WO2021261199A1 - Communication device - Google Patents

Communication device Download PDF

Info

Publication number
WO2021261199A1
WO2021261199A1 PCT/JP2021/021137 JP2021021137W WO2021261199A1 WO 2021261199 A1 WO2021261199 A1 WO 2021261199A1 JP 2021021137 W JP2021021137 W JP 2021021137W WO 2021261199 A1 WO2021261199 A1 WO 2021261199A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
communication device
unit
mapped
information
Prior art date
Application number
PCT/JP2021/021137
Other languages
French (fr)
Japanese (ja)
Inventor
悠貴 外園
祥久 岸山
Original Assignee
株式会社Nttドコモ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Nttドコモ filed Critical 株式会社Nttドコモ
Publication of WO2021261199A1 publication Critical patent/WO2021261199A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes

Definitions

  • the present disclosure relates to a communication device that executes wireless communication, particularly a communication device that executes signal communication by a single carrier method.
  • the 3rd Generation Partnership Project (3GPP) specifies the 5th generation mobile communication system (also called 5G, New Radio (NR) or Next Generation (NG)), and next-generation specifications called Beyond 5G, 5G Evolution or 6G. We are also proceeding with the conversion.
  • 5G New Radio
  • NG Next Generation
  • OFDM Orthogonal Frequency Domain Multiplexing
  • SC-FDMA Single Carrier Frequency Division Multiple Access
  • an object is to provide a communication device capable of appropriately executing signal communication by a single carrier method.
  • One aspect of the present disclosure is a communication device, in which a control unit that maps signals belonging to two or more information sources and signals belonging to the two or more information sources are mapped in one symbol time of a single carrier system.
  • the gist is to provide a transmitter for transmitting the signal.
  • One aspect of the present disclosure is a communication device, which belongs to a receiving unit that receives a signal to which signals belonging to two or more information sources are mapped in one symbol time of a single carrier system, and a receiving unit belonging to the two or more information sources.
  • the gist is to provide a control unit for demapping the signal.
  • FIG. 1 is an overall schematic configuration diagram of the wireless communication system 10.
  • FIG. 2 is a diagram showing a frequency range used in the wireless communication system 10.
  • FIG. 3 is a diagram showing a configuration example of a wireless frame, a subframe, and a slot used in the wireless communication system 10.
  • FIG. 4 is a functional block configuration diagram of the UE 200.
  • FIG. 5 is a functional block configuration diagram of the communication device 300 (transmitting side).
  • FIG. 6 is a functional block configuration diagram of the communication device 400 (reception side).
  • FIG. 7 is an example of mapping of signals belonging to two or more information sources.
  • FIG. 8 is an example of mapping of signals belonging to two or more sources.
  • FIG. 9 is a flow chart showing the operation of the communication device 300.
  • FIG. 10 is a flow chart showing the operation of the communication device 400.
  • FIG. 11 is an example of mapping of two or more control signals according to the modification example 1.
  • FIG. 12 is a diagram showing an example of the hardware configuration of the communication device
  • FIG. 1 is an overall schematic configuration diagram of the wireless communication system 10 according to the embodiment.
  • the wireless communication system 10 is a wireless communication system according to 5G New Radio (NR), and includes a Next Generation-Radio Access Network 20 (hereinafter, NG-RAN20, and a terminal 200 (hereinafter, UE200)).
  • NR 5G New Radio
  • NG-RAN20 Next Generation-Radio Access Network
  • UE200 terminal 200
  • the wireless communication system 10 may be a wireless communication system according to a method called Beyond 5G, 5G Evolution or 6G.
  • NG-RAN20 includes a radio base station 100A (hereinafter, gNB100A) and a radio base station 100B (hereinafter, gNB100B).
  • gNB100A radio base station 100A
  • gNB100B radio base station 100B
  • the specific configuration of the wireless communication system 10 including the number of gNBs and UEs is not limited to the example shown in FIG.
  • the NG-RAN20 actually contains multiple NG-RANNodes, specifically gNB (or ng-eNB), and is connected to a core network (5GC, not shown) according to 5G.
  • NG-RAN20 and 5GC may be simply expressed as "network”.
  • GNB100A and gNB100B are radio base stations according to 5G, and execute wireless communication according to UE200 and 5G.
  • gNB100A, gNB100B and UE200 are Massive MIMO (Multiple-Input Multiple-Output) and multiple component carriers (CC) that generate beam BM with higher directivity by controlling radio signals transmitted from multiple antenna elements.
  • Massive MIMO Multiple-Input Multiple-Output
  • CC multiple component carriers
  • CA carrier aggregation
  • DC dual connectivity
  • the wireless communication system 10 supports a plurality of frequency ranges (FR).
  • FIG. 2 shows the frequency range used in the wireless communication system 10.
  • the wireless communication system 10 corresponds to FR1 and FR2.
  • the frequency bands of each FR are as follows.
  • FR1 410 MHz to 7.125 GHz
  • FR2 24.25 GHz to 52.6 GHz
  • SCS Sub-Carrier Spacing
  • BW bandwidth
  • FR2 has a higher frequency than FR1 and SCS of 60, or 120kHz (240kHz may be included) is used, and a bandwidth (BW) of 50 to 400MHz may be used.
  • SCS may be interpreted as numerology. Numerology is defined in 3GPP TS38.300 and corresponds to one subcarrier interval in the frequency domain.
  • the wireless communication system 10 also supports a higher frequency band than the FR2 frequency band. Specifically, the wireless communication system 10 corresponds to a frequency band exceeding 52.6 GHz and up to 114.25 GHz. Such a high frequency band may be referred to as "FR2x" for convenience.
  • Cyclic Prefix-Orthogonal Frequency Division Multiplexing CP-OFDM
  • DFT- Discrete Fourier Transform-Spread
  • SCS Sub-Carrier Spacing
  • FIG. 3 shows a configuration example of a wireless frame, a subframe, and a slot used in the wireless communication system 10.
  • one slot is composed of 14 symbols, and the larger (wider) the SCS, the shorter the symbol period (and slot period).
  • the SCS is not limited to the interval (frequency) shown in FIG. For example, 480 kHz, 960 kHz, etc. may be used.
  • the number of symbols constituting one slot does not necessarily have to be 14 symbols (for example, 28, 56 symbols).
  • the number of slots per subframe may vary from SCS to SCS.
  • the time direction (t) shown in FIG. 3 may be referred to as a time domain, a symbol period, a symbol time, or the like.
  • the frequency direction may be referred to as a frequency domain, a resource block, a subcarrier, a bandwidth part (BWP: BandwidthPart), or the like.
  • FIG. 4 is a functional block configuration diagram of UE200.
  • the UE 200 includes a radio signal transmission / reception unit 210, an amplifier unit 220, a modulation / demodulation unit 230, a control signal / reference signal processing unit 240, a coding / decoding unit 250, a data transmission / reception unit 260, and a control unit 270. ..
  • the radio signal transmission / reception unit 210 transmits / receives a radio signal according to NR.
  • the radio signal transmission / reception unit 210 corresponds to Massive MIMO, a CA that bundles a plurality of CCs, and a DC that simultaneously communicates between the UE and each of the two NG-RAN Nodes.
  • the amplifier unit 220 is composed of PA (Power Amplifier) / LNA (Low Noise Amplifier) and the like.
  • the amplifier unit 220 amplifies the signal output from the modulation / demodulation unit 230 to a predetermined power level. Further, the amplifier unit 220 amplifies the RF signal output from the radio signal transmission / reception unit 210.
  • the modulation / demodulation unit 230 executes data modulation / demodulation, transmission power setting, resource block allocation, etc. for each predetermined communication destination (gNB100 or other gNB).
  • Cyclic Prefix-Orthogonal Frequency Division Multiplexing (CP-OFDM) / Discrete Fourier Transform-Spread (DFT-S-OFDM) may be applied to the modulation / demodulation unit 230. Further, the DFT-S-OFDM may be used not only for the uplink (UL) but also for the downlink (DL).
  • the control signal / reference signal processing unit 240 executes processing related to various control signals transmitted / received by the UE 200 and processing related to various reference signals transmitted / received by the UE 200.
  • control signal / reference signal processing unit 240 receives various control signals transmitted from the gNB 100 via a predetermined control channel, for example, control signals of the radio resource control layer (RRC). Further, the control signal / reference signal processing unit 240 transmits various control signals to the gNB 100 via a predetermined control channel.
  • a predetermined control channel for example, control signals of the radio resource control layer (RRC).
  • RRC radio resource control layer
  • the control signal / reference signal processing unit 240 executes processing using a reference signal (RS) such as Demodulation Reference Signal (DMRS) and Phase Tracking Reference Signal (PTRS).
  • RS reference signal
  • DMRS Demodulation Reference Signal
  • PTRS Phase Tracking Reference Signal
  • DMRS is a reference signal (pilot signal) known between the base station and the terminal of each terminal for estimating the fading channel used for data demodulation.
  • the PTRS is a terminal-specific reference signal for the purpose of estimating phase noise, which is a problem in high frequency bands.
  • the reference signal may include ChannelStateInformation-ReferenceSignal (CSI-RS), SoundingReferenceSignal (SRS), and PositioningReferenceSignal (PRS) for location information.
  • CSI-RS ChannelStateInformation-ReferenceSignal
  • SRS SoundingReferenceSignal
  • PRS PositioningReferenceSignal
  • control channels include PDCCH (Physical Downlink Control Channel), PUCCH (Physical Uplink Control Channel), RACH (Random Access Channel), Random Access Radio Network Temporary Identifier (RA-RNTI), Downlink Control Information (DCI), and Physical Broadcast Channel (PBCH) etc. are included.
  • PDCCH Physical Downlink Control Channel
  • PUCCH Physical Uplink Control Channel
  • RACH Random Access Channel
  • RA-RNTI Random Access Radio Network Temporary Identifier
  • DCI Downlink Control Information
  • PBCH Physical Broadcast Channel
  • the data channels include PDSCH (Physical Downlink Shared Channel) and PUSCH (Physical Uplink Shared Channel).
  • Data means data transmitted over a data channel.
  • the data channel may be read as a shared channel.
  • the coding / decoding unit 250 executes data division / concatenation and channel coding / decoding for each predetermined communication destination (gNB100 or other gNB).
  • the coding / decoding unit 250 divides the data output from the data transmission / reception unit 260 into predetermined sizes, and executes channel coding for the divided data. Further, the coding / decoding unit 250 decodes the data output from the modulation / demodulation unit 230, and concatenates the decoded data.
  • the data transmission / reception unit 260 executes transmission / reception of Protocol Data Unit (PDU) and Service Data Unit (SDU).
  • PDU Protocol Data Unit
  • SDU Service Data Unit
  • the data transmitter / receiver 260 is a PDU / SDU in multiple layers (such as a medium access control layer (MAC), a wireless link control layer (RLC), and a packet data convergence protocol layer (PDCP)). Assemble / disassemble the.
  • the data transmission / reception unit 260 executes data error correction and retransmission control based on the hybrid ARQ (Hybrid automatic repeat request).
  • hybrid ARQ Hybrid automatic repeat request
  • the control unit 270 controls each functional block constituting the UE 200.
  • the control unit 270 may execute control to receive a signal including an OFDM-applied symbol (hereinafter, OFDM symbol) as a downlink signal, and may execute a control to which SC-FDMA is applied (hereinafter, SC-). Control to transmit a signal including FDMA symbol) as an uplink signal may be executed.
  • the control unit 270 may execute control to receive a signal including the SC-FDMA symbol as a downlink signal.
  • SC-FDMA method The single carrier method (SC-FDMA method) according to the embodiment will be described below.
  • signals belonging to one source are mapped in one symbol time of the single carrier system.
  • signals belonging to two or more information sources are mapped in one symbol time of the single carrier system.
  • SC-FDMA SC-FDMA according to an embodiment may be applied to an uplink signal or a downlink signal.
  • FIG. 5 is a functional block configuration diagram of the communication device 300 (transmitting side) according to the embodiment.
  • gNB100 is used as the communication device 300 for the downlink signal
  • UE200 is used as the communication device 300 for the uplink signal.
  • the communication device 300 includes a multiplexer 320, a DFT unit 330, a mapping unit 340, an IFFT unit 350, a CP addition unit 360, and a transmission unit 370.
  • the multiplexer 320 multiplexes the signal sequences acquired from two or more information sources 310 (information source 310A and information source 310B in FIG. 5). Specifically, the multiplexer 320 applies time division multiplexing to signal sequences obtained from two or more sources 310.
  • the signal sequence may be a sequence of modulated signals.
  • the multiplexer 320 constitutes a control unit that time-divisions multiplexes data belonging to two or more information sources 310 before mapping to one symbol is executed.
  • the multiplexer 320 may be composed of a modulation / demodulation unit 230 and a control unit 270.
  • the DFT unit 330 applies DFT (Discrete Fourier Transform) to the signal sequence obtained by time-division multiplexing, and converts the signal sequence in the time domain into the signal sequence in the frequency domain.
  • DFT Discrete Fourier Transform
  • the mapping unit 340 maps the signal sequence obtained by the DFT in one symbol time of the single carrier system. Specifically, when a single carrier is composed of two or more subcarriers (for example, 12 subcarriers), the mapping unit 340 maps the signal obtained by the DFT to each subcarrier.
  • the signal sequence obtained by the DFT is a signal sequence in which signals belonging to two or more information sources 310 are time-division-multiplexed
  • the signal sequence mapped to the subcarrier by the mapping unit 340 is one. Includes signals belonging to two or more sources 310 in symbol time.
  • the mapping unit 340 constitutes a control unit that maps signals belonging to two or more information sources 310 in one symbol time of the single carrier system.
  • the mapping unit 340 may be composed of a modulation / demodulation unit 230 and a control unit 270.
  • the IFFT unit 350 applies IFFT (Inverse Fast Fourier Transform) to the signal sequence acquired from the mapping unit 340, and converts the signal sequence in the frequency domain into the signal sequence in the time domain.
  • IFFT Inverse Fast Fourier Transform
  • CP addition unit 360 adds CP (Cyclic Prefix) to the beginning of the signal output from IFFT unit 350 (hereinafter, SC-FDMA symbol).
  • the transmission unit 370 transmits a signal to which CP is added as a transmission signal.
  • the transmission unit 370 constitutes a transmission unit that transmits a signal to which signals belonging to two or more information sources 310 are mapped.
  • the transmission unit 370 may be configured by the radio signal transmission / reception unit 210.
  • FIG. 6 is a functional block configuration diagram of the communication device 400 (reception side) according to the embodiment.
  • the UE 200 is used as the communication device 400 for the downlink signal
  • the gNB 100 is used as the communication device 400 for the uplink signal.
  • the communication device 400 includes a receiving unit 410, a CP removing unit 420, a DFT unit 430, a demapping unit 440, an IFFT unit 450, and a demultiplexer unit 460.
  • the receiving unit 410 receives the signal transmitted from the communication device 300.
  • the receiving unit 410 constitutes a receiving unit that receives a signal to which signals belonging to two or more information sources 470 (corresponding to the information source 310 shown in FIG. 5) are mapped in one symbol time of the single carrier system. do.
  • the receiving unit 410 may be configured by the radio signal transmitting / receiving unit 210.
  • the CP removing unit 420 removes the CP from the signal received by the receiving unit 410.
  • the DFT unit 430 applies DFT (Discrete Fourier Transform) to the signal sequence from which the CP has been removed, and converts the signal sequence in the time domain into the signal sequence in the frequency domain.
  • DFT Discrete Fourier Transform
  • the demapping unit 440 demapping the signal sequence obtained by the DFT. Specifically, when a single carrier is composed of two or more subcarriers (for example, 12 subcarriers), the demapping unit 440 demaps the signal sequence mapped to each subcarrier. Since the signal sequence obtained by DFT is a signal sequence in which signals belonging to two or more information sources 470 are time-division-multiplexed, the signal sequence demapped to subcarriers is two or more in one symbol time. Includes signals belonging to source 470.
  • the demapping unit 440 constitutes a control unit that demaps signals belonging to two or more information sources 470.
  • the demapping unit 440 may be composed of a modulation / demodulation unit 230 and a control unit 270.
  • the IFFT unit 450 applies IFFT (Inverse Fast Fourier Transform) to the signal sequence acquired from the demapping unit 440, and converts the signal sequence in the frequency domain into the signal sequence in the time domain.
  • IFFT Inverse Fast Fourier Transform
  • the demultiplexer 460 separates the signal sequence obtained from the IFFT unit 450 into two or more information sources 470 (information source 470A and information source 470B in FIG. 6). Specifically, the demultiplexer 460 applies time division multiplexing to the signal sequence obtained from the IFFT unit 450.
  • the signal sequence may be a sequence of modulated signals.
  • FIG. 7 illustrates a case where an information source A and an information source B exist as information sources.
  • the signal belonging to the information source A is a signal sequence such as 00, 11,..., 01, 10,...,..., and the signal belonging to the information source B is 11, 00,..., 10,. It is a signal sequence such as 01,...,....
  • the signal sequence may be a sequence of signals after modulation.
  • the signals belonging to the information source A and the information source B are multiplexed by time division multiplexing (TDM) and then mapped to each subcarrier.
  • TDM time division multiplexing
  • the signals belonging to Source A and Source B are time-division-multiplexed before mapping to one symbol is performed.
  • FIG. 7 illustrates a case where signals belonging to information source A and information source B are alternately mapped in the time domain. As described above, in the embodiment, signals belonging to two or more information sources are mapped within one symbol time.
  • the signal belonging to the information source A may be mapped to all the subcarriers, or may be mapped to the subcarriers assigned to the information source A. good.
  • the signal belonging to the information source B may be mapped to all the subcarriers, or may be mapped to the subcarriers assigned to the information source B.
  • FIG. 7 illustrates a case where there are two information sources and the signals belonging to the information sources are alternately mapped in the time domain.
  • the embodiments are not limited to this.
  • information source A, information source B, and information source C may exist as information sources.
  • the signal belonging to the information source A is mapped, the signal belonging to the information source B is mapped, the signal belonging to the information source B is mapped, and then the signal belonging to the information source C is mapped. May be mapped.
  • the signals belonging to each source may be continuously mapped in the time domain.
  • step S10 the communication device 300 multiplexes the signals belonging to two or more information sources 310 in a time division manner.
  • step S11 the communication device 300 applies the DFT to the time-division-multiplexed signal.
  • step S12 the communication device 300 maps the signal to which the DFT is applied to the subcarrier. Specifically, the communication device 300 maps signals belonging to two or more information sources 310 to one symbol.
  • step S13 the communication device 300 applies the IFFT to the signal mapped to the subcarrier.
  • step S14 the communication device 300 adds a CP to the signal to which the IFFT is applied.
  • step S15 the communication device 300 transmits the signal to which the CP is added as a transmission signal.
  • step S20 the communication device 400 receives the signal to which the CP is added as a reception signal.
  • the received signal includes a signal to which signals belonging to two or more information sources 310 are mapped in one symbol time.
  • step S21 the communication device 400 removes the CP from the signal received from the communication device 300.
  • step S22 the communication device 400 applies the DFT to the signal from which the CP has been removed.
  • step S23 the communication device 400 demaps the signal to which the DFT is applied to each subcarrier.
  • the signal to which the DFT is applied includes signals belonging to two or more sources 470.
  • step S24 the communication device 400 applies the IFFT to the signal demapped to each subcarrier.
  • step S25 the communication device 400 separates signals belonging to two or more information sources from the signal to which IFFT is applied.
  • the communication device 300 transmits a signal to which signals belonging to two or more information sources 310 are mapped in one symbol time.
  • the communication device 400 receives a signal to which signals belonging to two or more information sources 470 are mapped in one symbol time. According to such a configuration, communication resources can be efficiently used even in a case where a signal belonging to one information source does not require one symbol time.
  • the signal belonging to one information source 310 when the signal belonging to one information source 310 is a signal addressed to one UE200, the signal belonging to two or more information sources 310 may be mapped to the downlink signal in one symbol time.
  • sparse mapping is realized in the time domain for one UE200 (information source), the time that one UE200 should monitor in one symbol time is reduced, and the processing load of the UE200 is reduced.
  • the communication device 300 maps two or more control signals in one symbol time. Two or more control signals may be considered to be two or more sources 310.
  • one slot is composed of 14 symbols.
  • the number of symbols constituting one slot does not necessarily have to be 14 symbols (for example, 28, 56 symbols).
  • control signal A and control signal B in FIG. 11 are mapped in one symbol time.
  • the control signal may be an SS (Synchronization Signal) / PBCH (Physical Broadcast Channel) block. That is, two or more SS / PBCH blocks may be mapped in one symbol time.
  • SS may include PSS (Primary Synchronization Signal) and SSS (Secondary Synchronization Signal).
  • control signals for example, SS / PBCH block
  • SS / PBCH block two or more control signals
  • the shortest period in which the control signal appears can be shortened, and the processing using the control signal (for example, precursor switching) can be speeded up.
  • the communication device 300 may map signals belonging to two or more information sources 310 in one symbol time when a predetermined condition is satisfied.
  • the predetermined condition may be that the frequency band is equal to or higher than the threshold value. That is, the communication device 300 maps signals belonging to one information source in one symbol time in the first frequency band (for example, frequency bands of 52.6 GHz or less, FR1 and FR2), and is higher than the first frequency band. In the second frequency band (for example, frequency band exceeding 52.6 GHz, FR2x), signals belonging to two or more information sources may be mapped in one symbol time.
  • the first frequency band for example, frequency bands of 52.6 GHz or less, FR1 and FR2
  • the second frequency band for example, frequency band exceeding 52.6 GHz, FR2x
  • the predetermined conditions may be applied to the downlink signal. That is, the communication device 300 maps the signals belonging to one information source to the downlink signal in the first frequency band in one symbol time, and the downlink signal in the second frequency band higher than the first frequency band. Signals belonging to two or more sources may be mapped in one symbol time.
  • the predetermined condition may be that the SCS is equal to or higher than the threshold value. That is, when the SCS is the first bandwidth, the communication device 300 maps the signals belonging to one information source in one symbol time, and when the SCS is the second bandwidth wider than the first bandwidth. In addition, signals belonging to two or more information sources may be mapped in one symbol time.
  • the predetermined conditions may be applied to the downlink signal. That is, the communication device 300 maps the signal belonging to one information source in one symbol time to the downlink signal in which the SCS has the first bandwidth, and the SCS has a second bandwidth wider than the first bandwidth. Signals belonging to two or more sources may be mapped to a downlink signal in one symbol time.
  • the predetermined condition may be that the communication device 300 is required to have a transmission power lower than the threshold value. For example, when the communication device 300 maps a signal belonging to one information source in one symbol time when the first power is required as the transmission power, the second power lower than the first power is required as the transmission power. If so, signals belonging to more than one source may be mapped in one symbol time.
  • the predetermined conditions may be applied to the downlink signal. That is, when the communication device 300 requests the first power as the transmission power of the downlink signal, the communication device 300 maps the signal belonging to one information source in one symbol time, and the first power is used as the transmission power of the downlink signal. Signals belonging to more than one source may be mapped in one symbol time when lower second power is required.
  • the predetermined condition may be that the communication device 300 is required to have a coverage area wider than the threshold value.
  • the communication device 300 maps the signals belonging to one information source in one symbol time, and the second coverage area is wider than the first coverage area as the coverage area.
  • signals belonging to more than one source may be mapped in one symbol time.
  • the predetermined conditions may be applied to the downlink signal. That is, when the communication device 300 requests the first coverage area as the coverage area of the downlink signal, the communication device 300 maps the signal belonging to one information source in one symbol time, and sets the first coverage area of the downlink signal. When a second coverage area wider than the coverage area is required, signals belonging to two or more sources may be mapped in one symbol time.
  • the predetermined condition may be that the communication type is mMTC (massive Machine Type Communication).
  • the communication device 300 maps signals belonging to one source in one symbol time when the communication type is not mMTC, and two or more in one symbol time when the communication type is mMTC. Signals belonging to the source may be mapped.
  • the predetermined conditions may be applied to the downlink signal. That is, the communication device 300 maps signals belonging to one information source in one symbol time when the communication type of the downlink signal is not mMTC, and one when the communication type of the downlink signal is mMTC. Signals belonging to more than one source may be mapped in symbol time.
  • the case where the information sources of the signals mapped in one symbol time are two or three is illustrated.
  • the information source may be 4 or more.
  • the block configuration diagram (FIG. 4) used in the description of the above-described embodiment shows a block of functional units.
  • These functional blocks are realized by any combination of at least one of hardware and software.
  • the method of realizing each functional block is not particularly limited. That is, each functional block may be realized using one physically or logically coupled device, or two or more physically or logically separated devices can be directly or indirectly (eg, for example). , Wired, wireless, etc.) and may be realized using these plurality of devices.
  • the functional block may be realized by combining the software with the one device or the plurality of devices.
  • Functions include judgment, decision, judgment, calculation, calculation, processing, derivation, investigation, search, confirmation, reception, transmission, output, access, solution, selection, selection, establishment, comparison, assumption, expectation, and assumption. Broadcasting, notifying, communicating, forwarding, configuring, reconfiguring, allocating, mapping, assigning, etc., but limited to these I can't.
  • a functional block (configuration unit) that makes transmission function is called a transmitting unit (transmitting unit) or a transmitter (transmitter).
  • the realization method is not particularly limited.
  • FIG. 12 is a diagram showing an example of the hardware configuration of the device. As shown in FIG. 12, the device may be configured as a computer device including a processor 1001, a memory 1002, a storage 1003, a communication device 1004, an input device 1005, an output device 1006, a bus 1007, and the like.
  • the word “device” can be read as a circuit, device, unit, etc.
  • the hardware configuration of the device may be configured to include one or more of the devices shown in the figure, or may be configured not to include some of the devices.
  • Each functional block of the device (see FIG. 4) is realized by any hardware element of the computer device or a combination of the hardware elements.
  • each function in the device is such that the processor 1001 performs an operation by loading predetermined software (program) on the hardware such as the processor 1001 and the memory 1002, and controls the communication by the communication device 1004, or the memory. It is realized by controlling at least one of reading and writing of data in 1002 and storage 1003.
  • predetermined software program
  • Processor 1001 operates, for example, an operating system to control the entire computer.
  • the processor 1001 may be configured by a central processing unit (CPU) including an interface with peripheral devices, a control device, an arithmetic unit, a register, and the like.
  • CPU central processing unit
  • the processor 1001 reads a program (program code), a software module, data, etc. from at least one of the storage 1003 and the communication device 1004 into the memory 1002, and executes various processes according to these.
  • a program program code
  • a program that causes a computer to execute at least a part of the operations described in the above-described embodiment is used.
  • the various processes described above may be executed by one processor 1001 or may be executed simultaneously or sequentially by two or more processors 1001.
  • Processor 1001 may be implemented by one or more chips.
  • the program may be transmitted from the network via a telecommunication line.
  • the memory 1002 is a computer-readable recording medium, and is composed of at least one such as ReadOnlyMemory (ROM), ErasableProgrammableROM (EPROM), Electrically ErasableProgrammableROM (EEPROM), and RandomAccessMemory (RAM). May be done.
  • the memory 1002 may be referred to as a register, a cache, a main memory (main storage device), or the like.
  • the memory 1002 can store a program (program code), a software module, or the like that can execute the method according to the embodiment of the present disclosure.
  • the storage 1003 is a computer-readable recording medium, for example, an optical disk such as Compact Disc ROM (CD-ROM), a hard disk drive, a flexible disk, an optical magnetic disk (for example, a compact disk, a digital versatile disk, or a Blu-ray). It may consist of at least one (registered trademark) disk), smart card, flash memory (eg, card, stick, key drive), floppy (registered trademark) disk, magnetic strip, and the like.
  • Storage 1003 may be referred to as auxiliary storage.
  • the recording medium described above may be, for example, a database, server or other suitable medium containing at least one of the memory 1002 and the storage 1003.
  • the communication device 1004 is hardware (transmission / reception device) for communicating between computers via at least one of a wired network and a wireless network, and is also referred to as, for example, a network device, a network controller, a network card, a communication module, or the like.
  • the communication device 1004 includes, for example, a high frequency switch, a duplexer, a filter, a frequency synthesizer, etc. in order to realize at least one of frequency division duplex (FDD) and time division duplex (TDD). It may be composed of.
  • FDD frequency division duplex
  • TDD time division duplex
  • the input device 1005 is an input device (for example, a keyboard, a mouse, a microphone, a switch, a button, a sensor, etc.) that accepts an input from the outside.
  • the output device 1006 is an output device (for example, a display, a speaker, an LED lamp, etc.) that outputs to the outside.
  • the input device 1005 and the output device 1006 may have an integrated configuration (for example, a touch panel).
  • Bus 1007 may be configured using a single bus or may be configured using different buses for each device.
  • the device includes hardware such as a microprocessor, a digital signal processor (Digital Signal Processor: DSP), ApplicationSpecific IntegratedCircuit (ASIC), ProgrammableLogicDevice (PLD), and FieldProgrammableGateArray (FPGA).
  • the hardware may implement some or all of each functional block.
  • processor 1001 may be implemented using at least one of these hardware.
  • information notification includes physical layer signaling (eg Downlink Control Information (DCI), Uplink Control Information (UCI), higher layer signaling (eg RRC signaling, Medium Access Control (MAC) signaling, broadcast information (Master Information Block)). (MIB), System Information Block (SIB)), other signals or combinations thereof.
  • DCI Downlink Control Information
  • UCI Uplink Control Information
  • RRC signaling eg RRC signaling, Medium Access Control (MAC) signaling, broadcast information (Master Information Block)).
  • MIB System Information Block
  • SIB System Information Block
  • RRC signaling may also be referred to as an RRC message, eg, RRC Connection Setup. ) Message, RRC Connection Reconfiguration message, etc. may be used.
  • LTE LongTermEvolution
  • LTE-A LTE-Advanced
  • SUPER3G IMT-Advanced
  • 4G 4th generation mobile communication system
  • 5G 5th generation mobile communication system
  • FutureRadioAccess FAA
  • NewRadio NR
  • W-CDMA registered trademark
  • GSM registered trademark
  • CDMA2000 Code Division Multiple Access 2000
  • UMB UltraMobile Broadband
  • IEEE802.11 Wi-Fi (registered trademark)
  • IEEE802.16 WiMAX®
  • IEEE802.20 Ultra-WideBand (UWB), Bluetooth®, and other systems that utilize appropriate systems and at least one of the next-generation systems extended based on them.
  • a plurality of systems may be applied in combination (for example, a combination of at least one of LTE and LTE-A and 5G).
  • the specific operation performed by the base station in this disclosure may be performed by its upper node (upper node).
  • various operations performed for communication with the terminal are the base station and other network nodes other than the base station (eg, MME or). It is clear that it can be done by at least one of (but not limited to, S-GW, etc.).
  • S-GW network node
  • the case where there is one network node other than the base station is illustrated above, it may be a combination of a plurality of other network nodes (for example, MME and S-GW).
  • Information and signals can be output from the upper layer (or lower layer) to the lower layer (or upper layer).
  • Input / output may be performed via a plurality of network nodes.
  • the input / output information may be stored in a specific location (for example, memory) or may be managed using a management table.
  • the input / output information may be overwritten, updated, or added.
  • the output information may be deleted.
  • the input information may be transmitted to another device.
  • the determination may be made by a value represented by 1 bit (0 or 1), by a true / false value (Boolean: true or false), or by comparing numerical values (for example, a predetermined value). It may be done by comparison with the value).
  • the notification of predetermined information (for example, the notification of "being X") is not limited to the explicit one, but is performed implicitly (for example, the notification of the predetermined information is not performed). May be good.
  • Software whether referred to as software, firmware, middleware, microcode, hardware description language, or other names, is an instruction, instruction set, code, code segment, program code, program, subprogram, software module.
  • Applications, software applications, software packages, routines, subroutines, objects, executable files, execution threads, procedures, features, etc. should be broadly interpreted.
  • software, instructions, information, etc. may be transmitted and received via a transmission medium.
  • a transmission medium For example, a website, where the software uses at least one of wired technology (coaxial cable, fiber optic cable, twisted pair, Digital Subscriber Line (DSL), etc.) and wireless technology (infrared, microwave, etc.).
  • wired technology coaxial cable, fiber optic cable, twisted pair, Digital Subscriber Line (DSL), etc.
  • wireless technology infrared, microwave, etc.
  • the information, signals, etc. described in this disclosure may be represented using any of a variety of different techniques.
  • data, instructions, commands, information, signals, bits, symbols, chips, etc. that may be referred to throughout the above description are voltages, currents, electromagnetic waves, magnetic fields or magnetic particles, light fields or photons, or any of these. It may be represented by a combination of.
  • a channel and a symbol may be a signal (signaling).
  • the signal may be a message.
  • the component carrier (CC) may be referred to as a carrier frequency, a cell, a frequency carrier, or the like.
  • system and “network” used in this disclosure are used interchangeably.
  • the information, parameters, etc. described in the present disclosure may be expressed using absolute values, relative values from predetermined values, or using other corresponding information. It may be represented.
  • the radio resource may be one indicated by an index.
  • Base Station BS
  • Wireless Base Station Wireless Base Station
  • NodeB NodeB
  • eNodeB eNodeB
  • gNodeB gNodeB
  • Base stations are sometimes referred to by terms such as macrocells, small cells, femtocells, and picocells.
  • a base station can accommodate one or more (eg, three) cells (also called sectors). When a base station accommodates multiple cells, the entire base station coverage area can be divided into multiple smaller areas, each smaller area being a base station subsystem (eg, a remote radio for indoor use). Communication services can also be provided by Head: RRH).
  • RRH Remote Radio Head
  • cell refers to a part or all of the coverage area of at least one of the base station providing communication services in this coverage and the base station subsystem.
  • MS Mobile Station
  • UE user equipment
  • terminal terminal
  • Mobile stations can be used by those skilled in the art as subscriber stations, mobile units, subscriber units, wireless units, remote units, mobile devices, wireless devices, wireless communication devices, remote devices, mobile subscriber stations, access terminals, mobile terminals, wireless. It may also be referred to as a terminal, remote terminal, handset, user agent, mobile client, client, or some other suitable term.
  • At least one of the base station and the mobile station may be called a transmitting device, a receiving device, a communication device, or the like.
  • At least one of the base station and the mobile station may be a device mounted on the mobile body, a mobile body itself, or the like.
  • the moving body may be a vehicle (eg, car, airplane, etc.), an unmanned moving body (eg, drone, self-driving car, etc.), or a robot (manned or unmanned). ) May be.
  • at least one of the base station and the mobile station includes a device that does not necessarily move during communication operation.
  • at least one of a base station and a mobile station may be an Internet of Things (IoT) device such as a sensor.
  • IoT Internet of Things
  • the base station in the present disclosure may be read as a mobile station (user terminal, the same shall apply hereinafter).
  • communication between a base station and a mobile station has been replaced with communication between a plurality of mobile stations (for example, it may be called Device-to-Device (D2D), Vehicle-to-Everything (V2X), etc.).
  • D2D Device-to-Device
  • V2X Vehicle-to-Everything
  • Each aspect / embodiment of the present disclosure may be applied to the configuration.
  • the mobile station may have the functions of the base station.
  • words such as "up” and “down” may be read as words corresponding to communication between terminals (for example, "side”).
  • the upstream channel, the downstream channel, and the like may be read as a side channel.
  • the mobile station in the present disclosure may be read as a base station.
  • the base station may have the functions of the mobile station.
  • the wireless frame may be composed of one or more frames in the time domain. Each one or more frames in the time domain may be referred to as a subframe.
  • the subframe may be further composed of one or more slots in the time domain.
  • the subframe may have a fixed time length (eg, 1 ms) that does not depend on numerology.
  • the numerology may be a communication parameter applied to at least one of transmission and reception of a signal or channel.
  • Numerology includes, for example, SubCarrier Spacing (SCS), bandwidth, symbol length, cyclic prefix length, transmission time interval (Transmission Time Interval: TTI), number of symbols per TTI, wireless frame configuration, transmission / reception. It may indicate at least one of a specific filtering process performed by the machine in the frequency domain, a specific windowing process performed by the transmitter / receiver in the time domain, and the like.
  • the slot may be composed of one or more symbols (Orthogonal Frequency Division Multiplexing (OFDM) symbol, Single Carrier Frequency Division Multiple Access (SC-FDMA) symbol, etc.) in the time domain.
  • the slot may be a unit of time based on numerology.
  • the slot may include a plurality of mini slots. Each minislot may be composed of one or more symbols in the time domain. Further, the mini slot may be referred to as a sub slot. The minislot may consist of a smaller number of symbols than the slot.
  • PDSCH (or PUSCH) transmitted in time units larger than the minislot may be referred to as PDSCH (or PUSCH) mapping type A.
  • the PDSCH (or PUSCH) transmitted using the minislot may be referred to as PDSCH (or PUSCH) mapping type B.
  • the wireless frame, subframe, slot, minislot and symbol all represent the time unit when transmitting a signal.
  • the radio frame, subframe, slot, minislot and symbol may use different names corresponding to each.
  • one subframe may be referred to as a transmission time interval (TTI)
  • TTI transmission time interval
  • TTI transmission time interval
  • TTI transmission time interval
  • TTI transmission time interval
  • TTI transmission time interval
  • TTI slot or one minislot
  • at least one of the subframe and TTI may be a subframe (1ms) in existing LTE, a period shorter than 1ms (eg, 1-13 symbols), or a period longer than 1ms. May be.
  • the unit representing TTI may be called a slot, a mini slot, or the like instead of a subframe.
  • TTI refers to, for example, the minimum time unit of scheduling in wireless communication.
  • a base station schedules each user terminal to allocate radio resources (frequency bandwidth that can be used in each user terminal, transmission power, etc.) in TTI units.
  • the definition of TTI is not limited to this.
  • TTI may be a transmission time unit such as a channel-encoded data packet (transport block), a code block, or a code word, or may be a processing unit such as scheduling or link adaptation.
  • the time interval for example, the number of symbols
  • the transport block, code block, code word, etc. may be shorter than the TTI.
  • one or more TTIs may be the minimum time unit for scheduling. Further, the number of slots (number of mini-slots) constituting the minimum time unit of the scheduling may be controlled.
  • TTI with a time length of 1 ms may be called normal TTI (TTI in LTE Rel.8-12), normal TTI, long TTI, normal subframe, normal subframe, long subframe, slot, etc.
  • a TTI shorter than a normal TTI may be referred to as a shortened TTI, a short TTI, a partial TTI (partial or fractional TTI), a shortened subframe, a short subframe, a minislot, a subslot, a slot, and the like.
  • the long TTI (for example, normal TTI, subframe, etc.) may be read as a TTI having a time length of more than 1 ms
  • the short TTI (for example, shortened TTI, etc.) may be read as a TTI less than the TTI length of the long TTI and 1 ms. It may be read as a TTI having the above TTI length.
  • the resource block (RB) is a resource allocation unit in the time domain and the frequency domain, and may include one or a plurality of continuous subcarriers in the frequency domain.
  • the number of subcarriers contained in RB may be the same regardless of numerology, and may be, for example, 12.
  • the number of subcarriers contained in the RB may be determined based on numerology.
  • the time domain of RB may include one or more symbols, and may have a length of 1 slot, 1 mini slot, 1 subframe, or 1 TTI.
  • Each 1TTI, 1 subframe, etc. may be composed of one or a plurality of resource blocks.
  • One or more RBs include a physical resource block (Physical RB: PRB), a sub-carrier group (Sub-Carrier Group: SCG), a resource element group (Resource Element Group: REG), a PRB pair, an RB pair, and the like. May be called.
  • Physical RB Physical RB: PRB
  • SCG sub-carrier Group
  • REG resource element group
  • PRB pair an RB pair, and the like. May be called.
  • the resource block may be composed of one or a plurality of resource elements (ResourceElement: RE).
  • RE resource elements
  • 1RE may be a radio resource area of 1 subcarrier and 1 symbol.
  • Bandwidth Part (which may also be called partial bandwidth, etc.) may represent a subset of consecutive common resource blocks (RBs) for a neurology in a carrier. good.
  • the common RB may be specified by the index of the RB with respect to the common reference point of the carrier.
  • PRBs may be defined in a BWP and numbered within that BWP.
  • BWP may include BWP for UL (UL BWP) and BWP for DL (DL BWP).
  • BWP for UL
  • DL BWP BWP for DL
  • One or more BWPs may be set in one carrier for the UE.
  • At least one of the configured BWPs may be active, and the UE may not expect to send or receive a given signal / channel outside the active BWP.
  • “cell”, “carrier” and the like in this disclosure may be read as “BWP”.
  • the above-mentioned structures such as wireless frames, subframes, slots, mini-slots and symbols are merely examples.
  • the number of subframes contained in a radio frame the number of slots per subframe or radioframe, the number of minislots contained within a slot, the number of symbols and RBs contained in a slot or minislot, included in RB.
  • the number of subcarriers, as well as the number of symbols in the TTI, the symbol length, the cyclic prefix (CP) length, and other configurations can be changed in various ways.
  • connection means any direct or indirect connection or connection between two or more elements and each other. It can include the presence of one or more intermediate elements between two “connected” or “combined” elements.
  • the connection or connection between the elements may be physical, logical, or a combination thereof.
  • connection may be read as "access”.
  • the two elements use at least one of one or more wires, cables and printed electrical connections, and as some non-limiting and non-comprehensive examples, the radio frequency domain. Can be considered to be “connected” or “coupled” to each other using electromagnetic energy having wavelengths in the microwave and light (both visible and invisible) regions.
  • the reference signal may also be abbreviated as Reference Signal (RS) and may be referred to as a pilot (Pilot) depending on the applied standard.
  • RS Reference Signal
  • Pilot pilot
  • each of the above devices may be replaced with a "part”, a “circuit”, a “device”, or the like.
  • references to elements using designations such as “first” and “second” as used in this disclosure does not generally limit the quantity or order of those elements. These designations can be used in the present disclosure as a convenient way to distinguish between two or more elements. Therefore, references to the first and second elements do not mean that only two elements can be adopted there, or that the first element must somehow precede the second element.
  • determining and “determining” used in this disclosure may include a wide variety of actions.
  • “Judgment” and “decision” are, for example, judgment (judging), calculation (calculating), calculation (computing), processing (processing), derivation (deriving), investigation (investigating), search (looking up, search, inquiry). It may include (eg, searching in a table, database or another data structure), ascertaining as “judgment” or “decision”.
  • judgment and “decision” are receiving (for example, receiving information), transmitting (for example, transmitting information), input (input), output (output), and access. It may include (for example, accessing data in memory) to be regarded as “judgment” or “decision”.
  • judgment and “decision” are considered to be “judgment” and “decision” when the things such as solving, selecting, choosing, establishing, and comparing are regarded as “judgment” and “decision”. Can include. That is, “judgment” and “decision” may include considering some action as “judgment” and “decision”. Further, “judgment (decision)” may be read as “assuming", “expecting”, “considering” and the like.
  • the term "A and B are different” may mean “A and B are different from each other”.
  • the term may mean that "A and B are different from C”.
  • Terms such as “separate” and “combined” may be interpreted in the same way as “different”.
  • Radio communication system 20 NG-RAN 100 gNB 200 UE 210 Radio signal transmission / reception unit 220 Amplifier unit 230 Modulation / demodulation unit 240 Control signal / reference signal processing unit 250 Coding / decoding unit 260 Data transmission / reception unit 270 Control unit 300 Communication device 310 Information source 320 Multiplexer 330 DFT unit 340 Mapping unit 350 IFFT unit 360 CP addition part 370 Transmission part 400 Communication device 410 Reception part 420 CP removal part 430 DFT part 440 Demapping part 450 IFFT part 460 Demultiplexer 470 Information source 1001 Processor 1002 Memory 1003 Storage 1004 Communication device 1005 Input device 1006 Output device 1007 Bus

Abstract

This communication device comprises a control unit for mapping signals belonging to two or more information sources in one symbol time of a single carrier system, and a transmission unit for transmitting a signal in which the signals belonging to two or more information sources are mapped.

Description

通信装置Communication device
 本開示は、無線通信を実行する通信装置、特に、シングルキャリア方式で信号の通信を実行する通信装置に関する。 The present disclosure relates to a communication device that executes wireless communication, particularly a communication device that executes signal communication by a single carrier method.
 3rd Generation Partnership Project(3GPP)は、5th generation mobile communication system(5G、New Radio(NR)またはNext Generation(NG)とも呼ばれる)を仕様化し、さらに、Beyond 5G、5G Evolution或いは6Gと呼ばれる次世代の仕様化も進めている。 The 3rd Generation Partnership Project (3GPP) specifies the 5th generation mobile communication system (also called 5G, New Radio (NR) or Next Generation (NG)), and next-generation specifications called Beyond 5G, 5G Evolution or 6G. We are also proceeding with the conversion.
 3GPPのRelease 15では、下りリンク信号についてOFDM(Orthogonal Frequency Domain Multiplexing)が用いられ、上りリンク信号(及びサイドリンク信号)についてSC-FDMA(Single Carrier Frequency Division Multiple Access)が用いられる。SC-FDMAは、単にシングルキャリア方式と呼称されてもよい。 In 3GPP Release 15, OFDM (Orthogonal Frequency Domain Multiplexing) is used for downlink signals, and SC-FDMA (Single Carrier Frequency Division Multiple Access) is used for uplink signals (and side link signals). SC-FDMA may be simply referred to as a single carrier system.
 次世代の仕様化では、52.6GHzを超えるような高周波数帯域の利用、空、海及び宇宙などを含むカバレッジエリアの拡張(超カバレッジ拡張)が検討されている。このような利用シーンでは、周波数利用効率よりもカバレッジ又は電力効率が重要になると想定され、上述したシングルキャリア方式の利用について更なる検討が必要とされる。 In the next-generation specifications, the use of high frequency bands exceeding 52.6 GHz and the expansion of coverage areas including the sky, sea, and space (ultra-coverage expansion) are being considered. In such a usage scene, it is assumed that coverage or power efficiency is more important than frequency utilization efficiency, and further studies on the use of the single carrier method described above are required.
 そこで、以下の開示は、このような状況に鑑みてなされたものであり、シングルキャリア方式で信号の通信を適切に実行し得る通信装置の提供を目的とする。 Therefore, the following disclosure was made in view of such a situation, and an object is to provide a communication device capable of appropriately executing signal communication by a single carrier method.
 本開示の一態様は、通信装置であって、シングルキャリア方式の1つのシンボル時間において、2以上の情報源に属する信号をマッピングする制御部と、前記2以上の情報源に属する信号がマッピングされた信号を送信する送信部と、を備えることを要旨とする。 One aspect of the present disclosure is a communication device, in which a control unit that maps signals belonging to two or more information sources and signals belonging to the two or more information sources are mapped in one symbol time of a single carrier system. The gist is to provide a transmitter for transmitting the signal.
 本開示の一態様は、通信装置であって、シングルキャリア方式の1つのシンボル時間において2以上の情報源に属する信号がマッピングされた信号を受信する受信部と、前記2以上の情報源に属する信号をデマッピングする制御部と、を備えることを要旨とする。 One aspect of the present disclosure is a communication device, which belongs to a receiving unit that receives a signal to which signals belonging to two or more information sources are mapped in one symbol time of a single carrier system, and a receiving unit belonging to the two or more information sources. The gist is to provide a control unit for demapping the signal.
図1は、無線通信システム10の全体概略構成図である。FIG. 1 is an overall schematic configuration diagram of the wireless communication system 10. 図2は、無線通信システム10において用いられる周波数レンジを示す図である。FIG. 2 is a diagram showing a frequency range used in the wireless communication system 10. 図3は、無線通信システム10において用いられる無線フレーム、サブフレーム及びスロットの構成例を示す図である。FIG. 3 is a diagram showing a configuration example of a wireless frame, a subframe, and a slot used in the wireless communication system 10. 図4は、UE200の機能ブロック構成図である。FIG. 4 is a functional block configuration diagram of the UE 200. 図5は、通信装置300(送信側)の機能ブロック構成図である。FIG. 5 is a functional block configuration diagram of the communication device 300 (transmitting side). 図6は、通信装置400(受信側)の機能ブロック構成図である。FIG. 6 is a functional block configuration diagram of the communication device 400 (reception side). 図7は、2以上の情報源に属する信号のマッピングの一例である。FIG. 7 is an example of mapping of signals belonging to two or more information sources. 図8は、2以上の情報源に属する信号のマッピングの一例である。FIG. 8 is an example of mapping of signals belonging to two or more sources. 図9は、通信装置300の動作を示すフロー図である。FIG. 9 is a flow chart showing the operation of the communication device 300. 図10は、通信装置400の動作を示すフロー図である。FIG. 10 is a flow chart showing the operation of the communication device 400. 図11は、変更例1に係る2以上の制御信号のマッピングの一例である。FIG. 11 is an example of mapping of two or more control signals according to the modification example 1. 図12は、通信装置300及び通信装置400のハードウェア構成の一例を示す図である。FIG. 12 is a diagram showing an example of the hardware configuration of the communication device 300 and the communication device 400.
 以下、実施形態を図面に基づいて説明する。なお、同一の機能や構成には、同一または類似の符号を付して、その説明を適宜省略する。 Hereinafter, embodiments will be described based on the drawings. The same functions and configurations are designated by the same or similar reference numerals, and the description thereof will be omitted as appropriate.
 [実施形態]
 (1)無線通信システムの全体概略構成
 図1は、実施形態に係る無線通信システム10の全体概略構成図である。無線通信システム10は、5G New Radio(NR)に従った無線通信システムであり、Next Generation-Radio Access Network 20(以下、NG-RAN20、及び端末200(以下、UE200)を含む。
[Embodiment]
(1) Overall Schematic Configuration of Wireless Communication System FIG. 1 is an overall schematic configuration diagram of the wireless communication system 10 according to the embodiment. The wireless communication system 10 is a wireless communication system according to 5G New Radio (NR), and includes a Next Generation-Radio Access Network 20 (hereinafter, NG-RAN20, and a terminal 200 (hereinafter, UE200)).
 なお、無線通信システム10は、Beyond 5G、5G Evolution或いは6Gと呼ばれる方式に従った無線通信システムでもよい。 The wireless communication system 10 may be a wireless communication system according to a method called Beyond 5G, 5G Evolution or 6G.
 NG-RAN20は、無線基地局100A(以下、gNB100A)及び無線基地局100B(以下、gNB100B)を含む。なお、gNB及びUEの数を含む無線通信システム10の具体的な構成は、図1に示した例に限定されない。 NG-RAN20 includes a radio base station 100A (hereinafter, gNB100A) and a radio base station 100B (hereinafter, gNB100B). The specific configuration of the wireless communication system 10 including the number of gNBs and UEs is not limited to the example shown in FIG.
 NG-RAN20は、実際には複数のNG-RAN Node、具体的には、gNB(またはng-eNB)を含み、5Gに従ったコアネットワーク(5GC、不図示)と接続される。なお、NG-RAN20及び5GCは、単に「ネットワーク」と表現されてもよい。 The NG-RAN20 actually contains multiple NG-RANNodes, specifically gNB (or ng-eNB), and is connected to a core network (5GC, not shown) according to 5G. In addition, NG-RAN20 and 5GC may be simply expressed as "network".
 gNB100A及びgNB100Bは、5Gに従った無線基地局であり、UE200と5Gに従った無線通信を実行する。gNB100A、gNB100B及びUE200は、複数のアンテナ素子から送信される無線信号を制御することによって、より指向性の高いビームBMを生成するMassive MIMO(Multiple-Input Multiple-Output)、複数のコンポーネントキャリア(CC)を束ねて用いるキャリアアグリゲーション(CA)、及びUEと2つのNG-RAN Nodeそれぞれとの間において同時2以上のトランスポートブロックに通信を行うデュアルコネクティビティ(DC)などに対応することができる。 GNB100A and gNB100B are radio base stations according to 5G, and execute wireless communication according to UE200 and 5G. gNB100A, gNB100B and UE200 are Massive MIMO (Multiple-Input Multiple-Output) and multiple component carriers (CC) that generate beam BM with higher directivity by controlling radio signals transmitted from multiple antenna elements. ) Can be bundled and used for carrier aggregation (CA), and dual connectivity (DC) for simultaneously communicating with two or more transport blocks between the UE and each of the two NG-RAN Nodes.
 また、無線通信システム10は、複数の周波数レンジ(FR)に対応する。図2は、無線通信システム10において用いられる周波数レンジを示す。 In addition, the wireless communication system 10 supports a plurality of frequency ranges (FR). FIG. 2 shows the frequency range used in the wireless communication system 10.
 図2に示すように、無線通信システム10は、FR1及びFR2に対応する。各FRの周波数帯は、次のとおりである。 As shown in FIG. 2, the wireless communication system 10 corresponds to FR1 and FR2. The frequency bands of each FR are as follows.
 ・FR1:410 MHz~7.125 GHz
 ・FR2:24.25 GHz~52.6 GHz
 FR1では、15, 30または60kHzのSub-Carrier Spacing(SCS)が用いられ、5~100MHzの帯域幅(BW)が用いられてもよい。FR2は、FR1よりも高周波数であり、60,または120kHz(240kHzが含まれてもよい)のSCSが用いられ、50~400MHzの帯域幅(BW)が用いられてもよい。
・ FR1: 410 MHz to 7.125 GHz
・ FR2: 24.25 GHz to 52.6 GHz
In FR1, Sub-Carrier Spacing (SCS) of 15, 30 or 60 kHz is used, and a bandwidth (BW) of 5 to 100 MHz may be used. FR2 has a higher frequency than FR1 and SCS of 60, or 120kHz (240kHz may be included) is used, and a bandwidth (BW) of 50 to 400MHz may be used.
 なお、SCSは、numerologyと解釈されてもよい。numerologyは、3GPP TS38.300において定義されており、周波数ドメインにおける一つのサブキャリア間隔と対応する。 SCS may be interpreted as numerology. Numerology is defined in 3GPP TS38.300 and corresponds to one subcarrier interval in the frequency domain.
 さらに、無線通信システム10は、FR2の周波数帯よりも高周波数帯にも対応する。具体的には、無線通信システム10は、52.6GHzを超え、114.25GHzまでの周波数帯に対応する。このような高周波数帯は、便宜上「FR2x」と呼ばれてもよい。 Furthermore, the wireless communication system 10 also supports a higher frequency band than the FR2 frequency band. Specifically, the wireless communication system 10 corresponds to a frequency band exceeding 52.6 GHz and up to 114.25 GHz. Such a high frequency band may be referred to as "FR2x" for convenience.
 このような問題を解決するため、52.6GHzを超える帯域を用いる場合、より大きなSub-Carrier Spacing(SCS)を有するCyclic Prefix-Orthogonal Frequency Division Multiplexing(CP-OFDM)/Discrete Fourier Transform - Spread(DFT-S-OFDM)を適用してもよい。 To solve this problem, when using a band exceeding 52.6 GHz, Cyclic Prefix-Orthogonal Frequency Division Multiplexing (CP-OFDM) / Discrete Fourier Transform-Spread (DFT-) with a larger Sub-Carrier Spacing (SCS) S-OFDM) may be applied.
 図3は、無線通信システム10において用いられる無線フレーム、サブフレーム及びスロットの構成例を示す。 FIG. 3 shows a configuration example of a wireless frame, a subframe, and a slot used in the wireless communication system 10.
 図3に示すように、1スロットは、14シンボルで構成され、SCSが大きく(広く)なる程、シンボル期間(及びスロット期間)は短くなる。SCSは、図3に示す間隔(周波数)に限定されない。例えば、480kHz、960kHzなどが用いられてもよい。 As shown in FIG. 3, one slot is composed of 14 symbols, and the larger (wider) the SCS, the shorter the symbol period (and slot period). The SCS is not limited to the interval (frequency) shown in FIG. For example, 480 kHz, 960 kHz, etc. may be used.
 また、1スロットを構成するシンボル数は、必ずしも14シンボルでなくてもよい(例えば、28、56シンボル)。さらに、サブフレーム当たりのスロット数は、SCSによって異なっていてよい。 Further, the number of symbols constituting one slot does not necessarily have to be 14 symbols (for example, 28, 56 symbols). In addition, the number of slots per subframe may vary from SCS to SCS.
 なお、図3に示す時間方向(t)は、時間領域、シンボル期間またはシンボル時間などと呼ばれてもよい。また、周波数方向は、周波数領域、リソースブロック、サブキャリア、バンド幅部分(BWP: Bandwidth Part)などと呼ばれてもよい。 The time direction (t) shown in FIG. 3 may be referred to as a time domain, a symbol period, a symbol time, or the like. Further, the frequency direction may be referred to as a frequency domain, a resource block, a subcarrier, a bandwidth part (BWP: BandwidthPart), or the like.
 (2)無線通信システムの機能ブロック構成
 次に、無線通信システム10の機能ブロック構成について説明する。具体的には、UE200の機能ブロック構成について説明する。
(2) Functional block configuration of the wireless communication system Next, the functional block configuration of the wireless communication system 10 will be described. Specifically, the functional block configuration of UE200 will be described.
 図4は、UE200の機能ブロック構成図である。図4に示すように、UE200は、無線信号送受信部210、アンプ部220、変復調部230、制御信号・参照信号処理部240、符号化/復号部250、データ送受信部260及び制御部270を備える。 FIG. 4 is a functional block configuration diagram of UE200. As shown in FIG. 4, the UE 200 includes a radio signal transmission / reception unit 210, an amplifier unit 220, a modulation / demodulation unit 230, a control signal / reference signal processing unit 240, a coding / decoding unit 250, a data transmission / reception unit 260, and a control unit 270. ..
 無線信号送受信部210は、NRに従った無線信号を送受信する。無線信号送受信部210は、Massive MIMO、複数のCCを束ねて用いるCA、及びUEと2つのNG-RAN Nodeそれぞれとの間において同時に通信を行うDCなどに対応する。 The radio signal transmission / reception unit 210 transmits / receives a radio signal according to NR. The radio signal transmission / reception unit 210 corresponds to Massive MIMO, a CA that bundles a plurality of CCs, and a DC that simultaneously communicates between the UE and each of the two NG-RAN Nodes.
 アンプ部220は、PA (Power Amplifier)/LNA (Low Noise Amplifier)などによって構成される。アンプ部220は、変復調部230から出力された信号を所定の電力レベルに増幅する。また、アンプ部220は、無線信号送受信部210から出力されたRF信号を増幅する。 The amplifier unit 220 is composed of PA (Power Amplifier) / LNA (Low Noise Amplifier) and the like. The amplifier unit 220 amplifies the signal output from the modulation / demodulation unit 230 to a predetermined power level. Further, the amplifier unit 220 amplifies the RF signal output from the radio signal transmission / reception unit 210.
 変復調部230は、所定の通信先(gNB100または他のgNB)毎に、データ変調/復調、送信電力設定及びリソースブロック割当などを実行する。変復調部230では、Cyclic Prefix-Orthogonal Frequency Division Multiplexing(CP-OFDM)/Discrete Fourier Transform - Spread(DFT-S-OFDM)が適用されてもよい。また、DFT-S-OFDMは、上りリンク(UL)だけでなく、下りリンク(DL)にも用いられてもよい。 The modulation / demodulation unit 230 executes data modulation / demodulation, transmission power setting, resource block allocation, etc. for each predetermined communication destination (gNB100 or other gNB). Cyclic Prefix-Orthogonal Frequency Division Multiplexing (CP-OFDM) / Discrete Fourier Transform-Spread (DFT-S-OFDM) may be applied to the modulation / demodulation unit 230. Further, the DFT-S-OFDM may be used not only for the uplink (UL) but also for the downlink (DL).
 制御信号・参照信号処理部240は、UE200が送受信する各種の制御信号に関する処理、及びUE200が送受信する各種の参照信号に関する処理を実行する。  The control signal / reference signal processing unit 240 executes processing related to various control signals transmitted / received by the UE 200 and processing related to various reference signals transmitted / received by the UE 200. The
 具体的には、制御信号・参照信号処理部240は、gNB100から所定の制御チャネルを介して送信される各種の制御信号、例えば、無線リソース制御レイヤ(RRC)の制御信号を受信する。また、制御信号・参照信号処理部240は、gNB100に向けて、所定の制御チャネルを介して各種の制御信号を送信する。 Specifically, the control signal / reference signal processing unit 240 receives various control signals transmitted from the gNB 100 via a predetermined control channel, for example, control signals of the radio resource control layer (RRC). Further, the control signal / reference signal processing unit 240 transmits various control signals to the gNB 100 via a predetermined control channel.
 制御信号・参照信号処理部240は、Demodulation Reference Signal(DMRS)、及びPhase Tracking Reference Signal (PTRS)などの参照信号(RS)を用いた処理を実行する。 The control signal / reference signal processing unit 240 executes processing using a reference signal (RS) such as Demodulation Reference Signal (DMRS) and Phase Tracking Reference Signal (PTRS).
 DMRSは、データ復調に用いるフェージングチャネルを推定するための端末個別の基地局~端末間において既知の参照信号(パイロット信号)である。PTRSは、高い周波数帯で課題となる位相雑音の推定を目的した端末個別の参照信号である。 DMRS is a reference signal (pilot signal) known between the base station and the terminal of each terminal for estimating the fading channel used for data demodulation. The PTRS is a terminal-specific reference signal for the purpose of estimating phase noise, which is a problem in high frequency bands.
 なお、参照信号には、DMRS及びPTRS以外に、Channel State Information-Reference Signal(CSI-RS)、Sounding Reference Signal(SRS)、及び位置情報用のPositioning Reference Signal(PRS)が含まれてもよい。 In addition to DMRS and PTRS, the reference signal may include ChannelStateInformation-ReferenceSignal (CSI-RS), SoundingReferenceSignal (SRS), and PositioningReferenceSignal (PRS) for location information.
 また、チャネルには、制御チャネルとデータチャネルとが含まれる。制御チャネルには、PDCCH(Physical Downlink Control Channel)、PUCCH(Physical Uplink Control Channel)、RACH(Random Access Channel)、Random Access Radio Network Temporary Identifier(RA-RNTI)を含むDownlink Control Information (DCI))、及びPhysical Broadcast Channel(PBCH)などが含まれる。 Further, the channel includes a control channel and a data channel. Control channels include PDCCH (Physical Downlink Control Channel), PUCCH (Physical Uplink Control Channel), RACH (Random Access Channel), Random Access Radio Network Temporary Identifier (RA-RNTI), Downlink Control Information (DCI), and Physical Broadcast Channel (PBCH) etc. are included.
 また、データチャネルには、PDSCH(Physical Downlink Shared Channel)、及びPUSCH(Physical Uplink Shared Channel)などが含まれる。データとは、データチャネルを介して送信されるデータを意味する。データチャネルは、共有チャネルと読み替えられてもよい。 The data channels include PDSCH (Physical Downlink Shared Channel) and PUSCH (Physical Uplink Shared Channel). Data means data transmitted over a data channel. The data channel may be read as a shared channel.
 符号化/復号部250は、所定の通信先(gNB100または他のgNB)毎に、データの分割/連結及びチャネルコーディング/復号などを実行する。 The coding / decoding unit 250 executes data division / concatenation and channel coding / decoding for each predetermined communication destination (gNB100 or other gNB).
 具体的には、符号化/復号部250は、データ送受信部260から出力されたデータを所定のサイズに分割し、分割されたデータに対してチャネルコーディングを実行する。また、符号化/復号部250は、変復調部230から出力されたデータを復号し、復号したデータを連結する。 Specifically, the coding / decoding unit 250 divides the data output from the data transmission / reception unit 260 into predetermined sizes, and executes channel coding for the divided data. Further, the coding / decoding unit 250 decodes the data output from the modulation / demodulation unit 230, and concatenates the decoded data.
 データ送受信部260は、Protocol Data Unit (PDU)ならびにService Data Unit (SDU)の送受信を実行する。具体的には、データ送受信部260は、複数のレイヤ(媒体アクセス制御レイヤ(MAC)、無線リンク制御レイヤ(RLC)、及びパケット・データ・コンバージェンス・プロトコル・レイヤ(PDCP)など)におけるPDU/SDUの組み立て/分解などを実行する。また、データ送受信部260は、ハイブリッドARQ(Hybrid automatic repeat request)に基づいて、データの誤り訂正及び再送制御を実行する。 The data transmission / reception unit 260 executes transmission / reception of Protocol Data Unit (PDU) and Service Data Unit (SDU). Specifically, the data transmitter / receiver 260 is a PDU / SDU in multiple layers (such as a medium access control layer (MAC), a wireless link control layer (RLC), and a packet data convergence protocol layer (PDCP)). Assemble / disassemble the. Further, the data transmission / reception unit 260 executes data error correction and retransmission control based on the hybrid ARQ (Hybrid automatic repeat request).
 制御部270は、UE200を構成する各機能ブロックを制御する。例えば、制御部270は、OFDMが適用されたシンボル(以下、OFDMシンボル)を含む信号を下りリンク信号として受信する制御を実行してもよく、SC-FDMAが適用されたシンボル(以下、SC-FDMAシンボル)を含む信号を上りリンク信号として送信する制御を実行してもよい。実施形態では、制御部270は、SC-FDMAシンボルを含む信号を下りリンク信号として受信する制御を実行してもよい。 The control unit 270 controls each functional block constituting the UE 200. For example, the control unit 270 may execute control to receive a signal including an OFDM-applied symbol (hereinafter, OFDM symbol) as a downlink signal, and may execute a control to which SC-FDMA is applied (hereinafter, SC-). Control to transmit a signal including FDMA symbol) as an uplink signal may be executed. In the embodiment, the control unit 270 may execute control to receive a signal including the SC-FDMA symbol as a downlink signal.
 (3)シングルキャリア方式
 以下において、実施形態に係るシングルキャリア方式(SC-FDMA方式)について説明する。従来技術では、シングルキャリア方式の1つのシンボル時間において、1つの情報源に属する信号がマッピングされる。これに対して、実施形態では、シングルキャリア方式の1つのシンボル時間において、2以上の情報源に属する信号がマッピングされる。以下においては、SC-FDMA方式にフォーカスして説明を続ける。実施形態に係るSC-FDMAは、上りリンク信号に適用されてもよく、下りリンク信号に適用されてもよい。
(3) Single carrier method The single carrier method (SC-FDMA method) according to the embodiment will be described below. In the prior art, signals belonging to one source are mapped in one symbol time of the single carrier system. On the other hand, in the embodiment, signals belonging to two or more information sources are mapped in one symbol time of the single carrier system. In the following, the explanation will be continued focusing on the SC-FDMA method. SC-FDMA according to an embodiment may be applied to an uplink signal or a downlink signal.
 (3.1)通信装置(送信側)
 図5は、実施形態に係る通信装置300(送信側)の機能ブロック構成図である。例えば、下りリンク信号についてはgNB100が通信装置300として用いられ、上りリンク信号についてはUE200が通信装置300として用いられる。図5に示すように、通信装置300は、マルチプレクサ320と、DFT部330と、マッピング部340と、IFFT部350と、CP付加部360と、送信部370と、を有する。
(3.1) Communication device (sender)
FIG. 5 is a functional block configuration diagram of the communication device 300 (transmitting side) according to the embodiment. For example, gNB100 is used as the communication device 300 for the downlink signal, and UE200 is used as the communication device 300 for the uplink signal. As shown in FIG. 5, the communication device 300 includes a multiplexer 320, a DFT unit 330, a mapping unit 340, an IFFT unit 350, a CP addition unit 360, and a transmission unit 370.
 マルチプレクサ320は、2以上の情報源310(図5では、情報源310A及び情報源310B)から取得される信号系列を多重する。具体的には、マルチプレクサ320は、2以上の情報源310から取得される信号系列に時分割多重を適用する。信号系列は、変調後の信号の系列であってもよい。 The multiplexer 320 multiplexes the signal sequences acquired from two or more information sources 310 (information source 310A and information source 310B in FIG. 5). Specifically, the multiplexer 320 applies time division multiplexing to signal sequences obtained from two or more sources 310. The signal sequence may be a sequence of modulated signals.
 実施形態では、マルチプレクサ320は、1つのシンボルに対するマッピングが実行される前において、2以上の情報源310に属するデータを時分割で多重する制御部を構成する。図4に示すUE200を例に挙げると、マルチプレクサ320は、変復調部230及び制御部270によって構成されてもよい。 In the embodiment, the multiplexer 320 constitutes a control unit that time-divisions multiplexes data belonging to two or more information sources 310 before mapping to one symbol is executed. Taking UE200 shown in FIG. 4 as an example, the multiplexer 320 may be composed of a modulation / demodulation unit 230 and a control unit 270.
 DFT部330は、時分割多重によって得られた信号系列にDFT(Discrete Fourier Transform)を適用し、時間領域の信号系列を周波数領域の信号系列に変換する。 The DFT unit 330 applies DFT (Discrete Fourier Transform) to the signal sequence obtained by time-division multiplexing, and converts the signal sequence in the time domain into the signal sequence in the frequency domain.
 マッピング部340は、シングルキャリア方式の1つのシンボル時間において、DFTによって得られた信号系列をマッピングする。具体的には、シングルキャリアが2以上のサブキャリア(例えば、12個のサブキャリア)によって構成されている場合において、マッピング部340は、DFTによって得られた信号を各サブキャリアにマッピングする。ここで、DFTによって得られた信号系列は、2以上の情報源310に属する信号が時分割で多重された信号系列であるため、マッピング部340によってサブキャリアにマッピングされた信号系列は、1つのシンボル時間において2以上の情報源310に属する信号を含む。 The mapping unit 340 maps the signal sequence obtained by the DFT in one symbol time of the single carrier system. Specifically, when a single carrier is composed of two or more subcarriers (for example, 12 subcarriers), the mapping unit 340 maps the signal obtained by the DFT to each subcarrier. Here, since the signal sequence obtained by the DFT is a signal sequence in which signals belonging to two or more information sources 310 are time-division-multiplexed, the signal sequence mapped to the subcarrier by the mapping unit 340 is one. Includes signals belonging to two or more sources 310 in symbol time.
 実施形態では、マッピング部340は、シングルキャリア方式の1つのシンボル時間において、2以上の情報源310に属する信号をマッピングする制御部を構成する。図4に示すUE200を例に挙げると、マッピング部340は、変復調部230及び制御部270によって構成されてもよい。 In the embodiment, the mapping unit 340 constitutes a control unit that maps signals belonging to two or more information sources 310 in one symbol time of the single carrier system. Taking UE200 shown in FIG. 4 as an example, the mapping unit 340 may be composed of a modulation / demodulation unit 230 and a control unit 270.
 IFFT部350は、マッピング部340から取得された信号系列にIFFT(Inverse Fast Fourier Transform)を適用し、周波数領域の信号系列を時間領域の信号系列に変換する。 The IFFT unit 350 applies IFFT (Inverse Fast Fourier Transform) to the signal sequence acquired from the mapping unit 340, and converts the signal sequence in the frequency domain into the signal sequence in the time domain.
 CP付加部360は、IFFT部350から出力される信号(以下、SC-FDMAシンボル)の先頭にCP(Cyclic Prefix)を付加する。 CP addition unit 360 adds CP (Cyclic Prefix) to the beginning of the signal output from IFFT unit 350 (hereinafter, SC-FDMA symbol).
 送信部370は、CPが付加された信号を送信信号として送信する。 The transmission unit 370 transmits a signal to which CP is added as a transmission signal.
 実施形態では、送信部370は、2以上の情報源310に属する信号がマッピングされた信号を送信する送信部を構成する。図4に示すUE200を例に挙げると、送信部370は、無線信号送受信部210によって構成されてもよい。 In the embodiment, the transmission unit 370 constitutes a transmission unit that transmits a signal to which signals belonging to two or more information sources 310 are mapped. Taking the UE 200 shown in FIG. 4 as an example, the transmission unit 370 may be configured by the radio signal transmission / reception unit 210.
 (3.2)通信装置(受信側)
 図6は、実施形態に係る通信装置400(受信側)の機能ブロック構成図である。例えば、下りリンク信号についてはUE200が通信装置400として用いられ、上りリンク信号についてはgNB100が通信装置400として用いられる。図6に示すように、通信装置400は、受信部410と、CP除去部420と、DFT部430と、デマッピング部440と、IFFT部450と、デマルチプレクサ460と、を有する。
(3.2) Communication device (reception side)
FIG. 6 is a functional block configuration diagram of the communication device 400 (reception side) according to the embodiment. For example, the UE 200 is used as the communication device 400 for the downlink signal, and the gNB 100 is used as the communication device 400 for the uplink signal. As shown in FIG. 6, the communication device 400 includes a receiving unit 410, a CP removing unit 420, a DFT unit 430, a demapping unit 440, an IFFT unit 450, and a demultiplexer unit 460.
 受信部410は、通信装置300から送信される信号を受信する。 The receiving unit 410 receives the signal transmitted from the communication device 300.
 実施形態では、受信部410は、シングルキャリア方式の1つのシンボル時間において2以上の情報源470(図5に示す情報源310と対応)に属する信号がマッピングされた信号を受信する受信部を構成する。図4に示すUE200を例に挙げると、受信部410は、無線信号送受信部210によって構成されてもよい。 In the embodiment, the receiving unit 410 constitutes a receiving unit that receives a signal to which signals belonging to two or more information sources 470 (corresponding to the information source 310 shown in FIG. 5) are mapped in one symbol time of the single carrier system. do. Taking UE200 shown in FIG. 4 as an example, the receiving unit 410 may be configured by the radio signal transmitting / receiving unit 210.
 CP除去部420は、受信部410によって受信された信号からCPを除去する。 The CP removing unit 420 removes the CP from the signal received by the receiving unit 410.
 DFT部430は、CPが除去された信号系列にDFT(Discrete Fourier Transform)を適用し、時間領域の信号系列を周波数領域の信号系列に変換する。 The DFT unit 430 applies DFT (Discrete Fourier Transform) to the signal sequence from which the CP has been removed, and converts the signal sequence in the time domain into the signal sequence in the frequency domain.
 デマッピング部440は、DFTによって得られた信号系列をデマッピングする。具体的には、シングルキャリアが2以上のサブキャリア(例えば、12個のサブキャリア)によって構成されている場合において、デマッピング部440は、各サブキャリアにマッピングされた信号系列をデマッピングする。DFTによって得られた信号系列は、2以上の情報源470に属する信号が時分割で多重された信号系列であるため、サブキャリアにデマッピングされた信号系列は、1つのシンボル時間において2以上の情報源470に属する信号を含む。 The demapping unit 440 demapping the signal sequence obtained by the DFT. Specifically, when a single carrier is composed of two or more subcarriers (for example, 12 subcarriers), the demapping unit 440 demaps the signal sequence mapped to each subcarrier. Since the signal sequence obtained by DFT is a signal sequence in which signals belonging to two or more information sources 470 are time-division-multiplexed, the signal sequence demapped to subcarriers is two or more in one symbol time. Includes signals belonging to source 470.
 実施形態では、デマッピング部440は、2以上の情報源470に属する信号をデマッピングする制御部を構成する。図4に示すUE200を例に挙げると、デマッピング部440は、変復調部230及び制御部270によって構成されてもよい。 In the embodiment, the demapping unit 440 constitutes a control unit that demaps signals belonging to two or more information sources 470. Taking UE200 shown in FIG. 4 as an example, the demapping unit 440 may be composed of a modulation / demodulation unit 230 and a control unit 270.
 IFFT部450は、デマッピング部440から取得された信号系列にIFFT(Inverse Fast Fourier Transform)を適用し、周波数領域の信号系列を時間領域の信号系列に変換する。 The IFFT unit 450 applies IFFT (Inverse Fast Fourier Transform) to the signal sequence acquired from the demapping unit 440, and converts the signal sequence in the frequency domain into the signal sequence in the time domain.
 デマルチプレクサ460は、IFFT部450から得られる信号系列を2以上の情報源470(図6では、情報源470A及び情報源470B)に分離する。具体的には、デマルチプレクサ460は、IFFT部450から得られる信号系列に時分割分離を適用する。信号系列は、変調後の信号の系列であってもよい。 The demultiplexer 460 separates the signal sequence obtained from the IFFT unit 450 into two or more information sources 470 (information source 470A and information source 470B in FIG. 6). Specifically, the demultiplexer 460 applies time division multiplexing to the signal sequence obtained from the IFFT unit 450. The signal sequence may be a sequence of modulated signals.
 (3.3)マッピング例
 以下において、実施形態に係るマッピング例について図7を参照しながら説明する。図7では、情報源として、情報源A及び情報源Bが存在するケースについて例示する。図7に示すように、情報源Aに属する信号は、00, 11, …, 01, 10, …, …といった信号系列であり、情報源Bに属する信号は、11, 00, …, 10, 01, …, …といった信号系列である。これらの信号系列は、信号系列は、変調後の信号の系列であってもよい。
(3.3) Mapping Example Hereinafter, a mapping example according to the embodiment will be described with reference to FIG. 7. FIG. 7 illustrates a case where an information source A and an information source B exist as information sources. As shown in FIG. 7, the signal belonging to the information source A is a signal sequence such as 00, 11,…, 01, 10,…,…, and the signal belonging to the information source B is 11, 00,…, 10,. It is a signal sequence such as 01,…,…. As for these signal sequences, the signal sequence may be a sequence of signals after modulation.
 上述したように、情報源A及び情報源Bに属する信号は、時分割多重(TDM)によって多重された後に各サブキャリアにマッピングされる。言い換えると、情報源A及び情報源Bに属する信号は、1つのシンボルに対するマッピングが実行される前に時分割で多重される。図7では、情報源A及び情報源Bに属する信号が時間領域において交互にマッピングされるケースが例示されている。このように、実施形態では、1シンボル時間内おいて2以上の情報源に属する信号がマッピングされる。 As described above, the signals belonging to the information source A and the information source B are multiplexed by time division multiplexing (TDM) and then mapped to each subcarrier. In other words, the signals belonging to Source A and Source B are time-division-multiplexed before mapping to one symbol is performed. FIG. 7 illustrates a case where signals belonging to information source A and information source B are alternately mapped in the time domain. As described above, in the embodiment, signals belonging to two or more information sources are mapped within one symbol time.
 なお、シングルキャリアが2以上のサブキャリアによって構成される場合において、情報源Aに属する信号は、全てのサブキャリアにマッピングされてもよく、情報源Aに割り当てられたサブキャリアにマッピングされてもよい。同様に、情報源Bに属する信号は、全てのサブキャリアにマッピングされてもよく、情報源Bに割り当てられたサブキャリアにマッピングされてもよい。 When the single carrier is composed of two or more subcarriers, the signal belonging to the information source A may be mapped to all the subcarriers, or may be mapped to the subcarriers assigned to the information source A. good. Similarly, the signal belonging to the information source B may be mapped to all the subcarriers, or may be mapped to the subcarriers assigned to the information source B.
 さらに、図7では、情報源が2つであり、情報源に属する信号が時間領域において交互にマッピングされるケースについて例示した。しかしながら、実施形態はこれに限定されるものではない。 Furthermore, FIG. 7 illustrates a case where there are two information sources and the signals belonging to the information sources are alternately mapped in the time domain. However, the embodiments are not limited to this.
 例えば、図8に示すように、情報源として、情報源A、情報源B及び情報源Cが存在していてもよい。図8に示すように、1シンボル時間において、情報源Aに属する信号がマッピングされた後に情報源Bに属する信号がマッピングされ、情報源Bに属する信号がマッピングされた後に情報源Cに属する信号がマッピングされてもよい。言い換えると、1シンボル時間において、各情報源に属する信号は時間領域において連続してマッピングされてもよい。 For example, as shown in FIG. 8, information source A, information source B, and information source C may exist as information sources. As shown in FIG. 8, in one symbol time, the signal belonging to the information source A is mapped, the signal belonging to the information source B is mapped, the signal belonging to the information source B is mapped, and then the signal belonging to the information source C is mapped. May be mapped. In other words, in one symbol time, the signals belonging to each source may be continuously mapped in the time domain.
 (4)通信方法
 以下において、実施形態に係る通信方法について説明する。
(4) Communication method The communication method according to the embodiment will be described below.
 第1に、SC-FDMA方式において信号を送信する処理について図9を参照しながら説明する。 First, the process of transmitting a signal in the SC-FDMA system will be described with reference to FIG.
 図9に示すように、ステップS10において、通信装置300は、2以上の情報源310に属する信号を時分割で多重する。 As shown in FIG. 9, in step S10, the communication device 300 multiplexes the signals belonging to two or more information sources 310 in a time division manner.
 ステップS11において、通信装置300は、時分割で多重された信号にDFTを適用する。 In step S11, the communication device 300 applies the DFT to the time-division-multiplexed signal.
 ステップS12において、通信装置300は、DFTが適用された信号をサブキャリアにマッピングする。具体的には、通信装置300は、2以上の情報源310に属する信号を1つのシンボルにマッピングする。 In step S12, the communication device 300 maps the signal to which the DFT is applied to the subcarrier. Specifically, the communication device 300 maps signals belonging to two or more information sources 310 to one symbol.
 ステップS13において、通信装置300は、サブキャリアにマッピングされた信号にIFFTを適用する。 In step S13, the communication device 300 applies the IFFT to the signal mapped to the subcarrier.
 ステップS14において、通信装置300は、IFFTが適用された信号にCPを付加する。 In step S14, the communication device 300 adds a CP to the signal to which the IFFT is applied.
 ステップS15において、通信装置300は、CPが付加された信号を送信信号として送信する。 In step S15, the communication device 300 transmits the signal to which the CP is added as a transmission signal.
 第2に、SC-FDMA方式において信号を受信する処理について図10を参照しながら説明する。 Second, the process of receiving a signal in the SC-FDMA system will be described with reference to FIG.
 図10に示すように、ステップS20において、通信装置400は、CPが付加された信号を受信信号として受信する。受信信号は、1つのシンボル時間において2以上の情報源310に属する信号がマッピングされた信号を含む。 As shown in FIG. 10, in step S20, the communication device 400 receives the signal to which the CP is added as a reception signal. The received signal includes a signal to which signals belonging to two or more information sources 310 are mapped in one symbol time.
 ステップS21において、通信装置400は、通信装置300から受信した信号からCPを除去する。 In step S21, the communication device 400 removes the CP from the signal received from the communication device 300.
 ステップS22において、通信装置400は、CPが除去された信号にDFTを適用する。 In step S22, the communication device 400 applies the DFT to the signal from which the CP has been removed.
 ステップS23において、通信装置400は、DFTが適用された信号を各サブキャリアにデマッピングする。DFTが適用された信号は、2以上の情報源470に属する信号を含む。 In step S23, the communication device 400 demaps the signal to which the DFT is applied to each subcarrier. The signal to which the DFT is applied includes signals belonging to two or more sources 470.
 ステップS24において、通信装置400は、各サブキャリアにデマッピングされた信号にIFFTを適用する。 In step S24, the communication device 400 applies the IFFT to the signal demapped to each subcarrier.
 ステップS25において、通信装置400は、IFFTが適用された信号から、2以上の情報源に属する信号を分離する。 In step S25, the communication device 400 separates signals belonging to two or more information sources from the signal to which IFFT is applied.
 (5)作用及び効果
 実施形態では、通信装置300は、1つのシンボル時間において2以上の情報源310に属する信号がマッピングされた信号を送信する。通信装置400は、1つのシンボル時間において2以上の情報源470に属する信号がマッピングされた信号を受信する。このような構成によれば、1つの情報源に属する信号が1シンボル時間を必要としないケースであっても、通信リソースを効率的に利用することができる。
(5) Actions and Effects In the embodiment, the communication device 300 transmits a signal to which signals belonging to two or more information sources 310 are mapped in one symbol time. The communication device 400 receives a signal to which signals belonging to two or more information sources 470 are mapped in one symbol time. According to such a configuration, communication resources can be efficiently used even in a case where a signal belonging to one information source does not require one symbol time.
 実施形態では、1つの情報源310に属する信号が1つのUE200宛の信号である場合において、下りリンク信号について1つのシンボル時間において2以上の情報源310に属する信号がマッピングされてもよい。このような構成によれば、1つのUE200(情報源)について時間領域において疎なマッピングが実現され、1つのシンボル時間において1つのUE200が監視すべき時間が減少し、UE200の処理負荷が軽減される。 In the embodiment, when the signal belonging to one information source 310 is a signal addressed to one UE200, the signal belonging to two or more information sources 310 may be mapped to the downlink signal in one symbol time. With such a configuration, sparse mapping is realized in the time domain for one UE200 (information source), the time that one UE200 should monitor in one symbol time is reduced, and the processing load of the UE200 is reduced. To.
 [変更例1]
 以下において、実施形態の変更例1について説明する。以下においては、実施形態に対する相違点について説明する。
[Change example 1]
Hereinafter, modification 1 of the embodiment will be described. The differences from the embodiments will be described below.
 変更例1では、通信装置300は、1つのシンボル時間において、2以上の制御信号をマッピングする。2以上の制御信号は2以上の情報源310であると考えてもよい。 In modification 1, the communication device 300 maps two or more control signals in one symbol time. Two or more control signals may be considered to be two or more sources 310.
 具体的には、図11に示すように、1スロットは14シンボルによって構成される。上述したように、1スロットを構成するシンボル数は、必ずしも14シンボルでなくてもよい(例えば、28、56シンボル)であってもよい。 Specifically, as shown in FIG. 11, one slot is composed of 14 symbols. As described above, the number of symbols constituting one slot does not necessarily have to be 14 symbols (for example, 28, 56 symbols).
 ここで、1つのシンボル時間において2以上の制御信号(図11では、制御信号A及び制御信号B)がマッピングされる。例えば、制御信号は、SS(Synchronization Signal)/PBCH(Physical Broadcast Channel)ブロックであってもよい。すなわち、1つのシンボル時間において2以上のSS/PBCHブロックがマッピングされてもよい。SSは、PSS(Primary Synchronization Signal)及びSSS(Secondary Synchronization Signal)を含んでもよい。 Here, two or more control signals (control signal A and control signal B in FIG. 11) are mapped in one symbol time. For example, the control signal may be an SS (Synchronization Signal) / PBCH (Physical Broadcast Channel) block. That is, two or more SS / PBCH blocks may be mapped in one symbol time. SS may include PSS (Primary Synchronization Signal) and SSS (Secondary Synchronization Signal).
 変更例1では、1つのシンボル時間において2以上の制御信号(例えば、SS/PBCHブロック)がマッピングされる。このような構成によれば、制御信号が出現する最短周期を短縮することができ、制御信号を用いた処理(例えば、precoder switching)を高速化することができる。 In change example 1, two or more control signals (for example, SS / PBCH block) are mapped in one symbol time. According to such a configuration, the shortest period in which the control signal appears can be shortened, and the processing using the control signal (for example, precursor switching) can be speeded up.
 [変更例2]
 以下において、実施形態の変更例2について説明する。以下においては、実施形態に対する相違点について説明する。
[Change example 2]
Hereinafter, modification 2 of the embodiment will be described. The differences from the embodiments will be described below.
 変更例2では、通信装置300は、所定条件が満たされた場合に、1つのシンボル時間において、2以上の情報源310に属する信号をマッピングしてもよい。 In the second modification, the communication device 300 may map signals belonging to two or more information sources 310 in one symbol time when a predetermined condition is satisfied.
 例えば、所定条件は、周波数帯が閾値以上であることであってもよい。すなわち、通信装置300は、第1周波数帯(例えば、52.6GHz以下の周波数帯、FR1及びFR2)において、1つのシンボル時間において1つの情報源に属する信号をマッピングし、第1周波数帯よりも高い第2周波数帯(例えば、52.6GHzを超える周波数帯、FR2x)において、1つのシンボル時間において2以上の情報源に属する信号をマッピングしてもよい。 For example, the predetermined condition may be that the frequency band is equal to or higher than the threshold value. That is, the communication device 300 maps signals belonging to one information source in one symbol time in the first frequency band (for example, frequency bands of 52.6 GHz or less, FR1 and FR2), and is higher than the first frequency band. In the second frequency band (for example, frequency band exceeding 52.6 GHz, FR2x), signals belonging to two or more information sources may be mapped in one symbol time.
 さらには、所定条件は、下りリンク信号に適用されてもよい。すなわち、通信装置300は、第1周波数帯の下りリンク信号について、1つのシンボル時間において1つの情報源に属する信号をマッピングし、第1周波数帯よりも高い第2周波数帯の下りリンク信号について、1つのシンボル時間において2以上の情報源に属する信号をマッピングしてもよい。 Furthermore, the predetermined conditions may be applied to the downlink signal. That is, the communication device 300 maps the signals belonging to one information source to the downlink signal in the first frequency band in one symbol time, and the downlink signal in the second frequency band higher than the first frequency band. Signals belonging to two or more sources may be mapped in one symbol time.
