッピング
 PUCCHを複数のCCにマッピングする順序は、時間ドメインに含まれるn番目の単位においてPUCCHを複数のCCに跨がって周波数ドメインにマッピングした後に、時間ドメインに含まれるn+1番目の単位においてPUCCHを複数のCCに跨がって周波数ドメインにマッピングする順序であってもよい(例えば、図9を参照)。或いは、PUCCHを複数のCCにマッピングする順序は、m番目のCCにおいて時間ドメインに含まれるn番目の単位においてPUCCHを周波数ドメインにマッピングした後に、時間ドメインに含まれるn+1番目の単位においてPUCCHを周波数ドメインにマッピングし、m+1番目のCCにおいてこれを繰り返す順序であってもよい。
(5) Mapping The order of mapping PUCCH to multiple CCs is n + 1 included in the time domain after mapping PUCCH to the frequency domain across multiple CCs in the nth unit included in the time domain. In the second unit, PUCCH may be mapped to a frequency domain across multiple CCs (see, eg, FIG. 9). Alternatively, the order of mapping PUCCH to multiple CCs is to map PUCCH to the frequency domain in the nth unit contained in the time domain in the mth CC, and then PUCCH in the n + 1th unit contained in the time domain. May be mapped to the frequency domain, and this may be repeated in the m + 1th CC.
 PUCCHが複数のCCにマッピングされる場合において、異なるUCI typeが異なるCCにマッピングされてもよい。UCI typeは、HARQ-ACK、SR、CSIなどのタイプを含んでもよい。例えば、CC#0およびCC#1にマッピングされるPUCCHにおいて、HARQ-ACKがCC#0を介して送信され、SR及びCSIがCC#1を介して送信されてもよい。 When PUCCH is mapped to multiple CCs, different UCI types may be mapped to different CCs. UCI type may include types such as HARQ-ACK, SR, and CSI. For example, in PUCCH mapped to CC # 0 and CC # 1, HARQ-ACK may be transmitted via CC # 0 and SR and CSI may be transmitted via CC # 1.
 (6)周波数ホッピング
 PUCCH-Config.が複数のCCに関連するケース及び/又はPUCCH resourceが複数のCCに跨がるケースにおいて、周波数ホッピング(FH)が設定されなくてもよい。また、FHが設定されたとしても、FHが適用されなくてもよい。FHを設定する情報要素は、RRCメッセージに含まれる情報要素(上位レイヤパラメータ)の一例である。
(6) Frequency hopping In the case where PUCCH-Config. Is related to a plurality of CCs and / or the case where the PUCCH resource spans a plurality of CCs, the frequency hopping (FH) may not be set. Moreover, even if FH is set, FH does not have to be applied. The information element that sets FH is an example of the information element (upper layer parameter) included in the RRC message.
 PUCCH-Config.が複数のCCに関連するケース及び/又はPUCCH resourceが複数のCCに跨がるケースにおいて、FHがサポートされている場合には、PRB Indexは複数のCCを跨がった形式で定義されてもよい。例えば、図8に示すケースにおいて、CC#0及びCC#1に含まれるPRB Indexは、CC毎に独立するのではなく、CC間で連続する形式で定義されてもよい。或いは、FHを開始するPRBは、CCのCC Index及びCC内のPRB Indexによって定義されてもよい。 In cases where PUCCH-Config. Is related to multiple CCs and / or PUCCH resources span multiple CCs, if FH is supported, the PRB Index will be in a format that spans multiple CCs. It may be defined by. For example, in the case shown in FIG. 8, the PRB Index included in CC # 0 and CC # 1 may be defined in a continuous format between CCs instead of being independent for each CC. Alternatively, the PRB that initiates FH may be defined by the CC Index of the CC and the PRB Index within the CC.
 (7)動作例
 (7.1)動作例1
 図8に示すように、ステップS10において、UE100は、複数のCCに関連するPUCCH-Config.を含むRRCメッセージをNG-RAN20から受信する。RRCメッセージは、複数のCCに関連するPUCCH-Config.の適用を指示する情報要素を含んでもよい(図5を参照)。
(7) Operation example (7.1) Operation example 1
As shown in FIG. 8, in step S10, the UE 100 receives an RRC message including PUCCH-Config. Related to a plurality of CCs from the NG-RAN 20. The RRC message may include an information element indicating the application of PUCCH-Config. Related to multiple CCs (see FIG. 5).
 ステップS11において、UE200は、所定のCCにマッピングされるPDCCHを介して1以上のDCIをNG-RAN20から受信する。 In step S11, the UE 200 receives one or more DCIs from the NG-RAN 20 via the PDCCH mapped to the predetermined CC.
 ステップS12において、UE200は、ステップS11で受信したDCIに基づいて、1以上のCCにマッピングされるPDSCHを介してデータを受信する。 In step S12, the UE 200 receives data via the PDSCH mapped to one or more CCs based on the DCI received in step S11.
 ステップS13において、UE200は、ステップS11で受信したDCIに基づいて、PUCCHを介してデータを送信する。実施形態では、UE200は、複数のCCに跨がるPUCCHを介してUCIを送信する。例えば、UCIは、PDSCHを介して受信するデータに対するHARQ-ACKを含んでもよい。 In step S13, the UE 200 transmits data via PUCCH based on the DCI received in step S11. In an embodiment, the UE 200 transmits a UCI via a PUCCH that spans multiple CCs. For example, UCI may include HARQ-ACK for data received via PDSCH.
 図8では、PUCCH-Config.が複数のCCに跨がる1つのPUCCH resourceを指定可能なケースについて例示した(図5を参照)。しかしながら、PUCCH-Config.は、図6に示すように、複数のCCに跨がる1つのPUCCH resourceを指定できない情報要素であってもよい。 FIG. 8 illustrates a case where PUCCH-Config. Can specify one PUCCH resource that spans a plurality of CCs (see FIG. 5). However, as shown in FIG. 6, PUCCH-Config. May be an information element that cannot specify one PUCCH resource that spans a plurality of CCs.
 (7.2)動作例2
 図9に示すように、ステップS20において、UE100は、複数のCCに関連するPUCCH-Config.を含むRRCメッセージをNG-RAN20から受信する(図5を参照)。
(7.2) Operation example 2
As shown in FIG. 9, in step S20, the UE 100 receives an RRC message containing PUCCH-Config. Related to a plurality of CCs from the NG-RAN 20 (see FIG. 5).
 ステップS21において、UE200は、所定のCCにマッピングされるPDCCHを介して1以上のDCIをNG-RAN20から受信する。UE200は、DCIに含まれる情報要素に基づいて、複数のCCに関連するPUCCH-Config.を適用するCCを特定してもよい。例えば、UE200は、DCIに含まれるCIフィールドに格納されるCIに基づいて、PUCCH-Config.を適用するCCを特定する。 In step S21, the UE 200 receives one or more DCIs from the NG-RAN 20 via the PDCCH mapped to the predetermined CC. UE200 may identify the CC to which PUCCH-Config. Related to multiple CCs is applied based on the information elements contained in DCI. For example, UE200 identifies the CC to which PUCCH-Config. Applies based on the CI stored in the CI field contained in DCI.
 ステップS22において、UE200は、ステップS21で受信したDCIに基づいて、1以上のCCにマッピングされるPDSCHを介してデータを受信する。 In step S22, the UE 200 receives data via the PDSCH mapped to one or more CCs based on the DCI received in step S21.
 ステップS23において、UE200は、ステップS21で受信したDCIに基づいて、PUCCHを介してデータを送信する。実施形態では、UE200は、複数のCCに跨がるPUCCHを介してUCIを送信する。例えば、UCIは、PDSCHを介して受信するデータに対するHARQ-ACKを含んでもよい。 In step S23, the UE 200 transmits data via PUCCH based on the DCI received in step S21. In an embodiment, the UE 200 transmits a UCI via a PUCCH that spans multiple CCs. For example, UCI may include HARQ-ACK for data received via PDSCH.
 図9では、PUCCH-Config.が複数のCCに跨がる1つのPUCCH resourceを指定可能なケースについて例示した(図5を参照)。しかしながら、PUCCH-Config.は、図6に示すように、複数のCCに跨がる1つのPUCCH resourceを指定できない情報要素であってもよい。 FIG. 9 illustrates a case where PUCCH-Config. Can specify one PUCCH resource that spans a plurality of CCs (see FIG. 5). However, as shown in FIG. 6, PUCCH-Config. May be an information element that cannot specify one PUCCH resource that spans a plurality of CCs.
 (8)作用・効果
 実施形態では、UE200は、一又は複数のCCを用いてUCIをネットワークに送信する所定送信を実行する。このような構成によれば、多数のCCが設定される場合において、通信制御の柔軟性の向上を実現することができる。また、UCIに適用されるコーディングレートの低減、bit数が増大したUCIの短時間送信などを実現することができる。
(8) Action / Effect In the embodiment, the UE 200 executes a predetermined transmission for transmitting the UCI to the network using one or a plurality of CCs. According to such a configuration, it is possible to improve the flexibility of communication control when a large number of CCs are set. In addition, it is possible to reduce the coding rate applied to UCI and to transmit UCI with an increased number of bits in a short time.
 [変更例1]
 以下において、実施形態の変更例1について説明する。以下においては、実施形態に対する相違点について説明する。
[Change example 1]
Hereinafter, modification 1 of the embodiment will be described. The differences from the embodiments will be described below.
 具体的には、UE200は、所定送信を実行する能力があるか否かを示す情報要素をネットワーク(NG-RAN20)に送信する。具体的には、図10に示すように、ステップS30において、UE200は、所定送信を実行する能力があるか否かを示す情報要素を含むUE capabilityをNG-RAN20に送信(報告)する。 Specifically, the UE 200 transmits an information element indicating whether or not it has the ability to execute a predetermined transmission to the network (NG-RAN20). Specifically, as shown in FIG. 10, in step S30, the UE 200 transmits (reports) a UE capability including an information element indicating whether or not it has the ability to execute a predetermined transmission to the NG-RAN 20.
 特に限定されるものではないが、UE200は、NG-RAN20とRRCコネクションが設定された場合に、ステップS30を実行してもよい。言い換えると、ステップS30は、図8又は図9に示す処理よりも前に実行されてもよい。 Although not particularly limited, UE200 may execute step S30 when an RRC connection is set with NG-RAN20. In other words, step S30 may be executed before the process shown in FIG. 8 or 9.
 [変更例2]
 以下において、実施形態の変更例2について説明する。以下においては、実施形態に対する相違点について説明する。変更例2では、所定送信が適用される所定条件について説明する。
[Change example 2]
Hereinafter, modification 2 of the embodiment will be described. The differences from the embodiments will be described below. In the second modification, a predetermined condition to which the predetermined transmission is applied will be described.
 所定条件は、複数のCCに含まれる所定のCCを介して受信する1以上のDCIに基づいて複数のCCが制御されることであってもよい。 The predetermined condition may be that a plurality of CCs are controlled based on one or more DCIs received via the predetermined CCs included in the plurality of CCs.
 所定条件は、所定のCCを介して受信する1以上のDCIが所定送信を適用する旨を指示することであってもよい(第1所定条件)。所定送信を適用する旨を指示するDCIの受信に用いられる複数のCCについて所定送信が適用されてもよい。DCIは、所定送信を適用する旨を示す情報要素(enable)を含んでもよい。DCIは、所定送信を非適用とする旨を示す情報要素(disable)を含んでもよい。所定送信が適用され得る複数のCCは、RRCメッセージによって設定されてもよく、予め定められていてもよい。 The predetermined condition may be to instruct that one or more DCIs received via the predetermined CC apply the predetermined transmission (first predetermined condition). The predetermined transmission may be applied to a plurality of CCs used for receiving the DCI instructing that the predetermined transmission is applied. The DCI may include an information element (enable) indicating that the predetermined transmission is applied. The DCI may include an information element (disable) indicating that the predetermined transmission is not applied. The plurality of CCs to which the predetermined transmission can be applied may be set by the RRC message or may be predetermined.
 所定条件は、RRCメッセージが所定送信を適用する旨を指示することであってもよい(第2所定条件)。RRCメッセージは、所定送信を適用する旨を示す情報要素(enable)を含んでもよい。RRCメッセージは、所定送信を非適用とする旨を示す情報要素(disable)を含んでもよい。RRCメッセージは、ビット位置によってCCを特定可能なビットマップ情報であり、各ビットは、ビット位置に対応するCCに所定送信が適用されるか否かを示す情報要素を含んでもよい。RRCメッセージは、所定送信が適用されるCCの識別情報を含んでもよい。所定送信が適用され得る複数のCCは、RRCメッセージによって設定されてもよく、予め定められていてもよい。 The predetermined condition may be that the RRC message indicates that the predetermined transmission is applied (second predetermined condition). The RRC message may include an information element (enable) indicating that the predetermined transmission is applied. The RRC message may include an information element (disable) indicating that the predetermined transmission is not applied. The RRC message is bitmap information that can identify the CC by the bit position, and each bit may include an information element indicating whether or not a predetermined transmission is applied to the CC corresponding to the bit position. The RRC message may include the identification information of the CC to which the predetermined transmission is applied. The plurality of CCs to which the predetermined transmission can be applied may be set by the RRC message or may be predetermined.
