WO2022146020A1 - 회전기계의 결함을 종합적으로 진단하는 방법 및 시스템 - Google Patents

회전기계의 결함을 종합적으로 진단하는 방법 및 시스템 Download PDF

Info

Publication number
WO2022146020A1
WO2022146020A1 PCT/KR2021/020137 KR2021020137W WO2022146020A1 WO 2022146020 A1 WO2022146020 A1 WO 2022146020A1 KR 2021020137 W KR2021020137 W KR 2021020137W WO 2022146020 A1 WO2022146020 A1 WO 2022146020A1
Authority
WO
WIPO (PCT)
Prior art keywords
defect
rotating machine
value
fault
level
Prior art date
Application number
PCT/KR2021/020137
Other languages
English (en)
French (fr)
Inventor
이원규
양재흥
이종명
조성한
예송해
맹효영
김민호
Original Assignee
한국수력원자력 주식회사
주식회사 에이티지
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국수력원자력 주식회사, 주식회사 에이티지 filed Critical 한국수력원자력 주식회사
Priority to CN202180088942.8A priority Critical patent/CN116802471A/zh
Priority to JP2023540867A priority patent/JP7579455B2/ja
Priority to EP21915818.5A priority patent/EP4273520A1/en
Publication of WO2022146020A1 publication Critical patent/WO2022146020A1/ko

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01HMEASUREMENT OF MECHANICAL VIBRATIONS OR ULTRASONIC, SONIC OR INFRASONIC WAVES
    • G01H1/00Measuring characteristics of vibrations in solids by using direct conduction to the detector
    • G01H1/12Measuring characteristics of vibrations in solids by using direct conduction to the detector of longitudinal or not specified vibrations
    • G01H1/14Frequency
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01HMEASUREMENT OF MECHANICAL VIBRATIONS OR ULTRASONIC, SONIC OR INFRASONIC WAVES
    • G01H1/00Measuring characteristics of vibrations in solids by using direct conduction to the detector
    • G01H1/003Measuring characteristics of vibrations in solids by using direct conduction to the detector of rotating machines
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M7/00Vibration-testing of structures; Shock-testing of structures
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M99/00Subject matter not provided for in other groups of this subclass
    • G01M99/008Subject matter not provided for in other groups of this subclass by doing functionality tests
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N20/00Machine learning
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N5/00Computing arrangements using knowledge-based models
    • G06N5/01Dynamic search techniques; Heuristics; Dynamic trees; Branch-and-bound

Definitions

  • the present disclosure relates to a method and system for diagnosing a defect in a rotating machine, and more particularly, to a method and system for diagnosing a defect in a rotating machine that connects various direct and indirect diagnosis techniques at the same time.
  • a diagnostic system for diagnosing the state of a rotating machine can monitor the trend of equipment vibration and operating variables.
  • the diagnosis system can change the monitoring period according to the presence or absence of abnormalities in the rotating machine, and can predict the equipment state by analyzing such a change trend.
  • the diagnostic system may monitor the equipment by subdividing the fault frequency band. Alternatively, for example, the diagnostic system may automatically diagnose the equipment based on the defect characteristics and/or equipment information through the verified diagnostic rules. Alternatively, for example, the diagnosis system may diagnose equipment by extracting features based on a plurality of data and utilizing machine learning that implements a classification model through learning. Alternatively, for example, the diagnostic system may compare and diagnose mutual facilities by grouping similar facilities. Alternatively, for example, the diagnosis system may diagnose using driving information.
  • each of the diagnostic techniques independently outputs the result of the state of the rotating machine, and the result may also be a qualitative evaluation.
  • the defect diagnosis method of a rotating machine determines a defect level based on data diagnosing the state of the rotating machine, wherein the data for diagnosing the state of the rotating machine includes a feature vector related to a vibration signal of the rotating machine, including at least one of a frequency associated with the defect of the rotating machine or a total vibration value of the rotating machine, and whether information related to a defect on the state history data of the rotating machine or an alarm related to operation information of the rotating machine is generated applying a weight to the defect level based on at least one of: and determining a defect severity of the rotating machine based on the weighted defect level.
  • the data for diagnosing the state of the rotating machine includes a feature vector related to a vibration signal of the rotating machine, including at least one of a frequency associated with the defect of the rotating machine or a total vibration value of the rotating machine, and whether information related to a defect on the state history data of the rotating machine or an alarm related to operation information of the rotating machine is generated applying a weight to the defect level based on at least one of: and
  • the state history data of the rotating machine may include a maintenance history of the rotating machine and information related to the same type of equipment, and the defect on the state history data of the rotating machine may be a defect with the highest frequency in the same type of equipment. .
  • an alarm may be generated based on a monitoring item related to the operation information of the rotating machine exceeding a preset reference value.
  • the operation information of the rotary machine may include at least one of a flow rate of a pump related to the rotary machine, front and rear pressures related to the rotary machine, and a fluid temperature related to the rotary machine.
  • a weight may be added to the defect level based on the coincidence of a defect with the highest frequency in the same type of equipment related to the rotating machine and a defect state of the rotating machine related to the defect level.
  • a weight may be added to the defect level based on the occurrence of an alarm related to operation information of the rotating machine.
  • the first defect value of the rotating machine may be diagnosed through machine learning based on a feature vector related to the vibration signal of the rotating machine. It is possible to determine whether the rotating machine is defective through the machine learning.
  • the machine learning may be performed based on feature vectors related to the vibration signal of the rotating machine.
  • the second defect value may be diagnosed based on a frequency associated with the defect of the rotating machine and the first defect value.
  • the third defect value may be diagnosed based on the total vibration value of the rotating machine and the second defect value.
  • the defect level of the rotating machine may be determined based on at least one of the first defect value, the second defect value, or the third defect value.
  • the first defect value may be determined to be zero, and the defect severity may be determined to be zero.
  • the first defect value may be determined based on an entire sample associated with the rotating machine and a sample of defects associated with the rotating machine.
  • the second defect value may be determined as the preset first value.
  • the second defect value may be determined as the first defect value, and the defect level may be determined as the first defect value, based on a frequency associated with a defect of the rotating machine being outside a preset range. .
  • the third defect value may be determined as the second defect value, and the defect level may be determined as the second defect value.
  • the third defect value is determined as a preset second value, and the defect level is determined as the preset second value. have.
  • the third defect value is determined as a preset third value, and the defect level is determined as the preset third value. have.
  • the defect diagnosis system of the rotating machine determines the defect level based on the data diagnosing the state of the rotating machine, the data diagnosing the state of the rotating machine, It includes at least one of a vector, a frequency associated with a defect of the rotary machine, or a total vibration value of the rotary machine, and generates information related to a defect on the state history data of the rotary machine or an alarm related to operation information of the rotary machine based on at least one of whether or not, a weight may be applied to the defect level, and the defect severity of the rotating machine may be determined based on the weighted defect level.
  • the operation processor of the fault diagnosis system of the rotating machine determines the defect level based on the data diagnosing the state of the rotating machine, and the data diagnosing the state of the rotating machine is the vibration signal of the rotating machine. It includes at least one of a feature vector related to a defect of the rotating machine, a frequency associated with a defect of the rotating machine, or a total vibration value of the rotating machine, and information related to a defect on the state history data of the rotating machine or information related to operation information of the rotating machine Based on at least one of whether an alarm is generated, a weight may be applied to the defect level, and the defect severity of the rotating machine may be determined based on the weighted defect level.
  • the method and system for diagnosing a defect in a rotating machine can quantitatively evaluate a minute change in state of a facility, and by using the evaluation result value (eg, defect severity), accurately confirm the degree of defect progress of the facility, and , it has the effect of more accurately judging the maintenance period and lifespan of the equipment condition.
  • the evaluation result value eg, defect severity
  • FIG. 1 is a block diagram illustrating a system for diagnosing a defect in a rotating machine according to an embodiment of the present disclosure.
  • FIG. 2 is a block diagram illustrating an operation processor of a defect diagnosis system according to an embodiment of the present disclosure.
  • FIG. 3 is a flowchart illustrating a method for comprehensively diagnosing a defect in a rotating machine according to an embodiment of the present disclosure.
  • FIG. 4 is a flowchart illustrating steps for calculating a defect level for a rotating machine according to an embodiment of the present disclosure.
  • FIG. 5 is a flowchart illustrating steps for applying a weight based on a defect level for a rotating machine according to an embodiment of the present disclosure.
  • FIG. 6 is a flowchart illustrating a method for comprehensively deriving a defect severity based on a diagnosis result for a rotating machine according to an embodiment of the present disclosure.
  • 1 is a block diagram illustrating a system for diagnosing a defect in a rotating machine according to an embodiment of the present disclosure.
  • 2 is a block diagram illustrating an operation processor of a defect diagnosis system according to an embodiment of the present disclosure.
  • the rotary machine 10 may be various rotary machines such as a pump, a compressor, and a fan. However, this is for explaining the present disclosure, and the type of the rotating machine 10 is not limited.
  • the defect diagnosis system 100 acquires data from the rotating machine 10 and builds the data, and when the defect diagnosis of the rotating machine 10 is required again, an automatic predictive diagnosis can be performed using the constructed data. .
  • the defect diagnosis system 100 outputs the diagnosed defect value so that the inspector can intuitively determine whether there is an abnormality in the rotating machine 10 and determine the replacement and maintenance time.
  • the rotating machine 10 may be equipped with a sensor for acquiring various information including operation information of the rotating machine 10 .
  • the sensor may be linked to the defect diagnosis system 100 to provide acquired data to the defect diagnosis system 100 .
  • this is for the purpose of explaining the present disclosure, and it should be noted that the data on the rotating machine 10 may be directly acquired by an operator rather than acquired by a sensor and input to the predictive diagnosis system.
  • the defect diagnosis system 100 includes a storage unit 110 in which data provided from the rotating machine 10 is stored, an arithmetic processor 120 that performs predictive diagnosis based on data obtained from the rotating machine 10, and an output unit 130 for displaying defect information.
  • the computational processor 120 may include a computational device provided in the computer, software for computation, and a computer language for computation, and the computational processor 120 may perform the following processes. have.
  • the fault diagnosis system 100 may monitor a trend for equipment vibration and operation variables related to equipment.
  • the defect diagnosis system 100 may change the monitoring period according to the presence or absence of abnormality in the equipment.
  • the defect diagnosis system 100 may analyze the fluctuation trend, and the defect diagnosis system 100 may predict the state of the equipment through the analyzed fluctuation trend.
  • the defect diagnosis system 100 may set a monitoring target and a monitoring period.
  • the defect diagnosis system 100 may monitor the vibration trend for each facility point.
  • the fault diagnosis system 100 may monitor operation variables of the same time period.
  • the defect diagnosis system 100 may diagnose a defect based on narrowband diagnosis. That is, the defect diagnosis system 100 can monitor the equipment by dividing the defect frequency bands for each equipment in detail. The defect diagnosis system 100 may predict the type of defect as well as the presence or absence of a defect. The defect diagnosis system 100 may derive the band of the defect frequency of each facility. The defect diagnosis system 100 may set an allowable range for each band of the defect frequency. For example, the fault diagnosis system 100 may be set as an alert if it is within 2 ⁇ from the reference value, and may be set as a fault if it is within 3 ⁇ from the reference value. The defect diagnosis system 100 may diagnose a defect frequency for each cycle. Such a narrow-band diagnostic technique may be effective in detecting early defects.
  • the defect diagnosis system 100 may diagnose a defect based on rule-based diagnosis. That is, the defect diagnosis system 100 may automatically diagnose the facility based on the defect characteristics and/or facility information.
  • the defect diagnosis system 100 may implement the verified diagnosis rule as logic in the form of a decision tree.
  • the defect diagnosis system 100 may automatically derive expert-level diagnosis results when data is input. In this rule-based diagnosis, the reliability of the diagnosis result can be increased by using the verified diagnosis rule, and the process and contents of the diagnosis result can be traced.
  • the defect diagnosis system 100 may diagnose a defect through comparison between devices of the same type. That is, the defect diagnosis system 100 may group like equipment, and the defect diagnosis system 100 may diagnose a defect by comparing the same types of equipment with each other. The defect diagnosis system 100 may derive a defect with a high frequency of occurrence for each type of equipment. The fault diagnosis system 100 may group facilities of the same type that perform the same function into the same type of facilities. Since the defect diagnosis system 100 derives a defect with a high frequency of occurrence for each type of equipment, it is possible to secure weak parts in advance, and to prepare urgently for a sudden failure of the equipment. The fault diagnosis system 100 may optimize the maintenance cycle by reflecting the characteristics of the same type of equipment.
  • the defect diagnosis system 100 may diagnose a defect through machine learning. That is, the defect diagnosis system 100 may diagnose a defect through artificial intelligence using a large amount of data.
  • the defect diagnosis system 100 may extract features from various data, and the defect diagnosis system 100 may implement a classification model through learning. For example, the defect diagnosis system 100 may determine a classification model based on normal, abnormal, and types of defects. A small number of diagnostic models based on such machine learning can be applied to various facilities.
  • FIG. 3 is a flowchart illustrating a method for comprehensively diagnosing a defect in a rotating machine according to an embodiment of the present disclosure.
  • the defect diagnosis system 100 may determine a defect level based on data diagnosing the state of the rotating machine.
  • the defect diagnosis system 100 may apply a weight to the defect level based on at least one of whether information related to a defect on the state history data of the rotating machine or an alarm related to operation information of the rotating machine is generated.
  • the defect diagnosis system 100 may determine the defect severity of the rotating machine based on the weighted defect level.
  • the state history data of the rotating machine may include a maintenance history of the rotating machine and information on the same type of equipment related to the rotating machine.
  • the defect on the state history data of the rotating machine may be the most frequent defect in the same type of equipment.
  • an alarm may be generated based on a monitoring item related to operation information of a rotating machine exceeding a preset reference value.
  • the operation information of the rotating machine may include at least one of a flow rate of a pump related to the rotating machine, a front/rear pressure related to the rotating machine, or a fluid temperature related to the rotating machine.
  • the defect diagnosis system 100 may add a weight to the defect level based on the fact that the defect level and the defect state of the rotating machine related to the defect level correspond to the most frequent defect in the same equipment related to the rotating machine.
  • the defect diagnosis system 100 may add a weight to the defect level. For example, the defect diagnosis system 100 determines whether an alarm related to operation information of the rotating machine is generated based on the discrepancy between the defect level and the defect state of the rotating machine related to the defect level, the most frequent defect in the same equipment related to the rotating machine. can be judged
  • the defect diagnosis system 100 may include at least one of a feature vector related to a vibration signal of a rotating machine, a frequency related to a defect in the rotating machine, or a total vibration value of the rotating machine, as the data for diagnosing the state of the rotating machine.
  • machine learning may be performed based on feature vectors related to the vibration signal of the rotating machine.
  • the fault diagnosis system 100 may determine that the first fault value is 0 based on the absence of a fault in the rotating machine. In this case, the defect diagnosis system 100 may determine the defect level to be 0 based on the first defect value being 0.
  • the defect diagnosis system 100 may determine the first defect value based on the entire sample related to the rotating machine and the defective sample related to the rotating machine based on the presence of a defect in the rotating machine.
  • the defect diagnosis system 100 may determine the second defect value as the preset first value based on that the frequency associated with the defect of the rotating machine is within a preset range.
  • the defect diagnosis system 100 may determine the second defect value as the first defect value based on that the frequency associated with the defect of the rotating machine is out of a preset range. In this case, the defect diagnosis system 100 may determine the defect level as the first defect value.
  • the defect diagnosis system 100 may determine the third defect value as the second defect value based on the total vibration value of the rotating machine being smaller than the first threshold value. In this case, the defect diagnosis system 100 may determine the defect level as the second defect value. Alternatively, the defect diagnosis system 100 may determine the third defect value as a preset second value based on the total vibration value of the rotating machine being greater than the first threshold value. In this case, the defect diagnosis system 100 may determine the defect level as a preset second value. Alternatively, the defect diagnosis system 100 may determine the third defect value as a preset third value based on that the total vibration value of the rotating machine is greater than the second threshold value. In this case, the defect diagnosis system 100 may determine the defect level as a preset third value.
  • FIG. 4 is a flowchart illustrating steps for calculating a defect level for a rotating machine according to an embodiment of the present disclosure.
  • the fault diagnosis system 100 may receive data for diagnosing the state of the rotating machine, and perform machine learning based on the data for diagnosing the state of the rotating machine.
  • the defect diagnosis system 100 may determine whether a defect has occurred in the rotating machine based on the result of machine learning. For example, when a defect occurs with respect to a rotating machine, the defect diagnosis system 100 may calculate a specific gravity of a sample representing the defect. For example, the specific gravity of a sample representing a defect may be a ratio of a defective sample associated with a rotating machine to a total sample associated with a rotating machine. The defect diagnosis system 100 may determine the first defect value based on the specific gravity of the sample indicating the defect. Alternatively, for example, when no fault has occurred in the rotating machine, the fault diagnosis system 100 may determine the first fault value as 0.
  • the defect diagnosis system 100 may determine whether an alarm is generated for a frequency associated with a defect in the rotating machine.
  • the defect diagnosis system 100 may determine whether an alarm is generated for a frequency associated with a defect in the rotating machine. For example, an alarm for a frequency associated with a defect in a rotating machine may occur when a frequency associated with a defect in a rotating machine is within a preset range. For example, an alarm for a frequency associated with a defect in a rotating machine may not occur when the frequency associated with a defect in a rotating machine is outside a preset range.
  • the defect diagnosis system 100 may determine the second defect value as a preset first value. Alternatively, when the alarm for the frequency associated with the defect of the rotating machine does not occur, the defect diagnosis system 100 may determine the second defect value as the first defect value.
  • the fault diagnosis system 100 may determine whether the total vibration value of the rotating machine exceeds an allowable standard.
  • the defect diagnosis system 100 may determine whether the total vibration value of the rotating machine exceeds an allowable standard. For example, the defect diagnosis system 100 may determine the third defect value as the second defect value based on the total vibration value of the rotating machine being smaller than the first threshold value. Alternatively, the defect diagnosis system 100 may determine the third defect value as a preset second value based on that the total vibration value of the rotating machine is greater than the first threshold value. Alternatively, the defect diagnosis system 100 may determine the third defect value as a preset third value based on that the total vibration value of the rotating machine is greater than the second threshold value. For example, the second threshold value may be greater than the first threshold value.
  • the fault diagnosis system 100 may determine a fault level for the rotating machine. For example, in step S430, when an alarm for a frequency associated with a defect of the rotating machine does not occur, the defect diagnosis system 100 determines the second defect value as the first defect value, and sets the defect level to the first defect. value can be determined. For example, when the total vibration value of the rotating machine is smaller than the first threshold value in step S450, the fault diagnosis system 100 determines the third fault value as the second fault value, and sets the fault level as the second fault value. can decide For example, in step S450, when the total vibration value of the rotating machine is greater than the first threshold value, the fault diagnosis system 100 determines the third fault value as a preset first value, and sets the fault level to the third fault value.
  • step S450 if the total vibration value of the rotating machine is greater than the second threshold value, the fault diagnosis system 100 determines the third fault value as a preset second value, and sets the fault level to the third fault value. can be determined as
  • the fault diagnosis system 100 may determine that the rotating machine is in a normal state. For example, in step S410 , when it is diagnosed that a defect has not occurred in the rotating machine based on machine learning, the defect diagnosis system 100 may determine the rotating machine to be in a normal state. For example, if the rotating machine is in a steady state, the defect level may be zero.
  • steps S430 and S450 may be omitted. For example, if an alarm for a frequency associated with a defect in the rotating machine does not occur, step S450 may be omitted.
  • FIG. 5 is a flowchart illustrating steps for applying a weight based on a defect level for a rotating machine according to an embodiment of the present disclosure.
  • the defect diagnosis system 100 may determine whether the defect on the state history data of the rotating machine matches the defect level of the rotating machine related to the defect level. For example, the defect diagnosis system 100 may determine whether a defect with the highest frequency in the same type of equipment related to the rotating machine and the defect state of the rotating machine related to the defect level match.
  • the state history data of the rotating machine may include a maintenance history of the rotating machine and information related to the same type of equipment.
  • the defect diagnosis system 100 may determine whether an alarm related to driving information is generated. For example, when the defect on the state history data of the rotating machine does not match the defect level of the rotating machine related to the defect level, the defect diagnosis system 100 may determine whether an alarm related to operation information is generated. For example, when the defect on the state history data of the rotating machine and the defect level of the rotating machine related to the defect level do not match, the defect diagnosis system 100 sets the monitoring item related to the operation information of the rotating machine to a preset reference value. You can decide whether to exceed it. That is, the fault diagnosis system 100 may generate an alarm based on a monitoring item related to operation information of a rotating machine exceeding a preset reference value.
  • the operation information of the rotating machine may include at least one of a flow rate of a pump related to the rotating machine, a front/rear pressure related to the rotating machine, or a fluid temperature related to the rotating machine.
  • the defect diagnosis system 100 may not apply a weight to the defect level. For example, when the defect with the highest frequency in the same equipment related to the rotating machine and the defect state of the rotating machine related to the defect level match, the defect diagnosis system 100 may apply a weight to the defect level. For example, when an alarm related to operation information of a rotating machine occurs, the defect diagnosis system 100 may apply a weight to the defect level.
  • the defect diagnosis system 100 may apply a weight to the defect level. For example, when the defect with the highest frequency in the same equipment related to the rotating machine and the defect state of the rotating machine related to the defect level do not match, the defect diagnosis system 100 may not apply a weight to the defect level. For example, when an alarm related to operation information of a rotating machine does not occur, the defect diagnosis system 100 may apply a weight to the defect level. For example, when the most frequent defect in the same equipment related to the rotating machine and the defect status of the rotating machine related to the defect level do not match, and an alarm related to the operation information of the rotating machine does not occur, the fault diagnosis system ( 100) can apply a weight to the defect level.
  • steps S530 and S550 may be omitted.
  • FIG. 6 is a flowchart illustrating a method for comprehensively deriving a defect severity based on a diagnosis result for a rotating machine according to an embodiment of the present disclosure.
  • the severity calculation program may be a program for automatically quantifying the state of equipment from micro-defects to transient defects (eg, defect level (DL) 1 to DL 3).
  • a fault diagnosis system may include a severity calculation program.
  • the diagnosis results through each diagnosis technique may be collectively inquired for the fault diagnosis system, and the diagnosis results may be input to the fault diagnosis system.
  • the DL 1 may be a step to evaluate for micro-defects or asymptomatic equipment (eg rotating machinery).
  • the fault diagnosis system may query machine learning results for equipment or perform machine learning based on data related to equipment. Thereafter, when the machine learning result indicates a defect, the defect diagnosis system may determine the first DL value by calculating the specific gravity of the sample indicating the defect.
  • the specific gravity of a sample representing a defect may be the ratio of defective samples associated with the rotating machine to the total sample associated with the rotating machine.
  • the specific gravity of the sample representing the defect may be the following Equation 1.
  • the defect diagnosis system may determine the DL value to be 0, and may determine the state of the equipment as a normal state.
  • the fault diagnosis system can calculate a feature vector that can express each characteristic well through the machine learning diagnosis technique.
  • the defect diagnosis system can classify features that show a minimized distance between features in the same state and maximize distance between features in different states well, and can be categorized by state of the defect.
  • the defect diagnosis system can learn characteristics of each state (eg, (normal, defect type)) for numerous previous data, and can classify regions by state. At this time, the defect diagnosis system receives new data In this case, it is possible to predict the equipment state in the area in which the data is input, and therefore, since subjective human intervention is minimized, it is possible to objectively judge a defect without prejudice.
  • the fault diagnosis system can inquire whether or not an alarm has occurred at the fault-related frequency. For example, whether or not an alarm is generated at a frequency associated with a defect may be determined based on whether a frequency associated with a defect of a rotating machine is within a preset range or out of a preset range. That is, for example, when a frequency associated with a defect of a rotating machine is within a preset range, an alarm may be generated. Alternatively, when the frequency associated with the defect of the rotating machine is outside the preset range, the alarm may not be generated. In this case, when an alarm for the fault linkage frequency occurs, the fault diagnosis system may determine the second DL value to be 0.4.
  • 0.4 may be a preset value, and may be set to another value according to various embodiments of the present disclosure.
  • the fault diagnosis system may determine the first DL value as the final DL value, that is, the second DL value.
  • the narrowband frequency diagnosis technique may be a method of monitoring and evaluating a frequency for a region of interest by subdividing the frequency domain, unlike evaluating the entire frequency domain as one energy value. That is, since various defects occurring in the equipment cause amplitude changes in a specific frequency region, the defect diagnosis system can classify the frequency region of interest as a parameter, set an allowable range, and monitor the equipment. Accordingly, the defect diagnosis system may acquire information about the defect for each frequency region of interest and may identify the cause of the defect.
  • the fault diagnosis system may determine the third DL value as 0.6.
  • 0.6 may be a preset value, and may be set to another value according to various embodiments of the present disclosure.
  • the fault diagnosis system may determine the third DL value to be 0.8.
  • the fault diagnosis system may determine the second DL value as the final DL value, that is, the third DL value. .
  • the diagnostic technique through the total vibration value may be a method of evaluating the total vibration value output from the equipment based on the limit value or the allowable value according to international standards or recommendations from manufacturers of equipment.
  • the fault diagnosis system can classify equipment into shape, capacity, support structure, etc., and can apply evaluation criteria suitable for the equipment concerned. Since management standards such as international standard vibration standards (ISO API, etc.) are constantly being revised to improve the justification of the standards, the defect diagnosis system can evaluate defects based on the revised management standards. Accordingly, when the defect is diagnosed with respect to the state in which the tolerance standard outlier occurs, the defect diagnosis system can diagnose the defect more accurately.
  • ISO API international standard vibration standards
  • the first added weight 1 may be a step for calculating an additional weight to the DL value.
  • the fault diagnosis system may inquire and/or determine the state history data of the facility by linking the maintenance history of the facility with the same type of facility. In this case, when the most frequently occurring defect and the diagnosis result of the current facility coincide with each other, the defect diagnosis system may add a weight to the DL value. For example, when the most frequent fault matches the current equipment status, the fault diagnosis system may apply a weight by multiplying the DL value by 1.1. For example, when the most frequent fault and the current equipment status do not match, the fault diagnosis system may not apply a weight to the DL value.
  • the technique of comparing and diagnosing the same type of equipment may be a technique of using the maintenance history and state history data of the facility linking the same type of equipment. That is, the fault diagnosis system can add additional severity when the most frequent fault in the same type of facility matches the current facility status. For example, the fault diagnosis system can reclassify the same type of facility diagnosed as the most frequently occurring fault, and predict the fault of the facility by using at least one of narrowband frequency information or machine learning information of the same type of facility. It can be used for diagnosis. Accordingly, since the defect diagnosis system can intensively monitor the characteristic values of the most frequent defects, the number of monitoring targets can be minimized.
  • the second added weight 2 may be a step for calculating an additional weight to the DL value.
  • the second additional weight may be considered when the first additional weight is not applied. That is, the fault diagnosis system may consider the second additional weight when the defect most frequently occurring in the same type of equipment and the current state of the equipment do not match. For example, when a monitoring item related to power management system (PMS) operation information exceeds an allowable standard, the fault diagnosis system may generate an alarm or inquire when an alarm has occurred. The fault diagnosis system can apply a weight when an alarm occurs by multiplying the DL value by 1.1. For example, when a monitoring item related to power management system (PMS) operation information does not exceed an allowable criterion, the fault diagnosis system may not apply a weight to the DL value.
  • PMS power management system
  • a fault diagnosis technique using operation information can utilize operation information that affects equipment.
  • the operation information affecting the facility may include a pump flow rate related to the facility, front and rear pressures related to the facility, and a fluid temperature related to the facility.
  • the reliability of the diagnosis result can be improved by the correlation analysis linking the vibration characteristics and operation information.
  • the fault diagnosis system can evaluate the finally calculated DL value as a fault severity that quantitatively represents the condition of the equipment.
  • the method and system for diagnosing a defect of a rotating machine can quantitatively evaluate a minute change in condition of a facility, and accurately check the degree of defect progress of the facility by using the evaluation result value (severity), and the condition of the facility It is possible to more accurately determine the maintenance period, lifespan, etc.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Software Systems (AREA)
  • Evolutionary Computation (AREA)
  • Data Mining & Analysis (AREA)
  • Computing Systems (AREA)
  • General Engineering & Computer Science (AREA)
  • Mathematical Physics (AREA)
  • Artificial Intelligence (AREA)
  • Medical Informatics (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Computational Linguistics (AREA)
  • Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)
  • Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)
  • Testing And Monitoring For Control Systems (AREA)

Abstract

본 개시에 따른 회전기계의 결함 진단 방법은 회전기계의 상태를 진단한 데이터에 기반하여 결함 레벨을 결정하되, 상기 회전기계의 상태를 진단한 데이터는, 상기 회전기계의 진동신호와 관련된 특징벡터, 상기 회전기계의 결함과 연계된 주파수 또는 상기 회전기계의 전체 진동 값 중 적어도 하나를 포함하는 단계 및 상기 회전기계의 상태 이력 데이터 상의 결함과 관련된 정보 또는 상기 회전기계의 운전 정보와 관련된 알람의 발생 여부 중 적어도 하나에 기반하여, 상기 결함 레벨에 가중치를 적용하는 단계 및 상기 가중치가 적용된 결함 레벨에 기반하여 상기 회전기계의 결함 심각도를 결정하는 단계를 포함할 수 있다.

Description

회전기계의 결함을 종합적으로 진단하는 방법 및 시스템
본 개시는 회전기계의 결함 진단 방법 및 시스템에 관한 것으로, 보다 상세하게는 다양한 직접 진단기법들 및 간접 진단기법들을 동시에 연계하는 회전기계의 결함 진단 방법 및 시스템에 관한 것이다.
일반적으로 회전기계의 상태를 진단하기 위한 진단 시스템은 설비진동 및 운전변수의 경향을 감시할 수 있다. 또한, 진단 시스템은 회전기계의 이상유무에 따라 감시 주기를 변경할 수 있고, 이러한 변동추이를 분석함으로써 설비상태를 예측할 수 있다.
회전기계의 상태를 진단하기 위해 다양한 직접 진단기법들 및 간접 진단기법들이 이용될 수 있다. 예를 들어, 진단 시스템은 결함 주파수 대역을 세부적으로 구분하여 설비를 감시할 수 있다. 또는, 예를 들어, 진단 시스템은 검증된 진단규칙을 통해 결함특성 및/또는 설비정보에 기반하여 설비를 자동으로 진단할 수 있다. 또는, 예를 들어, 진단 시스템은 복수의 데이터를 기반으로 특징을 추출하고, 학습을 통해 분류 모델을 구현하는 머신러닝을 활용함으로써, 설비를 진단할 수 있다. 또는, 예를 들어, 진단 시스템은 동종설비들을 그룹화함으로써 상호 설비를 비교하여 진단할 수 있다. 또는, 예를 들어, 진단 시스템은 운전정보를 활용하여 진단할 수 있다.
이때, 각각의 진단기법들은 회전기계의 상태에 대한 결과를 독립적으로 출력하며, 그 결과 또한 정성적인 평가일 수 있다.
본 개시의 목적은 회전기계로부터 취득된 정보를 기반으로 다양한 진단기법들을 동시에 연계하여 수행함으로써, 설비상태를 자동으로 정량화하는 회전기계 결함 진단 방법 및 시스템을 제공하기 위한 것이다.
본 개시에 따른 회전기계의 결함 진단 방법은 회전기계의 상태를 진단한 데이터에 기반하여 결함 레벨을 결정하되, 상기 회전기계의 상태를 진단한 데이터는, 상기 회전기계의 진동신호와 관련된 특징벡터, 상기 회전기계의 결함과 연계된 주파수 또는 상기 회전기계의 전체 진동 값 중 적어도 하나를 포함하는 단계 및 상기 회전기계의 상태 이력 데이터 상의 결함과 관련된 정보 또는 상기 회전기계의 운전 정보와 관련된 알람의 발생 여부 중 적어도 하나에 기반하여, 상기 결함 레벨에 가중치를 적용하는 단계 및 상기 가중치가 적용된 결함 레벨에 기반하여 상기 회전기계의 결함 심각도를 결정하는 단계를 포함할 수 있다.
예를 들어, 상기 회전기계의 상태 이력 데이터는 상기 회전기계의 정비이력과 동종설비와 관련된 정보를 포함하고, 상기 회전기계의 상태 이력 데이터 상의 결함은 상기 동종설비에서 가장 빈도수가 높은 결함일 수 있다.
예를 들어, 상기 회전기계의 운전 정보와 관련된 감시항목이 사전 설정된 기준 값을 초과하는 것에 기반하여 알람이 발생될 수 있다.
예를 들어, 상기 회전기계의 운전 정보는 상기 회전기계와 관련된 펌프의 유량, 상기 회전기계와 관련된 전후단 압력, 또는 상기 회전기계와 관련된 유체온도 중 적어도 하나를 포함할 수 있다.
예를 들어, 상기 회전기계와 관련된 동종설비에서 가장 빈도수가 높은 결함과 상기 결함 레벨과 관련된 상기 회전기계의 결함 상태가 일치하는 것에 기반하여, 상기 결함 레벨에 가중치를 가산할 수 있다.
예를 들어, 상기 회전기계의 운전 정보와 관련된 알람이 발생한 것에 기반하여, 상기 결함 레벨에 가중치를 가산할 수 있다.
예를 들어, 상기 회전기계와 관련된 동종설비에서 가장 빈도수가 높은 결함과 상기 결함 레벨과 관련된 상기 회전기계의 결함 상태의 불일치에 기반하여, 상기 회전기계의 운전 정보와 관련된 알람이 발생 여부가 판단될 수 있다.
예를 들어, 상기 회전기계의 진동신호와 관련된 특징벡터에 기반하여 머신러닝을 통해 상기 회전기계에 대한 제 1 결함 값을 진단할 수 있다. 상기 머신러닝을 통해 상기 회전기계의 결함 여부를 결정할 수 있다. 상기 머신러닝은, 상기 회전기계의 진동신호와 관련된 특징벡터들에 기반하여 수행될 수 있다.
예를 들어, 상기 회전기계의 결함과 연계된 주파수 및 상기 제 1 결함 값에 기반하여 제 2 결함 값을 진단할 수 있다.
예를 들어, 상기 회전기계의 전체 진동 값 및 상기 제 2 결함 값에 기반하여 상기 제 3 결함 값을 진단할 수 있다.
예를 들어, 상기 제 1 결함 값, 상기 제 2 결함 값 또는 상기 제 3 결함 값 중 적어도 하나에 기반하여 상기 회전기계의 결함 레벨을 결정할 수 있다.
예를 들어, 상기 회전기계의 결함이 존재하지 않는 것에 기반하여, 상기 제 1 결함 값이 0으로 결정되고, 상기 결함 심각도는 0으로 결정될 수 있다.
예를 들어, 상기 회전기계의 결함이 존재하는 것에 기반하여, 상기 제 1 결함 값이 상기 회전기계와 관련된 전체 샘플 및 상기 회전기계와 관련된 결함 샘플에 기반하여 결정될 수 있다.
예를 들어, 상기 회전기계의 결함과 연계된 주파수가 사전 설정된 범위 이내인 것에 기반하여, 상기 제 2 결함 값이 사전 설정된 제 1 값으로 결정될 수 있다.
예를 들어, 상기 회전기계의 결함과 연계된 주파수가 사전 설정된 범위 밖인 것에 기반하여, 상기 제 2 결함 값이 상기 제 1 결함 값으로 결정되고, 상기 결함 레벨은 상기 제 1 결함 값으로 결정될 수 있다.
예를 들어, 상기 회전기계의 전체 진동 값이 제 1 임계 값보다 작은 것에 기반하여, 상기 제 3 결함 값이 상기 제 2 결함 값으로 결정되고, 상기 결함 레벨은 상기 제 2 결함 값으로 결정될 수 있다.
예를 들어, 상기 회전기계의 전체 진동 값이 제 1 임계 값보다 큰 것에 기반하여, 상기 제 3 결함 값이 사전 설정된 제 2 값으로 결정되고, 상기 결함 레벨은 상기 사전 설정된 제 2 값으로 결정될 수 있다.
예를 들어, 상기 회전기계의 전체 진동 값이 제 2 임계 값보다 큰 것에 기반하여, 상기 제 3 결함 값이 사전 설정된 제 3 값으로 결정되고, 상기 결함 레벨은 상기 사전 설정된 제 3 값으로 결정될 수 있다.
한편, 본 개시에 따른 회전기계의 결함 진단 시스템은 회전기계의 상태를 진단한 데이터에 기반하여 결함 레벨을 결정하되, 상기 회전기계의 상태를 진단한 데이터는, 상기 회전기계의 진동신호와 관련된 특징벡터, 상기 회전기계의 결함과 연계된 주파수 또는 상기 회전기계의 전체 진동 값 중 적어도 하나를 포함하고, 상기 회전기계의 상태 이력 데이터 상의 결함과 관련된 정보 또는 상기 회전기계의 운전 정보와 관련된 알람의 발생 여부 중 적어도 하나에 기반하여, 상기 결함 레벨에 가중치를 적용하고, 상기 가중치가 적용된 결함 레벨에 기반하여 상기 회전기계의 결함 심각도를 결정할 수 있다.
한편, 본 개시에 따른 회전기계의 결함 진단 시스템의 연산프로세서는 회전기계의 상태를 진단한 데이터에 기반하여 결함 레벨을 결정하되, 상기 회전기계의 상태를 진단한 데이터는, 상기 회전기계의 진동신호와 관련된 특징벡터, 상기 회전기계의 결함과 연계된 주파수 또는 상기 회전기계의 전체 진동 값 중 적어도 하나를 포함하고, 상기 회전기계의 상태 이력 데이터 상의 결함과 관련된 정보 또는 상기 회전기계의 운전 정보와 관련된 알람의 발생 여부 중 적어도 하나에 기반하여, 상기 결함 레벨에 가중치를 적용하고, 상기 가중치가 적용된 결함 레벨에 기반하여 상기 회전기계의 결함 심각도를 결정할 수 있다.
본 개시에 따른 회전기계의 결함 진단 방법 및 시스템은 설비의 미소한 상태변화를 정량적으로 평가할 수 있고, 평가결과 값(예를 들어, 결함 심각도)을 활용함으로써, 설비의 결함진행 정도를 정확하게 확인하고, 설비상태의 정비시기, 수명 등을 보다 정확하게 판단할 수 있는 효과가 있다.
이상과 같은 본 개시의 기술적 효과는 이상에서 언급한 효과로 제한되지 않으며, 언급되지 않은 또 다른 기술적 효과들은 아래의 기재로부터 당업자에게 명확하게 이해될 수 있을 것이다.
도 1은 본 개시의 일 실시 예에 따른 회전기계의 결함 진단 시스템을 나타낸 구성도이다.
도 2는 본 개시의 일 실시 예에 따른 결함 진단 시스템의 연산프로세서를 나타낸 구성도이다.
도 3은 본 개시의 일 실시 예에 따른 회전기계에 대한 결함을 종합적으로 진단하는 방법을 나타낸 흐름도이다.
도 4는 본 개시의 일 실시 예에 따른 회전기계에 대한 결함 레벨을 계산하기 위한 단계를 나타낸 흐름도이다.
도 5는 본 개시의 일 실시 예에 따른 회전기계에 대한 결함 레벨에 기반하여 가중치를 적용하기 위한 단계를 나타낸 흐름도이다.
도 6은 본 개시의 일 실시 예에 따른 회전기계에 대한 진단결과를 기반으로종합적으로 결함 심각도를 도출하는 방법을 나타낸 흐름도이다.
이하 첨부된 도면을 참조하여 본 발명의 실시예를 상세히 설명한다. 그러나 본 실시예는 이하에서 개시되는 실시예에 한정되는 것이 아니라 서로 다양한 형태로 구현될 수 있으며, 단지 본 실시예는 본 발명의 개시가 완전하도록 하며, 통상의 지식을 가진 자에게 발명의 범주를 완전하게 알려주기 위해 제공되는 것이다. 도면에서의 요소의 형상 등은 보다 명확한 설명을 위하여 과장되게 표현된 부분이 있을 수 있으며, 도면 상에서 동일 부호로 표시된 요소는 동일 요소를 의미한다.
도 1은 본 개시의 일 실시 예에 따른 회전기계의 결함 진단 시스템을 나타낸 구성도이다. 도 2는 본 개시의 일 실시 예에 따른 결함 진단 시스템의 연산프로세서를 나타낸 구성도이다.
여기서, 회전기계(10)는 펌프, 압축기 및 팬 등과 같이 다양한 회전기기일 수 있다. 다만, 이는 본 개시를 설명하기 위한 것으로, 회전기계(10)의 종류는 한정하지 않는다.
한편, 결함 진단 시스템(100)은 회전기계(10)로부터 데이터를 취득하여 데이터를 구축하고, 다시 회전기계(10)의 결함 진단이 필요할 때에 구축된 데이터를 활용하여 자동 예측진단을 수행할 수 있다. 또한, 결함 진단 시스템(100)은 진단된 결함 값을 출력하여 검사자가 회전기계(10)의 이상 유무를 직관적으로 파악하며 교체 및 유지보수 시기를 결정할 수 있도록 한다.
먼저, 회전기계(10)에는 회전기계(10)의 운전정보를 포함한 다양한 정보를 취득하기 위한 센서가 장착될 수 있다. 그리고, 센서는 결함 진단 시스템(100)에 연동되어, 취득된 데이터가 결함 진단 시스템(100)으로 제공되도록 할 수 있다. 다만, 이는 본 개시를 설명하기 위한 것으로 회전기계(10)에 대한 데이터는 센서에 의해 취득되지 않고 작업자에 의해 직접 취득되어 예측 진단 시스템에 입력될 수 있음을 밝혀둔다.
그리고, 결함 진단 시스템(100)은 회전기계(10)로부터 제공되는 데이터가 저장되는 저장부(110), 회전기계(10)로부터 취득된 데이터를 기반으로 예측진단을 수행하는 연산 프로세서(120), 및 결함정보를 디스플레이하는 출력부(130)를 포함할 수 있다. 여기서, 연산 프로세서(120)는 컴퓨터에 마련되는 연산 장치, 연산을 위한 소프트웨어 및 연산을 위한 컴퓨터 언어(computer language) 등을 포함할 수 있고, 연산 프로세서(120)는 이하에서 진행할 프로세스를 수행할 수 있다.
한편, 이하에서는 본 개시의 다양한 실시 예들에 따른 회전기계의 결함 진단 방법에 대하여 상세히 설명하도록 한다. 다만, 상술된 구성요소에 대해서는 상세한 설명을 생략하고 동일한 참조부호를 부여하여 설명하도록 한다.
예를 들어, 결함 진단 시스템(100)은 설비진동 및 설비와 관련된 운전변수에 대한 경향을 감시할 수 있다. 결함 진단 시스템(100)은 설비에 대한 이상유무에 EK라 감시 주기를 변경할 수 있다. 결함 진단 시스템(100)은 변동추이를 분석할 수 있고, 결함 진단 시스템(100)은 분석된 변동추이를 통해 설비의 상태를 예측할 수 있다. 결함 진단 시스템(100)은 감시대상 및 감시주기를 설정할 수 있다. 결함 진단 시스템(100)은 설비 포인트별 진동 경항을 감시할 수 있다. 결함 진단 시스템(100)은 동시간대의 운전변수를 감시할 수 있다.
예를 들어, 결함 진단 시스템(100)은 협대역 진단에 기반하여 결함을 진단할 수 있다. 즉, 결함 진단 시스템(100)은 설비별 결함주파수 대역을 세부적으로 구분함으로써, 설비를 감시할 수 있다. 결함 진단 시스템(100)은 결함의 유무 뿐만 아니라, 결함의 종류를 예측할 수 있다. 결함 진단 시스템(100)은 각 설비들이 가진 결함 주파수의 대역을 도출할 수 있다. 결함 진단 시스템(100)은 결함 주파수의 대역별 허용범위를 설정할 수 있다. 예를 들어, 결함 진단 시스템(100)은 기준 값으로부터 2σ 이내이면 경고(alert)로 설정할 수 있고, 기준 값으로부터 3σ 이내이면 오류(fault)로 설정할 수 있다. 결함 진단 시스템(100)은 주기별로 결함 주파수를 진단할 수 있다. 이러한 협대역 진단 기법은 초기결함의 검출에 효과적일 수 있다.
예를 들어, 결함 진단 시스템(100)은 규칙기반의 진단에 기반하여 결함을 진단할 수 있다. 즉, 결함 진단 시스템(100)은 결함특성 및/또는 설비정보에 기반하여 자동으로 설비를 진단할 수 있다. 결함 진단 시스템(100)은 검증된 진단규칙을 의사결정 나무(decision tree) 형태의 로직으로 구현할 수 있다. 결함 진단 시스템(100)은 데이터가 입력되면, 전문가 수준의 진단결과를 자동으로 도출할 수 있다. 이러한 규칙기반의 진단은 검증된 진단규칙을 사용함으로써, 진단결과의 신뢰도가 높일 수 있고, 진단결과에 대한 과정과 내용을 추적할 수 있다.
예를 들어, 결함 진단 시스템(100)은 동종설비 사이의 비교를 통해 결함을 진단할 수 있다. 즉, 결함 진단 시스템(100)은 동종설비들을 그룹화할 수 있고, 결함 진단 시스템(100)은 동종설비들을 상호 비교함으로써, 결함을 진단할 수 있다. 결함 진단 시스템(100)은 동종설비 별로 발생빈도가 높은 결함을 도출할 수 있다. 결함 진단 시스템(100)은 동일한 기능을 하는 동일한 형태의 설비들을 동종설비로 그룹핑할 수 있다. 결함 진단 시스템(100)이 동종설비 별로 발생빈도가 높은 결함을 도출함으로써, 취약한 부품을 사전에 확보할 수 있고, 설비가 돌발 고장 시 긴급하게 대비할 수 있다. 결함 진단 시스템(100)은 동종설비의 특성을 반영함으로써, 정비주기를 최적화할 수 있다.
예를 들어, 결함 진단 시스템(100)은 머신러닝을 통해 결함을 진단할 수 있다. 즉, 결함 진단 시스템(100)은 다량의 데이터를 활용하는 인공지능을 통해 결함을 진단할 수 있다. 결함 진단 시스템(100)은 다양의 데이터에서 특징을 추출할 수 있고, 결함 진단 시스템(100)은 학습을 통해 분류 모델을 구현할 수 있다. 예를 들어, 결함 진단 시스템(100)은 정상, 비정상 및 결함의 종류를 기준으로 분류 모델을 결정할 수 있다. 이러한 머신러닝에 기반한 소수의 진단 모델이 다양한 설비에 적용될 수 있다.
도 3은 본 개시의 일 실시 예에 따른 회전기계에 대한 결함을 종합적으로 진단 방법을 나타낸 흐름도이다.
도 3을 참조하면, 단계 S310에서, 결함 진단 시스템(100)은 회전기계의 상태를 진단한 데이터에 기반하여 결함 레벨을 결정할 수 있다. 단계 S330에서, 결함 진단 시스템(100)은 회전기계의 상태 이력 데이터 상의 결함과 관련된 정보 또는 회전기계의 운전 정보와 관련된 알람의 발생 여부 중 적어도 하나에 기반하여, 결함 레벨에 가중치를 적용할 수 있다. 단계 S350에서, 결함 진단 시스템(100)은 가중치가 적용된 결함 레벨에 기반하여 회전기계의 결함 심각도를 결정할 수 있다.
예를 들어, 회전기계의 상태 이력 데이터는 회전기계의 정비이력과 회전기계와 관련된 동종설비 정보를 포함할 수 있다. 회전기계의 상태 이력 데이터 상의 결함은 상기 동종설비에서 가장 빈도수가 높은 결함일 수 있다.
예를 들어, 회전기계의 운전 정보와 관련된 감시항목이 사전 설정된 기준 값을 초과하는 것에 기반하여 알람이 발생될 수 있다. 회전기계의 운전 정보는 상기 회전기계와 관련된 펌프의 유량, 상기 회전기계와 관련된 전후단 압력, 또는 상기 회전기계와 관련된 유체온도 중 적어도 하나를 포함할 수 있다.
예를 들어, 회전기계와 관련된 동종설비에서 가장 빈도수가 높은 결함이 결함 레벨과 관련된 회전기계의 결함 상태가 일치하는 것에 기반하여, 결함 진단 시스템(100)은 결함 레벨에 가중치를 가산할 수 있다. 또는, 회전기계의 운전 정보와 관련된 알람이 발생한 것에 기반하여, 결함 진단 시스템(100)은 결함 레벨에 가중치를 가산할 수 있다. 예를 들어, 회전기계와 관련된 동종설비에서 가장 빈도수가 높은 결함이 결함 레벨과 관련된 회전기계의 결함 상태의 불일치에 기반하여, 결함 진단 시스템(100)은 회전기계의 운전 정보와 관련된 알람이 발생 여부를 판단할 수 있다.
예를 들어, 결함 진단 시스템(100)은 회전기계의 상태를 진단한 데이터는, 회전기계의 진동신호와 관련된 특징벡터, 회전기계의 결함과 연계된 주파수 또는 회전기계의 전체 진동 값 중 적어도 하나를 포함할 수 있다. 여기서, 머신러닝은 회전기계의 진동신호와 관련된 특징벡터들에 기반하여 수행될 수 있다. 예를 들어, 결함 진단 시스템(100)은 회전기계의 결함이 존재하지 않는 것에 기반하여, 제 1 결함 값이 0으로 결정할 수 있다. 이때, 결함 진단 시스템(100)은 제 1 결함 값이 0인 것에 기반하여, 결함 레벨을 0으로 결정할 수 있다. 또는, 결함 진단 시스템(100)은 회전기계의 결함이 존재하는 것에 기반하여, 제 1 결함 값을 회전기계와 관련된 전체 샘플 및 회전기계와 관련된 결함 샘플에 기반하여 결정할 수 있다.
예를 들어, 결함 진단 시스템(100)은 회전기계의 결함과 연계된 주파수가 사전 설정된 범위 이내인 것에 기반하여, 제 2 결함 값을 사전 설정된 제 1 값으로 결정할 수 있다. 또는, 결함 진단 시스템(100)은 회전기계의 결함과 연계된 주파수가 사전 설정된 범위 밖인 것에 기반하여, 제 2 결함 값을 제 1 결함 값으로 결정할 수 있다. 이때, 결함 진단 시스템(100)은 결함 레벨을 제 1 결함 값으로 결정할 수 있다.
예를 들어, 결함 진단 시스템(100)은 회전기계의 전체 진동 값이 제 1 임계 값보다 작은 것에 기반하여, 제 3 결함 값을 제 2 결함 값으로 결정할 수 있다. 이때, 결함 진단 시스템(100)은 결함 레벨을 제 2 결함 값으로 결정할 수 있다. 또는, 결함 진단 시스템(100)은 회전기계의 전체 진동 값이 제 1 임계 값보다 큰 것에 기반하여, 제 3 결함 값을 사전 설정된 제 2 값으로 결정할 수 있다. 이때, 결함 진단 시스템(100)은 결함 레벨을 사전 설정된 제 2 값으로 결정할 수 있다. 또는, 결함 진단 시스템(100)은 회전기계의 전체 진동 값이 제 2 임계 값보다 큰 것에 기반하여, 제 3 결함 값을 사전 설정된 제 3 값으로 결정할 수 있다. 이때, 결함 진단 시스템(100)은 결함 레벨을 사전 설정된 제 3 값으로 결정할 수 있다.
도 4는 본 개시의 일 실시 예에 따른 회전기계에 대한 결함 레벨을 계산하기 위한 단계를 나타낸 흐름도이다.
먼저, 결함 진단 시스셈(100)은 회전기계의 상태를 진단한 데이터를 수신하고, 회전기계의 상태를 진단한 데이터에 기반하여 머신러닝을 수행할 수 있다.
이후, 도 4를 참조하면, 단계 S410에서, 결함 진단 시스셈(100)은 머신러닝의 결과를 기반으로 회전기계에 대한 결함이 발생하였는지 여부를 판단할 수 있다. 예를 들어, 회전기계에 대한 결함이 발생한 경우, 결함 진단 시스템(100)은 결함을 나타내는 샘플의 비중을 계산할 수 있다. 예를 들어, 결함을 나타내는 샘플의 비중은 회전기계와 관련된 결함 샘플의 회전기계와 관련된 전체 샘플에 대한 비율일 수 있다. 결함 진단 시스템(100)은 결함을 나타내는 샘플의 비중에 기반하여 제 1 결함 값을 결정할 수 있다. 또는, 예를 들어, 회전기계에 대한 결함이 발생하지 않은 경우, 결함 진단 시스템(100)은 제 1 결함 값을 0으로 결정할 수 있다.
단계 S430에서, 결함 진단 시스템(100)은 회전기계의 결함과 연계된 주파수에 대한 알람 발생 여부를 판단할 수 있다. 단계 S410에서 제 1 결함 값이 0이 아닌 값으로 결정된 경우, 결함 진단 시스템(100)은 회전기계의 결함과 연계된 주파수에 대한 알람 발생 여부를 판단할 수 있다. 예를 들어, 회전기계의 결함과 연계된 주파수에 대한 알람은 회전기계의 결함과 연계된 주파수가 사전 설정된 범위 이내인 경우에 발생할 수 있다. 예를 들어, 회전기계의 결함과 연계된 주파수에 대한 알람은 회전기계의 결함과 연계된 주파수가 사전 설정된 범위 밖인 경우에 발생하지 않을 수 있다. 회전기계의 결함과 연계된 주파수에 대한 알람이 발생한 경우, 결함 진단 시스템(100)은 제 2 결함 값을 사전 설정된 제 1 값으로 결정할 수 있다. 또는, 회전기계의 결함과 연계된 주파수에 대한 알람이 발생하지 않은 경우, 결함 진단 시스템(100)은 제 2 결함 값을 제 1 결함 값으로 결정할 수 있다.
단계 S450에서, 결함 진단 시스템(100)은 회전기계의 전체 진동값이 허용 기준을 초과하는 여부를 판단할 수 있다. 단계 S430에서 회전기계의 결함과 연계된 주파수에 대한 알람이 발생한 경우, 결함 진단 시스템(100)은 회전기계의 전체 진동값이 허용 기준을 초과하는 여부를 판단할 수 있다. 예를 들어, 결함 진단 시스템(100)은 회전기계의 전체 진동값이 제 1 임계 값보다 작은 것에 기반하여, 제 3 결함 값을 제 2 결함 값으로 결정할 수 있다. 또는, 결함 진단 시스템(100)은 회전기계의 전체 진동값이 제 1 임계 값보다 큰 것에 기반하여, 제 3 결함 값을 사전 설정된 제 2 값으로 결정할 수 있다. 또는, 결함 진단 시스템(100)은 회전기계의 전체 진동값이 제 2 임계 값보다 큰 것에 기반하여, 제 3 결함 값을 사전 설정된 제 3 값으로 결정할 수 있다. 예를 들어, 제 2 임계 값은 제 1 임계 값보다 큰 값일 수 있다.
단계 S470에서, 결함 진단 시스템(100)은 회전 기계에 대한 결함 레벨을 결정할 수 있다. 예를 들어, 단계 S430에서 회전기계의 결함과 연계된 주파수에 대한 알람이 발생하지 않은 경우, 결함 진단 시스템(100)은 제 2 결함 값을 제 1 결함 값으로 결정하고, 결함 레벨을 제 1 결함 값으로 결정할 수 있다. 예를 들어, 단계 S450에서 회전기계의 전체 진동값이 제 1 임계 값보다 작은 경우, 결함 진단 시스템(100)은 제 3 결함 값을 제 2 결함 값으로 결정하고, 결함 레벨을 제 2 결함 값으로 결정할 수 있다. 예를 들어, 단계 S450에서 회전기계의 전체 진동값이 제 1 임계 값보다 큰 경우, 결함 진단 시스템(100)은 제 3 결함 값을 사전 설정된 제 1 값으로 결정하고, 결함 레벨을 제 3 결함 값으로 결정할 수 있다. 예를 들어, 단계 S450에서 회전기계의 전체 진동값이 제 2 임계 값보다 큰 경우, 결함 진단 시스템(100)은 제 3 결함 값을 사전 설정된 제 2 값으로 결정하고, 결함 레벨을 제 3 결함 값으로 결정할 수 있다.
단계 S490에서, 결함 진단 시스템(100)은 회전기계를 정상상태로 결정할 수 있다. 예를 들어, 단계 S410에서, 머신러닝에 기반하여 회전기계에 대한 결함이 발생하지 않은 것으로 진단된 경우, 결함 진단 시스템(100)은 회전기계를 정상상태로 결정할 수 있다. 예를 들어, 회전기계가 정상상태인 것은 결함 레벨이 0인 것일 수 있다.
예를 들어, 결함 진단 시스템(100)이 회전 기계를 정상상태로 결정한 경우, 단계 S430 및 단계 S450은 생략될 수 있다. 예를 들어, 회전 기계의 결함과 연계된 주파수에 대한 알람이 발생하지 않은 경우, 단계 S450은 생략될 수 있다.
도 5는 본 개시의 일 실시 예에 따른 회전기계에 대한 결함 레벨에 기반하여 가중치를 적용하기 위한 단계를 나타낸 흐름도이다.
도 5를 참조하면, 단계 S510에서, 결함 진단 시스템(100)은 회전기계의 상태 이력 데이터 상의 결함과 결함 레벨과 관련된 회전기계의 결함 상태가 일치하는지 여부를 결정할 수 있다. 예를 들어, 결함 진단 시스템(100)은 회전기계와 관련된 동종설비에서 가장 빈도수가 높은 결함과 결함 레벨과 관련된 상기 회전기계의 결함 상태가 일치하는지 여부를 결정할 수 있다. 여기서, 회전기계의 상태 이력 데이터는 상기 회전기계의 정비이력과 동종설비와 관련된 정보를 포함할 수 있다.
단계 S530에서, 결함 진단 시스템(100)은 운전 정보와 관련된 알람의 발생 여부를 결정할 수 있다. 예를 들어, 회전기계의 상태 이력 데이터 상의 결함과 결함 레벨과 관련된 회전기계의 결함 상태가 일치하지 않는 경우, 결함 진단 시스템(100)은 운전 정보와 관련된 알람의 발생 여부를 결정할 수 있다. 예를 들어, 회전기계의 상태 이력 데이터 상의 결함과 결함 레벨과 관련된 회전기계의 결함 상태가 일치하지 않는 경우, 결함 진단 시스템(100)은 회전기계의 운전 정보와 관련된 감시항목이 사전 설정된 기준 값을 초과하는지 여부를 결정할 수 있다. 즉, 결함 진단 시스템(100)은 회전기계의 운전 정보와 관련된 감시항목이 사전 설정된 기준 값을 초과하는 것에 기반하여 알람을 발생시킬 수 있다. 여기서, 회전기계의 운전 정보는 회전기계와 관련된 펌프의 유량, 회전기계와 관련된 전후단 압력, 또는 회전기계와 관련된 유체온도 중 적어도 하나를 포함할 수 있다.
단계 S550에서, 결함 진단 시스템(100)은 결함 레벨에 대하여 가중치를 적용하지 않을 수 있다. 예를 들어, 회전기계와 관련된 동종설비에서 가장 빈도수가 높은 결함과 결함 레벨과 관련된 상기 회전기계의 결함 상태가 일치하는 경우, 결함 진단 시스템(100)은 결함 레벨에 가중치를 적용할 수 있다. 예를 들어, 회전기계의 운전 정보와 관련된 알람이 발생하는 경우, 결함 진단 시스템(100)은 결함 레벨에 가중치를 적용할 수 있다.
단계 S570에서, 결함 진단 시스템(100)은 결함 레벨에 대하여 가중치를 적용할 수 있다. 예를 들어, 회전기계와 관련된 동종설비에서 가장 빈도수가 높은 결함과 결함 레벨과 관련된 상기 회전기계의 결함 상태가 불일치하는 경우, 결함 진단 시스템(100)은 결함 레벨에 가중치를 적용하지 않을 수 있다. 예를 들어, 회전기계의 운전 정보와 관련된 알람이 발생하지 않는 경우, 결함 진단 시스템(100)은 결함 레벨에 가중치를 적용할 수 있다. 예를 들어, 회전기계와 관련된 동종설비에서 가장 빈도수가 높은 결함과 결함 레벨과 관련된 상기 회전기계의 결함 상태가 불일치하고, 및 회전기계의 운전 정보와 관련된 알람이 발생하지 않는 경우, 결함 진단 시스템(100)은 결함 레벨에 가중치를 적용할 수 있다.
예를 들어, 회전기계와 관련된 동종설비에서 가장 빈도수가 높은 결함과 결함 레벨과 관련된 상기 회전기계의 결함 상태가 일치하는 경우, 단계 S530 및 단계 S550은 생략될 수 있다.
도 6은 본 개시의 일 실시 예에 따른 회전기계에 대한 진단결과를 기반으로 종합적으로 결함 심각도를 도출하는 방법을 나타낸 흐름도이다.
도 6을 참조하면, 심각도 계산 프로그램은 미소결함부터 과도 결함까지(예를 들어, 결함 레벨(defect level, 이하 DL) 1에서 DL 3까지) 설비의 상태를 자동적으로 정량화 해주는 프로그램일 수 있다. 예를 들어, 결함 진단 시스템은 심각도 계산 프로그램을 포함할 수 있다.
설비의 상태를 다양한 분야의 측면에서 복합적으로 고려하고, 정량화하기 위해, 결함 진단 시스템에 대해 각 진단기법을 통한 진단결과를 일괄적으로 조회하고, 진단결과가 결함 진단 시스템에 입력될 수 있다.
DL 1은 설비(예를 들어, 회전기계)에 대한 미소결함 또는 무증상에 대해 평가하기 위한 단계일 수 있다. 예를 들어, 결함 진단 시스템은 설비에 대한 머신러닝 결과를 조회하거나 설비와 관련된 데이터에 기반하여 머신러닝을 수행할 수 있다. 이후, 머신러닝 결과가 결함을 나타내는 경우, 결함 진단 시스템은 결함을 나타내는 샘플의 비중을 계산하여 제 1 DL 값을 결정할 수 있다. 예를 들어, 결함을 나타내는 샘플의 비중은 회전기계와 관련된 전체 샘플에 대한 회전기계와 관련된 결함 샘플의 비율일 수 있다. 예를 들어, 결함을 나타내는 샘플의 비중은 하기 수학식 1일 수 있다.
Figure PCTKR2021020137-appb-M000001
예를 들어, 머신러닝 결과가 결함을 나타내지 않는 경우, 결함 진단 시스템은 DL값을 0으로 결정할 수 있고, 설비의 상태를 정상상태로 결정할 수 있다.
예를 들어, 설비의 상태에 따라서 진동신호는 고유한 특성을 가지므로, 결함 진단 시스템은 머신러닝 진단 기법을 통해 각 특성을 잘 표현할 수 있는 특징벡터를 산출할 수 있다. 결함 진단 시스템은 동일한 상태의 특징 사이에 대해 최소화된 거리와 상이한 상태의 특징 사이에 대해 최대화된 거리를 잘 나타내는 특징으로 분류할 수 있고, 결함의 상태별로 영역화할 수 있다. 결함 진단 시스템은 이전의 수많은 데이터들에 대한 상태별(예를 들어, (정상, 결함종류별) 특징을 학습할 수 있고, 상태별 영역을 분류할 수 있다. 이때, 결함 진단 시스템은 신규 데이터가 입력되면, 그 데이터가 입력된 영역으로 설비상태를 예측할 수 있다. 따라서, 사람의 주관적인 개입이 최소화 되므로, 선입견 없이 결함에 대한 객관적인 판단이 가능할 수 있다.
DL 2는 결함의 경중을 평가하기 위한 단계일 수 있다. 결함 진단 시스템은 결함연계 주파수에서 알람의 발생 유무를 조회할 수 있다. 예를 들어, 결함연계 주파수에서 알람의 발생 유무는 회전기계의 결함과 연계된 주파수가 사전 설정된 범위 이내 또는 사전 설정된 범위 밖인 것에 기반하여 결정될 수 있다. 즉, 예를 들어, 회전기계의 결함과 연계된 주파수가 사전 설정된 범위 이내인 경우, 알람이 발생될 수 있다. 또는, 회전기계의 결함과 연계된 주파수가 사전 설정된 범위 밖인 경우, 알람이 발생되지 않을 수 있다. 이때, 결함연계 주파수에 대한 알람이 발생한 경우, 결함 진단 시스템은 제 2 DL 값을 0.4로 결정할 수 있다. 여기서, 0.4는 사전 설정된 값일 수 있으며, 본 개시의 다양한 실시 예들에 따라 다른 값으로 설정될 수 있다. 또는, 결함연계 주파수에 대한 알람이 발생하지 않은 경우, 결함 진단 시스템은 제 1 DL 값을 최종적인 DL 값, 즉 제 2 DL 값으로 결정할 수 있다.
예를 들어, 협대역 주파수 진단기법은 전체 주파수 영역을 하나의 에너지 값으로 평가하는 것과 달리 주파수 영역을 세분화함으로써, 관심영역에 대한 주파수를 감시하고 평가하는 방법일 수 있다. 즉, 설비에서 발생하는 다양한 결함은 특정 주파수 영역에서 진폭변화를 유발하기 때문에, 결함 진단 시스템은 관심 주파수 영역을 파라미터로 구분하여 허용범위를 설정하고 설비를 감시할 수 있다. 따라서, 결함 진단 시스템은 관심 주파수 영역별로 결함에 대한 정보를 획득할 수 있고, 결함의 원인을 파악할 수 있다.
DL 3은 설비를 경고 또는 위험상태로 평가하는 단계일 수 있다. 예를 들어, 전체 진동값이 경고(Alert)의 허용기준(예를 들어, 제 1 임계 값)을 초과한 경우, 결함 진단 시스템은 제 3 DL 값을 0.6으로 결정할 수 있다. 여기서, 0.6은 사전 설정된 값일 수 있으며, 본 개시의 다양한 실시 예들에 따라 다른 값으로 설정될 수 있다. 예를 들어, 전체 진동 값이 오류(Fault)의 허용기준(예를 들어, 제 2 임계 값)을 초과한 경우, 결함 진단 시스템은 제 3 DL 값을 0.8로 결정할 수 있다. 예를 들어, 전체 진동값이 허용기준(예를 들어, 제 1 임계 값)을 초과하지 않은 경우, 결함 진단 시스템은 제 2 DL 값을 최종적인 DL 값, 즉, 제 3 DL 값으로 결정할 수 있다.
예를 들어, 전체 진동 값을 통한 진단 기법은 국제 규격이나 설비의 제작사 권고사항에 따라 한계치 또는 허용치의 기준근거로 설비에서 출력하는 전체 진동값을 평가하는 방법일 수 있다. 결함 진단 시스템은 설비를 형태, 용량, 지지구조 등으로 분류할 수 있고, 해당하는 설비에 적합한 평가기준을 적용할 수 있다. 국제표준 진동규격(ISO API등)과 같은 관리기준은 기준의 당위성 향상을 위하여 지속적으로 개정되고 있으므로, 결함 진단 시스템은 개정된 관리기준을 기반으로 결함을 평가할 수 있다. 따라서, 허용기준 이상치가 발생한 상태에 대하여 결함을 진단하는 겨우, 결함 진단 시스템은 보다 정확하게 결함을 진단할 수 있다.
제 1 추가 가중치(added weight 1)는 DL 값에 추가적인 가중치를 계산하기 위한 단계일 수 있다. 예를 들어, 결함 진단 시스템은 설비의 정비이력과 동종설비를 연계하여 설비의 상태 이력데이터를 조회 및/또는 결정할 수 있다. 이때, 가장 빈번히 발생한 결함과 현재 설비의 진단결과가 일치하는 경우, 결함 진단 시스템은 DL 값에 가중치를 부가할 수 있다. 예를 들어, 가장 빈번히 발생한 결함과 현재 설비의 상태가 일치하는 경우,결함 진단 시스템은 DL 값에 1.1 배를 함으로써, 가중치를 적용할 수 있다. 예를 들어, 가장 빈번히 발생한 결함과 현재 설비의 상태가 일치하지 않는 경우,결함 진단 시스템은 DL 값에 가중치를 적용하지 않을 수 있다.
예를 들어, 동종 설비를 비교하여 진단하는 기법은 정비이력과 동종설비를 연계한 설비의 상태 이력데이터를 이용하는 기법일 수 있다. 즉, 결함 진단 시스템은 동종설비에서 가장 빈번히 발생한 결함과 현재 설비의 상태가 일치하면 추가적인 심각도를 부가할 수 있다. 예를 들어, 결함 진단 시스템은 가장 빈번히 발생한 결함으로 진단된 동종설비를 재분류할 수 있고, 해당 동종설비가 가지는 협대역 주파수정보 또는 머신러닝 정보 중 적어도 하나를 이용함으로써, 설비의 결함에 대한 예측진단에 활용할 수 있다. 따라서, 결함 진단 시스템은 가장 많이 발생한 결함의 특성값을 집중 감시할 수 있기 때문에 감시 대상을 최소화 할 수 있다.
제 2 추가 가중치(added weight 2)는 DL 값에 추가적인 가중치를 계산하기 위한 단계일 수 있다. 예를 들어, 제 2 추가 가중치는 제 1 추가 가중치가 적용되지 않는 경우에 고려될 수 있다. 즉, 결함 진단 시스템은 동종설비에서 가장 빈번히 발생한 결함과 현재 설비의 상태가 불일치한 경우, 결함 진단 시스템은 제 2 추가 가중치를 고려할 수 있다. 예를 들어, 결함 진단 시스템은 PMS(power management system) 운전정보와 관련된 감시항목이 허용 기준을 초과한 경우, 결함 진단 시스템은 알람을 발생시키거나, 알람이 발생한 경우를 조회할 수 있다. 결함 진단 시스템은 알람이 발생한 경우 DL 값에 1.1 배를 함으로써, 가중치를 적용할 수 있다. 예를 들어, PMS(power management system) 운전정보와 관련된 감시항목이 허용 기준을 초과하지 않은 경우, 결함 진단 시스템은 DL 값에 가중치를 적용하지 않을 수 있다.
예를 들어, 운전 정보를 활용한 결함 진단 기법은 설비에 영향을 주는 운전정보를 활용할 수 있다. 예를 들어, 설비에 영향을 주는 운전 정보는 설비와 관련된 펌프유량, 설비와 관련된 전후단의 압력 및 설비와 관련된 유체 온도를 포함할 수 있다. 진동 특성과 운전정보를 연계한 상관관계 분석으로 인해 진단 결과의 신뢰성을 향상시킬 수 있다.
결함 진단 시스템은 최종적으로 계산된 DL 값을 설비의 상태를 정량적으로 나타내는 결함 심각도로 평가할 수 있다.
이와 같이, 본 개시에 따른 회전기계의 결함 진단 방법 및 시스템은 설비의 미소한 상태변화를 정량적으로 평가할 수 있고, 평가결과 값(심각도)을 활용하여 설비의 결함진행 정도를 정확하게 확인하고, 설비상태의 정비시기, 수명 등을 보다 정확하게 판단할 수 있다.
앞에서 설명되고, 도면에 도시된 본 개시의 일 실시예는 본 개시의 기술적 사상을 한정하는 것으로 해석되어서는 안 된다. 본 개시의 보호범위는 청구범위에 기재된 사항에 의하여만 제한되고, 본 개시의 기술분야에서 통상의 지식을 가진 자는 본 개시의 기술적 사상을 다양한 형태로 개량 변경하는 것이 가능하다. 따라서 이러한 개량 및 변경은 통상의 지식을 가진 자에게 자명한 것인 한 본 개시의 보호범위에 속하게 될 것이다.
10 : 회전기계
100 : 회전기계의 결함 진단 시스템
110 : 저장부
120 : 연산 프로세서
130 : 출력부

Claims (15)

  1. 회전기계의 상태를 진단한 데이터에 기반하여 결함 레벨을 결정하되,
    상기 회전기계의 상태를 진단한 데이터는, 상기 회전기계의 진동신호와 관련된 특징벡터, 상기 회전기계의 결함과 연계된 주파수 또는 상기 회전기계의 전체 진동 값 중 적어도 하나를 포함하는 단계;
    상기 회전기계의 상태 이력 데이터 상의 결함과 관련된 정보 또는 상기 회전기계의 운전 정보와 관련된 알람의 발생 여부 중 적어도 하나에 기반하여, 상기 결함 레벨에 가중치를 적용하는 단계; 및
    상기 가중치가 적용된 결함 레벨에 기반하여 상기 회전기계의 결함 심각도를 결정하는 단계를 포함하는, 회전기계의 결함 진단 방법.
  2. 제 1 항에 있어서,
    상기 회전기계의 상태 이력 데이터는 상기 회전기계의 정비이력과 동종설비와 관련된 정보를 포함하고, 및
    상기 회전기계의 상태 이력 데이터 상의 결함은 상기 동종설비에서 가장 빈도수가 높은 결함인, 회전기계의 결함 진단 방법.
  3. 제 1 항에 있어서,
    상기 회전기계의 운전 정보와 관련된 감시항목이 사전 설정된 기준 값을 초과하는 것에 기반하여 알람이 발생되는, 회전기계의 결함 진단 방법.
  4. 제 1 항에 있어서,
    상기 회전기계의 운전 정보는 상기 회전기계와 관련된 펌프의 유량, 상기 회전기계와 관련된 전후단 압력, 또는 상기 회전기계와 관련된 유체온도 중 적어도 하나를 포함하는, 회전기계의 결함 진단 방법.
  5. 제 2 항에 있어서,
    상기 결함 레벨에 가중치를 적용하는 단계는,
    상기 회전기계와 관련된 동종설비에서 가장 빈도수가 높은 결함과 상기 결함 레벨과 관련된 상기 회전기계의 결함 상태가 일치하는 것에 기반하여, 상기 결함 레벨에 가중치를 가산하는 단계를 포함하되, 회전기계의 결함 진단 방법.
  6. 제 1 항에 있어서,
    상기 결함 레벨에 가중치를 적용하는 단계는,
    상기 회전기계의 운전 정보와 관련된 알람이 발생한 것에 기반하여, 상기 결함 레벨에 가중치를 가산하는 단계를 포함하는, 회전기계의 결함 진단 방법.
  7. 제 1 항에 있어서,
    상기 회전기계와 관련된 동종설비에서 가장 빈도수가 높은 결함과 상기 결함 레벨과 관련된 상기 회전기계의 결함 상태의 불일치에 기반하여, 상기 회전기계의 운전 정보와 관련된 알람이 발생 여부가 판단되는, 회전기계의 결함 진단 방법.
  8. 제 1 항에 있어서,
    상기 결함 심각도를 결정하는 단계는,
    상기 회전기계의 진동신호와 관련된 특징벡터에 기반하여 머신러닝을 통해 상기 회전기계에 대한 제 1 결함 값을 진단하는 단계;
    상기 회전기계의 결함과 연계된 주파수 및 상기 제 1 결함 값에 기반하여 제 2 결함 값을 진단하는 단계;
    상기 회전기계의 전체 진동 값 및 상기 제 2 결함 값에 기반하여 제 3 결함 값을 진단하는 단계; 및
    상기 제 1 결함 값, 상기 제 2 결함 값 또는 상기 제 3 결함 값 중 적어도 하나에 기반하여 상기 회전기계의 결함 레벨을 결정하는 단계를 포함하는, 회전기계의 결함 진단 방법.
  9. 제 8 항에 있어서,
    상기 제 1 결함 값을 진단하는 단계는,
    상기 머신러닝을 통해 상기 회전기계의 결함 여부를 결정하는 단계를 포함하는, 회전기계의 결함 진단 방법.
  10. 제 9 항에 있어서,
    상기 회전기계의 결함이 존재하는 것에 기반하여, 상기 제 1 결함 값이 상기 회전기계와 관련된 전체 샘플 및 상기 회전기계와 관련된 결함 샘플에 기반하여 결정되고, 및
    상기 회전기계의 결함과 연계된 주파수가 사전 설정된 범위 이내인 것에 기반하여, 상기 제 2 결함 값이 사전 설정된 제 1 값으로 결정되는, 회전기계의 결함 진단 방법.
  11. 제 10 항에 있어서,
    상기 회전기계의 전체 진동 값이 제 1 임계 값보다 작은 것에 기반하여, 상기 제 3 결함 값이 상기 제 2 결함 값으로 결정되고, 및
    상기 결함 레벨은 상기 제 2 결함 값으로 결정되는, 회전기계의 결함 진단 방법.
  12. 제 10 항에 있어서,
    상기 회전기계의 전체 진동 값이 제 1 임계 값보다 큰 것에 기반하여, 상기 제 3 결함 값이 사전 설정된 제 2 값으로 결정되고, 및
    상기 결함 레벨은 상기 사전 설정된 제 2 값으로 결정되는, 회전기계의 결함 진단 방법.
  13. 제 10 항에 있어서,
    상기 회전기계의 전체 진동 값이 제 2 임계 값보다 큰 것에 기반하여, 상기 제 3 결함 값이 사전 설정된 제 3 값으로 결정되고, 및
    상기 결함 레벨은 상기 사전 설정된 제 3 값으로 결정되는, 회전기계의 결함 진단 방법.
  14. 회전기계의 상태를 진단한 데이터에 기반하여 결함 레벨을 결정하되,
    상기 회전기계의 상태를 진단한 데이터는, 상기 회전기계의 진동신호와 관련된 특징벡터, 상기 회전기계의 결함과 연계된 주파수 또는 상기 회전기계의 전체 진동 값 중 적어도 하나를 포함하고,
    상기 회전기계의 상태 이력 데이터 상의 결함과 관련된 정보 또는 상기 회전기계의 운전 정보와 관련된 알람의 발생 여부 중 적어도 하나에 기반하여, 상기 결함 레벨에 가중치를 적용하고, 및
    상기 가중치가 적용된 결함 레벨에 기반하여 상기 회전기계의 결함 심각도를 결정하는 회전기계의 결함 진단 시스템.
  15. 회전기계의 상태를 진단한 데이터에 기반하여 결함 레벨을 결정하되,
    상기 회전기계의 상태를 진단한 데이터는, 상기 회전기계의 진동신호와 관련된 특징벡터, 상기 회전기계의 결함과 연계된 주파수 또는 상기 회전기계의 전체 진동 값 중 적어도 하나를 포함하고,
    상기 회전기계의 상태 이력 데이터 상의 결함과 관련된 정보 또는 상기 회전기계의 운전 정보와 관련된 알람의 발생 여부 중 적어도 하나에 기반하여, 상기 결함 레벨에 가중치를 적용하고, 및
    상기 가중치가 적용된 결함 레벨에 기반하여 상기 회전기계의 결함 심각도를 결정하는 회전기계의 결함 진단 시스템의 연산프로세서.
PCT/KR2021/020137 2020-12-31 2021-12-29 회전기계의 결함을 종합적으로 진단하는 방법 및 시스템 WO2022146020A1 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202180088942.8A CN116802471A (zh) 2020-12-31 2021-12-29 综合诊断旋转机械的缺陷的方法及系统
JP2023540867A JP7579455B2 (ja) 2020-12-31 2021-12-29 回転機械の欠陥を総合的に診断する方法及びシステム
EP21915818.5A EP4273520A1 (en) 2020-12-31 2021-12-29 Method and system for comprehensively diagnosing defect in rotating machine

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2020-0189558 2020-12-31
KR1020200189558A KR102470804B1 (ko) 2020-12-31 2020-12-31 회전기계의 결함을 종합적으로 진단하는 방법 및 시스템

Publications (1)

Publication Number Publication Date
WO2022146020A1 true WO2022146020A1 (ko) 2022-07-07

Family

ID=82260691

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2021/020137 WO2022146020A1 (ko) 2020-12-31 2021-12-29 회전기계의 결함을 종합적으로 진단하는 방법 및 시스템

Country Status (5)

Country Link
EP (1) EP4273520A1 (ko)
JP (1) JP7579455B2 (ko)
KR (1) KR102470804B1 (ko)
CN (1) CN116802471A (ko)
WO (1) WO2022146020A1 (ko)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117076870B (zh) * 2023-10-16 2024-01-12 广东石油化工学院 旋转机械故障诊断方法、装置、设备及存储介质

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130129679A (ko) * 2012-05-21 2013-11-29 한국 전기안전공사 심각도 평가를 통한 몰드변압기 진단 시스템
KR20150058928A (ko) * 2013-11-21 2015-05-29 이선휘 진동 특성을 이용한 설비의 결함 진단 방법
KR20170038348A (ko) * 2015-09-30 2017-04-07 한국전력공사 동적 설비의 결함 진단 시스템 및 결함 진단 방법
KR102028845B1 (ko) * 2018-12-05 2019-10-04 한국수력원자력 주식회사 원전설비의 예측 진단 방법 및 시스템
KR20190115953A (ko) * 2018-04-04 2019-10-14 한국전력공사 편차의 변화율을 이용한 발전 설비의 위험도 진단 시스템 및 방법

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013224853A (ja) 2012-04-20 2013-10-31 Hitachi Building Systems Co Ltd 昇降機の低速回転軸受の異常診断方法
JP6820771B2 (ja) 2016-03-17 2021-01-27 Ntn株式会社 状態監視システムおよび風力発電装置
JP6934832B2 (ja) 2017-04-13 2021-09-15 Ntn株式会社 状態監視装置、状態監視システムおよび状態監視方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130129679A (ko) * 2012-05-21 2013-11-29 한국 전기안전공사 심각도 평가를 통한 몰드변압기 진단 시스템
KR20150058928A (ko) * 2013-11-21 2015-05-29 이선휘 진동 특성을 이용한 설비의 결함 진단 방법
KR20170038348A (ko) * 2015-09-30 2017-04-07 한국전력공사 동적 설비의 결함 진단 시스템 및 결함 진단 방법
KR20190115953A (ko) * 2018-04-04 2019-10-14 한국전력공사 편차의 변화율을 이용한 발전 설비의 위험도 진단 시스템 및 방법
KR102028845B1 (ko) * 2018-12-05 2019-10-04 한국수력원자력 주식회사 원전설비의 예측 진단 방법 및 시스템

Also Published As

Publication number Publication date
KR102470804B1 (ko) 2022-11-28
KR20220096793A (ko) 2022-07-07
EP4273520A1 (en) 2023-11-08
CN116802471A (zh) 2023-09-22
JP2024501761A (ja) 2024-01-15
JP7579455B2 (ja) 2024-11-07

Similar Documents

Publication Publication Date Title
CN109186813B (zh) 一种温度传感器自检装置及方法
WO2017191872A1 (ko) 플랜트 이상 감지 방법 및 시스템
US20230162484A1 (en) Apparatus and method for generating learning data for artificial intelligence model
JPH07168619A (ja) 機器/設備診断方法およびシステム
US20090326784A1 (en) Methods and Apparatuses For Monitoring A System
JP6714498B2 (ja) 設備診断装置及び設備診断方法
WO2022146020A1 (ko) 회전기계의 결함을 종합적으로 진단하는 방법 및 시스템
KR102073810B1 (ko) 머신러닝을 이용하여 함정 추진 장비의 고장을 예측하는 방법 및 시스템
JPS6014303A (ja) 知識ベ−ス型診断方式
Harris A Kohonen SOM based, machine health monitoring system which enables diagnosis of faults not seen in the training set
WO2018044040A1 (ko) 기기 중요도와 경보 유효성 판단 프로세서를 포함한 원자력발전소 기기 이상징후 사전감지 방법 및 그 시스템
WO2021172723A1 (ko) 원전의 지능형 상태감시 방법 및 시스템
WO2022114634A1 (ko) 신경망 모델을 이용한 비정상 상태 판단 근거 추적 장치 및 방법
KR102649453B1 (ko) 회전기계의 결함을 진단하는 방법 및 시스템
KR20220167008A (ko) 선박용 고장 예측진단 시스템 및 그 예측진단 방법
KR20240122695A (ko) 유입식 케이블용 지능형 진단 장치
US11755007B2 (en) System and method for determining a health condition and an anomaly of an equipment using one or more sensors
CN117038048B (zh) 一种用于医疗器械的远程故障处理方法及系统
JP3461932B2 (ja) エキスパートシステムを利用した故障診断装置
KR102602840B1 (ko) 학습 데이터셋 생성 시스템 및 이를 이용한 학습 데이터셋 생성 방법
CN111860881B (zh) 一种多诱因装备故障维修排查方法及装置
KR20200082605A (ko) 운전조건을 고려한 회전체 고장 진단 데이터 정규화 처리 방법 및 이를 이용한 회전체 고장 진단 방법
CN116263734A (zh) 工业机器人状态监控方法、系统及提示终端
WO2017217701A1 (ko) 전장용 소프트웨어 안전성 분석 방법 및 장치
CN115468648A (zh) 安装状态检测方法、装置及计算机可读存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21915818

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202180088942.8

Country of ref document: CN

Ref document number: 2023540867

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021915818

Country of ref document: EP

Effective date: 20230731