 例えば、所定条件は、SCSが閾値以上であることであってもよい。すなわち、通信装置300は、SCSが第1帯域幅である場合に、1つのシンボル時間において1つの情報源に属する信号をマッピングし、SCSが第1帯域幅よりも広い第2帯域幅である場合に、1つのシンボル時間において2以上の情報源に属する信号をマッピングしてもよい。 For example, the predetermined condition may be that the SCS is equal to or higher than the threshold value. That is, when the SCS is the first bandwidth, the communication device 300 maps the signals belonging to one information source in one symbol time, and when the SCS is the second bandwidth wider than the first bandwidth. In addition, signals belonging to two or more information sources may be mapped in one symbol time.
 さらには、所定条件は、下りリンク信号に適用されてもよい。すなわち、通信装置300は、SCSが第1帯域幅である下りリンク信号について、1つのシンボル時間において1つの情報源に属する信号をマッピングし、SCSが第1帯域幅よりも広い第2帯域幅である下りリンク信号について、1つのシンボル時間において2以上の情報源に属する信号をマッピングしてもよい。 Furthermore, the predetermined conditions may be applied to the downlink signal. That is, the communication device 300 maps the signal belonging to one information source in one symbol time to the downlink signal in which the SCS has the first bandwidth, and the SCS has a second bandwidth wider than the first bandwidth. Signals belonging to two or more sources may be mapped to a downlink signal in one symbol time.
 例えば、所定条件は、通信装置300に対して閾値よりも低い送信電力が要求されることであってもよい。例えば、通信装置300は、送信電力として第1電力が要求される場合に、1つのシンボル時間において1つの情報源に属する信号をマッピングし、送信電力として第1電力よりも低い第2電力が要求される場合に、1つのシンボル時間において2以上の情報源に属する信号をマッピングしてもよい。 For example, the predetermined condition may be that the communication device 300 is required to have a transmission power lower than the threshold value. For example, when the communication device 300 maps a signal belonging to one information source in one symbol time when the first power is required as the transmission power, the second power lower than the first power is required as the transmission power. If so, signals belonging to more than one source may be mapped in one symbol time.
 さらには、所定条件は、下りリンク信号に適用されてもよい。すなわち、通信装置300は、下りリンク信号の送信電力として第1電力が要求される場合に、1つのシンボル時間において1つの情報源に属する信号をマッピングし、下りリンク信号の送信電力として第1電力よりも低い第2電力が要求される場合に、1つのシンボル時間において2以上の情報源に属する信号をマッピングしてもよい。 Furthermore, the predetermined conditions may be applied to the downlink signal. That is, when the communication device 300 requests the first power as the transmission power of the downlink signal, the communication device 300 maps the signal belonging to one information source in one symbol time, and the first power is used as the transmission power of the downlink signal. Signals belonging to more than one source may be mapped in one symbol time when lower second power is required.
 例えば、所定条件は、通信装置300に対して閾値よりも広いカバレッジエリアが要求されることであってもよい。例えば、通信装置300は、カバレッジエリアとして第1カバレッジエリアが要求される場合に、1つのシンボル時間において1つの情報源に属する信号をマッピングし、カバレッジエリアとして第1カバレッジエリアよりも広い第2カバレッジエリアが要求される場合に、1つのシンボル時間において2以上の情報源に属する信号をマッピングしてもよい。 For example, the predetermined condition may be that the communication device 300 is required to have a coverage area wider than the threshold value. For example, when the first coverage area is required as the coverage area, the communication device 300 maps the signals belonging to one information source in one symbol time, and the second coverage area is wider than the first coverage area as the coverage area. When an area is required, signals belonging to more than one source may be mapped in one symbol time.
 さらには、所定条件は、下りリンク信号に適用されてもよい。すなわち、通信装置300は、下りリンク信号のカバレッジエリアとして第1カバレッジエリアが要求される場合に、1つのシンボル時間において1つの情報源に属する信号をマッピングし、下りリンク信号のカバレッジエリアとして第1カバレッジエリアよりも広い第2カバレッジエリアが要求される場合に、1つのシンボル時間において2以上の情報源に属する信号をマッピングしてもよい。 Furthermore, the predetermined conditions may be applied to the downlink signal. That is, when the communication device 300 requests the first coverage area as the coverage area of the downlink signal, the communication device 300 maps the signal belonging to one information source in one symbol time, and sets the first coverage area of the downlink signal. When a second coverage area wider than the coverage area is required, signals belonging to two or more sources may be mapped in one symbol time.
 所定条件は、通信のタイプがmMTC(massive Machine Type Communication)であることであってもよい。例えば、通信装置300は、通信のタイプがmMTCでない場合に、1つのシンボル時間において1つの情報源に属する信号をマッピングし、通信のタイプがmMTCである場合に、1つのシンボル時間において2以上の情報源に属する信号をマッピングしてもよい。 The predetermined condition may be that the communication type is mMTC (massive Machine Type Communication). For example, the communication device 300 maps signals belonging to one source in one symbol time when the communication type is not mMTC, and two or more in one symbol time when the communication type is mMTC. Signals belonging to the source may be mapped.
 さらには、所定条件は、下りリンク信号に適用されてもよい。すなわち、通信装置300は、下りリンク信号の通信タイプがmMTCでない場合に、1つのシンボル時間において1つの情報源に属する信号をマッピングし、下りリンク信号の通信タイプがmMTCである場合に、1つのシンボル時間において2以上の情報源に属する信号をマッピングしてもよい。 Furthermore, the predetermined conditions may be applied to the downlink signal. That is, the communication device 300 maps signals belonging to one information source in one symbol time when the communication type of the downlink signal is not mMTC, and one when the communication type of the downlink signal is mMTC. Signals belonging to more than one source may be mapped in symbol time.
 [その他の実施形態]
 以上、実施形態に沿って本発明の内容を説明したが、本発明はこれらの記載に限定されるものではなく、種々の変形及び改良が可能であることは、当業者には自明である。
[Other embodiments]
Although the contents of the present invention have been described above according to the embodiments, it is obvious to those skilled in the art that the present invention is not limited to these descriptions and can be modified and improved in various ways.
 実施形態では、1つのシンボル時間においてマッピングされる信号の情報源が2つ又は3つであるケースについて例示した。しかしながら、実施形態はこれに限定されるものではない。情報源は4以上であってもよい。 In the embodiment, the case where the information sources of the signals mapped in one symbol time are two or three is illustrated. However, the embodiments are not limited to this. The information source may be 4 or more.
 上述した実施形態の説明に用いたブロック構成図(図4)は、機能単位のブロックを示している。これらの機能ブロック(構成部)は、ハードウェア及びソフトウェアの少なくとも一方の任意の組み合わせによって実現される。また、各機能ブロックの実現方法は特に限定されない。すなわち、各機能ブロックは、物理的又は論理的に結合した1つの装置を用いて実現されてもよいし、物理的又は論理的に分離した2つ以上の装置を直接的又は間接的に(例えば、有線、無線などを用いて)接続し、これら複数の装置を用いて実現されてもよい。機能ブロックは、上記1つの装置又は上記複数の装置にソフトウェアを組み合わせて実現されてもよい。 The block configuration diagram (FIG. 4) used in the description of the above-described embodiment shows a block of functional units. These functional blocks (components) are realized by any combination of at least one of hardware and software. Further, the method of realizing each functional block is not particularly limited. That is, each functional block may be realized using one physically or logically coupled device, or two or more physically or logically separated devices can be directly or indirectly (eg, for example). , Wired, wireless, etc.) and may be realized using these plurality of devices. The functional block may be realized by combining the software with the one device or the plurality of devices.
 機能には、判断、決定、判定、計算、算出、処理、導出、調査、探索、確認、受信、送信、出力、アクセス、解決、選択、選定、確立、比較、想定、期待、見做し、報知(broadcasting)、通知(notifying)、通信(communicating)、転送(forwarding)、構成(configuring)、再構成(reconfiguring)、割り当て(allocating、mapping)、割り振り(assigning)などがあるが、これらに限られない。例えば、送信を機能させる機能ブロック(構成部)は、送信部(transmitting unit)や送信機(transmitter)と呼ばれる。何れも、上述したとおり、実現方法は特に限定されない。 Functions include judgment, decision, judgment, calculation, calculation, processing, derivation, investigation, search, confirmation, reception, transmission, output, access, solution, selection, selection, establishment, comparison, assumption, expectation, and assumption. Broadcasting, notifying, communicating, forwarding, configuring, reconfiguring, allocating, mapping, assigning, etc., but limited to these I can't. For example, a functional block (configuration unit) that makes transmission function is called a transmitting unit (transmitting unit) or a transmitter (transmitter). In each case, as described above, the realization method is not particularly limited.
 さらに、上述した通信装置300及び通信装置400(当該装置)は、本開示の無線通信方法の処理を行うコンピュータとして機能してもよい。図12は、当該装置のハードウェア構成の一例を示す図である。図12に示すように、当該装置は、プロセッサ1001、メモリ1002、ストレージ1003、通信装置1004、入力装置1005、出力装置1006及びバス1007などを含むコンピュータ装置として構成されてもよい。 Further, the above-mentioned communication device 300 and communication device 400 (the device) may function as a computer that processes the wireless communication method of the present disclosure. FIG. 12 is a diagram showing an example of the hardware configuration of the device. As shown in FIG. 12, the device may be configured as a computer device including a processor 1001, a memory 1002, a storage 1003, a communication device 1004, an input device 1005, an output device 1006, a bus 1007, and the like.
 なお、以下の説明では、「装置」という文言は、回路、デバイス、ユニットなどに読み替えることができる。当該装置のハードウェア構成は、図に示した各装置を1つ又は複数含むように構成されてもよいし、一部の装置を含まずに構成されてもよい。 In the following explanation, the word "device" can be read as a circuit, device, unit, etc. The hardware configuration of the device may be configured to include one or more of the devices shown in the figure, or may be configured not to include some of the devices.
 当該装置の各機能ブロック(図4参照)は、当該コンピュータ装置の何れかのハードウェア要素、又は当該ハードウェア要素の組み合わせによって実現される。 Each functional block of the device (see FIG. 4) is realized by any hardware element of the computer device or a combination of the hardware elements.
 また、当該装置における各機能は、プロセッサ1001、メモリ1002などのハードウェア上に所定のソフトウェア(プログラム)を読み込ませることによって、プロセッサ1001が演算を行い、通信装置1004による通信を制御したり、メモリ1002及びストレージ1003におけるデータの読み出し及び書き込みの少なくとも一方を制御したりすることによって実現される。 In addition, each function in the device is such that the processor 1001 performs an operation by loading predetermined software (program) on the hardware such as the processor 1001 and the memory 1002, and controls the communication by the communication device 1004, or the memory. It is realized by controlling at least one of reading and writing of data in 1002 and storage 1003.
 プロセッサ1001は、例えば、オペレーティングシステムを動作させてコンピュータ全体を制御する。プロセッサ1001は、周辺装置とのインタフェース、制御装置、演算装置、レジスタなどを含む中央処理装置(CPU)によって構成されてもよい。 Processor 1001 operates, for example, an operating system to control the entire computer. The processor 1001 may be configured by a central processing unit (CPU) including an interface with peripheral devices, a control device, an arithmetic unit, a register, and the like.
 また、プロセッサ1001は、プログラム(プログラムコード)、ソフトウェアモジュール、データなどを、ストレージ1003及び通信装置1004の少なくとも一方からメモリ1002に読み出し、これらに従って各種の処理を実行する。プログラムとしては、上述の実施の形態において説明した動作の少なくとも一部をコンピュータに実行させるプログラムが用いられる。さらに、上述の各種処理は、1つのプロセッサ1001によって実行されてもよいし、2つ以上のプロセッサ1001により同時又は逐次に実行されてもよい。プロセッサ1001は、1以上のチップによって実装されてもよい。なお、プログラムは、電気通信回線を介してネットワークから送信されてもよい。 Further, the processor 1001 reads a program (program code), a software module, data, etc. from at least one of the storage 1003 and the communication device 1004 into the memory 1002, and executes various processes according to these. As the program, a program that causes a computer to execute at least a part of the operations described in the above-described embodiment is used. Further, the various processes described above may be executed by one processor 1001 or may be executed simultaneously or sequentially by two or more processors 1001. Processor 1001 may be implemented by one or more chips. The program may be transmitted from the network via a telecommunication line.
 メモリ1002は、コンピュータ読み取り可能な記録媒体であり、例えば、Read Only Memory(ROM)、Erasable Programmable ROM(EPROM)、Electrically Erasable Programmable ROM(EEPROM)、Random Access Memory(RAM)などの少なくとも1つによって構成されてもよい。メモリ1002は、レジスタ、キャッシュ、メインメモリ(主記憶装置)などと呼ばれてもよい。メモリ1002は、本開示の一実施形態に係る方法を実行可能なプログラム(プログラムコード)、ソフトウェアモジュールなどを保存することができる。 The memory 1002 is a computer-readable recording medium, and is composed of at least one such as ReadOnlyMemory (ROM), ErasableProgrammableROM (EPROM), Electrically ErasableProgrammableROM (EEPROM), and RandomAccessMemory (RAM). May be done. The memory 1002 may be referred to as a register, a cache, a main memory (main storage device), or the like. The memory 1002 can store a program (program code), a software module, or the like that can execute the method according to the embodiment of the present disclosure.
 ストレージ1003は、コンピュータ読み取り可能な記録媒体であり、例えば、Compact Disc ROM(CD-ROM)などの光ディスク、ハードディスクドライブ、フレキシブルディスク、光磁気ディスク(例えば、コンパクトディスク、デジタル多用途ディスク、Blu-ray(登録商標)ディスク)、スマートカード、フラッシュメモリ(例えば、カード、スティック、キードライブ)、フロッピー(登録商標)ディスク、磁気ストリップなどの少なくとも1つによって構成されてもよい。ストレージ1003は、補助記憶装置と呼ばれてもよい。上述の記録媒体は、例えば、メモリ1002及びストレージ1003の少なくとも一方を含むデータベース、サーバその他の適切な媒体であってもよい。 The storage 1003 is a computer-readable recording medium, for example, an optical disk such as Compact Disc ROM (CD-ROM), a hard disk drive, a flexible disk, an optical magnetic disk (for example, a compact disk, a digital versatile disk, or a Blu-ray). It may consist of at least one (registered trademark) disk), smart card, flash memory (eg, card, stick, key drive), floppy (registered trademark) disk, magnetic strip, and the like. Storage 1003 may be referred to as auxiliary storage. The recording medium described above may be, for example, a database, server or other suitable medium containing at least one of the memory 1002 and the storage 1003.
 通信装置1004は、有線ネットワーク及び無線ネットワークの少なくとも一方を介してコンピュータ間の通信を行うためのハードウェア(送受信デバイス)であり、例えばネットワークデバイス、ネットワークコントローラ、ネットワークカード、通信モジュールなどともいう。 The communication device 1004 is hardware (transmission / reception device) for communicating between computers via at least one of a wired network and a wireless network, and is also referred to as, for example, a network device, a network controller, a network card, a communication module, or the like.
 通信装置1004は、例えば周波数分割複信(Frequency Division Duplex:FDD)及び時分割複信(Time Division Duplex:TDD)の少なくとも一方を実現するために、高周波スイッチ、デュプレクサ、フィルタ、周波数シンセサイザなどを含んで構成されてもよい。 The communication device 1004 includes, for example, a high frequency switch, a duplexer, a filter, a frequency synthesizer, etc. in order to realize at least one of frequency division duplex (FDD) and time division duplex (TDD). It may be composed of.
 入力装置1005は、外部からの入力を受け付ける入力デバイス(例えば、キーボード、マウス、マイクロフォン、スイッチ、ボタン、センサなど)である。出力装置1006は、外部への出力を実施する出力デバイス(例えば、ディスプレイ、スピーカー、LEDランプなど)である。なお、入力装置1005及び出力装置1006は、一体となった構成(例えば、タッチパネル)であってもよい。 The input device 1005 is an input device (for example, a keyboard, a mouse, a microphone, a switch, a button, a sensor, etc.) that accepts an input from the outside. The output device 1006 is an output device (for example, a display, a speaker, an LED lamp, etc.) that outputs to the outside. The input device 1005 and the output device 1006 may have an integrated configuration (for example, a touch panel).
 また、プロセッサ1001及びメモリ1002などの各装置は、情報を通信するためのバス1007で接続される。バス1007は、単一のバスを用いて構成されてもよいし、装置間ごとに異なるバスを用いて構成されてもよい。 In addition, each device such as the processor 1001 and the memory 1002 is connected by the bus 1007 for communicating information. Bus 1007 may be configured using a single bus or may be configured using different buses for each device.
 さらに、当該装置は、マイクロプロセッサ、デジタル信号プロセッサ(Digital Signal Processor: DSP)、Application Specific Integrated Circuit(ASIC)、Programmable Logic Device(PLD)、Field Programmable Gate Array(FPGA)などのハードウェアを含んで構成されてもよく、当該ハードウェアにより、各機能ブロックの一部又は全てが実現されてもよい。例えば、プロセッサ1001は、これらのハードウェアの少なくとも1つを用いて実装されてもよい。 Furthermore, the device includes hardware such as a microprocessor, a digital signal processor (Digital Signal Processor: DSP), ApplicationSpecific IntegratedCircuit (ASIC), ProgrammableLogicDevice (PLD), and FieldProgrammableGateArray (FPGA). The hardware may implement some or all of each functional block. For example, processor 1001 may be implemented using at least one of these hardware.
 また、情報の通知は、本開示において説明した態様/実施形態に限られず、他の方法を用いて行われてもよい。例えば、情報の通知は、物理レイヤシグナリング(例えば、Downlink Control Information(DCI)、Uplink Control Information(UCI)、上位レイヤシグナリング(例えば、RRCシグナリング、Medium Access Control(MAC)シグナリング、報知情報(Master Information Block(MIB)、System Information Block(SIB))、その他の信号又はこれらの組み合わせによって実施されてもよい。また、RRCシグナリングは、RRCメッセージと呼ばれてもよく、例えば、RRC接続セットアップ(RRC Connection Setup)メッセージ、RRC接続再構成(RRC Connection Reconfiguration)メッセージなどであってもよい。 Further, the notification of information is not limited to the embodiment / embodiment described in the present disclosure, and may be performed by using another method. For example, information notification includes physical layer signaling (eg Downlink Control Information (DCI), Uplink Control Information (UCI), higher layer signaling (eg RRC signaling, Medium Access Control (MAC) signaling, broadcast information (Master Information Block)). (MIB), System Information Block (SIB)), other signals or combinations thereof. RRC signaling may also be referred to as an RRC message, eg, RRC Connection Setup. ) Message, RRC Connection Reconfiguration message, etc. may be used.
 本開示において説明した各態様/実施形態は、Long Term Evolution(LTE)、LTE-Advanced(LTE-A)、SUPER 3G、IMT-Advanced、4th generation mobile communication system(4G)、5th generation mobile communication system(5G)、Future Radio Access(FRA)、New Radio(NR)、W-CDMA(登録商標)、GSM(登録商標)、CDMA2000、Ultra Mobile Broadband(UMB)、IEEE 802.11(Wi-Fi(登録商標))、IEEE 802.16(WiMAX(登録商標))、IEEE 802.20、Ultra-WideBand(UWB)、Bluetooth(登録商標)、その他の適切なシステムを利用するシステム及びこれらに基づいて拡張された次世代システムの少なくとも一つに適用されてもよい。また、複数のシステムが組み合わされて(例えば、LTE及びLTE-Aの少なくとも一方と5Gとの組み合わせなど)適用されてもよい。 Each aspect / embodiment described in the present disclosure includes LongTermEvolution (LTE), LTE-Advanced (LTE-A), SUPER3G, IMT-Advanced, 4th generation mobile communication system (4G), 5th generation mobile communication system ( 5G), FutureRadioAccess (FRA), NewRadio (NR), W-CDMA (registered trademark), GSM (registered trademark), CDMA2000, UltraMobile Broadband (UMB), IEEE802.11 (Wi-Fi (registered trademark)) , IEEE802.16 (WiMAX®), IEEE802.20, Ultra-WideBand (UWB), Bluetooth®, and other systems that utilize appropriate systems and at least one of the next-generation systems extended based on them. It may be applied to one. In addition, a plurality of systems may be applied in combination (for example, a combination of at least one of LTE and LTE-A and 5G).
 本開示において説明した各態様/実施形態の処理手順、シーケンス、フローチャートなどは、矛盾の無い限り、順序を入れ替えてもよい。例えば、本開示において説明した方法については、例示的な順序を用いて様々なステップの要素を提示しており、提示した特定の順序に限定されない。 The order of the processing procedures, sequences, flowcharts, etc. of each aspect / embodiment described in the present disclosure may be changed as long as there is no contradiction. For example, the methods described in the present disclosure present elements of various steps using exemplary order, and are not limited to the particular order presented.
 本開示において基地局によって行われるとした特定動作は、場合によってはその上位ノード(upper node)によって行われることもある。基地局を有する1つ又は複数のネットワークノード(network nodes)からなるネットワークにおいて、端末との通信のために行われる様々な動作は、基地局及び基地局以外の他のネットワークノード(例えば、MME又はS-GWなどが考えられるが、これらに限られない)の少なくとも1つによって行われ得ることは明らかである。上記において基地局以外の他のネットワークノードが1つである場合を例示したが、複数の他のネットワークノードの組み合わせ(例えば、MME及びS-GW)であってもよい。 In some cases, the specific operation performed by the base station in this disclosure may be performed by its upper node (upper node). In a network consisting of one or more network nodes having a base station, various operations performed for communication with the terminal are the base station and other network nodes other than the base station (eg, MME or). It is clear that it can be done by at least one of (but not limited to, S-GW, etc.). Although the case where there is one network node other than the base station is illustrated above, it may be a combination of a plurality of other network nodes (for example, MME and S-GW).
 情報、信号(情報等)は、上位レイヤ(又は下位レイヤ)から下位レイヤ(又は上位レイヤ)へ出力され得る。複数のネットワークノードを介して入出力されてもよい。 Information and signals (information, etc.) can be output from the upper layer (or lower layer) to the lower layer (or upper layer). Input / output may be performed via a plurality of network nodes.
 入出力された情報は、特定の場所(例えば、メモリ)に保存されてもよいし、管理テーブルを用いて管理してもよい。入出力される情報は、上書き、更新、又は追記され得る。出力された情報は削除されてもよい。入力された情報は他の装置へ送信されてもよい。 The input / output information may be stored in a specific location (for example, memory) or may be managed using a management table. The input / output information may be overwritten, updated, or added. The output information may be deleted. The input information may be transmitted to another device.
 判定は、1ビットで表される値(0か1か)によって行われてもよいし、真偽値(Boolean:true又はfalse)によって行われてもよいし、数値の比較(例えば、所定の値との比較)によって行われてもよい。 The determination may be made by a value represented by 1 bit (0 or 1), by a true / false value (Boolean: true or false), or by comparing numerical values (for example, a predetermined value). It may be done by comparison with the value).
 本開示において説明した各態様/実施形態は単独で用いてもよいし、組み合わせて用いてもよいし、実行に伴って切り替えて用いてもよい。また、所定の情報の通知(例えば、「Xであること」の通知)は、明示的に行うものに限られず、暗黙的(例えば、当該所定の情報の通知を行わない)ことによって行われてもよい。 Each aspect / embodiment described in the present disclosure may be used alone, in combination, or may be switched and used according to the execution. Further, the notification of predetermined information (for example, the notification of "being X") is not limited to the explicit one, but is performed implicitly (for example, the notification of the predetermined information is not performed). May be good.
 ソフトウェアは、ソフトウェア、ファームウェア、ミドルウェア、マイクロコード、ハードウェア記述言語と呼ばれるか、他の名称で呼ばれるかを問わず、命令、命令セット、コード、コードセグメント、プログラムコード、プログラム、サブプログラム、ソフトウェアモジュール、アプリケーション、ソフトウェアアプリケーション、ソフトウェアパッケージ、ルーチン、サブルーチン、オブジェクト、実行可能ファイル、実行スレッド、手順、機能などを意味するよう広く解釈されるべきである。 Software, whether referred to as software, firmware, middleware, microcode, hardware description language, or other names, is an instruction, instruction set, code, code segment, program code, program, subprogram, software module. , Applications, software applications, software packages, routines, subroutines, objects, executable files, execution threads, procedures, features, etc. should be broadly interpreted.
 また、ソフトウェア、命令、情報などは、伝送媒体を介して送受信されてもよい。例えば、ソフトウェアが、有線技術(同軸ケーブル、光ファイバケーブル、ツイストペア、デジタル加入者回線(Digital Subscriber Line:DSL)など)及び無線技術(赤外線、マイクロ波など)の少なくとも一方を使用してウェブサイト、サーバ、又は他のリモートソースから送信される場合、これらの有線技術及び無線技術の少なくとも一方は、伝送媒体の定義内に含まれる。 Further, software, instructions, information, etc. may be transmitted and received via a transmission medium. For example, a website, where the software uses at least one of wired technology (coaxial cable, fiber optic cable, twisted pair, Digital Subscriber Line (DSL), etc.) and wireless technology (infrared, microwave, etc.). When transmitted from a server or other remote source, at least one of these wired and wireless technologies is included within the definition of transmission medium.
 本開示において説明した情報、信号などは、様々な異なる技術の何れかを使用して表されてもよい。例えば、上記の説明全体に渡って言及され得るデータ、命令、コマンド、情報、信号、ビット、シンボル、チップなどは、電圧、電流、電磁波、磁界若しくは磁性粒子、光場若しくは光子、又はこれらの任意の組み合わせによって表されてもよい。 The information, signals, etc. described in this disclosure may be represented using any of a variety of different techniques. For example, data, instructions, commands, information, signals, bits, symbols, chips, etc. that may be referred to throughout the above description are voltages, currents, electromagnetic waves, magnetic fields or magnetic particles, light fields or photons, or any of these. It may be represented by a combination of.
 なお、本開示において説明した用語及び本開示の理解に必要な用語については、同一の又は類似する意味を有する用語と置き換えてもよい。例えば、チャネル及びシンボルの少なくとも一方は信号(シグナリング)であってもよい。また、信号はメッセージであってもよい。また、コンポーネントキャリア(Component Carrier:CC)は、キャリア周波数、セル、周波数キャリアなどと呼ばれてもよい。 The terms described in the present disclosure and the terms necessary for understanding the present disclosure may be replaced with terms having the same or similar meanings. For example, at least one of a channel and a symbol may be a signal (signaling). Also, the signal may be a message. Further, the component carrier (CC) may be referred to as a carrier frequency, a cell, a frequency carrier, or the like.
 本開示において使用する「システム」及び「ネットワーク」という用語は、互換的に使用される。 The terms "system" and "network" used in this disclosure are used interchangeably.
 また、本開示において説明した情報、パラメータなどは、絶対値を用いて表されてもよいし、所定の値からの相対値を用いて表されてもよいし、対応する別の情報を用いて表されてもよい。例えば、無線リソースはインデックスによって指示されるものであってもよい。 Further, the information, parameters, etc. described in the present disclosure may be expressed using absolute values, relative values from predetermined values, or using other corresponding information. It may be represented. For example, the radio resource may be one indicated by an index.
 上述したパラメータに使用する名称はいかなる点においても限定的な名称ではない。さらに、これらのパラメータを使用する数式等は、本開示で明示的に開示したものと異なる場合もある。様々なチャネル(例えば、PUCCH、PDCCHなど)及び情報要素は、あらゆる好適な名称によって識別できるため、これらの様々なチャネル及び情報要素に割り当てている様々な名称は、いかなる点においても限定的な名称ではない。 The names used for the above parameters are not limited in any respect. Further, mathematical formulas and the like using these parameters may differ from those expressly disclosed in this disclosure. Since various channels (eg, PUCCH, PDCCH, etc.) and information elements can be identified by any suitable name, the various names assigned to these various channels and information elements are in any respect limited names. is not it.
 本開示においては、「基地局(Base Station:BS)」、「無線基地局」、「固定局(fixed station)」、「NodeB」、「eNodeB(eNB)」、「gNodeB(gNB)」、「アクセスポイント(access point)」、「送信ポイント(transmission point)」、「受信ポイント(reception point)、「送受信ポイント(transmission/reception point)」、「セル」、「セクタ」、「セルグループ」、「キャリア」、「コンポーネントキャリア」などの用語は、互換的に使用され得る。基地局は、マクロセル、スモールセル、フェムトセル、ピコセルなどの用語で呼ばれる場合もある。 In this disclosure, "Base Station (BS)", "Wireless Base Station", "Fixed Station", "NodeB", "eNodeB (eNB)", "gNodeB (gNB)", " "Access point", "transmission point", "reception point", "transmission / reception point", "cell", "sector", "cell group", "cell group", " Terms such as "carrier" and "component carrier" may be used interchangeably. Base stations are sometimes referred to by terms such as macrocells, small cells, femtocells, and picocells.
 基地局は、1つ又は複数(例えば、3つ)のセル(セクタとも呼ばれる)を収容することができる。基地局が複数のセルを収容する場合、基地局のカバレッジエリア全体は複数のより小さいエリアに区分でき、各々のより小さいエリアは、基地局サブシステム(例えば、屋内用の小型基地局(Remote Radio Head:RRH)によって通信サービスを提供することもできる。 A base station can accommodate one or more (eg, three) cells (also called sectors). When a base station accommodates multiple cells, the entire base station coverage area can be divided into multiple smaller areas, each smaller area being a base station subsystem (eg, a remote radio for indoor use). Communication services can also be provided by Head: RRH).
 「セル」又は「セクタ」という用語は、このカバレッジにおいて通信サービスを行う基地局、及び基地局サブシステムの少なくとも一方のカバレッジエリアの一部又は全体を指す。 The term "cell" or "sector" refers to a part or all of the coverage area of at least one of the base station providing communication services in this coverage and the base station subsystem.
 本開示においては、「移動局(Mobile Station:MS)」、「ユーザ端末(user terminal)」、「ユーザ装置(User Equipment:UE)」、「端末」などの用語は、互換的に使用され得る。 In the present disclosure, terms such as "Mobile Station (MS)", "user terminal", "user equipment (UE)", and "terminal" may be used interchangeably. ..
 移動局は、当業者によって、加入者局、モバイルユニット、加入者ユニット、ワイヤレスユニット、リモートユニット、モバイルデバイス、ワイヤレスデバイス、ワイヤレス通信デバイス、リモートデバイス、モバイル加入者局、アクセス端末、モバイル端末、ワイヤレス端末、リモート端末、ハンドセット、ユーザエージェント、モバイルクライアント、クライアント、又はいくつかの他の適切な用語で呼ばれる場合もある。 Mobile stations can be used by those skilled in the art as subscriber stations, mobile units, subscriber units, wireless units, remote units, mobile devices, wireless devices, wireless communication devices, remote devices, mobile subscriber stations, access terminals, mobile terminals, wireless. It may also be referred to as a terminal, remote terminal, handset, user agent, mobile client, client, or some other suitable term.
 基地局及び移動局の少なくとも一方は、送信装置、受信装置、通信装置などと呼ばれてもよい。なお、基地局及び移動局の少なくとも一方は、移動体に搭載されたデバイス、移動体自体などであってもよい。当該移動体は、乗り物(例えば、車、飛行機など)であってもよいし、無人で動く移動体(例えば、ドローン、自動運転車など)であってもよいし、ロボット(有人型又は無人型)であってもよい。なお、基地局及び移動局の少なくとも一方は、必ずしも通信動作時に移動しない装置も含む。例えば、基地局及び移動局の少なくとも一方は、センサなどのInternet of Things(IoT)機器であってもよい。 At least one of the base station and the mobile station may be called a transmitting device, a receiving device, a communication device, or the like. At least one of the base station and the mobile station may be a device mounted on the mobile body, a mobile body itself, or the like. The moving body may be a vehicle (eg, car, airplane, etc.), an unmanned moving body (eg, drone, self-driving car, etc.), or a robot (manned or unmanned). ) May be. It should be noted that at least one of the base station and the mobile station includes a device that does not necessarily move during communication operation. For example, at least one of a base station and a mobile station may be an Internet of Things (IoT) device such as a sensor.
 また、本開示における基地局は、移動局(ユーザ端末、以下同)として読み替えてもよい。例えば、基地局及び移動局間の通信を、複数の移動局間の通信(例えば、Device-to-Device(D2D)、Vehicle-to-Everything(V2X)などと呼ばれてもよい)に置き換えた構成について、本開示の各態様/実施形態を適用してもよい。この場合、基地局が有する機能を移動局が有する構成としてもよい。また、「上り」及び「下り」などの文言は、端末間通信に対応する文言(例えば、「サイド(side)」)で読み替えられてもよい。例えば、上りチャネル、下りチャネルなどは、サイドチャネルで読み替えられてもよい。 Further, the base station in the present disclosure may be read as a mobile station (user terminal, the same shall apply hereinafter). For example, communication between a base station and a mobile station has been replaced with communication between a plurality of mobile stations (for example, it may be called Device-to-Device (D2D), Vehicle-to-Everything (V2X), etc.). Each aspect / embodiment of the present disclosure may be applied to the configuration. In this case, the mobile station may have the functions of the base station. Further, words such as "up" and "down" may be read as words corresponding to communication between terminals (for example, "side"). For example, the upstream channel, the downstream channel, and the like may be read as a side channel.
 同様に、本開示における移動局は、基地局として読み替えてもよい。この場合、移動局が有する機能を基地局が有する構成としてもよい。 Similarly, the mobile station in the present disclosure may be read as a base station. In this case, the base station may have the functions of the mobile station.
 無線フレームは時間領域において1つ又は複数のフレームによって構成されてもよい。時間領域において1つ又は複数の各フレームはサブフレームと呼ばれてもよい。 The wireless frame may be composed of one or more frames in the time domain. Each one or more frames in the time domain may be referred to as a subframe.
 サブフレームはさらに時間領域において1つ又は複数のスロットによって構成されてもよい。サブフレームは、ニューメロロジー(numerology)に依存しない固定の時間長(例えば、1ms)であってもよい。 The subframe may be further composed of one or more slots in the time domain. The subframe may have a fixed time length (eg, 1 ms) that does not depend on numerology.
 ニューメロロジーは、ある信号又はチャネルの送信及び受信の少なくとも一方に適用される通信パラメータであってもよい。ニューメロロジーは、例えば、サブキャリア間隔(SubCarrier Spacing:SCS)、帯域幅、シンボル長、サイクリックプレフィックス長、送信時間間隔(Transmission Time Interval:TTI)、TTIあたりのシンボル数、無線フレーム構成、送受信機が周波数領域において行う特定のフィルタリング処理、送受信機が時間領域において行う特定のウィンドウイング処理などの少なくとも1つを示してもよい。 The numerology may be a communication parameter applied to at least one of transmission and reception of a signal or channel. Numerology includes, for example, SubCarrier Spacing (SCS), bandwidth, symbol length, cyclic prefix length, transmission time interval (Transmission Time Interval: TTI), number of symbols per TTI, wireless frame configuration, transmission / reception. It may indicate at least one of a specific filtering process performed by the machine in the frequency domain, a specific windowing process performed by the transmitter / receiver in the time domain, and the like.
 スロットは、時間領域において1つ又は複数のシンボル(Orthogonal Frequency Division Multiplexing(OFDM))シンボル、Single Carrier Frequency Division Multiple Access(SC-FDMA)シンボルなど)で構成されてもよい。スロットは、ニューメロロジーに基づく時間単位であってもよい。 The slot may be composed of one or more symbols (Orthogonal Frequency Division Multiplexing (OFDM) symbol, Single Carrier Frequency Division Multiple Access (SC-FDMA) symbol, etc.) in the time domain. The slot may be a unit of time based on numerology.
 スロットは、複数のミニスロットを含んでもよい。各ミニスロットは、時間領域において1つ又は複数のシンボルによって構成されてもよい。また、ミニスロットは、サブスロットと呼ばれてもよい。ミニスロットは、スロットよりも少ない数のシンボルによって構成されてもよい。ミニスロットより大きい時間単位で送信されるPDSCH(又はPUSCH)は、PDSCH(又はPUSCH)マッピングタイプAと呼ばれてもよい。ミニスロットを用いて送信されるPDSCH(又はPUSCH)は、PDSCH(又はPUSCH)マッピングタイプBと呼ばれてもよい。 The slot may include a plurality of mini slots. Each minislot may be composed of one or more symbols in the time domain. Further, the mini slot may be referred to as a sub slot. The minislot may consist of a smaller number of symbols than the slot. PDSCH (or PUSCH) transmitted in time units larger than the minislot may be referred to as PDSCH (or PUSCH) mapping type A. The PDSCH (or PUSCH) transmitted using the minislot may be referred to as PDSCH (or PUSCH) mapping type B.
 無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルは、何れも信号を伝送する際の時間単位を表す。無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルは、それぞれに対応する別の呼称が用いられてもよい。 The wireless frame, subframe, slot, minislot and symbol all represent the time unit when transmitting a signal. The radio frame, subframe, slot, minislot and symbol may use different names corresponding to each.
 例えば、1サブフレームは送信時間間隔(TTI)と呼ばれてもよいし、複数の連続したサブフレームがTTIと呼ばれてよいし、1スロット又は1ミニスロットがTTIと呼ばれてもよい。つまり、サブフレーム及びTTIの少なくとも一方は、既存のLTEにおけるサブフレーム(1ms)であってもよいし、1msより短い期間(例えば、1-13シンボル)であってもよいし、1msより長い期間であってもよい。なお、TTIを表す単位は、サブフレームではなくスロット、ミニスロットなどと呼ばれてもよい。 For example, one subframe may be referred to as a transmission time interval (TTI), a plurality of consecutive subframes may be referred to as TTI, and one slot or one minislot may be referred to as TTI. That is, at least one of the subframe and TTI may be a subframe (1ms) in existing LTE, a period shorter than 1ms (eg, 1-13 symbols), or a period longer than 1ms. May be. The unit representing TTI may be called a slot, a mini slot, or the like instead of a subframe.
 ここで、TTIは、例えば、無線通信におけるスケジューリングの最小時間単位のことをいう。例えば、LTEシステムでは、基地局が各ユーザ端末に対して、無線リソース(各ユーザ端末において使用することが可能な周波数帯域幅、送信電力など)を、TTI単位で割り当てるスケジューリングを行う。なお、TTIの定義はこれに限られない。 Here, TTI refers to, for example, the minimum time unit of scheduling in wireless communication. For example, in an LTE system, a base station schedules each user terminal to allocate radio resources (frequency bandwidth that can be used in each user terminal, transmission power, etc.) in TTI units. The definition of TTI is not limited to this.
 TTIは、チャネル符号化されたデータパケット(トランスポートブロック)、コードブロック、コードワードなどの送信時間単位であってもよいし、スケジューリング、リンクアダプテーションなどの処理単位となってもよい。なお、TTIが与えられたとき、実際にトランスポートブロック、コードブロック、コードワードなどがマッピングされる時間区間(例えば、シンボル数)は、当該TTIよりも短くてもよい。 TTI may be a transmission time unit such as a channel-encoded data packet (transport block), a code block, or a code word, or may be a processing unit such as scheduling or link adaptation. When a TTI is given, the time interval (for example, the number of symbols) to which the transport block, code block, code word, etc. are actually mapped may be shorter than the TTI.
 なお、1スロット又は1ミニスロットがTTIと呼ばれる場合、1以上のTTI(すなわち、1以上のスロット又は1以上のミニスロット)が、スケジューリングの最小時間単位となってもよい。また、当該スケジューリングの最小時間単位を構成するスロット数(ミニスロット数)は制御されてもよい。 When one slot or one mini slot is called TTI, one or more TTIs (that is, one or more slots or one or more mini slots) may be the minimum time unit for scheduling. Further, the number of slots (number of mini-slots) constituting the minimum time unit of the scheduling may be controlled.
 1msの時間長を有するTTIは、通常TTI(LTE Rel.8-12におけるTTI)、ノーマルTTI、ロングTTI、通常サブフレーム、ノーマルサブフレーム、ロングサブフレーム、スロットなどと呼ばれてもよい。通常TTIより短いTTIは、短縮TTI、ショートTTI、部分TTI(partial又はfractional TTI)、短縮サブフレーム、ショートサブフレーム、ミニスロット、サブスロット、スロットなどと呼ばれてもよい。 TTI with a time length of 1 ms may be called normal TTI (TTI in LTE Rel.8-12), normal TTI, long TTI, normal subframe, normal subframe, long subframe, slot, etc. A TTI shorter than a normal TTI may be referred to as a shortened TTI, a short TTI, a partial TTI (partial or fractional TTI), a shortened subframe, a short subframe, a minislot, a subslot, a slot, and the like.
 なお、ロングTTI(例えば、通常TTI、サブフレームなど)は、1msを超える時間長を有するTTIで読み替えてもよいし、ショートTTI(例えば、短縮TTIなど)は、ロングTTIのTTI長未満かつ1ms以上のTTI長を有するTTIで読み替えてもよい。 The long TTI (for example, normal TTI, subframe, etc.) may be read as a TTI having a time length of more than 1 ms, and the short TTI (for example, shortened TTI, etc.) may be read as a TTI less than the TTI length of the long TTI and 1 ms. It may be read as a TTI having the above TTI length.
 リソースブロック(RB)は、時間領域及び周波数領域のリソース割当単位であり、周波数領域において、1つ又は複数個の連続した副搬送波(subcarrier)を含んでもよい。RBに含まれるサブキャリアの数は、ニューメロロジーに関わらず同じであってもよく、例えば12であってもよい。RBに含まれるサブキャリアの数は、ニューメロロジーに基づいて決定されてもよい。 The resource block (RB) is a resource allocation unit in the time domain and the frequency domain, and may include one or a plurality of continuous subcarriers in the frequency domain. The number of subcarriers contained in RB may be the same regardless of numerology, and may be, for example, 12. The number of subcarriers contained in the RB may be determined based on numerology.
 また、RBの時間領域は、1つ又は複数個のシンボルを含んでもよく、1スロット、1ミニスロット、1サブフレーム、又は1TTIの長さであってもよい。1TTI、1サブフレームなどは、それぞれ1つ又は複数のリソースブロックで構成されてもよい。 Further, the time domain of RB may include one or more symbols, and may have a length of 1 slot, 1 mini slot, 1 subframe, or 1 TTI. Each 1TTI, 1 subframe, etc. may be composed of one or a plurality of resource blocks.
 なお、1つ又は複数のRBは、物理リソースブロック(Physical RB:PRB)、サブキャリアグループ(Sub-Carrier Group:SCG)、リソースエレメントグループ(Resource Element Group:REG)、PRBペア、RBペアなどと呼ばれてもよい。 One or more RBs include a physical resource block (Physical RB: PRB), a sub-carrier group (Sub-Carrier Group: SCG), a resource element group (Resource Element Group: REG), a PRB pair, an RB pair, and the like. May be called.
 また、リソースブロックは、1つ又は複数のリソースエレメント(Resource Element:RE)によって構成されてもよい。例えば、1REは、1サブキャリア及び1シンボルの無線リソース領域であってもよい。 Further, the resource block may be composed of one or a plurality of resource elements (ResourceElement: RE). For example, 1RE may be a radio resource area of 1 subcarrier and 1 symbol.
 帯域幅部分(Bandwidth Part:BWP)(部分帯域幅などと呼ばれてもよい)は、あるキャリアにおいて、あるニューメロロジー用の連続する共通RB(common resource blocks)のサブセットのことを表してもよい。ここで、共通RBは、当該キャリアの共通参照ポイントを基準としたRBのインデックスによって特定されてもよい。PRBは、あるBWPで定義され、当該BWP内で番号付けされてもよい。 Bandwidth Part (BWP) (which may also be called partial bandwidth, etc.) may represent a subset of consecutive common resource blocks (RBs) for a neurology in a carrier. good. Here, the common RB may be specified by the index of the RB with respect to the common reference point of the carrier. PRBs may be defined in a BWP and numbered within that BWP.
 BWPには、UL用のBWP(UL BWP)と、DL用のBWP(DL BWP)とが含まれてもよい。UEに対して、1キャリア内に1つ又は複数のBWPが設定されてもよい。 BWP may include BWP for UL (UL BWP) and BWP for DL (DL BWP). One or more BWPs may be set in one carrier for the UE.
 設定されたBWPの少なくとも1つがアクティブであってもよく、UEは、アクティブなBWPの外で所定の信号/チャネルを送受信することを想定しなくてもよい。なお、本開示における「セル」、「キャリア」などは、「BWP」で読み替えられてもよい。 At least one of the configured BWPs may be active, and the UE may not expect to send or receive a given signal / channel outside the active BWP. In addition, "cell", "carrier" and the like in this disclosure may be read as "BWP".
 上述した無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルなどの構造は例示に過ぎない。例えば、無線フレームに含まれるサブフレームの数、サブフレーム又は無線フレームあたりのスロットの数、スロット内に含まれるミニスロットの数、スロット又はミニスロットに含まれるシンボル及びRBの数、RBに含まれるサブキャリアの数、並びにTTI内のシンボル数、シンボル長、サイクリックプレフィックス(Cyclic Prefix:CP)長などの構成は、様々に変更することができる。 The above-mentioned structures such as wireless frames, subframes, slots, mini-slots and symbols are merely examples. For example, the number of subframes contained in a radio frame, the number of slots per subframe or radioframe, the number of minislots contained within a slot, the number of symbols and RBs contained in a slot or minislot, included in RB. The number of subcarriers, as well as the number of symbols in the TTI, the symbol length, the cyclic prefix (CP) length, and other configurations can be changed in various ways.
 「接続された(connected)」、「結合された(coupled)」という用語、又はこれらのあらゆる変形は、2又はそれ以上の要素間の直接的又は間接的なあらゆる接続又は結合を意味し、互いに「接続」又は「結合」された2つの要素間に1又はそれ以上の中間要素が存在することを含むことができる。要素間の結合又は接続は、物理的なものであっても、論理的なものであっても、或いはこれらの組み合わせであってもよい。例えば、「接続」は「アクセス」で読み替えられてもよい。本開示で使用する場合、2つの要素は、1又はそれ以上の電線、ケーブル及びプリント電気接続の少なくとも一つを用いて、並びにいくつかの非限定的かつ非包括的な例として、無線周波数領域、マイクロ波領域及び光(可視及び不可視の両方)領域の波長を有する電磁エネルギーなどを用いて、互いに「接続」又は「結合」されると考えることができる。

 参照信号は、Reference Signal(RS)と略称することもでき、適用される標準によってパイロット(Pilot)と呼ばれてもよい。
The terms "connected", "coupled", or any variation thereof, mean any direct or indirect connection or connection between two or more elements and each other. It can include the presence of one or more intermediate elements between two "connected" or "combined" elements. The connection or connection between the elements may be physical, logical, or a combination thereof. For example, "connection" may be read as "access". As used in the present disclosure, the two elements use at least one of one or more wires, cables and printed electrical connections, and as some non-limiting and non-comprehensive examples, the radio frequency domain. Can be considered to be "connected" or "coupled" to each other using electromagnetic energy having wavelengths in the microwave and light (both visible and invisible) regions.

The reference signal may also be abbreviated as Reference Signal (RS) and may be referred to as a pilot (Pilot) depending on the applied standard.
 本開示において使用する「に基づいて」という記載は、別段に明記されていない限り、「のみに基づいて」を意味しない。言い換えれば、「に基づいて」という記載は、「のみに基づいて」と「に少なくとも基づいて」の両方を意味する。 The statement "based on" used in this disclosure does not mean "based on" unless otherwise stated. In other words, the statement "based on" means both "based only" and "at least based on".
 上記の各装置の構成における「手段」を、「部」、「回路」、「デバイス」等に置き換えてもよい。 The "means" in the configuration of each of the above devices may be replaced with a "part", a "circuit", a "device", or the like.
 本開示において使用する「第1」、「第2」などの呼称を使用した要素へのいかなる参照も、それらの要素の量又は順序を全般的に限定しない。これらの呼称は、2つ以上の要素間を区別する便利な方法として本開示において使用され得る。したがって、第1及び第2の要素への参照は、2つの要素のみがそこで採用され得ること、又は何らかの形で第1の要素が第2の要素に先行しなければならないことを意味しない。 Any reference to elements using designations such as "first" and "second" as used in this disclosure does not generally limit the quantity or order of those elements. These designations can be used in the present disclosure as a convenient way to distinguish between two or more elements. Therefore, references to the first and second elements do not mean that only two elements can be adopted there, or that the first element must somehow precede the second element.
 本開示において、「含む(include)」、「含んでいる(including)」及びそれらの変形が使用されている場合、これらの用語は、用語「備える(comprising)」と同様に、包括的であることが意図される。さらに、本開示において使用されている用語「又は(or)」は、排他的論理和ではないことが意図される。 When "include", "including" and variations thereof are used in the present disclosure, these terms are as inclusive as the term "comprising". Is intended. Moreover, the term "or" used in the present disclosure is intended not to be an exclusive OR.
 本開示において、例えば、英語でのa, an及びtheのように、翻訳により冠詞が追加された場合、本開示は、これらの冠詞の後に続く名詞が複数形であることを含んでもよい。 In the present disclosure, if articles are added by translation, for example, a, an and the in English, the disclosure may include the plural nouns following these articles.
 本開示で使用する「判断(determining)」、「決定(determining)」という用語は、多種多様な動作を包含する場合がある。「判断」、「決定」は、例えば、判定(judging)、計算(calculating)、算出(computing)、処理(processing)、導出(deriving)、調査(investigating)、探索(looking up、search、inquiry)(例えば、テーブル、データベース又は別のデータ構造での探索)、確認(ascertaining)した事を「判断」「決定」したとみなす事などを含み得る。また、「判断」、「決定」は、受信(receiving)(例えば、情報を受信すること)、送信(transmitting)(例えば、情報を送信すること)、入力(input)、出力(output)、アクセス(accessing)(例えば、メモリ中のデータにアクセスすること)した事を「判断」「決定」したとみなす事などを含み得る。また、「判断」、「決定」は、解決(resolving)、選択(selecting)、選定(choosing)、確立(establishing)、比較(comparing)などした事を「判断」「決定」したとみなす事を含み得る。つまり、「判断」「決定」は、何らかの動作を「判断」「決定」したとみなす事を含み得る。また、「判断(決定)」は、「想定する(assuming)」、「期待する(expecting)」、「みなす(considering)」などで読み替えられてもよい。 The terms "determining" and "determining" used in this disclosure may include a wide variety of actions. "Judgment" and "decision" are, for example, judgment (judging), calculation (calculating), calculation (computing), processing (processing), derivation (deriving), investigation (investigating), search (looking up, search, inquiry). It may include (eg, searching in a table, database or another data structure), ascertaining as "judgment" or "decision". Also, "judgment" and "decision" are receiving (for example, receiving information), transmitting (for example, transmitting information), input (input), output (output), and access. It may include (for example, accessing data in memory) to be regarded as "judgment" or "decision". In addition, "judgment" and "decision" are considered to be "judgment" and "decision" when the things such as solving, selecting, choosing, establishing, and comparing are regarded as "judgment" and "decision". Can include. That is, "judgment" and "decision" may include considering some action as "judgment" and "decision". Further, "judgment (decision)" may be read as "assuming", "expecting", "considering" and the like.
 本開示において、「AとBが異なる」という用語は、「AとBが互いに異なる」ことを意味してもよい。なお、当該用語は、「AとBがそれぞれCと異なる」ことを意味してもよい。「離れる」、「結合される」などの用語も、「異なる」と同様に解釈されてもよい。 In the present disclosure, the term "A and B are different" may mean "A and B are different from each other". The term may mean that "A and B are different from C". Terms such as "separate" and "combined" may be interpreted in the same way as "different".
 以上、本開示について詳細に説明したが、当業者にとっては、本開示が本開示中に説明した実施形態に限定されるものではないということは明らかである。本開示は、請求の範囲の記載により定まる本開示の趣旨及び範囲を逸脱することなく修正及び変更態様として実施することができる。したがって、本開示の記載は、例示説明を目的とするものであり、本開示に対して何ら制限的な意味を有するものではない。 Although the present disclosure has been described in detail above, it is clear to those skilled in the art that the present disclosure is not limited to the embodiments described in the present disclosure. The present disclosure may be implemented as amendments and modifications without departing from the spirit and scope of the present disclosure as determined by the description of the scope of claims. Therefore, the description of this disclosure is for purposes of illustration and does not have any limiting meaning to this disclosure.
 10 無線通信システム
 20 NG-RAN
 100 gNB
 200 UE
 210 無線信号送受信部
 220 アンプ部
 230 変復調部
 240 制御信号・参照信号処理部
 250 符号化/復号部
 260 データ送受信部
 270 制御部
 300 通信装置
 310 情報源
 320 マルチプレクサ
 330 DFT部
 340 マッピング部
 350 IFFT部
 360 CP付加部
 370 送信部
 400 通信装置
 410 受信部
 420 CP除去部
 430 DFT部
 440 デマッピング部
 450 IFFT部
 460 デマルチプレクサ
 470 情報源
 1001 プロセッサ
 1002 メモリ
 1003 ストレージ
 1004 通信装置
 1005 入力装置
 1006 出力装置
 1007 バス
10 Radio communication system 20 NG-RAN
100 gNB
200 UE
210 Radio signal transmission / reception unit 220 Amplifier unit 230 Modulation / demodulation unit 240 Control signal / reference signal processing unit 250 Coding / decoding unit 260 Data transmission / reception unit 270 Control unit 300 Communication device 310 Information source 320 Multiplexer 330 DFT unit 340 Mapping unit 350 IFFT unit 360 CP addition part 370 Transmission part 400 Communication device 410 Reception part 420 CP removal part 430 DFT part 440 Demapping part 450 IFFT part 460 Demultiplexer 470 Information source 1001 Processor 1002 Memory 1003 Storage 1004 Communication device 1005 Input device 1006 Output device 1007 Bus

Claims (5)

  1.  シングルキャリア方式の1つのシンボル時間において、2以上の情報源に属する信号をマッピングする制御部と、
     前記2以上の情報源に属する信号がマッピングされた信号を送信する送信部と、を備える通信装置。
    A control unit that maps signals belonging to two or more information sources in one symbol time of the single carrier method.
    A communication device including a transmission unit for transmitting a signal to which signals belonging to the two or more information sources are mapped.
  2.  前記制御部は、前記1つのシンボル時間において、2以上の制御信号をマッピングする、請求項1に記載の通信装置。 The communication device according to claim 1, wherein the control unit maps two or more control signals in the one symbol time.
  3.  前記制御部は、前記1つのシンボルに対するマッピングが実行される前において、前記2以上の情報源に属する信号を時分割で多重する、請求項1又は請求項2に記載の通信装置。 The communication device according to claim 1 or 2, wherein the control unit multiplexes signals belonging to the two or more information sources by time division before mapping to the one symbol is executed.
  4.  前記制御部は、所定条件が満たされた場合に、前記1つのシンボル時間において前記2以上の情報源に属する信号をマッピングする処理を実行する、請求項1乃至請求項3のいずれか1項に記載の通信装置。 The control unit according to any one of claims 1 to 3, wherein the control unit executes a process of mapping signals belonging to the two or more information sources in the one symbol time when a predetermined condition is satisfied. The communication device described.
  5.  シングルキャリア方式の1つのシンボル時間において2以上の情報源に属する信号がマッピングされた信号を受信する受信部と、
     前記2以上の情報源に属する信号をデマッピングする制御部と、を備える通信装置。
     
    A receiver that receives a signal to which signals belonging to two or more information sources are mapped in one symbol time of the single carrier system.
    A communication device including a control unit for demapping signals belonging to the two or more information sources.
PCT/JP2021/021137 2020-06-25 2021-06-03 Communication device WO2021261199A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020109818A JP2023110115A (en) 2020-06-25 2020-06-25 Communication device
JP2020-109818 2020-06-25

Publications (1)

Publication Number Publication Date
WO2021261199A1 true WO2021261199A1 (en) 2021-12-30

Family

ID=79282568

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/021137 WO2021261199A1 (en) 2020-06-25 2021-06-03 Communication device

Country Status (2)

Country Link
JP (1) JP2023110115A (en)
WO (1) WO2021261199A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018143325A1 (en) * 2017-02-03 2018-08-09 株式会社Nttドコモ User terminal and wireless communication method
US20190356526A1 (en) * 2017-01-20 2019-11-21 Wisig Networks Private Limited [In] Method and system for providing code cover to ofdm symbols in multiple user system

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190356526A1 (en) * 2017-01-20 2019-11-21 Wisig Networks Private Limited [In] Method and system for providing code cover to ofdm symbols in multiple user system
WO2018143325A1 (en) * 2017-02-03 2018-08-09 株式会社Nttドコモ User terminal and wireless communication method

Also Published As

Publication number Publication date
JP2023110115A (en) 2023-08-09

Similar Documents

Publication Publication Date Title
WO2020261463A1 (en) Terminal
WO2022079876A1 (en) Terminal
WO2021009817A1 (en) Terminal
WO2022149267A1 (en) Radio base station and terminal
WO2021214920A1 (en) Terminal
WO2021199200A1 (en) Terminal
WO2021261199A1 (en) Communication device
WO2022074842A1 (en) Terminal
WO2022085156A1 (en) Terminal
WO2022102669A1 (en) Terminal
WO2021191982A1 (en) Terminal
WO2022079872A1 (en) Terminal
WO2021192063A1 (en) Terminal
WO2022074843A1 (en) Terminal
WO2022153505A1 (en) Terminal and radio base station
WO2022079861A1 (en) Terminal
WO2022085201A1 (en) Terminal
WO2022029972A1 (en) Terminal
WO2021214919A1 (en) Terminal
WO2022029981A1 (en) Terminal
WO2022029980A1 (en) Terminal
WO2022029982A1 (en) Terminal
WO2021199388A1 (en) Terminal
WO2022097724A1 (en) Terminal
WO2022074729A1 (en) Communication device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21829409

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21829409

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP