WO2022147961A1 - 一种导电薄膜、导电薄膜的制备方法及锂离子电池 - Google Patents

一种导电薄膜、导电薄膜的制备方法及锂离子电池 Download PDF

Info

Publication number
WO2022147961A1
WO2022147961A1 PCT/CN2021/099434 CN2021099434W WO2022147961A1 WO 2022147961 A1 WO2022147961 A1 WO 2022147961A1 CN 2021099434 W CN2021099434 W CN 2021099434W WO 2022147961 A1 WO2022147961 A1 WO 2022147961A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
metal layer
layer
flame retardant
thin film
Prior art date
Application number
PCT/CN2021/099434
Other languages
English (en)
French (fr)
Inventor
臧世伟
刘文卿
Original Assignee
重庆金美新材料科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 重庆金美新材料科技有限公司 filed Critical 重庆金美新材料科技有限公司
Priority to EP21870538.2A priority Critical patent/EP4053857B1/en
Priority to US17/765,844 priority patent/US20230187775A1/en
Priority to JP2022519366A priority patent/JP7343697B2/ja
Publication of WO2022147961A1 publication Critical patent/WO2022147961A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B5/00Non-insulated conductors or conductive bodies characterised by their form
    • H01B5/14Non-insulated conductors or conductive bodies characterised by their form comprising conductive layers or films on insulating-supports
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/30Arrangements for facilitating escape of gases
    • H01M50/383Flame arresting or ignition-preventing means
    • AHUMAN NECESSITIES
    • A62LIFE-SAVING; FIRE-FIGHTING
    • A62CFIRE-FIGHTING
    • A62C3/00Fire prevention, containment or extinguishing specially adapted for particular objects or places
    • A62C3/16Fire prevention, containment or extinguishing specially adapted for particular objects or places in electrical installations, e.g. cableways
    • AHUMAN NECESSITIES
    • A62LIFE-SAVING; FIRE-FIGHTING
    • A62CFIRE-FIGHTING
    • A62C35/00Permanently-installed equipment
    • A62C35/02Permanently-installed equipment with containers for delivering the extinguishing substance
    • A62C35/10Containers destroyed or opened by flames or heat
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/20Metallic material, boron or silicon on organic substrates
    • C23C14/205Metallic material, boron or silicon on organic substrates by cathodic sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/4235Safety or regulating additives or arrangements in electrodes, separators or electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0421Methods of deposition of the material involving vapour deposition
    • H01M4/0423Physical vapour deposition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0421Methods of deposition of the material involving vapour deposition
    • H01M4/0423Physical vapour deposition
    • H01M4/0426Sputtering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1395Processes of manufacture of electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/661Metal or alloys, e.g. alloy coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/665Composites
    • H01M4/667Composites in the form of layers, e.g. coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/668Composites of electroconductive material and synthetic resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to the technical field of thin film manufacturing, and more particularly, the present invention relates to a conductive thin film, a method for preparing the conductive thin film and a lithium ion battery.
  • Lithium-ion battery is a secondary battery (rechargeable battery), which mainly relies on lithium ions to move between the positive and negative electrodes to work. Due to the call of the country and the reality of global climate change, lithium-ion batteries are used as a kind of battery. Clean energy is also getting more and more attention.
  • lithium-ion batteries People's attention to lithium-ion batteries mainly lies in the energy density and safety performance of lithium-ion batteries, which is related to the promotion and application prospects of lithium-ion batteries. In terms of safety, during the actual use of lithium-ion batteries, the main reason for the heat or even combustion and explosion of lithium-ion batteries is "thermal runaway". .
  • the present invention provides a conductive film, a preparation method of the conductive film and a lithium ion battery, which can prevent the battery from overheating and burn, and improve the conductivity and tensile strength of the conductive film.
  • the technical scheme adopted by the present invention to solve the technical problem is: a preparation method of a conductive film, and its improvement lies in that the preparation method comprises the following steps:
  • fill the flame retardant in the circular hole fill a layer of modified paraffin on the flame retardant, and then fill the flame retardant on the basis of the modified paraffin, and then use the modified paraffin to seal;
  • the first metal layer is coated on the surface of the first support layer by using a vacuum coating device, and the vacuum coating device includes a magnetron sputtering device or a vacuum evaporation device.
  • first metal layer and the third metal layer are copper layers or aluminum layers with a thickness of 200-300 nm
  • second metal layer is a lithium layer with a thickness of 20-100 nm.
  • step S20 a coating compounding device is used to realize compounding of the first film and the second film.
  • the diameter of the circular hole is 500-600 nm.
  • step S50 the flame retardant is trimethyl phosphate.
  • the components of the modified paraffin include 6-7 parts of paraffin wax, 0.5-1 part of lithium chloride, 0.5-3 parts of conductive graphite and 1-3 parts of n-dodecanoic acid.
  • the softening point is 65-80°C.
  • the present invention also provides a conductive thin film, which is improved in that it comprises a support layer, a first metal layer, a first thin film, a second thin film and a third metal layer;
  • Both the upper surface and the lower surface of the support layer are plated with a first metal layer, and the first thin film and the second thin film are respectively compounded on the surfaces of the two first metal layers;
  • the first film and the second film are provided with a plurality of through circular holes, and the inner wall of the circular holes is plated with a second metal layer with an annular cross-section, and the holes of the second metal layer are filled with resistors. burning layer;
  • the outer surface of the first film and the outer surface of the second film are both plated with a third metal layer.
  • the flame retardant layer includes a flame retardant located on the bottom layer and a modified paraffin located above the flame retardant, and the flame retardant is trimethyl phosphate.
  • the flame retardant layer includes a first flame retardant located on the bottom layer, a first modified paraffin located above the first flame retardant, a second flame retardant located above the first modified paraffin, and The second modified paraffin wax located above the second flame retardant, the flame retardant is trimethyl phosphate.
  • the first metal layer and the third metal layer are copper layers or aluminum layers with a thickness of 200-300 nm, and the second metal layer is a lithium layer with a thickness of 20-100 nm.
  • the present invention also provides a lithium ion battery, which is improved in that it includes a conductive film, and the conductive film is prepared by any of the above-mentioned methods for preparing a conductive film.
  • the beneficial effect of the present invention is: by arranging the flame retardant sealed by the modified paraffin in the circular hole of the second film, when the temperature reaches the softening point of the modified paraffin, the paraffin melts from the hole, and the flame retardant is released from the hole. It is released from the battery, which can prevent the battery from burning due to high temperature.
  • the second metal layer is a lithium layer, which can also increase the energy density of the battery after the flame retardant is released.
  • FIG. 1 is a schematic flowchart of a method for preparing a conductive thin film according to the present invention.
  • FIG. 2 is a schematic structural diagram in step S10 of a method for preparing a conductive thin film of the present invention.
  • FIG. 3 is a schematic structural diagram in step S20 of a method for preparing a conductive thin film of the present invention.
  • FIG. 4 is a schematic structural diagram in step S30 of a method for preparing a conductive thin film of the present invention.
  • FIG. 5 is a schematic structural diagram in step S40 of a method for preparing a conductive thin film of the present invention.
  • FIG. 6 is a diagram of the first embodiment in step S50 of a method for preparing a conductive thin film of the present invention.
  • FIG. 7 is a diagram of the first embodiment in step S60 of a method for preparing a conductive thin film of the present invention.
  • FIG. 8 is a diagram of a second embodiment in step S50 of a method for preparing a conductive thin film of the present invention.
  • FIG. 9 is a diagram of a second embodiment in step S60 of a method for preparing a conductive thin film of the present invention.
  • the present invention discloses a preparation method of a conductive film.
  • the preparation method includes the following steps:
  • the upper and lower surfaces of the support layer 10 are respectively plated with a first metal layer 101, wherein the support layer 10 is a PET film, and the formed structure is shown in FIG. 2;
  • the first metal layer 101 is plated on the surface of the first support layer 10 by using a vacuum coating device, which includes a magnetron sputtering device or a vacuum evaporation device; the first metal layer 101 is a thickness of 200 nm. copper layer;
  • the main function of the first metal layer 101 is to increase the electrical conductivity and increase the elongation at break of the entire conductive film;
  • the vacuum coating equipment is a magnetron sputtering device, and the vacuum degree of the magnetron sputtering is 0.1 ⁇ 10 -3 Pa-1.0 ⁇ 10 -3 Pa, magnetron sputtering argon as the sputtering gas, the flow rate is 50-60ml/min, the use of such pressure and speed can speed up the process speed and improve the production efficiency;
  • the third film 203 is compounded on the surfaces of the first film 201 and the second film 202 by using the film compounding technology, and a plurality of through circular holes 204 are etched on the third film 203 and the second film 202.
  • the circular holes The depth of 204 is equal to the sum of the thicknesses of the second film 202 and the third film 203; with reference to FIG. 4, it is a schematic structural diagram of etching a plurality of circular holes 204 on the third film 203, and the circular holes 204 The diameter of 500nm;
  • the second metal layer 102 is plated on the outer surface of the third film 203 and the inner wall of the circular hole 204; as shown in FIG. 5, at this time, the inner wall of the circular hole 204 is plated Two metal layers 102, but the second metal layer 102 does not completely seal the circular holes 204, so a plurality of blind holes are formed on the second metal layer 102;
  • a flame retardant 301 is filled in the blind hole, and a layer of modified paraffin 302 is filled on the flame retardant 301 to seal; the flame retardant 301 is trimethyl phosphate; and,
  • the components of the modified paraffin wax 302 include 6 parts of paraffin wax, 0.5 part of lithium chloride, 0.5 part of conductive graphite and 1 part of n-dodecanoic acid; under normal circumstances, paraffin wax begins to soften at 50-60 ° C, and in this
  • the modified paraffin wax 302 can increase the softening point of the paraffin wax to 65-80°C, thereby improving its temperature resistance;
  • a third metal layer 103 is plated on the upper and lower surfaces of the composite film, and a conductive film is obtained after rolling, the structure of which is shown in Figure 7; and the third metal layer 103 is a 200nm copper layer .
  • the present invention also provides a conductive film, including a support layer 10, a first metal layer 101, a first film 201, a second film 202 and a third metal layer 103;
  • the support layer 10 is a PET film,
  • the upper surface and the lower surface of the support layer 10 are both coated with a first metal layer 101
  • the first metal layer 101 is a copper layer with a thickness of 200 nm
  • the first thin film 201 and the second thin film 202 are respectively compounded on the two first metal layers 101 .
  • the first film 201 and the second film 202 are provided with a plurality of through circular holes 204, and the inner wall of the circular holes 204 is plated with a second metal layer 102 with an annular cross-section.
  • the hole in the center of the metal layer 102 is filled with a flame retardant layer.
  • the outer surface of the first film 201 and the outer surface of the second film 202 are both coated with the third metal layer 103; in this embodiment, the first film 201 and the second film 202 are both PP, and it should be noted that the first film 201 and the second film 202 are both PP.
  • the second film can choose any one of PP, PI, PET, PE.
  • the flame retardant layer includes a flame retardant 301 located on the bottom layer and a modified paraffin wax 302 located above the flame retardant 301 , and the flame retardant 301 is trimethyl phosphate.
  • the third metal layer 103 is a copper layer with a thickness of 200 nm, and the second metal layer 102 is a lithium layer with a thickness of 100 nm.
  • the present invention also provides a lithium ion battery, comprising a conductive film, and the conductive film is prepared by the above-mentioned preparation method of the conductive film.
  • the flame retardant 301 sealed by the modified paraffin 302 in the circular hole 204 of the second film 202, when the temperature reaches the softening point of the modified paraffin 302, the paraffin melts from the hole, The flame retardant 301 is released from the holes, which can prevent the battery from burning due to overheating.
  • the second metal layer 102 is a lithium layer, and after the flame retardant 301 is released, the energy density of the battery can also be increased.
  • adding the first metal layer 101 between the first film 201 and the second film 202 increases the electrical conductivity and tensile strength of the conductive film.
  • the present invention discloses a preparation method of a conductive film.
  • the preparation method includes the following steps:
  • the upper and lower surfaces of the support layer 10 are respectively plated with a first metal layer 101, wherein the support layer 10 is a PET film, and the formed structure is shown in FIG. 2;
  • the first metal layer 101 is coated on the surface of the first support layer 10 by using a vacuum coating device, which includes a magnetron sputtering device or a vacuum evaporation device; of course, a vacuum coating machine can also be used;
  • the first metal layer 101 is an aluminum layer with a thickness of 300 nm;
  • the main function of the first metal layer 101 is to increase the electrical conductivity and increase the elongation at break of the entire conductive film;
  • the vacuum coating equipment is a magnetron sputtering device, and the vacuum degree of the magnetron sputtering is 0.1 ⁇ 10 -3 Pa-1.0 ⁇ 10 -3 Pa, magnetron sputtering argon as the sputtering gas, the flow rate is 50-60ml/min, the use of such pressure and speed can speed up the process speed and improve the production efficiency;
  • the third film 203 is compounded on the surfaces of the first film 201 and the second film 202 by using the film compounding technology, and a plurality of through circular holes 204 are etched on the third film 203 and the second film 202.
  • the circular holes The depth of 204 is equal to the sum of the thicknesses of the second film 202 and the third film 203; with reference to FIG. 4, it is a schematic structural diagram of etching a plurality of circular holes 204 on the third film 203, and the diameter of the holes is 600nm;
  • the second metal layer 102 is plated on the outer surface of the third film 203 and the inner wall of the circular hole 204; as shown in FIG. 5, at this time, the inner wall of the circular hole 204 is plated Two metal layers 102, but the second metal layer 102 does not completely seal the circular holes 204, so a plurality of blind holes are formed on the second metal layer 102;
  • the blind holes are filled with a flame retardant 301 , a layer of modified paraffin 302 is filled on the flame retardant 301 , and the flame retardant 301 is filled on the basis of the modified paraffin 302 , and then sealed with modified paraffin 302; a composite film is obtained; the flame retardant 301 is trimethyl phosphate; and the components of the modified paraffin 302 include 7 parts of paraffin, 1 part of lithium chloride, and 3 parts of conductive graphite and 3 parts of n-dodecanoic acid; under normal circumstances, paraffin wax begins to soften at 50-60 ° C, and in this embodiment, modified paraffin 302 can increase the softening point of paraffin wax to 65-80 ° C, thereby increasing the its temperature resistance;
  • a third metal layer 103 is plated on the upper and lower surfaces of the composite film, and a conductive film is obtained after rolling, the structure of which is shown in FIG. .
  • the present invention also provides a conductive film, including a support layer 10, a first metal layer 101, a first film 201, a second film 202 and a third metal layer 103;
  • the support layer 10 is a PET film,
  • the upper surface and the lower surface of the support layer 10 are both coated with a first metal layer 101
  • the first metal layer 101 is a copper layer with a thickness of 300 nm
  • the first thin film 201 and the second thin film 202 are respectively compounded on the two first metal layers 101 .
  • the first film 201 and the second film 202 are provided with a plurality of through circular holes 204, and the inner wall of the circular holes 204 is plated with a second metal layer 102 with an annular cross-section.
  • the hole in the center of the metal layer 102 is filled with a flame retardant layer.
  • the outer surface of the first film 201 and the outer surface of the second film 202 are both plated with the third metal layer 103; in this embodiment, the first film 201 and the second film 202 are both PI, and it should be noted that the first film 201 and the second film 202 are both PI.
  • 201 and the second film 202 can be selected from any one of PP, PI, PET, and PE.
  • the flame retardant layer includes a first flame retardant 303 located on the bottom layer, a first modified paraffin 304 located above the first flame retardant 303, and a first modified paraffin located on the first modified paraffin.
  • the second flame retardant 305 above the 304 and the second modified paraffin 306 located above the second flame retardant 305 can prevent the lithium-ion battery from burning many times and further improve the safety performance of the battery;
  • the flame retardant 301 is Trimethyl phosphate.
  • the third metal layer 103 is a copper layer with a thickness of 300 nm
  • the second metal layer 102 is a lithium layer with a thickness of 100 nm.
  • the present invention also provides a lithium ion battery, comprising a conductive film, and the conductive film is prepared by the above-mentioned preparation method of the conductive film.
  • the flame retardant sealed by the modified paraffin in the circular hole 204 of the second film 202, when the temperature reaches the softening point of the modified paraffin, the paraffin melts from the hole, and the flame retardant Released from the hole, it can prevent the battery from overheating and burning.
  • the second metal layer 102 is a lithium layer, which can also increase the energy density of the battery after the flame retardant is released.
  • adding the first metal layer 101 between the first film 201 and the second film 202 increases the electrical conductivity and tensile strength of the conductive film.
  • the present invention discloses a preparation method of a conductive film.
  • the preparation method includes the following steps:
  • the upper and lower surfaces of the support layer 10 are respectively plated with a first metal layer 101, wherein the support layer 10 is a PET film, and the formed structure is shown in FIG. 2;
  • the first metal layer 101 is coated on the surface of the first support layer 10 by using a vacuum coating device, which includes a magnetron sputtering device or a vacuum evaporation device; of course, a vacuum coating machine can also be used;
  • the first metal layer 101 is a copper layer with a thickness of 250 nm;
  • the main function of the first metal layer 101 is to increase the electrical conductivity and increase the elongation at break of the entire conductive film;
  • the vacuum coating equipment is a magnetron sputtering device, and the vacuum degree of the magnetron sputtering is 0.1 ⁇ 10 -3 Pa-1.0 ⁇ 10 -3 Pa, magnetron sputtering argon as the sputtering gas, the flow rate is 50-60ml/min, the use of such pressure and speed can speed up the process speed and improve the production efficiency;
  • the third film 203 is compounded on the surfaces of the first film 201 and the second film 202 by using the film compounding technology, and a plurality of through circular holes 204 are etched on the third film 203 and the second film 202.
  • the circular holes The depth of 204 is equal to the sum of the thicknesses of the second film 202 and the third film 203; with reference to FIG. 4, it is a schematic structural diagram of etching a plurality of circular holes 204 on the third film 203, and the diameter of the holes is 600nm;
  • the second metal layer 102 is plated on the outer surface of the third film 203 and the inner wall of the circular hole 204; as shown in FIG. 5, at this time, the inner wall of the circular hole 204 is plated Two metal layers 102, but the second metal layer 102 does not completely seal the circular holes 204, so a plurality of blind holes are formed on the second metal layer 102;
  • a flame retardant 301 is filled in the blind hole, and a layer of modified paraffin 302 is filled on the flame retardant 301 to seal; the flame retardant 301 is trimethyl phosphate; and,
  • the components of the modified paraffin wax 302 include 6 parts of paraffin wax, 0.5 part of lithium chloride, 0.5 part of conductive graphite and 1 part of n-dodecanoic acid; under normal circumstances, paraffin wax begins to soften at 50-60 ° C, and in this
  • the modified paraffin wax 302 can increase the softening point of the paraffin wax to 65-80°C, thereby improving its temperature resistance;
  • a third metal layer 103 is plated on the upper and lower surfaces of the composite film, and a conductive film is obtained after rolling, the structure of which is shown in Figure 7; and the third metal layer 103 is a 200nm copper layer .
  • the present invention also provides a conductive film, including a support layer 10, a first metal layer 101, a first film 201, a second film 202 and a third metal layer 103;
  • the support layer 10 is a PET film,
  • the upper surface and the lower surface of the support layer 10 are both coated with a first metal layer 101,
  • the first metal layer 101 is a copper layer with a thickness of 250 nm, and the first thin film 201 and the second thin film 202 are respectively compounded on the two first metal layers 101.
  • the first film 201 and the second film 202 are provided with a plurality of through circular holes 204, and the inner wall of the circular holes 204 is plated with a second metal layer 102 with an annular cross-section.
  • the hole in the center of the metal layer 102 is filled with a flame retardant layer.
  • the outer surface of the first film 201 and the outer surface of the second film 202 are both coated with the third metal layer 103; in this embodiment, the first film 201 and the second film 202 are both PET, and it should be noted that the first film 201 and the second film 202 are both PET.
  • 201 and the second film 202 can be selected from any one of PP, PI, PET, and PE.
  • the flame retardant layer includes a flame retardant 301 located on the bottom layer and a modified paraffin wax 302 located above the flame retardant 301 , and the flame retardant 301 is trimethyl phosphate.
  • the third metal layer 103 is a copper layer with a thickness of 250 nm, and the second metal layer 102 is a lithium layer with a thickness of 20 nm.
  • the present invention also provides a lithium ion battery, comprising a conductive film, and the conductive film is prepared by the above-mentioned preparation method of the conductive film.
  • the flame retardant 301 sealed by the modified paraffin 302 in the circular hole 204 of the second film 202, when the temperature reaches the softening point of the modified paraffin 302, the paraffin melts from the hole, The flame retardant 301 is released from the holes, which can prevent the battery from burning due to overheating.
  • the second metal layer 102 is a lithium layer, and after the flame retardant 301 is released, the energy density of the battery can also be increased.
  • adding the first metal layer 101 between the first film 201 and the second film 202 increases the electrical conductivity and tensile strength of the conductive film.
  • the present invention also provides the following two comparative examples:
  • Comparative Example 1 The preparation method of Comparative Example 1 is the practice in the prior art. Both the upper and lower surfaces of the film are plated with a layer of metal, and in this embodiment, copper is plated.
  • Comparative Example 2 is the same as the method provided by the present invention, except that the middle support layer 10 is not plated with metal.
  • the above samples were cut and tested with a length of 20CM and a width of 2CM.
  • the intelligent electronic tensile testing machine of Zhongnuo Instruments in the tensile machine was used; the softening point tester was used for the softening point test of asphalt.
  • the conductive film prepared by the method provided by the present invention has a relatively small resistance value, and its conductive performance is obviously improved.
  • Modified paraffin 302 softening point 6 servings 0.5 servings 0.5 servings 3 copies 80°C Modified paraffin 302 softening point 6.5 servings 0.75 servings 2.75 servings 2 servings 72.5°C Modified paraffin 302 softening point 7 servings 1 serving 1 serving 1 serving 65°C
  • the assembly of the lithium ion battery of Comparative Example 1 including the preparation of the positive electrode sheet: a metal aluminum layer with a thickness of 1 ⁇ m is plated on both sides of a PET with a thickness of 2 ⁇ m, and then the metal aluminum layer is A layer of active material is coated on the top, and the active material is composed of lithium iron phosphate as active material, acetylene black as conductive agent, and polyvinylidene fluoride as binder. The ratio of active material to conductive agent and binder is 7:1:2.
  • the negative pole piece is made of PET, and then a layer of metal copper is plated on the PET.
  • the thickness of the PET is 2 ⁇ m
  • the thickness of the copper metal layer is 1 ⁇ m
  • the negative electrode active material is lithium titanate
  • the binder is polyvinylidene fluoride.
  • Ethylene the conductive agent is graphite
  • the ratio of negative electrode active material: binder: conductive agent is 8:1:1.
  • the LiPF6 solution whose electrolyte is 1M is the electrolyte. The above is then assembled into a coin cell battery.
  • Example 1 Preparation of lithium ion battery: The difference between the lithium ion battery of Example 1 and the lithium ion battery obtained in Comparative Example 1 is that the base material of the negative electrode sheet adopts the conductive film provided by the present invention, and others are exactly the same.
  • the difference between the preparation of the comparative example 2 and the example is that the difference of the comparative example 2 is that there is no hole like the example has, and the flame retardant layer in the hole. Everything else is exactly the same.
  • Example 2 The lithium-ion battery of Example 2 is exactly the same as the battery of Example 1. The only difference is that the conductive film used in the base of the negative electrode sheet uses a second flame retardant and a second flame retardant for its interior. Two modified paraffins.
  • Example 2-2 There are no adverse phenomena such as fire and smoke
  • Example 1-1 and 1-2 after the above experiment were taken out, cooled, and then compared with Example 2. Similarly, Example 1 and Example 2 were heated to 110° at a rate of 5°C per minute, and then maintained for 30m. in. Get the following data:
  • the invention provides a conductive film, a preparation method of the conductive film and a lithium ion battery.
  • a flame retardant sealed by modified paraffin in the circular hole of the second film, when the temperature reaches the softening point of the modified paraffin, The paraffin is melted from the holes, and the flame retardant is released from the holes, which can prevent the battery from burning due to excessive temperature and improve the safety of the lithium-ion battery;
  • the second metal layer is a lithium layer, which can also be used after the flame retardant is released.
  • the energy density of the battery is increased, so that the lithium ion battery has the prospect of popularization and application. Therefore, the conductive film, the preparation method of the conductive film and the lithium ion battery of the present invention are practical.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Composite Materials (AREA)
  • Emergency Management (AREA)
  • Business, Economics & Management (AREA)
  • Public Health (AREA)
  • Health & Medical Sciences (AREA)
  • Laminated Bodies (AREA)
  • Secondary Cells (AREA)
  • Non-Insulated Conductors (AREA)
  • Cell Electrode Carriers And Collectors (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

本发明公开了一种导电薄膜、导电薄膜的制备方法以及锂离子电池,涉及导电薄膜制备技术领域;该制备方法包括以下的步骤:S10、选取支撑层后,在支撑层的上、下表面分别镀上第一金属层;S20、在其中一个第一金属层的表面复合第一薄膜,在另一个第一金属层的表面复合第二薄膜;S30、采用薄膜复合技术在第一薄膜和第二薄膜的表面上复合第三薄膜,在第三薄膜和第二薄膜上蚀刻出多个贯穿的圆形孔洞;S40、在第三薄膜的外表面和圆形孔洞的内壁上镀上第二金属层;S50、复合薄膜的制备;S60、采用真空镀膜技术,在复合薄膜的上、下表面镀上第三金属层,辊压后得到导电薄膜;本发明的有益效果是:能够防止电池过热燃烧,提高导电薄膜的导电性和拉伸强度。

Description

一种导电薄膜、导电薄膜的制备方法及锂离子电池 技术领域
本发明涉及薄膜制造技术领域,更具体的说,本发明涉及一种导电薄膜、导电薄膜的制备方法及锂离子电池。
背景技术
锂离子电池在锂离子电池是一种二次电池(充电电池),它主要依靠锂离子在正极和负极之间移动来工作,由于国家的号召以及全球气候变化的现实,锂离子电池作为一种清洁能源也越来越受到人们的重视。
人们对于锂离子电池的关注,目前主要在于锂离子电池的能量密度以及安全性能,这关乎于锂离子电池的推广应用前景。就安全方面,锂离子电池在实际使用过程中,锂离子电池的发热甚至燃烧爆炸主要原因就是“热失控”,“热失控”是由于某种原因导致电池内部热量连续增加,而无法停止的现象。
发明内容
为了克服现有技术的不足,本发明提供一种导电薄膜、导电薄膜的制备方法及锂离子电池,能够防止电池过热燃烧,提高导电薄膜的导电性和拉伸强度。
本发明解决其技术问题所采用的技术方案是:一种导电薄膜的制备方法,其改进之处在于,该制备方法包括以下的步骤:
S10、选取支撑层后,在支撑层的上、下表面分别镀上第一金属层;
S20、在其中一个第一金属层的表面复合第一薄膜,在另一个第一金属层的表面复合第二薄膜;
S30、采用薄膜复合技术在第一薄膜和第二薄膜的表面上复合第三薄膜,在第三薄膜和第二薄膜上蚀刻出多个贯穿的圆形孔洞,该圆形孔洞的深度等于第三薄膜与第二薄膜的厚度之和;
S40、采用真空镀膜技术,在第三薄膜的外表面和圆形孔洞的内壁上镀上第二金属层;
S50、将第三薄膜从第二薄膜上剥离,同时保留镀在第二薄膜的圆形孔洞内壁上的第二金属层;
在圆形孔洞内填充阻燃剂,在阻燃剂上填充一层改性石蜡密封;
或者,在圆形孔洞内填充阻燃剂,在阻燃剂上填充一层改性石蜡,并在改性石 蜡的基础上再填充阻燃剂,再采用改性石蜡密封;
得到复合薄膜;
S60、采用真空镀膜技术,在复合薄膜的上、下表面镀上第三金属层,辊压后得到导电薄膜。
进一步的,步骤S10中,采用真空镀膜设备在第一支撑层的表面镀上第一金属层,真空镀膜设备包括磁控溅射装置或者真空蒸镀装置。
进一步的,所述第一金属层和第三金属层为200-300nm的铜层或铝层,第二金属层为20-100nm的锂层。
进一步的,步骤S20中,采用涂布复合设备实现第一薄膜和第二薄膜的复合。
进一步的,步骤S30中,圆形孔洞的直径为500-600nm。
进一步的,步骤S50中,所述阻燃剂为磷酸三甲酯。
进一步的,步骤S50中,所述改性石蜡的成分包括6-7份石蜡、0.5-1份氯化锂、0.5-3份导电石墨以及1-3份正十二烷酸,改性石蜡的软化点为65-80℃。
另一方面,本发明还提供了一种导电薄膜,其改进之处在于,包括支撑层、第一金属层、第一薄膜、第二薄膜以及第三金属层;
所述支撑层的上表面和下表面均镀有第一金属层,第一薄膜和第二薄膜分别复合在两个第一金属层的表面上;
所述的第一薄膜和第二薄膜上设置有多个贯穿的圆形孔洞,且圆形孔洞的内壁上镀有横截面呈环形的第二金属层,第二金属层的孔洞内填充有阻燃层;
所述的第一薄膜的外表面和第二薄膜的外表面均镀有第三金属层。
在上述的结构中,所述的阻燃层包括位于底层的阻燃剂以及位于阻燃剂上方的改性石蜡,该阻燃剂为磷酸三甲酯。
在上述的结构中,所述的阻燃层包括位于底层的第一阻燃剂、位于第一阻燃剂上方的第一改性石蜡、位于第一改性石蜡上方的第二阻燃剂以及位于第二阻燃剂上方的第二改性石蜡,所述的阻燃剂为磷酸三甲酯。
在上述的结构中,所述第一金属层和第三金属层为200-300nm的铜层或铝层,第二金属层为20-100nm的锂层。
另一方面,本发明还提供了一种锂离子电池,其改进之处在于,包括有导电薄膜,且该导电薄膜由上述的任一导电薄膜的制备方法所制得。
本发明的有益效果是:通过在第二薄膜的圆形孔洞内设置由改性石蜡密封的阻 燃剂,当温度到达改性石蜡的软化点时,石蜡从孔洞中融化,阻燃剂从孔洞中释放出来,能够防止电池温度过高而燃烧。第二金属层为锂层,在阻燃剂释放后,也可以增加电池的能量密度。
附图说明
图1为本发明的一种导电薄膜的制备方法的流程示意图。
图2为本发明的一种导电薄膜的制备方法的步骤S10中的结构示意图。
图3为本发明的一种导电薄膜的制备方法的步骤S20中的结构示意图。
图4为本发明的一种导电薄膜的制备方法的步骤S30中的结构示意图。
图5为本发明的一种导电薄膜的制备方法的步骤S40中的结构示意图。
图6为本发明的一种导电薄膜的制备方法的步骤S50中的第一实施例图。
图7为本发明的一种导电薄膜的制备方法的步骤S60中的第一实施例图。
图8为本发明的一种导电薄膜的制备方法的步骤S50中的第二实施例图。
图9为本发明的一种导电薄膜的制备方法的步骤S60中的第二实施例图。
具体实施方式
下面结合附图和实施例对本发明进一步说明。
以下将结合实施例和附图对本发明的构思、具体结构及产生的技术效果进行清楚、完整地描述,以充分地理解本发明的目的、特征和效果。显然,所描述的实施例只是本发明的一部分实施例,而不是全部实施例,基于本发明的实施例,本领域的技术人员在不付出创造性劳动的前提下所获得的其他实施例,均属于本发明保护的范围。另外,专利中涉及到的所有联接/连接关系,并非单指构件直接相接,而是指可根据具体实施情况,通过添加或减少联接辅件,来组成更优的联接结构。本发明创造中的各个技术特征,在不互相矛盾冲突的前提下可以交互组合。
实施例1
参照图1所示,本发明揭示了一种导电薄膜的制备方法,本实施例中,该制备方法包括以下的步骤:
S10、选取支撑层20后,在支撑层10的上、下表面分别镀上第一金属层101,其中,支撑层10为PET薄膜,形成的结构如图2所示;
在本实施例中,采用真空镀膜设备在第一支撑层10的表面镀上第一金属层101,真空镀膜设备包括磁控溅射装置或者真空蒸镀装置;第一金属层101为厚度200nm的铜层;
第一金属层101的主要作用是可以增加导电性能,并且可以增加整个导电薄膜的断裂延伸率;本实施例中,真空镀膜设备为磁控溅射装置,并且磁控溅射的真空度为0.1×10 -3Pa-1.0×10 -3Pa,磁控溅射氩气作为溅射气体,流速为50-60ml/min,采用这样的压强和速度能够加快工艺速度,提高生产效率;
S20、在其中一个第一金属层101的表面复合第一薄膜201,在另一个第一金属层101的表面复合第二薄膜202;本实施例中,如图3所示,在位于上方的第一金属层101的表面复合第二薄膜202,在位于下方的第一金属层101的表面复合第一薄膜201;并且,采用涂布复合设备实现第一薄膜201和第二薄膜202的复合。
S30、采用薄膜复合技术在第一薄膜201和第二薄膜202的表面上复合第三薄膜203,在第三薄膜203和第二薄膜202上蚀刻出多个贯穿的圆形孔洞204,圆形孔洞204的深度等于第二薄膜202与第三薄膜203的厚度之和;参照图4所示,即为在第三薄膜203上蚀刻出多个圆形孔洞204的结构示意图,并且,圆形孔洞204的直径为500nm;
S40、采用真空镀膜技术,在第三薄膜203的外表面和圆形孔洞204的内壁上镀上第二金属层102;如图5所示,此时,圆形孔洞204的内壁上镀有第二金属层102,但是第二金属层102未将圆形孔洞204完全封闭,因此第二金属层102上形成多个盲孔;
S50、将第三薄膜203从第二薄膜202上剥离,同时保留镀在第二薄膜202的圆形孔洞204内壁上的第二金属层102;并且,第二金属层102为100nm的锂层;
本实施例中,如图6所示,在盲孔内填充阻燃剂301,在阻燃剂301上填充一层改性石蜡302密封;所述阻燃剂301为磷酸三甲酯;并且,所述改性石蜡302的成分包括6份石蜡、0.5份氯化锂、0.5份导电石墨以及1份正十二烷酸;一般情况下,石蜡在50-60℃就开始变软,而在本实施例中,改性石蜡302可以将石蜡的软化点提高至65-80℃,从而提高其耐温性能;
S60、采用真空镀膜技术,在复合薄膜的上、下表面镀上第三金属层103,辊压后得到导电薄膜,其结构如图7所示;并且,第三金属层103为200nm的铜层。
结合图7所示,本发明还提供了一种导电薄膜,包括支撑层10、第一金属层101、第一薄膜201、第二薄膜202以及第三金属层103;支撑层10为PET薄膜,支撑层10的上表面和下表面均镀有第一金属层101,第一金属层101为厚度200nm的铜层,第一薄膜201和第二薄膜202分别复合在两个第一金属层101的表面上; 所述的第一薄膜201和第二薄膜202上设置有多个贯穿的圆形孔洞204,且圆形孔洞204的内壁上镀有横截面呈环形的第二金属层102,第二金属层102中心的孔洞内填充有阻燃层。第一薄膜201的外表面和第二薄膜202的外表面均镀有第三金属层103;本实施例中,第一薄膜201和第二薄膜202均为PP,需要说明的是,第一薄膜和第二薄膜可以选择PP、PI、PET、PE中的任意一种。
本实施例中,结合图7所示,所述的阻燃层包括位于底层的阻燃剂301以及位于阻燃剂301上方的改性石蜡302,该阻燃剂301为磷酸三甲酯。另外,第三金属层103为厚度200nm的铜层,第二金属层102为100nm的锂层。
另一方面,本发明还提供了一种锂离子电池,包括有导电薄膜,且该导电薄膜由上述的导电薄膜的制备方法所制得。
在上述的实施例中,通过在第二薄膜202的圆形孔洞204内设置由改性石蜡302密封的阻燃剂301,当温度到达改性石蜡302的软化点时,石蜡从孔洞中融化,阻燃剂301从孔洞中释放出来,能够防止电池温度过高而燃烧。第二金属层102为锂层,在阻燃剂301释放后,也可以增加电池的能量密度。另外,在第一薄膜201和第二薄膜202中间增加第一金属层101增加了导电薄膜的导电性能和拉伸强度。
实施例2
参照图1所示,本发明揭示了一种导电薄膜的制备方法,本实施例中,该制备方法包括以下的步骤:
S10、选取支撑层10后,在支撑层10的上、下表面分别镀上第一金属层101,其中,支撑层10为PET薄膜,形成的结构如图2所示;
在本实施例中,采用真空镀膜设备在第一支撑层10的表面镀上第一金属层101,真空镀膜设备包括磁控溅射装置或者真空蒸镀装置;当然,也可以使用真空镀膜机;第一金属层101为厚度300nm的铝层;
第一金属层101的主要作用是可以增加导电性能,并且可以增加整个导电薄膜的断裂延伸率;本实施例中,真空镀膜设备为磁控溅射装置,并且磁控溅射的真空度为0.1×10 -3Pa-1.0×10 -3Pa,磁控溅射氩气作为溅射气体,流速为50-60ml/min,采用这样的压强和速度能够加快工艺速度,提高生产效率;
S20、在其中一个第一金属层101的表面复合第一薄膜201,在另一个第一金属层101的表面复合第二薄膜202;本实施例中,如图3所示,在位于上方的第一 金属层101的表面复合第二薄膜202,在位于下方的第一金属层101的表面复合第一薄膜201;并且,采用涂布复合设备实现第一薄膜201和第二薄膜202的复合。
S30、采用薄膜复合技术在第一薄膜201和第二薄膜202的表面上复合第三薄膜203,在第三薄膜203和第二薄膜202上蚀刻出多个贯穿的圆形孔洞204,圆形孔洞204的深度等于第二薄膜202与第三薄膜203的厚度之和;参照图4所示,即为在第三薄膜203上蚀刻出多个圆形孔洞204的结构示意图,并且,孔洞的直径为600nm;
S40、采用真空镀膜技术,在第三薄膜203的外表面和圆形孔洞204的内壁上镀上第二金属层102;如图5所示,此时,圆形孔洞204的内壁上镀有第二金属层102,但是第二金属层102未将圆形孔洞204完全封闭,因此第二金属层102上形成多个盲孔;
S50、将第三薄膜203从第二薄膜202上剥离,同时保留镀在第二薄膜202的圆形孔洞204内壁上的第二金属层102;并且,第二金属层102为100nm的锂层;
本实施例中,如图8所示,在盲孔内填充阻燃剂301,在阻燃剂301上填充一层改性石蜡302,并在改性石蜡302的基础上再填充阻燃剂301,再采用改性石蜡302密封;得到复合薄膜;所述阻燃剂301为磷酸三甲酯;并且,所述改性石蜡302的成分包括7份石蜡、1份氯化锂、3份导电石墨以及3份正十二烷酸;一般情况下,石蜡在50-60℃就开始变软,而在本实施例中,改性石蜡302可以将石蜡的软化点提高至65-80℃,从而提高其耐温性能;
S60、采用真空镀膜技术,在复合薄膜的上、下表面镀上第三金属层103,辊压后得到导电薄膜,其结构如图9所示;并且,第三金属层103为200nm的铜层。
结合图9所示,本发明还提供了一种导电薄膜,包括支撑层10、第一金属层101、第一薄膜201、第二薄膜202以及第三金属层103;支撑层10为PET薄膜,支撑层10的上表面和下表面均镀有第一金属层101,第一金属层101为厚度300nm的铜层,第一薄膜201和第二薄膜202分别复合在两个第一金属层101的表面上;所述的第一薄膜201和第二薄膜202上设置有多个贯穿的圆形孔洞204,且圆形孔洞204的内壁上镀有横截面呈环形的第二金属层102,第二金属层102中心的孔洞内填充有阻燃层。第一薄膜201的外表面和第二薄膜202的外表面均镀有第三金属层103;本实施例中,第一薄膜201和第二薄膜202均为PI,需要说明的是,第一薄膜201和第二薄膜202可以选择PP、PI、PET、PE中的任意一种。
本实施例中,结合图9所示,所述的阻燃层包括位于底层的第一阻燃剂303、位于第一阻燃剂303上方的第一改性石蜡304、位于第一改性石蜡304上方的第二阻燃剂305以及位于第二阻燃剂305上方的第二改性石蜡306,能够多次防止锂离子电池燃烧,进一步提升电池的安全性能;所述的阻燃剂301为磷酸三甲酯。另外,第三金属层103为厚度300nm的铜层,第二金属层102为100nm的锂层。
另一方面,本发明还提供了一种锂离子电池,包括有导电薄膜,且该导电薄膜由上述的导电薄膜的制备方法所制得。
在上述的实施例中,通过在第二薄膜202的圆形孔洞204内设置由改性石蜡密封的阻燃剂,当温度到达改性石蜡的软化点时,石蜡从孔洞中融化,阻燃剂从孔洞中释放出来,能够防止电池温度过高而燃烧。第二金属层102为锂层,在阻燃剂释放后,也可以增加电池的能量密度。另外,在第一薄膜201和第二薄膜202中间增加第一金属层101增加了导电薄膜的导电性能和拉伸强度。
实施例3
参照图1所示,本发明揭示了一种导电薄膜的制备方法,本实施例中,该制备方法包括以下的步骤:
S10、选取支撑层10后,在支撑层10的上、下表面分别镀上第一金属层101,其中,支撑层10为PET薄膜,形成的结构如图2所示;
在本实施例中,采用真空镀膜设备在第一支撑层10的表面镀上第一金属层101,真空镀膜设备包括磁控溅射装置或者真空蒸镀装置;当然,也可以使用真空镀膜机;第一金属层101为厚度250nm的铜层;
第一金属层101的主要作用是可以增加导电性能,并且可以增加整个导电薄膜的断裂延伸率;本实施例中,真空镀膜设备为磁控溅射装置,并且磁控溅射的真空度为0.1×10 -3Pa-1.0×10 -3Pa,磁控溅射氩气作为溅射气体,流速为50-60ml/min,采用这样的压强和速度能够加快工艺速度,提高生产效率;
S20、在其中一个第一金属层101的表面复合第一薄膜201,在另一个第一金属层101的表面复合第二薄膜202;本实施例中,如图3所示,在位于上方的第一金属层101的表面复合第二薄膜202,在位于下方的第一金属层101的表面复合第一薄膜201;并且,采用涂布复合设备实现第一薄膜201和第二薄膜202的复合。
S30、采用薄膜复合技术在第一薄膜201和第二薄膜202的表面上复合第三薄膜203,在第三薄膜203和第二薄膜202上蚀刻出多个贯穿的圆形孔洞204,圆形 孔洞204的深度等于第二薄膜202与第三薄膜203的厚度之和;参照图4所示,即为在第三薄膜203上蚀刻出多个圆形孔洞204的结构示意图,并且,孔洞的直径为600nm;
S40、采用真空镀膜技术,在第三薄膜203的外表面和圆形孔洞204的内壁上镀上第二金属层102;如图5所示,此时,圆形孔洞204的内壁上镀有第二金属层102,但是第二金属层102未将圆形孔洞204完全封闭,因此第二金属层102上形成多个盲孔;
S50、将第三薄膜203从第二薄膜202上剥离,同时保留镀在第二薄膜202的圆形孔洞204内壁上的第二金属层102;并且,第二金属层102为20nm的锂层;
本实施例中,如图6所示,在盲孔内填充阻燃剂301,在阻燃剂301上填充一层改性石蜡302密封;所述阻燃剂301为磷酸三甲酯;并且,所述改性石蜡302的成分包括6份石蜡、0.5份氯化锂、0.5份导电石墨以及1份正十二烷酸;一般情况下,石蜡在50-60℃就开始变软,而在本实施例中,改性石蜡302可以将石蜡的软化点提高至65-80℃,从而提高其耐温性能;
S60、采用真空镀膜技术,在复合薄膜的上、下表面镀上第三金属层103,辊压后得到导电薄膜,其结构如图7所示;并且,第三金属层103为200nm的铜层。
结合图7所示,本发明还提供了一种导电薄膜,包括支撑层10、第一金属层101、第一薄膜201、第二薄膜202以及第三金属层103;支撑层10为PET薄膜,支撑层10的上表面和下表面均镀有第一金属层101,第一金属层101为厚度250nm的铜层,第一薄膜201和第二薄膜202分别复合在两个第一金属层101的表面上;所述的第一薄膜201和第二薄膜202上设置有多个贯穿的圆形孔洞204,且圆形孔洞204的内壁上镀有横截面呈环形的第二金属层102,第二金属层102中心的孔洞内填充有阻燃层。第一薄膜201的外表面和第二薄膜202的外表面均镀有第三金属层103;本实施例中,第一薄膜201和第二薄膜202均为PET,需要说明的是,第一薄膜201和第二薄膜202可以选择PP、PI、PET、PE中的任意一种。
本实施例中,结合图7所示,所述的阻燃层包括位于底层的阻燃剂301以及位于阻燃剂301上方的改性石蜡302,该阻燃剂301为磷酸三甲酯。另外,第三金属层103为厚度250nm的铜层,第二金属层102为20nm的锂层。
另一方面,本发明还提供了一种锂离子电池,包括有导电薄膜,且该导电薄膜由上述的导电薄膜的制备方法所制得。
在上述的实施例中,通过在第二薄膜202的圆形孔洞204内设置由改性石蜡302密封的阻燃剂301,当温度到达改性石蜡302的软化点时,石蜡从孔洞中融化,阻燃剂301从孔洞中释放出来,能够防止电池温度过高而燃烧。第二金属层102为锂层,在阻燃剂301释放后,也可以增加电池的能量密度。另外,在第一薄膜201和第二薄膜202中间增加第一金属层101增加了导电薄膜的导电性能和拉伸强度。
另外,本发明还提供了以下两种对比例:
一、对比例的制备:
1、对比例1的制备方法为现有技术中的做法,在薄膜的上下表面均镀上一层金属,本实施例中均镀上铜。
2、对比例2的制备方法与本发明提供的方法一致,只是缺少在中间的支撑层10镀上金属。
3、实施例为本发明所提供的方法所获得的样品。
将以上样品分别裁取长为20CM,宽为2CM的样品测试,拉伸机中诺仪器的智能电子拉力试验机;软化点测试采用沥青软化点测试仪。
A、拉伸强度的测试
拉伸强度 对比例1 对比例2 实施例
1 40MP 45MP 52MP
2 39.5MP 43MP 55MP
对比后发现,采用本发明提供的方法制得的导电薄膜,明显的提高了拉伸强度。
B、导电性能的测试
方法:直接将万能表的正负极接在非金属材料两端,开关拨到欧姆档,测量数据便是其电阻,电阻越高,导电性能越不好。
导电性能 对比例1 对比例2 实施例
1 7mΩ 8.5mΩ 6.5mΩ
2 7.3mΩ 8.6mΩ 6.3mΩ
经过对比,采用本发明提供的方法制得的导电薄膜,电阻的数值相对较小,明显的提高了其导电性能。
C、改性石蜡302软化点测试数据:
样品 石蜡 氯化锂 导电石墨 正十二烷酸 熔点
改性石蜡302软化点 6份 0.5份 0.5份 3份 80℃
改性石蜡302软化点 6.5份 0.75份 2.75份 2份 72.5℃
改性石蜡302软化点 7份 1份 1份 1份 65℃
二、对比例锂离子电池的制备:
采用两组对比例进行对比:对比例1的锂离子电池的组装:包括正极片的制备:在厚度为2μm的PET的两面镀覆一层厚度为1μm的金属铝层,然后在该金属铝层上面涂覆上一层活性材料层,该活性材料的组成包括:活性材料磷酸铁锂,导电剂采用乙炔黑,粘结剂选择聚偏氟乙烯。活性材料和导电剂以及粘结剂的比例为7:1:2。负极极片采用PET为基材,然后在PET上镀上一层金属铜,该PET的厚度为2μm,铜金属层的厚度为1μm,负极活性材料为钛酸锂,粘结剂采用聚偏氟乙烯,导电剂为石墨,其中,负极活性材料:粘结剂:导电剂的比例为8:1:1。电解液为1M的LiPF6溶液为电解液。然后将上述组装成扣式电池。
实施例1锂离子电池的制备:实施例的锂离子电池与对比例1所得锂离子电池不同点在于其负极片的基材采用本发明所提供的导电薄膜,其他完全一样。
对比例2的制备,其与实施例的区别在于,该对比例2的区别在于不存在像实施例所具有的孔洞,以及孔洞里面的阻燃层。其他完全一样。
实施例2的制备:实施例2的锂离子电池与实施例1的电池其他完全一样,唯一的区别在于,其负极片的基地所使用的导电薄膜为其内部使用了第二阻燃剂和第二改性石蜡。
将上述所得到个各个电池放入烘箱中,以5℃每分钟的速率升温至100度,然后恒温30分钟,以不起火、不冒烟为优。得到如下结果:
样品 实现效果
对比例1-1 起火
对比例1-2 起火
对比例2-1 起火
对比例2-2 起火
实施例1-1 没有起火冒烟等不良现象
实施例1-2 没有起火冒烟等不良现象
实施例2-1 没有起火冒烟等不良现象
实施例2-2 没有起火冒烟等不良现象
将经过上述实验的实施例1-1和1-2取出,冷却,然后和实施例2进行对比,同样将实施例1和实施例2以5℃每分钟的速率升温至110°,然后维持30m i n。得到如下数据:
样品 效果
实施例1-1 冒烟
实施例1-2 起火
实施例2-1 没有起火冒烟等不良现象
实施例2-2 没有起火冒烟等不良现象
以上是对本发明的较佳实施进行了具体说明,但本发明创造并不限于所述实施例,熟悉本领域的技术人员在不违背本发明精神的前提下还可做出种种的等同变形或替换,这些等同的变形或替换均包含在本申请权利要求所限定的范围内。
本发明提供一种导电薄膜、导电薄膜的制备方法及锂离子电池,通过在第二薄膜的圆形孔洞内设置由改性石蜡密封的阻燃剂,当温度到达改性石蜡的软化点时,石蜡从孔洞中融化,阻燃剂从孔洞中释放出来,能够防止电池温度过高而燃烧,提高了锂离子电池的安全性;第二金属层为锂层,在阻燃剂释放后,也可以增加电池的能量密度,使锂离子电池具备推广应用前景,由此,本发明的导电薄膜、导电薄膜的制备方法及锂离子电池具有实用性。

Claims (13)

  1. 一种导电薄膜的制备方法,其特征在于,该制备方法包括以下的步骤:
    S10、选取支撑层后,在支撑层的上、下表面分别镀上第一金属层;
    S20、在其中一个第一金属层的表面复合第一薄膜,在另一个第一金属层的表面复合第二薄膜;
    S30、采用薄膜复合技术在第一薄膜和第二薄膜的表面上复合第三薄膜,在第三薄膜和第二薄膜上蚀刻出多个贯穿的圆形孔洞,该圆形孔洞的深度等于第三薄膜与第二薄膜的厚度之和;
    S40、采用真空镀膜技术,在第三薄膜的外表面和圆形孔洞的内壁上镀上第二金属层;
    S50、将第三薄膜从第二薄膜上剥离,同时保留镀在第二薄膜的圆形孔洞内壁上的第二金属层;
    在圆形孔洞内填充阻燃剂,在阻燃剂上填充一层改性石蜡密封;
    或者,在圆形孔洞内填充阻燃剂,在阻燃剂上填充一层改性石蜡,并在改性石蜡的基础上再填充阻燃剂,再采用改性石蜡密封;
    得到复合薄膜;
    S60、采用真空镀膜技术,在复合薄膜的上、下表面镀上第三金属层,辊压后得到导电薄膜。
  2. 根据权利要求1所述的一种导电薄膜的制备方法,其特征在于,步骤S10中,采用真空镀膜设备在第一支撑层的表面镀上第一金属层,真空镀膜设备包括磁控溅射装置或者真空蒸镀装置。
  3. 根据权利要求1所述的一种导电薄膜的制备方法,其特征在于,所述第一金属层和第三金属层为200-300nm的铜层或铝层,第二金属层为20-100nm的锂层。
  4. 根据权利要求1所述的一种导电薄膜的制备方法,其特征在于,步骤S20中,采用涂布复合设备实现第一薄膜和第二薄膜的复合。
  5. 根据权利要求1所述的一种导电薄膜的制备方法,其特征在于,步骤S30中,圆形孔洞的直径为500-600nm。
  6. 根据权利要求1所述的一种导电薄膜的制备方法,其特征在于,步骤S40中,在第三薄膜的外表面和圆形孔洞中镀上第二金属层后,采用蚀刻技术,去除圆 形孔洞中心处的金属层,在圆形孔洞的内壁上保留一层金属层。
  7. 根据权利要求1所述的一种导电薄膜的制备方法,其特征在于,步骤S50中,所述阻燃剂为磷酸三甲酯。
  8. 根据权利要求1所述的一种导电薄膜的制备方法,其特征在于,步骤S50中,所述改性石蜡的成分包括6-7份石蜡、0.5-1份氯化锂、0.5-3份导电石墨以及1-3份正十二烷酸,改性石蜡的软化点为65-80℃。
  9. 一种导电薄膜,其特征在于,包括支撑层、第一金属层、第一薄膜、第二薄膜以及第三金属层;
    所述支撑层的上表面和下表面均镀有第一金属层,第一薄膜和第二薄膜分别复合在两个第一金属层的表面上;
    所述的第一薄膜和第二薄膜上设置有多个贯穿的圆形孔洞,且圆形孔洞的内壁上镀有横截面呈环形的第二金属层,第二金属的孔洞内填充有阻燃层;
    所述的第一薄膜的外表面和第二薄膜的外表面均镀有第三金属层。
  10. 根据权利要求9所述的一种导电薄膜,其特征在于,所述的阻燃层包括位于底层的阻燃剂以及位于阻燃剂上方的改性石蜡,该阻燃剂为磷酸三甲酯。
  11. 根据权利要求9所述的一种导电薄膜,其特征在于,所述的阻燃层包括位于底层的第一阻燃剂、位于第一阻燃剂上方的第一改性石蜡、位于第一改性石蜡上方的第二阻燃剂以及位于第二阻燃剂上方的第二改性石蜡,所述的阻燃剂为磷酸三甲酯。
  12. 根据权利要求9所述的一种导电薄膜,其特征在于,所述第一金属层和第三金属层为200-300nm的铜层或铝层,第二金属层为20-100nm的锂层。
  13. 一种锂离子电池,其特征在于,包括有导电薄膜,且该导电薄膜由权利要求1-8中任一导电薄膜的制备方法所制得。
PCT/CN2021/099434 2021-01-11 2021-06-10 一种导电薄膜、导电薄膜的制备方法及锂离子电池 WO2022147961A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP21870538.2A EP4053857B1 (en) 2021-01-11 2021-06-10 Conductive film, fabrication method of conductive thin film, and lithium-ion battery
US17/765,844 US20230187775A1 (en) 2021-01-11 2021-06-10 Conductive film, fabrication method of conductive film, and lithium-ion battery (lib)
JP2022519366A JP7343697B2 (ja) 2021-01-11 2021-06-10 導電性フィルム、導電性フィルムの製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110032066.9 2021-01-11
CN202110032066.9A CN112712918A (zh) 2021-01-11 2021-01-11 一种导电薄膜、导电薄膜的制备方法及锂离子电池

Publications (1)

Publication Number Publication Date
WO2022147961A1 true WO2022147961A1 (zh) 2022-07-14

Family

ID=75548789

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/099434 WO2022147961A1 (zh) 2021-01-11 2021-06-10 一种导电薄膜、导电薄膜的制备方法及锂离子电池

Country Status (5)

Country Link
US (1) US20230187775A1 (zh)
EP (1) EP4053857B1 (zh)
JP (1) JP7343697B2 (zh)
CN (1) CN112712918A (zh)
WO (1) WO2022147961A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112712918A (zh) * 2021-01-11 2021-04-27 重庆金美新材料科技有限公司 一种导电薄膜、导电薄膜的制备方法及锂离子电池

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108336357A (zh) * 2017-12-14 2018-07-27 合肥国轩高科动力能源有限公司 一种超轻锂离子电池集流体及其制备方法
CN109994740A (zh) * 2019-03-29 2019-07-09 宁德新能源科技有限公司 复合集流体与包含其的复合极片及电化学装置
JP2019147357A (ja) * 2018-02-28 2019-09-05 リンテック株式会社 難燃断熱シートおよび蓄電モジュール
CN111048788A (zh) * 2019-12-26 2020-04-21 珠海冠宇电池有限公司 一种集流体及其制备方法和应用
CN112712918A (zh) * 2021-01-11 2021-04-27 重庆金美新材料科技有限公司 一种导电薄膜、导电薄膜的制备方法及锂离子电池

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010056037A (ja) * 2008-08-29 2010-03-11 Teijin Ltd 非水電解質電池用電極シート及びその製造方法並びにそれを用いた非水電解質二次電池
JP2011174009A (ja) * 2010-02-25 2011-09-08 Teijin Dupont Films Japan Ltd 蓄電素子電極用難燃ポリエステルフィルム、それからなる蓄電素子用電極およびそれらからなる蓄電素子

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108336357A (zh) * 2017-12-14 2018-07-27 合肥国轩高科动力能源有限公司 一种超轻锂离子电池集流体及其制备方法
JP2019147357A (ja) * 2018-02-28 2019-09-05 リンテック株式会社 難燃断熱シートおよび蓄電モジュール
CN109994740A (zh) * 2019-03-29 2019-07-09 宁德新能源科技有限公司 复合集流体与包含其的复合极片及电化学装置
CN111048788A (zh) * 2019-12-26 2020-04-21 珠海冠宇电池有限公司 一种集流体及其制备方法和应用
CN112712918A (zh) * 2021-01-11 2021-04-27 重庆金美新材料科技有限公司 一种导电薄膜、导电薄膜的制备方法及锂离子电池

Also Published As

Publication number Publication date
EP4053857A1 (en) 2022-09-07
EP4053857C0 (en) 2023-08-09
JP7343697B2 (ja) 2023-09-12
JP2023512378A (ja) 2023-03-27
CN112712918A (zh) 2021-04-27
EP4053857B1 (en) 2023-08-09
EP4053857A4 (en) 2022-12-28
US20230187775A1 (en) 2023-06-15

Similar Documents

Publication Publication Date Title
JP6765461B2 (ja) 集電体、極シート及び電気化学デバイス
WO2023151400A1 (zh) 一种复合集流体、制备方法及锂离子电池
CN111883777A (zh) 一种复合集流体及其制备方法、锂电池极片
CN111430723A (zh) 补锂集流体及其制备方法、应用、负极极片和锂离子电池
WO2022267764A1 (zh) 一种正极集流体和锂离子电池
JP2020057584A (ja) 集電体、極シート及び電気化学デバイス
CN108987793B (zh) 一种高安全性锂离子电池及其制备方法
CN114156486B (zh) 一种轻量阻燃型集流体及其制备方法、电极、电池
CN206349443U (zh) 一种锂离子电池极片
CN108134044B (zh) 一种高安全性锂离子电池负极材料及其制备方法
WO2022147961A1 (zh) 一种导电薄膜、导电薄膜的制备方法及锂离子电池
CN109300698A (zh) 一种锂离子电容器及其制备方法
CN112038573A (zh) 极片及其制备方法、电芯及电池
CN112489854A (zh) 一种导电薄膜及其制备方法
CN113594537A (zh) 一种安全电池及其制备方法
CN214476458U (zh) 一种导电薄膜及锂离子电池
CN109742443A (zh) 一种固态电解质膜和全固态电池
CN103378344B (zh) 电池极片及制备方法
CN113517444B (zh) 集流体、集流体制造方法、电极极片及锂离子电池
CN114050272A (zh) 石墨烯基底以及具有其的薄膜锂电池
CN207134412U (zh) 一种钛化隔膜超高温锂电池
WO2023142430A1 (zh) 复合集流体、制备复合集流体的方法、极片、电池和用电设备
CN216850037U (zh) 一种安全电池
CN216053909U (zh) 一种多层导电薄膜
CN221125991U (zh) 一种阻燃式集流体、极片、新能源电池和用电装置

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2022519366

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2021870538

Country of ref document: EP

Effective date: 20220330

NENP Non-entry into the national phase

Ref country code: DE