 上述したように、UE200(制御部270)は、所定送信を適用するか否かを示す情報要素を含むRRCメッセージに基づいて、所定条件(例えば、上述した第1所定条件)が満たされているか否かを判断してもよい。UE200(制御部270)は、所定送信を適用するか否かを示す情報要素を含むRRCメッセージに基づいて、所定条件(例えば、上述した第2所定条件)が満たされているか否かを判断してもよい。 As described above, whether the UE 200 (control unit 270) satisfies the predetermined conditions (for example, the first predetermined condition described above) based on the RRC message including the information element indicating whether or not the predetermined transmission is applied. You may decide whether or not. The UE200 (control unit 270) determines whether or not a predetermined condition (for example, the second predetermined condition described above) is satisfied based on an RRC message including an information element indicating whether or not to apply the predetermined transmission. You may.
 さらに、UE200(制御部270)は、RRCメッセージ及びDCIに基づいて、所定条件が満たされているか否かを判断してもよい。例えば、UE200は、RRCメッセージによって所定送信が適用され得る複数のCCを設定し、設定されたCCの中からDCIに基づいて所定送信を適用するCCを特定してもよい。 Further, the UE 200 (control unit 270) may determine whether or not the predetermined conditions are satisfied based on the RRC message and DCI. For example, the UE 200 may set a plurality of CCs to which the predetermined transmission can be applied by the RRC message, and specify the CC to which the predetermined transmission is applied based on the DCI from the set CCs.
 [変更例3]
 以下において、実施形態の変更例3について説明する。以下においては、実施形態に対する相違点について説明する。
[Change example 3]
Hereinafter, modification 3 of the embodiment will be described. The differences from the embodiments will be described below.
 実施形態では、UCIがPUCCHを介して送信されるケースについて例示した。これに対して、変更例3では、UCIが複数のCCに跨るPUSCHを介して送信されるケースについて説明する。UCIが複数のCCに跨るPUSCHを介して送信されるケースは、UCIの送信に用いられる予定のPUCCHがPUSCHと時間領域で衝突し、UCIがPUSCHに多重されるケースであってもよく、PUSCHを介してUCIを送信するよう指示されたケースであってもよい。 In the embodiment, the case where UCI is transmitted via PUCCH is illustrated. On the other hand, in the third modification, a case where the UCI is transmitted via the PUSCH straddling a plurality of CCs will be described. The case where the UCI is transmitted via the PUSCH across multiple CCs may be the case where the PUCCH to be used for UCI transmission collides with the PUSCH in the time domain and the UCI is multiplexed with the PUSCH. It may be the case instructed to send the UCI via.
 第1オプションとしては、UCIは、当該PUSCHのうちの特定のCCにマッピングされ、送信されてもよい。特定のCCは、1つのCCであってもよい。 As a first option, the UCI may be mapped to and transmitted to a specific CC of the PUSCH. The specific CC may be one CC.
 第2オプションとしては、UCIは、当該PUSCHのうちの複数のCCに跨がってマッピングされ、送信されてもよい。 As a second option, the UCI may be mapped and transmitted across multiple CCs of the PUSCH.
 第2オプションにおいて、UCI(UCIの送信に用いるPUSCHのRE)を複数のCCにマッピングする順序は、PUCCH(UCI)を複数のCCにマッピングする順序と同様に考えてもよい。すなわち、UCIを複数のCCにマッピングする順序は、時間ドメインに含まれるn番目の単位においてUCIを複数のCCに跨がって周波数ドメインにマッピングした後に、時間ドメインに含まれるn+1番目の単位においてUCIを複数のCCに跨がって周波数ドメインにマッピングする順序であってもよい。或いは、UCIを複数のCCにマッピングする順序は、m番目のCCにおいて時間ドメインに含まれるn番目の単位においてUCIを周波数ドメインにマッピングした後に、時間ドメインに含まれるn+1番目の単位においてUCIを周波数ドメインにマッピングし、m+1番目のCCにおいてこれを繰り返す順序であってもよい。 In the second option, the order of mapping UCI (RE of PUSCH used for UCI transmission) to multiple CCs may be considered in the same order as mapping PUCCH (UCI) to multiple CCs. That is, the order of mapping UCI to multiple CCs is the n + 1th unit included in the time domain after mapping UCI to the frequency domain across multiple CCs in the nth unit included in the time domain. The order may be such that UCI is mapped to a frequency domain across multiple CCs in units. Alternatively, the order of mapping UCI to multiple CCs is to map UCI to the frequency domain in the nth unit contained in the time domain at the mth CC, and then UCI in the n + 1th unit contained in the time domain. May be mapped to the frequency domain, and this may be repeated in the m + 1th CC.
 第2オプションにおいて、UCIの送信に用いるPUSCHの各CCにおけるREの数は所定数以下に制限されてもよい。UCIの送信に用いるPUSCHのREは、複数のCCに含まれる周波数ドメインにおいて、離散的にマッピングされてもよく、局所的にマッピングされてもよい。 In the second option, the number of REs in each CC of PUSCH used for UCI transmission may be limited to a predetermined number or less. The PUSCH RE used for UCI transmission may be discretely mapped or locally mapped in the frequency domains contained in the plurality of CCs.
 第1オプション及び第2オプションは、上位レイヤパラメータによって切り替えられてもよい。例えば、第1オプション及び第2オプションのいずれかを指定する情報要素を含むRRCメッセージによって、第1オプション及び第2オプションが切り替えられてもよい。 The first option and the second option may be switched by the upper layer parameter. For example, the first option and the second option may be switched by an RRC message containing an information element that specifies either the first option or the second option.
 第1オプション及び第2オプションは、UCIの送信に用いられる予定のPUCCHがPUSCHと時間領域で衝突し、UCIがPUSCHに多重されるケースにおいて、PUCCHが複数のCCに跨がっているか否かに基づいて切り替えられてもよい。例えば、複数のCCに跨がったPUCCHのマッピングが適用されていない場合に、PUSCHについて第1オプションが採用され、複数のCCに跨がったPUCCHのマッピングが適用されている場合に、PUSCHについて第2オプションが採用されてもよい。 The first and second options are whether or not the PUCCH spans multiple CCs in the case where the PUCCH to be used to transmit the UCI collides with the PUSCH in the time domain and the UCI is multiplexed over the PUSCH. It may be switched based on. For example, if the PUCCH mapping across multiple CCs is not applied, the first option is adopted for PUSCH, and if the PUCCH mapping across multiple CCs is applied, PUSCH The second option may be adopted for.
 第1オプション及び第2オプションは、UCI typeに基づいて切り替えられてもよい。UCI typeは、HARQ-ACK、SR、CSIなどのタイプを含んでもよい。例えば、HARQ-ACKについて第1オプションが適用され、SR及びCSIについて第2オプションが適用されてもよい。 The first option and the second option may be switched based on the UCI type. UCI type may include types such as HARQ-ACK, SR, and CSI. For example, the first option may be applied for HARQ-ACK and the second option may be applied for SR and CSI.
 第1オプション及び第2オプションについて、PUSCHを介して送信されるUCIに適用されるbeta-offsetとして異なる値が設定されてもよい。beta-offsetは、UCIのcoding rateの決定に用いる値であってもよい。 For the first option and the second option, different values may be set as the beta-offset applied to the UCI transmitted via PUSCH. The beta-offset may be a value used to determine the UCI coding rate.
 [その他の実施形態]
 以上、実施形態に沿って本発明の内容を説明したが、本発明はこれらの記載に限定されるものではなく、種々の変形及び改良が可能であることは、当業者には自明である。
[Other Embodiments]
Although the contents of the present invention have been described above according to the embodiments, it is obvious to those skilled in the art that the present invention is not limited to these descriptions and various modifications and improvements can be made.
 上述した実施形態では、RRCメッセージ及びDCIを中心に説明したが、実施形態はこれに限定されるものではない。例えば、UE200は、MAC CE(Control Element)で用いる情報要素に基づいて、複数のCCに跨がったUCIの所定送信を適用してもよい。 In the above-described embodiment, the RRC message and DCI have been mainly described, but the embodiment is not limited to this. For example, the UE 200 may apply a predetermined transmission of UCI across a plurality of CCs based on an information element used in MAC CE (Control Element).
 実施形態では簡単に触れたが、UCIが複数のCCを用いて送信されるケースで用いるRRCメッセージに含まれる情報要素(上位レイヤパラメータ)は、UCIが1つのCCを用いて送信されるケースで用いるRRCメッセージに含まれる情報要素(上位レイヤパラメータ)と別に定義されてもよい。 As briefly mentioned in the embodiment, the information element (upper layer parameter) included in the RRC message used in the case where the UCI is transmitted using a plurality of CCs is the case where the UCI is transmitted using one CC. It may be defined separately from the information element (upper layer parameter) included in the RRC message used.
 実施形態では特に触れていないが、複数のCCが1つのBWPに含まれる場合に、UCIが複数のCCを用いて送信されてもよい。言い換えると、上述した所定条件は、複数のCCが1つのBWPに含まれることを含んでもよい。 Although not specifically mentioned in the embodiment, when a plurality of CCs are included in one BWP, the UCI may be transmitted using the plurality of CCs. In other words, the predetermined conditions described above may include the inclusion of a plurality of CCs in one BWP.
 実施形態では、UCIについて主として説明したが、実施形態はこれに限定されるものではない。UCIは、HARQ-ACKと読み替えられてもよく、SRと読み替えられてもよく、CSIと読み替えられてもよい。複数のCCを用いて送信可能なUCIは、HARQ-ACK、SR及びCSIの中から選択されたいずれかのパラメータであってもよい。 In the embodiment, UCI has been mainly described, but the embodiment is not limited to this. UCI may be read as HARQ-ACK, SR, or CSI. The UCI that can be transmitted using multiple CCs may be any parameter selected from HARQ-ACK, SR and CSI.
 上述した実施形態の説明に用いたブロック構成図(図4)は、機能単位のブロックを示している。これらの機能ブロック(構成部)は、ハードウェア及びソフトウェアの少なくとも一方の任意の組み合わせによって実現される。また、各機能ブロックの実現方法は特に限定されない。すなわち、各機能ブロックは、物理的又は論理的に結合した1つの装置を用いて実現されてもよいし、物理的又は論理的に分離した2つ以上の装置を直接的又は間接的に(例えば、有線、無線などを用いて)接続し、これら複数の装置を用いて実現されてもよい。機能ブロックは、上記1つの装置又は上記複数の装置にソフトウェアを組み合わせて実現されてもよい。 The block configuration diagram (FIG. 4) used in the description of the above-described embodiment shows a block for each functional unit. These functional blocks (components) are realized by any combination of at least one of hardware and software. Further, the method of realizing each functional block is not particularly limited. That is, each functional block may be realized by using one device that is physically or logically connected, or directly or indirectly (for example, by two or more devices that are physically or logically separated). , Wired, wireless, etc.) and may be realized using these plurality of devices. The functional block may be realized by combining the software with the one device or the plurality of devices.
 機能には、判断、決定、判定、計算、算出、処理、導出、調査、探索、確認、受信、送信、出力、アクセス、解決、選択、選定、確立、比較、想定、期待、見做し、報知(broadcasting)、通知(notifying)、通信(communicating)、転送(forwarding)、構成(configuring)、再構成(reconfiguring)、割り当て(allocating、mapping)、割り振り(assigning)などがあるが、これらに限られない。例えば、送信を機能させる機能ブロック(構成部)は、送信部(transmitting unit)や送信機(transmitter)と呼ばれる。何れも、上述したとおり、実現方法は特に限定されない。 Functions include judgment, decision, judgment, calculation, calculation, processing, derivation, investigation, search, confirmation, reception, transmission, output, access, solution, selection, selection, establishment, comparison, assumption, expectation, and assumption. Broadcasting, notifying, communicating, forwarding, configuring, reconfiguring, allocating, mapping, assigning, etc., but limited to these I can't. For example, a functional block (constituent unit) that makes transmission function is called a transmitting unit (transmitting unit) or a transmitter (transmitter). As described above, the method of realizing each of them is not particularly limited.
 さらに、上述したUE200(当該装置)は、本開示の無線通信方法の処理を行うコンピュータとして機能してもよい。図11は、当該装置のハードウェア構成の一例を示す図である。図11に示すように、当該装置は、プロセッサ1001、メモリ1002、ストレージ1003、通信装置1004、入力装置1005、出力装置1006及びバス1007などを含むコンピュータ装置として構成されてもよい。 Further, the UE 200 (the device) described above may function as a computer that processes the wireless communication method of the present disclosure. FIG. 11 is a diagram showing an example of the hardware configuration of the device. As shown in FIG. 11, the device may be configured as a computer device including a processor 1001, a memory 1002, a storage 1003, a communication device 1004, an input device 1005, an output device 1006, a bus 1007, and the like.
 なお、以下の説明では、「装置」という文言は、回路、デバイス、ユニットなどに読み替えることができる。当該装置のハードウェア構成は、図に示した各装置を1つ又は複数含むように構成されてもよいし、一部の装置を含まずに構成されてもよい。 In the following explanation, the word "device" can be read as a circuit, device, unit, etc. The hardware configuration of the device may be configured to include one or more of the devices shown in the figure, or may be configured not to include some of the devices.
 当該装置の各機能ブロック(図4参照)は、当該コンピュータ装置の何れかのハードウェア要素、又は当該ハードウェア要素の組み合わせによって実現される。 Each functional block of the device (see FIG. 4) is realized by any hardware element of the computer device or a combination of the hardware elements.
 また、当該装置における各機能は、プロセッサ1001、メモリ1002などのハードウェア上に所定のソフトウェア(プログラム)を読み込ませることによって、プロセッサ1001が演算を行い、通信装置1004による通信を制御したり、メモリ1002及びストレージ1003におけるデータの読み出し及び書き込みの少なくとも一方を制御したりすることによって実現される。 Further, for each function in the device, the processor 1001 performs an operation by loading predetermined software (program) on the hardware such as the processor 1001 and the memory 1002, and controls the communication by the communication device 1004, or the memory. It is realized by controlling at least one of reading and writing of data in 1002 and storage 1003.
 プロセッサ1001は、例えば、オペレーティングシステムを動作させてコンピュータ全体を制御する。プロセッサ1001は、周辺装置とのインタフェース、制御装置、演算装置、レジスタなどを含む中央処理装置(CPU)によって構成されてもよい。 Processor 1001 operates, for example, an operating system to control the entire computer. The processor 1001 may be composed of a central processing unit (CPU) including an interface with peripheral devices, a control device, an arithmetic unit, a register, and the like.
 また、プロセッサ1001は、プログラム(プログラムコード)、ソフトウェアモジュール、データなどを、ストレージ1003及び通信装置1004の少なくとも一方からメモリ1002に読み出し、これらに従って各種の処理を実行する。プログラムとしては、上述の実施の形態において説明した動作の少なくとも一部をコンピュータに実行させるプログラムが用いられる。さらに、上述の各種処理は、1つのプロセッサ1001によって実行されてもよいし、2つ以上のプロセッサ1001により同時又は逐次に実行されてもよい。プロセッサ1001は、1以上のチップによって実装されてもよい。なお、プログラムは、電気通信回線を介してネットワークから送信されてもよい。 Further, the processor 1001 reads a program (program code), a software module, data, etc. from at least one of the storage 1003 and the communication device 1004 into the memory 1002, and executes various processes according to these. As the program, a program that causes a computer to execute at least a part of the operations described in the above-described embodiment is used. Further, the various processes described above may be executed by one processor 1001 or may be executed simultaneously or sequentially by two or more processors 1001. Processor 1001 may be implemented by one or more chips. The program may be transmitted from the network via a telecommunication line.
 メモリ1002は、コンピュータ読み取り可能な記録媒体であり、例えば、Read Only Memory(ROM)、Erasable Programmable ROM(EPROM)、Electrically Erasable Programmable ROM(EEPROM)、Random Access Memory(RAM)などの少なくとも1つによって構成されてもよい。メモリ1002は、レジスタ、キャッシュ、メインメモリ(主記憶装置)などと呼ばれてもよい。メモリ1002は、本開示の一実施形態に係る方法を実行可能なプログラム(プログラムコード)、ソフトウェアモジュールなどを保存することができる。 The memory 1002 is a computer-readable recording medium, and is composed of at least one such as ReadOnlyMemory (ROM), ErasableProgrammableROM (EPROM), Electrically ErasableProgrammableROM (EEPROM), and RandomAccessMemory (RAM). May be done. The memory 1002 may be referred to as a register, a cache, a main memory (main storage device), or the like. The memory 1002 can store a program (program code), a software module, or the like that can execute the method according to the embodiment of the present disclosure.
 ストレージ1003は、コンピュータ読み取り可能な記録媒体であり、例えば、Compact Disc ROM(CD-ROM)などの光ディスク、ハードディスクドライブ、フレキシブルディスク、光磁気ディスク(例えば、コンパクトディスク、デジタル多用途ディスク、Blu-ray(登録商標)ディスク)、スマートカード、フラッシュメモリ(例えば、カード、スティック、キードライブ)、フロッピー(登録商標)ディスク、磁気ストリップなどの少なくとも1つによって構成されてもよい。ストレージ1003は、補助記憶装置と呼ばれてもよい。上述の記録媒体は、例えば、メモリ1002及びストレージ1003の少なくとも一方を含むデータベース、サーバその他の適切な媒体であってもよい。 The storage 1003 is a computer-readable recording medium, for example, an optical disk such as Compact Disc ROM (CD-ROM), a hard disk drive, a flexible disk, an optical magnetic disk (for example, a compact disk, a digital versatile disk, or a Blu-ray). It may consist of at least one (registered trademark) disk), smart card, flash memory (eg, card, stick, key drive), floppy (registered trademark) disk, magnetic strip, and the like. Storage 1003 may be referred to as auxiliary storage. The recording medium described above may be, for example, a database, server or other suitable medium containing at least one of memory 1002 and storage 1003.
 通信装置1004は、有線ネットワーク及び無線ネットワークの少なくとも一方を介してコンピュータ間の通信を行うためのハードウェア(送受信デバイス)であり、例えばネットワークデバイス、ネットワークコントローラ、ネットワークカード、通信モジュールなどともいう。 The communication device 1004 is hardware (transmission / reception device) for communicating between computers via at least one of a wired network and a wireless network, and is also referred to as, for example, a network device, a network controller, a network card, a communication module, or the like.
 通信装置1004は、例えば周波数分割複信(Frequency Division Duplex:FDD)及び時分割複信(Time Division Duplex:TDD)の少なくとも一方を実現するために、高周波スイッチ、デュプレクサ、フィルタ、周波数シンセサイザなどを含んで構成されてもよい。 The communication device 1004 includes, for example, a high frequency switch, a duplexer, a filter, a frequency synthesizer, etc. in order to realize at least one of frequency division duplex (FDD) and time division duplex (TDD). It may be composed of.
 入力装置1005は、外部からの入力を受け付ける入力デバイス(例えば、キーボード、マウス、マイクロフォン、スイッチ、ボタン、センサなど)である。出力装置1006は、外部への出力を実施する出力デバイス(例えば、ディスプレイ、スピーカー、LEDランプなど)である。なお、入力装置1005及び出力装置1006は、一体となった構成(例えば、タッチパネル)であってもよい。 The input device 1005 is an input device (for example, keyboard, mouse, microphone, switch, button, sensor, etc.) that accepts input from the outside. The output device 1006 is an output device (for example, a display, a speaker, an LED lamp, etc.) that outputs to the outside. The input device 1005 and the output device 1006 may have an integrated configuration (for example, a touch panel).
 また、プロセッサ1001及びメモリ1002などの各装置は、情報を通信するためのバス1007で接続される。バス1007は、単一のバスを用いて構成されてもよいし、装置間ごとに異なるバスを用いて構成されてもよい。 In addition, each device such as the processor 1001 and the memory 1002 is connected by the bus 1007 for communicating information. Bus 1007 may be configured using a single bus or may be configured using different buses for each device.
 さらに、当該装置は、マイクロプロセッサ、デジタル信号プロセッサ(Digital Signal Processor: DSP)、Application Specific Integrated Circuit(ASIC)、Programmable Logic Device(PLD)、Field Programmable Gate Array(FPGA)などのハードウェアを含んで構成されてもよく、当該ハードウェアにより、各機能ブロックの一部又は全てが実現されてもよい。例えば、プロセッサ1001は、これらのハードウェアの少なくとも1つを用いて実装されてもよい。 Further, the device includes hardware such as a microprocessor, a digital signal processor (Digital Signal Processor: DSP), an Application Specific Integrated Circuit (ASIC), a Programmable Logic Device (PLD), and a Field Programmable Gate Array (FPGA). The hardware may realize a part or all of each functional block. For example, processor 1001 may be implemented using at least one of these hardware.
 また、情報の通知は、本開示において説明した態様/実施形態に限られず、他の方法を用いて行われてもよい。例えば、情報の通知は、物理レイヤシグナリング(例えば、Downlink Control Information(DCI)、Uplink Control Information(UCI)、上位レイヤシグナリング(例えば、RRCシグナリング、Medium Access Control(MAC)シグナリング、報知情報(Master Information Block(MIB)、System Information Block(SIB))、その他の信号又はこれらの組み合わせによって実施されてもよい。また、RRCシグナリングは、RRCメッセージと呼ばれてもよく、例えば、RRC接続セットアップ(RRC Connection Setup)メッセージ、RRC接続再構成(RRC Connection Reconfiguration)メッセージなどであってもよい。 Further, the notification of information is not limited to the mode / embodiment described in the present disclosure, and may be performed by using another method. For example, information notification includes physical layer signaling (for example, Downlink Control Information (DCI), Uplink Control Information (UCI), upper layer signaling (eg, RRC signaling, Medium Access Control (MAC) signaling, broadcast information (Master Information Block)). (MIB), System Information Block (SIB)), other signals or a combination thereof. RRC signaling may also be referred to as an RRC message, for example, RRC Connection Setup. ) Message, RRC Connection Reconfiguration message, etc. may be used.
 本開示において説明した各態様/実施形態は、Long Term Evolution(LTE)、LTE-Advanced(LTE-A)、SUPER 3G、IMT-Advanced、4th generation mobile communication system(4G)、5th generation mobile communication system(5G)、Future Radio Access(FRA)、New Radio(NR)、W-CDMA(登録商標)、GSM(登録商標)、CDMA2000、Ultra Mobile Broadband(UMB)、IEEE 802.11(Wi-Fi(登録商標))、IEEE 802.16(WiMAX(登録商標))、IEEE 802.20、Ultra-WideBand(UWB)、Bluetooth(登録商標)、その他の適切なシステムを利用するシステム及びこれらに基づいて拡張された次世代システムの少なくとも一つに適用されてもよい。また、複数のシステムが組み合わされて(例えば、LTE及びLTE-Aの少なくとも一方と5Gとの組み合わせなど)適用されてもよい。 Each aspect / embodiment described in the present disclosure includes LongTermEvolution (LTE), LTE-Advanced (LTE-A), SUPER3G, IMT-Advanced, 4th generation mobile communication system (4G), 5th generation mobile communication system ( 5G), FutureRadioAccess (FRA), NewRadio (NR), W-CDMA (registered trademark), GSM (registered trademark), CDMA2000, UltraMobile Broadband (UMB), IEEE802.11 (Wi-Fi (registered trademark)) , IEEE802.16 (WiMAX®), IEEE802.20, Ultra-WideBand (UWB), Bluetooth®, and other systems that utilize appropriate systems and at least one of the next-generation systems extended based on them. It may be applied to one. In addition, a plurality of systems may be applied in combination (for example, a combination of at least one of LTE and LTE-A and 5G).
 本開示において説明した各態様/実施形態の処理手順、シーケンス、フローチャートなどは、矛盾の無い限り、順序を入れ替えてもよい。例えば、本開示において説明した方法については、例示的な順序を用いて様々なステップの要素を提示しており、提示した特定の順序に限定されない。 The order of the processing procedures, sequences, flowcharts, etc. of each aspect / embodiment described in the present disclosure may be changed as long as there is no contradiction. For example, the methods described in the present disclosure present elements of various steps using exemplary order, and are not limited to the particular order presented.
 本開示において基地局によって行われるとした特定動作は、場合によってはその上位ノード(upper node)によって行われることもある。基地局を有する1つ又は複数のネットワークノード(network nodes)からなるネットワークにおいて、端末との通信のために行われる様々な動作は、基地局及び基地局以外の他のネットワークノード(例えば、MME又はS-GWなどが考えられるが、これらに限られない)の少なくとも1つによって行われ得ることは明らかである。上記において基地局以外の他のネットワークノードが1つである場合を例示したが、複数の他のネットワークノードの組み合わせ(例えば、MME及びS-GW)であってもよい。 In some cases, the specific operation performed by the base station in the present disclosure may be performed by its upper node. In a network consisting of one or more network nodes having a base station, various operations performed for communication with a terminal are performed by the base station and other network nodes other than the base station (for example, MME or). It is clear that it can be done by at least one of (but not limited to, S-GW, etc.). Although the case where there is one network node other than the base station is illustrated above, it may be a combination of a plurality of other network nodes (for example, MME and S-GW).
 情報、信号(情報等)は、上位レイヤ(又は下位レイヤ)から下位レイヤ(又は上位レイヤ)へ出力され得る。複数のネットワークノードを介して入出力されてもよい。 Information and signals (information, etc.) can be output from the upper layer (or lower layer) to the lower layer (or upper layer). Input / output may be performed via a plurality of network nodes.
 入出力された情報は、特定の場所(例えば、メモリ)に保存されてもよいし、管理テーブルを用いて管理してもよい。入出力される情報は、上書き、更新、又は追記され得る。出力された情報は削除されてもよい。入力された情報は他の装置へ送信されてもよい。 The input / output information may be stored in a specific location (for example, memory) or may be managed using a management table. The input / output information can be overwritten, updated, or added. The output information may be deleted. The input information may be transmitted to another device.
 判定は、1ビットで表される値(0か1か)によって行われてもよいし、真偽値(Boolean:true又はfalse)によって行われてもよいし、数値の比較(例えば、所定の値との比較)によって行われてもよい。 The determination may be made by a value represented by 1 bit (0 or 1), by a boolean value (Boolean: true or false), or by comparing numerical values (for example, a predetermined value). It may be done by comparison with the value).
 本開示において説明した各態様/実施形態は単独で用いてもよいし、組み合わせて用いてもよいし、実行に伴って切り替えて用いてもよい。また、所定の情報の通知(例えば、「Xであること」の通知)は、明示的に行うものに限られず、暗黙的(例えば、当該所定の情報の通知を行わない)ことによって行われてもよい。 Each aspect / embodiment described in the present disclosure may be used alone, in combination, or switched with execution. Further, the notification of predetermined information (for example, the notification of "being X") is not limited to the explicit one, but is performed implicitly (for example, the notification of the predetermined information is not performed). May be good.
 ソフトウェアは、ソフトウェア、ファームウェア、ミドルウェア、マイクロコード、ハードウェア記述言語と呼ばれるか、他の名称で呼ばれるかを問わず、命令、命令セット、コード、コードセグメント、プログラムコード、プログラム、サブプログラム、ソフトウェアモジュール、アプリケーション、ソフトウェアアプリケーション、ソフトウェアパッケージ、ルーチン、サブルーチン、オブジェクト、実行可能ファイル、実行スレッド、手順、機能などを意味するよう広く解釈されるべきである。 Software, whether referred to as software, firmware, middleware, microcode, hardware description language, or other names, is an instruction, instruction set, code, code segment, program code, program, subprogram, software module. , Applications, software applications, software packages, routines, subroutines, objects, executable files, execution threads, procedures, functions, etc. should be broadly interpreted.
 また、ソフトウェア、命令、情報などは、伝送媒体を介して送受信されてもよい。例えば、ソフトウェアが、有線技術(同軸ケーブル、光ファイバケーブル、ツイストペア、デジタル加入者回線(Digital Subscriber Line:DSL)など)及び無線技術(赤外線、マイクロ波など)の少なくとも一方を使用してウェブサイト、サーバ、又は他のリモートソースから送信される場合、これらの有線技術及び無線技術の少なくとも一方は、伝送媒体の定義内に含まれる。 Further, software, instructions, information, etc. may be transmitted and received via a transmission medium. For example, a website, where the software uses at least one of wired technology (coaxial cable, fiber optic cable, twisted pair, Digital Subscriber Line (DSL), etc.) and wireless technology (infrared, microwave, etc.). When transmitted from a server, or other remote source, at least one of these wired and wireless technologies is included within the definition of transmission medium.
 本開示において説明した情報、信号などは、様々な異なる技術の何れかを使用して表されてもよい。例えば、上記の説明全体に渡って言及され得るデータ、命令、コマンド、情報、信号、ビット、シンボル、チップなどは、電圧、電流、電磁波、磁界若しくは磁性粒子、光場若しくは光子、又はこれらの任意の組み合わせによって表されてもよい。 The information, signals, etc. described in this disclosure may be represented using any of a variety of different techniques. For example, data, instructions, commands, information, signals, bits, symbols, chips, etc. that may be referred to throughout the above description are voltages, currents, electromagnetic waves, magnetic fields or magnetic particles, light fields or photons, or any of these. It may be represented by a combination of.
 なお、本開示において説明した用語及び本開示の理解に必要な用語については、同一の又は類似する意味を有する用語と置き換えてもよい。例えば、チャネル及びシンボルの少なくとも一方は信号(シグナリング)であってもよい。また、信号はメッセージであってもよい。また、コンポーネントキャリア(Component Carrier:CC)は、キャリア周波数、セル、周波数キャリアなどと呼ばれてもよい。 Note that the terms explained in the present disclosure and the terms necessary for understanding the present disclosure may be replaced with terms having the same or similar meanings. For example, at least one of a channel and a symbol may be a signal (signaling). Also, the signal may be a message. Further, the component carrier (CC) may be referred to as a carrier frequency, a cell, a frequency carrier, or the like.
 本開示において使用する「システム」及び「ネットワーク」という用語は、互換的に使用される。 The terms "system" and "network" used in this disclosure are used interchangeably.
 また、本開示において説明した情報、パラメータなどは、絶対値を用いて表されてもよいし、所定の値からの相対値を用いて表されてもよいし、対応する別の情報を用いて表されてもよい。例えば、無線リソースはインデックスによって指示されるものであってもよい。 In addition, the information, parameters, etc. described in the present disclosure may be expressed using absolute values, relative values from predetermined values, or using other corresponding information. It may be represented. For example, the radio resource may be one indicated by an index.
 上述したパラメータに使用する名称はいかなる点においても限定的な名称ではない。さらに、これらのパラメータを使用する数式等は、本開示で明示的に開示したものと異なる場合もある。様々なチャネル(例えば、PUCCH、PDCCHなど)及び情報要素は、あらゆる好適な名称によって識別できるため、これらの様々なチャネル及び情報要素に割り当てている様々な名称は、いかなる点においても限定的な名称ではない。 The names used for the above parameters are not limited in any respect. Further, mathematical formulas and the like using these parameters may differ from those explicitly disclosed in this disclosure. Since various channels (eg, PUCCH, PDCCH, etc.) and information elements can be identified by any suitable name, the various names assigned to these various channels and information elements are in any respect limited names. is not it.
 本開示においては、「基地局(Base Station:BS)」、「無線基地局」、「固定局(fixed station)」、「NodeB」、「eNodeB(eNB)」、「gNodeB(gNB)」、「アクセスポイント(access point)」、「送信ポイント(transmission point)」、「受信ポイント(reception point)、「送受信ポイント(transmission/reception point)」、「セル」、「セクタ」、「セルグループ」、「キャリア」、「コンポーネントキャリア」などの用語は、互換的に使用され得る。基地局は、マクロセル、スモールセル、フェムトセル、ピコセルなどの用語で呼ばれる場合もある。 In this disclosure, "Base Station (BS)", "Wireless Base Station", "Fixed Station", "NodeB", "eNodeB (eNB)", "gNodeB (gNB)", " "Access point", "transmission point", "reception point", "transmission / reception point", "cell", "sector", "cell group", "cell group" Terms such as "carrier" and "component carrier" can be used interchangeably. Base stations are sometimes referred to by terms such as macrocells, small cells, femtocells, and picocells.
 基地局は、1つ又は複数(例えば、3つ)のセル(セクタとも呼ばれる)を収容することができる。基地局が複数のセルを収容する場合、基地局のカバレッジエリア全体は複数のより小さいエリアに区分でき、各々のより小さいエリアは、基地局サブシステム(例えば、屋内用の小型基地局(Remote Radio Head:RRH)によって通信サービスを提供することもできる。 The base station can accommodate one or more (for example, three) cells (also called sectors). When a base station accommodates multiple cells, the entire coverage area of the base station can be divided into multiple smaller areas, each smaller area being a base station subsystem (eg, a small indoor base station (Remote Radio)). Communication services can also be provided by Head: RRH).
 「セル」又は「セクタ」という用語は、このカバレッジにおいて通信サービスを行う基地局、及び基地局サブシステムの少なくとも一方のカバレッジエリアの一部又は全体を指す。 The term "cell" or "sector" refers to a part or all of a base station that provides communication services in this coverage and at least one of the coverage areas of a base station subsystem.
 本開示においては、「移動局(Mobile Station:MS)」、「ユーザ端末(user terminal)」、「ユーザ装置(User Equipment:UE)」、「端末」などの用語は、互換的に使用され得る。 In the present disclosure, terms such as "mobile station (MS)", "user terminal", "user equipment (UE)", and "terminal" may be used interchangeably. ..
 移動局は、当業者によって、加入者局、モバイルユニット、加入者ユニット、ワイヤレスユニット、リモートユニット、モバイルデバイス、ワイヤレスデバイス、ワイヤレス通信デバイス、リモートデバイス、モバイル加入者局、アクセス端末、モバイル端末、ワイヤレス端末、リモート端末、ハンドセット、ユーザエージェント、モバイルクライアント、クライアント、又はいくつかの他の適切な用語で呼ばれる場合もある。 Mobile stations can be used by those skilled in the art as subscriber stations, mobile units, subscriber units, wireless units, remote units, mobile devices, wireless devices, wireless communication devices, remote devices, mobile subscriber stations, access terminals, mobile terminals, wireless. It may also be referred to as a terminal, remote terminal, handset, user agent, mobile client, client, or some other suitable term.
 基地局及び移動局の少なくとも一方は、送信装置、受信装置、通信装置などと呼ばれてもよい。なお、基地局及び移動局の少なくとも一方は、移動体に搭載されたデバイス、移動体自体などであってもよい。当該移動体は、乗り物(例えば、車、飛行機など)であってもよいし、無人で動く移動体(例えば、ドローン、自動運転車など)であってもよいし、ロボット(有人型又は無人型)であってもよい。なお、基地局及び移動局の少なくとも一方は、必ずしも通信動作時に移動しない装置も含む。例えば、基地局及び移動局の少なくとも一方は、センサなどのInternet of Things(IoT)機器であってもよい。 At least one of the base station and the mobile station may be called a transmitting device, a receiving device, a communication device, or the like. At least one of the base station and the mobile station may be a device mounted on the mobile body, the mobile body itself, or the like. The moving body may be a vehicle (for example, a car, an airplane, etc.), an unmanned moving body (for example, a drone, an autonomous vehicle, etc.), or a robot (manned or unmanned type). ) May be. It should be noted that at least one of the base station and the mobile station includes a device that does not necessarily move during communication operation. For example, at least one of a base station and a mobile station may be an Internet of Things (IoT) device such as a sensor.
 また、本開示における基地局は、移動局(ユーザ端末、以下同)として読み替えてもよい。例えば、基地局及び移動局間の通信を、複数の移動局間の通信(例えば、Device-to-Device(D2D)、Vehicle-to-Everything(V2X)などと呼ばれてもよい)に置き換えた構成について、本開示の各態様/実施形態を適用してもよい。この場合、基地局が有する機能を移動局が有する構成としてもよい。また、「上り」及び「下り」などの文言は、端末間通信に対応する文言(例えば、「サイド(side)」)で読み替えられてもよい。例えば、上りチャネル、下りチャネルなどは、サイドチャネルで読み替えられてもよい。 Further, the base station in the present disclosure may be read as a mobile station (user terminal, the same applies hereinafter). For example, communication between a base station and a mobile station has been replaced with communication between a plurality of mobile stations (for example, it may be called Device-to-Device (D2D), Vehicle-to-Everything (V2X), etc.). Each aspect / embodiment of the present disclosure may be applied to the configuration. In this case, the mobile station may have the functions of the base station. In addition, words such as "up" and "down" may be read as words corresponding to communication between terminals (for example, "side"). For example, the upstream channel, the downstream channel, and the like may be read as a side channel.
 同様に、本開示における移動局は、基地局として読み替えてもよい。この場合、移動局が有する機能を基地局が有する構成としてもよい。 Similarly, the mobile station in the present disclosure may be read as a base station. In this case, the base station may have the functions of the mobile station.
 無線フレームは時間領域において1つ又は複数のフレームによって構成されてもよい。時間領域において1つ又は複数の各フレームはサブフレームと呼ばれてもよい。 The wireless frame may be composed of one or more frames in the time domain. Each one or more frames in the time domain may be referred to as a subframe.
 サブフレームはさらに時間領域において1つ又は複数のスロットによって構成されてもよい。サブフレームは、ニューメロロジー(numerology)に依存しない固定の時間長(例えば、1ms)であってもよい。 The subframe may be further composed of one or more slots in the time domain. The subframe may have a fixed time length (eg, 1 ms) that is independent of numerology.
 ニューメロロジーは、ある信号又はチャネルの送信及び受信の少なくとも一方に適用される通信パラメータであってもよい。ニューメロロジーは、例えば、サブキャリア間隔(SubCarrier Spacing:SCS)、帯域幅、シンボル長、サイクリックプレフィックス長、送信時間間隔(Transmission Time Interval:TTI)、TTIあたりのシンボル数、無線フレーム構成、送受信機が周波数領域において行う特定のフィルタリング処理、送受信機が時間領域において行う特定のウィンドウイング処理などの少なくとも1つを示してもよい。 The numerology may be a communication parameter that applies to at least one of the transmission and reception of a signal or channel. Numerology includes, for example, SubCarrier Spacing (SCS), bandwidth, symbol length, cyclic prefix length, transmission time interval (TTI), number of symbols per TTI, wireless frame configuration, transmission / reception. At least one of a specific filtering process performed by the machine in the frequency domain, a specific windowing process performed by the transmitter / receiver in the time domain, and the like may be indicated.
 スロットは、時間領域において1つ又は複数のシンボル(Orthogonal Frequency Division Multiplexing(OFDM))シンボル、Single Carrier Frequency Division Multiple Access(SC-FDMA)シンボルなど)で構成されてもよい。スロットは、ニューメロロジーに基づく時間単位であってもよい。 The slot may be composed of one or more symbols (Orthogonal Frequency Division Multiplexing (OFDM) symbol, Single Carrier Frequency Division Multiple Access (SC-FDMA) symbol, etc.) in the time domain. Slots may be in numerology-based time units.
 スロットは、複数のミニスロットを含んでもよい。各ミニスロットは、時間領域において1つ又は複数のシンボルによって構成されてもよい。また、ミニスロットは、サブスロットと呼ばれてもよい。ミニスロットは、スロットよりも少ない数のシンボルによって構成されてもよい。ミニスロットより大きい時間単位で送信されるPDSCH(又はPUSCH)は、PDSCH(又はPUSCH)マッピングタイプAと呼ばれてもよい。ミニスロットを用いて送信されるPDSCH(又はPUSCH)は、PDSCH(又はPUSCH)マッピングタイプBと呼ばれてもよい。 The slot may include a plurality of mini slots. Each minislot may consist of one or more symbols in the time domain. Further, the mini slot may be referred to as a sub slot. A minislot may consist of a smaller number of symbols than the slot. PDSCH (or PUSCH) transmitted in time units larger than the minislot may be referred to as PDSCH (or PUSCH) mapping type A. The PDSCH (or PUSCH) transmitted using the minislot may be referred to as PDSCH (or PUSCH) mapping type B.
 無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルは、何れも信号を伝送する際の時間単位を表す。無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルは、それぞれに対応する別の呼称が用いられてもよい。 The wireless frame, subframe, slot, minislot and symbol all represent the time unit when transmitting a signal. The radio frame, subframe, slot, minislot and symbol may have different names corresponding to each.
 例えば、1サブフレームは送信時間間隔(TTI)と呼ばれてもよいし、複数の連続したサブフレームがTTIと呼ばれてよいし、1スロット又は1ミニスロットがTTIと呼ばれてもよい。つまり、サブフレーム及びTTIの少なくとも一方は、既存のLTEにおけるサブフレーム(1ms)であってもよいし、1msより短い期間(例えば、1-13シンボル)であってもよいし、1msより長い期間であってもよい。なお、TTIを表す単位は、サブフレームではなくスロット、ミニスロットなどと呼ばれてもよい。 For example, one subframe may be referred to as a transmission time interval (TTI), a plurality of consecutive subframes may be referred to as TTI, and one slot or one minislot may be referred to as TTI. That is, at least one of the subframe and TTI may be a subframe (1ms) in existing LTE, a period shorter than 1ms (eg, 1-13 symbols), or a period longer than 1ms. It may be. The unit representing TTI may be called a slot, a mini slot, or the like instead of a subframe.
 ここで、TTIは、例えば、無線通信におけるスケジューリングの最小時間単位のことをいう。例えば、LTEシステムでは、基地局が各ユーザ端末に対して、無線リソース(各ユーザ端末において使用することが可能な周波数帯域幅、送信電力など)を、TTI単位で割り当てるスケジューリングを行う。なお、TTIの定義はこれに限られない。 Here, TTI refers to, for example, the minimum time unit of scheduling in wireless communication. For example, in an LTE system, a base station schedules each user terminal to allocate radio resources (frequency bandwidth that can be used in each user terminal, transmission power, etc.) in TTI units. The definition of TTI is not limited to this.
 TTIは、チャネル符号化されたデータパケット(トランスポートブロック)、コードブロック、コードワードなどの送信時間単位であってもよいし、スケジューリング、リンクアダプテーションなどの処理単位となってもよい。なお、TTIが与えられたとき、実際にトランスポートブロック、コードブロック、コードワードなどがマッピングされる時間区間(例えば、シンボル数)は、当該TTIよりも短くてもよい。 The TTI may be a transmission time unit such as a channel-encoded data packet (transport block), a code block, or a code word, or may be a processing unit such as scheduling or link adaptation. When a TTI is given, the time interval (for example, the number of symbols) to which the transport block, code block, code word, etc. are actually mapped may be shorter than the TTI.
 なお、1スロット又は1ミニスロットがTTIと呼ばれる場合、1以上のTTI(すなわち、1以上のスロット又は1以上のミニスロット)が、スケジューリングの最小時間単位となってもよい。また、当該スケジューリングの最小時間単位を構成するスロット数(ミニスロット数)は制御されてもよい。 When one slot or one minislot is called a TTI, one or more TTIs (that is, one or more slots or one or more minislots) may be the minimum time unit for scheduling. Further, the number of slots (number of mini-slots) constituting the minimum time unit of the scheduling may be controlled.
 1msの時間長を有するTTIは、通常TTI(LTE Rel.8-12におけるTTI)、ノーマルTTI、ロングTTI、通常サブフレーム、ノーマルサブフレーム、ロングサブフレーム、スロットなどと呼ばれてもよい。通常TTIより短いTTIは、短縮TTI、ショートTTI、部分TTI(partial又はfractional TTI)、短縮サブフレーム、ショートサブフレーム、ミニスロット、サブスロット、スロットなどと呼ばれてもよい。 A TTI having a time length of 1 ms may be called a normal TTI (TTI in LTE Rel.8-12), a normal TTI, a long TTI, a normal subframe, a normal subframe, a long subframe, a slot, or the like. TTIs shorter than normal TTIs may be referred to as shortened TTIs, short TTIs, partial TTIs (partial or fractional TTIs), shortened subframes, short subframes, minislots, subslots, slots, and the like.
 なお、ロングTTI(例えば、通常TTI、サブフレームなど)は、1msを超える時間長を有するTTIで読み替えてもよいし、ショートTTI(例えば、短縮TTIなど)は、ロングTTIのTTI長未満かつ1ms以上のTTI長を有するTTIで読み替えてもよい。 The long TTI (for example, normal TTI, subframe, etc.) may be read as a TTI having a time length of more than 1 ms, and the short TTI (for example, shortened TTI, etc.) may be read as less than the TTI length of the long TTI and 1 ms. It may be read as a TTI having the above TTI length.
 リソースブロック(RB)は、時間領域及び周波数領域のリソース割当単位であり、周波数領域において、1つ又は複数個の連続した副搬送波(subcarrier)を含んでもよい。RBに含まれるサブキャリアの数は、ニューメロロジーに関わらず同じであってもよく、例えば12であってもよい。RBに含まれるサブキャリアの数は、ニューメロロジーに基づいて決定されてもよい。 The resource block (RB) is a resource allocation unit in the time domain and the frequency domain, and may include one or a plurality of continuous subcarriers in the frequency domain. The number of subcarriers contained in RB may be the same regardless of numerology, and may be, for example, 12. The number of subcarriers contained in the RB may be determined based on numerology.
 また、RBの時間領域は、1つ又は複数個のシンボルを含んでもよく、1スロット、1ミニスロット、1サブフレーム、又は1TTIの長さであってもよい。1TTI、1サブフレームなどは、それぞれ1つ又は複数のリソースブロックで構成されてもよい。 Further, the time domain of RB may include one or more symbols, and may have a length of 1 slot, 1 mini slot, 1 subframe, or 1 TTI. Each 1TTI, 1 subframe, etc. may be composed of one or a plurality of resource blocks.
 なお、1つ又は複数のRBは、物理リソースブロック(Physical RB:PRB)、サブキャリアグループ(Sub-Carrier Group:SCG)、リソースエレメントグループ(Resource Element Group:REG)、PRBペア、RBペアなどと呼ばれてもよい。 One or more RBs include a physical resource block (Physical RB: PRB), a sub-carrier group (Sub-Carrier Group: SCG), a resource element group (Resource Element Group: REG), a PRB pair, an RB pair, and the like. May be called.
 また、リソースブロックは、1つ又は複数のリソースエレメント(Resource Element:RE)によって構成されてもよい。例えば、1REは、1サブキャリア及び1シンボルの無線リソース領域であってもよい。 Further, the resource block may be composed of one or a plurality of resource elements (ResourceElement: RE). For example, 1RE may be a radio resource area of 1 subcarrier and 1 symbol.
 帯域幅部分(Bandwidth Part:BWP)(部分帯域幅などと呼ばれてもよい)は、あるキャリアにおいて、あるニューメロロジー用の連続する共通RB(common resource blocks)のサブセットのことを表してもよい。ここで、共通RBは、当該キャリアの共通参照ポイントを基準としたRBのインデックスによって特定されてもよい。PRBは、あるBWPで定義され、当該BWP内で番号付けされてもよい。 Bandwidth Part (BWP) (which may also be called partial bandwidth, etc.) may represent a subset of consecutive common RBs (common resource blocks) for a neurology in a carrier. good. Here, the common RB may be specified by the index of the RB with respect to the common reference point of the carrier. PRBs may be defined in a BWP and numbered within that BWP.
 BWPには、UL用のBWP(UL BWP)と、DL用のBWP(DL BWP)とが含まれてもよい。UEに対して、1キャリア内に1つ又は複数のBWPが設定されてもよい。 BWP may include BWP for UL (UL BWP) and BWP for DL (DL BWP). One or more BWPs may be set in one carrier for the UE.
 設定されたBWPの少なくとも1つがアクティブであってもよく、UEは、アクティブなBWPの外で所定の信号/チャネルを送受信することを想定しなくてもよい。なお、本開示における「セル」、「キャリア」などは、「BWP」で読み替えられてもよい。 At least one of the configured BWPs may be active, and the UE may not expect to send or receive a given signal / channel outside the active BWP. In addition, "cell", "carrier" and the like in this disclosure may be read as "BWP".
 上述した無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルなどの構造は例示に過ぎない。例えば、無線フレームに含まれるサブフレームの数、サブフレーム又は無線フレームあたりのスロットの数、スロット内に含まれるミニスロットの数、スロット又はミニスロットに含まれるシンボル及びRBの数、RBに含まれるサブキャリアの数、並びにTTI内のシンボル数、シンボル長、サイクリックプレフィックス(Cyclic Prefix:CP)長などの構成は、様々に変更することができる。 The above-mentioned structures such as wireless frames, subframes, slots, minislots and symbols are merely examples. For example, the number of subframes contained in a wireless frame, the number of slots per subframe or wireless frame, the number of minislots contained within a slot, the number of symbols and RBs contained in a slot or minislot, and the number of RBs. The number of subcarriers, the number of symbols in the TTI, the symbol length, the cyclic prefix (CP) length, and other configurations can be changed in various ways.
 「接続された(connected)」、「結合された(coupled)」という用語、又はこれらのあらゆる変形は、2又はそれ以上の要素間の直接的又は間接的なあらゆる接続又は結合を意味し、互いに「接続」又は「結合」された2つの要素間に1又はそれ以上の中間要素が存在することを含むことができる。要素間の結合又は接続は、物理的なものであっても、論理的なものであっても、或いはこれらの組み合わせであってもよい。例えば、「接続」は「アクセス」で読み替えられてもよい。本開示で使用する場合、2つの要素は、1又はそれ以上の電線、ケーブル及びプリント電気接続の少なくとも一つを用いて、並びにいくつかの非限定的かつ非包括的な例として、無線周波数領域、マイクロ波領域及び光(可視及び不可視の両方)領域の波長を有する電磁エネルギーなどを用いて、互いに「接続」又は「結合」されると考えることができる。

 参照信号は、Reference Signal(RS)と略称することもでき、適用される標準によってパイロット(Pilot)と呼ばれてもよい。
The terms "connected", "coupled", or any variation thereof, mean any direct or indirect connection or connection between two or more elements, and each other. It can include the presence of one or more intermediate elements between two "connected" or "combined" elements. The connections or connections between the elements may be physical, logical, or a combination thereof. For example, "connection" may be read as "access". As used in the present disclosure, the two elements use at least one of one or more wires, cables and printed electrical connections, and, as some non-limiting and non-comprehensive examples, the radio frequency domain. Can be considered to be "connected" or "coupled" to each other using electromagnetic energy having wavelengths in the microwave and light (both visible and invisible) regions.

The reference signal may also be abbreviated as Reference Signal (RS) and may be referred to as the Pilot depending on the applied standard.
 本開示において使用する「に基づいて」という記載は、別段に明記されていない限り、「のみに基づいて」を意味しない。言い換えれば、「に基づいて」という記載は、「のみに基づいて」と「に少なくとも基づいて」の両方を意味する。 The phrase "based on" as used in this disclosure does not mean "based on" unless otherwise stated. In other words, the statement "based on" means both "based only" and "at least based on".
 上記の各装置の構成における「手段」を、「部」、「回路」、「デバイス」等に置き換えてもよい。 The "means" in the configuration of each of the above devices may be replaced with "part", "circuit", "device" and the like.
 本開示において使用する「第1」、「第2」などの呼称を使用した要素へのいかなる参照も、それらの要素の量又は順序を全般的に限定しない。これらの呼称は、2つ以上の要素間を区別する便利な方法として本開示において使用され得る。したがって、第1及び第2の要素への参照は、2つの要素のみがそこで採用され得ること、又は何らかの形で第1の要素が第2の要素に先行しなければならないことを意味しない。 Any reference to elements using designations such as "first" and "second" as used in this disclosure does not generally limit the quantity or order of those elements. These designations can be used in the present disclosure as a convenient way to distinguish between two or more elements. Thus, references to the first and second elements do not mean that only two elements can be adopted there, or that the first element must somehow precede the second element.
 本開示において、「含む(include)」、「含んでいる(including)」及びそれらの変形が使用されている場合、これらの用語は、用語「備える(comprising)」と同様に、包括的であることが意図される。さらに、本開示において使用されている用語「又は(or)」は、排他的論理和ではないことが意図される。 When "include", "including" and variations thereof are used in the present disclosure, these terms are as comprehensive as the term "comprising". Is intended. Furthermore, the term "or" used in the present disclosure is intended not to be an exclusive OR.
 本開示において、例えば、英語でのa, an及びtheのように、翻訳により冠詞が追加された場合、本開示は、これらの冠詞の後に続く名詞が複数形であることを含んでもよい。 In the present disclosure, if articles are added by translation, for example, a, an and the in English, the disclosure may include that the nouns following these articles are plural.
 本開示で使用する「判断(determining)」、「決定(determining)」という用語は、多種多様な動作を包含する場合がある。「判断」、「決定」は、例えば、判定(judging)、計算(calculating)、算出(computing)、処理(processing)、導出(deriving)、調査(investigating)、探索(looking up、search、inquiry)(例えば、テーブル、データベース又は別のデータ構造での探索)、確認(ascertaining)した事を「判断」「決定」したとみなす事などを含み得る。また、「判断」、「決定」は、受信(receiving)(例えば、情報を受信すること)、送信(transmitting)(例えば、情報を送信すること)、入力(input)、出力(output)、アクセス(accessing)(例えば、メモリ中のデータにアクセスすること)した事を「判断」「決定」したとみなす事などを含み得る。また、「判断」、「決定」は、解決(resolving)、選択(selecting)、選定(choosing)、確立(establishing)、比較(comparing)などした事を「判断」「決定」したとみなす事を含み得る。つまり、「判断」「決定」は、何らかの動作を「判断」「決定」したとみなす事を含み得る。また、「判断(決定)」は、「想定する(assuming)」、「期待する(expecting)」、「みなす(considering)」などで読み替えられてもよい。 The terms "determining" and "determining" used in this disclosure may include a wide variety of actions. "Judgment" and "decision" are, for example, judgment (judging), calculation (calculating), calculation (computing), processing (processing), derivation (deriving), investigation (investigating), search (looking up, search, inquiry). (For example, searching in a table, database or another data structure), ascertaining may be regarded as "judgment" or "decision". Also, "judgment" and "decision" are receiving (for example, receiving information), transmitting (for example, transmitting information), input (input), output (output), and access. (Accessing) (for example, accessing data in memory) may be regarded as "judgment" or "decision". In addition, "judgment" and "decision" mean that the things such as solving, selecting, choosing, establishing, and comparing are regarded as "judgment" and "decision". Can include. That is, "judgment" and "decision" may include considering some action as "judgment" and "decision". Further, "judgment (decision)" may be read as "assuming", "expecting", "considering" and the like.
 本開示において、「AとBが異なる」という用語は、「AとBが互いに異なる」ことを意味してもよい。なお、当該用語は、「AとBがそれぞれCと異なる」ことを意味してもよい。「離れる」、「結合される」などの用語も、「異なる」と同様に解釈されてもよい。 In the present disclosure, the term "A and B are different" may mean "A and B are different from each other". The term may mean that "A and B are different from C". Terms such as "separate" and "combined" may be interpreted in the same way as "different".
 以上、本開示について詳細に説明したが、当業者にとっては、本開示が本開示中に説明した実施形態に限定されるものではないということは明らかである。本開示は、請求の範囲の記載により定まる本開示の趣旨及び範囲を逸脱することなく修正及び変更態様として実施することができる。したがって、本開示の記載は、例示説明を目的とするものであり、本開示に対して何ら制限的な意味を有するものではない。 Although the present disclosure has been described in detail above, it is clear to those skilled in the art that the present disclosure is not limited to the embodiments described in the present disclosure. The present disclosure may be implemented as an amendment or modification without departing from the purpose and scope of the present disclosure, which is determined by the description of the scope of claims. Therefore, the description of the present disclosure is for the purpose of exemplary explanation and does not have any limiting meaning to the present disclosure.
 10 無線通信システム
 20 NG-RAN
 100 gNB
 200 UE
 210 無線信号送受信部
 220 アンプ部
 230 変復調部
 240 制御信号・参照信号処理部
 250 符号化/復号部
 260 データ送受信部
 270 制御部
 1001 プロセッサ
 1002 メモリ
 1003 ストレージ
 1004 通信装置
 1005 入力装置
 1006 出力装置
 1007 バス
10 Radio communication system 20 NG-RAN
100 gNB
200 UE
210 Radio signal transmission / reception unit 220 Amplifier unit 230 Modulation / demodulation unit 240 Control signal / reference signal processing unit 250 Coding / decoding unit 260 Data transmission / reception unit 270 Control unit 1001 Processor 1002 Memory 1003 Storage 1004 Communication device 1005 Input device 1006 Output device 1007 Bus

Claims (5)

  1.  1以上のコンポーネントキャリアを介してデータの通信を実行する通信部を備え、
     前記通信部は、1以上の物理上りリンク制御チャネルの設定に基づいて、1以上のコンポーネントキャリアを用いて、上りリンク制御情報をネットワークに送信する所定送信を実行する、端末。
    It is equipped with a communication unit that executes data communication via one or more component carriers.
    The communication unit is a terminal that executes predetermined transmission for transmitting uplink control information to a network by using one or more component carriers based on the setting of one or more physical uplink control channels.
  2.  前記1以上の物理上りリンク制御チャネルの設定は、複数のコンポーネントキャリアに跨がる物理上りリンク制御チャネルリソースを含む、請求項1に記載の端末。 The terminal according to claim 1, wherein the setting of one or more physical uplink control channels includes a physical uplink control channel resource that spans a plurality of component carriers.
  3.  前記1以上の物理上りリンク制御チャネルの設定は、複数のコンポーネントキャリアに関連する物理上りリンク制御チャネルリソースを含み、
     前記物理上りリンク制御チャネルリソースは、前記複数のコンポーネントキャリアに含まれるいずれかのコンポーネントキャリアに設定される、請求項1に記載の端末。
    The configuration of one or more physical uplink control channels includes physical uplink control channel resources associated with multiple component carriers.
    The terminal according to claim 1, wherein the physical uplink control channel resource is set to any component carrier included in the plurality of component carriers.
  4.  複数のコンポーネントキャリアに跨る物理上りリンク共有チャネルにおいて前記上りリンク制御情報を前記ネットワークに送信する場合において、前記上りリンク制御情報をマッピング可能なコンポーネントキャリアとして、特定のコンポーネントキャリア及び全てのコンポーネントキャリアのいずれかを用いる、請求項1に記載の端末。 When the uplink control information is transmitted to the network in a physical uplink shared channel that spans a plurality of component carriers, either a specific component carrier or all component carriers can be mapped to the uplink control information. The terminal according to claim 1, wherein the terminal is used.
  5.  前記所定送信を実行する能力があるか否かを示す情報要素をネットワークに送信する送信部を備える、請求項1乃至請求項4のいずれか1項に記載の端末。 The terminal according to any one of claims 1 to 4, further comprising a transmission unit that transmits an information element indicating whether or not it has the ability to execute the predetermined transmission to the network.
PCT/JP2020/015113 2020-04-01 2020-04-01 Terminal WO2021199388A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2022511448A JPWO2021199388A1 (en) 2020-04-01 2020-04-01
PCT/JP2020/015113 WO2021199388A1 (en) 2020-04-01 2020-04-01 Terminal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/015113 WO2021199388A1 (en) 2020-04-01 2020-04-01 Terminal

Publications (1)

Publication Number Publication Date
WO2021199388A1 true WO2021199388A1 (en) 2021-10-07

Family

ID=77929797

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/015113 WO2021199388A1 (en) 2020-04-01 2020-04-01 Terminal

Country Status (2)

Country Link
JP (1) JPWO2021199388A1 (en)
WO (1) WO2021199388A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013526216A (en) * 2010-04-30 2013-06-20 リサーチ イン モーション リミテッド System and method for uplink control information transmission in carrier aggregation
JP2019071649A (en) * 2014-10-07 2019-05-09 クゥアルコム・インコーポレイテッドQualcomm Incorporated Techniques for transmitting uplink control information for component carrier
WO2020059150A1 (en) * 2018-09-21 2020-03-26 株式会社Nttドコモ User terminal and wireless communication method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013526216A (en) * 2010-04-30 2013-06-20 リサーチ イン モーション リミテッド System and method for uplink control information transmission in carrier aggregation
JP2019071649A (en) * 2014-10-07 2019-05-09 クゥアルコム・インコーポレイテッドQualcomm Incorporated Techniques for transmitting uplink control information for component carrier
WO2020059150A1 (en) * 2018-09-21 2020-03-26 株式会社Nttドコモ User terminal and wireless communication method

Also Published As

Publication number Publication date
JPWO2021199388A1 (en) 2021-10-07

Similar Documents

Publication Publication Date Title
WO2021192065A1 (en) Terminal
WO2020261463A1 (en) Terminal
WO2022079876A1 (en) Terminal
WO2021214921A1 (en) Terminal
WO2021214920A1 (en) Terminal
WO2021192306A1 (en) Terminal
WO2021199348A1 (en) Terminal
WO2021199200A1 (en) Terminal
WO2021199388A1 (en) Terminal
WO2021192064A1 (en) Terminal
WO2021192063A1 (en) Terminal
WO2022074842A1 (en) Terminal
WO2021191982A1 (en) Terminal
WO2022153505A1 (en) Terminal and radio base station
WO2021191984A1 (en) Terminal
WO2022097724A1 (en) Terminal
WO2021220440A1 (en) Terminal
WO2021191983A1 (en) Terminal
WO2021214919A1 (en) Terminal
WO2022029972A1 (en) Terminal
WO2022029973A1 (en) Terminal
WO2021199387A1 (en) Terminal
WO2022079861A1 (en) Terminal
WO2022102718A1 (en) Terminal
WO2022074843A1 (en) Terminal

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20928396

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022511448

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20928396

Country of ref document: EP

Kind code of ref document: A1