WO2022148178A1 - 一种新型井状建筑用阻尼装置 - Google Patents
一种新型井状建筑用阻尼装置 Download PDFInfo
- Publication number
- WO2022148178A1 WO2022148178A1 PCT/CN2021/133955 CN2021133955W WO2022148178A1 WO 2022148178 A1 WO2022148178 A1 WO 2022148178A1 CN 2021133955 W CN2021133955 W CN 2021133955W WO 2022148178 A1 WO2022148178 A1 WO 2022148178A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- building beam
- building
- damping
- fixed
- shaped
- Prior art date
Links
- 238000013016 damping Methods 0.000 title claims abstract description 91
- 229920000642 polymer Polymers 0.000 claims abstract description 19
- 239000012530 fluid Substances 0.000 claims abstract description 18
- 238000007789 sealing Methods 0.000 claims description 7
- 229910000831 Steel Inorganic materials 0.000 claims description 3
- 239000010959 steel Substances 0.000 claims description 3
- 238000004073 vulcanization Methods 0.000 claims description 3
- 238000003466 welding Methods 0.000 claims description 3
- 230000035939 shock Effects 0.000 abstract description 18
- 238000010521 absorption reaction Methods 0.000 abstract description 16
- 230000021715 photosynthesis, light harvesting Effects 0.000 abstract description 15
- 230000000694 effects Effects 0.000 abstract description 6
- 230000000452 restraining effect Effects 0.000 abstract description 3
- 238000010008 shearing Methods 0.000 abstract 1
- 230000009471 action Effects 0.000 description 5
- 230000005540 biological transmission Effects 0.000 description 5
- 238000010586 diagram Methods 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 3
- 238000009434 installation Methods 0.000 description 3
- 238000000034 method Methods 0.000 description 3
- 230000000712 assembly Effects 0.000 description 2
- 238000000429 assembly Methods 0.000 description 2
- 239000000872 buffer Substances 0.000 description 2
- 230000003139 buffering effect Effects 0.000 description 2
- 238000010276 construction Methods 0.000 description 2
- 238000011982 device technology Methods 0.000 description 2
- 238000005265 energy consumption Methods 0.000 description 2
- 238000002955 isolation Methods 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 241000208140 Acer Species 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000007667 floating Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
Images
Classifications
-
- E—FIXED CONSTRUCTIONS
- E04—BUILDING
- E04B—GENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
- E04B1/00—Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
- E04B1/62—Insulation or other protection; Elements or use of specified material therefor
- E04B1/92—Protection against other undesired influences or dangers
- E04B1/98—Protection against other undesired influences or dangers against vibrations or shocks; against mechanical destruction, e.g. by air-raids
-
- E—FIXED CONSTRUCTIONS
- E04—BUILDING
- E04H—BUILDINGS OR LIKE STRUCTURES FOR PARTICULAR PURPOSES; SWIMMING OR SPLASH BATHS OR POOLS; MASTS; FENCING; TENTS OR CANOPIES, IN GENERAL
- E04H9/00—Buildings, groups of buildings or shelters adapted to withstand or provide protection against abnormal external influences, e.g. war-like action, earthquake or extreme climate
- E04H9/02—Buildings, groups of buildings or shelters adapted to withstand or provide protection against abnormal external influences, e.g. war-like action, earthquake or extreme climate withstanding earthquake or sinking of ground
- E04H9/021—Bearing, supporting or connecting constructions specially adapted for such buildings
Definitions
- the invention belongs to the technical field of building structures, and in particular relates to a novel well-shaped building damping device.
- Damping refers to the physical phenomenon in which an oscillating system or a vibrating system is retarded to dissipate energy over time. Damping helps to reduce the resonance amplitude of the machine maple structure, thereby avoiding the structural damage caused by the dynamic stress reaching the limit.
- the damping helps the mechanical system to quickly return to a stable state after being subjected to an instantaneous impact, and the damping helps to reduce the structural transmission. The ability to vibrate. Therefore, with the continuous improvement of science and technology, damping is also widely used in various building structures. In the design of vibration isolation structures in the architectural field, the rational use of damping technology can significantly improve the effect of vibration isolation and vibration reduction. , greatly improving the stability of the building structure.
- the existing damping device technology has the following problems: the existing damping device still has certain shortcomings in the application of the actual well-shaped building structure. At present, the well-shaped building damping device in the construction field is difficult to pass. The damping device buffers and offsets the vibration force received by the well-shaped building as a whole, and cannot effectively absorb energy consumption and shock absorption of each component beam structure of the well-shaped building, and the existing damping device for well-shaped buildings has a complicated structure. The installation is complicated, which brings inconvenience to the installation work. Therefore, the present invention proposes a new damping device for well-shaped buildings.
- the purpose of the present invention is to provide a novel well-shaped building damping device to solve the current well-shaped building damping device in the construction field proposed in the above-mentioned background technology, it is difficult to use the damping device to dampen the vibration of the well-shaped building as a whole.
- the force is buffered and offset, and the energy consumption and shock absorption of each beam structure of the well-shaped building cannot be well absorbed, and the structure of the damping device is cumbersome and the installation is complicated.
- a novel well-shaped building damping device comprising: a first building beam, a second building beam, a third building beam and a fourth building beam, the first building beam
- One end of the beam is fixedly connected with a second building beam
- one end of the second building beam is fixedly connected with a third building beam
- one end of the third building beam is fixedly connected with a fourth building beam
- the first building beam The second building beam, the third building beam and the fourth building beam are constructed as a well-shaped structure, and the central parts of the first building beam, the second building beam, the third building beam and the fourth building beam are provided with uprights
- a damping component is connected between the column and the first building beam, the second building beam, the third building beam and the fourth building beam, the first building beam, the second building beam, the third building beam and the fourth building beam
- a viscoelastic damper is fixed at the lower end of the beam.
- a viscous fluid damper is connected between the two viscoelastic dampers, and the two viscoelastic dampers face each other.
- the inner walls are fixed with fixed seats, and the lower sides of the two viscoelastic dampers are provided with bases.
- the viscoelastic damper includes a fixing plate, a sliding plate, a constraining frame, a polymer damping layer and a hysteresis groove
- the polymer damping layer is fixed on the outer walls of the front and rear ends of the sliding plate
- the hysteretic groove is opened at the end of the constraining frame.
- the fixing plate is fixed on the upper end of the sliding plate
- the sliding plate and the polymer damping layer are sleeved inside the hysteresis groove
- the sliding plate, the constraining frame and the polymer damping layer are processed by a vulcanization process.
- the viscous fluid dampers include a viscous medium, a first cylinder head, a first pull lug, a piston rod, a piston block, a sealing layer, a cylinder block, A second pull lug, a second cylinder cover and a damping hole, the second pull lug is fixed at one end of the cylinder body, the piston rod is sleeved inside the cylinder body, and one end of the piston rod is fixed with a first pull lug , the outer wall of the piston rod is sleeved with a piston block, the end of the cylinder body by the second pull ear is fixed with a second cylinder cover, and the end of the cylinder body by the first pull ear is fixed with a first cylinder cover, so A sealing layer is fixed inside the first cylinder head and the second cylinder head, a viscous medium is filled inside the cylinder, and a damping hole is opened inside the piston block.
- damping assemblies there are eight damping assemblies in total, and the eight damping assemblies are respectively located on the facing inner walls of the first building beam and the fourth building beam, the facing inner walls of the first building beam and the third building beam, and the third building beam.
- the junction of a building beam, the second building beam, the third building beam and the fourth building beam, the damping assembly passes through the junction of the first building beam, the second building beam, the third building beam and the fourth building beam Wedge block fixed connection.
- the fixing plate, the sliding plate and the constraining frame are all steel structures, and the fixing plate and the second building beam and the fourth building beam are fixedly connected by welding.
- the first pull lug and the second pull lug are both axially connected to the fixing base.
- a support spring is fixedly connected at an equidistant and uniform distance between the base and the viscoelastic damper.
- the present invention provides a novel well-shaped building damping device, which has the following beneficial effects:
- the present invention fixes viscoelastic dampers at the lower ends of the first building beam, the second building beam, the third building beam and the fourth building beam, when the first building beam, the second building beam, the third building beam and the third building beam
- the fixed plate drives the polymer damping layer on the sliding plate to shake left and right in the hysteresis groove inside the restraint frame.
- the shear hysteretic deformation of the molecular damping layer dissipates energy, so that the well-shaped structure composed of the first building beam, the second building beam, the third building beam and the fourth building beam has energy dissipation and shock absorption in the left and right directions.
- the present invention connects a viscous fluid damper between two viscoelastic dampers, and drives the piston block to move inside the cylinder through the piston rod. At this time, the viscous medium injected into the cylinder opens through the piston block. When the viscous medium flows through the damping hole, a damping force opposite to the moving direction is generated, so as to achieve the purpose of energy dissipation and shock absorption, so that the first building beam,
- the well-shaped structure composed of the second building beam, the third building beam and the fourth building beam has the function of energy dissipation and shock absorption in the front and rear directions;
- damping components are arranged inside the first building beam, the second building beam, the third building beam and the fourth building beam.
- the force generated by the vibration will be guided, transmitted and consumed by the damping component.
- the damping components are evenly distributed in the inner side of the first building beam, the second building beam, the third building beam and the fourth building beam in a ring shape, the shock transmission effect is more comprehensive;
- the present invention makes use of the good elastic properties of the support spring by fixing and connecting the support spring at an equidistant and uniform distance between the base and the viscoelastic damper, so that the viscoelastic damper can slightly float up and down when subjected to strong vibrations in the up and down direction.
- the force generated by the vibration is buffered and offset, so that the well-shaped structure composed of the first building beam, the second building beam, the third building beam and the fourth building beam has the energy dissipation and shock absorption capacity in the upper and lower directions.
- FIG. 1 is a schematic diagram of the three-dimensional structure of a novel well-shaped building damping device proposed by the present invention
- FIG. 3 is a schematic diagram of the composition and structure of the viscoelastic damper proposed by the present invention.
- FIG. 4 is a schematic diagram of the composition and structure of the viscous fluid damper proposed by the present invention.
- a novel well-shaped building damping device which includes: a first building beam 1, a second building beam 2, a third building beam 3 and a fourth building beam 4, one end of the first building beam 1 is fixedly connected with the second building beam 2, one end of the second building beam 2 is fixedly connected with the third building beam 3, and one end of the third building beam 3 is fixedly connected with the fourth building beam 4,
- the first building beam 1, the second building beam 2, the third building beam 3 and the fourth building beam 4 are constructed as a well-shaped structure, the first building beam 1, the second building beam 2, the third building beam 3 and the
- the central part of the four building beams 4 is provided with a column 6, and a damping component 7 is connected between the column 6 and the first building beam 1, the second building beam 2, the third building beam 3 and the fourth building beam 4.
- the first building beam 1 The lower ends of the second building beam 2, the third building beam 3 and the fourth building beam 4 are fixed with viscoelastic dampers 12. There are two viscoelastic dampers 12 in total.
- the well-shaped structure composed of the first building beam 1, the second building beam 2, the third building beam 3 and the fourth building beam 4 can be supported, and a viscous fluid is connected between the two viscoelastic dampers 12.
- the damper 9, through the viscous fluid damper 9, can restrain and buffer the front and rear movement of the viscoelastic damper 12, the two viscoelastic dampers 12 are fixed with a fixed seat 8 on the opposite inner wall, and the two viscoelastic dampers 12
- a base 10 is provided on the lower side of the .
- the viscoelastic damper 12 includes a fixing plate 13.
- the polymer damping layer 16 is fixed on the outer walls of the front and rear ends of the sliding plate 14.
- the upper end of the sliding plate 14, the sliding plate 14 and the polymer damping layer 16 are sleeved inside the hysteresis groove 17, and the sliding plate 14, the restraining frame 15 and the polymer damping layer 16 are processed by a vulcanization process.
- the fixed plate 13 drives the polymer on the sliding plate 14.
- the damping layer 16 sways from side to side in the hysteresis groove 17 inside the constraining frame 15, uses the shear hysteresis deformation of the polymer damping layer 16 to dissipate energy, and has good seismic resistance.
- the viscous fluid dampers 9 include a viscous medium 18 and a first cylinder head 19 , the first pull lug 20 , the piston rod 21 , the piston block 22 , the sealing layer 23 , the cylinder 24 , the second pull lug 25 , the second cylinder cover 26 and the damping hole 27 , the second pull lug 25 is fixed to the cylinder block 24
- the piston rod 21 is sleeved inside the cylinder body 24
- one end of the piston rod 21 is fixed with the first pulling lug 20
- the outer wall of the piston rod 21 is sleeved with the piston block 22
- the cylinder body 24 is close to one end of the second pulling lug 25
- the second cylinder head 26 is fixed, the cylinder block 24 is fixed with the first cylinder head 19 at one end of the first pull lug
- damping components 7 In order to make the first building beam 1, the second building beam 2, the third building beam 3 and the fourth building beam 4 have good energy dissipation effect, there are eight damping components 7 in total, and the eight damping components 7 are respectively located in the first building beam 7.
- the facing inner walls of the building beam 1 and the fourth building beam 4 the facing inner walls of the first building beam 1 and the third building beam 3, and the first building beam 1, the second building beam 2, the third building beam 3 and the fourth building beam
- the damping component 7 is fixedly connected with the junction of the first building beam 1, the second building beam 2, the third building beam 3 and the fourth building beam 4 through the wedge block 5, wherein the damping component 7 and the The working principle of the viscous fluid damper 9 is the same.
- the force generated by the vibration will be carried out by the damping component 7.
- the guide is transmitted and consumed, and since the damping components 7 are uniformly distributed in the inner side of the first building beam 1 , the second building beam 2 , the third building beam 3 and the fourth building beam 4 , the shock transmission effect is more comprehensive.
- the fixing plate 13, the sliding plate 14 and the restraining frame 15 are all steel structures, and the fixing plate 13 is fixedly connected with the second building beam 2 and the fourth building beam 4 by welding, so that the fixing plate 13 and the second building beam 2 and the fourth building beam 4 are fixedly connected.
- the connection between the fourth building beams 4 is tight and firm, which greatly improves the structural stability between the fixing plate 13 and the second building beams 2 and the fourth building beams 4 .
- Both the first pull lug 20 and the second pull lug 25 are axially connected to the fixed seat 8 , so that the first pull lug 20 and the second pull lug 25 and the fixed seat 8 can rotate relative to each other.
- the connection between the base 10 and the viscoelastic damper 12 is The support springs 11 are fixedly connected at equal distances. The good elastic properties of the support springs 11 are used, so that the viscoelastic damper 12 can slightly float up and down when subjected to strong vibrations in the up and down direction, buffering and offsetting the force generated by the vibration.
- the working principle of the present invention and the use process after the present invention is installed, when using the present invention to work, when the well formed by the first building beam 1, the second building beam 2, the third building beam 3 and the fourth building beam 4
- the font-shaped structure vibrates from left to right, under the action of the viscoelastic damper 12, the fixed plate 13 shakes left and right in the hysteresis groove 17 inside the restraint frame 15 by driving the polymer damping layer 16 on the slide plate 14, using high
- the shear hysteresis deformation of the molecular damping layer 16 dissipates energy, so that the well-shaped structure composed of the first building beam 1, the second building beam 2, the third building beam 3 and the fourth building beam 4 has a left-right direction.
- the well-shaped structure composed of the third building beam 3 and the fourth building beam 4 has the function of energy dissipation and shock absorption in the front and rear directions.
- the force generated by the vibration will pass through the damping component 7 between the building beam and the column 6 Conduct guided transmission and consumption, wherein the working principle of the damping component 7 is the same as that of the viscous fluid damper 9, and because the damping component 7 is uniformly distributed in the first building beam 1, the second building beam 2, the first building beam 2, the The inner sides of the three building beams 3 and the fourth building beam 4 make the vibration transmission effect of each building beam better.
- the viscoelastic damper 12 can slightly move up and down under the action of the support spring 11 Floating, buffering and offsetting the force generated by vibration, so that the well-shaped structure composed of the first building beam 1, the second building beam 2, the third building beam 3 and the fourth building beam 4 has the energy dissipation and shock absorption capacity in the upper and lower directions. .
Landscapes
- Engineering & Computer Science (AREA)
- Architecture (AREA)
- Environmental & Geological Engineering (AREA)
- Business, Economics & Management (AREA)
- Emergency Management (AREA)
- Civil Engineering (AREA)
- Structural Engineering (AREA)
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Buildings Adapted To Withstand Abnormal External Influences (AREA)
- Vibration Prevention Devices (AREA)
Abstract
一种新型井状建筑用阻尼装置,其包括:第一建筑梁(1)、第二建筑梁(2)、第三建筑梁(3)以及第四建筑梁(4),所述第一建筑梁(1)、第二建筑梁(2)、第三建筑梁(3)以及第四建筑梁(4)构设为井字型结构,通过设置粘弹性阻尼器(12),在粘弹性阻尼器(12)的作用下,固定板(13)通过带动滑板(14)上的高分子阻尼层(16),在约束框(15)内部的滞回槽中左右晃动,利用高分子阻尼层(16)的剪切滞回变形来耗散能量,从而使得第一建筑梁(1)、第二建筑梁(2)、第三建筑梁(3)以及第四建筑梁(4)组成的井字型结构具有左右方向上的消能减震功能,通过设置粘滞流体阻尼器(9),使得第一建筑梁(1)、第二建筑梁(2)、第三建筑梁(3)以及第四建筑梁(4)组成的井字型结构具有前后方向上的消能减震功能。
Description
本发明属于建筑结构相关技术领域,具体涉及一种新型井状建筑用阻尼装置。
阻尼是指摇荡系统或振动系统受到阻滞使能量随时间而耗散的物理现象。阻尼有助于减小机槭结构的共振振幅,从而避免结构因动应力达到极限造成结构破坏,阻尼有助于机械系统受到瞬时冲击后,很快恢复到稳定状态,阻尼有助于降低结构传递振动的能力。因此,随着科学技术的不断改进,阻尼也广泛应用于各种不同的建筑结构中,在建筑领域的隔振结构设计中,合理地运用阻尼技术,可使隔振、减振的效果显著提高,大大提高建筑结构的稳定性。
现有的阻尼装置技术存在以下问题:现有的阻尼装置在实际的井状建筑结构工作的应用中,还存在着一定的不足之处,目前,建筑领域的井状建筑用阻尼装置,难以通过阻尼装置将井状建筑物整体所受到的震动力进行缓冲和抵消,不能很好的对井状建筑的各个组成梁结构进行耗能减震,并且,现有的井状建筑用阻尼装置结构繁琐、安装复杂,给安装工作带来不便,为此,本发明提出一种新型井状建筑用阻尼装置。
发明内容
本发明的目的在于提供一种新型井状建筑用阻尼装置,以解决上述背景技术中提出的目前,建筑领域的井状建筑用阻尼装置,难以通过阻尼装置将井状建筑物整体所受到的震动力进行缓冲和抵消,不能很好的对井状建筑的各个组成梁结构进行耗能减震,且阻尼装置结构繁琐、安装复杂的问题。
为实现上述目的,本发明提供如下技术方案:一种新型井状建筑用阻尼装置,其包括:第一建筑梁、第二建筑梁、第三建筑梁以及第四建筑梁,所 述第一建筑梁的一端固定连接有第二建筑梁,所述第二建筑梁的一端固定连接有第三建筑梁,所述第三建筑梁的一端固定连接有第四建筑梁,所述第一建筑梁、第二建筑梁、第三建筑梁以及第四建筑梁构设为井字型结构,所述第一建筑梁、第二建筑梁、第三建筑梁以及第四建筑梁的中心部位设置有立柱,所述立柱与第一建筑梁、第二建筑梁、第三建筑梁以及第四建筑梁之间连接有阻尼组件,所述第一建筑梁、第二建筑梁、第三建筑梁以及第四建筑梁的下端固定有粘弹性阻尼器,所述粘弹性阻尼器共设置有两个,两个所述粘弹性阻尼器之间连接有粘滞流体阻尼器,两个所述粘弹性阻尼器对向内壁均固定有固定座,两个所述粘弹性阻尼器的下侧设置有底座。
优选的,所述粘弹性阻尼器包括固定板、滑板、约束框、高分子阻尼层以及滞回槽,所述高分子阻尼层固定于滑板前后端外壁,所述滞回槽开设于约束框的内部,所述固定板固定于滑板的上端,所述滑板以及高分子阻尼层套设于滞回槽的内部,所述滑板、约束框以及高分子阻尼层之间采用硫化工艺加工制成。
优选的,所述粘滞流体阻尼器共设置有两个,所述粘滞流体阻尼器包括粘滞介质、第一缸盖、第一拉耳、活塞杆、活塞块、密封层、缸体、第二拉耳、第二缸盖以及阻尼孔,所述第二拉耳固定于缸体的一端,所述活塞杆套设于缸体的内部,所述活塞杆的一端固定有第一拉耳,所述活塞杆的外壁套设有活塞块,所述缸体靠第二拉耳的一端固定有第二缸盖,所述缸体靠第一拉耳的一端固定有第一缸盖,所述第一缸盖和第二缸盖的内部均固定有密封层,所述缸体的内部填充有粘滞介质,所述活塞块的内部开设有阻尼孔。
优选的,所述阻尼组件共设置有八个,八个所述阻尼组件分别位于第一建筑梁和第四建筑梁的对向内壁、第一建筑梁和第三建筑梁的对向内壁以及第一建筑梁、第二建筑梁、第三建筑梁和第四建筑梁的交接处,所述阻尼组件和第一建筑梁、第二建筑梁、第三建筑梁以及第四建筑梁的交接处通过锲 块固定连接。
优选的,所述固定板、滑板以及约束框均为钢结构,所述固定板与第二建筑梁和第四建筑梁均通过焊接的方式固定连接。
优选的,所述第一拉耳和第二拉耳均轴连接于固定座。
优选的,所述底座和粘弹性阻尼器之间等距均匀的固定连接有支撑弹簧。
与现有阻尼装置技术相比,本发明提供了一种新型井状建筑用阻尼装置,具备以下有益效果:
一、本发明通过在第一建筑梁、第二建筑梁、第三建筑梁以及第四建筑梁的下端固定粘弹性阻尼器,当第一建筑梁、第二建筑梁、第三建筑梁以及第四建筑梁组成的井字型结构发生左右距离震动时,在粘弹性阻尼器的作用下,固定板通过带动滑板上的高分子阻尼层,在约束框内部的滞回槽中左右晃动,利用高分子阻尼层的剪切滞回变形来耗散能量,从而使得第一建筑梁、第二建筑梁、第三建筑梁以及第四建筑梁组成的井字型结构具有左右方向上的消能减震功能;
二、本发明通过在两个粘弹性阻尼器之间连接粘滞流体阻尼器,通过活塞杆带动活塞块在缸体内部移动,此时,缸体内部注入的粘滞介质,经活塞块内部开设的阻尼孔进行流动,从活塞块的一端流向另外一端,粘滞介质流经阻尼孔的过程中,产生与运动方向相反的阻尼力,从而达到消能减震的目的,使得第一建筑梁、第二建筑梁、第三建筑梁以及第四建筑梁组成的井字型结构具有前后方向上的消能减震功能;
三、本发明通过在第一建筑梁、第二建筑梁、第三建筑梁以及第四建筑梁内侧设置阻尼组件,当产生强烈震动时,震动产生的力会经阻尼组件进行引导传递并消耗,且由于阻尼组件呈圆环状均匀分布于第一建筑梁、第二建筑梁、第三建筑梁以及第四建筑梁的内侧,使得传震效果更加全面;
四、本发明通过在底座和粘弹性阻尼器之间等距均匀的固定连接支撑弹 簧,利用支撑弹簧良好的弹性性能,使得在受到上下方向的强烈震荡时,粘弹性阻尼器能够轻微上下浮动,缓冲和抵消震动产生的力,从而使得第一建筑梁、第二建筑梁、第三建筑梁以及第四建筑梁组成的井字型结构具有上下方向的耗能减震能力。
附图用来提供对本发明的进一步理解,并且构成说明书的一部分,与本发明的实施例一起用于解释本发明,并不构成对本发明的限制,在附图中:
图1为本发明提出的一种新型井状建筑用阻尼装置立体结构示意图;
图2为本发明提出的阻尼组件装配结构示意图;
图3为本发明提出的粘弹性阻尼器组成结构示意图;
图4为本发明提出的粘滞流体阻尼器组成结构示意图;
图中:1、第一建筑梁;2、第二建筑梁;3、第三建筑梁;4、第四建筑梁;5、锲块;6、立柱;7、阻尼组件;8、固定座;9、粘滞流体阻尼器;10、底座;11、支撑弹簧;12、粘弹性阻尼器;13、固定板;14、滑板;15、约束框;16、高分子阻尼层;17、滞回槽;18、粘滞介质;19、第一缸盖;20、第一拉耳;21、活塞杆;22、活塞块;23、密封层;24、缸体;25、第二拉耳;26、第二缸盖;27、阻尼孔。
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
请参阅图1-4,本发明提供一种技术方案:一种新型井状建筑用阻尼装置,其包括:第一建筑梁1、第二建筑梁2、第三建筑梁3以及第四建筑梁4,第一建筑梁1的一端固定连接有第二建筑梁2,第二建筑梁2的一端固定连接有 第三建筑梁3,第三建筑梁3的一端固定连接有第四建筑梁4,第一建筑梁1、第二建筑梁2、第三建筑梁3以及第四建筑梁4构设为井字型结构,第一建筑梁1、第二建筑梁2、第三建筑梁3以及第四建筑梁4的中心部位设置有立柱6,立柱6与第一建筑梁1、第二建筑梁2、第三建筑梁3以及第四建筑梁4之间连接有阻尼组件7,第一建筑梁1、第二建筑梁2、第三建筑梁3以及第四建筑梁4的下端固定有粘弹性阻尼器12,粘弹性阻尼器12共设置有两个,在两个粘弹性阻尼器12的作用下,可以对第一建筑梁1、第二建筑梁2、第三建筑梁3以及第四建筑梁4组成的井字型结构进行支撑,两个粘弹性阻尼器12之间连接有粘滞流体阻尼器9,通过粘滞流体阻尼器9,可以对粘弹性阻尼器12的前后运动进行约束缓冲,两个粘弹性阻尼器12对向内壁均固定有固定座8,两个粘弹性阻尼器12的下侧设置有底座10。
为了使得第一建筑梁1、第二建筑梁2、第三建筑梁3以及第四建筑梁4组成的井字型结构具有左右方向上的消能减震功能,粘弹性阻尼器12包括固定板13、滑板14、约束框15、高分子阻尼层16以及滞回槽17,高分子阻尼层16固定于滑板14前后端外壁,滞回槽17开设于约束框15的内部,固定板13固定于滑板14的上端,滑板14以及高分子阻尼层16套设于滞回槽17的内部,滑板14、约束框15以及高分子阻尼层16之间采用硫化工艺加工制成,当第一建筑梁1、第二建筑梁2、第三建筑梁3以及第四建筑梁4组成的井字型结构发生左右晃动时,在粘弹性阻尼器12的作用下,固定板13通过带动滑板14上的高分子阻尼层16,在约束框15内部的滞回槽17中左右晃动,利用高分子阻尼层16的剪切滞回变形来耗散能量,具有很好的抗震能力。
为了使得两个粘弹性阻尼器12在前后方向上具有消能减震功能功能,粘滞流体阻尼器9共设置有两个,粘滞流体阻尼器9包括粘滞介质18、第一缸盖19、第一拉耳20、活塞杆21、活塞块22、密封层23、缸体24、第二拉耳25、第二缸盖26以及阻尼孔27,第二拉耳25固定于缸体24的一端,活塞杆 21套设于缸体24的内部,活塞杆21的一端固定有第一拉耳20,活塞杆21的外壁套设有活塞块22,缸体24靠第二拉耳25的一端固定有第二缸盖26,缸体24靠第一拉耳20的一端固定有第一缸盖19,第一缸盖19和第二缸盖26的内部均固定有密封层23,缸体24的内部填充有粘滞介质18,活塞块22的内部开设有阻尼孔27,通过活塞杆21带动活塞块22在缸体24内部移动,此时,缸体24内部注入的粘滞介质18,经活塞块22内部开设的阻尼孔27进行流动,从活塞块22的一端流向另外一端,粘滞介质18流经阻尼孔27的过程中,产生与运动方向相反的阻尼力,从而达到消能减震的目的。
为了使得第一建筑梁1、第二建筑梁2、第三建筑梁3以及第四建筑梁4具有良好的耗能效果,阻尼组件7共设置有八个,八个阻尼组件7分别位于第一建筑梁1和第四建筑梁4的对向内壁、第一建筑梁1和第三建筑梁3的对向内壁以及第一建筑梁1、第二建筑梁2、第三建筑梁3和第四建筑梁4的交接处,阻尼组件7和第一建筑梁1、第二建筑梁2、第三建筑梁3以及第四建筑梁4的交接处通过锲块5固定连接,其中,阻尼组件7和粘滞流体阻尼器9的工作原理相同,当第一建筑梁1或第二建筑梁2或第三建筑梁3或第四建筑梁4产生强烈震动时,震动产生的力会经阻尼组件7进行引导传递并消耗,且由于阻尼组件7成圆环状均匀分布于第一建筑梁1、第二建筑梁2、第三建筑梁3以及第四建筑梁4的内侧,使得传震效果更全面。
固定板13、滑板14以及约束框15均为钢结构,固定板13与第二建筑梁2和第四建筑梁4均通过焊接的方式固定连接,这样使得固定板13与第二建筑梁2和第四建筑梁4之间连接紧密牢固,大大提高固定板13与第二建筑梁2和第四建筑梁4之间的结构稳定性。
第一拉耳20和第二拉耳25均轴连接于固定座8,这样使得第一拉耳20和第二拉耳25与固定座8之间均可以相对转动。
为了使得第一建筑梁1、第二建筑梁2、第三建筑梁3以及第四建筑梁4 组成的井字型结构具有上下方向的耗能减震能力,底座10和粘弹性阻尼器12之间等距均匀的固定连接有支撑弹簧11,利用支撑弹簧11良好的弹性性能,使得在受到上下方向的强烈震荡时,粘弹性阻尼器12能够轻微上下浮动,缓冲和抵消震动产生的力。
本发明的工作原理及使用流程:本发明安装好过后,在利用本发明进行工作时,当第一建筑梁1、第二建筑梁2、第三建筑梁3以及第四建筑梁4组成的井字型结构发生左右距离震动时,在粘弹性阻尼器12的作用下,固定板13通过带动滑板14上的高分子阻尼层16,在约束框15内部的滞回槽17中左右晃动,利用高分子阻尼层16的剪切滞回变形来耗散能量,从而使得第一建筑梁1、第二建筑梁2、第三建筑梁3以及第四建筑梁4组成的井字型结构具有左右方向上的消能减震功能,当第一建筑梁1、第二建筑梁2、第三建筑梁3以及第四建筑梁4组成的井字型结构发生前后距离震动时,在粘滞流体阻尼器9的作用下,通过活塞杆21带动活塞块22在缸体24内部移动,此时,缸体24内部注入的粘滞介质18,经活塞块22内部开设的阻尼孔27进行流动,从活塞块22的一端流向另外一端,粘滞介质18流经阻尼孔27的过程中,产生与运动方向相反的阻尼力,从而达到消能减震的目的,使得第一建筑梁1、第二建筑梁2、第三建筑梁3以及第四建筑梁4组成的井字型结构具有前后方向上的消能减震功能。
当本发明上的第一建筑梁1或第二建筑梁2或第三建筑梁3或第四建筑梁4产生强烈震动时,震动产生的力会经建筑梁与立柱6之间的阻尼组件7进行引导传递并消耗,其中,阻尼组件7的工作原理与粘滞流体阻尼器9工作原理相同,且由于阻尼组件7呈圆环状均匀分布于第一建筑梁1、第二建筑梁2、第三建筑梁3以及第四建筑梁4的内侧,使得各个建筑梁的传震效果更佳,本发明在受到上下方向的强烈震荡时,粘弹性阻尼器12能够在支撑弹簧11的作用下轻微上下浮动,缓冲和抵消震动产生的力,从而使得第一建筑梁 1、第二建筑梁2、第三建筑梁3以及第四建筑梁4组成的井字型结构具有上下方向的耗能减震能力。
尽管已经示出和描述了本发明的实施例,对于本领域的普通技术人员而言,可以理解在不脱离本发明的原理和精神的情况下可以对这些实施例进行多种变化、修改、替换和变型,本发明的范围由所附权利要求及其等同物限定。
Claims (7)
- 一种新型井状建筑用阻尼装置,其特征在于,其包括:第一建筑梁(1)、第二建筑梁(2)、第三建筑梁(3)以及第四建筑梁(4),所述第一建筑梁(1)的一端固定连接有第二建筑梁(2),所述第二建筑梁(2)的一端固定连接有第三建筑梁(3),所述第三建筑梁(3)的一端固定连接有第四建筑梁(4),所述第一建筑梁(1)、第二建筑梁(2)、第三建筑梁(3)以及第四建筑梁(4)构设为井字型结构,所述第一建筑梁(1)、第二建筑梁(2)、第三建筑梁(3)以及第四建筑梁(4)的中心部位设置有立柱(6),所述立柱(6)与第一建筑梁(1)、第二建筑梁(2)、第三建筑梁(3)以及第四建筑梁(4)之间连接有阻尼组件(7),所述第一建筑梁(1)、第二建筑梁(2)、第三建筑梁(3)以及第四建筑梁(4)的下端固定有粘弹性阻尼器(12),所述粘弹性阻尼器(12)共设置有两个,两个所述粘弹性阻尼器(12)之间连接有粘滞流体阻尼器(9),两个所述粘弹性阻尼器(12)对向内壁均固定有固定座(8),两个所述粘弹性阻尼器(12)的下侧设置有底座(10)。
- 根据权利要求1所述的一种新型井状建筑用阻尼装置,其特征在于:所述粘弹性阻尼器(12)包括固定板(13)、滑板(14)、约束框(15)、高分子阻尼层(16)以及滞回槽(17),所述高分子阻尼层(16)固定于滑板(14)前后端外壁,所述滞回槽(17)开设于约束框(15)的内部,所述固定板(13)固定于滑板(14)的上端,所述滑板(14)以及高分子阻尼层(16)套设于滞回槽(17)的内部,所述滑板(14)、约束框(15)以及高分子阻尼层(16)之间采用硫化工艺加工制成。
- 根据权利要求1所述的一种新型井状建筑用阻尼装置,其特征在于:所述粘滞流体阻尼器(9)共设置有两个,所述粘滞流体阻尼器(9)包括粘滞介质(18)、第一缸盖(19)、第一拉耳(20)、活塞杆(21)、活塞块(22)、密封层(23)、缸体(24)、第二拉耳(25)、第二缸盖(26)以及阻尼孔(27),所述第二拉耳(25)固定于缸体(24)的一端,所述活塞 杆(21)套设于缸体(24)的内部,所述活塞杆(21)的一端固定有第一拉耳(20),所述活塞杆(21)的外壁套设有活塞块(22),所述缸体(24)靠第二拉耳(25)的一端固定有第二缸盖(26),所述缸体(24)靠第一拉耳(20)的一端固定有第一缸盖(19),所述第一缸盖(19)和第二缸盖(26)的内部均固定有密封层(23),所述缸体(24)的内部填充有粘滞介质(18),所述活塞块(22)的内部开设有阻尼孔(27)。
- 根据权利要求1所述的一种新型井状建筑用阻尼装置,其特征在于:所述阻尼组件(7)共设置有八个,八个所述阻尼组件(7)分别位于第一建筑梁(1)和第四建筑梁(4)的对向内壁、第一建筑梁(1)和第三建筑梁(3)的对向内壁以及第一建筑梁(1)、第二建筑梁(2)、第三建筑梁(3)和第四建筑梁(4)的交接处,所述阻尼组件(7)和第一建筑梁(1)、第二建筑梁(2)、第三建筑梁(3)以及第四建筑梁(4)的交接处通过锲块(5)固定连接。
- 根据权利要求2所述的一种新型井状建筑用阻尼装置,其特征在于:所述固定板(13)、滑板(14)以及约束框(15)均为钢结构,所述固定板(13)与第二建筑梁(2)和第四建筑梁(4)均通过焊接的方式固定连接。
- 根据权利要求3所述的一种新型井状建筑用阻尼装置,其特征在于:所述第一拉耳(20)和第二拉耳(25)均轴连接于固定座(8)。
- 根据权利要求1所述的一种新型井状建筑用阻尼装置,其特征在于:所述底座(10)和粘弹性阻尼器(12)之间等距均匀的固定连接有支撑弹簧(11)。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110008783.8 | 2021-01-05 | ||
CN202110008783.8A CN112726863A (zh) | 2021-01-05 | 2021-01-05 | 一种新型井状建筑用阻尼装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022148178A1 true WO2022148178A1 (zh) | 2022-07-14 |
Family
ID=75591223
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2021/133955 WO2022148178A1 (zh) | 2021-01-05 | 2021-11-29 | 一种新型井状建筑用阻尼装置 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN112726863A (zh) |
WO (1) | WO2022148178A1 (zh) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115370031A (zh) * | 2022-09-08 | 2022-11-22 | 浙江大地钢结构有限公司 | 粘滞流体阻尼器及钢结构体系 |
CN117684680A (zh) * | 2024-02-04 | 2024-03-12 | 中国二十二冶集团有限公司 | 应用于连梁间的自修复型阻尼器 |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112726863A (zh) * | 2021-01-05 | 2021-04-30 | 常州工学院 | 一种新型井状建筑用阻尼装置 |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04258473A (ja) * | 1991-02-08 | 1992-09-14 | Fujita Corp | 構造物の制振装置 |
KR100795937B1 (ko) * | 2006-09-20 | 2008-01-22 | (주)엠피기술산업 | 구조물용 면진 베어링장치 |
KR20110072412A (ko) * | 2009-12-22 | 2011-06-29 | 재단법인 포항산업과학연구원 | 면진 장치 |
CN105637157A (zh) * | 2013-10-11 | 2016-06-01 | 多伦多大学管理委员会 | 在悬臂建筑配置中使用的粘滞墙耦接阻尼器 |
CN206408780U (zh) * | 2016-11-21 | 2017-08-15 | 江苏力汇振控科技有限公司 | 可调阻尼力的粘滞阻尼墙 |
CN109537969A (zh) * | 2018-12-03 | 2019-03-29 | 海南泉业建筑工程有限公司 | 一种新型井状建筑用阻尼装置 |
CN110847406A (zh) * | 2019-11-26 | 2020-02-28 | 西安建筑科技大学 | 一种可更换新式波纹粘滞弹簧组合软钢阻尼器 |
CN112726863A (zh) * | 2021-01-05 | 2021-04-30 | 常州工学院 | 一种新型井状建筑用阻尼装置 |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001182359A (ja) * | 1999-12-28 | 2001-07-06 | Arai Gumi Ltd | 耐震用ブレース装置 |
JP4058697B2 (ja) * | 2004-05-28 | 2008-03-12 | 株式会社ダイフク | ラック用柱脚およびそのラック用柱脚が配設されているラック |
CN203834719U (zh) * | 2014-03-14 | 2014-09-17 | 山东科技大学 | 井字状建筑阻尼器 |
CN208565397U (zh) * | 2018-05-07 | 2019-03-01 | 南京林业大学 | 一种间隙自调节式的黏滞阻尼器 |
CN208885090U (zh) * | 2018-10-15 | 2019-05-21 | 郭文起 | 一种高层建筑结构隔震消能装置 |
CN211548176U (zh) * | 2019-12-27 | 2020-09-22 | 山东百顿减震科技有限公司 | 一种粘滞阻尼墙 |
CN111441494A (zh) * | 2020-04-20 | 2020-07-24 | 南京工业大学 | 一种孔隙式黏滞阻尼器 |
CN212248758U (zh) * | 2020-04-20 | 2020-12-29 | 南京工业大学 | 一种孔隙式黏滞阻尼器 |
-
2021
- 2021-01-05 CN CN202110008783.8A patent/CN112726863A/zh active Pending
- 2021-11-29 WO PCT/CN2021/133955 patent/WO2022148178A1/zh active Application Filing
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04258473A (ja) * | 1991-02-08 | 1992-09-14 | Fujita Corp | 構造物の制振装置 |
KR100795937B1 (ko) * | 2006-09-20 | 2008-01-22 | (주)엠피기술산업 | 구조물용 면진 베어링장치 |
KR20110072412A (ko) * | 2009-12-22 | 2011-06-29 | 재단법인 포항산업과학연구원 | 면진 장치 |
CN105637157A (zh) * | 2013-10-11 | 2016-06-01 | 多伦多大学管理委员会 | 在悬臂建筑配置中使用的粘滞墙耦接阻尼器 |
CN206408780U (zh) * | 2016-11-21 | 2017-08-15 | 江苏力汇振控科技有限公司 | 可调阻尼力的粘滞阻尼墙 |
CN109537969A (zh) * | 2018-12-03 | 2019-03-29 | 海南泉业建筑工程有限公司 | 一种新型井状建筑用阻尼装置 |
CN110847406A (zh) * | 2019-11-26 | 2020-02-28 | 西安建筑科技大学 | 一种可更换新式波纹粘滞弹簧组合软钢阻尼器 |
CN112726863A (zh) * | 2021-01-05 | 2021-04-30 | 常州工学院 | 一种新型井状建筑用阻尼装置 |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115370031A (zh) * | 2022-09-08 | 2022-11-22 | 浙江大地钢结构有限公司 | 粘滞流体阻尼器及钢结构体系 |
CN117684680A (zh) * | 2024-02-04 | 2024-03-12 | 中国二十二冶集团有限公司 | 应用于连梁间的自修复型阻尼器 |
CN117684680B (zh) * | 2024-02-04 | 2024-04-16 | 中国二十二冶集团有限公司 | 应用于连梁间的自修复型阻尼器 |
Also Published As
Publication number | Publication date |
---|---|
CN112726863A (zh) | 2021-04-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2022148178A1 (zh) | 一种新型井状建筑用阻尼装置 | |
CN106426107A (zh) | 一种张拉整体隔振机构 | |
CN211947929U (zh) | 一种桥梁减震装置 | |
CN109763580A (zh) | 一种粘弹性—tmd复合多维减震装置及其减震方法 | |
CN111043209A (zh) | 一种船用减振基座结构 | |
CN215171799U (zh) | 一种建筑机电设备安装减震底座 | |
CN216108037U (zh) | 一种提高桥梁抗震能力的装置 | |
CN102381372B (zh) | 一种双向减振型汽车驾驶室后悬置装置 | |
CN211522835U (zh) | 一种减震器安装结构 | |
CN212254527U (zh) | 一种基于公路护栏的强度检测装置 | |
CN210484975U (zh) | 一种建筑管道结构碰撞调谐减震装置 | |
CN220504211U (zh) | 一种减震钢结构 | |
CN219315999U (zh) | 一种建筑抗震钢结构 | |
CN219794273U (zh) | 一种建筑结构用抗震消能阻尼器 | |
KR101393696B1 (ko) | 삼축 거동 내력 가변 마찰댐퍼 | |
CN220079705U (zh) | 一种带液压阻尼的减隔震支座 | |
CN219297963U (zh) | 一种安装在桥墩上的避震支座 | |
CN212743005U (zh) | 一种墙体与连梁之间的减震结构 | |
CN220539471U (zh) | 一种环保静音型木纹色门堵 | |
CN216842866U (zh) | 一种汽车减震器的缓冲机构 | |
CN218597700U (zh) | 一种碰撞缓冲保护机构 | |
CN217783767U (zh) | 一种缓冲效果强的电动旋转泵 | |
CN221328728U (zh) | 一种无刷电机用固定装置 | |
CN213448072U (zh) | 一种道路桥梁伸缩降噪装置 | |
CN114875777B (zh) | 一种公路桥梁减震支架 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21917219 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 21917219 Country of ref document: EP Kind code of ref document: A1 |