WO2020059150A1 - User terminal and wireless communication method - Google Patents

User terminal and wireless communication method Download PDF

Info

Publication number
WO2020059150A1
WO2020059150A1 PCT/JP2018/035226 JP2018035226W WO2020059150A1 WO 2020059150 A1 WO2020059150 A1 WO 2020059150A1 JP 2018035226 W JP2018035226 W JP 2018035226W WO 2020059150 A1 WO2020059150 A1 WO 2020059150A1
Authority
WO
WIPO (PCT)
Prior art keywords
uplink control
control channel
transmission
channel resource
ack
Prior art date
Application number
PCT/JP2018/035226
Other languages
French (fr)
Japanese (ja)
Inventor
翔平 吉岡
一樹 武田
聡 永田
リフェ ワン
Original Assignee
株式会社Nttドコモ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Nttドコモ filed Critical 株式会社Nttドコモ
Priority to PCT/JP2018/035226 priority Critical patent/WO2020059150A1/en
Publication of WO2020059150A1 publication Critical patent/WO2020059150A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation

Definitions

  • the present disclosure relates to a user terminal and a wireless communication method in a next-generation mobile communication system.
  • LTE Long Term Evolution
  • 3GPP@Rel.10-14 LTE-Advanced
  • LTE Long Term Evolution
  • 5G + fifth generation mobile communication system
  • NR New Radio
  • 3GPP Rel. 15 or later A successor system to LTE (for example, 5G (5th generation mobile communication system), 5G + (plus), NR (New Radio), 3GPP Rel. 15 or later) is also being studied.
  • a user terminal In existing LTE systems (eg, 3GPP@Rel.8-14), a user terminal (UE: User @ Equipment) includes a UL data channel (eg, PUSCH: Physical @ Uplink @ Shared @ Channel) and a UL control channel (eg, PUCCH: Physical @ Uplink). Using at least one of Control @ Channel, uplink control information (UCI: Uplink @ Control @ Information) is transmitted.
  • UE User @ Equipment
  • PUSCH Physical @ Uplink @ Shared @ Channel
  • PUCCH Physical @ Uplink
  • E-UTRA Evolved Universal Terrestrial Radio Access
  • E-UTRAN Evolved Universal Terrestrial Radio Access Network
  • a user terminal transmits UCI using an uplink control channel (for example, PUCCH), upper layer signaling and downlink control It has been studied to determine a resource (for example, a PUCCH resource) for the uplink control channel based on a predetermined field in the information (DCI).
  • an uplink control channel for example, PUCCH
  • DCI downlink control
  • the user terminal determines the PUCCH resource according to the UCI type (UCCH-ACK (Hybrid Automatic Repeat Repeat reQuest-ACKnowledge), SR (Scheduling Request), CSI (Channel State Information), etc.).
  • UCI type UCI type
  • SR Switching Request
  • CSI Channel State Information
  • an object of the present disclosure is to provide a user terminal and a radio communication method that appropriately determine uplink control channel resources for transmission of a plurality of uplink control information types.
  • the user terminal is configured to transmit HARQ-ACK (Hybrid Automatic Repeat Repeat reQuest-ACKnowledge) using a predetermined uplink control channel format, and SR (Scheduling Request) transmission using the uplink control channel format.
  • HARQ-ACK Hybrid Automatic Repeat Repeat reQuest-ACKnowledge
  • SR Switchuling Request
  • a control unit that determines an uplink control channel resource when overlapping, a transmission unit that transmits at least one of the HARQ-ACK and the SR using the uplink control channel format and the uplink control channel resource, It is characterized by having.
  • FIG. 1 is a diagram illustrating an example of a PUCCH resource for HARQ-ACK.
  • FIG. 2 is a diagram illustrating an example of the PUCCH resource for SR.
  • FIG. 3 is a diagram illustrating an example of a PUCCH resource for HARQ-ACK according to an embodiment.
  • FIG. 4 is a diagram illustrating an example of the SR PUCCH resource according to the embodiment.
  • FIG. 5 is a diagram illustrating an example of a schematic configuration of the wireless communication system according to the embodiment.
  • FIG. 6 is a diagram illustrating an example of a configuration of the base station according to the embodiment.
  • FIG. 7 is a diagram illustrating an example of a configuration of the user terminal according to the embodiment.
  • FIG. 8 is a diagram illustrating an example of a hardware configuration of the base station and the user terminal according to the embodiment.
  • a configuration also referred to as a format, PUCCH format (PF), etc.
  • PUCCH uplink control channel
  • PFs 0 and 1 are PFs used to transmit UCI of 2 bits or less (up to 2 bits) (for example, acknowledgment information (HARQ-ACK: Hybrid Automatic Repeat Repeat reQuest-Acknowledge, ACK or NACK, etc.)). It is. Since PF0 can be assigned to one or two symbols, it is also called a short PUCCH, a sequence-based short PUCCH, or the like. On the other hand, PF1 can be assigned to 4-14 symbols, and is therefore also called long PUCCH or the like. In PF1, a plurality of user terminals may be code division multiplexed (CDM) in the same PRB by block spreading in the time domain using at least one of CS and OCC.
  • CDM code division multiplexed
  • the PF2-4 is used for transmitting UCI (for example, Channel State Information (CSI: Channel State Information) (or CSI and HARQ-ACK and / or scheduling request (SR)) more than 2 bits).
  • UCI for example, Channel State Information (CSI: Channel State Information) (or CSI and HARQ-ACK and / or scheduling request (SR)) more than 2 bits).
  • CSI Channel State Information
  • SR scheduling request
  • PF2 can be assigned to one or two symbols, it is also called short PUCCH or the like.
  • PF3 and PF4 are also called long PUCCH or the like because they can be assigned to 4-14 symbols.
  • PF4 a plurality of user terminals may be subjected to CDM using block spreading before (DFT) (frequency domain).
  • DFT block spreading before
  • the upper layer signaling is, for example, at least one of RRC (Radio Resource Control) signaling, system information (for example, RMSI: Remaining Minimum System Information, OSI: Other System Information, MIB: Master Information Block, SIB: System Information Block). And broadcast information (PBCH: Physical @ Broadcast @ Channel).
  • RRC Radio Resource Control
  • system information for example, RMSI: Remaining Minimum System Information
  • OSI Other System Information
  • MIB Master Information Block
  • SIB System Information Block
  • PBCH Physical @ Broadcast @ Channel
  • one or more sets (PUCCH resource sets) each containing one or more PUCCH resources are notified (configured) to the user terminal by higher layer signaling.
  • K for example, 1 ⁇ K ⁇ 4
  • PUCCH resource sets may be notified from the radio base station to the user terminal.
  • Each PUCCH resource set may include M (for example, 8 ⁇ M ⁇ 32) PUCCH resources.
  • the user terminal may determine a single PUCCH resource set (first PUCCH resource set) from the set K PUCCH resource sets based on the UCI payload size (UCI payload size, number of UCI information bits). .
  • the UCI payload size may be the number of UCI bits that do not include Cyclic Redundancy Code (CRC) bits.
  • the user terminal determines at least one of DCI and implicit information (also referred to as implicit indication information or implicit index) from the M PUCCH resources included in the determined PUCCH resource set. May be used to determine a PUCCH resource used for UCI transmission.
  • implicit indication information may be a head CCE index of PDCCH reception carrying the DCI.
  • Each PUCCH resource set in the user terminal may include the value of at least one of the following parameters (also referred to as fields or information). Note that a range of possible values for each PUCCH format may be defined for each parameter. Symbol for which PUCCH allocation is started (start symbol) -Number of symbols allocated to PUCCH in a slot (period allocated to PUCCH) -Index of resource block (physical resource block (PRB)) at which PUCCH allocation is started-Number of PRBs allocated to PUCCH-Whether to enable frequency hopping for PUCCH-Frequency hopping is enabled Frequency resources of the second hop in case, index of initial cyclic shift (CS), index of orthogonal spreading code (for example, OCC: Orthogonal Cover Code) in time-domain, discrete Fourier transform (DFT) OCC length used for previous block spreading (also called OCC length, spreading factor, etc.) ⁇ OCC index used for block-wise spreading after DFT
  • the user terminal may be configured with PUCCH resource sets # 0 to # 3 as PUCCH resources for HARQ-ACK transmission.
  • the user terminal selects any PUCCH resource set based on the UCI payload size.
  • PUCCH resource set # 0 when the UCI payload size is 1 or 2 bits, PUCCH resource set # 0 is selected. When the UCI payload size is 3 bits or more and N 2 -1 bits or less, PUCCH resource set # 1 is selected. If the UCI payload size is equal to or greater than N 2 bits and equal to or less than N 3 -1 bits, PUCCH resource set # 2 is selected. Similarly, UCI payload size is less than or equal N 3 -1 bits 3 bits or more N, PUCCH resource set # 3 is selected.
  • PUCCH resource set #i (i 0, ..., K-1) in the range of UCI payload size to be selected, N i bits or more N i + 1 -1 bit or less (i.e., ⁇ N i, ..., N i + 1 ⁇ 1 ⁇ bits).
  • the start positions (number of start bits) N 0 and N 1 of the UCI payload size for PUCCH resource sets # 0 and # 1 may be 1, 3 respectively.
  • PUCCH resource set # 0 when transmitting UCI of 2 bits or less, PUCCH resource set # 0 is selected, so PUCCH resource set # 0 includes PUCCH resources # 0 to # M-1 for at least one of PF0 and PF1. May be included.
  • PUCCH resource sets # 1 to # 3 is selected, so that PUCCH resource sets # 1 to # 3 each include at least one of PF2, PF3 and PF4. PUCCH resources # 0 to # M-1.
  • start position information indicating the start position (N i ) of the payload size of the UCI for PUCCH resource set #i is transmitted to the user terminal using upper layer signaling. It may be notified (set).
  • the start position ( Ni ) may be unique to the user terminal.
  • the start position (N i ) may be set to a value in a range from 4 bits to 256 (for example, a multiple of 4).
  • information indicating the start position (N 2 , N 3 ) of the UCI payload size for PUCCH resource sets # 2 and # 3 is notified to the user terminal, respectively, by upper layer signaling (for example, user-specific RRC signaling). You.
  • N K The maximum payload size of UCI for each PUCCH resource set is given by N K -1.
  • N K is explicitly notified to the user terminal by higher layer signaling and / or DCI (setting) may be, or may be implicitly derived.
  • the UE may be set with parameters (PUCCH configuration information, PUCCH-Config) necessary for PUCCH transmission by higher layer signaling.
  • the PUCCH setting information may include a list of PUCCH resource set information (for example, PUCCH-ResourceSet).
  • the PUCCH resource set information may include a list (for example, resourceList) of PUCCH resource IDs (index, for example, PUCCH-ResourceId).
  • the UE determines a PUCCH resource set ID (index, for example, PUCCH-ResourceSetId) according to the number of UCI information bits.
  • a PUCCH resource set ID index, for example, PUCCH-ResourceSetId
  • the UE determines a PUCCH resource set such as PUCCH resource sets # 1, # 2, and # 3 in FIG. 1 based on the number of UCI information bits. If the number of PUCCH resources in the determined PUCCH resource set is 8 or less, the UE is also called a PUCCH resource indication (PRI (PUCCH @ Resource @ Indicator), ARI (ACK / NACK @ Resource @ Indicator) in DCI format 1_0 or 1_1. ) Determine the PUCCH resource ID according to the field.
  • PRI PUCCH @ Resource @ Indicator
  • ARI ACK / NACK @ Resource @ Indicator
  • the UE determines the first PUCCH resource set, such as PUCCH resource set # 0 in FIG. 1, based on the number of UCI information bits. If the determined number of PUCCH resources PUCCH resource set is greater than 8, UE includes a PUCCH resource indication field delta PRI in DCI format 1_0 or 1_1, the CCE in CORESET p of PDCCH receiving carrying the DCI Using the following equation based on the number N CCE, p , the index n CCE, p of the first CCE of the PDCCH reception , and the number R PUCCH of PUCCH resources in the PUCCH resource set, the PUCCH resource ID r PUCCH is decide.
  • Each SR resource configuration information may include an SR resource ID (SchedulingRequestResourceId), an SR @ ID (SchedulingRequestId), a PUCCH resource ID (PUCCH-ResourceId), and timing information (cycle and offset).
  • the UE may set the association between the SR ID and the PUCCH resource ID as a PUCCH resource for SR transmission by a list of SR resource setting information. Also, the UE may be configured with the SR @ ID by higher layer signaling. The UE may use the SR resource configuration information corresponding to the SR @ ID.
  • the maximum number of PUCCH resources for each PUCCH resource set is 32
  • the maximum number of PUCCH resources for each PUCCH resource set other than PUCCH resource set # 0 is 8
  • the maximum number of PUCCH resources is 128, and the maximum number of PUCCH resource sets is It is under study to set it to 4.
  • the range of PUCCH resource ID is being studied. It is being studied that the range of the PUCCH resource ID is from 0 to 55.
  • the number of PUCCH resources in PUCCH resource set # 0 is 32, and the number of PUCCH resources in each other PUCCH resource set is 8.
  • PUCCH resource IDs 0 to 55 are allocated to PUCCH resource sets # 0 to # 3.
  • the PUCCH resource ID for SR overlaps a part of the PUCCH resource ID for HARQ-ACK. That is, the PUCCH resource ID may be shared for HARQ-ACK and for SR or CSI.
  • the base station determines the value of SR (positive SR or negative SR) based on the received PUCCH resource. it can.
  • the PUCCH resource for SR and the PUCCH resource for HARQ-ACK are the same and the PUCCH is transmitted according to this PUCCH transmission method, the PUCCH resource does not change with the value of SR. Cannot be determined. If the SR is not correctly notified, there is a possibility that the system performance will decrease, such as a decrease in communication throughput.
  • the present inventors have conceived a method of appropriately determining a PUCCH resource for transmission of HARQ-ACK and SR.
  • the UE determines the PUCCH resource set based on the UCI payload size, and determines the PUCCH resource based on the DCI. To determine.
  • the UE transmits HARQ-ACK and SR using PF0, the UE multiplexes HARQ-ACK and SR on one PUCCH resource by a cyclic shift based on values associated with HARQ-ACK and SR.
  • the UE may expect that more than one PUCCH resource with the same PUCCH resource ID will not overlap.
  • the UE may expect that for a PUCCH using PF1, more than one PUCCH resource with the same PUCCH resource ID will not overlap.
  • the UE may expect that the PUCCH resource for HARQ-ACK and the PUCCH resource for SR do not overlap.
  • the base station can properly recognize the UCI. Further, the UE can be easily mounted, and the load on the UE can be reduced.
  • the UE may assume that the PUCCH resource ID for SR set by higher layer parameters is not the same as the PUCCH resource ID for HARQ-ACK set by higher layer parameters.
  • the number of PUCCH resource IDs for HARQ-ACK may be smaller than the total number of PUCCH resource IDs.
  • the range of the PUCCH resource ID for HARQ-ACK may be a part of the range of the PUCCH resource ID.
  • the PUCCH resource ID for SR may be outside the range of the PUCCH resource ID for HARQ-ACK in the range of the PUCCH resource ID. In this case, the PUCCH resource ID for HARQ-ACK and the PUCCH resource ID for SR do not overlap.
  • the total number of PUCCH resource IDs may be 56. In this case, it is possible to avoid duplication of the PUCCH resource ID for HARQ-ACK and the PUCCH resource ID for SR without increasing the total number of PUCCH resource IDs.
  • the range of the HARQ-ACK PUCCH resource ID may be 0 to 47 as shown in FIG.
  • the PUCCH resource ID for SR may be set from a range of 48 to 55 outside the range of the PUCCH resource ID for HARQ-ACK.
  • the total number of PUCCH resource IDs may be more than 56. In this case, it is possible to avoid duplication of the PUCCH resource ID for HARQ-ACK and the PUCCH resource ID for SR without increasing the number of PUCCH resource IDs for HARQ-ACK.
  • the base station can properly recognize the UCI. Further, the UE can be easily mounted, and the load on the UE can be reduced.
  • the HARQ-ACK PUCCH resource may collide with the SR PUCCH resource having the same PUCCH resource ID.
  • the UE may use the HARQ-ACK PUCCH resource, may use the SR PUCCH resource as the transmission PUCCH resource for the PUCCH transmission, or may use the HARQ-ACK PUCCH resource and the SR PUCCH resource. Different specific PUCCH resources may be used.
  • the UE may be set (instructed) for a specific PUCCH resource by higher layer signaling.
  • the UE may follow one of the following aspects 3-1 to 3-3.
  • the UE drops the SR (does not transmit the SR) and transmits HARQ-ACK using the transmission PUCCH resource.
  • the UE drops the HARQ-ACK (does not transmit the HARQ-ACK) and transmits the SR using the transmission PUCCH resource.
  • the UE may multiplex and transmit HARQ-ACK and SR.
  • the UE may transmit HARQ-ACK and SR according to one of the following 3-3-1 to 3-3-3.
  • the UE When transmitting 2-bit HARQ-ACK, the UE applies 1-bit HARQ-ACK by applying the 2-bit HARQ-ACK bundling, regardless of whether spatial bundling is set. It may generate and transmit the 1-bit HARQ-ACK and SR. For example, the UE may generate a 1-bit HARQ-ACK by performing a 2-bit HARQ-ACK operation (eg, an AND operation) on reception of two transport blocks (TBs).
  • a 2-bit HARQ-ACK operation eg, an AND operation
  • ⁇ Aspect 3-3-2 When spatial bundling is set and the UE transmits 2-bit HARQ-ACK, the UE generates 1-bit HARQ-ACK by applying the bundling of the 2-bit HARQ-ACK, and generates the 1-bit HARQ-ACK. And SR may be transmitted.
  • the UE may notify the SR implicitly.
  • the UE may be set to different values of a predetermined parameter (resource) for the positive SR and the negative SR.
  • the UE may transmit HARQ-ACK using the transmission PUCCH resource and the parameter value corresponding to the SR value.
  • the parameter may be a transmission power or a DMRS sequence for PF1.
  • the base station may determine the notified SR based on whether the received power exceeds a predetermined threshold, or may determine the notified SR based on the received sequence.
  • the power may be represented by a ratio (offset) between the power of the RE of the DMRS and the power of the resource element (RE) of another uplink signal (eg, UCI).
  • the DMRS sequence may be specified by at least one of a base sequence and a cyclic shift (eg, m CS ). Instead of the DMRS sequence, a sequence for PF1 sequence modulation (a sequence multiplied by UCI) may be used.
  • the scheduling flexibility can be improved by allowing the HARQ-ACK PUCCH resource and the SR PUCCH resource to overlap. Further, even when the timing of HARQ-ACK transmission using the predetermined PUCCH format and the timing of SR transmission using the predetermined PUCCH format overlap, the base station can appropriately recognize the UCI.
  • wireless communication system Wireless communication system
  • communication is performed using any of the wireless communication methods according to the above embodiments of the present disclosure or a combination thereof.
  • FIG. 5 is a diagram illustrating an example of a schematic configuration of a wireless communication system according to an embodiment.
  • the wireless communication system 1 may be a system that realizes communication using LTE (Long Term Evolution) and 5G NR (5th generation mobile communication system New Radio) specified by 3GPP (Third Generation Partnership Project). .
  • LTE Long Term Evolution
  • 5G NR Fifth Generation mobile communication system New Radio
  • the wireless communication system 1 may support dual connectivity between a plurality of RATs (Radio Access Technology) (multi-RAT dual connectivity (MR-DC: Multi-RAT Dual Connectivity)).
  • MR-DC is based on dual connectivity (EN-DC: E-UTRA-NR @ Dual Connectivity) between LTE (Evolved Universal Terrestrial Radio Access) and NR, and dual connectivity (NE-DC with E-UTRA-NR Dual Connectivity).
  • -DC NR-E-UTRA (Dual Connectivity) may be included.
  • the base station (eNB) of LTE (E-UTRA) is a master node (MN: Master @ Node), and the base station (gNB) of NR is a secondary node (SN: Secondary @ Node).
  • MN Master @ Node
  • gNB secondary node
  • SN Secondary @ Node
  • the NR base station (gNB) is the MN
  • the LTE (E-UTRA) base station (eNB) is the SN.
  • the wireless communication system 1 has dual connectivity between a plurality of base stations in the same RAT (for example, dual connectivity in which both MN and SN are NR base stations (gNB) (NN-DC: NR-NR Dual Connectivity)). ) May be supported.
  • a plurality of base stations in the same RAT for example, dual connectivity in which both MN and SN are NR base stations (gNB) (NN-DC: NR-NR Dual Connectivity)).
  • the wireless communication system 1 includes a base station 11 forming a macro cell C1 having relatively wide coverage, and a base station 12 (12a to 12c) arranged in the macro cell C1 and forming a small cell C2 smaller than the macro cell C1. May be provided.
  • User terminal 20 may be located in at least one cell. The arrangement, number, and the like of each cell and the user terminals 20 are not limited to the modes shown in the figure.
  • the base stations 11 and 12 are not distinguished, they are collectively referred to as a base station 10.
  • the user terminal 20 may be connected to at least one of the plurality of base stations 10.
  • the user terminal 20 may use at least one of carrier aggregation (Carrier Aggregation) using a plurality of component carriers (CC: Component Carrier) and dual connectivity (DC).
  • Carrier Aggregation Carrier Aggregation
  • CC Component Carrier
  • DC dual connectivity
  • Each CC may be included in at least one of the first frequency band (FR1: FrequencyFRange 1) and the second frequency band (FR2: Frequency Range 2).
  • the macro cell C1 may be included in FR1, and the small cell C2 may be included in FR2.
  • FR1 may be a frequency band of 6 GHz or less (sub-6 GHz (sub-6 GHz)), and FR2 may be a frequency band higher than 24 GHz (above-24 GHz).
  • the frequency bands and definitions of FR1 and FR2 are not limited to these, and for example, FR1 may correspond to a frequency band higher than FR2.
  • the user terminal 20 may perform communication using at least one of time division duplex (TDD: Time Division Duplex) and frequency division duplex (FDD: Frequency Division Duplex) in each CC.
  • TDD Time Division Duplex
  • FDD Frequency Division Duplex
  • the plurality of base stations 10 may be connected by wire (for example, an optical fiber compliant with CPRI (Common Public Radio Interface), an X2 interface, or the like) or wirelessly (for example, NR communication).
  • wire for example, an optical fiber compliant with CPRI (Common Public Radio Interface), an X2 interface, or the like
  • NR communication for example, when NR communication is used as a backhaul between the base stations 11 and 12, the base station 11 corresponding to the upper station is an IAB (Integrated Access Backhaul) donor, and the base station 12 corresponding to the relay station (relay) is the IAB It may be called a node.
  • IAB Integrated Access Backhaul
  • the base station 10 may be connected to the core network 30 via another base station 10 or directly.
  • the core network 30 may include, for example, at least one of Evolved Packet Core (EPC), 5G Core Network (5GCN), Next Generation Core (NGC), and the like.
  • EPC Evolved Packet Core
  • 5GCN 5G Core Network
  • NGC Next Generation Core
  • the user terminal 20 may be a terminal that supports at least one of the communication systems such as LTE, LTE-A, and 5G.
  • an orthogonal frequency division multiplexing (OFDM) based wireless access scheme may be used.
  • OFDM Orthogonal frequency division multiplexing
  • CP-OFDM Cyclic Prefix OFDM
  • DFT-s-OFDM Discrete Fourier Transform Spread OFDM
  • OFDMA Orthogonal Frequency Division Divide Multiple
  • SC-FDMA Single Carrier Frequency Frequency Division Multiple Access
  • the wireless access scheme may be referred to as a waveform.
  • another wireless access method for example, another single carrier transmission method or another multi-carrier transmission method
  • a downlink shared channel (PDSCH: Physical Downlink Shared Channel), a broadcast channel (PBCH: Physical Broadcast Channel), and a downlink control channel (PDCCH: Physical Downlink Control) are shared by the user terminals 20 as downlink channels. Channel) may be used.
  • PDSCH Physical Downlink Shared Channel
  • PBCH Physical Broadcast Channel
  • PDCCH Physical Downlink Control
  • an uplink shared channel (PUSCH: Physical Uplink Shared Channel) shared by each user terminal 20, an uplink control channel (PUCCH: Physical Uplink Control Channel), a random access channel (PRACH) : Physical Random Access Channel) or the like may be used.
  • PUSCH Physical Uplink Shared Channel
  • PUCCH Physical Uplink Control Channel
  • PRACH random access channel
  • the user data, upper layer control information, SIB (System Information Block), and the like are transmitted by the PDSCH.
  • User data, higher layer control information, and the like may be transmitted by the PUSCH.
  • MIB Master Information Block
  • PBCH Physical Broadcast Channel
  • Lower layer control information may be transmitted by the PDCCH.
  • the lower layer control information may include, for example, downlink control information (DCI: Downlink Control Information) including scheduling information of at least one of the PDSCH and the PUSCH.
  • DCI Downlink Control Information
  • DCI for scheduling the PDSCH may be referred to as DL assignment, DL @ DCI, or the like
  • the DCI for scheduling the PUSCH may be referred to as UL grant, UL @ DCI, or the like.
  • PDSCH may be replaced with DL data
  • PUSCH may be replaced with UL data.
  • a control resource set (CORESET: Control REsource SET) and a search space (search space) may be used for detecting the PDCCH.
  • CORESET corresponds to a resource for searching DCI.
  • the search space corresponds to a search area and a search method of PDCCH candidates (PDCCH @ candidates).
  • One coreset may be associated with one or more search spaces.
  • the UE may monitor a RESET associated with a search space based on the search space settings.
  • One SS may correspond to a PDCCH candidate corresponding to one or a plurality of aggregation levels (aggregation Level).
  • One or more search spaces may be referred to as a search space set.
  • search space “search space”, “search space set”, “search space setting”, “search space set setting”, “CORESET”, “CORESET setting”, and the like in the present disclosure may be interchanged with each other.
  • PUCCH Physical Uplink Control Channel
  • CSI Channel ⁇ State ⁇ Information
  • HARQ-ACK Hybrid ⁇ Automatic ⁇ Repeat ⁇ reQuest
  • ACK / NACK ACK / NACK
  • scheduling request SR: Scheduling ⁇ Request
  • a random access preamble for establishing a connection with a cell may be transmitted by the PRACH.
  • a downlink, an uplink, and the like may be expressed without a “link”.
  • various channels may be expressed without “Physical” at the beginning.
  • a synchronization signal (SS: Synchronization Signal), a downlink reference signal (DL-RS: Downlink Reference Signal), or the like may be transmitted.
  • a DL-RS a cell-specific reference signal (CRS), a channel state information reference signal (CSI-RS), and a demodulation reference signal (DMRS: DeModulation) are provided.
  • Reference Signal a position determination reference signal (PRS: Positioning Reference Signal), a phase tracking reference signal (PTRS: Phase Tracking Reference Signal), and the like may be transmitted.
  • PRS Positioning Reference Signal
  • PTRS Phase Tracking Reference Signal
  • the synchronization signal may be, for example, at least one of a primary synchronization signal (PSS: Primary Synchronization Signal) and a secondary synchronization signal (SSS: Secondary Synchronization Signal).
  • PSS Primary Synchronization Signal
  • SSS Secondary Synchronization Signal
  • a signal block including SS (PSS, SSS) and PBCH (and DMRS for PBCH) may be referred to as SS / PBCH block, SSB (SS @ Block), and the like. Note that SS, SSB, and the like may also be referred to as reference signals.
  • a measurement reference signal (SRS: Sounding Reference Signal), a demodulation reference signal (DMRS), and the like may be transmitted as an uplink reference signal (UL-RS: Uplink Reference Signal).
  • SRS Sounding Reference Signal
  • DMRS demodulation reference signal
  • UL-RS Uplink Reference Signal
  • the DMRS may be called a user terminal specific reference signal (UE-specific Reference Signal).
  • FIG. 6 is a diagram illustrating an example of a configuration of the base station according to the embodiment.
  • the base station 10 includes a control unit 110, a transmission / reception unit 120, a transmission / reception antenna 130, and a transmission line interface 140.
  • the control unit 110, the transmission / reception unit 120, the transmission / reception antenna 130, and the transmission path interface 140 may each include one or more.
  • base station 10 also has other functional blocks necessary for wireless communication. Some of the processes of each unit described below may be omitted.
  • the control unit 110 controls the entire base station 10.
  • the control unit 110 can be configured by a controller, a control circuit, and the like described based on common recognition in the technical field according to the present disclosure.
  • the control unit 110 may control signal generation, scheduling (for example, resource allocation, mapping), and the like.
  • the control unit 110 may control transmission / reception, measurement, and the like using the transmission / reception unit 120, the transmission / reception antenna 130, and the transmission path interface 140.
  • the control unit 110 may generate data to be transmitted as a signal, control information, a sequence, and the like, and transfer the generated data to the transmission / reception unit 120.
  • the control unit 110 may perform call processing (setting, release, etc.) of the communication channel, state management of the base station 10, management of radio resources, and the like.
  • the transmission / reception unit 120 may include a baseband unit 121, an RF (Radio Frequency) unit 122, and a measurement unit 123.
  • the baseband unit 121 may include a transmission processing unit 1211 and a reception processing unit 1212.
  • the transmission / reception unit 120 includes a transmitter / receiver, an RF circuit, a baseband circuit, a filter, a phase shifter (phase shifter), a measurement circuit, a transmission / reception circuit, and the like described based on common recognition in the technical field according to the present disclosure. be able to.
  • the transmission / reception unit 120 may be configured as an integrated transmission / reception unit, or may be configured from a transmission unit and a reception unit.
  • the transmission unit may include a transmission processing unit 1211 and an RF unit 122.
  • the receiving unit may include a reception processing unit 1212, an RF unit 122, and a measurement unit 123.
  • the transmission / reception antenna 130 can be configured from an antenna described based on common recognition in the technical field according to the present disclosure, for example, an array antenna or the like.
  • the transmission / reception unit 120 may transmit the above-described downlink channel, synchronization signal, downlink reference signal, and the like.
  • the transmission / reception unit 120 may receive the above-described uplink channel, uplink reference signal, and the like.
  • the transmission / reception unit 120 may form at least one of the transmission beam and the reception beam by using digital beamforming (for example, precoding), analog beamforming (for example, phase rotation), or the like.
  • digital beamforming for example, precoding
  • analog beamforming for example, phase rotation
  • the transmission / reception unit 120 processes the data, control information, and the like acquired from the control unit 110 in the PDCP (Packet Data Convergence Protocol) layer and the RLC (Radio Link Control) layer processing (for example, RLC retransmission control), MAC (Medium Access Control) layer processing (for example, HARQ retransmission control), and the like may be performed to generate a bit string to be transmitted.
  • PDCP Packet Data Convergence Protocol
  • RLC Radio Link Control
  • MAC Medium Access Control
  • the transmission / reception unit 120 performs channel coding (may include error correction coding), modulation, mapping, filter processing, and discrete Fourier transform (DFT: Discrete Fourier Transform) processing on a bit string to be transmitted.
  • channel coding may include error correction coding
  • modulation may include error correction coding
  • mapping may include error correction coding
  • filter processing may include discrete Fourier transform (DFT: Discrete Fourier Transform) processing on a bit string to be transmitted.
  • DFT discrete Fourier transform
  • Transmission processing such as Inverse Fast Fourier Transform (IFFT) processing, precoding, and digital-analog conversion (if necessary) may be performed to output a baseband signal.
  • IFFT Inverse Fast Fourier Transform
  • precoding may be performed to output a baseband signal.
  • digital-analog conversion if necessary
  • the transmission / reception unit 120 may perform modulation, filtering, amplification, and the like on the baseband signal into a radio frequency band, and transmit the signal in the radio frequency band via the transmission / reception antenna 130. .
  • the transmission / reception unit 120 may perform amplification, filtering, demodulation to a baseband signal, and the like on the radio frequency band signal received by the transmission / reception antenna 130.
  • the transmission / reception unit 120 (reception processing unit 1212) performs analog-to-digital conversion, fast Fourier transform (FFT), and inverse discrete Fourier transform (IDFT) on the acquired baseband signal. Applying reception processing such as processing (if necessary), filtering, demapping, demodulation, decoding (which may include error correction decoding), MAC layer processing, RLC layer processing, and PDCP layer processing, Etc. may be obtained.
  • reception processing such as processing (if necessary), filtering, demapping, demodulation, decoding (which may include error correction decoding), MAC layer processing, RLC layer processing, and PDCP layer processing, Etc.
  • the transmission / reception unit 120 may measure the received signal.
  • the measurement unit 123 may perform RRM (Radio Resource Management) measurement, CSI (Channel State Information) measurement, or the like based on the received signal.
  • the measuring unit 123 receives the reception power (for example, RSRP (Reference Signal Received Power)), reception quality (for example, RSRQ (Reference Signal Received Quality), SINR (Signal to Interference plus Noise Ratio, SNR (Signal to Noise Ratio)). , Signal strength (for example, RSSI (Received Signal Strength Indicator)), propagation path information (for example, CSI), and the like.
  • the measurement result may be output to the control unit 110.
  • the transmission line interface 140 transmits / receives signals (backhaul signaling) to / from a device included in the core network 30 or another base station 10, and transmits user data (user plane data) for the user terminal 20; Data and the like may be obtained and transmitted.
  • the transmission unit and the reception unit of the base station 10 may be configured by at least one of the transmission / reception unit 120, the transmission / reception antenna 130, and the transmission path interface 140.
  • the transmission / reception unit 120 may receive uplink control information (UCI) in uplink control channel resources.
  • the control unit 110 may determine a part of the uplink control information (specific UCI type, for example, SR) based on the uplink control channel resource used for reception.
  • FIG. 7 is a diagram illustrating an example of a configuration of the user terminal according to the embodiment.
  • the user terminal 20 includes a control unit 210, a transmission / reception unit 220, and a transmission / reception antenna 230. Note that one or more of the control unit 210, the transmission / reception unit 220, and the transmission / reception antenna 230 may be provided.
  • the control unit 210 controls the entire user terminal 20.
  • the control unit 210 can be configured by a controller, a control circuit, and the like described based on common recognition in the technical field according to the present disclosure.
  • the control unit 210 may control signal generation, mapping, and the like.
  • the control unit 210 may control transmission / reception and measurement using the transmission / reception unit 220 and the transmission / reception antenna 230.
  • the control unit 210 may generate data to be transmitted as a signal, control information, a sequence, and the like, and transfer the generated data to the transmission / reception unit 220.
  • the transmission / reception unit 220 may include a baseband unit 221, an RF unit 222, and a measurement unit 223.
  • the baseband unit 221 may include a transmission processing unit 2211 and a reception processing unit 2212.
  • the transmission / reception unit 220 can be configured from a transmitter / receiver, an RF circuit, a baseband circuit, a filter, a phase shifter, a measurement circuit, a transmission / reception circuit, and the like described based on common recognition in the technical field according to the present disclosure.
  • the transmission / reception unit 220 may be configured as an integrated transmission / reception unit, or may be configured from a transmission unit and a reception unit.
  • the transmission unit may include a transmission processing unit 2211 and an RF unit 222.
  • the receiving unit may include a reception processing unit 2212, an RF unit 222, and a measurement unit 223.
  • the transmission / reception antenna 230 can be configured from an antenna described based on common recognition in the technical field according to the present disclosure, for example, an array antenna or the like.
  • the transmission / reception unit 220 may receive the above-described downlink channel, synchronization signal, downlink reference signal, and the like.
  • the transmission / reception unit 220 may transmit the above-described uplink channel, uplink reference signal, and the like.
  • the transmission / reception unit 220 may form at least one of the transmission beam and the reception beam by using digital beamforming (for example, precoding), analog beamforming (for example, phase rotation), or the like.
  • digital beamforming for example, precoding
  • analog beamforming for example, phase rotation
  • the transmission / reception unit 220 (transmission processing unit 2211) performs processing of the PDCP layer, processing of the RLC layer (for example, RLC retransmission control), processing of the MAC layer (for example, for data, control information, and the like acquired from the control unit 210, for example). , HARQ retransmission control), etc., to generate a bit string to be transmitted.
  • the transmission / reception unit 220 (transmission processing unit 2211) performs channel coding (which may include error correction coding), modulation, mapping, filter processing, DFT processing (if necessary), IFFT processing on the bit sequence to be transmitted. , Precoding, digital-analog conversion, etc., and output a baseband signal.
  • whether to apply the DFT processing may be based on the transform precoding setting.
  • the transmission / reception unit 220 transmits the channel using the DFT-s-OFDM waveform.
  • DFT processing may be performed as the transmission processing, or otherwise, DFT processing may not be performed as the transmission processing.
  • the transmission / reception unit 220 may perform modulation, filtering, amplification, and the like on the baseband signal into a radio frequency band, and transmit a signal in the radio frequency band via the transmission / reception antenna 230. .
  • the transmission / reception unit 220 may perform amplification, filtering, demodulation to a baseband signal, and the like on the radio frequency band signal received by the transmission / reception antenna 230.
  • the transmission / reception unit 220 (reception processing unit 2212) performs analog-to-digital conversion, FFT processing, IDFT processing (if necessary), filter processing, demapping, demodulation, decoding (error correction) on the obtained baseband signal. Decoding may be included), reception processing such as MAC layer processing, RLC layer processing, and PDCP layer processing may be applied to acquire user data and the like.
  • the transmission / reception unit 220 may measure the received signal.
  • the measurement unit 223 may perform RRM measurement, CSI measurement, and the like based on the received signal.
  • the measurement unit 223 may measure received power (for example, RSRP), received quality (for example, RSRQ, SINR, SNR), signal strength (for example, RSSI), channel information (for example, CSI), and the like.
  • the measurement result may be output to the control unit 210.
  • the transmitting unit and the receiving unit of the user terminal 20 may be configured by at least one of the transmitting / receiving unit 220, the transmitting / receiving antenna 230, and the transmission line interface 240.
  • Control section 210 overlaps the timing of HARQ-ACK (Hybrid Automatic Repeat Repeat reQuest-ACKnowledge) transmission using a predetermined uplink control channel format with the timing of SR (Scheduling Request) transmission using the uplink control channel format.
  • uplink control channel resources may be determined.
  • the transmission / reception unit 220 may transmit at least one of the HARQ-ACK and the SR using the uplink control channel format and the uplink control channel resource.
  • control section 210 determines one of a first uplink control channel resource for HARQ-ACK and a second uplink control channel resource for SR based on the value of SR as the uplink control channel resource. You may.
  • the transmission / reception unit 220 may transmit the HARQ-ACK using the uplink control channel resource.
  • the first uplink control channel resource may be different from the second uplink control channel resource (aspect 1).
  • control section 210 determines the first uplink control channel resource from a plurality of first IDs (eg, PUCCH resource IDs for HARQ-ACK) set by higher layer signaling, and determines a plurality of first uplink control channel resources set by higher layer signaling.
  • the second uplink control channel resource may be determined from a second ID (for example, a PUCCH resource ID for SR).
  • the plurality of first IDs may not overlap with the plurality of second IDs (aspect 2).
  • the control unit 210 transmits the first uplink control channel resource and the second uplink control channel resource to each other. May determine one of a different third uplink control channel resource, the first uplink control channel resource, and the second uplink control channel resource as the uplink control channel resource.
  • the transmission / reception unit 220 may transmit one of the HARQ-ACK and the SR using the uplink control channel resource (aspects 3-1 and 3-2).
  • the control unit 210 transmits the first uplink control channel resource and the second uplink control channel resource to each other. May determine one of a different third uplink control channel resource (for example, a specific PUCCH resource), the first uplink control channel resource, and the second uplink control channel resource as the uplink control channel resource. .
  • the transmission / reception unit 220 may transmit the HARQ-ACK and the SR using the uplink control channel resource (aspect 3-3).
  • each functional block may be realized using one device physically or logically coupled, or directly or indirectly (for example, two or more devices physically or logically separated from each other). , Wired, wireless, etc.), and may be implemented using these multiple devices.
  • the functional block may be realized by combining one device or the plurality of devices with software.
  • the functions include judgment, determination, judgment, calculation, calculation, processing, derivation, investigation, search, confirmation, reception, transmission, output, access, resolution, selection, selection, establishment, comparison, assumption, expectation, and deemed. , Broadcasting, notifying, communicating, forwarding, configuring, reconfiguring, allocating, mapping, assigning, etc.
  • a functional block (configuration unit) that causes transmission to function may be referred to as a transmitting unit (transmitting unit), a transmitter (transmitter), or the like.
  • the realization method is not particularly limited.
  • a base station, a user terminal, or the like may function as a computer that performs processing of the wireless communication method according to the present disclosure.
  • FIG. 8 is a diagram illustrating an example of a hardware configuration of the base station and the user terminal according to the embodiment.
  • the above-described base station 10 and user terminal 20 may be physically configured as a computer device including a processor 1001, a memory 1002, a storage 1003, a communication device 1004, an input device 1005, an output device 1006, a bus 1007, and the like. .
  • the hardware configuration of the base station 10 and the user terminal 20 may be configured to include one or more of the devices illustrated in the drawing, or may be configured to exclude some of the devices.
  • processor 1001 may be implemented by one or more chips.
  • the functions of the base station 10 and the user terminal 20 are performed, for example, by reading predetermined software (program) on hardware such as the processor 1001 and the memory 1002 so that the processor 1001 performs an arithmetic operation and communicates via the communication device 1004. And controlling at least one of reading and writing of data in the memory 1002 and the storage 1003.
  • predetermined software program
  • the processor 1001 performs an arithmetic operation and communicates via the communication device 1004.
  • the processor 1001 controls the entire computer by operating an operating system, for example.
  • the processor 1001 may be configured by a central processing unit (CPU: Central Processing Unit) including an interface with a peripheral device, a control device, an arithmetic device, a register, and the like.
  • CPU Central Processing Unit
  • the control unit 110 (210), the transmitting / receiving unit 120 (220), and the like may be realized by the processor 1001.
  • the processor 1001 reads out a program (program code), a software module, data, and the like from at least one of the storage 1003 and the communication device 1004 to the memory 1002, and executes various processes according to these.
  • a program program code
  • a program that causes a computer to execute at least a part of the operation described in the above embodiment is used.
  • the control unit 110 (210) may be realized by a control program stored in the memory 1002 and operated by the processor 1001, and other functional blocks may be similarly realized.
  • the memory 1002 is a computer-readable recording medium, for example, at least one of ROM (Read Only Memory), EPROM (Erasable Programmable ROM), EEPROM (Electrically EPROM), RAM (Random Access Memory), and other appropriate storage media. It may be constituted by one.
  • the memory 1002 may be called a register, a cache, a main memory (main storage device), or the like.
  • the memory 1002 can store a program (program code), a software module, and the like that can be executed to implement the wireless communication method according to an embodiment of the present disclosure.
  • the storage 1003 is a computer-readable recording medium such as a flexible disk, a floppy (registered trademark) disk, a magneto-optical disk (for example, a compact disk (CD-ROM (Compact Disc) ROM, etc.), a digital versatile disc, At least one of a Blu-ray (registered trademark) disk, a removable disk, a hard disk drive, a smart card, a flash memory device (eg, a card, a stick, a key drive), a magnetic stripe, a database, a server, and other suitable storage media. May be configured.
  • the storage 1003 may be called an auxiliary storage device.
  • the communication device 1004 is hardware (transmission / reception device) for performing communication between computers via at least one of a wired network and a wireless network, and is also referred to as, for example, a network device, a network controller, a network card, a communication module, or the like.
  • the communication device 1004 includes a high-frequency switch, a duplexer, a filter, a frequency synthesizer, and the like, for example, in order to realize at least one of frequency division duplex (FDD: Frequency Division Duplex) and time division duplex (TDD: Time Division Duplex). May be configured.
  • FDD Frequency Division Duplex
  • TDD Time Division Duplex
  • the transmission / reception unit 120 (220) and the transmission / reception antenna 130 (230) described above may be realized by the communication device 1004.
  • the transmission / reception unit 120 (220) may be physically or logically separated from the transmission unit 120a (220a) and the reception unit 120b (220b).
  • the input device 1005 is an input device (for example, a keyboard, a mouse, a microphone, a switch, a button, a sensor, and the like) that receives an external input.
  • the output device 1006 is an output device that performs output to the outside (for example, a display, a speaker, an LED (Light Emitting Diode) lamp, and the like). Note that the input device 1005 and the output device 1006 may have an integrated configuration (for example, a touch panel).
  • the devices such as the processor 1001 and the memory 1002 are connected by a bus 1007 for communicating information.
  • the bus 1007 may be configured using a single bus, or may be configured using a different bus for each device.
  • the base station 10 and the user terminal 20 include hardware such as a microprocessor, a digital signal processor (DSP: Digital Signal Processor), an ASIC (Application Specific Integrated Circuit), a PLD (Programmable Logic Device), and an FPGA (Field Programmable Gate Array). It may be configured to include hardware, and some or all of the functional blocks may be realized using the hardware. For example, the processor 1001 may be implemented using at least one of these pieces of hardware.
  • DSP Digital Signal Processor
  • ASIC Application Specific Integrated Circuit
  • PLD Programmable Logic Device
  • FPGA Field Programmable Gate Array
  • RS Reference Signal
  • a component carrier may be called a cell, a frequency carrier, a carrier frequency, or the like.
  • a radio frame may be configured by one or more periods (frames) in the time domain.
  • the one or more respective periods (frames) forming the radio frame may be referred to as a subframe.
  • a subframe may be configured by one or more slots in the time domain.
  • the subframe may be of a fixed length of time (eg, 1 ms) that does not depend on numerology.
  • the new melology may be a communication parameter applied to at least one of transmission and reception of a certain signal or channel.
  • Numerology includes, for example, subcarrier interval (SCS: SubCarrier @ Spacing), bandwidth, symbol length, cyclic prefix length, transmission time interval (TTI: Transmission @ Time @ Interval), number of symbols per TTI, radio frame configuration, transmission and reception.
  • SCS SubCarrier @ Spacing
  • TTI Transmission @ Time @ Interval
  • TTI Transmission @ Time @ Interval
  • radio frame configuration transmission and reception.
  • At least one of a specific filtering process performed by the transceiver in the frequency domain and a specific windowing process performed by the transceiver in the time domain may be indicated.
  • the slot may be configured by one or a plurality of symbols (OFDM (Orthogonal Frequency Division Multiplexing) symbol, SC-FDMA (Single Carrier Frequency Division Multiple Access) symbol, etc.) in the time domain. Further, the slot may be a time unit based on numerology.
  • OFDM Orthogonal Frequency Division Multiplexing
  • SC-FDMA Single Carrier Frequency Division Multiple Access
  • the slot may include a plurality of mini slots.
  • Each minislot may be constituted by one or more symbols in the time domain.
  • the mini-slot may be called a sub-slot.
  • a minislot may be made up of a smaller number of symbols than slots.
  • a PDSCH (or PUSCH) transmitted in time units larger than minislots may be referred to as PDSCH (PUSCH) mapping type A.
  • a PDSCH (or PUSCH) transmitted using a minislot may be referred to as a PDSCH (PUSCH) mapping type B.
  • Radio frames, subframes, slots, minislots, and symbols all represent time units when transmitting signals.
  • the radio frame, the subframe, the slot, the minislot, and the symbol may have different names corresponding to each. Note that time units such as frames, subframes, slots, minislots, and symbols in the present disclosure may be interchanged with each other.
  • one subframe may be called a TTI
  • a plurality of consecutive subframes may be called a TTI
  • one slot or one minislot may be called a TTI. That is, at least one of the subframe and the TTI may be a subframe (1 ms) in the existing LTE, a period shorter than 1 ms (for example, 1 to 13 symbols), or a period longer than 1 ms. It may be.
  • the unit representing the TTI may be called a slot, a minislot, or the like instead of a subframe.
  • the TTI refers to, for example, a minimum time unit of scheduling in wireless communication.
  • the base station performs scheduling for allocating radio resources (frequency bandwidth, transmission power, and the like that can be used in each user terminal) to each user terminal in TTI units.
  • radio resources frequency bandwidth, transmission power, and the like that can be used in each user terminal
  • the TTI may be a transmission time unit such as a channel-encoded data packet (transport block), a code block, or a code word, or may be a processing unit such as scheduling and link adaptation. Note that when a TTI is given, a time section (for example, the number of symbols) in which a transport block, a code block, a codeword, and the like are actually mapped may be shorter than the TTI.
  • one slot or one minislot is called a TTI
  • one or more TTIs may be the minimum time unit for scheduling. Further, the number of slots (mini-slot number) constituting the minimum time unit of the scheduling may be controlled.
  • a TTI having a time length of 1 ms may be referred to as a normal TTI (TTI in 3GPP@Rel.8-12), a normal TTI, a long TTI, a normal subframe, a normal subframe, a long subframe, a slot, and the like.
  • a TTI shorter than the normal TTI may be called a shortened TTI, a short TTI, a partial TTI (partial or fractional TTI), a shortened subframe, a short subframe, a minislot, a subslot, a slot, and the like.
  • a long TTI (for example, a normal TTI, a subframe, etc.) may be read as a TTI having a time length exceeding 1 ms, and a short TTI (for example, a shortened TTI, etc.) may be replaced with a TTI shorter than the long TTI and 1 ms.
  • the TTI having the above-described TTI length may be replaced with the TTI.
  • a resource block is a resource allocation unit in the time domain and the frequency domain, and may include one or a plurality of continuous subcarriers (subcarriers) in the frequency domain.
  • the number of subcarriers included in the RB may be the same irrespective of the numerology, and may be, for example, 12.
  • the number of subcarriers included in the RB may be determined based on numerology.
  • the RB may include one or more symbols in the time domain, and may have a length of one slot, one minislot, one subframe, or one TTI.
  • One TTI, one subframe, and the like may each be configured by one or a plurality of resource blocks.
  • One or a plurality of RBs include a physical resource block (PRB: Physical @ RB), a subcarrier group (SCG: Sub-Carrier @ Group), a resource element group (REG: Resource @ Element @ Group), a PRB pair, an RB pair, and the like. May be called.
  • PRB Physical @ RB
  • SCG Sub-Carrier @ Group
  • REG Resource @ Element @ Group
  • PRB pair an RB pair, and the like. May be called.
  • a resource block may be composed of one or more resource elements (RE: Resource @ Element).
  • RE Resource @ Element
  • one RE may be a radio resource area of one subcarrier and one symbol.
  • a bandwidth part (which may be referred to as a partial bandwidth or the like) may also represent a subset of consecutive common RBs (common @ resource @ blocks) for a certain numerology in a certain carrier. Good.
  • the common RB may be specified by an index of the RB based on the common reference point of the carrier.
  • a PRB may be defined by a BWP and numbered within the BWP.
  • $ BWP may include a BWP for UL (UL @ BWP) and a BWP for DL (DL @ BWP).
  • BWP for a UE, one or more BWPs may be configured in one carrier.
  • At least one of the configured BWPs may be active, and the UE does not have to assume to transmit and receive a given signal / channel outside the active BWP.
  • “cell”, “carrier”, and the like in the present disclosure may be replaced with “BWP”.
  • the structures of the above-described radio frame, subframe, slot, minislot, symbol, and the like are merely examples.
  • the number of subframes included in a radio frame, the number of slots per subframe or radio frame, the number of minislots included in a slot, the number of symbols and RBs included in a slot or minislot, included in an RB The configuration of the number of subcarriers, the number of symbols in the TTI, the symbol length, the cyclic prefix (CP: Cyclic Prefix) length, and the like can be variously changed.
  • the information, parameters, and the like described in the present disclosure may be expressed using an absolute value, may be expressed using a relative value from a predetermined value, or may be expressed using another corresponding information. May be represented.
  • a radio resource may be indicated by a predetermined index.
  • Names used for parameters and the like in the present disclosure are not limited in any respect. Further, the formulas and the like using these parameters may be different from those explicitly disclosed in the present disclosure.
  • the various channels (PUCCH (Physical Uplink Control Channel), PDCCH (Physical Downlink Control Channel), etc.) and information elements can be identified by any suitable name, so the various names assigned to these various channels and information elements Is not a limiting name in any way.
  • the information, signals, etc. described in this disclosure may be represented using any of a variety of different technologies.
  • data, instructions, commands, information, signals, bits, symbols, chips, etc. that can be referred to throughout the above description are not limited to voltages, currents, electromagnetic waves, magnetic or magnetic particles, optical or photons, or any of these. May be represented by a combination of
  • information, signals, and the like can be output from the upper layer to at least one of the lower layer and the lower layer to the upper layer.
  • Information, signals, etc. may be input / output via a plurality of network nodes.
  • Information and signals input and output may be stored in a specific place (for example, a memory) or may be managed using a management table. Information and signals that are input and output can be overwritten, updated, or added. The output information, signal, and the like may be deleted. The input information, signal, and the like may be transmitted to another device.
  • information notification in the present disclosure includes physical layer signaling (for example, downlink control information (DCI: Downlink Control Information), uplink control information (UCI: Uplink Control Information)), and upper layer signaling (for example, RRC (Radio Resource Control). ) Signaling, broadcast information (master information block (MIB: Master Information Block), system information block (SIB: System Information Block), etc.), MAC (Medium Access Control) signaling), other signals or a combination thereof. Is also good.
  • DCI Downlink control information
  • UCI Uplink Control Information
  • RRC Radio Resource Control
  • MIB Master Information Block
  • SIB System Information Block
  • MAC Medium Access Control
  • the physical layer signaling may be called L1 / L2 (Layer 1 / Layer 2) control information (L1 / L2 control signal), L1 control information (L1 control signal), or the like.
  • the RRC signaling may be referred to as an RRC message, and may be, for example, an RRC connection setup (RRC Connection Setup) message, an RRC connection reconfiguration (RRC Connection Reconfiguration) message, or the like.
  • the MAC signaling may be notified using, for example, a MAC control element (MAC @ CE (Control @ Element)).
  • the notification of the predetermined information is not limited to an explicit notification, and is implicit (for example, by not performing the notification of the predetermined information or by another information). May be performed).
  • the determination may be made by a value represented by 1 bit (0 or 1), or may be made by a boolean value represented by true or false. , May be performed by comparing numerical values (for example, comparison with a predetermined value).
  • software, instructions, information, and the like may be transmitted and received via a transmission medium.
  • a transmission medium For example, if the software uses at least one of wired technology (coaxial cable, fiber optic cable, twisted pair, digital subscriber line (DSL), etc.) and wireless technology (infrared, microwave, etc.), the website, When transmitted from a server or other remote source, at least one of these wired and / or wireless technologies is included within the definition of a transmission medium.
  • Network may mean a device (eg, a base station) included in the network.
  • precoding In the present disclosure, “precoding”, “precoder”, “weight (precoding weight)”, “quasi-co-location (QCL)”, “TCI state (Transmission Configuration Indication state)”, “spatial relation” (Spatial relation), “spatial domain filter”, “transmission power”, “phase rotation”, “antenna port”, “antenna port group”, “layer”, “number of layers”, “ Terms such as “rank”, “resource”, “resource set”, “resource group”, “beam”, “beam width”, “beam angle”, “antenna”, “antenna element”, “panel” are interchangeable Can be used for
  • base station (BS: Base @ Station)”, “wireless base station”, “fixed station (fixed @ station)”, “NodeB”, “eNodeB (eNB)”, “gNodeB (gNB)”, “gNodeB (gNB)” "Access point (access @ point)”, “transmission point (TP: Transmission @ Point)”, “reception point (RP: Reception @ Point)”, “transmission / reception point (TRP: Transmission / Reception @ Point)”, “panel”, “cell” , “Sector”, “cell group”, “carrier”, “component carrier” and the like may be used interchangeably.
  • a base station may also be referred to as a macro cell, a small cell, a femto cell, a pico cell, or the like.
  • a base station can accommodate one or more (eg, three) cells. If the base station accommodates multiple cells, the entire coverage area of the base station can be partitioned into multiple smaller areas, each smaller area being a base station subsystem (eg, a small indoor base station (RRH: Communication services can also be provided by Remote Radio Head)).
  • a base station subsystem eg, a small indoor base station (RRH: Communication services can also be provided by Remote Radio Head).
  • RRH small indoor base station
  • the term “cell” or “sector” refers to part or all of the coverage area of at least one of a base station and a base station subsystem that provides communication services in this coverage.
  • MS mobile station
  • UE user equipment
  • terminal terminal
  • a mobile station is a subscriber station, mobile unit, subscriber unit, wireless unit, remote unit, mobile device, wireless device, wireless communication device, remote device, mobile subscriber station, access terminal, mobile terminal, wireless terminal, remote terminal. , Handset, user agent, mobile client, client or some other suitable terminology.
  • At least one of the base station and the mobile station may be called a transmitting device, a receiving device, a wireless communication device, or the like.
  • at least one of the base station and the mobile station may be a device mounted on the mobile unit, the mobile unit itself, or the like.
  • the moving object may be a vehicle (for example, a car, an airplane, or the like), may be an unmanned moving object (for example, a drone, an autonomous vehicle), or may be a robot (maned or unmanned). ).
  • at least one of the base station and the mobile station includes a device that does not necessarily move during a communication operation.
  • at least one of the base station and the mobile station may be an IoT (Internet of Things) device such as a sensor.
  • IoT Internet of Things
  • the base station in the present disclosure may be replaced with a user terminal.
  • communication between a base station and a user terminal is replaced with communication between a plurality of user terminals (for example, may be called D2D (Device-to-Device), V2X (Vehicle-to-Everything), etc.).
  • D2D Device-to-Device
  • V2X Vehicle-to-Everything
  • Each aspect / embodiment of the present disclosure may be applied to the configuration.
  • the configuration may be such that the user terminal 20 has the function of the base station 10 described above.
  • words such as “up” and “down” may be read as words corresponding to communication between terminals (for example, “side”).
  • an uplink channel, a downlink channel, and the like may be replaced with a side channel.
  • a user terminal in the present disclosure may be replaced by a base station.
  • a configuration in which the base station 10 has the function of the user terminal 20 described above may be adopted.
  • the operation performed by the base station may be performed by an upper node (upper node) in some cases.
  • various operations performed for communication with a terminal include a base station, one or more network nodes other than the base station (eg, Obviously, it can be performed by MME (Mobility Management Entity), S-GW (Serving-Gateway) or the like, but not limited thereto, or a combination thereof.
  • MME Mobility Management Entity
  • S-GW Serving-Gateway
  • Each aspect / embodiment described in the present disclosure may be used alone, may be used in combination, or may be used by switching with execution.
  • the processing procedures, sequences, flowcharts, and the like of each aspect / embodiment described in the present disclosure may be interchanged in order as long as there is no inconsistency.
  • elements of various steps are presented in an exemplary order, and are not limited to the specific order presented.
  • LTE Long Term Evolution
  • LTE-A Long Term Evolution
  • LTE-B Long Term Evolution-Beyond
  • SUPER 3G IMT-Advanced
  • 4G 4th generation mobile communication
  • system 5G (5th generation mobile communication system)
  • FRA Fluture Radio Access
  • New-RAT Radio Access Technology
  • NR New Radio
  • NX New radio access
  • FX Fluture generation radio access
  • GSM Registered trademark
  • CDMA2000 Code Division Multiple Access
  • UMB Ultra Mobile Broadband
  • IEEE 802.11 Wi-Fi (registered trademark)
  • IEEE 802.16 WiMAX (registered trademark)
  • UWB Ultra-WideBand
  • Bluetooth registered trademark
  • a system using other appropriate wireless communication methods and a next-generation system extended based on these methods.
  • a plurality of systems may be combined (for example, a combination of LTE or LTE-A and 5G) and applied.
  • any reference to elements using designations such as "first,” “second,” etc., as used in this disclosure, does not generally limit the quantity or order of those elements. These designations may be used in the present disclosure as a convenient way to distinguish between two or more elements. Thus, reference to a first and second element does not mean that only two elements can be employed or that the first element must precede the second element in any way.
  • determining means judging, calculating, computing, processing, deriving, investigating, searching (upping, searching, inquiry) ( For example, a search in a table, database, or another data structure), ascertaining, etc., may be regarded as "deciding".
  • determining includes receiving (eg, receiving information), transmitting (eg, transmitting information), input (input), output (output), and access ( accessing) (e.g., accessing data in a memory) or the like.
  • judgment (decision) is regarded as “judgment (decision)” of resolving, selecting, selecting, establishing, comparing, etc. Is also good. That is, “judgment (decision)” may be regarded as “judgment (decision)” of any operation.
  • “judgment (decision)” may be read as “assuming”, “expecting”, “considering”, or the like.
  • the “maximum transmission power” described in the present disclosure may mean the maximum value of the transmission power, may mean the nominal maximum transmission power (the nominal UE maximum transmit power), or may refer to the rated maximum transmission power (the rated UE maximum transmit power).
  • connection refers to any direct or indirect connection or coupling between two or more elements. And may include the presence of one or more intermediate elements between two elements “connected” or “coupled” to each other.
  • the coupling or connection between the elements may be physical, logical, or a combination thereof. For example, “connection” may be read as “access”.
  • the radio frequency domain, microwave It can be considered to be “connected” or “coupled” to each other using electromagnetic energy having a wavelength in the region, light (both visible and invisible) regions, and the like.
  • the term “A and B are different” may mean that “A and B are different from each other”.
  • the term may mean that “A and B are different from C”.
  • Terms such as “separate”, “coupled” and the like may be interpreted similarly to "different”.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

A user terminal that has: a control part that decides on an uplink control channel resource when the timing of HARQ (Hybrid Automatic Repeat reQuest)-ACK (ACKnowledge) transmission that uses a prescribed uplink control channel format and the timing of SR (scheduling request) transmission that uses the uplink control channel format overlap; and a transmission part that uses the uplink control channel format and the uplink control channel resource to transmit the HARQ-ACK and/or the SR. One embodiment of the present disclosure can appropriately decide on an uplink control channel resource for transmission of a plurality of uplink control information types.

Description

ユーザ端末及び無線通信方法User terminal and wireless communication method
 本開示は、次世代移動通信システムにおけるユーザ端末及び無線通信方法に関する。 The present disclosure relates to a user terminal and a wireless communication method in a next-generation mobile communication system.
 UMTS(Universal Mobile Telecommunications System)ネットワークにおいて、更なる高速データレート、低遅延などを目的としてLTE(Long Term Evolution)が仕様化された(非特許文献1)。また、LTE(3GPP(Third Generation Partnership Project) Rel.(Release)8、9)の更なる大容量、高度化などを目的として、LTE-Advanced(3GPP Rel.10-14)が仕様化された。 2. Description of the Related Art In a UMTS (Universal Mobile Telecommunications System) network, LTE (Long Term Evolution) has been specified for the purpose of higher data rate and lower delay (Non-Patent Document 1). Also, LTE-Advanced (3GPP@Rel.10-14) has been specified for the purpose of further increasing the capacity and upgrading of LTE (3GPP (Third Generation Partnership Project) @Rel. (Release) 8, 9).
 LTEの後継システム(例えば、5G(5th generation mobile communication system)、5G+(plus)、NR(New Radio)、3GPP Rel.15以降などともいう)も検討されている。 A successor system to LTE (for example, 5G (5th generation mobile communication system), 5G + (plus), NR (New Radio), 3GPP Rel. 15 or later) is also being studied.
 既存のLTEシステム(例えば、3GPP Rel.8-14)では、ユーザ端末(UE:User Equipment)は、ULデータチャネル(例えば、PUSCH:Physical Uplink Shared Channel)及びUL制御チャネル(例えば、PUCCH:Physical Uplink Control Channel)の少なくとも一方を用いて、上りリンク制御情報(UCI:Uplink Control Information)を送信する。 In existing LTE systems (eg, 3GPP@Rel.8-14), a user terminal (UE: User @ Equipment) includes a UL data channel (eg, PUSCH: Physical @ Uplink @ Shared @ Channel) and a UL control channel (eg, PUCCH: Physical @ Uplink). Using at least one of Control @ Channel, uplink control information (UCI: Uplink @ Control @ Information) is transmitted.
 将来の無線通信システム(例えば、LTE Rel.15以降、5G、5G+、NRなど)では、ユーザ端末が、上り制御チャネル(例えば、PUCCH)を用いてUCIを送信する場合、上位レイヤシグナリング及び下り制御情報(DCI)内の所定フィールドに基づいて、当該上り制御チャネル用のリソース(例えば、PUCCHリソース)を決定することが検討されている。 In a future wireless communication system (for example, LTE@Rel.15 or later, 5G, 5G +, NR, etc.), when a user terminal transmits UCI using an uplink control channel (for example, PUCCH), upper layer signaling and downlink control It has been studied to determine a resource (for example, a PUCCH resource) for the uplink control channel based on a predetermined field in the information (DCI).
 また、ユーザ端末が、UCIタイプ(UCCH-ACK(Hybrid Automatic Repeat reQuest-ACKnowledge)、SR(Scheduling Request)、CSI(Channel State Information)など)に応じてPUCCHリソースを決定することが検討されている。しかしながら、複数のUCIタイプに対して適切なPUCCHリソースが用いられなければ、システム性能が低下するおそれがある。 Also, it is being studied that the user terminal determines the PUCCH resource according to the UCI type (UCCH-ACK (Hybrid Automatic Repeat Repeat reQuest-ACKnowledge), SR (Scheduling Request), CSI (Channel State Information), etc.). However, if appropriate PUCCH resources are not used for a plurality of UCI types, system performance may be degraded.
 そこで、本開示は、複数の上り制御情報タイプの送信に対して上り制御チャネルリソースを適切に決定するユーザ端末及び無線通信方法を提供することを目的の1つとする。 Therefore, an object of the present disclosure is to provide a user terminal and a radio communication method that appropriately determine uplink control channel resources for transmission of a plurality of uplink control information types.
 本開示の一態様に係るユーザ端末は、所定の上り制御チャネルフォーマットを用いるHARQ-ACK(Hybrid Automatic Repeat reQuest-ACKnowledge)送信のタイミングと、前記上り制御チャネルフォーマットを用いるSR(Scheduling Request)送信のタイミングと、が重複する場合、上り制御チャネルリソースを決定する制御部と、前記上り制御チャネルフォーマット及び前記上り制御チャネルリソースを用いて前記HARQ-ACK及び前記SRの少なくとも1つを送信する送信部と、を有することを特徴とする。 The user terminal according to an aspect of the present disclosure is configured to transmit HARQ-ACK (Hybrid Automatic Repeat Repeat reQuest-ACKnowledge) using a predetermined uplink control channel format, and SR (Scheduling Request) transmission using the uplink control channel format. And a control unit that determines an uplink control channel resource when overlapping, a transmission unit that transmits at least one of the HARQ-ACK and the SR using the uplink control channel format and the uplink control channel resource, It is characterized by having.
 本開示の一態様によれば、複数の上り制御情報タイプの送信に対して上り制御チャネルリソースを適切に決定できる。 According to an aspect of the present disclosure, it is possible to appropriately determine uplink control channel resources for transmission of a plurality of uplink control information types.
図1は、HARQ-ACK用PUCCHリソースの一例を示す図である。FIG. 1 is a diagram illustrating an example of a PUCCH resource for HARQ-ACK. 図2は、SR用PUCCHリソースの一例を示す図である。FIG. 2 is a diagram illustrating an example of the PUCCH resource for SR. 図3は、一実施形態に係るHARQ-ACK用PUCCHリソースの一例を示す図である。FIG. 3 is a diagram illustrating an example of a PUCCH resource for HARQ-ACK according to an embodiment. 図4は、一実施形態に係るSR用PUCCHリソースの一例を示す図である。FIG. 4 is a diagram illustrating an example of the SR PUCCH resource according to the embodiment. 図5は、一実施形態に係る無線通信システムの概略構成の一例を示す図である。FIG. 5 is a diagram illustrating an example of a schematic configuration of the wireless communication system according to the embodiment. 図6は、一実施形態に係る基地局の構成の一例を示す図である。FIG. 6 is a diagram illustrating an example of a configuration of the base station according to the embodiment. 図7は、一実施形態に係るユーザ端末の構成の一例を示す図である。FIG. 7 is a diagram illustrating an example of a configuration of the user terminal according to the embodiment. 図8は、一実施形態に係る基地局及びユーザ端末のハードウェア構成の一例を示す図である。FIG. 8 is a diagram illustrating an example of a hardware configuration of the base station and the user terminal according to the embodiment.
 将来の無線通信システム(例えば、LTE Rel.15以降、5G、NRなど)では、UCIの送信に用いられる上り制御チャネル(例えば、PUCCH)用の構成(フォーマット、PUCCHフォーマット(PF)等ともいう)が検討されている。例えば、LTE Rel.15では、5種類のPF0~4をサポートすることが検討されている。なお、以下に示すPFの名称は例示にすぎず、異なる名称が用いられてもよい。 In a future wireless communication system (eg, LTE@Rel.15 or later, 5G, NR, etc.), a configuration (also referred to as a format, PUCCH format (PF), etc.) for an uplink control channel (eg, PUCCH) used for UCI transmission. Is being considered. For example, LTE @ Rel. In No. 15, it is studied to support five types of PFs 0 to 4. Note that the names of the PFs shown below are merely examples, and different names may be used.
 例えば、PF0及び1は、2ビット以下(up to 2 bits)のUCI(例えば、送達確認情報(HARQ-ACK:Hybrid Automatic Repeat reQuest-Acknowledge、ACK又はNACK等ともいう))の送信に用いられるPFである。PF0は、1又は2シンボルに割り当て可能であるため、ショートPUCCH又はシーケンスベース(sequence-based)ショートPUCCH等とも呼ばれる。一方、PF1は、4-14シンボルに割り当て可能であるため、ロングPUCCH等とも呼ばれる。PF1では、CS及びOCCの少なくとも一つを用いた時間領域のブロック拡散により、同一のPRB内で複数のユーザ端末が符号分割多重(CDM)されてもよい。 For example, PFs 0 and 1 are PFs used to transmit UCI of 2 bits or less (up to 2 bits) (for example, acknowledgment information (HARQ-ACK: Hybrid Automatic Repeat Repeat reQuest-Acknowledge, ACK or NACK, etc.)). It is. Since PF0 can be assigned to one or two symbols, it is also called a short PUCCH, a sequence-based short PUCCH, or the like. On the other hand, PF1 can be assigned to 4-14 symbols, and is therefore also called long PUCCH or the like. In PF1, a plurality of user terminals may be code division multiplexed (CDM) in the same PRB by block spreading in the time domain using at least one of CS and OCC.
 PF2-4は、2ビットを超える(more than 2 bits)UCI(例えば、チャネル状態情報(CSI:Channel State Information)(又は、CSIとHARQ-ACK及び/又はスケジューリング要求(SR)))の送信に用いられるPFである。PF2は、1又は2シンボルに割り当て可能であるため、ショートPUCCH等とも呼ばれる。一方、PF3、4は、4-14シンボルに割り当て可能であるため、ロングPUCCH等とも呼ばれる。PF4では、DFT前の(周波数領域)のブロック拡散を用いて複数のユーザ端末がCDMされてもよい。 The PF2-4 is used for transmitting UCI (for example, Channel State Information (CSI: Channel State Information) (or CSI and HARQ-ACK and / or scheduling request (SR)) more than 2 bits). This is the PF used. Since PF2 can be assigned to one or two symbols, it is also called short PUCCH or the like. On the other hand, PF3 and PF4 are also called long PUCCH or the like because they can be assigned to 4-14 symbols. In PF4, a plurality of user terminals may be subjected to CDM using block spreading before (DFT) (frequency domain).
 当該上り制御チャネルの送信に用いられるリソース(例えば、PUCCHリソース)の割り当て(allocation)は、上位レイヤシグナリング及び/又は下り制御情報(DCI)を用いて行われる。ここで、上位レイヤシグナリングは、例えば、RRC(Radio Resource Control)シグナリング、システム情報(例えば、RMSI:Remaining Minimum System Information、OSI:Other System Information、MIB:Master Information Block、SIB:System Information Blockの少なくとも一つ)、ブロードキャスト情報(PBCH:Physical Broadcast Channel)の少なくとも一つであればよい。 リ ソ ー ス Allocation of resources (for example, PUCCH resources) used for transmission of the uplink control channel is performed using higher layer signaling and / or downlink control information (DCI). Here, the upper layer signaling is, for example, at least one of RRC (Radio Resource Control) signaling, system information (for example, RMSI: Remaining Minimum System Information, OSI: Other System Information, MIB: Master Information Block, SIB: System Information Block). And broadcast information (PBCH: Physical @ Broadcast @ Channel).
 具体的には、ユーザ端末に対しては、一以上のPUCCHリソースをそれぞれ含む一以上のセット(PUCCHリソースセット)が上位レイヤシグナリングにより通知(設定(configure))される。例えば、ユーザ端末に対して、K(例えば、1≦K≦4)個のPUCCHリソースセットが無線基地局から通知されてもよい。各PUCCHリソースセットは、M(例えば、8≦M≦32)個のPUCCHリソースを含んでもよい。 Specifically, one or more sets (PUCCH resource sets) each containing one or more PUCCH resources are notified (configured) to the user terminal by higher layer signaling. For example, K (for example, 1 ≦ K ≦ 4) PUCCH resource sets may be notified from the radio base station to the user terminal. Each PUCCH resource set may include M (for example, 8 ≦ M ≦ 32) PUCCH resources.
 ユーザ端末は、UCIのペイロードサイズ(UCIペイロードサイズ、UCI情報ビット数)に基づいて、設定されたK個のPUCCHリソースセットから単一のPUCCHリソースセット(第1PUCCHリソースセット)を決定してもよい。UCIペイロードサイズは、巡回冗長検査(CRC:Cyclic Redundancy Code)ビットを含まないUCIのビット数であってもよい。 The user terminal may determine a single PUCCH resource set (first PUCCH resource set) from the set K PUCCH resource sets based on the UCI payload size (UCI payload size, number of UCI information bits). . The UCI payload size may be the number of UCI bits that do not include Cyclic Redundancy Code (CRC) bits.
 ユーザ端末は、決定されたPUCCHリソースセットに含まれるM個のPUCCHリソースから、DCI及び黙示的な(implicit)情報(黙示的指示(implicit indication)情報又は黙示的インデックス等ともいう)の少なくとも一つに基づいて、UCIの送信に用いるPUCCHリソースを決定してもよい。例えば、黙示的指示情報は、当該DCIを運ぶPDCCH受信の先頭CCEインデックスであってもよい。 The user terminal determines at least one of DCI and implicit information (also referred to as implicit indication information or implicit index) from the M PUCCH resources included in the determined PUCCH resource set. May be used to determine a PUCCH resource used for UCI transmission. For example, the implicit indication information may be a head CCE index of PDCCH reception carrying the DCI.
 ユーザ端末に設定される各PUCCHリソースは、以下の少なくとも一つのパラメータ(フィールド又は情報等ともいう)の値を含んでもよい。なお、各パラメータには、PUCCHフォーマット毎にとり得る値の範囲が定められてもよい。
・PUCCHの割り当てが開始されるシンボル(開始シンボル)
・スロット内でPUCCHに割り当てられるシンボル数(PUCCHに割り当てられる期間)
・PUCCHの割り当てが開始されるリソースブロック(物理リソースブロック(PRB:Physical Resource Block))のインデックス
・PUCCHに割り当てられるPRBの数
・PUCCHに周波数ホッピングを有効化するか否か
・周波数ホッピングが有効な場合の第2ホップの周波数リソース、初期巡回シフト(CS:Cyclic Shift)のインデックス
・時間領域(time-domain)における直交拡散符号(例えば、OCC:Orthogonal Cover Code)のインデックス、離散フーリエ変換(DFT)前のブロック拡散に用いられるOCCの長さ(OCC長、拡散率等ともいう)
・DFT後のブロック拡散(block-wise spreading)に用いられるOCCのインデックス
Each PUCCH resource set in the user terminal may include the value of at least one of the following parameters (also referred to as fields or information). Note that a range of possible values for each PUCCH format may be defined for each parameter.
Symbol for which PUCCH allocation is started (start symbol)
-Number of symbols allocated to PUCCH in a slot (period allocated to PUCCH)
-Index of resource block (physical resource block (PRB)) at which PUCCH allocation is started-Number of PRBs allocated to PUCCH-Whether to enable frequency hopping for PUCCH-Frequency hopping is enabled Frequency resources of the second hop in case, index of initial cyclic shift (CS), index of orthogonal spreading code (for example, OCC: Orthogonal Cover Code) in time-domain, discrete Fourier transform (DFT) OCC length used for previous block spreading (also called OCC length, spreading factor, etc.)
・ OCC index used for block-wise spreading after DFT
 ユーザ端末は、図1に示すように、HARQ-ACK送信のためのPUCCHリソースとして、PUCCHリソースセット#0~#3を設定されてもよい。ユーザ端末は、UCIペイロードサイズに基づいていずれかのPUCCHリソースセットを選択する。 As shown in FIG. 1, the user terminal may be configured with PUCCH resource sets # 0 to # 3 as PUCCH resources for HARQ-ACK transmission. The user terminal selects any PUCCH resource set based on the UCI payload size.
 例えば、UCIペイロードサイズが1又は2ビットである場合、PUCCHリソースセット#0が選択される。また、UCIペイロードサイズが3ビット以上N-1ビット以下である場合、PUCCHリソースセット#1が選択される。また、UCIペイロードサイズがNビット以上N-1ビット以下である場合、PUCCHリソースセット#2が選択される。同様に、UCIペイロードサイズがNビット以上N-1ビット以下である場合、PUCCHリソースセット#3が選択される。 For example, when the UCI payload size is 1 or 2 bits, PUCCH resource set # 0 is selected. When the UCI payload size is 3 bits or more and N 2 -1 bits or less, PUCCH resource set # 1 is selected. If the UCI payload size is equal to or greater than N 2 bits and equal to or less than N 3 -1 bits, PUCCH resource set # 2 is selected. Similarly, UCI payload size is less than or equal N 3 -1 bits 3 bits or more N, PUCCH resource set # 3 is selected.
 このように、PUCCHリソースセット#i(i=0,…,K-1)が選択されるUCIペイロードサイズの範囲は、Nビット以上Ni+1-1ビット以下(すなわち、{N,…,Ni+1-1}ビット)と示される。 Thus, PUCCH resource set #i (i = 0, ..., K-1) in the range of UCI payload size to be selected, N i bits or more N i + 1 -1 bit or less (i.e., {N i, ..., N i + 1 −1} bits).
 ここで、PUCCHリソースセット#0、#1用のUCIペイロードサイズの開始位置(開始ビット数)N、Nは、それぞれ、1、3であってもよい。これにより、2ビット以下のUCIを送信する場合にPUCCHリソースセット#0が選択されるので、PUCCHリソースセット#0は、PF0及びPF1の少なくとも一つ用のPUCCHリソース#0~#M-1を含んでもよい。一方、2ビットを超えるUCIを送信する場合にはPUCCHリソースセット#1~#3のいずれかが選択されるので、PUCCHリソースセット#1~#3は、それぞれ、PF2、PF3及びPF4の少なくとも一つ用のPUCCHリソース#0~#M-1を含んでもよい。 Here, the start positions (number of start bits) N 0 and N 1 of the UCI payload size for PUCCH resource sets # 0 and # 1 may be 1, 3 respectively. By this means, when transmitting UCI of 2 bits or less, PUCCH resource set # 0 is selected, so PUCCH resource set # 0 includes PUCCH resources # 0 to # M-1 for at least one of PF0 and PF1. May be included. On the other hand, when transmitting UCI exceeding 2 bits, one of PUCCH resource sets # 1 to # 3 is selected, so that PUCCH resource sets # 1 to # 3 each include at least one of PF2, PF3 and PF4. PUCCH resources # 0 to # M-1.
 i=2,…,K-1である場合、PUCCHリソースセット#i用のUCIのペイロードサイズの開始位置(N)を示す情報(開始位置情報)は、上位レイヤシグナリングを用いてユーザ端末に通知(設定)されてもよい。当該開始位置(N)は、ユーザ端末固有であってもよい。例えば、当該開始位置(N)は、4ビット以上256以下の範囲の値(例えば、4の倍数)に設定されてもよい。例えば、PUCCHリソースセット#2、#3用のUCIペイロードサイズの開始位置(N、N)を示す情報が、それぞれ、上位レイヤシグナリング(例えば、ユーザ固有のRRCシグナリング)がユーザ端末に通知される。 When i = 2,..., K−1, information (start position information) indicating the start position (N i ) of the payload size of the UCI for PUCCH resource set #i is transmitted to the user terminal using upper layer signaling. It may be notified (set). The start position ( Ni ) may be unique to the user terminal. For example, the start position (N i ) may be set to a value in a range from 4 bits to 256 (for example, a multiple of 4). For example, information indicating the start position (N 2 , N 3 ) of the UCI payload size for PUCCH resource sets # 2 and # 3 is notified to the user terminal, respectively, by upper layer signaling (for example, user-specific RRC signaling). You.
 各PUCCHリソースセットのUCIの最大のペイロードサイズは、N-1で与えられる。Nは、上位レイヤシグナリング及び/又はDCIにより明示的にユーザ端末に通知(設定)されてもよいし、黙示的に導出されてもよい。例えば、図1では、N0=1、N1=3は仕様で規定されていて、N2とN3が上位レイヤシグナリングで通知されてもよい。また、N4は、仕様で規定されていてもよい(例えば、N4=1000)。 The maximum payload size of UCI for each PUCCH resource set is given by N K -1. N K is explicitly notified to the user terminal by higher layer signaling and / or DCI (setting) may be, or may be implicitly derived. For example, in FIG. 1, N 0 = 1 and N 1 = 3 are defined in the specification, and N 2 and N 3 may be notified by higher layer signaling. Further, N 4 may be defined in the specification (for example, N 4 = 1000).
 UEは、上位レイヤシグナリングによって、PUCCH送信に必要なパラメータ(PUCCH設定情報、PUCCH-Config)を設定されてもよい。PUCCH設定情報は、PUCCHリソースセット情報(例えば、PUCCH-ResourceSet)のリストを含んでもよい。PUCCHリソースセット情報は、PUCCHリソースID(インデックス、例えば、PUCCH-ResourceId)のリスト(例えば、resourceList)を含んでもよい。 The UE may be set with parameters (PUCCH configuration information, PUCCH-Config) necessary for PUCCH transmission by higher layer signaling. The PUCCH setting information may include a list of PUCCH resource set information (for example, PUCCH-ResourceSet). The PUCCH resource set information may include a list (for example, resourceList) of PUCCH resource IDs (index, for example, PUCCH-ResourceId).
 UEが個別PUCCHリソース設定情報を持つ場合(RRCセットアップ後)、UEは、UCI情報ビットの数に従ってPUCCHリソースセットID(インデックス、例えば、PUCCH-ResourceSetId)を決定する。 If the UE has dedicated PUCCH resource configuration information (after RRC setup), the UE determines a PUCCH resource set ID (index, for example, PUCCH-ResourceSetId) according to the number of UCI information bits.
 UEが、UCI情報ビット数に基づいて図1のPUCCHリソースセット#1、#2、#3のようなPUCCHリソースセットを決定した場合について説明する。決定されたPUCCHリソースセット内のPUCCHリソースの数が8以下である場合、UEは、DCIフォーマット1_0又は1_1内のPUCCHリソース指示(PRI(PUCCH Resource Indicator)、ARI(ACK/NACK Resource Indicator)とも呼ばれる)フィールドに従ってPUCCHリソースIDを決定する。 A case will be described where the UE determines a PUCCH resource set such as PUCCH resource sets # 1, # 2, and # 3 in FIG. 1 based on the number of UCI information bits. If the number of PUCCH resources in the determined PUCCH resource set is 8 or less, the UE is also called a PUCCH resource indication (PRI (PUCCH @ Resource @ Indicator), ARI (ACK / NACK @ Resource @ Indicator) in DCI format 1_0 or 1_1. ) Determine the PUCCH resource ID according to the field.
 UEが、UCI情報ビット数に基づいて図1のPUCCHリソースセット#0のように、最初のPUCCHリソースセットを決定した場合について説明する。決定されたPUCCHリソースセット内のPUCCHリソースの数が8よりも多い場合、UEは、DCIフォーマット1_0又は1_1内のPUCCHリソース指示フィールドΔPRIと、当該DCIを運ぶPDCCH受信のCORESET p内のCCEの数NCCE,pと、当該PDCCH受信の先頭CCEのインデックスnCCE,pと、PUCCHリソースセット内のPUCCHリソースの数RPUCCHと、に基づく次式を用いて、PUCCHリソースIDであるrPUCCHを決定する。 A case will be described where the UE determines the first PUCCH resource set, such as PUCCH resource set # 0 in FIG. 1, based on the number of UCI information bits. If the determined number of PUCCH resources PUCCH resource set is greater than 8, UE includes a PUCCH resource indication field delta PRI in DCI format 1_0 or 1_1, the CCE in CORESET p of PDCCH receiving carrying the DCI Using the following equation based on the number N CCE, p , the index n CCE, p of the first CCE of the PDCCH reception , and the number R PUCCH of PUCCH resources in the PUCCH resource set, the PUCCH resource ID r PUCCH is decide.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 また、UEは、PUCCH設定情報によって、SRリソース設定情報のリストを設定されてもよい。各SRリソース設定情報(SchedulingRequestResourceConfig)は、SRリソースID(SchedulingRequestResourceId)、SR ID(SchedulingRequestId)と、PUCCHリソースID(PUCCH-ResourceId)と、タイミング情報(周期及びオフセット)と、を含んでもよい。 UE In addition, the UE may be configured with a list of SR resource configuration information according to the PUCCH configuration information. Each SR resource configuration information (SchedulingRequestResourceConfig) may include an SR resource ID (SchedulingRequestResourceId), an SR @ ID (SchedulingRequestId), a PUCCH resource ID (PUCCH-ResourceId), and timing information (cycle and offset).
 図2に示すように、UEは、SR送信のためのPUCCHリソースとして、SRリソース設定情報のリストによって、SR IDとPUCCHリソースIDの関連付けを設定されてもよい。また、UEは、上位レイヤシグナリングによって、SR IDを設定されてもよい。UEは、SR IDに対応するSRリソース設定情報を用いてもよい。 UEAs shown in FIG. 2, the UE may set the association between the SR ID and the PUCCH resource ID as a PUCCH resource for SR transmission by a list of SR resource setting information. Also, the UE may be configured with the SR @ ID by higher layer signaling. The UE may use the SR resource configuration information corresponding to the SR @ ID.
 また、PUCCHリソースセット毎のPUCCHリソースの最大数、PUCCHリソースセット#0以外のPUCCHリソースセット毎のPUCCHリソースの最大数、PUCCHリソースの最大数、PUCCHリソースセットの最大数、が検討されている。例えば、PUCCHリソースセット毎のPUCCHリソースの最大数は32、PUCCHリソースセット#0以外のPUCCHリソースセット毎のPUCCHリソースの最大数は8、PUCCHリソースの最大数は128、PUCCHリソースセットの最大数は4とすることが検討されている。 Also, the maximum number of PUCCH resources for each PUCCH resource set, the maximum number of PUCCH resources for each PUCCH resource set other than PUCCH resource set # 0, the maximum number of PUCCH resources, and the maximum number of PUCCH resource sets are being studied. For example, the maximum number of PUCCH resources for each PUCCH resource set is 32, the maximum number of PUCCH resources for each PUCCH resource set other than PUCCH resource set # 0 is 8, the maximum number of PUCCH resources is 128, and the maximum number of PUCCH resource sets is It is under study to set it to 4.
 また、PUCCHリソースIDの範囲が検討されている。PUCCHリソースIDの範囲が0から55までとすることが検討されている。 範 囲 Also, the range of PUCCH resource ID is being studied. It is being studied that the range of the PUCCH resource ID is from 0 to 55.
 図1の例では、PUCCHリソースセット#0内のPUCCHリソース数が32、それ以外の各PUCCHリソースセット内のPUCCHリソース数が8である。PUCCHリソースセット#0~3にわたって、PUCCHリソースID0~55が割り当てられる。 In the example of FIG. 1, the number of PUCCH resources in PUCCH resource set # 0 is 32, and the number of PUCCH resources in each other PUCCH resource set is 8. PUCCH resource IDs 0 to 55 are allocated to PUCCH resource sets # 0 to # 3.
 図1及び図2の例では、SR用のPUCCHリソースIDは、HARQ-ACK用のPUCCHリソースIDの一部と重複する。すなわち、PUCCHリソースIDは、HARQ-ACK用と、SR又はCSI用とで共有される場合がある。 In the examples of FIGS. 1 and 2, the PUCCH resource ID for SR overlaps a part of the PUCCH resource ID for HARQ-ACK. That is, the PUCCH resource ID may be shared for HARQ-ACK and for SR or CSI.
 UEが、PF1を用いて、HARQ-ACK及びSRを送信する場合(PF1を用いるHARQ-ACK送信タイミングと、PF1を用いるSR送信タイミングと、が一致する場合)の、PUCCH送信方法について説明する。SRがポジティブ(肯定)である場合、UEは、SR用PUCCHリソース上でHARQ-ACKを送信してもよい。SRがネガティブ(否定)である場合、UEは、HARQ-ACK用PUCCHリソース上でHARQ-ACKを送信してもよい。 A description will be given of a PUCCH transmission method when the UE transmits HARQ-ACK and SR using PF1 (when the HARQ-ACK transmission timing using PF1 and the SR transmission timing using PF1 match). If the SR is positive, the UE may transmit a HARQ-ACK on the SR PUCCH resource. If the SR is negative (negative), the UE may transmit HARQ-ACK on the PUCCH resource for HARQ-ACK.
 SR用PUCCHリソースとHARQ-ACK用PUCCHリソースが異なり、且つこのPUCCH送信方法に従ってPUCCHが送信された場合、基地局は、受信したPUCCHリソースに基づいてSRの値(ポジティブSR又はネガティブSR)を判定できる。しかしながら、SR用PUCCHリソースとHARQ-ACK用PUCCHリソースが同じであり、且つこのPUCCH送信方法に従ってPUCCHが送信された場合、PUCCHリソースがSRの値によって変化しないため、基地局は、SRの値を判定できない。SRが正しく通知されなければ、通信スループットの低下など、システム性能の低下を招くおそれがある。 When the PUCCH resource for SR and the PUCCH resource for HARQ-ACK are different and the PUCCH is transmitted according to this PUCCH transmission method, the base station determines the value of SR (positive SR or negative SR) based on the received PUCCH resource. it can. However, when the PUCCH resource for SR and the PUCCH resource for HARQ-ACK are the same and the PUCCH is transmitted according to this PUCCH transmission method, the PUCCH resource does not change with the value of SR. Cannot be determined. If the SR is not correctly notified, there is a possibility that the system performance will decrease, such as a decrease in communication throughput.
 そこで、本発明者らは、HARQ-ACK及びSRの送信のためのPUCCHリソースを適切に決定する方法について着想した。 Therefore, the present inventors have conceived a method of appropriately determining a PUCCH resource for transmission of HARQ-ACK and SR.
 なお、PF0、2、3、4を用いる場合、このような問題は発生しない。例えば、UEは、PF2又は3又は4を用いて、HARQ-ACK及びSR、又はHARQ-ACK及びCSIを送信する場合、UCIペイロードサイズに基づいてPUCCHリソースセットを決定し、DCIに基づいてPUCCHリソースを決定する。UEは、PF0を用いてHARQ-ACK及びSRを送信する場合、HARQ-ACK及びSRに関連付けられた値に基づく巡回シフトによって、1つのPUCCHリソース上にHARQ-ACK及びSRを多重する。 問題 When PF0, 2, 3, 4 are used, such a problem does not occur. For example, when transmitting the HARQ-ACK and SR or the HARQ-ACK and CSI using the PF2 or 3 or 4, the UE determines the PUCCH resource set based on the UCI payload size, and determines the PUCCH resource based on the DCI. To determine. When the UE transmits HARQ-ACK and SR using PF0, the UE multiplexes HARQ-ACK and SR on one PUCCH resource by a cyclic shift based on values associated with HARQ-ACK and SR.
 以下、本開示に係る実施形態について、図面を参照して詳細に説明する。各実施形態に係る無線通信方法は、それぞれ単独で適用されてもよいし、組み合わせて適用されてもよい。 Hereinafter, embodiments according to the present disclosure will be described in detail with reference to the drawings. The wireless communication method according to each embodiment may be applied alone or in combination.
(無線通信方法)
(態様1)
 UEは、同じPUCCHリソースIDを有する、1より多いPUCCHリソースが重複しないと期待してもよい。
(Wireless communication method)
(Aspect 1)
The UE may expect that more than one PUCCH resource with the same PUCCH resource ID will not overlap.
 UEは、PF1を用いるPUCCHに対し、同じPUCCHリソースIDを有する、1より多いPUCCHリソースが重複しないと期待してもよい。UEは、PF1を用いてHARQ-ACK及びSRを送信する場合、HARQ-ACK用PUCCHリソースと、SR用PUCCHリソースと、が重複しないと期待してもよい。 The UE may expect that for a PUCCH using PF1, more than one PUCCH resource with the same PUCCH resource ID will not overlap. When transmitting the HARQ-ACK and the SR using the PF1, the UE may expect that the PUCCH resource for HARQ-ACK and the PUCCH resource for SR do not overlap.
 この態様1によれば、所定のPUCCHフォーマットを用いるHARQ-ACK送信のタイミングと、所定のPUCCHフォーマットを用いるSR送信のタイミングと、が重複する場合であっても、PUCCHリソースの重複を避けることによって、基地局は、UCIを適切に認識できる。また、UEの実装が容易になり、UEの負荷を抑えることができる。 According to this aspect 1, even when the timing of HARQ-ACK transmission using the predetermined PUCCH format and the timing of SR transmission using the predetermined PUCCH format overlap, by avoiding duplication of PUCCH resources, , The base station can properly recognize the UCI. Further, the UE can be easily mounted, and the load on the UE can be reduced.
(態様2)
 UEは、上位レイヤパラメータによって設定されるSR用のPUCCHリソースIDが、上位レイヤパラメータによって設定されるHARQ-ACK用のPUCCHリソースIDと同じでないと想定してもよい。
(Aspect 2)
The UE may assume that the PUCCH resource ID for SR set by higher layer parameters is not the same as the PUCCH resource ID for HARQ-ACK set by higher layer parameters.
 HARQ-ACK用PUCCHリソースIDの数が、PUCCHリソースIDの総数より少なくてもよい。HARQ-ACK用PUCCHリソースIDの範囲が、PUCCHリソースIDの範囲の一部であってもよい。SR用PUCCHリソースIDは、PUCCHリソースIDの範囲のうちHARQ-ACK用PUCCHリソースIDの範囲の外であってもよい。この場合、HARQ-ACK用PUCCHリソースIDと、SR用PUCCHリソースIDと、が重複しない。 数 The number of PUCCH resource IDs for HARQ-ACK may be smaller than the total number of PUCCH resource IDs. The range of the PUCCH resource ID for HARQ-ACK may be a part of the range of the PUCCH resource ID. The PUCCH resource ID for SR may be outside the range of the PUCCH resource ID for HARQ-ACK in the range of the PUCCH resource ID. In this case, the PUCCH resource ID for HARQ-ACK and the PUCCH resource ID for SR do not overlap.
 PUCCHリソースIDの総数は56であってもよい。この場合、PUCCHリソースIDの総数を増やすことなく、HARQ-ACK用PUCCHリソースIDと、SR用PUCCHリソースIDと、の重複を避けることができる。 総 数 The total number of PUCCH resource IDs may be 56. In this case, it is possible to avoid duplication of the PUCCH resource ID for HARQ-ACK and the PUCCH resource ID for SR without increasing the total number of PUCCH resource IDs.
 例えば、PUCCHリソースIDの範囲が0~55である場合、図3に示すように、HARQ-ACK用PUCCHリソースIDの範囲が0~47であってもよい。この場合、図4に示すように、SR用PUCCHリソースIDが、HARQ-ACK用PUCCHリソースIDの範囲外の48~55の範囲から設定されてもよい。 {For example, when the range of the PUCCH resource ID is 0 to 55, the range of the HARQ-ACK PUCCH resource ID may be 0 to 47 as shown in FIG. In this case, as shown in FIG. 4, the PUCCH resource ID for SR may be set from a range of 48 to 55 outside the range of the PUCCH resource ID for HARQ-ACK.
 PUCCHリソースIDの総数が56より多くてもよい。この場合、HARQ-ACK用PUCCHリソースIDの数を増やすことなく、HARQ-ACK用PUCCHリソースIDと、SR用PUCCHリソースIDと、の重複を避けることができる。 総 数 The total number of PUCCH resource IDs may be more than 56. In this case, it is possible to avoid duplication of the PUCCH resource ID for HARQ-ACK and the PUCCH resource ID for SR without increasing the number of PUCCH resource IDs for HARQ-ACK.
 この態様1によれば、所定のPUCCHフォーマットを用いるHARQ-ACK送信のタイミングと、所定のPUCCHフォーマットを用いるSR送信のタイミングと、が重複する場合であっても、PUCCHリソースの重複を避けることによって、基地局は、UCIを適切に認識できる。また、UEの実装が容易になり、UEの負荷を抑えることができる。 According to this aspect 1, even when the timing of HARQ-ACK transmission using the predetermined PUCCH format and the timing of SR transmission using the predetermined PUCCH format overlap, by avoiding duplication of PUCCH resources, , The base station can properly recognize the UCI. Further, the UE can be easily mounted, and the load on the UE can be reduced.
(態様3)
 PF1を用いるPUCCH送信において、HARQ-ACK用PUCCHリソースが同じPUCCHリソースIDを有するSR用PUCCHリソースと衝突してもよい。
(Aspect 3)
In the PUCCH transmission using PF1, the HARQ-ACK PUCCH resource may collide with the SR PUCCH resource having the same PUCCH resource ID.
 UEは、PUCCH送信のための送信用PUCCHリソースとして、HARQ-ACK用PUCCHリソースを用いてもよいし、SR用PUCCHリソースを用いてもよいし、HARQ-ACK用PUCCHリソース及びSR用PUCCHリソースのいずれとも異なる特定PUCCHリソースを用いてもよい。UEは、上位レイヤシグナリングによって特定PUCCHリソースを設定(指示)されてもよい。 The UE may use the HARQ-ACK PUCCH resource, may use the SR PUCCH resource as the transmission PUCCH resource for the PUCCH transmission, or may use the HARQ-ACK PUCCH resource and the SR PUCCH resource. Different specific PUCCH resources may be used. The UE may be set (instructed) for a specific PUCCH resource by higher layer signaling.
 この場合、UEは、次の態様3-1~3-3の1つに従ってもよい。 In this case, the UE may follow one of the following aspects 3-1 to 3-3.
<態様3-1>
 UEは、SRをドロップし(SRを送信せず)、送信用PUCCHリソースを用いてHARQ-ACKを送信する。
<Aspect 3-1>
The UE drops the SR (does not transmit the SR) and transmits HARQ-ACK using the transmission PUCCH resource.
<態様3-2>
 UEは、HARQ-ACKをドロップし(HARQ-ACKを送信せず)、送信用PUCCHリソースを用いてSRを送信する。
<Aspect 3-2>
The UE drops the HARQ-ACK (does not transmit the HARQ-ACK) and transmits the SR using the transmission PUCCH resource.
<態様3-3>
 UEは、HARQ-ACK及びSRを多重して送信してもよい。
<Aspect 3-3>
The UE may multiplex and transmit HARQ-ACK and SR.
 UEは、次の3-3-1~3-3-3の1つに従って、HARQ-ACK及びSRを送信してもよい。 The UE may transmit HARQ-ACK and SR according to one of the following 3-3-1 to 3-3-3.
《態様3-3-1》
 UEは、2ビットHARQ-ACKを送信する場合、空間バンドリング(spatial bundling)を設定されたか否かに関わらず、当該2ビットHARQ-ACKのバンドリングを適用することによって1ビットHARQ-ACKを生成し、当該1ビットHARQ-ACK及びSRを送信してもよい。例えば、UEは、2つのトランスポートブロック(TB)の受信に対する2ビットHARQ-ACKの演算(例えば、AND演算)によって、1ビットHARQ-ACKを生成してもよい。
<< Aspect 3-3-1 >>
When transmitting 2-bit HARQ-ACK, the UE applies 1-bit HARQ-ACK by applying the 2-bit HARQ-ACK bundling, regardless of whether spatial bundling is set. It may generate and transmit the 1-bit HARQ-ACK and SR. For example, the UE may generate a 1-bit HARQ-ACK by performing a 2-bit HARQ-ACK operation (eg, an AND operation) on reception of two transport blocks (TBs).
《態様3-3-2》
 UEは、空間バンドリングを設定され、且つ2ビットHARQ-ACKを送信する場合、当該2ビットHARQ-ACKのバンドリングを適用することによって1ビットHARQ-ACKを生成し、当該1ビットHARQ-ACK及びSRを送信してもよい。
<< Aspect 3-3-2 >>
When spatial bundling is set and the UE transmits 2-bit HARQ-ACK, the UE generates 1-bit HARQ-ACK by applying the bundling of the 2-bit HARQ-ACK, and generates the 1-bit HARQ-ACK. And SR may be transmitted.
《態様3-3-3》
 UEは、SRを暗示的に通知してもよい。UEは、ポジティブSR及びネガティブSRに対して所定パラメータ(リソース)の異なる値を設定されてもよい。UEは、送信用PUCCHリソースと、SR値に対応するパラメータ値と、を用いて、HARQ-ACKを送信してもよい。
<< Aspect 3-3-3 >>
The UE may notify the SR implicitly. The UE may be set to different values of a predetermined parameter (resource) for the positive SR and the negative SR. The UE may transmit HARQ-ACK using the transmission PUCCH resource and the parameter value corresponding to the SR value.
 パラメータは、送信電力であってもよいし、PF1用のDMRS系列であってもよい。基地局は、受信電力が所定の閾値を超えるか否かによって、通知されたSRを判定してもよいし、受信した系列によって、通知されたSRを判定してもよい。電力は、DMRSのREの電力と、別の上り信号(例えば、UCI)のリソースエレメント(RE)の電力と、の比(オフセット)によって表されてもよい。DMRS系列は、ベース系列及びサイクリックシフト(例えば、mCS)の少なくとも1つによって特定されてもよい。DMRS系列の代わりに、PF1の系列変調用の系列(UCIに乗算される系列)が用いられてもよい。 The parameter may be a transmission power or a DMRS sequence for PF1. The base station may determine the notified SR based on whether the received power exceeds a predetermined threshold, or may determine the notified SR based on the received sequence. The power may be represented by a ratio (offset) between the power of the RE of the DMRS and the power of the resource element (RE) of another uplink signal (eg, UCI). The DMRS sequence may be specified by at least one of a base sequence and a cyclic shift (eg, m CS ). Instead of the DMRS sequence, a sequence for PF1 sequence modulation (a sequence multiplied by UCI) may be used.
 この態様3によれば、HARQ-ACK用PUCCHリソースとSR用PUCCHリソースの重複を許すことによって、スケジューリングの柔軟性を高めることができる。また、所定のPUCCHフォーマットを用いるHARQ-ACK送信のタイミングと、所定のPUCCHフォーマットを用いるSR送信のタイミングと、が重複する場合であっても、基地局は、UCIを適切に認識できる。 According to the third aspect, the scheduling flexibility can be improved by allowing the HARQ-ACK PUCCH resource and the SR PUCCH resource to overlap. Further, even when the timing of HARQ-ACK transmission using the predetermined PUCCH format and the timing of SR transmission using the predetermined PUCCH format overlap, the base station can appropriately recognize the UCI.
(無線通信システム)
 以下、本開示の一実施形態に係る無線通信システムの構成について説明する。この無線通信システムでは、本開示の上記各実施形態に係る無線通信方法のいずれか又はこれらの組み合わせを用いて通信が行われる。
(Wireless communication system)
Hereinafter, the configuration of the wireless communication system according to an embodiment of the present disclosure will be described. In this wireless communication system, communication is performed using any of the wireless communication methods according to the above embodiments of the present disclosure or a combination thereof.
 図5は、一実施形態に係る無線通信システムの概略構成の一例を示す図である。無線通信システム1は、3GPP(Third Generation Partnership Project)によって仕様化されるLTE(Long Term Evolution)、5G NR(5th generation mobile communication system New Radio)などを用いて通信を実現するシステムであってもよい。 FIG. 5 is a diagram illustrating an example of a schematic configuration of a wireless communication system according to an embodiment. The wireless communication system 1 may be a system that realizes communication using LTE (Long Term Evolution) and 5G NR (5th generation mobile communication system New Radio) specified by 3GPP (Third Generation Partnership Project). .
 また、無線通信システム1は、複数のRAT(Radio Access Technology)間のデュアルコネクティビティ(マルチRATデュアルコネクティビティ(MR-DC:Multi-RAT Dual Connectivity))をサポートしてもよい。MR-DCは、LTE(E-UTRA:Evolved Universal Terrestrial Radio Access)とNRとのデュアルコネクティビィティ(EN-DC:E-UTRA-NR Dual Connectivity)、NRとLTEとのデュアルコネクティビィティ(NE-DC:NR-E-UTRA Dual Connectivity)などを含んでもよい。 Also, the wireless communication system 1 may support dual connectivity between a plurality of RATs (Radio Access Technology) (multi-RAT dual connectivity (MR-DC: Multi-RAT Dual Connectivity)). MR-DC is based on dual connectivity (EN-DC: E-UTRA-NR @ Dual Connectivity) between LTE (Evolved Universal Terrestrial Radio Access) and NR, and dual connectivity (NE-DC with E-UTRA-NR Dual Connectivity). -DC: NR-E-UTRA (Dual Connectivity) may be included.
 EN-DCでは、LTE(E-UTRA)の基地局(eNB)がマスターノード(MN:Master Node)であり、NRの基地局(gNB)がセカンダリーノード(SN:Secondary Node)である。NE-DCでは、NRの基地局(gNB)がMNであり、LTE(E-UTRA)の基地局(eNB)がSNである。 In @ EN-DC, the base station (eNB) of LTE (E-UTRA) is a master node (MN: Master @ Node), and the base station (gNB) of NR is a secondary node (SN: Secondary @ Node). In NE-DC, the NR base station (gNB) is the MN, and the LTE (E-UTRA) base station (eNB) is the SN.
 無線通信システム1は、同一のRAT内の複数の基地局間のデュアルコネクティビティ(例えば、MN及びSNの双方がNRの基地局(gNB)であるデュアルコネクティビティ(NN-DC:NR-NR Dual Connectivity))をサポートしてもよい。 The wireless communication system 1 has dual connectivity between a plurality of base stations in the same RAT (for example, dual connectivity in which both MN and SN are NR base stations (gNB) (NN-DC: NR-NR Dual Connectivity)). ) May be supported.
 無線通信システム1は、比較的カバレッジの広いマクロセルC1を形成する基地局11と、マクロセルC1内に配置され、マクロセルC1よりも狭いスモールセルC2を形成する基地局12(12a-12c)と、を備えてもよい。ユーザ端末20は、少なくとも1つのセル内に位置してもよい。各セル及びユーザ端末20の配置、数などは、図に示す態様に限定されない。以下、基地局11及び12を区別しない場合は、基地局10と総称する。 The wireless communication system 1 includes a base station 11 forming a macro cell C1 having relatively wide coverage, and a base station 12 (12a to 12c) arranged in the macro cell C1 and forming a small cell C2 smaller than the macro cell C1. May be provided. User terminal 20 may be located in at least one cell. The arrangement, number, and the like of each cell and the user terminals 20 are not limited to the modes shown in the figure. Hereinafter, when the base stations 11 and 12 are not distinguished, they are collectively referred to as a base station 10.
 ユーザ端末20は、複数の基地局10のうち、少なくとも1つに接続してもよい。ユーザ端末20は、複数のコンポーネントキャリア(CC:Component Carrier)を用いたキャリアアグリゲーション(Carrier Aggregation)及びデュアルコネクティビティ(DC)の少なくとも一方を利用してもよい。 The user terminal 20 may be connected to at least one of the plurality of base stations 10. The user terminal 20 may use at least one of carrier aggregation (Carrier Aggregation) using a plurality of component carriers (CC: Component Carrier) and dual connectivity (DC).
 各CCは、第1の周波数帯(FR1:Frequency Range 1)及び第2の周波数帯(FR2:Frequency Range 2)の少なくとも1つに含まれてもよい。マクロセルC1はFR1に含まれてもよいし、スモールセルC2はFR2に含まれてもよい。例えば、FR1は、6GHz以下の周波数帯(サブ6GHz(sub-6GHz))であってもよいし、FR2は、24GHzよりも高い周波数帯(above-24GHz)であってもよい。なお、FR1及びFR2の周波数帯、定義などはこれらに限られず、例えばFR1がFR2よりも高い周波数帯に該当してもよい。 Each CC may be included in at least one of the first frequency band (FR1: FrequencyFRange 1) and the second frequency band (FR2: Frequency Range 2). The macro cell C1 may be included in FR1, and the small cell C2 may be included in FR2. For example, FR1 may be a frequency band of 6 GHz or less (sub-6 GHz (sub-6 GHz)), and FR2 may be a frequency band higher than 24 GHz (above-24 GHz). The frequency bands and definitions of FR1 and FR2 are not limited to these, and for example, FR1 may correspond to a frequency band higher than FR2.
 また、ユーザ端末20は、各CCにおいて、時分割複信(TDD:Time Division Duplex)及び周波数分割複信(FDD:Frequency Division Duplex)の少なくとも1つを用いて通信を行ってもよい。 In addition, the user terminal 20 may perform communication using at least one of time division duplex (TDD: Time Division Duplex) and frequency division duplex (FDD: Frequency Division Duplex) in each CC.
 複数の基地局10は、有線(例えば、CPRI(Common Public Radio Interface)に準拠した光ファイバ、X2インターフェースなど)又は無線(例えば、NR通信)によって接続されてもよい。例えば、基地局11及び12間においてNR通信がバックホールとして利用される場合、上位局に該当する基地局11はIAB(Integrated Access Backhaul)ドナー、中継局(リレー)に該当する基地局12はIABノードと呼ばれてもよい。 The plurality of base stations 10 may be connected by wire (for example, an optical fiber compliant with CPRI (Common Public Radio Interface), an X2 interface, or the like) or wirelessly (for example, NR communication). For example, when NR communication is used as a backhaul between the base stations 11 and 12, the base station 11 corresponding to the upper station is an IAB (Integrated Access Backhaul) donor, and the base station 12 corresponding to the relay station (relay) is the IAB It may be called a node.
 基地局10は、他の基地局10を介して、又は直接コアネットワーク30に接続されてもよい。コアネットワーク30は、例えば、EPC(Evolved Packet Core)、5GCN(5G Core Network)、NGC(Next Generation Core)などの少なくとも1つを含んでもよい。 The base station 10 may be connected to the core network 30 via another base station 10 or directly. The core network 30 may include, for example, at least one of Evolved Packet Core (EPC), 5G Core Network (5GCN), Next Generation Core (NGC), and the like.
 ユーザ端末20は、LTE、LTE-A、5Gなどの通信方式の少なくとも1つに対応した端末であってもよい。 The user terminal 20 may be a terminal that supports at least one of the communication systems such as LTE, LTE-A, and 5G.
 無線通信システム1においては、直交周波数分割多重(OFDM:Orthogonal Frequency Division Multiplexing)ベースの無線アクセス方式が利用されてもよい。例えば、下りリンク(DL:Downlink)及び上りリンク(UL:Uplink)の少なくとも一方において、CP-OFDM(Cyclic Prefix OFDM)、DFT-s-OFDM(Discrete Fourier Transform Spread OFDM)、OFDMA(Orthogonal Frequency Division Multiple Access)、SC-FDMA(Single Carrier Frequency Division Multiple Access)などが利用されてもよい。 In the wireless communication system 1, an orthogonal frequency division multiplexing (OFDM) based wireless access scheme may be used. For example, in at least one of the downlink (DL) and the uplink (UL: Uplink), CP-OFDM (Cyclic Prefix OFDM), DFT-s-OFDM (Discrete Fourier Transform Spread OFDM), OFDMA (Orthogonal Frequency Division Divide Multiple). Access), SC-FDMA (Single Carrier Frequency Frequency Division Multiple Access), or the like may be used.
 無線アクセス方式は、波形(waveform)と呼ばれてもよい。なお、無線通信システム1においては、UL及びDLの無線アクセス方式には、他の無線アクセス方式(例えば、他のシングルキャリア伝送方式、他のマルチキャリア伝送方式)が用いられてもよい。 The wireless access scheme may be referred to as a waveform. In the wireless communication system 1, another wireless access method (for example, another single carrier transmission method or another multi-carrier transmission method) may be used for the UL and DL wireless access methods.
 無線通信システム1では、下りリンクチャネルとして、各ユーザ端末20で共有される下り共有チャネル(PDSCH:Physical Downlink Shared Channel)、ブロードキャストチャネル(PBCH:Physical Broadcast Channel)、下り制御チャネル(PDCCH:Physical Downlink Control Channel)などが用いられてもよい。 In the wireless communication system 1, a downlink shared channel (PDSCH: Physical Downlink Shared Channel), a broadcast channel (PBCH: Physical Broadcast Channel), and a downlink control channel (PDCCH: Physical Downlink Control) are shared by the user terminals 20 as downlink channels. Channel) may be used.
 また、無線通信システム1では、上りリンクチャネルとして、各ユーザ端末20で共有される上り共有チャネル(PUSCH:Physical Uplink Shared Channel)、上り制御チャネル(PUCCH:Physical Uplink Control Channel)、ランダムアクセスチャネル(PRACH:Physical Random Access Channel)などが用いられてもよい。 In the wireless communication system 1, as an uplink channel, an uplink shared channel (PUSCH: Physical Uplink Shared Channel) shared by each user terminal 20, an uplink control channel (PUCCH: Physical Uplink Control Channel), a random access channel (PRACH) : Physical Random Access Channel) or the like may be used.
 PDSCHによって、ユーザデータ、上位レイヤ制御情報、SIB(System Information Block)などが伝送される。PUSCHによって、ユーザデータ、上位レイヤ制御情報などが伝送されてもよい。また、PBCHによって、MIB(Master Information Block)が伝送されてもよい。 The user data, upper layer control information, SIB (System Information Block), and the like are transmitted by the PDSCH. User data, higher layer control information, and the like may be transmitted by the PUSCH. In addition, MIB (Master Information Block) may be transmitted by PBCH.
 PDCCHによって、下位レイヤ制御情報が伝送されてもよい。下位レイヤ制御情報は、例えば、PDSCH及びPUSCHの少なくとも一方のスケジューリング情報を含む下り制御情報(DCI:Downlink Control Information)を含んでもよい。 下 位 Lower layer control information may be transmitted by the PDCCH. The lower layer control information may include, for example, downlink control information (DCI: Downlink Control Information) including scheduling information of at least one of the PDSCH and the PUSCH.
 なお、PDSCHをスケジューリングするDCIは、DLアサインメント、DL DCIなどと呼ばれてもよいし、PUSCHをスケジューリングするDCIは、ULグラント、UL DCIなどと呼ばれてもよい。なお、PDSCHはDLデータで読み替えられてもよいし、PUSCHはULデータで読み替えられてもよい。 Note that the DCI for scheduling the PDSCH may be referred to as DL assignment, DL @ DCI, or the like, and the DCI for scheduling the PUSCH may be referred to as UL grant, UL @ DCI, or the like. Note that PDSCH may be replaced with DL data, and PUSCH may be replaced with UL data.
 PDCCHの検出には、制御リソースセット(CORESET:COntrol REsource SET)及びサーチスペース(search space)が利用されてもよい。CORESETは、DCIをサーチするリソースに対応する。サーチスペースは、PDCCH候補(PDCCH candidates)のサーチ領域及びサーチ方法に対応する。1つのCORESETは、1つ又は複数のサーチスペースに関連付けられてもよい。UEは、サーチスペース設定に基づいて、あるサーチスペースに関連するCORESETをモニタしてもよい。 A control resource set (CORESET: Control REsource SET) and a search space (search space) may be used for detecting the PDCCH. CORESET corresponds to a resource for searching DCI. The search space corresponds to a search area and a search method of PDCCH candidates (PDCCH @ candidates). One coreset may be associated with one or more search spaces. The UE may monitor a RESET associated with a search space based on the search space settings.
 1つのSSは、1つ又は複数のアグリゲーションレベル(aggregation Level)に該当するPDCCH候補に対応してもよい。1つ又は複数のサーチスペースは、サーチスペースセットと呼ばれてもよい。なお、本開示の「サーチスペース」、「サーチスペースセット」、「サーチスペース設定」、「サーチスペースセット設定」、「CORESET」、「CORESET設定」などは、互いに読み替えられてもよい。 One SS may correspond to a PDCCH candidate corresponding to one or a plurality of aggregation levels (aggregation Level). One or more search spaces may be referred to as a search space set. In addition, “search space”, “search space set”, “search space setting”, “search space set setting”, “CORESET”, “CORESET setting”, and the like in the present disclosure may be interchanged with each other.
 PUCCHによって、チャネル状態情報(CSI:Channel State Information)、の送達確認情報(例えば、HARQ-ACK(Hybrid Automatic Repeat reQuest)、ACK/NACKなどと呼ばれてもよい)、スケジューリングリクエスト(SR:Scheduling Request)などが伝送されてもよい。PRACHによって、セルとの接続確立のためのランダムアクセスプリアンブルが伝送されてもよい。 By PUCCH, acknowledgment information of channel state information (CSI: Channel \ State \ Information) (for example, may be called HARQ-ACK (Hybrid \ Automatic \ Repeat \ reQuest), ACK / NACK, etc.), scheduling request (SR: Scheduling \ Request) ) May be transmitted. A random access preamble for establishing a connection with a cell may be transmitted by the PRACH.
 なお、本開示において下りリンク、上りリンクなどは「リンク」を付けずに表現されてもよい。また、各種チャネルの先頭に「物理(Physical)」を付けずに表現されてもよい。 In the present disclosure, a downlink, an uplink, and the like may be expressed without a “link”. In addition, various channels may be expressed without “Physical” at the beginning.
 無線通信システム1では、同期信号(SS:Synchronization Signal)、下りリンク参照信号(DL-RS:Downlink Reference Signal)などが伝送されてもよい。無線通信システム1では、DL-RSとして、セル固有参照信号(CRS:Cell-specific Reference Signal)、チャネル状態情報参照信号(CSI-RS:Channel State Information Reference Signal)、復調用参照信号(DMRS:DeModulation Reference Signal)、位置決定参照信号(PRS:Positioning Reference Signal)、位相トラッキング参照信号(PTRS:Phase Tracking Reference Signal)などが伝送されてもよい。 In the wireless communication system 1, a synchronization signal (SS: Synchronization Signal), a downlink reference signal (DL-RS: Downlink Reference Signal), or the like may be transmitted. In the wireless communication system 1, as a DL-RS, a cell-specific reference signal (CRS), a channel state information reference signal (CSI-RS), and a demodulation reference signal (DMRS: DeModulation) are provided. Reference Signal, a position determination reference signal (PRS: Positioning Reference Signal), a phase tracking reference signal (PTRS: Phase Tracking Reference Signal), and the like may be transmitted.
 同期信号は、例えば、プライマリ同期信号(PSS:Primary Synchronization Signal)及びセカンダリ同期信号(SSS:Secondary Synchronization Signal)の少なくとも1つであってもよい。SS(PSS、SSS)及びPBCH(及びPBCH用のDMRS)を含む信号ブロックは、SS/PBCHブロック、SSB(SS Block)などと呼ばれてもよい。なお、SS、SSBなども、参照信号と呼ばれてもよい。 The synchronization signal may be, for example, at least one of a primary synchronization signal (PSS: Primary Synchronization Signal) and a secondary synchronization signal (SSS: Secondary Synchronization Signal). A signal block including SS (PSS, SSS) and PBCH (and DMRS for PBCH) may be referred to as SS / PBCH block, SSB (SS @ Block), and the like. Note that SS, SSB, and the like may also be referred to as reference signals.
 また、無線通信システム1では、上りリンク参照信号(UL-RS:Uplink Reference Signal)として、測定用参照信号(SRS:Sounding Reference Signal)、復調用参照信号(DMRS)などが伝送されてもよい。なお、DMRSはユーザ端末固有参照信号(UE-specific Reference Signal)と呼ばれてもよい。 In the wireless communication system 1, a measurement reference signal (SRS: Sounding Reference Signal), a demodulation reference signal (DMRS), and the like may be transmitted as an uplink reference signal (UL-RS: Uplink Reference Signal). The DMRS may be called a user terminal specific reference signal (UE-specific Reference Signal).
(基地局)
 図6は、一実施形態に係る基地局の構成の一例を示す図である。基地局10は、制御部110、送受信部120、送受信アンテナ130及び伝送路インターフェース(transmission line interface)140を備えている。なお、制御部110、送受信部120及び送受信アンテナ130及び伝送路インターフェース140は、それぞれ1つ以上が備えられてもよい。
(base station)
FIG. 6 is a diagram illustrating an example of a configuration of the base station according to the embodiment. The base station 10 includes a control unit 110, a transmission / reception unit 120, a transmission / reception antenna 130, and a transmission line interface 140. The control unit 110, the transmission / reception unit 120, the transmission / reception antenna 130, and the transmission path interface 140 may each include one or more.
 なお、本例では、本実施の形態における特徴部分の機能ブロックを主に示しており、基地局10は、無線通信に必要な他の機能ブロックも有すると想定されてもよい。以下で説明する各部の処理の一部は、省略されてもよい。 Note that, in this example, functional blocks of characteristic portions in the present embodiment are mainly shown, and it may be assumed that base station 10 also has other functional blocks necessary for wireless communication. Some of the processes of each unit described below may be omitted.
 制御部110は、基地局10全体の制御を実施する。制御部110は、本開示に係る技術分野での共通認識に基づいて説明されるコントローラ、制御回路などから構成することができる。 The control unit 110 controls the entire base station 10. The control unit 110 can be configured by a controller, a control circuit, and the like described based on common recognition in the technical field according to the present disclosure.
 制御部110は、信号の生成、スケジューリング(例えば、リソース割り当て、マッピング)などを制御してもよい。制御部110は、送受信部120、送受信アンテナ130及び伝送路インターフェース140を用いた送受信、測定などを制御してもよい。制御部110は、信号として送信するデータ、制御情報、系列(sequence)などを生成し、送受信部120に転送してもよい。制御部110は、通信チャネルの呼処理(設定、解放など)、基地局10の状態管理、無線リソースの管理などを行ってもよい。 The control unit 110 may control signal generation, scheduling (for example, resource allocation, mapping), and the like. The control unit 110 may control transmission / reception, measurement, and the like using the transmission / reception unit 120, the transmission / reception antenna 130, and the transmission path interface 140. The control unit 110 may generate data to be transmitted as a signal, control information, a sequence, and the like, and transfer the generated data to the transmission / reception unit 120. The control unit 110 may perform call processing (setting, release, etc.) of the communication channel, state management of the base station 10, management of radio resources, and the like.
 送受信部120は、ベースバンド(baseband)部121、RF(Radio Frequency)部122、測定部123を含んでもよい。ベースバンド部121は、送信処理部1211及び受信処理部1212を含んでもよい。送受信部120は、本開示に係る技術分野での共通認識に基づいて説明されるトランスミッター/レシーバー、RF回路、ベースバンド回路、フィルタ、位相シフタ(phase shifter)、測定回路、送受信回路などから構成することができる。 The transmission / reception unit 120 may include a baseband unit 121, an RF (Radio Frequency) unit 122, and a measurement unit 123. The baseband unit 121 may include a transmission processing unit 1211 and a reception processing unit 1212. The transmission / reception unit 120 includes a transmitter / receiver, an RF circuit, a baseband circuit, a filter, a phase shifter (phase shifter), a measurement circuit, a transmission / reception circuit, and the like described based on common recognition in the technical field according to the present disclosure. be able to.
 送受信部120は、一体の送受信部として構成されてもよいし、送信部及び受信部から構成されてもよい。当該送信部は、送信処理部1211、RF部122から構成されてもよい。当該受信部は、受信処理部1212、RF部122、測定部123から構成されてもよい。 The transmission / reception unit 120 may be configured as an integrated transmission / reception unit, or may be configured from a transmission unit and a reception unit. The transmission unit may include a transmission processing unit 1211 and an RF unit 122. The receiving unit may include a reception processing unit 1212, an RF unit 122, and a measurement unit 123.
 送受信アンテナ130は、本開示に係る技術分野での共通認識に基づいて説明されるアンテナ、例えばアレイアンテナなどから構成することができる。 The transmission / reception antenna 130 can be configured from an antenna described based on common recognition in the technical field according to the present disclosure, for example, an array antenna or the like.
 送受信部120は、上述の下りリンクチャネル、同期信号、下りリンク参照信号などを送信してもよい。送受信部120は、上述の上りリンクチャネル、上りリンク参照信号などを受信してもよい。 The transmission / reception unit 120 may transmit the above-described downlink channel, synchronization signal, downlink reference signal, and the like. The transmission / reception unit 120 may receive the above-described uplink channel, uplink reference signal, and the like.
 送受信部120は、デジタルビームフォーミング(例えば、プリコーディング)、アナログビームフォーミング(例えば、位相回転)などを用いて、送信ビーム及び受信ビームの少なくとも一方を形成してもよい。 The transmission / reception unit 120 may form at least one of the transmission beam and the reception beam by using digital beamforming (for example, precoding), analog beamforming (for example, phase rotation), or the like.
 送受信部120(送信処理部1211)は、例えば制御部110から取得したデータ、制御情報などに対して、PDCP(Packet Data Convergence Protocol)レイヤの処理、RLC(Radio Link Control)レイヤの処理(例えば、RLC再送制御)、MAC(Medium Access Control)レイヤの処理(例えば、HARQ再送制御)などを行い、送信するビット列を生成してもよい。 The transmission / reception unit 120 (transmission processing unit 1211) processes the data, control information, and the like acquired from the control unit 110 in the PDCP (Packet Data Convergence Protocol) layer and the RLC (Radio Link Control) layer processing (for example, RLC retransmission control), MAC (Medium Access Control) layer processing (for example, HARQ retransmission control), and the like may be performed to generate a bit string to be transmitted.
 送受信部120(送信処理部1211)は、送信するビット列に対して、チャネル符号化(誤り訂正符号化を含んでもよい)、変調、マッピング、フィルタ処理、離散フーリエ変換(DFT:Discrete Fourier Transform)処理(必要に応じて)、逆高速フーリエ変換(IFFT:Inverse Fast Fourier Transform)処理、プリコーディング、デジタル-アナログ変換などの送信処理を行い、ベースバンド信号を出力してもよい。 The transmission / reception unit 120 (transmission processing unit 1211) performs channel coding (may include error correction coding), modulation, mapping, filter processing, and discrete Fourier transform (DFT: Discrete Fourier Transform) processing on a bit string to be transmitted. Transmission processing such as Inverse Fast Fourier Transform (IFFT) processing, precoding, and digital-analog conversion (if necessary) may be performed to output a baseband signal.
 送受信部120(RF部122)は、ベースバンド信号に対して、無線周波数帯への変調、フィルタ処理、増幅などを行い、無線周波数帯の信号を、送受信アンテナ130を介して送信してもよい。 The transmission / reception unit 120 (RF unit 122) may perform modulation, filtering, amplification, and the like on the baseband signal into a radio frequency band, and transmit the signal in the radio frequency band via the transmission / reception antenna 130. .
 一方、送受信部120(RF部122)は、送受信アンテナ130によって受信された無線周波数帯の信号に対して、増幅、フィルタ処理、ベースバンド信号への復調などを行ってもよい。 On the other hand, the transmission / reception unit 120 (RF unit 122) may perform amplification, filtering, demodulation to a baseband signal, and the like on the radio frequency band signal received by the transmission / reception antenna 130.
 送受信部120(受信処理部1212)は、取得されたベースバンド信号に対して、アナログ-デジタル変換、高速フーリエ変換(FFT:Fast Fourier Transform)処理、逆離散フーリエ変換(IDFT:Inverse Discrete Fourier Transform)処理(必要に応じて)、フィルタ処理、デマッピング、復調、復号(誤り訂正復号を含んでもよい)、MACレイヤ処理、RLCレイヤの処理及びPDCPレイヤの処理などの受信処理を適用し、ユーザデータなどを取得してもよい。 The transmission / reception unit 120 (reception processing unit 1212) performs analog-to-digital conversion, fast Fourier transform (FFT), and inverse discrete Fourier transform (IDFT) on the acquired baseband signal. Applying reception processing such as processing (if necessary), filtering, demapping, demodulation, decoding (which may include error correction decoding), MAC layer processing, RLC layer processing, and PDCP layer processing, Etc. may be obtained.
 送受信部120(測定部123)は、受信した信号に関する測定を実施してもよい。例えば、測定部123は、受信した信号に基づいて、RRM(Radio Resource Management)測定、CSI(Channel State Information)測定などを行ってもよい。測定部123は、受信電力(例えば、RSRP(Reference Signal Received Power))、受信品質(例えば、RSRQ(Reference Signal Received Quality)、SINR(Signal to Interference plus Noise Ratio)、SNR(Signal to Noise Ratio))、信号強度(例えば、RSSI(Received Signal Strength Indicator))、伝搬路情報(例えば、CSI)などについて測定してもよい。測定結果は、制御部110に出力されてもよい。 The transmission / reception unit 120 (measurement unit 123) may measure the received signal. For example, the measurement unit 123 may perform RRM (Radio Resource Management) measurement, CSI (Channel State Information) measurement, or the like based on the received signal. The measuring unit 123 receives the reception power (for example, RSRP (Reference Signal Received Power)), reception quality (for example, RSRQ (Reference Signal Received Quality), SINR (Signal to Interference plus Noise Ratio, SNR (Signal to Noise Ratio)). , Signal strength (for example, RSSI (Received Signal Strength Indicator)), propagation path information (for example, CSI), and the like. The measurement result may be output to the control unit 110.
 伝送路インターフェース140は、コアネットワーク30に含まれる装置、他の基地局10などとの間で信号を送受信(バックホールシグナリング)し、ユーザ端末20のためのユーザデータ(ユーザプレーンデータ)、制御プレーンデータなどを取得、伝送などしてもよい。 The transmission line interface 140 transmits / receives signals (backhaul signaling) to / from a device included in the core network 30 or another base station 10, and transmits user data (user plane data) for the user terminal 20; Data and the like may be obtained and transmitted.
 なお、本開示における基地局10の送信部及び受信部は、送受信部120、送受信アンテナ130及び伝送路インターフェース140の少なくとも1つによって構成されてもよい。 The transmission unit and the reception unit of the base station 10 according to the present disclosure may be configured by at least one of the transmission / reception unit 120, the transmission / reception antenna 130, and the transmission path interface 140.
 なお、送受信部120は、上り制御チャネルリソースにおいて上り制御情報(UCI)を受信してもよい。制御部110は、受信に用いた上り制御チャネルリソースに基づいて、上り制御情報の一部(特定のUCIタイプ、例えば、SR)を判定してもよい。 Note that the transmission / reception unit 120 may receive uplink control information (UCI) in uplink control channel resources. The control unit 110 may determine a part of the uplink control information (specific UCI type, for example, SR) based on the uplink control channel resource used for reception.
(ユーザ端末)
 図7は、一実施形態に係るユーザ端末の構成の一例を示す図である。ユーザ端末20は、制御部210、送受信部220及び送受信アンテナ230を備えている。なお、制御部210、送受信部220及び送受信アンテナ230は、それぞれ1つ以上が備えられてもよい。
(User terminal)
FIG. 7 is a diagram illustrating an example of a configuration of the user terminal according to the embodiment. The user terminal 20 includes a control unit 210, a transmission / reception unit 220, and a transmission / reception antenna 230. Note that one or more of the control unit 210, the transmission / reception unit 220, and the transmission / reception antenna 230 may be provided.
 なお、本例では、本実施の形態における特徴部分の機能ブロックを主に示しており、ユーザ端末20は、無線通信に必要な他の機能ブロックも有すると想定されてもよい。以下で説明する各部の処理の一部は、省略されてもよい。 In this example, functional blocks of characteristic portions in the present embodiment are mainly shown, and it may be assumed that the user terminal 20 also has other functional blocks necessary for wireless communication. Some of the processes of each unit described below may be omitted.
 制御部210は、ユーザ端末20全体の制御を実施する。制御部210は、本開示に係る技術分野での共通認識に基づいて説明されるコントローラ、制御回路などから構成することができる。 The control unit 210 controls the entire user terminal 20. The control unit 210 can be configured by a controller, a control circuit, and the like described based on common recognition in the technical field according to the present disclosure.
 制御部210は、信号の生成、マッピングなどを制御してもよい。制御部210は、送受信部220及び送受信アンテナ230を用いた送受信、測定などを制御してもよい。制御部210は、信号として送信するデータ、制御情報、系列などを生成し、送受信部220に転送してもよい。 The control unit 210 may control signal generation, mapping, and the like. The control unit 210 may control transmission / reception and measurement using the transmission / reception unit 220 and the transmission / reception antenna 230. The control unit 210 may generate data to be transmitted as a signal, control information, a sequence, and the like, and transfer the generated data to the transmission / reception unit 220.
 送受信部220は、ベースバンド部221、RF部222、測定部223を含んでもよい。ベースバンド部221は、送信処理部2211、受信処理部2212を含んでもよい。送受信部220は、本開示に係る技術分野での共通認識に基づいて説明されるトランスミッター/レシーバー、RF回路、ベースバンド回路、フィルタ、位相シフタ、測定回路、送受信回路などから構成することができる。 The transmission / reception unit 220 may include a baseband unit 221, an RF unit 222, and a measurement unit 223. The baseband unit 221 may include a transmission processing unit 2211 and a reception processing unit 2212. The transmission / reception unit 220 can be configured from a transmitter / receiver, an RF circuit, a baseband circuit, a filter, a phase shifter, a measurement circuit, a transmission / reception circuit, and the like described based on common recognition in the technical field according to the present disclosure.
 送受信部220は、一体の送受信部として構成されてもよいし、送信部及び受信部から構成されてもよい。当該送信部は、送信処理部2211、RF部222から構成されてもよい。当該受信部は、受信処理部2212、RF部222、測定部223から構成されてもよい。 The transmission / reception unit 220 may be configured as an integrated transmission / reception unit, or may be configured from a transmission unit and a reception unit. The transmission unit may include a transmission processing unit 2211 and an RF unit 222. The receiving unit may include a reception processing unit 2212, an RF unit 222, and a measurement unit 223.
 送受信アンテナ230は、本開示に係る技術分野での共通認識に基づいて説明されるアンテナ、例えばアレイアンテナなどから構成することができる。 The transmission / reception antenna 230 can be configured from an antenna described based on common recognition in the technical field according to the present disclosure, for example, an array antenna or the like.
 送受信部220は、上述の下りリンクチャネル、同期信号、下りリンク参照信号などを受信してもよい。送受信部220は、上述の上りリンクチャネル、上りリンク参照信号などを送信してもよい。 The transmission / reception unit 220 may receive the above-described downlink channel, synchronization signal, downlink reference signal, and the like. The transmission / reception unit 220 may transmit the above-described uplink channel, uplink reference signal, and the like.
 送受信部220は、デジタルビームフォーミング(例えば、プリコーディング)、アナログビームフォーミング(例えば、位相回転)などを用いて、送信ビーム及び受信ビームの少なくとも一方を形成してもよい。 The transmission / reception unit 220 may form at least one of the transmission beam and the reception beam by using digital beamforming (for example, precoding), analog beamforming (for example, phase rotation), or the like.
 送受信部220(送信処理部2211)は、例えば制御部210から取得したデータ、制御情報などに対して、PDCPレイヤの処理、RLCレイヤの処理(例えば、RLC再送制御)、MACレイヤの処理(例えば、HARQ再送制御)などを行い、送信するビット列を生成してもよい。 The transmission / reception unit 220 (transmission processing unit 2211) performs processing of the PDCP layer, processing of the RLC layer (for example, RLC retransmission control), processing of the MAC layer (for example, for data, control information, and the like acquired from the control unit 210, for example). , HARQ retransmission control), etc., to generate a bit string to be transmitted.
 送受信部220(送信処理部2211)は、送信するビット列に対して、チャネル符号化(誤り訂正符号化を含んでもよい)、変調、マッピング、フィルタ処理、DFT処理(必要に応じて)、IFFT処理、プリコーディング、デジタル-アナログ変換などの送信処理を行い、ベースバンド信号を出力してもよい。 The transmission / reception unit 220 (transmission processing unit 2211) performs channel coding (which may include error correction coding), modulation, mapping, filter processing, DFT processing (if necessary), IFFT processing on the bit sequence to be transmitted. , Precoding, digital-analog conversion, etc., and output a baseband signal.
 なお、DFT処理を適用するか否かは、トランスフォームプリコーディングの設定に基づいてもよい。送受信部220(送信処理部2211)は、あるチャネル(例えば、PUSCH)について、トランスフォームプリコーディングが有効(enabled)である場合、当該チャネルをDFT-s-OFDM波形を用いて送信するために上記送信処理としてDFT処理を行ってもよいし、そうでない場合、上記送信処理としてDFT処理を行わなくてもよい。 Note that whether to apply the DFT processing may be based on the transform precoding setting. When transform precoding is enabled for a certain channel (for example, PUSCH), the transmission / reception unit 220 (transmission processing unit 2211) transmits the channel using the DFT-s-OFDM waveform. DFT processing may be performed as the transmission processing, or otherwise, DFT processing may not be performed as the transmission processing.
 送受信部220(RF部222)は、ベースバンド信号に対して、無線周波数帯への変調、フィルタ処理、増幅などを行い、無線周波数帯の信号を、送受信アンテナ230を介して送信してもよい。 The transmission / reception unit 220 (RF unit 222) may perform modulation, filtering, amplification, and the like on the baseband signal into a radio frequency band, and transmit a signal in the radio frequency band via the transmission / reception antenna 230. .
 一方、送受信部220(RF部222)は、送受信アンテナ230によって受信された無線周波数帯の信号に対して、増幅、フィルタ処理、ベースバンド信号への復調などを行ってもよい。 On the other hand, the transmission / reception unit 220 (RF unit 222) may perform amplification, filtering, demodulation to a baseband signal, and the like on the radio frequency band signal received by the transmission / reception antenna 230.
 送受信部220(受信処理部2212)は、取得されたベースバンド信号に対して、アナログ-デジタル変換、FFT処理、IDFT処理(必要に応じて)、フィルタ処理、デマッピング、復調、復号(誤り訂正復号を含んでもよい)、MACレイヤ処理、RLCレイヤの処理及びPDCPレイヤの処理などの受信処理を適用し、ユーザデータなどを取得してもよい。 The transmission / reception unit 220 (reception processing unit 2212) performs analog-to-digital conversion, FFT processing, IDFT processing (if necessary), filter processing, demapping, demodulation, decoding (error correction) on the obtained baseband signal. Decoding may be included), reception processing such as MAC layer processing, RLC layer processing, and PDCP layer processing may be applied to acquire user data and the like.
 送受信部220(測定部223)は、受信した信号に関する測定を実施してもよい。例えば、測定部223は、受信した信号に基づいて、RRM測定、CSI測定などを行ってもよい。測定部223は、受信電力(例えば、RSRP)、受信品質(例えば、RSRQ、SINR、SNR)、信号強度(例えば、RSSI)、伝搬路情報(例えば、CSI)などについて測定してもよい。測定結果は、制御部210に出力されてもよい。 The transmission / reception unit 220 (measurement unit 223) may measure the received signal. For example, the measurement unit 223 may perform RRM measurement, CSI measurement, and the like based on the received signal. The measurement unit 223 may measure received power (for example, RSRP), received quality (for example, RSRQ, SINR, SNR), signal strength (for example, RSSI), channel information (for example, CSI), and the like. The measurement result may be output to the control unit 210.
 なお、本開示におけるユーザ端末20の送信部及び受信部は、送受信部220、送受信アンテナ230及び伝送路インターフェース240の少なくとも1つによって構成されてもよい。 The transmitting unit and the receiving unit of the user terminal 20 according to the present disclosure may be configured by at least one of the transmitting / receiving unit 220, the transmitting / receiving antenna 230, and the transmission line interface 240.
 なお、制御部210は、所定の上り制御チャネルフォーマットを用いるHARQ-ACK(Hybrid Automatic Repeat reQuest-ACKnowledge)送信のタイミングと、前記上り制御チャネルフォーマットを用いるSR(Scheduling Request)送信のタイミングと、が重複する場合、上り制御チャネルリソースを決定してもよい。送受信部220は、前記上り制御チャネルフォーマット及び前記上り制御チャネルリソースを用いて前記HARQ-ACK及び前記SRの少なくとも1つを送信してもよい。 Control section 210 overlaps the timing of HARQ-ACK (Hybrid Automatic Repeat Repeat reQuest-ACKnowledge) transmission using a predetermined uplink control channel format with the timing of SR (Scheduling Request) transmission using the uplink control channel format. In this case, uplink control channel resources may be determined. The transmission / reception unit 220 may transmit at least one of the HARQ-ACK and the SR using the uplink control channel format and the uplink control channel resource.
 また、制御部210は、SRの値に基づいて、HARQ-ACK用の第1上り制御チャネルリソースと、SR用の第2上り制御チャネルリソースと、の1つを前記上り制御チャネルリソースとして決定してもよい。送受信部220は、前記上り制御チャネルリソースを用いて、前記HARQ-ACKを送信してもよい。前記第1上り制御チャネルリソースは、前記第2上り制御チャネルリソースと異なってもよい(態様1)。 Further, control section 210 determines one of a first uplink control channel resource for HARQ-ACK and a second uplink control channel resource for SR based on the value of SR as the uplink control channel resource. You may. The transmission / reception unit 220 may transmit the HARQ-ACK using the uplink control channel resource. The first uplink control channel resource may be different from the second uplink control channel resource (aspect 1).
 また、制御部210は、上位レイヤシグナリングによって設定された複数の第1ID(例えば、HARQ-ACK用PUCCHリソースID)から前記第1上り制御チャネルリソースを決定し、上位レイヤシグナリングによって設定された複数の第2ID(例えば、SR用PUCCHリソースID)から前記第2上り制御チャネルリソースを決定してもよい。前記複数の第1IDは、前記複数の第2IDと重複しなくてもよい(態様2)。 Further, control section 210 determines the first uplink control channel resource from a plurality of first IDs (eg, PUCCH resource IDs for HARQ-ACK) set by higher layer signaling, and determines a plurality of first uplink control channel resources set by higher layer signaling. The second uplink control channel resource may be determined from a second ID (for example, a PUCCH resource ID for SR). The plurality of first IDs may not overlap with the plurality of second IDs (aspect 2).
 また、HARQ-ACK用の第1上り制御チャネルリソースが、SR用の第2上り制御チャネルリソースと重複する場合、制御部210は、前記第1上り制御チャネルリソース及び前記第2上り制御チャネルリソースとは異なる第3上り制御チャネルリソースと、前記第1上り制御チャネルリソースと、前記第2上り制御チャネルリソースと、の1つを前記上り制御チャネルリソースとして決定してもよい。送受信部220は、前記上り制御チャネルリソースを用いて、前記HARQ-ACK及び前記SRの1つを送信してもよい(態様3-1、3-2)。 Further, when the first uplink control channel resource for HARQ-ACK overlaps with the second uplink control channel resource for SR, the control unit 210 transmits the first uplink control channel resource and the second uplink control channel resource to each other. May determine one of a different third uplink control channel resource, the first uplink control channel resource, and the second uplink control channel resource as the uplink control channel resource. The transmission / reception unit 220 may transmit one of the HARQ-ACK and the SR using the uplink control channel resource (aspects 3-1 and 3-2).
 また、HARQ-ACK用の第1上り制御チャネルリソースが、SR用の第2上り制御チャネルリソースと重複する場合、制御部210は、前記第1上り制御チャネルリソース及び前記第2上り制御チャネルリソースとは異なる第3上り制御チャネルリソース(例えば、特定PUCCHリソース)と、前記第1上り制御チャネルリソースと、前記第2上り制御チャネルリソースと、の1つを前記上り制御チャネルリソースとして決定してもよい。送受信部220は、前記上り制御チャネルリソースを用いて、前記HARQ-ACK及び前記SRを送信してもよい(態様3-3)。 Further, when the first uplink control channel resource for HARQ-ACK overlaps with the second uplink control channel resource for SR, the control unit 210 transmits the first uplink control channel resource and the second uplink control channel resource to each other. May determine one of a different third uplink control channel resource (for example, a specific PUCCH resource), the first uplink control channel resource, and the second uplink control channel resource as the uplink control channel resource. . The transmission / reception unit 220 may transmit the HARQ-ACK and the SR using the uplink control channel resource (aspect 3-3).
(ハードウェア構成)
 なお、上記実施形態の説明に用いたブロック図は、機能単位のブロックを示している。これらの機能ブロック(構成部)は、ハードウェア及びソフトウェアの少なくとも一方の任意の組み合わせによって実現される。また、各機能ブロックの実現方法は特に限定されない。すなわち、各機能ブロックは、物理的又は論理的に結合した1つの装置を用いて実現されてもよいし、物理的又は論理的に分離した2つ以上の装置を直接的又は間接的に(例えば、有線、無線などを用いて)接続し、これら複数の装置を用いて実現されてもよい。機能ブロックは、上記1つの装置又は上記複数の装置にソフトウェアを組み合わせて実現されてもよい。
(Hardware configuration)
Note that the block diagram used in the description of the above-described embodiment shows blocks in functional units. These functional blocks (components) are realized by an arbitrary combination of at least one of hardware and software. In addition, a method of implementing each functional block is not particularly limited. That is, each functional block may be realized using one device physically or logically coupled, or directly or indirectly (for example, two or more devices physically or logically separated from each other). , Wired, wireless, etc.), and may be implemented using these multiple devices. The functional block may be realized by combining one device or the plurality of devices with software.
 ここで、機能には、判断、決定、判定、計算、算出、処理、導出、調査、探索、確認、受信、送信、出力、アクセス、解決、選択、選定、確立、比較、想定、期待、みなし、報知(broadcasting)、通知(notifying)、通信(communicating)、転送(forwarding)、構成(configuring)、再構成(reconfiguring)、割り当て(allocating、mapping)、割り振り(assigning)などがあるが、これらに限られない。例えば、送信を機能させる機能ブロック(構成部)は、送信部(transmitting unit)、送信機(transmitter)などと呼称されてもよい。いずれも、上述したとおり、実現方法は特に限定されない。 Here, the functions include judgment, determination, judgment, calculation, calculation, processing, derivation, investigation, search, confirmation, reception, transmission, output, access, resolution, selection, selection, establishment, comparison, assumption, expectation, and deemed. , Broadcasting, notifying, communicating, forwarding, configuring, reconfiguring, allocating, mapping, assigning, etc. Not limited. For example, a functional block (configuration unit) that causes transmission to function may be referred to as a transmitting unit (transmitting unit), a transmitter (transmitter), or the like. In any case, as described above, the realization method is not particularly limited.
 例えば、本開示の一実施形態における基地局、ユーザ端末などは、本開示の無線通信方法の処理を行うコンピュータとして機能してもよい。図8は、一実施形態に係る基地局及びユーザ端末のハードウェア構成の一例を示す図である。上述の基地局10及びユーザ端末20は、物理的には、プロセッサ1001、メモリ1002、ストレージ1003、通信装置1004、入力装置1005、出力装置1006、バス1007などを含むコンピュータ装置として構成されてもよい。 For example, a base station, a user terminal, or the like according to an embodiment of the present disclosure may function as a computer that performs processing of the wireless communication method according to the present disclosure. FIG. 8 is a diagram illustrating an example of a hardware configuration of the base station and the user terminal according to the embodiment. The above-described base station 10 and user terminal 20 may be physically configured as a computer device including a processor 1001, a memory 1002, a storage 1003, a communication device 1004, an input device 1005, an output device 1006, a bus 1007, and the like. .
 なお、本開示において、装置、回路、デバイス、部(section)、ユニットなどの文言は、互いに読み替えることができる。基地局10及びユーザ端末20のハードウェア構成は、図に示した各装置を1つ又は複数含むように構成されてもよいし、一部の装置を含まずに構成されてもよい。 In the present disclosure, the terms such as “apparatus”, “circuit”, “device”, “section”, and “unit” can be read interchangeably. The hardware configuration of the base station 10 and the user terminal 20 may be configured to include one or more of the devices illustrated in the drawing, or may be configured to exclude some of the devices.
 例えば、プロセッサ1001は1つだけ図示されているが、複数のプロセッサがあってもよい。また、処理は、1のプロセッサによって実行されてもよいし、処理が同時に、逐次に、又はその他の手法を用いて、2以上のプロセッサによって実行されてもよい。なお、プロセッサ1001は、1以上のチップによって実装されてもよい。 For example, although only one processor 1001 is illustrated, there may be multiple processors. Further, the processing may be executed by one processor, or the processing may be executed by two or more processors simultaneously, sequentially, or by using another method. Note that the processor 1001 may be implemented by one or more chips.
 基地局10及びユーザ端末20における各機能は、例えば、プロセッサ1001、メモリ1002などのハードウェア上に所定のソフトウェア(プログラム)を読み込ませることによって、プロセッサ1001が演算を行い、通信装置1004を介する通信を制御したり、メモリ1002及びストレージ1003におけるデータの読み出し及び書き込みの少なくとも一方を制御したりすることによって実現される。 The functions of the base station 10 and the user terminal 20 are performed, for example, by reading predetermined software (program) on hardware such as the processor 1001 and the memory 1002 so that the processor 1001 performs an arithmetic operation and communicates via the communication device 1004. And controlling at least one of reading and writing of data in the memory 1002 and the storage 1003.
 プロセッサ1001は、例えば、オペレーティングシステムを動作させてコンピュータ全体を制御する。プロセッサ1001は、周辺装置とのインターフェース、制御装置、演算装置、レジスタなどを含む中央処理装置(CPU:Central Processing Unit)によって構成されてもよい。例えば、上述の制御部110(210)、送受信部120(220)などの少なくとも一部は、プロセッサ1001によって実現されてもよい。 The processor 1001 controls the entire computer by operating an operating system, for example. The processor 1001 may be configured by a central processing unit (CPU: Central Processing Unit) including an interface with a peripheral device, a control device, an arithmetic device, a register, and the like. For example, at least a part of the control unit 110 (210), the transmitting / receiving unit 120 (220), and the like may be realized by the processor 1001.
 また、プロセッサ1001は、プログラム(プログラムコード)、ソフトウェアモジュール、データなどを、ストレージ1003及び通信装置1004の少なくとも一方からメモリ1002に読み出し、これらに従って各種の処理を実行する。プログラムとしては、上述の実施形態において説明した動作の少なくとも一部をコンピュータに実行させるプログラムが用いられる。例えば、制御部110(210)は、メモリ1002に格納され、プロセッサ1001において動作する制御プログラムによって実現されてもよく、他の機能ブロックについても同様に実現されてもよい。 The processor 1001 reads out a program (program code), a software module, data, and the like from at least one of the storage 1003 and the communication device 1004 to the memory 1002, and executes various processes according to these. As the program, a program that causes a computer to execute at least a part of the operation described in the above embodiment is used. For example, the control unit 110 (210) may be realized by a control program stored in the memory 1002 and operated by the processor 1001, and other functional blocks may be similarly realized.
 メモリ1002は、コンピュータ読み取り可能な記録媒体であり、例えば、ROM(Read Only Memory)、EPROM(Erasable Programmable ROM)、EEPROM(Electrically EPROM)、RAM(Random Access Memory)、その他の適切な記憶媒体の少なくとも1つによって構成されてもよい。メモリ1002は、レジスタ、キャッシュ、メインメモリ(主記憶装置)などと呼ばれてもよい。メモリ1002は、本開示の一実施形態に係る無線通信方法を実施するために実行可能なプログラム(プログラムコード)、ソフトウェアモジュールなどを保存することができる。 The memory 1002 is a computer-readable recording medium, for example, at least one of ROM (Read Only Memory), EPROM (Erasable Programmable ROM), EEPROM (Electrically EPROM), RAM (Random Access Memory), and other appropriate storage media. It may be constituted by one. The memory 1002 may be called a register, a cache, a main memory (main storage device), or the like. The memory 1002 can store a program (program code), a software module, and the like that can be executed to implement the wireless communication method according to an embodiment of the present disclosure.
 ストレージ1003は、コンピュータ読み取り可能な記録媒体であり、例えば、フレキシブルディスク、フロッピー(登録商標)ディスク、光磁気ディスク(例えば、コンパクトディスク(CD-ROM(Compact Disc ROM)など)、デジタル多用途ディスク、Blu-ray(登録商標)ディスク)、リムーバブルディスク、ハードディスクドライブ、スマートカード、フラッシュメモリデバイス(例えば、カード、スティック、キードライブ)、磁気ストライプ、データベース、サーバ、その他の適切な記憶媒体の少なくとも1つによって構成されてもよい。ストレージ1003は、補助記憶装置と呼ばれてもよい。 The storage 1003 is a computer-readable recording medium such as a flexible disk, a floppy (registered trademark) disk, a magneto-optical disk (for example, a compact disk (CD-ROM (Compact Disc) ROM, etc.), a digital versatile disc, At least one of a Blu-ray (registered trademark) disk, a removable disk, a hard disk drive, a smart card, a flash memory device (eg, a card, a stick, a key drive), a magnetic stripe, a database, a server, and other suitable storage media. May be configured. The storage 1003 may be called an auxiliary storage device.
 通信装置1004は、有線ネットワーク及び無線ネットワークの少なくとも一方を介してコンピュータ間の通信を行うためのハードウェア(送受信デバイス)であり、例えばネットワークデバイス、ネットワークコントローラ、ネットワークカード、通信モジュールなどともいう。通信装置1004は、例えば周波数分割複信(FDD:Frequency Division Duplex)及び時分割複信(TDD:Time Division Duplex)の少なくとも一方を実現するために、高周波スイッチ、デュプレクサ、フィルタ、周波数シンセサイザなどを含んで構成されてもよい。例えば、上述の送受信部120(220)、送受信アンテナ130(230)などは、通信装置1004によって実現されてもよい。送受信部120(220)は、送信部120a(220a)と受信部120b(220b)とで、物理的に又は論理的に分離された実装がなされてもよい。 The communication device 1004 is hardware (transmission / reception device) for performing communication between computers via at least one of a wired network and a wireless network, and is also referred to as, for example, a network device, a network controller, a network card, a communication module, or the like. The communication device 1004 includes a high-frequency switch, a duplexer, a filter, a frequency synthesizer, and the like, for example, in order to realize at least one of frequency division duplex (FDD: Frequency Division Duplex) and time division duplex (TDD: Time Division Duplex). May be configured. For example, the transmission / reception unit 120 (220) and the transmission / reception antenna 130 (230) described above may be realized by the communication device 1004. The transmission / reception unit 120 (220) may be physically or logically separated from the transmission unit 120a (220a) and the reception unit 120b (220b).
 入力装置1005は、外部からの入力を受け付ける入力デバイス(例えば、キーボード、マウス、マイクロフォン、スイッチ、ボタン、センサなど)である。出力装置1006は、外部への出力を実施する出力デバイス(例えば、ディスプレイ、スピーカー、LED(Light Emitting Diode)ランプなど)である。なお、入力装置1005及び出力装置1006は、一体となった構成(例えば、タッチパネル)であってもよい。 The input device 1005 is an input device (for example, a keyboard, a mouse, a microphone, a switch, a button, a sensor, and the like) that receives an external input. The output device 1006 is an output device that performs output to the outside (for example, a display, a speaker, an LED (Light Emitting Diode) lamp, and the like). Note that the input device 1005 and the output device 1006 may have an integrated configuration (for example, a touch panel).
 また、プロセッサ1001、メモリ1002などの各装置は、情報を通信するためのバス1007によって接続される。バス1007は、単一のバスを用いて構成されてもよいし、装置間ごとに異なるバスを用いて構成されてもよい。 The devices such as the processor 1001 and the memory 1002 are connected by a bus 1007 for communicating information. The bus 1007 may be configured using a single bus, or may be configured using a different bus for each device.
 また、基地局10及びユーザ端末20は、マイクロプロセッサ、デジタル信号プロセッサ(DSP:Digital Signal Processor)、ASIC(Application Specific Integrated Circuit)、PLD(Programmable Logic Device)、FPGA(Field Programmable Gate Array)などのハードウェアを含んで構成されてもよく、当該ハードウェアを用いて各機能ブロックの一部又は全てが実現されてもよい。例えば、プロセッサ1001は、これらのハードウェアの少なくとも1つを用いて実装されてもよい。 In addition, the base station 10 and the user terminal 20 include hardware such as a microprocessor, a digital signal processor (DSP: Digital Signal Processor), an ASIC (Application Specific Integrated Circuit), a PLD (Programmable Logic Device), and an FPGA (Field Programmable Gate Array). It may be configured to include hardware, and some or all of the functional blocks may be realized using the hardware. For example, the processor 1001 may be implemented using at least one of these pieces of hardware.
(変形例)
 なお、本開示において説明した用語及び本開示の理解に必要な用語については、同一の又は類似する意味を有する用語と置き換えてもよい。例えば、チャネル、シンボル及び信号(シグナル又はシグナリング)は、互いに読み替えられてもよい。また、信号はメッセージであってもよい。参照信号は、RS(Reference Signal)と略称することもでき、適用される標準によってパイロット(Pilot)、パイロット信号などと呼ばれてもよい。また、コンポーネントキャリア(CC:Component Carrier)は、セル、周波数キャリア、キャリア周波数などと呼ばれてもよい。
(Modification)
Note that terms described in the present disclosure and terms necessary for understanding the present disclosure may be replaced with terms having the same or similar meaning. For example, channels, symbols and signals (signals or signaling) may be read interchangeably. Also, the signal may be a message. The reference signal may be abbreviated as RS (Reference Signal), and may be referred to as a pilot, a pilot signal, or the like according to an applied standard. A component carrier (CC: Component Carrier) may be called a cell, a frequency carrier, a carrier frequency, or the like.
 無線フレームは、時間領域において1つ又は複数の期間(フレーム)によって構成されてもよい。無線フレームを構成する当該1つ又は複数の各期間(フレーム)は、サブフレームと呼ばれてもよい。さらに、サブフレームは、時間領域において1つ又は複数のスロットによって構成されてもよい。サブフレームは、ニューメロロジー(numerology)に依存しない固定の時間長(例えば、1ms)であってもよい。 A radio frame may be configured by one or more periods (frames) in the time domain. The one or more respective periods (frames) forming the radio frame may be referred to as a subframe. Further, a subframe may be configured by one or more slots in the time domain. The subframe may be of a fixed length of time (eg, 1 ms) that does not depend on numerology.
 ここで、ニューメロロジーは、ある信号又はチャネルの送信及び受信の少なくとも一方に適用される通信パラメータであってもよい。ニューメロロジーは、例えば、サブキャリア間隔(SCS:SubCarrier Spacing)、帯域幅、シンボル長、サイクリックプレフィックス長、送信時間間隔(TTI:Transmission Time Interval)、TTIあたりのシンボル数、無線フレーム構成、送受信機が周波数領域において行う特定のフィルタリング処理、送受信機が時間領域において行う特定のウィンドウイング処理などの少なくとも1つを示してもよい。 Here, the new melology may be a communication parameter applied to at least one of transmission and reception of a certain signal or channel. Numerology includes, for example, subcarrier interval (SCS: SubCarrier @ Spacing), bandwidth, symbol length, cyclic prefix length, transmission time interval (TTI: Transmission @ Time @ Interval), number of symbols per TTI, radio frame configuration, transmission and reception. At least one of a specific filtering process performed by the transceiver in the frequency domain and a specific windowing process performed by the transceiver in the time domain may be indicated.
 スロットは、時間領域において1つ又は複数のシンボル(OFDM(Orthogonal Frequency Division Multiplexing)シンボル、SC-FDMA(Single Carrier Frequency Division Multiple Access)シンボルなど)によって構成されてもよい。また、スロットは、ニューメロロジーに基づく時間単位であってもよい。 The slot may be configured by one or a plurality of symbols (OFDM (Orthogonal Frequency Division Multiplexing) symbol, SC-FDMA (Single Carrier Frequency Division Multiple Access) symbol, etc.) in the time domain. Further, the slot may be a time unit based on numerology.
 スロットは、複数のミニスロットを含んでもよい。各ミニスロットは、時間領域において1つ又は複数のシンボルによって構成されてもよい。また、ミニスロットは、サブスロットと呼ばれてもよい。ミニスロットは、スロットよりも少ない数のシンボルによって構成されてもよい。ミニスロットより大きい時間単位で送信されるPDSCH(又はPUSCH)は、PDSCH(PUSCH)マッピングタイプAと呼ばれてもよい。ミニスロットを用いて送信されるPDSCH(又はPUSCH)は、PDSCH(PUSCH)マッピングタイプBと呼ばれてもよい。 The slot may include a plurality of mini slots. Each minislot may be constituted by one or more symbols in the time domain. Also, the mini-slot may be called a sub-slot. A minislot may be made up of a smaller number of symbols than slots. A PDSCH (or PUSCH) transmitted in time units larger than minislots may be referred to as PDSCH (PUSCH) mapping type A. A PDSCH (or PUSCH) transmitted using a minislot may be referred to as a PDSCH (PUSCH) mapping type B.
 無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルは、いずれも信号を伝送する際の時間単位を表す。無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルは、それぞれに対応する別の呼称が用いられてもよい。なお、本開示におけるフレーム、サブフレーム、スロット、ミニスロット、シンボルなどの時間単位は、互いに読み替えられてもよい。 Radio frames, subframes, slots, minislots, and symbols all represent time units when transmitting signals. The radio frame, the subframe, the slot, the minislot, and the symbol may have different names corresponding to each. Note that time units such as frames, subframes, slots, minislots, and symbols in the present disclosure may be interchanged with each other.
 例えば、1サブフレームはTTIと呼ばれてもよいし、複数の連続したサブフレームがTTIと呼ばれてよいし、1スロット又は1ミニスロットがTTIと呼ばれてもよい。つまり、サブフレーム及びTTIの少なくとも一方は、既存のLTEにおけるサブフレーム(1ms)であってもよいし、1msより短い期間(例えば、1-13シンボル)であってもよいし、1msより長い期間であってもよい。なお、TTIを表す単位は、サブフレームではなくスロット、ミニスロットなどと呼ばれてもよい。 For example, one subframe may be called a TTI, a plurality of consecutive subframes may be called a TTI, and one slot or one minislot may be called a TTI. That is, at least one of the subframe and the TTI may be a subframe (1 ms) in the existing LTE, a period shorter than 1 ms (for example, 1 to 13 symbols), or a period longer than 1 ms. It may be. Note that the unit representing the TTI may be called a slot, a minislot, or the like instead of a subframe.
 ここで、TTIは、例えば、無線通信におけるスケジューリングの最小時間単位のことをいう。例えば、LTEシステムでは、基地局が各ユーザ端末に対して、無線リソース(各ユーザ端末において使用することが可能な周波数帯域幅、送信電力など)を、TTI単位で割り当てるスケジューリングを行う。なお、TTIの定義はこれに限られない。 Here, the TTI refers to, for example, a minimum time unit of scheduling in wireless communication. For example, in the LTE system, the base station performs scheduling for allocating radio resources (frequency bandwidth, transmission power, and the like that can be used in each user terminal) to each user terminal in TTI units. Note that the definition of TTI is not limited to this.
 TTIは、チャネル符号化されたデータパケット(トランスポートブロック)、コードブロック、コードワードなどの送信時間単位であってもよいし、スケジューリング、リンクアダプテーションなどの処理単位となってもよい。なお、TTIが与えられたとき、実際にトランスポートブロック、コードブロック、コードワードなどがマッピングされる時間区間(例えば、シンボル数)は、当該TTIよりも短くてもよい。 The TTI may be a transmission time unit such as a channel-encoded data packet (transport block), a code block, or a code word, or may be a processing unit such as scheduling and link adaptation. Note that when a TTI is given, a time section (for example, the number of symbols) in which a transport block, a code block, a codeword, and the like are actually mapped may be shorter than the TTI.
 なお、1スロット又は1ミニスロットがTTIと呼ばれる場合、1以上のTTI(すなわち、1以上のスロット又は1以上のミニスロット)が、スケジューリングの最小時間単位となってもよい。また、当該スケジューリングの最小時間単位を構成するスロット数(ミニスロット数)は制御されてもよい。 If one slot or one minislot is called a TTI, one or more TTIs (ie, one or more slots or one or more minislots) may be the minimum time unit for scheduling. Further, the number of slots (mini-slot number) constituting the minimum time unit of the scheduling may be controlled.
 1msの時間長を有するTTIは、通常TTI(3GPP Rel.8-12におけるTTI)、ノーマルTTI、ロングTTI、通常サブフレーム、ノーマルサブフレーム、ロングサブフレーム、スロットなどと呼ばれてもよい。通常TTIより短いTTIは、短縮TTI、ショートTTI、部分TTI(partial又はfractional TTI)、短縮サブフレーム、ショートサブフレーム、ミニスロット、サブスロット、スロットなどと呼ばれてもよい。 A TTI having a time length of 1 ms may be referred to as a normal TTI (TTI in 3GPP@Rel.8-12), a normal TTI, a long TTI, a normal subframe, a normal subframe, a long subframe, a slot, and the like. A TTI shorter than the normal TTI may be called a shortened TTI, a short TTI, a partial TTI (partial or fractional TTI), a shortened subframe, a short subframe, a minislot, a subslot, a slot, and the like.
 なお、ロングTTI(例えば、通常TTI、サブフレームなど)は、1msを超える時間長を有するTTIで読み替えてもよいし、ショートTTI(例えば、短縮TTIなど)は、ロングTTIのTTI長未満かつ1ms以上のTTI長を有するTTIで読み替えてもよい。 Note that a long TTI (for example, a normal TTI, a subframe, etc.) may be read as a TTI having a time length exceeding 1 ms, and a short TTI (for example, a shortened TTI, etc.) may be replaced with a TTI shorter than the long TTI and 1 ms. The TTI having the above-described TTI length may be replaced with the TTI.
 リソースブロック(RB:Resource Block)は、時間領域及び周波数領域のリソース割当単位であり、周波数領域において、1つ又は複数個の連続した副搬送波(サブキャリア(subcarrier))を含んでもよい。RBに含まれるサブキャリアの数は、ニューメロロジーに関わらず同じであってもよく、例えば12であってもよい。RBに含まれるサブキャリアの数は、ニューメロロジーに基づいて決定されてもよい。 A resource block (RB: Resource Block) is a resource allocation unit in the time domain and the frequency domain, and may include one or a plurality of continuous subcarriers (subcarriers) in the frequency domain. The number of subcarriers included in the RB may be the same irrespective of the numerology, and may be, for example, 12. The number of subcarriers included in the RB may be determined based on numerology.
 また、RBは、時間領域において、1つ又は複数個のシンボルを含んでもよく、1スロット、1ミニスロット、1サブフレーム又は1TTIの長さであってもよい。1TTI、1サブフレームなどは、それぞれ1つ又は複数のリソースブロックによって構成されてもよい。 R Also, the RB may include one or more symbols in the time domain, and may have a length of one slot, one minislot, one subframe, or one TTI. One TTI, one subframe, and the like may each be configured by one or a plurality of resource blocks.
 なお、1つ又は複数のRBは、物理リソースブロック(PRB:Physical RB)、サブキャリアグループ(SCG:Sub-Carrier Group)、リソースエレメントグループ(REG:Resource Element Group)、PRBペア、RBペアなどと呼ばれてもよい。 One or a plurality of RBs include a physical resource block (PRB: Physical @ RB), a subcarrier group (SCG: Sub-Carrier @ Group), a resource element group (REG: Resource @ Element @ Group), a PRB pair, an RB pair, and the like. May be called.
 また、リソースブロックは、1つ又は複数のリソースエレメント(RE:Resource Element)によって構成されてもよい。例えば、1REは、1サブキャリア及び1シンボルの無線リソース領域であってもよい。 {Also, a resource block may be composed of one or more resource elements (RE: Resource @ Element). For example, one RE may be a radio resource area of one subcarrier and one symbol.
 帯域幅部分(BWP:Bandwidth Part)(部分帯域幅などと呼ばれてもよい)は、あるキャリアにおいて、あるニューメロロジー用の連続する共通RB(common resource blocks)のサブセットのことを表してもよい。ここで、共通RBは、当該キャリアの共通参照ポイントを基準としたRBのインデックスによって特定されてもよい。PRBは、あるBWPで定義され、当該BWP内で番号付けされてもよい。 A bandwidth part (BWP: Bandwidth @ Part) (which may be referred to as a partial bandwidth or the like) may also represent a subset of consecutive common RBs (common @ resource @ blocks) for a certain numerology in a certain carrier. Good. Here, the common RB may be specified by an index of the RB based on the common reference point of the carrier. A PRB may be defined by a BWP and numbered within the BWP.
 BWPには、UL用のBWP(UL BWP)と、DL用のBWP(DL BWP)とが含まれてもよい。UEに対して、1キャリア内に1つ又は複数のBWPが設定されてもよい。 $ BWP may include a BWP for UL (UL @ BWP) and a BWP for DL (DL @ BWP). For a UE, one or more BWPs may be configured in one carrier.
 設定されたBWPの少なくとも1つがアクティブであってもよく、UEは、アクティブなBWPの外で所定の信号/チャネルを送受信することを想定しなくてもよい。なお、本開示における「セル」、「キャリア」などは、「BWP」で読み替えられてもよい。 少 な く と も At least one of the configured BWPs may be active, and the UE does not have to assume to transmit and receive a given signal / channel outside the active BWP. Note that “cell”, “carrier”, and the like in the present disclosure may be replaced with “BWP”.
 なお、上述した無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルなどの構造は例示に過ぎない。例えば、無線フレームに含まれるサブフレームの数、サブフレーム又は無線フレームあたりのスロットの数、スロット内に含まれるミニスロットの数、スロット又はミニスロットに含まれるシンボル及びRBの数、RBに含まれるサブキャリアの数、並びにTTI内のシンボル数、シンボル長、サイクリックプレフィックス(CP:Cyclic Prefix)長などの構成は、様々に変更することができる。 The structures of the above-described radio frame, subframe, slot, minislot, symbol, and the like are merely examples. For example, the number of subframes included in a radio frame, the number of slots per subframe or radio frame, the number of minislots included in a slot, the number of symbols and RBs included in a slot or minislot, included in an RB The configuration of the number of subcarriers, the number of symbols in the TTI, the symbol length, the cyclic prefix (CP: Cyclic Prefix) length, and the like can be variously changed.
 また、本開示において説明した情報、パラメータなどは、絶対値を用いて表されてもよいし、所定の値からの相対値を用いて表されてもよいし、対応する別の情報を用いて表されてもよい。例えば、無線リソースは、所定のインデックスによって指示されてもよい。 Further, the information, parameters, and the like described in the present disclosure may be expressed using an absolute value, may be expressed using a relative value from a predetermined value, or may be expressed using another corresponding information. May be represented. For example, a radio resource may be indicated by a predetermined index.
 本開示においてパラメータなどに使用する名称は、いかなる点においても限定的な名称ではない。さらに、これらのパラメータを使用する数式などは、本開示において明示的に開示したものと異なってもよい。様々なチャネル(PUCCH(Physical Uplink Control Channel)、PDCCH(Physical Downlink Control Channel)など)及び情報要素は、あらゆる好適な名称によって識別できるので、これらの様々なチャネル及び情報要素に割り当てている様々な名称は、いかなる点においても限定的な名称ではない。 名称 Names used for parameters and the like in the present disclosure are not limited in any respect. Further, the formulas and the like using these parameters may be different from those explicitly disclosed in the present disclosure. The various channels (PUCCH (Physical Uplink Control Channel), PDCCH (Physical Downlink Control Channel), etc.) and information elements can be identified by any suitable name, so the various names assigned to these various channels and information elements Is not a limiting name in any way.
 本開示において説明した情報、信号などは、様々な異なる技術のいずれかを使用して表されてもよい。例えば、上記の説明全体に渡って言及され得るデータ、命令、コマンド、情報、信号、ビット、シンボル、チップなどは、電圧、電流、電磁波、磁界若しくは磁性粒子、光場若しくは光子、又はこれらの任意の組み合わせによって表されてもよい。 The information, signals, etc. described in this disclosure may be represented using any of a variety of different technologies. For example, data, instructions, commands, information, signals, bits, symbols, chips, etc., that can be referred to throughout the above description are not limited to voltages, currents, electromagnetic waves, magnetic or magnetic particles, optical or photons, or any of these. May be represented by a combination of
 また、情報、信号などは、上位レイヤから下位レイヤ及び下位レイヤから上位レイヤの少なくとも一方へ出力され得る。情報、信号などは、複数のネットワークノードを介して入出力されてもよい。 情報 In addition, information, signals, and the like can be output from the upper layer to at least one of the lower layer and the lower layer to the upper layer. Information, signals, etc. may be input / output via a plurality of network nodes.
 入出力された情報、信号などは、特定の場所(例えば、メモリ)に保存されてもよいし、管理テーブルを用いて管理してもよい。入出力される情報、信号などは、上書き、更新又は追記をされ得る。出力された情報、信号などは、削除されてもよい。入力された情報、信号などは、他の装置へ送信されてもよい。 (4) Information and signals input and output may be stored in a specific place (for example, a memory) or may be managed using a management table. Information and signals that are input and output can be overwritten, updated, or added. The output information, signal, and the like may be deleted. The input information, signal, and the like may be transmitted to another device.
 情報の通知は、本開示において説明した態様/実施形態に限られず、他の方法を用いて行われてもよい。例えば、本開示における情報の通知は、物理レイヤシグナリング(例えば、下り制御情報(DCI:Downlink Control Information)、上り制御情報(UCI:Uplink Control Information))、上位レイヤシグナリング(例えば、RRC(Radio Resource Control)シグナリング、ブロードキャスト情報(マスタ情報ブロック(MIB:Master Information Block)、システム情報ブロック(SIB:System Information Block)など)、MAC(Medium Access Control)シグナリング)、その他の信号又はこれらの組み合わせによって実施されてもよい。 Notification of information is not limited to the aspect / embodiment described in the present disclosure, and may be performed using another method. For example, information notification in the present disclosure includes physical layer signaling (for example, downlink control information (DCI: Downlink Control Information), uplink control information (UCI: Uplink Control Information)), and upper layer signaling (for example, RRC (Radio Resource Control). ) Signaling, broadcast information (master information block (MIB: Master Information Block), system information block (SIB: System Information Block), etc.), MAC (Medium Access Control) signaling), other signals or a combination thereof. Is also good.
 なお、物理レイヤシグナリングは、L1/L2(Layer 1/Layer 2)制御情報(L1/L2制御信号)、L1制御情報(L1制御信号)などと呼ばれてもよい。また、RRCシグナリングは、RRCメッセージと呼ばれてもよく、例えば、RRC接続セットアップ(RRC Connection Setup)メッセージ、RRC接続再構成(RRC Connection Reconfiguration)メッセージなどであってもよい。また、MACシグナリングは、例えば、MAC制御要素(MAC CE(Control Element))を用いて通知されてもよい。 Note that the physical layer signaling may be called L1 / L2 (Layer 1 / Layer 2) control information (L1 / L2 control signal), L1 control information (L1 control signal), or the like. The RRC signaling may be referred to as an RRC message, and may be, for example, an RRC connection setup (RRC Connection Setup) message, an RRC connection reconfiguration (RRC Connection Reconfiguration) message, or the like. Also, the MAC signaling may be notified using, for example, a MAC control element (MAC @ CE (Control @ Element)).
 また、所定の情報の通知(例えば、「Xであること」の通知)は、明示的な通知に限られず、暗示的に(例えば、当該所定の情報の通知を行わないことによって又は別の情報の通知によって)行われてもよい。 Further, the notification of the predetermined information (for example, the notification of “X”) is not limited to an explicit notification, and is implicit (for example, by not performing the notification of the predetermined information or by another information). May be performed).
 判定は、1ビットで表される値(0か1か)によって行われてもよいし、真(true)又は偽(false)で表される真偽値(boolean)によって行われてもよいし、数値の比較(例えば、所定の値との比較)によって行われてもよい。 The determination may be made by a value represented by 1 bit (0 or 1), or may be made by a boolean value represented by true or false. , May be performed by comparing numerical values (for example, comparison with a predetermined value).
 ソフトウェアは、ソフトウェア、ファームウェア、ミドルウェア、マイクロコード、ハードウェア記述言語と呼ばれるか、他の名称で呼ばれるかを問わず、命令、命令セット、コード、コードセグメント、プログラムコード、プログラム、サブプログラム、ソフトウェアモジュール、アプリケーション、ソフトウェアアプリケーション、ソフトウェアパッケージ、ルーチン、サブルーチン、オブジェクト、実行可能ファイル、実行スレッド、手順、機能などを意味するよう広く解釈されるべきである。 Software, regardless of whether it is called software, firmware, middleware, microcode, a hardware description language, or any other name, instructions, instruction sets, codes, code segments, program codes, programs, subprograms, software modules , Applications, software applications, software packages, routines, subroutines, objects, executables, threads of execution, procedures, functions, and the like.
 また、ソフトウェア、命令、情報などは、伝送媒体を介して送受信されてもよい。例えば、ソフトウェアが、有線技術(同軸ケーブル、光ファイバケーブル、ツイストペア、デジタル加入者回線(DSL:Digital Subscriber Line)など)及び無線技術(赤外線、マイクロ波など)の少なくとも一方を使用してウェブサイト、サーバ、又は他のリモートソースから送信される場合、これらの有線技術及び無線技術の少なくとも一方は、伝送媒体の定義内に含まれる。 ソ フ ト ウ ェ ア Also, software, instructions, information, and the like may be transmitted and received via a transmission medium. For example, if the software uses at least one of wired technology (coaxial cable, fiber optic cable, twisted pair, digital subscriber line (DSL), etc.) and wireless technology (infrared, microwave, etc.), the website, When transmitted from a server or other remote source, at least one of these wired and / or wireless technologies is included within the definition of a transmission medium.
 本開示において使用する「システム」及び「ネットワーク」という用語は、互換的に使用され得る。「ネットワーク」は、ネットワークに含まれる装置(例えば、基地局)のことを意味してもよい。 用語 The terms “system” and “network” as used in this disclosure may be used interchangeably. “Network” may mean a device (eg, a base station) included in the network.
 本開示において、「プリコーディング」、「プリコーダ」、「ウェイト(プリコーディングウェイト)」、「擬似コロケーション(QCL:Quasi-Co-Location)」、「TCI状態(Transmission Configuration Indication state)」、「空間関係(spatial relation)」、「空間ドメインフィルタ(spatial domain filter)」、「送信電力」、「位相回転」、「アンテナポート」、「アンテナポートグル-プ」、「レイヤ」、「レイヤ数」、「ランク」、「リソース」、「リソースセット」、「リソースグループ」、「ビーム」、「ビーム幅」、「ビーム角度」、「アンテナ」、「アンテナ素子」、「パネル」などの用語は、互換的に使用され得る。 In the present disclosure, “precoding”, “precoder”, “weight (precoding weight)”, “quasi-co-location (QCL)”, “TCI state (Transmission Configuration Indication state)”, “spatial relation” (Spatial relation), "spatial domain filter", "transmission power", "phase rotation", "antenna port", "antenna port group", "layer", "number of layers", " Terms such as "rank", "resource", "resource set", "resource group", "beam", "beam width", "beam angle", "antenna", "antenna element", "panel" are interchangeable Can be used for
 本開示においては、「基地局(BS:Base Station)」、「無線基地局」、「固定局(fixed station)」、「NodeB」、「eNodeB(eNB)」、「gNodeB(gNB)」、「アクセスポイント(access point)」、「送信ポイント(TP:Transmission Point)」、「受信ポイント(RP:Reception Point)」、「送受信ポイント(TRP:Transmission/Reception Point)」、「パネル」、「セル」、「セクタ」、「セルグループ」、「キャリア」、「コンポーネントキャリア」などの用語は、互換的に使用され得る。基地局は、マクロセル、スモールセル、フェムトセル、ピコセルなどの用語で呼ばれる場合もある。 In the present disclosure, “base station (BS: Base @ Station)”, “wireless base station”, “fixed station (fixed @ station)”, “NodeB”, “eNodeB (eNB)”, “gNodeB (gNB)”, “gNodeB (gNB)” "Access point (access @ point)", "transmission point (TP: Transmission @ Point)", "reception point (RP: Reception @ Point)", "transmission / reception point (TRP: Transmission / Reception @ Point)", "panel", "cell" , "Sector", "cell group", "carrier", "component carrier" and the like may be used interchangeably. A base station may also be referred to as a macro cell, a small cell, a femto cell, a pico cell, or the like.
 基地局は、1つ又は複数(例えば、3つ)のセルを収容することができる。基地局が複数のセルを収容する場合、基地局のカバレッジエリア全体は複数のより小さいエリアに区分でき、各々のより小さいエリアは、基地局サブシステム(例えば、屋内用の小型基地局(RRH:Remote Radio Head))によって通信サービスを提供することもできる。「セル」又は「セクタ」という用語は、このカバレッジにおいて通信サービスを行う基地局及び基地局サブシステムの少なくとも一方のカバレッジエリアの一部又は全体を指す。 A base station can accommodate one or more (eg, three) cells. If the base station accommodates multiple cells, the entire coverage area of the base station can be partitioned into multiple smaller areas, each smaller area being a base station subsystem (eg, a small indoor base station (RRH: Communication services can also be provided by Remote Radio Head)). The term "cell" or "sector" refers to part or all of the coverage area of at least one of a base station and a base station subsystem that provides communication services in this coverage.
 本開示においては、「移動局(MS:Mobile Station)」、「ユーザ端末(user terminal)」、「ユーザ装置(UE:User Equipment)」、「端末」などの用語は、互換的に使用され得る。 In the present disclosure, terms such as “mobile station (MS)”, “user terminal”, “user equipment” (UE), and “terminal” may be used interchangeably. .
 移動局は、加入者局、モバイルユニット、加入者ユニット、ワイヤレスユニット、リモートユニット、モバイルデバイス、ワイヤレスデバイス、ワイヤレス通信デバイス、リモートデバイス、モバイル加入者局、アクセス端末、モバイル端末、ワイヤレス端末、リモート端末、ハンドセット、ユーザエージェント、モバイルクライアント、クライアント又はいくつかの他の適切な用語で呼ばれる場合もある。 A mobile station is a subscriber station, mobile unit, subscriber unit, wireless unit, remote unit, mobile device, wireless device, wireless communication device, remote device, mobile subscriber station, access terminal, mobile terminal, wireless terminal, remote terminal. , Handset, user agent, mobile client, client or some other suitable terminology.
 基地局及び移動局の少なくとも一方は、送信装置、受信装置、無線通信装置などと呼ばれてもよい。なお、基地局及び移動局の少なくとも一方は、移動体に搭載されたデバイス、移動体自体などであってもよい。当該移動体は、乗り物(例えば、車、飛行機など)であってもよいし、無人で動く移動体(例えば、ドローン、自動運転車など)であってもよいし、ロボット(有人型又は無人型)であってもよい。なお、基地局及び移動局の少なくとも一方は、必ずしも通信動作時に移動しない装置も含む。例えば、基地局及び移動局の少なくとも一方は、センサなどのIoT(Internet of Things)機器であってもよい。 少 な く と も At least one of the base station and the mobile station may be called a transmitting device, a receiving device, a wireless communication device, or the like. Note that at least one of the base station and the mobile station may be a device mounted on the mobile unit, the mobile unit itself, or the like. The moving object may be a vehicle (for example, a car, an airplane, or the like), may be an unmanned moving object (for example, a drone, an autonomous vehicle), or may be a robot (maned or unmanned). ). Note that at least one of the base station and the mobile station includes a device that does not necessarily move during a communication operation. For example, at least one of the base station and the mobile station may be an IoT (Internet of Things) device such as a sensor.
 また、本開示における基地局は、ユーザ端末で読み替えてもよい。例えば、基地局及びユーザ端末間の通信を、複数のユーザ端末間の通信(例えば、D2D(Device-to-Device)、V2X(Vehicle-to-Everything)などと呼ばれてもよい)に置き換えた構成について、本開示の各態様/実施形態を適用してもよい。この場合、上述の基地局10が有する機能をユーザ端末20が有する構成としてもよい。また、「上り」、「下り」などの文言は、端末間通信に対応する文言(例えば、「サイド(side)」)で読み替えられてもよい。例えば、上りチャネル、下りチャネルなどは、サイドチャネルで読み替えられてもよい。 基地 Also, the base station in the present disclosure may be replaced with a user terminal. For example, communication between a base station and a user terminal is replaced with communication between a plurality of user terminals (for example, may be called D2D (Device-to-Device), V2X (Vehicle-to-Everything), etc.). Each aspect / embodiment of the present disclosure may be applied to the configuration. In this case, the configuration may be such that the user terminal 20 has the function of the base station 10 described above. Further, words such as “up” and “down” may be read as words corresponding to communication between terminals (for example, “side”). For example, an uplink channel, a downlink channel, and the like may be replaced with a side channel.
 同様に、本開示におけるユーザ端末は、基地局で読み替えてもよい。この場合、上述のユーザ端末20が有する機能を基地局10が有する構成としてもよい。 Similarly, a user terminal in the present disclosure may be replaced by a base station. In this case, a configuration in which the base station 10 has the function of the user terminal 20 described above may be adopted.
 本開示において、基地局によって行われるとした動作は、場合によってはその上位ノード(upper node)によって行われることもある。基地局を有する1つ又は複数のネットワークノード(network nodes)を含むネットワークにおいて、端末との通信のために行われる様々な動作は、基地局、基地局以外の1つ以上のネットワークノード(例えば、MME(Mobility Management Entity)、S-GW(Serving-Gateway)などが考えられるが、これらに限られない)又はこれらの組み合わせによって行われ得ることは明らかである。 In the present disclosure, the operation performed by the base station may be performed by an upper node (upper node) in some cases. In a network including one or more network nodes having a base station (network @ nodes), various operations performed for communication with a terminal include a base station, one or more network nodes other than the base station (eg, Obviously, it can be performed by MME (Mobility Management Entity), S-GW (Serving-Gateway) or the like, but not limited thereto, or a combination thereof.
 本開示において説明した各態様/実施形態は単独で用いてもよいし、組み合わせて用いてもよいし、実行に伴って切り替えて用いてもよい。また、本開示において説明した各態様/実施形態の処理手順、シーケンス、フローチャートなどは、矛盾の無い限り、順序を入れ替えてもよい。例えば、本開示において説明した方法については、例示的な順序を用いて様々なステップの要素を提示しており、提示した特定の順序に限定されない。 各 Each aspect / embodiment described in the present disclosure may be used alone, may be used in combination, or may be used by switching with execution. In addition, the processing procedures, sequences, flowcharts, and the like of each aspect / embodiment described in the present disclosure may be interchanged in order as long as there is no inconsistency. For example, for the methods described in this disclosure, elements of various steps are presented in an exemplary order, and are not limited to the specific order presented.
 本開示において説明した各態様/実施形態は、LTE(Long Term Evolution)、LTE-A(LTE-Advanced)、LTE-B(LTE-Beyond)、SUPER 3G、IMT-Advanced、4G(4th generation mobile communication system)、5G(5th generation mobile communication system)、FRA(Future Radio Access)、New-RAT(Radio Access Technology)、NR(New Radio)、NX(New radio access)、FX(Future generation radio access)、GSM(登録商標)(Global System for Mobile communications)、CDMA2000、UMB(Ultra Mobile Broadband)、IEEE 802.11(Wi-Fi(登録商標))、IEEE 802.16(WiMAX(登録商標))、IEEE 802.20、UWB(Ultra-WideBand)、Bluetooth(登録商標)、その他の適切な無線通信方法を利用するシステム、これらに基づいて拡張された次世代システムなどに適用されてもよい。また、複数のシステムが組み合わされて(例えば、LTE又はLTE-Aと、5Gとの組み合わせなど)適用されてもよい。 Each aspect / embodiment described in the present disclosure is applicable to LTE (Long Term Evolution), LTE-A (LTE-Advanced), LTE-B (LTE-Beyond), SUPER 3G, IMT-Advanced, 4G (4th generation mobile communication). system), 5G (5th generation mobile communication system), FRA (Future Radio Access), New-RAT (Radio Access Technology), NR (New Radio), NX (New radio access), FX (Future generation radio access), GSM (Registered trademark) (Global System for Mobile Communications), CDMA2000, Ultra Mobile Broadband (UMB), IEEE 802.11 (Wi-Fi (registered trademark)), IEEE 802.16 (WiMAX (registered trademark)), IEEE 802. 20, UWB (Ultra-WideBand), Bluetooth (registered trademark) , A system using other appropriate wireless communication methods, and a next-generation system extended based on these methods. Further, a plurality of systems may be combined (for example, a combination of LTE or LTE-A and 5G) and applied.
 本開示において使用する「に基づいて」という記載は、別段に明記されていない限り、「のみに基づいて」を意味しない。言い換えれば、「に基づいて」という記載は、「のみに基づいて」と「に少なくとも基づいて」の両方を意味する。 記載 The term “based on” as used in the present disclosure does not mean “based on” unless otherwise indicated. In other words, the phrase "based on" means both "based only on" and "based at least on."
 本開示において使用する「第1の」、「第2の」などの呼称を使用した要素へのいかなる参照も、それらの要素の量又は順序を全般的に限定しない。これらの呼称は、2つ以上の要素間を区別する便利な方法として本開示において使用され得る。したがって、第1及び第2の要素の参照は、2つの要素のみが採用され得ること又は何らかの形で第1の要素が第2の要素に先行しなければならないことを意味しない。 い か な る Any reference to elements using designations such as "first," "second," etc., as used in this disclosure, does not generally limit the quantity or order of those elements. These designations may be used in the present disclosure as a convenient way to distinguish between two or more elements. Thus, reference to a first and second element does not mean that only two elements can be employed or that the first element must precede the second element in any way.
 本開示において使用する「判断(決定)(determining)」という用語は、多種多様な動作を包含する場合がある。例えば、「判断(決定)」は、判定(judging)、計算(calculating)、算出(computing)、処理(processing)、導出(deriving)、調査(investigating)、探索(looking up、search、inquiry)(例えば、テーブル、データベース又は別のデータ構造での探索)、確認(ascertaining)などを「判断(決定)」することであるとみなされてもよい。 用語 The term "determining" as used in this disclosure may encompass a wide variety of actions. For example, “judgment (decision)” means judging, calculating, computing, processing, deriving, investigating, searching (upping, searching, inquiry) ( For example, a search in a table, database, or another data structure), ascertaining, etc., may be regarded as "deciding".
 また、「判断(決定)」は、受信(receiving)(例えば、情報を受信すること)、送信(transmitting)(例えば、情報を送信すること)、入力(input)、出力(output)、アクセス(accessing)(例えば、メモリ中のデータにアクセスすること)などを「判断(決定)」することであるとみなされてもよい。 Also, “determining” includes receiving (eg, receiving information), transmitting (eg, transmitting information), input (input), output (output), and access ( accessing) (e.g., accessing data in a memory) or the like.
 また、「判断(決定)」は、解決(resolving)、選択(selecting)、選定(choosing)、確立(establishing)、比較(comparing)などを「判断(決定)」することであるとみなされてもよい。つまり、「判断(決定)」は、何らかの動作を「判断(決定)」することであるとみなされてもよい。 Also, “judgment (decision)” is regarded as “judgment (decision)” of resolving, selecting, selecting, establishing, comparing, etc. Is also good. That is, “judgment (decision)” may be regarded as “judgment (decision)” of any operation.
 また、「判断(決定)」は、「想定する(assuming)」、「期待する(expecting)」、「みなす(considering)」などで読み替えられてもよい。 判断 Also, “judgment (decision)” may be read as “assuming”, “expecting”, “considering”, or the like.
 本開示に記載の「最大送信電力」は送信電力の最大値を意味してもよいし、公称最大送信電力(the nominal UE maximum transmit power)を意味してもよいし、定格最大送信電力(the rated UE maximum transmit power)を意味してもよい。 The “maximum transmission power” described in the present disclosure may mean the maximum value of the transmission power, may mean the nominal maximum transmission power (the nominal UE maximum transmit power), or may refer to the rated maximum transmission power (the rated UE maximum transmit power).
 本開示において使用する「接続された(connected)」、「結合された(coupled)」という用語、又はこれらのあらゆる変形は、2又はそれ以上の要素間の直接的又は間接的なあらゆる接続又は結合を意味し、互いに「接続」又は「結合」された2つの要素間に1又はそれ以上の中間要素が存在することを含むことができる。要素間の結合又は接続は、物理的であっても、論理的であっても、あるいはこれらの組み合わせであってもよい。例えば、「接続」は「アクセス」で読み替えられてもよい。 As used in this disclosure, the terms "connected," "coupled," or any variation thereof, refer to any direct or indirect connection or coupling between two or more elements. And may include the presence of one or more intermediate elements between two elements "connected" or "coupled" to each other. The coupling or connection between the elements may be physical, logical, or a combination thereof. For example, “connection” may be read as “access”.
 本開示において、2つの要素が接続される場合、1つ以上の電線、ケーブル、プリント電気接続などを用いて、並びにいくつかの非限定的かつ非包括的な例として、無線周波数領域、マイクロ波領域、光(可視及び不可視の両方)領域の波長を有する電磁エネルギーなどを用いて、互いに「接続」又は「結合」されると考えることができる。 In this disclosure, where two elements are connected, using one or more wires, cables, printed electrical connections, etc., and as some non-limiting and non-exhaustive examples, the radio frequency domain, microwave It can be considered to be "connected" or "coupled" to each other using electromagnetic energy having a wavelength in the region, light (both visible and invisible) regions, and the like.
 本開示において、「AとBが異なる」という用語は、「AとBが互いに異なる」ことを意味してもよい。なお、当該用語は、「AとBがそれぞれCと異なる」ことを意味してもよい。「離れる」、「結合される」などの用語も、「異なる」と同様に解釈されてもよい。 に お い て In the present disclosure, the term “A and B are different” may mean that “A and B are different from each other”. The term may mean that “A and B are different from C”. Terms such as "separate", "coupled" and the like may be interpreted similarly to "different".
 本開示において、「含む(include)」、「含んでいる(including)」及びこれらの変形が使用されている場合、これらの用語は、用語「備える(comprising)」と同様に、包括的であることが意図される。さらに、本開示において使用されている用語「又は(or)」は、排他的論理和ではないことが意図される。 Where the terms “include”, “including” and variations thereof are used in the present disclosure, these terms are as inclusive as the term “comprising” Is intended. Further, the term "or" as used in the present disclosure is not intended to be an exclusive or.
 本開示において、例えば、英語でのa, an及びtheのように、翻訳によって冠詞が追加された場合、本開示は、これらの冠詞の後に続く名詞が複数形であることを含んでもよい。 In the present disclosure, where articles are added by translation, for example, a, an, and the in English, the present disclosure may include that the nouns following these articles are plural.
 以上、本開示に係る発明について詳細に説明したが、当業者にとっては、本開示に係る発明が本開示中に説明した実施形態に限定されないということは明らかである。本開示に係る発明は、請求の範囲の記載に基づいて定まる発明の趣旨及び範囲を逸脱することなく修正及び変更態様として実施することができる。したがって、本開示の記載は、例示説明を目的とし、本開示に係る発明に対して何ら制限的な意味をもたらさない。 Although the invention according to the present disclosure has been described in detail above, it is obvious to those skilled in the art that the invention according to the present disclosure is not limited to the embodiments described in the present disclosure. The invention according to the present disclosure can be implemented as modifications and changes without departing from the spirit and scope of the invention determined based on the description of the claims. Therefore, the description of the present disclosure is intended for illustrative purposes and does not bring any restrictive meaning to the invention according to the present disclosure.

Claims (6)

  1.  所定の上り制御チャネルフォーマットを用いるHARQ-ACK(Hybrid Automatic Repeat reQuest-ACKnowledge)送信のタイミングと、前記上り制御チャネルフォーマットを用いるSR(Scheduling Request)送信のタイミングと、が重複する場合、上り制御チャネルリソースを決定する制御部と、
     前記上り制御チャネルフォーマット及び前記上り制御チャネルリソースを用いて前記HARQ-ACK及び前記SRの少なくとも1つを送信する送信部と、を有することを特徴とするユーザ端末。
    If the timing of HARQ-ACK (Hybrid Automatic Repeat reQuest-ACKnowledge) transmission using a predetermined uplink control channel format and the timing of SR (Scheduling Request) transmission using the uplink control channel format overlap, the uplink control channel resource A control unit for determining
    A user terminal, comprising: a transmission unit that transmits at least one of the HARQ-ACK and the SR using the uplink control channel format and the uplink control channel resource.
  2.  前記制御部は、SRの値に基づいて、HARQ-ACK用の第1上り制御チャネルリソースと、SR用の第2上り制御チャネルリソースと、の1つを前記上り制御チャネルリソースとして決定し、
     前記送信部は、前記上り制御チャネルリソースを用いて、前記HARQ-ACKを送信し、
     前記第1上り制御チャネルリソースは、前記第2上り制御チャネルリソースと異なることを特徴とする請求項1に記載のユーザ端末。
    The control unit determines one of a first uplink control channel resource for HARQ-ACK and a second uplink control channel resource for SR based on the value of SR as the uplink control channel resource,
    The transmitting unit transmits the HARQ-ACK using the uplink control channel resource,
    The user terminal according to claim 1, wherein the first uplink control channel resource is different from the second uplink control channel resource.
  3.  前記制御部は、上位レイヤシグナリングによって設定された複数の第1IDから前記第1上り制御チャネルリソースを決定し、上位レイヤシグナリングによって設定された複数の第2IDから前記第2上り制御チャネルリソースを決定し、
     前記複数の第1IDは、前記複数の第2IDと重複しないことを特徴とする請求項2に記載のユーザ端末。
    The control unit determines the first uplink control channel resource from a plurality of first IDs set by higher layer signaling, and determines the second uplink control channel resource from a plurality of second IDs set by upper layer signaling. ,
    The user terminal according to claim 2, wherein the plurality of first IDs do not overlap with the plurality of second IDs.
  4.  HARQ-ACK用の第1上り制御チャネルリソースが、SR用の第2上り制御チャネルリソースと重複する場合、前記制御部は、前記第1上り制御チャネルリソース及び前記第2上り制御チャネルリソースとは異なる第3上り制御チャネルリソースと、前記第1上り制御チャネルリソースと、前記第2上り制御チャネルリソースと、の1つを前記上り制御チャネルリソースとして決定し、
     前記送信部は、前記上り制御チャネルリソースを用いて、前記HARQ-ACK及び前記SRの1つを送信することを特徴とする請求項1に記載のユーザ端末。
    When the first uplink control channel resource for HARQ-ACK overlaps with the second uplink control channel resource for SR, the control unit is different from the first uplink control channel resource and the second uplink control channel resource. Determining one of a third uplink control channel resource, the first uplink control channel resource, and the second uplink control channel resource as the uplink control channel resource;
    The user terminal according to claim 1, wherein the transmitting unit transmits one of the HARQ-ACK and the SR using the uplink control channel resource.
  5.  HARQ-ACK用の第1上り制御チャネルリソースが、SR用の第2上り制御チャネルリソースと重複する場合、前記制御部は、前記第1上り制御チャネルリソース及び前記第2上り制御チャネルリソースとは異なる第3上り制御チャネルリソースと、前記第1上り制御チャネルリソースと、前記第2上り制御チャネルリソースと、の1つを前記上り制御チャネルリソースとして決定し、
     前記送信部は、前記上り制御チャネルリソースを用いて、前記HARQ-ACK及び前記SRを送信することを特徴とする請求項1に記載のユーザ端末。
    When the first uplink control channel resource for HARQ-ACK overlaps with the second uplink control channel resource for SR, the control unit is different from the first uplink control channel resource and the second uplink control channel resource. Determining one of a third uplink control channel resource, the first uplink control channel resource, and the second uplink control channel resource as the uplink control channel resource;
    The user terminal according to claim 1, wherein the transmitting unit transmits the HARQ-ACK and the SR using the uplink control channel resource.
  6.  所定の上り制御チャネルフォーマットを用いるHARQ-ACK(Hybrid Automatic Repeat reQuest-ACKnowledge)送信のタイミングと、前記上り制御チャネルフォーマットを用いるSR(Scheduling Request)送信のタイミングと、が重複する場合、上り制御チャネルリソースを決定する工程と、
     前記上り制御チャネルフォーマット及び前記上り制御チャネルリソースを用いて前記HARQ-ACK及び前記SRの少なくとも1つを送信する工程と、を有することを特徴とするユーザ端末の無線通信方法。
    If the timing of HARQ-ACK (Hybrid Automatic Repeat reQuest-ACKnowledge) transmission using a predetermined uplink control channel format and the timing of SR (Scheduling Request) transmission using the uplink control channel format overlap, the uplink control channel resource Determining the
    Transmitting at least one of the HARQ-ACK and the SR using the uplink control channel format and the uplink control channel resource.
PCT/JP2018/035226 2018-09-21 2018-09-21 User terminal and wireless communication method WO2020059150A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/035226 WO2020059150A1 (en) 2018-09-21 2018-09-21 User terminal and wireless communication method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/035226 WO2020059150A1 (en) 2018-09-21 2018-09-21 User terminal and wireless communication method

Publications (1)

Publication Number Publication Date
WO2020059150A1 true WO2020059150A1 (en) 2020-03-26

Family

ID=69886865

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/035226 WO2020059150A1 (en) 2018-09-21 2018-09-21 User terminal and wireless communication method

Country Status (1)

Country Link
WO (1) WO2020059150A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021199388A1 (en) * 2020-04-01 2021-10-07 株式会社Nttドコモ Terminal
JP7492608B2 (en) 2020-06-23 2024-05-29 エルジー エレクトロニクス インコーポレイティド Uplink transmission/reception method and device in wireless communication system

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017170814A1 (en) * 2016-03-31 2017-10-05 株式会社Nttドコモ User terminal, wireless base station, and wireless communication method

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017170814A1 (en) * 2016-03-31 2017-10-05 株式会社Nttドコモ User terminal, wireless base station, and wireless communication method

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
CATT: "Corrections to UCI feedback procedures", 3GPP TSG RAN WG1 MEETING #94, RL-1809713, 17 August 2018 (2018-08-17), Retrieved from the Internet <URL:http://www.3gpp.org/ftp/tsg_ran/WG1_RL1/TSGR1_94/Docs/Rl-1809713.zip> *
ERICSSON: "On UE Behavior for UCI Reporting and Other Issues", 3GPP TSG RAN WG1 MEETING AH 1801, RL-1800947, 13 January 2018 (2018-01-13), XP051385180, Retrieved from the Internet <URL:http://www.3gpp.org/ftp/tsg_ran/WG1_RL1/TSGR1_AH/NR_AH_1801/Docs/R1-1800947.zip> *
S AMSUNG, TS 38.213, 3GPP TSG RAN WG1 MEETING #94, R1-1808744, 11 August 2018 (2018-08-11), XP051516117, Retrieved from the Internet <URL:http://www.3gpp.org/ftp/tsg_ran/WG1_RL1/TSGR1_94/Docs/Rl-1808744.zip> *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021199388A1 (en) * 2020-04-01 2021-10-07 株式会社Nttドコモ Terminal
JP7492608B2 (en) 2020-06-23 2024-05-29 エルジー エレクトロニクス インコーポレイティド Uplink transmission/reception method and device in wireless communication system

Similar Documents

Publication Publication Date Title
JP7216113B2 (en) Terminal and wireless communication method
JP7193549B2 (en) Terminal, wireless communication method and system
WO2020090119A1 (en) User equipment and wireless communication method
WO2020166045A1 (en) User terminal and wireless communication method
WO2020065740A1 (en) User terminal
WO2020066025A1 (en) User terminal and wireless communication method
WO2020066021A1 (en) User terminal
WO2020090122A1 (en) User terminal and wireless communications method
WO2020090120A1 (en) User terminal and wireless communication method
WO2020065724A1 (en) User terminal and wireless communication method
WO2020066022A1 (en) Transmission device and reception device
WO2020065977A1 (en) User equipment and radio communication method
WO2020144780A1 (en) User terminal and wireless communication method
WO2020121413A1 (en) User terminal and wireless communication method
WO2020144831A1 (en) User terminal and wireless communication method
WO2020144818A1 (en) User terminal and wireless communication method
WO2020035949A1 (en) User equipment and radio communication method
EP4106383A1 (en) Terminal, radio communication method, and base station
WO2020065733A1 (en) User terminal and wireless communication method
WO2020090061A1 (en) User equipment
WO2020059150A1 (en) User terminal and wireless communication method
WO2020144782A1 (en) User equipment and wireless communication method
WO2020065978A1 (en) User equipment
EP4161154A1 (en) Terminal, radio communication method, and base station
WO2020153210A1 (en) User terminal and wireless communication method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18934281

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18934281

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP