WO2022148085A1 - 电机转子结构及电机 - Google Patents

电机转子结构及电机 Download PDF

Info

Publication number
WO2022148085A1
WO2022148085A1 PCT/CN2021/124319 CN2021124319W WO2022148085A1 WO 2022148085 A1 WO2022148085 A1 WO 2022148085A1 CN 2021124319 W CN2021124319 W CN 2021124319W WO 2022148085 A1 WO2022148085 A1 WO 2022148085A1
Authority
WO
WIPO (PCT)
Prior art keywords
iron core
rotor structure
support frame
motor rotor
hole
Prior art date
Application number
PCT/CN2021/124319
Other languages
English (en)
French (fr)
Inventor
胡余生
陈彬
肖胜宇
高明世
刘丽刚
王庆凯
Original Assignee
珠海格力电器股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 珠海格力电器股份有限公司 filed Critical 珠海格力电器股份有限公司
Publication of WO2022148085A1 publication Critical patent/WO2022148085A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • H02K1/2706Inner rotors
    • H02K1/272Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis
    • H02K1/274Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets
    • H02K1/2753Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets the rotor consisting of magnets or groups of magnets arranged with alternating polarity
    • H02K1/276Magnets embedded in the magnetic core, e.g. interior permanent magnets [IPM]
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/28Means for mounting or fastening rotating magnetic parts on to, or to, the rotor structures
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K21/00Synchronous motors having permanent magnets; Synchronous generators having permanent magnets
    • H02K21/12Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets
    • H02K21/14Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets with magnets rotating within the armatures
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K5/00Casings; Enclosures; Supports
    • H02K5/24Casings; Enclosures; Supports specially adapted for suppression or reduction of noise or vibrations
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K2213/00Specific aspects, not otherwise provided for and not covered by codes H02K2201/00 - H02K2211/00
    • H02K2213/03Machines characterised by numerical values, ranges, mathematical expressions or similar information

Definitions

  • the present invention relates to the field of motors, in particular, to a motor rotor structure and a motor.
  • the motor in the related art reduces the torque pulsation output vibration by arranging damping rubber between the inner iron core and the outer iron core of the rotor structure, thereby reducing the noise of the motor.
  • the main purpose of the present invention is to provide a motor rotor structure and a motor to solve the problem of low structural strength of the motor rotor structure in the related art.
  • a rotor structure of a motor which includes a main body structure, an inner iron core and a shock absorbing member.
  • the body structure includes an outer iron core, a magnet and a support frame, and the outer iron core and the magnet are both mounted on the support frame.
  • the support frame has a through hole, the inner wall of the through hole is provided with a plurality of first protrusions, and the plurality of first protrusions are arranged at intervals along a direction surrounding the predetermined axis.
  • the inner iron core is installed in the through hole and connected with the rotating shaft.
  • the outer side wall of the inner iron core is provided with a plurality of second protrusions, and the plurality of second protrusions are arranged at intervals along the direction around the predetermined axis.
  • the shock absorbing member is formed by solidifying the glue material injected into the gap between the support frame and the inner iron core, and at least part of the shock absorbing member is made of an elastomer material.
  • the plurality of first protruding parts and the plurality of second protruding parts are arranged in a dislocation along a direction around the predetermined axis.
  • the predetermined axis coincides with the axis of rotation of the rotor structure of the motor.
  • the minimum distance of each first raised portion to the predetermined axis is less than the maximum distance of each second raised portion to the predetermined axis.
  • the predetermined axis is arranged along a preset direction;
  • the shock absorbing member includes a first pressing part in contact with the end surface of the support frame and a second pressing part in contact with the end surface of the inner iron core;
  • the first pressing part The thickness along the preset direction is a, the thickness of the second pressing part along the preset direction is b, b>2a;
  • the inner iron core is provided with a shaft hole for matching with the rotating shaft, and the first pressing part is provided with a shaft hole for The first avoidance hole for avoiding the shaft hole;
  • the diameter of the first pressing part is ⁇ c, the diameter of the first avoidance hole is ⁇ d, and ⁇ c>1.8 ⁇ d.
  • the contact area between the shock absorber and the end face of the body structure is S1
  • the contact area between the shock absorber and the end face of the inner iron core is S2, where S1>2 ⁇ S2.
  • the support frame is formed by injection molding on the outer surface of the outer iron core and the magnet; the outer iron core is provided with a positioning groove, and the support frame is provided with a first positioning hole at a position corresponding to the positioning groove.
  • a second positioning hole is provided on the support frame at a position corresponding to the magnet.
  • the outer iron core is provided with a connection hole
  • the support frame is provided with a connection column
  • the connection column is matched with the connection hole
  • the thickness of the inner core along the direction of the predetermined axis is smaller than the thickness of the body structure along the direction of the predetermined axis.
  • the first end and the second end, the first end of the outer iron core is provided with a first clamping part, the second end of the outer iron core is provided with a second clamping part; the first clamping part and the second clamping part are both It is clamped with the corresponding magnet to limit the radial movement of the magnet along the rotor structure of the motor.
  • the maximum distance from the outer iron core to the predetermined axis is greater than the maximum distance from the magnet to the predetermined axis;
  • the support frame includes a plurality of reinforcing parts extending along the direction of the predetermined axis, and the plurality of reinforcing parts are connected to the plurality of magnets.
  • a corresponding arrangement is provided; each reinforcing portion is located on the side of the corresponding magnet away from the through hole.
  • the body structure has a first end and a second end oppositely disposed along the direction of the predetermined axis; at least one of the first end of the body structure and the second end of the body structure is provided with a blocking piece, and the blocking piece is A second avoidance hole for avoiding the rotating shaft is provided; the blocking piece is connected with the main body structure, and the blocking piece is in contact with the shock absorbing member.
  • the support frame is formed by injection molding on the outer surface of the outer iron core and the magnet; the outer iron core is provided with a positioning groove, and the support frame corresponds to the positioning groove.
  • a first positioning hole is provided at the position.
  • the blocking piece has a clamping portion, and the clamping portion is clamped in the positioning groove or in the first positioning hole.
  • the thickness of the shock absorbing member at the position with the smallest thickness ranges from 0.8 mm to 1.5 mm.
  • a motor comprising a motor rotor structure and any one of the above-mentioned motor stator structures disposed around the motor rotor structure.
  • the rotor structure of the motor to which the technical solution of the present invention is applied includes a body structure, an inner iron core and a shock absorbing member.
  • the body structure includes an outer iron core, a magnet and a support frame, and the outer iron core and the magnet are installed on the support frame; the support frame has a through hole; the inner wall of the through hole is provided with a plurality of first protrusions, and the plurality of first protrusions spaced in a direction around a predetermined axis.
  • the inner iron core is installed in the through hole and connected with the rotating shaft; the outer side wall of the inner iron core is provided with a plurality of second protruding parts, and the plurality of second protruding parts are arranged at intervals along the direction around the predetermined axis.
  • the shock absorbing member is formed by solidifying the glue material injected into the gap between the support frame and the inner iron core; at least part of the shock absorbing member is made of an elastomer material. By adopting this structural design, the glue material is injected into the gap between the support frame and the inner iron core and solidifies to form a deformable shock absorbing member.
  • the shock absorbing member can reduce the torque output vibration of the motor rotor structure, thereby reducing the Noise when the motor rotor structure works.
  • the inner wall of the through hole on the support frame is provided with a plurality of first protrusions and the outer wall of the inner iron core is provided with a plurality of second protrusions, in this way, after the glue is injected between the support frame and the inner iron core, the Effectively increase the adhesion between the shock absorber, the support frame and the inner iron core, thereby improving the ability of the motor support frame, the shock absorber and the connection position of the inner iron core to withstand shear stress, taking into account the reduction of the motor rotor structure. shock effect and the strength of the motor rotor structure.
  • FIG. 1 shows a schematic structural diagram of an embodiment of a motor rotor structure according to the present invention
  • FIG. 2 shows a schematic cross-sectional structure diagram of an embodiment of a motor rotor structure according to the present invention
  • FIG. 3 shows a schematic structural diagram of an embodiment of the motor rotor structure according to the present invention after removing the shock absorbing member
  • FIG. 4 shows a schematic structural diagram of an embodiment of the motor rotor structure according to the present invention after removing the shock absorber and the support frame;
  • FIG. 5 shows a schematic diagram of the body structure of the embodiment of the motor rotor structure according to the present invention
  • FIG. 6 shows a schematic structural diagram of another embodiment of the motor rotor structure according to the present invention.
  • FIG. 7 shows a schematic cross-sectional structure diagram of the first embodiment of the motor rotor structure according to the present invention.
  • FIG. 8 shows a schematic cross-sectional structural diagram of the second embodiment of the rotor structure of the motor according to the present invention.
  • FIG. 9 shows a schematic cross-sectional structural diagram of the third embodiment of the rotor structure of the motor according to the present invention.
  • Main body structure 11. Outer iron core; 111. Positioning slot; 112, First clamping part; 113, Second clamping part; 114, Connection hole; 12, Magnet; 13, Support frame; ; 131, the first convex part; 132, the first positioning hole; 133, the second positioning hole; 134, the reinforcement part; 2, the inner core; 21, the second convex part; The first pressing part; 32, the second pressing part; 4, the blocking piece; 41, the clamping part.
  • the present invention provides a motor rotor structure, including: a main body structure 1 , an inner iron core 2 and a shock absorbing member 3 .
  • the body structure 1 includes an outer iron core 11 , a magnet 12 and a support frame 13 .
  • the outer iron core 11 and the magnet 12 are both mounted on the support frame 13 .
  • the support frame 13 has a through hole 130 ; the inner wall of the through hole 130 is provided with a plurality of first protrusions 131 , and the plurality of first protrusions 131 are arranged at intervals along the direction around the predetermined axis. As shown in FIG.
  • the inner iron core 2 is installed in the through hole 130 and is connected with the rotating shaft; the outer side wall of the inner iron core 2 is provided with a plurality of second protrusions 21 , and the plurality of second protrusions 21 surround predetermined The directions of the axes are spaced apart.
  • the shock absorbing member 3 is formed by solidifying the glue material injected into the gap between the support frame 13 and the inner iron core 2 ; at least part of the shock absorbing member 3 is made of an elastomer material.
  • the motor rotor structure of the present invention includes: a main body structure 1 , an inner iron core 2 , and a damping member 3 .
  • the body structure 1 includes an outer iron core 11 , a magnet 12 and a support frame 13 , and the outer iron core 11 and the magnet 12 are both mounted on the support frame 13 .
  • the support frame 13 has a through hole 130 .
  • the inner wall of the through hole 130 is provided with a plurality of first protruding parts 131 , and the plurality of first protruding parts 131 are arranged at intervals along the direction around the predetermined axis.
  • the inner iron core 2 is used for connecting with the rotating shaft.
  • the inner iron core 2 is installed in the through hole 130 , and the outer side wall of the inner iron core 2 is provided with a plurality of second protrusions 21 , and the plurality of second protrusions 21 are arranged at intervals along the direction around the predetermined axis.
  • the shock absorbing member 3 is formed by solidifying the glue material injected into the gap between the support frame 13 and the inner iron core 2 , and at least part of the shock absorbing member 3 is made of an elastomer material.
  • the glue material is injected into the gap between the support frame 13 and the inner iron core 2 and solidified to form a deformable damping member 3, through which the torque output vibration of the motor rotor structure can be reduced , so as to reduce the noise when the motor rotor structure works.
  • the inner wall of the through hole 130 on the support frame 13 is provided with a plurality of first protrusions 131 and the outer wall of the inner iron core 2 is provided with a plurality of second protrusions 21
  • the support frame 13 and the inner iron core 2 are provided with a plurality of second protrusions 21 .
  • the adhesion between the shock absorber 3 and the support frame 13 and the inner iron core 2 can be effectively increased, so as to improve the position where the motor support frame 13, the shock absorber 3 and the inner iron core 2 are connected.
  • the ability to withstand shear stress takes into account the shock absorption effect of the motor rotor structure and the strength of the motor rotor structure.
  • the predetermined axis coincides with the axis of rotation of the motor rotor structure. That is, the motor rotor structure has a rotation axis (ie, the central axis of the motor rotor structure), and the motor rotor structure rotates around the rotation axis during operation, and the center line of the through hole 130 coincides with the rotation axis of the motor rotor structure.
  • the inner iron core 2 is connected with the rotating shaft, thereby driving the rotating shaft to rotate, and the axis of the rotating shaft coincides with the rotating shaft of the motor rotor structure.
  • the support frame 13 is provided with the first raised portion 131 and the inner iron core 2 is provided with the second raised portion 21, after the glue material is injected into the gap between the support frame 13 and the inner iron core 2, the support frame 13 and The inner iron core 2 can form an installation method embedded in the shock absorbing member 3, which can effectively improve the connection strength between the support frame 13 and the inner iron core 2 and the shock absorbing member 3.
  • the shock absorbing member 3 is made of an elastomer material, that is, the shock absorbing member 3 has a certain elasticity, and can play a certain buffering effect when subjected to a force, thereby realizing the effect of shock absorption.
  • the thickness of the position where the thickness of the shock absorbing member 3 is the smallest is h, and the value of h ranges from 0.8 mm to 1.5 mm. That is, the range of the minimum distance between the inner iron core 2 and the support frame 13 is 0.8 mm to 1.5 mm, so that a good shock absorption effect can be achieved and the noise of the motor rotor structure during operation can be reduced.
  • the shock absorbing member 3 is made of EPDM or silicone rubber.
  • the plurality of first protruding parts 131 and the plurality of second protruding parts 21 are arranged in a dislocation along a direction surrounding the predetermined axis.
  • the first protruding portion 131 and the second protruding portion 21 are arranged in dislocation, and a second protruding portion 21 is disposed between any two first protruding portions 131 .
  • a first protruding portion 131 is disposed between the two second protruding portions 21 .
  • the minimum distance from each of the first raised portions 131 to the predetermined axis is smaller than the maximum distance from each of the second raised portions 21 to the predetermined axis.
  • each first protrusion 131 can be inserted into the gap between two adjacent second protrusions 21 , and the end of each second protrusion 21 can be inserted into two adjacent first protrusions 131 gaps between.
  • This structural design combined with the glue injection structure between the support frame 13 and the inner iron core 2, can effectively improve the ability of the connection position to withstand tangential stress and improve the stability of the motor rotor structure during operation.
  • the predetermined axis is arranged along a predetermined direction.
  • the damping member 3 includes a first press-fitting portion 31 in contact with the end surface of the support frame 13 and a second press-fitting portion 32 in contact with the end surface of the inner iron core 2 .
  • the thickness of the first pressing portion 31 along the predetermined direction is a
  • the thickness of the second pressing portion 32 along the predetermined direction is b, where b>2a.
  • the inner iron core 2 is provided with a shaft hole for cooperating with the rotating shaft
  • the first pressing part 31 is provided with a first escape hole for avoiding the shaft hole.
  • the diameter of the first pressing portion 31 is ⁇ c
  • the diameter of the first escape hole is ⁇ d, where ⁇ c>1.8 ⁇ d.
  • the axial bearing capacity of the motor rotor structure can be effectively improved, and the stability of the motor rotor structure can be improved.
  • ⁇ c is the outer diameter of the annular structure.
  • ⁇ c is the equivalent diameter of the first pressing portion 31 (the outer diameter of the annular structure having the same cross-section as the first pressing portion 31 ).
  • ⁇ d is the diameter of the circular hole.
  • ⁇ d is the equivalent diameter of the first avoidance hole (diameter of a circular hole having the same cross-sectional area as the first avoidance hole).
  • the contact area between the shock absorber 3 and the end face of the body structure 1 is S1
  • the contact area between the shock absorber 3 and the end face of the inner iron core 2 is S2, where S1>2 ⁇ S2.
  • the support frame 13 is formed by injection molding on the outer surfaces of the outer iron core 11 and the magnet 12 , the outer iron core 11 is provided with a positioning groove 111 , and the support frame 13 corresponds to the positioning groove 111 .
  • a first positioning hole 132 is provided at the position.
  • the first positioning part on the injection mold can be inserted into the positioning groove 111 on the outer iron core 11, so as to externally
  • the iron core 11 has the effect of positioning and fixing, ensuring the relative position between the outer iron core 11, the magnet 12 and the injection mold is accurate, and ensuring that the support frame 13 formed after injection molding can evenly wrap the outer iron core 11 and the magnet 12,
  • the processing of the main body structure 1 is convenient, and the processing effect of the main body structure 1 can be improved.
  • a first positioning hole 132 for avoiding the first positioning portion is formed on the support frame 13 .
  • the support frame 13 is made of nylon, PET or PBT material.
  • a second positioning hole 133 is provided at a position corresponding to the magnet 12 on the support frame 13 .
  • the second positioning part on the injection mold can be in contact with the magnet 12, so as to further position the magnet 12, improve the positioning accuracy and positioning reliability of the magnet 12, and ensure the outer iron core. 11 and the relative positional accuracy of the magnet 12, thereby improving the machining accuracy of the motor rotor structure.
  • a second positioning hole 133 for avoiding the second positioning portion is formed on the support frame 13 .
  • the outer iron core 11 is provided with a connection hole 114
  • the support frame 13 is provided with a connection column
  • the connection column is matched with the connection hole 114 .
  • connection hole 114 Since the outer iron core 11 is provided with the connection hole 114, when the outer iron core 11 and the magnet 12 are injected with the material, the material enters the connection hole 114, and after solidification, a connection column is formed through the connection hole 114, so that the outer iron core 114 is formed.
  • the core 11 is more stably connected with the support frame 13 to ensure the structural strength of the body structure 1 .
  • the thickness of the inner iron core 2 along the direction of the predetermined axis is smaller than the thickness of the body structure 1 along the direction of the predetermined axis.
  • a larger filling space can be formed at the end of the inner iron core 2 for the glue material to be injected to form the shock absorbing member 3, thereby increasing the thickness of the shock absorbing member 3 and improving the axial load of the motor rotor structure. ability.
  • the multiple outer iron cores 11 and magnets 12 there are multiple outer iron cores 11 and magnets 12 , and the multiple outer iron cores 11 and the multiple magnets 12 are staggered along the direction surrounding the predetermined axis;
  • the radially opposite first and second ends of the rotor structure, the first end of the outer iron core 11 is provided with a first clamping portion 112, and the second end of the outer iron core 11 is provided with a second clamping portion 113; Both the first clamping part 112 and the second clamping part 113 are clamped with the corresponding magnets 12 to limit the radial movement of the magnets 12 along the rotor structure of the motor.
  • the maximum distance of the outer iron core 11 to the predetermined axis is greater than the maximum distance of the magnet 12 to the predetermined axis.
  • the support frame 13 includes a plurality of reinforcing portions 134 extending along the direction of the predetermined axis, and the plurality of reinforcing portions 134 are provided in a one-to-one correspondence with the plurality of magnets 12 .
  • Each reinforcement portion 134 is located on a side of the corresponding magnet 12 away from the through hole 130 .
  • the body structure 1 has a first end and a second end opposite to each other along the direction of the predetermined axis. As shown in FIG. 8 and FIG. 9 , the first end of the body structure 1 and/or the second end of the body structure 1 is provided with a blocking piece 4 , and the blocking piece 4 is provided with a second avoidance hole for avoiding the rotating shaft.
  • the blocking piece 4 is connected with the body structure 1 , and the blocking piece 4 is in contact with the shock absorbing member 3 .
  • the blocking piece 4 can be connected with the body structure 1 in various ways, such as extrusion, riveting, screwing, and the like.
  • the blocking piece 4 has a snap portion 41 , and the snap portion 41 is clamped in the positioning groove 111 or in the first positioning hole 132 , so as to realize the connection between the blocking piece 4 and the main body structure 1 .
  • the snap fit facilitates the assembly or disassembly of the rotor structure of the motor.
  • the present invention also provides a motor, which includes a motor rotor structure and a motor stator structure arranged around the motor rotor structure, and the motor rotor structure is the above-mentioned motor rotor structure.
  • the motor rotor structure of the present invention includes: a main body structure 1 , an inner iron core 2 and a damping member 3 .
  • the body structure 1 includes an outer iron core 11 , a magnet 12 and a support frame 13 , and the outer iron core 11 and the magnet 12 are both mounted on the support frame 13 .
  • the support frame 13 has a through hole 130 ; the inner wall of the through hole 130 is provided with a plurality of first protrusions 131 , and the plurality of first protrusions 131 are arranged at intervals along a direction surrounding a predetermined axis.
  • the inner iron core 2 is used to connect with the rotating shaft; the inner iron core 2 is installed in the through hole 130 , and the outer side wall of the inner iron core 2 is provided with a plurality of second protrusions 21 , and the plurality of second protrusions 21 surround the predetermined The directions of the axes are spaced apart.
  • the shock absorbing member 3 is formed by solidifying the glue material injected into the gap between the support frame 13 and the inner iron core 2 , and at least part of the shock absorbing member 3 is made of an elastomer material.
  • the glue material is injected into the gap between the support frame 13 and the inner iron core 2 and solidified to form a deformable damping member 3, through which the torque output vibration of the motor rotor structure can be reduced , so as to reduce the noise when the motor rotor structure works.
  • the inner wall of the through hole 130 on the support frame 13 is provided with a plurality of first protrusions 131 and the outer wall of the inner iron core 2 is provided with a plurality of second protrusions 21
  • the support frame 13 and the inner iron core 2 are provided with a plurality of second protrusions 21 .
  • the adhesion between the shock absorber 3 and the support frame 13 and the inner iron core 2 can be effectively increased, so as to improve the position where the motor support frame 13, the shock absorber 3 and the inner iron core 2 are connected.
  • the ability to withstand shear stress takes into account the shock absorption effect of the motor rotor structure and the strength of the motor rotor structure.
  • spatially relative terms such as “on”, “over”, “on the surface”, “above”, etc., may be used herein to describe what is shown in the figures.
  • spatially relative terms are intended to encompass different orientations of the device in use or operation in addition to the orientation depicted in the figures. For example, if the device in the figures is turned over, elements described as “above” or “over” other devices or features would then be oriented “below” or “over” the other devices or features under other devices or constructions”.
  • the exemplary term “above” can encompass both an orientation of "above” and “below.”
  • the device may also be otherwise oriented (rotated 90 degrees or at other orientations) and the spatially relative descriptions used herein interpreted accordingly.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Iron Core Of Rotating Electric Machines (AREA)
  • Permanent Field Magnets Of Synchronous Machinery (AREA)

Abstract

一种电机转子结构及电机,电机转子结构包括本体结构(1),内铁芯(2),和减震件(3)。所述本体结构(1)包括外铁芯(11)、磁体(12)以及支撑架(13),所述外铁芯(11)和所述磁体(12)均安装于所述支撑架(13);所述支撑架(13)具有通孔(130);所述通孔(130)的内壁设有多个第一凸起部(131),多个所述第一凸起部(131)沿环绕预定轴线的方向间隔布置。所述内铁芯(2)安装于所述通孔(130)内并与转轴连接;所述内铁芯(2)的外侧壁设有多个第二凸起部(21),多个所述第二凸起部(21)沿环绕所述预定轴线的方向间隔布置。所述减震件(3)由注入所述支撑架(13)和所述内铁芯(2)之间的缝隙内的胶材凝固后而成;所述减震件(3)的至少部分由弹性体材料制成。

Description

电机转子结构及电机
相关申请
本申请要求2021年1月7日申请的,申请号为202110019383.7,名称为“电机转子结构及电机”的中国专利申请的优先权,在此将其全文引入作为参考。
技术领域
本发明涉及电机领域,具体而言,涉及一种电机转子结构及电机。
背景技术
在永磁同步电机使用时,容易因为转矩脉动而引起电机振动。相关技术中的电机通过在转子结构的内铁芯及外铁芯之间设置减震橡胶来减小转矩脉动输出振动,从而减小电机的噪音。
然而,在相关技术中的上述电机结构中,减震橡胶难以实现内铁芯和外铁芯之间的稳定连接,从而导致电机转子结构承受切应力的能力较差。因此,会对电机转子的结构强度造成较大的影响。
发明内容
本发明的主要目的在于提供一种电机转子结构及电机,以解决相关技术中的电机转子结构的结构强度较低的问题。
为了实现上述目的,根据本发明的一个方面,提供了一种电机转子结构,包括本体结构、内铁芯和减震件。本体结构包括外铁芯、磁体以及支撑架,外铁芯和磁体均安装于支撑架。支撑架具有通孔,通孔的内壁设有多个第一凸起部,多个第一凸起部沿环绕预定轴线的方向间隔布置。内铁芯安装于通孔内并与转轴连接,内铁芯的外侧壁设有多个第二凸起部,多个第二凸起部沿环绕预定轴线的方向间隔布置。减震件由注入支撑架和内铁芯之间的缝隙内的胶材凝固后而成,减震件的至少部分由弹性体材料制成。
在一些实施例中,多个第一凸起部与多个第二凸起部沿环绕预定轴线的方向错位设置。所述预定轴线与电机转子结构的旋转轴重合。
在一些实施例中,各个第一凸起部到预定轴线的最小距离小于各个第二凸起部到预定轴线的最大距离。
在一些实施例中,预定轴线沿预设方向设置;减震件包括与支撑架的端面接触的第一压设部和与内铁芯的端面接触的第二压设部;第一压设部沿预设方向的厚度为a,第二压设部沿预设方向的厚度为b,b>2a;内铁芯上设有用于与转轴配合的轴孔,第一压设部上设有用于对轴孔进行避让的第一避让孔;第一压设部的直径为φc,第一避让孔的直径为φd,φc>1.8×φd。
在一些实施例中,减震件与本体结构的端面之间的接触面积为S1,减震件与内铁芯的端面之间的接触面积为S2,其中,S1>2×S2。
在一些实施例中,支撑架在外铁芯和磁体的外表面注塑而成;外铁芯上设有定位槽,支撑架上与定位槽对应的位置处设有第一定位孔。
在一些实施例中,支撑架上与磁体对应的位置处设有第二定位孔。
在一些实施例中,外铁芯上设有连接孔,支撑架上设有连接柱,连接柱与连接孔配合。
在一些实施例中,内铁芯沿预定轴线所在方向的厚度小于本体结构沿预定轴线所在方向的厚度。
在一些实施例中,外铁芯和磁体均为多个,多个外铁芯和多个磁体沿环绕预定轴线的方向交错设置;各个外铁芯均具有沿电机转子结构的径向相对设置的第一端和第二端,外铁芯的第一端设有第一卡设部,外铁芯的第二端设有第二卡设部;第一卡设部和第二卡设部均与相应的磁体卡接,以限制磁体沿电机转子结构的径向运动。
在一些实施例中,外铁芯到预定轴线的最大距离大于磁体到预定轴线的最大距离;支撑架包括多个沿预定轴线所在的方向延伸设置的加强部,多个加强部与多个磁体一一对应地设置;各个加强部均位于相应的磁体的远离通孔的一侧。
在一些实施例中,本体结构具有沿预定轴线所在的方向相对设置的第一端和第二端;本体结构的第一端和本体结构的第二端中的至少一个设有挡片,挡片上设有用于对转轴进行避让的第二避让孔;挡片与本体结构连接,挡片与减震件抵接。
在一些实施例中,所述支撑架在所述外铁芯和所述磁体的外表面注塑而成;所述外铁芯上设有定位槽,所述支撑架上与所述定位槽对应的位置处设有第一定位孔。所述挡片具有卡接部,所述卡接部卡设在定位槽内或第一定位孔内。
在一些实施例中,所述减震件的厚度最小的位置的厚度的取值范围为0.8mm至1.5mm。
根据本发明的另一方面,提供了一种电机,电机包括电机转子结构和围绕电机转子结构设置的上述任一电机定子结构。
应用本发明的技术方案的电机转子结构包括本体结构、内铁芯和减震件。本体结构包括外铁芯、磁体以及支撑架,外铁芯和磁体均安装于支撑架;支撑架具有通孔;通孔的内壁设有多个第一凸起部,多个第一凸起部沿环绕预定轴线的方向间隔布置。内铁芯安装于通孔内并与转轴连接;内铁芯的外侧壁设有多个第二凸起部,多个第二凸起部沿环绕预定轴线的方向间隔布置。减震件由注入支撑架和内铁芯之间的缝隙内的胶材凝固后而成;减震件的至少部分由弹性体材料制成。通过采用这种结构设计,胶材注入支撑架与内铁芯之间的缝隙并凝固后形成可变形的减震件,通过减震件可减小电机转子结构的转矩输出振动,从而减小电机转子结构工作时的噪音。由于支撑架上的通孔的内壁面设有多个第一凸起部且内铁芯的外壁设有多个第二凸起部,这样,支撑架与内铁芯之间注胶后,能够有效地增大减震件与支撑架、内铁芯之间的附着力,从而提高电机支撑架、减震件以及内铁芯连接的位置处承受切应力的能力,兼顾了电机转子结构的减震效果和电机转子结构的强度。
附图说明
构成本申请的一部分的说明书附图用来提供对本发明的进一步理解,本发明的示意性实施例及其说明用于解释本发明,并不构成对本发明的不当限定。在附图中:
图1示出了根据本发明的电机转子结构的一个实施例的结构示意图;
图2示出了根据本发明的电机转子结构的实施例的剖视结构示意图;
图3示出了根据本发明的电机转子结构的实施例去除减震件后的结构示意图;
图4示出了根据本发明的电机转子结构的实施例去除减震件和支撑架后的结构示意图;
图5示出了根据本发明的电机转子结构的实施例的本体结构的示意图;
图6示出了根据本发明的电机转子结构的另一个实施例的结构示意图;
图7示出了根据本发明的电机转子结构的第一个实施例的剖视结构示意图;
图8示出了根据本发明的电机转子结构的第二个实施例的剖视结构示意图;
图9示出了根据本发明的电机转子结构的第三个实施例的剖视结构示意图。
其中,上述附图包括以下附图标记:
1、本体结构;11、外铁芯;111、定位槽;112、第一卡设部;113、第二卡设部;114、连接孔;12、磁体;13、支撑架;130、通孔;131、第一凸起部;132、第一定位孔;133、第二定位孔;134、加强部;2、内铁芯;21、第二凸起部;3、减震件;31、第一压设部;32、第二压设部;4、挡片;41、卡接部。
具体实施方式
需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。下面将参考附图并结合实施例来详细说明本发明。
请参考图1至图9,本发明提供了一种电机转子结构,包括:本体结构1,内铁芯2和减震件3。本体结构1包括外铁芯11、磁体12以及支撑架13。外铁芯11和磁体12均安装于支撑架13上。如图5所示,支撑架13具有通孔130;通孔130的内壁设有多个第一凸起部131,多个第一凸起部131沿环绕预定轴线的方向间隔布置。如图4所示,内铁芯2安装于通孔130内并与转轴连接;内铁芯2的外侧壁设有多个第二凸起部21,多个第二凸起部21沿环绕预定轴线的方向间隔布置。如图1所示,减震件3由注入支撑架13和内铁芯2之间的缝隙内的胶材凝固后而成;减震件3的至少部分由弹性体材料制成。
本发明的电机转子结构包括:本体结构1,内铁芯2,和减震件3。本体结构1包括外铁芯11、磁体12以及支撑架13,外铁芯11和磁体12均安装于支撑架13。支撑架13具有通孔130。通孔130的内壁设有多个第一凸起部131,多个第一凸起部131沿环绕预定轴线的方向间隔布置。内铁芯2用于与转轴连接。内铁芯2安装于通孔130内,内铁芯2的外侧壁设有多个第二凸起部21,多个第二凸起部21沿环绕预定轴线的方向间隔布置。减震件3由注入支撑架13和内铁芯2之间的缝隙内的胶材凝固后而成,减震件3的至少部分由弹性体材料制成。通过采用这种结构设计,胶材注入支撑架13与内铁芯2之间的缝隙并凝固后形成可变形的减震件3,通过减震件3可减小电机转子结构的转矩输出振动,从而减小电机转子结构工作时的噪音。由于支撑架13上的通孔130的内壁面设有多个第一凸起部131且内铁芯2的外壁设有多个第二凸起部21,这样,支撑架13与内铁芯2之间注胶后,能够有效地增大减震件3与支撑架13、内铁芯2之间的附着力,从而提高电机支撑架13、减震件3以及内铁芯2连接的位置处承受切应力的能力,兼顾了电机转子结构的减震效果和电机转子结构的强度。
对于电机转子结构,可以理解的是,预定轴线与电机转子结构的旋转轴重合。也就是说,电机转子结构具有旋转轴(即电机转子结构的中心轴线),电机转子结构工作时绕旋转轴转动,通孔130的孔心线与电机转子结构的旋转轴重合。当电机转子结构工作时,内铁芯2与转轴连接,从而带动转轴旋转,转轴的轴线与电机转子结构的旋转轴重合。由于支撑架13上设有第一凸起部131,内铁芯2上设有第二凸起部21,当胶材注入支撑架13和内铁芯2之间的缝隙后,支撑架13和内铁芯2能够形成嵌设在减震件3内的安装方式,有效地提高支撑架13和内铁芯2与减震件3之间的连接强度,在实现减震功能的基础上,保证电机转子结构的结构强度。减震件3的至少部分由弹性体材料制成,即减震件3具有一定的弹性,在受力时能够起到一定的缓冲效果,从而实现减震的作用。
减震件3的厚度最小的位置的厚度为h,h的取值范围为0.8mm至1.5mm。即内铁芯2与支撑架13之间的最小距离的取值范围为0.8mm至1.5mm,这样,能够实现好的减震效果,减小电机转子结构工作时的噪音。
在一些实施例中,减震件3由三元乙丙橡胶或硅橡胶制成。
具体地,多个第一凸起部131与多个第二凸起部21沿环绕预定轴线的方向错位设置。
也就是说,沿电机转子结构的周向,第一凸起部131和第二凸起部21错位布置,任意两个第一凸起部131之间设置有一个第二凸起部21,任意两个第二凸起部21之间设置有一个第一凸起部131。这样,有利于进一步提高减震件3与支撑架13以及内铁芯2之间的连接效果,提高电机转子结构的强度。
具体地,各个第一凸起部131到预定轴线的最小距离小于各个第二凸起部21到预定轴线的最大距离。
各个第一凸起部131的端部可插入相邻的两个第二凸起部21之间的间隙,各个第二凸起部21的端部可插入相邻的两个第一凸起部131之间的间隙。这种结构设计,配合支撑架13和内铁芯2之间的注胶结构,能够有效地提高连接位置处承受切向应力的能力,提高电机转子结构工作时的稳定性。
具体地,预定轴线沿预设方向设置。如图7所示,减震件3包括与支撑架13的端面接触的第一压设部31和与内铁芯2的端面接触的第二压设部32。第一压设部31沿预设方向的厚度为a,第二压设部32沿预设方向的厚度为b,其中,b>2a。内铁芯2上设有用于与转轴配合的轴孔,第一压设部31上设有用于对轴孔进行避让的第一避让孔。第一压设部31的直径为φc,第一避让孔的直径为φd,其中,φc>1.8×φd。
通过采用这种结构设计,能够有效提高电机转子结构的轴向承载能力,提高电机转子结构的稳定性。
需要说明的是,当第一压设部31为环形结构时,φc为该环形结构的外径。当第一压设部31不是环形结构时,φc为第一压设部31的等效直径(与第一压设部31具有相同横截面的环形结构的外径)。同样的,当第一避让孔为圆孔时,φd为该圆孔的直径。当第一避让孔不是圆形时,φd为第一避让孔的等效直径(与第一避让孔具有相同横截面积的圆孔的直径)。
具体地,减震件3与本体结构1的端面之间的接触面积为S1,减震件3与内铁芯2的端面之间的接触面积为S2,其中,S1>2×S2。
如图4和图6所示,具体地,支撑架13在外铁芯11和磁体12的外表面注塑而成,外铁芯11上设有定位槽111,支撑架13上与定位槽111对应的位置处设有第一定位孔132。
通过采用这种结构设计,在本体结构1加工过程中,将外铁芯11与磁体12装配后,可通过注塑模具上的第一定位部插入外铁芯11上的定位槽111内,从而对外铁芯11起到定位和固定的效果,保证外铁芯11、磁体12与注塑模具之间的相对位置准确,保证注塑后形成的支撑架13能够均匀地对外铁芯11和磁体12进行包裹,方便本体结构1的加工,并可以提高本体结构1的加工效果。当注塑完成后,由于第一定位部的作用,支撑架13上便会形成对第一定位部进行避让的第一定位孔132。
在一些实施例中,支撑架13由尼龙、PET或PBT材料制成。
如图6所示,具体地,支撑架13上与磁体12对应的位置处设有第二定位孔133。
通过采用上述结构设置,在注塑时,可通过注塑模具上的第二定位部与磁体12接触,从而对磁体12进行进一步的定位,提高对磁体12的定位精度和定位可靠性,确保外铁芯11和磁体12的相对位置精度,从而提高电机转子结构的加工精度。当注塑完成后,由于第二定位部的作用,支撑架13上便会形成对第二定位部进行避让的第二定位孔133。
如图4所示,具体地,外铁芯11上设有连接孔114,支撑架13上设有连接柱,连接柱与连接孔114配合。
由于外铁芯11上设有连接孔114,当向外铁芯11和磁体12上注塑时,材料进入连接孔114内,凝固后形成穿设在连接孔114内的连接柱,从而使外铁芯11与支撑架13更稳定地连接,保证本体结构1的结构强度。
具体地,内铁芯2沿预定轴线所在方向的厚度小于本体结构1沿预定轴线所在方向的厚度。
通过采用这种结构设置,可在内铁芯2的端部形成更大的填充空间供胶材注入并形成减震件3,从而提高减震件3的厚度,提升电机转子结构的轴向承载能力。
如图4所示,具体地,外铁芯11和磁体12均为多个,多个外铁芯11和多个磁体12沿环绕预定轴线的方向交错设置;各个外铁芯11均具有沿电机转子结构的径向相对设置的第一端和第二端,外铁芯11的第一端设有第一卡设部112,外铁芯11的第二端设有第二卡设部113;第一卡设部112和第二卡设部113均与相应的磁体12卡接,以限制磁体12沿电机转子结构的径向运动。
具体地,外铁芯11到预定轴线的最大距离大于磁体12到预定轴线的最大距离。如图5所示,支撑架13包括多个沿预定轴线所在的方向延伸设置的加强部134,多个加强部134与多个磁体12一一对应地设置。各个加强部134均位于相应的磁体12的远离通孔130的一侧。
具体地,本体结构1具有沿预定轴线所在的方向相对设置的第一端和第二端。如图8和图9所示,本体结构1的第一端和/或本体结构1的第二端设有挡片4,挡片4上设有用于对转轴进行避让的第二避让孔。挡片4与本体结构1连接,挡片4与减震件3抵接。
在具体实施时,挡片4可以通过多种方式与本体结构1连接,例如挤压、铆接、螺接等等。在一些实施例中,如图6所示,挡片4具有卡接部41,卡接部41卡设在定位槽111内或第一定位孔132内,从而实现挡片4与本体结构1的卡接配合,方便了电机转子结构的装配或拆卸。
另外,本发明还提供了一种电机,电机包括电机转子结构和围绕电机转子结构设置的电机定子结构,电机转子结构为上述的电机转子结构。
从以上的描述可以看出,本发明上述的实施例实现了如下技术效果:
本发明的电机转子结构包括:本体结构1,内铁芯2和减震件3。本体结构1包括外铁芯11、磁体12以及支撑架13,外铁芯11和磁体12均安装于支撑架13上。支撑架13具有通孔130;通孔130的内壁设有多个第一凸起部131,多个第一凸起部131沿环绕预定轴线的方向间隔布置。内铁芯2用于与转轴连接;内铁芯2安装于通孔130内,内铁芯2的外侧壁设有多个第二凸起部21,多个第二凸起部21沿环绕预定轴线的方向间隔布置。减震件3由注入支撑架13和内铁芯2之间的缝隙内的胶材凝固后而成,减震件3的至少部分由弹性体材料制成。通过采用这种结构设计,胶材注入支撑架13与内铁芯2之间的缝隙并凝固后形成可变形的减震件3,通过减震件3可减小电机转子结构的转矩输出振动,从而减小电机转子结构工作时的噪音。由于支撑架13上的通孔130的内壁面设有多个第一凸起部131且内铁芯2的外壁设有多个第二凸起部21,这样,支撑架13与内铁芯2之间注胶后,能够有效地增大减震件3与支撑架13、内铁芯2之间的附着力,从而提高电机支撑架13、减震件3以及内铁芯2连接的位置处承受切应力的能力,兼顾了电机转子结构的减震效果和电机转子结构的强度。
为了便于描述,在这里可以使用空间相对术语,如“在……之上”、“在……上方”、“在……上表面”、“上面的”等,用来描述如在图中所示的一个器件或特征与其他器件或特征的空间位置关系。应当理解的是,空间相对术语旨在包含除了器件在图中所描述的方位之外的在使用或操作中的不同方位。例如,如果附图中的器件被倒置,则描述为“在其他器件或构造上方”或“在其他器件或构造之上”的器件之后将被定位为“在其他器件或构造下方”或“在其他器件或构造之下”。因而,示例性术语“在……上方”可以包括“在……上方”和“在……下方”两种方位。该器件也可以其他不同方式定位(旋转90度或处于其他方位),并且对这里所使用的空间相对描述作出相应解释。
需要注意的是,这里所使用的术语仅是为了描述具体实施方式,而非意图限制根据本申请的示例性实施方式。如在这里所使用的,除非上下文另外明确指出,否则单数形式也意图包括复数形式,此外,还应当理解的是,当在本说明书中使用术语“包含”和/或“包括”时,其指明存在 特征、步骤、操作、器件、组件和/或它们的组合。
需要说明的是,本申请的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的本申请的实施方式例如能够以除了在这里图示或描述的那些以外的顺序实施。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。
以上所述仅为本发明的优选实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (15)

  1. 一种电机转子结构,其特征在于,包括:
    本体结构(1),所述本体结构(1)包括外铁芯(11)、磁体(12)以及支撑架(13),所述外铁芯(11)和所述磁体(12)均安装于所述支撑架(13);所述支撑架(13)具有通孔(130);所述通孔(130)的内壁设有多个第一凸起部(131),多个所述第一凸起部(131)沿环绕预定轴线的方向间隔布置;
    内铁芯(2),所述内铁芯(2)安装于所述通孔(130)内并与转轴连接;所述内铁芯(2)的外侧壁设有多个第二凸起部(21),多个所述第二凸起部(21)沿环绕所述预定轴线的方向间隔布置;
    减震件(3),所述减震件(3)由注入所述支撑架(13)和所述内铁芯(2)之间的缝隙内的胶材凝固后而成;所述减震件(3)的至少部分由弹性体材料制成。
  2. 根据权利要求1所述的电机转子结构,其特征在于,多个所述第一凸起部(131)与多个所述第二凸起部(21)沿环绕所述预定轴线的方向错位设置;
    所述预定轴线与电机转子结构的旋转轴重合。
  3. 根据权利要求2所述的电机转子结构,其特征在于,各个所述第一凸起部(131)到所述预定轴线的最小距离小于各个所述第二凸起部(21)到所述预定轴线的最大距离。
  4. 根据权利要求1所述的电机转子结构,其特征在于,所述预定轴线沿预设方向设置;所述减震件(3)包括与所述支撑架(13)的端面接触的第一压设部(31)和与所述内铁芯(2)的端面接触的第二压设部(32);所述第一压设部(31)沿所述预设方向的厚度为a,所述第二压设部(32)沿所述预设方向的厚度为b,其中,b>2a;
    所述内铁芯(2)上设有用于与转轴配合的轴孔,所述第一压设部(31)上设有用于对所述轴孔进行避让的第一避让孔;所述第一压设部(31)的直径为φc,所述第一避让孔的直径为φd,其中,φc>1.8×φd。
  5. 根据权利要求1所述的电机转子结构,其特征在于,所述减震件(3)与所述本体结构(1)的端面之间的接触面积为S1,所述减震件(3)与所述内铁芯(2)的端面之间的接触面积为S2,其中,S1>2×S2。
  6. 根据权利要求1所述的电机转子结构,其特征在于,所述支撑架(13)在所述外铁芯(11)和所述磁体(12)的外表面注塑而成;
    所述外铁芯(11)上设有定位槽(111),所述支撑架(13)上与所述定位槽(111)对应的位置处设有第一定位孔(132)。
  7. 根据权利要求6所述的电机转子结构,其特征在于,所述支撑架(13)上与所述磁体(12)对应的位置处设有第二定位孔(133)。
  8. 根据权利要求6所述的电机转子结构,其特征在于,所述外铁芯(11)上设有连接孔(114),所述支撑架(13)上设有连接柱,所述连接柱与所述连接孔(114)配合。
  9. 根据权利要求1所述的电机转子结构,其特征在于,所述内铁芯(2)沿所述预定轴线所在方向的厚度小于所述本体结构(1)沿所述预定轴线所在方向的厚度。
  10. 根据权利要求1所述的电机转子结构,其特征在于,所述外铁芯(11)和所述磁体(12)均为多个,多个所述外铁芯(11)和多个所述磁体(12)沿环绕所述预定轴线的方向交错设置;
    各个所述外铁芯(11)均具有沿所述电机转子结构的径向相对设置的第一端和第二端,所述外铁芯(11)的第一端设有第一卡设部(112),所述外铁芯(11)的第二端设有第二卡设部(113);所述第一卡设部(112)和所述第二卡设部(113)均与相应的所述磁体(12)卡接,以限制所述磁体(12)沿所述电机转子结构的径向运动。
  11. 根据权利要求10所述的电机转子结构,其特征在于,所述外铁芯(11)到所述预定轴线的最大距离大于所述磁体(12)到所述预定轴线的最大距离;
    所述支撑架(13)包括多个沿所述预定轴线所在的方向延伸设置的加强部(134),多个所述加强部(134)与多个所述磁体(12)一一对应地设置;各个所述加强部(134)均位于相应的所述磁体(12)的远离所述通孔(130)的一侧。
  12. 根据权利要求1所述的电机转子结构,其特征在于,所述本体结构(1)具有沿所述预定轴线所在的方向相对设置的第一端和第二端;所述本体结构(1)的第一端和所述本体结构(1)的第二端中的至少一个设有挡片(4),所述挡片(4)上设有用于对转轴进行避让的第二避让孔;所述挡片(4)与所述本体结构(1)连接,所述挡片(4)与所述减震件(3)抵接。
  13. 根据权利要求12所述的电机转子结构,其特征在于:所述支撑架(13)在所述外铁芯(11)和所述磁体(12)的外表面注塑而成;
    所述外铁芯(11)上设有定位槽(111),所述支撑架(13)上与所述定位槽(111)对应的位置处设有第一定位孔(132);
    所述挡片(4)具有卡接部(41),所述卡接部(41)卡设在定位槽(111)内或第一定位孔(132)内。
  14. 根据权利要求1所述的电机转子结构,其特征在于:所述减震件(3)的厚度最小的位置的厚度的取值范围为0.8mm至1.5mm。
  15. 一种电机,其特征在于,所述电机包括电机转子结构和围绕所述电机转子结构设置的权利要求1至14中任一项的所述电机定子结构。
PCT/CN2021/124319 2021-01-07 2021-10-18 电机转子结构及电机 WO2022148085A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110019383.7 2021-01-07
CN202110019383.7A CN112737169A (zh) 2021-01-07 2021-01-07 电机转子结构及电机

Publications (1)

Publication Number Publication Date
WO2022148085A1 true WO2022148085A1 (zh) 2022-07-14

Family

ID=75589616

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/124319 WO2022148085A1 (zh) 2021-01-07 2021-10-18 电机转子结构及电机

Country Status (2)

Country Link
CN (1) CN112737169A (zh)
WO (1) WO2022148085A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112737169A (zh) * 2021-01-07 2021-04-30 珠海格力电器股份有限公司 电机转子结构及电机
CN113364174A (zh) * 2021-05-25 2021-09-07 浙江亚特电器有限公司 一种组合凸极式电机转子及电机
CN113489198B (zh) * 2021-08-03 2022-07-26 珠海格力电器股份有限公司 电机转子、电机、空调器

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN202978488U (zh) * 2012-11-30 2013-06-05 中山大洋电机股份有限公司 一种减震转子结构
CN104753217A (zh) * 2015-04-08 2015-07-01 江苏富天江电子电器有限公司 一种电动机用拼装减震转子结构
JP2017118637A (ja) * 2015-12-22 2017-06-29 アスモ株式会社 ランデル型ロータ及びランデル型モータ
CN107947406A (zh) * 2017-11-09 2018-04-20 合肥市通得力电气制造有限公司 一种绝缘减振注胶转子
CN209627077U (zh) * 2018-12-26 2019-11-12 卧龙电气集团股份有限公司 电机减震转子
CN112737169A (zh) * 2021-01-07 2021-04-30 珠海格力电器股份有限公司 电机转子结构及电机
CN214045216U (zh) * 2021-01-07 2021-08-24 珠海格力电器股份有限公司 电机转子结构及电机

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN202978488U (zh) * 2012-11-30 2013-06-05 中山大洋电机股份有限公司 一种减震转子结构
CN104753217A (zh) * 2015-04-08 2015-07-01 江苏富天江电子电器有限公司 一种电动机用拼装减震转子结构
JP2017118637A (ja) * 2015-12-22 2017-06-29 アスモ株式会社 ランデル型ロータ及びランデル型モータ
CN107947406A (zh) * 2017-11-09 2018-04-20 合肥市通得力电气制造有限公司 一种绝缘减振注胶转子
CN209627077U (zh) * 2018-12-26 2019-11-12 卧龙电气集团股份有限公司 电机减震转子
CN112737169A (zh) * 2021-01-07 2021-04-30 珠海格力电器股份有限公司 电机转子结构及电机
CN214045216U (zh) * 2021-01-07 2021-08-24 珠海格力电器股份有限公司 电机转子结构及电机

Also Published As

Publication number Publication date
CN112737169A (zh) 2021-04-30

Similar Documents

Publication Publication Date Title
WO2022148085A1 (zh) 电机转子结构及电机
AU2017225017B2 (en) A Motor
CN103118923B (zh) 电动动力转向装置用电动机
JPS648536B2 (zh)
US11139706B2 (en) Electric motor and rotor thereof
CN103580355A (zh) 电动马达
JP6637927B2 (ja) 回転電機のステータ
JP2014138434A (ja) モータ
JP4705065B2 (ja) 電動機の回転子及び電動機及び空気調和機
US20090315433A1 (en) Kit servomotor
CN105099019A (zh) 一种电动助力转向系统及其永磁电机、外壳组件
US6489699B2 (en) Motor with a shaft supported by ball bearings
CN214045216U (zh) 电机转子结构及电机
CN211151651U (zh) 用于电机的转子和电机
CN107492965B (zh) 绝缘转子及电机
CN213402668U (zh) 一种抗高冲击电机
JP2002209352A (ja) 回転電機の永久磁石回転子およびその製造方法
JP4568983B2 (ja) 電動機の回転子およびその製造方法
WO2017016394A1 (zh) 马达组装方法、马达转子和马达
JP4102950B2 (ja) 電動機の回転子
JP5245359B2 (ja) 固定子取付構造
JP4348606B2 (ja) アキシャルギャップ型電動機
CN213367551U (zh) 一种电机端盖与电机转子安装结构及抗高冲击电机
JP2007295637A (ja) 電動モータ
JP5885470B2 (ja) 回転電機および回転電機のロータ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21917127

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21917127

Country of ref document: EP

Kind code of ref document: A1