WO2022146003A1 - 이중 또는 다중 특이적 항체 - Google Patents

이중 또는 다중 특이적 항체 Download PDF

Info

Publication number
WO2022146003A1
WO2022146003A1 PCT/KR2021/020103 KR2021020103W WO2022146003A1 WO 2022146003 A1 WO2022146003 A1 WO 2022146003A1 KR 2021020103 W KR2021020103 W KR 2021020103W WO 2022146003 A1 WO2022146003 A1 WO 2022146003A1
Authority
WO
WIPO (PCT)
Prior art keywords
arm
heavy chain
clb
constant region
chain constant
Prior art date
Application number
PCT/KR2021/020103
Other languages
English (en)
French (fr)
Inventor
이동헌
양원준
김정원
정우석
박주현
문승태
김지나
이상호
김미겸
송현동
최형석
Original Assignee
삼성바이오로직스 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 삼성바이오로직스 주식회사 filed Critical 삼성바이오로직스 주식회사
Priority to CN202180093319.1A priority Critical patent/CN116867800A/zh
Priority to EP21915801.1A priority patent/EP4286408A1/en
Priority to AU2021411896A priority patent/AU2021411896A1/en
Priority to CA3203831A priority patent/CA3203831A1/en
Priority to JP2023540751A priority patent/JP2024502095A/ja
Publication of WO2022146003A1 publication Critical patent/WO2022146003A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/22Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against growth factors ; against growth regulators
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/32Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against translation products of oncogenes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/30Immunoglobulins specific features characterized by aspects of specificity or valency
    • C07K2317/31Immunoglobulins specific features characterized by aspects of specificity or valency multispecific
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/50Immunoglobulins specific features characterized by immunoglobulin fragments
    • C07K2317/51Complete heavy chain or Fd fragment, i.e. VH + CH1
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/50Immunoglobulins specific features characterized by immunoglobulin fragments
    • C07K2317/52Constant or Fc region; Isotype
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/50Immunoglobulins specific features characterized by immunoglobulin fragments
    • C07K2317/52Constant or Fc region; Isotype
    • C07K2317/526CH3 domain
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/50Immunoglobulins specific features characterized by immunoglobulin fragments
    • C07K2317/56Immunoglobulins specific features characterized by immunoglobulin fragments variable (Fv) region, i.e. VH and/or VL
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/60Immunoglobulins specific features characterized by non-natural combinations of immunoglobulin fragments
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/70Immunoglobulins specific features characterized by effect upon binding to a cell or to an antigen
    • C07K2317/73Inducing cell death, e.g. apoptosis, necrosis or inhibition of cell proliferation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/90Immunoglobulins specific features characterized by (pharmaco)kinetic aspects or by stability of the immunoglobulin
    • C07K2317/92Affinity (KD), association rate (Ka), dissociation rate (Kd) or EC50 value
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/90Immunoglobulins specific features characterized by (pharmaco)kinetic aspects or by stability of the immunoglobulin
    • C07K2317/94Stability, e.g. half-life, pH, temperature or enzyme-resistance

Definitions

  • the present invention relates to a novel bi- or multi-specific antibody, and to a bi- or multi-specific antibody comprising a polypeptide in which a CH3 dimer is introduced into a part of the Fab region.
  • bio-antibody drugs consist of a single-target antibody backbone, such as IgG1, IgG4, etc.
  • a single-target antibody backbone such as IgG1, IgG4, etc.
  • the inventors of the present application made diligent efforts to develop a dual or multi-specific multivalent antibody in a novel format, and produced a dual or multi-specific antibody comprising a polypeptide introduced with a CH3 dimer in the Fab region. , the present invention was completed.
  • the present invention provides a first arm that binds to a first antigen including VH1-CHa-Fc1 and VL1-CLb; and a second arm that binds to a second antigen comprising VH2-CH1-Fc2 and VL2-CL;
  • VH1 and VH2 are heavy chain variable regions each comprising the same or different antigen-binding regions
  • VL1 and VL2 are light chain variable regions each comprising the same or different antigen-binding regions
  • CHa comprises i) an IgG heavy chain constant region or an IgD heavy chain constant region CH1, and an IgG heavy chain constant region CH2 or CH3, or ii) an IgM heavy chain constant region CH3,
  • the CLb includes i) at least one selected from the group consisting of CL1 including an IgG light chain constant region ⁇ or ⁇ and an IgG heavy chain constant region CH1, CH2, CH3, or ii) an IgM heavy chain constant region CH3,
  • the CHa and CLb are linked to form a dimer
  • CH1 is an IgG heavy chain constant region CH1
  • CL is an IgG light chain constant region CL
  • Fc1 of the first arm and Fc2 of the second arm combine to form a heavy chain constant region dimer.
  • the present invention also provides a first arm that binds to a first antigen comprising VH1-CHa-Fc1 and VL1-CLb; and a second arm that binds to a second antigen comprising VH2-CH1-Fc2 and VL2-CL;
  • VH1 and VH2 are heavy chain variable regions each comprising the same or different antigen-binding regions
  • VL1 and VL2 are light chain variable regions each comprising the same or different antigen-binding regions
  • the CHa comprises an IgG heavy chain constant region CH3 and an IgG heavy chain constant region CH1,
  • the CLb includes CL1 including an IgG light chain constant region ⁇ or ⁇ and an IgG heavy chain constant region CH3,
  • the CHa and CLb are linked to form a dimer
  • CH1 is an IgG heavy chain constant region CH1
  • CL is an IgG light chain constant region CL
  • Fc1 of the first arm and Fc2 of the second arm combine to form a heavy chain constant region dimer.
  • the present invention also provides a multispecific antibody comprising the bispecific antibody.
  • 3 shows the structure of the dual target antibody of the third candidate.
  • 6 shows the structure of the dual target antibody of the sixth candidate.
  • FIG. 10 shows an exemplary bivalent bispecific antibody format.
  • FIG. 11 shows a schematic diagram of the bispecific antibody format of each of the Q-SBL1 and R-SBL1 structures.
  • FIGS. 12A-12B show schematics of various bispecific antibody formats of Q-SBL1 (FIG. 12A) and R-SBL1 (FIG. 12B) according to the number of linkers.
  • FIGS. 13A-13B show schematics of various bispecific antibody formats of Q-SBL1 (FIG. 13A) and R-SBL1 (FIG. 13B) following changes in the hinge region.
  • Figure 14 shows a schematic of the various bispecific antibody formats of Q-SBL1 by exchanging Knob-CH3/Hole-CH3 domains.
  • 16 shows an exemplary trivalent bispecific antibody format.
  • FIG 17 shows an exemplary tetravalent bispecific antibody format.
  • Figure 19 shows a non-reducing SDS-PAGE analysis of the three-step purified bispecific antibody product.
  • Figures 20A-20D show SEC-HPLC profiles of bispecific antibody products according to each purification step ( Figure 20A: Q-SBL1, 2, 3, and 4; Figure 20B: R-SBL1, 2, 3 and 4; Figure 20C: Q-SBL5, R-SBL5 and 6, Figure 20D: Q-SBL6, 7, 8 and 9)
  • 21 shows CE-SDS analysis of three-step purified antibody under non-reducing conditions.
  • FIG 22 shows differential scanning calorimetry (DSC) thermograms of three-step purification Q-SBL2 (A) and Q-SBL9 (B).
  • FIG. 23A-23B show simultaneous double binding to VEGF and HER2 by bispecific antibodies
  • FIG. 23A-A ⁇ : Q-SBL1, ⁇ : Q-SBL2, ⁇ : Q-SBL3.
  • FIG. 23A-B ⁇ : Q-SBL1, ⁇ : R-SBL1, ⁇ : R-SBL2, ⁇ : R-SBL3
  • FIG. 23A-C ⁇ : Q-SBL1, ⁇ : Q-SBL5, ⁇ :R -SBL5, ⁇ : R-SBL6.
  • FIG. 23A-D ⁇ : Q-SBL1, ⁇ : Q-SBL6, ⁇ : Q-SBL7, ⁇ : Q-SBL8.
  • FIG. 23B ⁇ : Q-SBL9.
  • Figure 24 shows the inhibitory effect of the bispecific antibody of Q-SBL9 on human umbilical vein endothelial cells (HUVEC). CCK-8 solutions were treated after 2 days of incubation with different concentrations of the bispecific antibody. Each sample was run in triplicate.
  • Fig. 25 shows the analysis results for Clq protein binding of the bispecific antibody; ⁇ : Trastuzumab, ⁇ : Q-SBL2, ⁇ : Q-SBL9.
  • the present invention provides a first arm that binds to a first antigen comprising VH1-CHa-Fc1 and VL1-CLb; and a second arm that binds to a second antigen comprising VH2-CH1-Fc2 and VL2-CL;
  • VH1 and VH2 are heavy chain variable regions each comprising the same or different antigen-binding regions
  • VL1 and VL2 are light chain variable regions each comprising the same or different antigen-binding regions
  • CHa comprises i) an IgG heavy chain constant region or an IgD heavy chain constant region CH1, and an IgG heavy chain constant region CH2 or CH3, or ii) an IgM heavy chain constant region CH3,
  • the CLb includes i) at least one selected from the group consisting of CL1 including an IgG light chain constant region ⁇ or ⁇ and an IgG heavy chain constant region CH1, CH2, CH3, or ii) an IgM heavy chain constant region CH3,
  • CH1 is an IgG heavy chain constant region CH1
  • CL is an IgG light chain constant region CL
  • Fc1 of the first arm and Fc2 of the second arm combine to form a heavy chain constant region dimer.
  • Binding protein refers to a property of a binding protein capable of modulating the activity of a target by specifically binding to two different targets, for example, a monoclonal antibody that specifically binds to each target or It can be prepared by conjugation of a fragment thereof, has two distinct antigen binding arms (arm: specificity for two targets), and is monovalent for each antigen that binds thereto.
  • the VH1 and VH2 are heavy chain variable regions each including the same or different antigen-binding regions.
  • the VL1 and VL2 are light chain variable regions including the same or different antigen-binding regions, respectively.
  • Polypeptide means any polymeric chain of amino acids.
  • peptide and protein are used interchangeably with the term polypeptide, which also refers to a polymer chain of amino acids.
  • Polypeptide includes natural or synthetic proteins, protein fragments, and polypeptide analogs of protein sequences. Polypeptides may be monomers or polymers.
  • Specific binding or “specifically binds” in the context of an interaction of an antibody, polypeptide, protein or peptide depends on the presence of a particular structure (eg, antigenic determinant or epitope) on the species, depending on the interaction. it means done For example, antibodies generally recognize and bind to specific protein structures rather than proteins. If an antibody is specific for epitope “A”, then the presence of a molecule comprising epitope A (or free, unlabeled A) in a reaction involving labeled “A” with the antibody is dependent on the amount of labeled A bound to the antibody. will reduce
  • An antibody may be any immunoglobulin (Ig) molecule composed of four polypeptide chains, namely two heavy (H) chains and two light (L) chains, or any functional fragment, mutant, having the essential epitope binding characteristics of such an Ig molecule. , means a variant or derivative. Embodiments of such mutants, variants or derivatives are discussed below, but are not limited thereto.
  • Ig immunoglobulin
  • “Monoclonal antibody” refers to an antibody obtained from a substantially homogeneous population of antibodies, i.e., the individual antibodies comprising the population are identical except for possible naturally occurring mutations that may be present in trace amounts. Monoclonal antibodies are highly specific, being directed against a single antigenic site. In contrast to conventional (polyclonal) antibody preparations, which typically include different antibodies directed against different determinants (epitopes), each monoclonal antibody is directed against a single determinant on the antigen.
  • Epitope refers to a protein determinant to which an antibody can specifically bind. Epitopes are usually composed of a group of chemically active surface molecules, such as amino acids or sugar side chains, and generally have specific three-dimensional structural characteristics as well as specific charge properties. Conformational and nonstereoscopic epitopes are distinguished in that in the presence of a denaturing solvent the binding to the former is lost but not to the latter.
  • a "humanized" form of a non-human (eg, murine) antibody is a chimeric antibody that contains minimal sequence derived from non-human immunoglobulin.
  • a humanized antibody is a non-human species (donor antibody) that retains the desired specificity, affinity and ability for residues from the hypervariable region of the recipient, eg, mouse, rat, rabbit or non-human. It is a human immunoglobulin (recipient antibody) replaced with residues from a primate hypervariable region.
  • Human antibody refers to a molecule derived from human immunoglobulin, in which all amino acid sequences constituting an antibody, including complementarity determining regions and structural regions, are composed of human immunoglobulin.
  • each heavy chain consists of a heavy chain variable region (denoted as HCVR or VH) and a heavy chain constant region.
  • the heavy chain constant region consists of three domains, CH1, CH2 and CH3.
  • Each light chain is composed of a light chain variable region and a light chain constant region.
  • the light chain constant region consists of one domain, CL.
  • the VH and VL regions can again be divided into regions of hypervariability called complementarity determining regions (CDRs), interspersed with regions that are more conserved, called framework regions (FR).
  • CDRs complementarity determining regions
  • Variable region refers to the light and heavy chain portions of an antibody molecule comprising the amino acid sequences of complementarity determining regions (CDRs; ie, CDR1, CDR2, and CDR3), and framework regions (FR).
  • CDRs complementarity determining regions
  • FR framework regions
  • VH refers to the variable region of the heavy chain.
  • VL refers to the variable region of the light chain.
  • CDR complementarity determining region
  • CDR1, CDR2, and CDR3 refers to the amino acid residues of the antibody variable region that are required for antigen binding. Each variable region is typically identified as CDR1, CDR2 and CDR3. It has three CDR regions.
  • FRs Framework regions
  • Each variable region typically has four FRs identified as FR1, FR2, FR3 and FR4.
  • An immunoglobulin molecule can be of any type (eg, IgG, IgE, IgM, IgD, IgA and IgY), class (eg, IgG1, IgG2, IgG3, IgG4, IgA1 and IgA2) or subclass.
  • the Fab fragment has a structure having a light chain and heavy chain variable regions, a light chain constant region and a heavy chain first constant region (CH1), and has one antigen-binding site.
  • Fab' fragments differ from Fab in that they have a hinge region comprising one or more cysteine residues at the C-terminus of the heavy chain CH1 domain.
  • F(ab')2 is formed when a cysteine residue in the hinge region of Fab' forms a disulfide bond.
  • Fv is a minimal antibody fragment having only a heavy chain variable region and a light chain variable region.
  • a double-chain Fv two-chain Fv
  • the heavy chain variable region and the light chain variable region are connected by a non-covalent bond
  • single-chain Fv scFv
  • scFv is generally a heavy chain variable region and a light chain variable region through a peptide linker. It is linked by this covalent bond or is directly linked at the C-terminus, so that it can form a dimer-like structure like a double-stranded Fv.
  • Such antibody fragments can be obtained using proteolytic enzymes (for example, by restriction digestion of the whole antibody with papain to obtain Fab, and by digestion with pepsin to obtain F(ab')2 fragments), gene It can also be produced through recombinant technology.
  • an “antigen-binding portion” is one or more antibody fragments having specific binding ability to an antigen, and may specifically bind to another antigen, and thus may be bispecific, bispecific or multispecific.
  • the antigen-binding portion is contained in the heavy chain variable region of VH1 or VH2 and the light chain variable region of VL1 or VL2, each comprising the same or different antigen-binding regions.
  • an IgG CH3 dimer may be additionally introduced into the C-terminal portion of the Fab or between the variable region and the constant region of the Fab in one of the two Fab regions.
  • an IgG CH3 dimer may be additionally introduced into the C-terminal portion of the Fab or between the variable region and the constant region of the Fab in one of the two Fab regions.
  • the two arms of the Fab region may form an asymmetric conformation.
  • the CH1/CL region in one of the two Fab regions can introduce various kinds of CH1 domains. Through this, it is possible to prepare a dual-target antibody or a multi-target antibody having excellent productivity and stability.
  • the light chain mis-pairing region was intended to dramatically reduce the mis-pairing frequency by additionally introducing a constant region of the immunoglobulin structure.
  • a constant region of the immunoglobulin structure By introducing the known constant region domain of the heavy chain into one of the two Fab arms, it was induced to prevent light chain mispairing.
  • the bispecific antibody of the first candidate has no structural modification in the left arm (second arm) in the two Fab portions that bind the target, and additionally introduces an Ig constant domain (CH3) into the right arm (first arm), , IgG1 CH1 and other types of CH1 are introduced instead of IgG1 CH1, and the heterodimer structure of the heavy chain can introduce a knob-in-hole structure.
  • CH3 Ig constant domain
  • the second candidate bispecific antibody may alter the right Fab arm region in the two Fab regions that bind the target.
  • the altered portion may change the positions of the CH3 domain and the CH1 domain in the bispecific antibody of the first candidate.
  • the third candidate bispecific antibody may be a form in which CH1/CL is substituted with CH3 of IgM in some cases.
  • the CHa includes i) an IgG heavy chain constant region or an IgD heavy chain constant region CH1, and an IgG heavy chain constant region CH2 or CH3, or ii) an IgM heavy chain constant region CH3.
  • the CHa may be derived from IgG1, IgG2, IgG3, IgG4, IgD or IgM.
  • CHa may include one or more selected from the group consisting of heavy chain constant regions CH1, CH2, CH3 derived from IgG1, IgG2, IgG3, IgG4, IgD or IgM.
  • CHa in the first arm is derived from the heavy chain constant region CH1 from IgG1, IgG2, IgG3, IgG4, IgD or IgM, and from IgG1, IgG2, IgG3, IgG4, IgD or IgM in the order from N-terminus to C-terminus in the first arm.
  • CH3 may be included.
  • CHa is, in the order of N-terminus to C-terminus, of the first arm heavy chain constant region CH3 from IgG1, IgG2, IgG3, IgG4, IgD or IgM and heavy chain from IgG1, IgG2, IgG3, IgG4, IgD or IgM It may include a constant region CH1. In some cases, CHa may include an IgM-derived heavy chain constant region CH3.
  • the CLb includes i) at least one selected from the group consisting of CL1 including an IgG light chain constant region ⁇ or ⁇ and an IgG heavy chain constant region CH1, CH2, CH3, or ii) an IgM heavy chain constant region CH3.
  • the CLb may be derived from IgG1, IgG2, IgG3, IgG4, IgD or IgM.
  • CLb is composed of CL1 containing light chain constant regions ⁇ or ⁇ derived from IgG1, IgG2, IgG3, IgG4, IgD or IgM and heavy chain constant regions CH1, CH2, CH3 derived from IgG1, IgG2, IgG3, IgG4, IgD or IgM It may include one or more selected from the group.
  • CLb is a CL1 comprising a light chain constant region ⁇ or ⁇ derived from IgG1, IgG2, IgG3, IgG4, IgD or IgM in the order of N-terminus to C-terminus in the first arm, and IgG1, IgG2, IgG3, It may include an IgG4, IgD or IgM-derived heavy chain constant region CH3.
  • CLb in the first arm, is an IgG1, IgG2, IgG3, IgG4, IgD or IgM-derived CH3 and an IgG1, IgG2, IgG3, IgG4, IgD or IgM light chain constant region ⁇ in the order of N-terminus to C-terminus. or CL1 comprising ⁇ .
  • CLb may include an IgM-derived heavy chain constant region CH3.
  • CH1 is an IgG heavy chain constant region CH1
  • CL is an IgG light chain constant region CL.
  • CH1 and CL may be derived from IgG1, IgG2, IgG3, IgG4 or IgD.
  • the CH1 and CL may have the same structure as the Fab fragment through non-covalent interaction.
  • Fc region is used to define the C-terminal region of an immunoglobulin heavy chain that can be generated by papain digestion of an intact antibody.
  • the Fc region may be a native sequence Fc region or a variant Fc region.
  • the Fc region of an immunoglobulin generally comprises two constant domains, a CH2 domain and a CH3 domain, and optionally a CH4 domain.
  • each of CHa and CLb may include CH3.
  • CHa and CLb may include CH3 derived from IgG1, IgG2, IgG3, or IgG4, respectively.
  • a dimer may be formed through the CHa and CLb covalent or non-covalent interconnection.
  • the CHa and CLb may be in the form of an interchain linkage without a disulfide bond or a disulfide bond.
  • the dimer formed through CH3 included in each of CHa and CLb of the first arm, and CH3 dimer in the Fab region including CH1 and CL1 included in each of CHa and CLb are linked via a disulfide bond, and CH1 and CL1 are They can be linked without disulfide bonds.
  • the CH3 domain and the CH1 domain may be connected by a linker.
  • the linker may be a peptide linker, and may include about 5-25 aa residues, or specifically about 5-10 aa residues.
  • hydrophilic amino acids such as glycine and/or serine may be included, but are not limited thereto.
  • the linker is, for example, a glycine linker (G, Gly)p (p is 1 to 10), GS linker (G n S) m (n, m is 1 to 10) in order to impart structural flexibility.
  • the linker may include GGGGS or (GGGGS)2, or 5-10 aa glycine in (G, Gly)p where p is 5-10.
  • Fc 1 of the first arm and Fc 2 of the second arm include CH2 and CH3 monomers of the heavy chain constant region, respectively.
  • the monomer refers to one domain of a dimer formed through two constant domains CH2-CH3 having the same amino acid sequence of the heavy chain constant region Fc.
  • Fc 1 of the first arm and Fc 2 of the second arm combine to form a heavy chain constant region dimer.
  • the dimer may include a homodimer formed by bonding between constant domains CH3 having the same amino acid sequence or a heterodimer formed by bonding between constant domains CH3 having different amino acid sequences.
  • a disulfide bond may be included between the CH3 pair of CHa and CLb or the CH3 pair of Fc, or may be interchain linked without a disulfide bond.
  • CH1 of CHa and CL1 of CLb may be linked through or without a disulfide bond.
  • CH1 of CHa and CL1 of CLb may be linked without a disulfide bond.
  • Each of CHa and CLb includes CH3, and CH3 of CHa and CH3 of CLb are linked to form a dimer.
  • the CHa and CLb each include CH3, and CH3 may form a dimer through a disulfide bond.
  • Each of CHa and CLb includes CH3, and CH3 of CHa and CH3 of CLb are linked to form a dimer.
  • the CHa and CLb each include CH3, and CH3 may form a dimer through a disulfide bond.
  • one of the dimers formed by connecting CH3 among CHa and CLb includes at least one selected from the group consisting of Y349C, S354C, T366S, T366W, L368A and Y407V, S354C, Y349C, T366W, T366S , L368A and Y407V may include at least one selected from the group consisting of a knob-in-hole structure.
  • One of the dimers includes at least one selected from the group consisting of T366W, S354C, and Y349C, and the other includes at least one selected from the group consisting of S354C, Y349C, T366S, L368A, and Y407V.
  • -in-hole structure.
  • one of the dimers formed by connecting CH3 of CHa and CH3 of CLb includes S354C, T366S, L368A, and Y407V, and the other includes Y349C and T366W, and may include a knob-in-hole structure.
  • CH1 of CH1 and CL1 of CLb are linked without a disulfide bond
  • any one of CH3 of CH3 and CH3 of CLb includes at least one selected from the group consisting of Y349C, T366S, L368A and Y407V, the other contains S354C and/or T366W
  • CH3 of CHa and CH3 of CLb contains at least one selected from the group consisting of S354C, T366S, L368A and Y407V, and the other contains Y349C and / or T366W.
  • CH1 of CHa and CL1 of CLb are linked without a disulfide bond
  • any one of CH3 of CH3 and CH3 of CLb includes Y349C, T366S, L368A and Y407V, and the other includes S354C and T366W
  • any one of CH3 of CHa and CH3 of CLb may include S354C, T366S, L368A and Y407V, and the other may include Y349C and T366W.
  • one of the CH3 dimers of the Fc comprises at least one selected from the group consisting of Y349C, S354C, T366S, T366W, L368A and Y407V, and S354C, Y349C, T366W, T366S, L368A and Y407V At least one selected from the group may include a knob-in-hole structure among dimers.
  • the Fc domain of IgG (Immunoglobulin G) is mutated to stably form an asymmetric heterodimer.
  • the heterodimeric structure of the heavy chain introduces a known knock-in-hole structure.
  • the knock-in-hole principle is the structure most often introduced by various developers. A knob-in-hole structure is introduced, but the knob-in-hole structure also does not form 100% heterodimer, and a high heterodimer ratio is established by establishing optimal transfection conditions. By showing , it was intended to improve the production yield.
  • the knob-into-hole technology converts residues located in the hydrophobic core of the CH3 domain interaction site into hydrophobic amino acids with a large side chain in one heavy chain CH3 domain into a hydrophobic amino acid with a small side chain. Substituted to create a hole structure, and in the other heavy chain CH3 domain, a knob structure was created by substituting hydrophobic amino acid residues with a small side chain size with a large side chain hydrophobic amino acid to co-express a heavy chain constant region mutation pair into which two mutant pairs were introduced. A dimer heavy chain constant region may be formed.
  • one or more selected from the group consisting of S354C, Y349C, T366W, T366S, L368A and Y407V among CH3 of CH3 or Fc of CHa and CLb may be included.
  • a hole structure among CH3 of CHa and CLb or CH3 of Fc it may include, for example, one or more selected from the group consisting of Y349C, S354C, T366S, T366W, L368A and Y407V.
  • it may include, for example, T366W to form the knob structure.
  • T366W to form the knob structure.
  • one or more selected from the group consisting of T366S, L368A, and Y407V may be included.
  • the knob structure for example, it may include Y349C, T366W.
  • one or more selected from the group consisting of S354C, T366S, L368A, and Y407V may be included.
  • VH/VL amino acid sequences of bevacizumab and trastuzumab can be used.
  • Amino acid numbering may be according to the IMGT numbering system (based on the Eu index according to http://www.imgt.org/IMGTScientificChart/Numbering/Hu_IGHGnber.html#refs).
  • the heavy chain region that binds another epitope (right first arm) is connected to the C-terminus of the CH1 domain, and the CH3 domain has a hole structure and has T366S, L368A, and Y407V mutations.
  • disulfide bonds may be introduced. In this case, it has the Y349C mutation.
  • the CH3 domain linked to the C-terminus of the CH2 domain of the heavy chain region has a hole structure and has Y349C, T366S, L368A, and Y407V mutations by introducing a disulfide bond. In some cases, disulfide bonds may not be introduced.
  • the CH3 domain linked to the C-terminus of the CL domain of the light chain region has a knob structure and has a T366W mutation.
  • disulfide bonds may be introduced. In this case, it has the S354C mutation.
  • CH1 domains may be introduced into the heavy chain region CH1 domain.
  • E216, P217, K218, S219, C220 can be added to the C-terminus of the IgG1 CH1 domain of the heavy chain region (right first arm) that binds to another epitope. This is to form a disulfide bond with the CL domain.
  • the CH3 domain sequence follows IGHG1 of the Uniprot site (https://www.uniprot.org/uniprot/P01857).
  • the IgD CH1 domain sequence is an amino acid sequence from amino acids 1 to 98 at https://www.uniprot.org/uniprot/P01880.
  • the IgM CH1 domain sequence is an amino acid sequence from amino acids 1 to 105 at https://www.uniprot.org/uniprot/P01871.
  • [H] has a knob structure in the CH3 domain of the heavy chain region that binds to one (second arm from the left) epitope, and has S354C, T366W mutations to introduce a disulfide bond.
  • disulfide bonds may not be introduced and remain S354.
  • the CH3 domain linked to the C-terminus of the VH domain has a hole structure and has T366S, L368A, and Y407V mutations.
  • disulfide bonds may be introduced. It has the Y349C mutation.
  • the CH3 domain linked to the C-terminus of the CH2 domain of the heavy chain region has a hole structure and has mutations of Y349C, T366S, L368A, and Y407V by introducing a disulfide bond. In some cases, disulfide bonds may not be introduced. It remains Y349.
  • the CH3 domain connected to the C-terminus of the VL domain of the light chain region has a knob and T366W mutation.
  • disulfide bonds may be introduced. It has the S354C mutation.
  • the heavy chain region CH1 domain can be introduced into various types of CH1 domains.
  • Elbow sequences A118 and S119 are added to the C-terminus of the VH domain of the heavy chain region that binds another epitope (right first arm), followed by various types of CH3 domains.
  • the sequence of the CH3 domain includes P343 to K447 with elbow sequences G341 and Q342 removed from the sequence shown at https://www.uniprot.org/uniprot/P01857.
  • Elbow sequences R108 and T109 are added to the C-terminus of the VL domain of the light chain region, followed by various types of CH3 domains.
  • [N] has a knob structure in the CH3 domain of the heavy chain region that binds to one (second arm from the left) epitope, and has S354C, T366W mutations to introduce disulfide bonds.
  • Elbow sequences A118 and S119 are added to the C-terminus of the VH domain of the heavy chain region that binds another epitope (right first arm), followed by an IgM CH3 domain.
  • Elbow sequences R108 and T109 are added to the C-terminus of the VL domain of the light chain region, followed by an IgM CH3 domain.
  • the IgM CH3 domain sequence is an amino acid sequence from https://www.uniprot.org/uniprot/P01871 to amino acids 220-323.
  • [S, U] has a knob structure in the CH3 domain of the heavy chain region that binds to one (second arm from the left) epitope, and has S354C, T366W mutations to introduce disulfide bonds.
  • Elbow sequences A118 and S119 are added to the C-terminus of the heavy chain region VH domain that binds another epitope (right first arm), followed by a GGGGS linker.
  • GGGGS linkers are linked in various lengths with the number of GGGGS repeats ranging from 1 to 5.
  • the present invention provides a first arm that binds to a first antigen comprising VH1-CHa-Fc1 and VL1-CLb; and a second arm that binds to a second antigen comprising VH2-CH1-Fc2 and VL2-CL;
  • VH1 and VH2 are heavy chain variable regions each comprising the same or different antigen-binding regions
  • VL1 and VL2 are light chain variable regions each comprising the same or different antigen-binding regions
  • the CHa comprises an IgG heavy chain constant region CH3 and an IgG heavy chain constant region CH1,
  • the CLb includes CL1 including an IgG light chain constant region ⁇ or ⁇ and an IgG heavy chain constant region CH3,
  • CH1 is an IgG heavy chain constant region CH1
  • CL is an IgG light chain constant region CL
  • Fc1 of the first arm and Fc2 of the second arm combine to form a heavy chain constant region dimer.
  • the IgG heavy chain constant region CH3 may include an IgG1, IgG2, IgG3 or Ig4-derived heavy chain constant region CH3.
  • the IgG heavy chain constant region CH1 may include an IgG1, IgG2, IgG3 or Ig4-derived heavy chain constant region CH1.
  • the IgG heavy chain constant region CH1 may include an IgG1 or Ig4-derived heavy chain constant region CH1.
  • the CHa may include an IgG heavy chain constant region CH1 and an IgG heavy chain constant region CH3 in the order from N-terminus to C-terminus in the first arm.
  • the CHa may include an IgG heavy chain constant region CH3 and an IgG heavy chain constant region CH1 in the order from N-terminus to C-terminus in the first arm.
  • the CLb may include CL1 including an IgG light chain constant region ⁇ or ⁇ in the order from N-terminus to C-terminus in the first arm, and an IgG-derived heavy chain constant region CH3.
  • CLb may include CL1 including an IgG-derived heavy chain constant region CH3 and an IgG-derived light chain constant region ⁇ or ⁇ in the order of N-terminus to C-terminus in the first arm.
  • CH1 of CHa and CL1 of CLb may be linked through or without a disulfide bond.
  • CH1 of CHa and CL1 of CLb may be linked without a disulfide bond.
  • Each of CHa and CLb includes CH3, and CH3 of CHa and CH3 of CLb are linked to form a dimer.
  • the CHa and CLb each include CH3, and CH3 may form a dimer through a disulfide bond.
  • the dimer formed through CH3 included in each of CHa and CLb of the first arm, and CH3 dimer in the Fab region including CH1 and CL1 included in each of CHa and CLb are linked via a disulfide bond, and CH1 and CL1 are They can be linked without disulfide bonds.
  • One of the dimers includes at least one selected from the group consisting of T366W, S354C, and Y349C, and the other includes at least one selected from the group consisting of S354C, Y349C, T366S, L368A, and Y407V.
  • -in-hole structure.
  • one of the dimers formed by connecting CH3 of CHa and CH3 of CLb includes S354C, T366S, L368A, and Y407V, and the other includes Y349C and T366W, and may include a knob-in-hole structure.
  • CH1 of CH1 and CL1 of CLb are linked without a disulfide bond
  • any one of CH3 of CH3 and CH3 of CLb includes at least one selected from the group consisting of Y349C, T366S, L368A and Y407V, the other contains S354C and/or T366W
  • CH3 of CHa and CH3 of CLb contains at least one selected from the group consisting of S354C, T366S, L368A and Y407V, and the other contains Y349C and / or T366W.
  • CH1 of CHa and CL1 of CLb are linked without a disulfide bond
  • any one of CH3 of CH3 and CH3 of CLb includes Y349C, T366S, L368A and Y407V, and the other includes S354C and T366W
  • any one of CH3 of CHa and CH3 of CLb may include S354C, T366S, L368A and Y407V, and the other may include Y349C and T366W.
  • CH3 of CHa or CH3 of CLb may include the sequences of SEQ ID NOs: 8 to 13.
  • CH3 of CHa or CH3 of CLb may include a mutation of Knob (T366W) (SEQ ID NO: 8) or Hole (T366S/L368A/Y407V) (SEQ ID NO: 9) of the IgG1 CH3 domain.
  • IgG1 CH3 domain is mutated to generate cysteine for disulfide bond, i.e.
  • Knob(S354C/T366W) (SEQ ID NO: 10) or Hole (Y349C/T366S/L368A/Y407V) (SEQ ID NO: 11) or Knob (Y349C/T366W) ) (SEQ ID NO: 12) or Hole (S354C/T366S/L368A/Y407V) (SEQ ID NO: 13).
  • CH3 and CH1 of CHa and CH3 and CL1 of CLb may be connected by a linker.
  • the linker may be a peptide linker, and may have a length of about 5-25 aa, specifically, about 5-10 aa length.
  • hydrophilic amino acids such as glycine and/or serine may be included, but are not limited thereto.
  • the linker includes, for example, a glycine linker (G, Gly)p (p is 1 to 10), a GS linker (GnS)m (n, m is 1 to 10) in order to impart structural flexibility. can do.
  • the linker may include GGGGS or (GGGGS)2, or 5-10 aa glycine in which p is 5-10 in (G, Gly)p.
  • the CH3 dimer included among the dimers formed by Fc1 of the first arm and Fc2 of the second arm may be linked to each monomer through a disulfide bond or without a disulfide bond.
  • one of the CH3 dimers of the Fc comprises at least one selected from the group consisting of Y349C, S354C, T366S, T366W, L368A and Y407V, and S354C, Y349C, T366W, T366S, L368A and Y407V
  • At least one selected from the group may include a knob-in-hole structure among dimers.
  • the first arm and the second arm may be connected through a hinge.
  • the first arm and the second arm may be connected through a hinge formed including one or more sequences selected from the group consisting of:
  • the structure of the dual specific antibody format that simultaneously binds to the first antigen and the second antigen is as follows.
  • the bispecific antibody format is formed by combining a total of four polypeptides, two heavy (H) chains and two light chains.
  • the configuration of the heavy and light chains of the first arm that binds to the first antigen is as follows.
  • the heavy chain comprises VH-CH3a-CH1a-Hinge-CH2-CH3b or VH-CH1a-CH3a-Hinge-CH2-CH3b.
  • CH3a includes the sequence of an IgG1 CH3 domain
  • CH1a may include the sequence of an IgG1 CH1 domain (SEQ ID NO: 5) or an IgG4 CH1 domain (SEQ ID NOs: 18, 19) or an IgD CH1 domain (SEQ ID NO: 20).
  • CH3a or CH3b may comprise a mutation of Knob (T366W) (SEQ ID NO: 8) or Hole (T366S/L368A/Y407V) (SEQ ID NO: 9) of the IgG1 CH3 domain.
  • T366W Knob
  • T366S/L368A/Y407V Hole
  • IgG1 CH3 domain is mutated to generate cysteine for disulfide bond, i.e.
  • Knob(S354C/T366W) (SEQ ID NO: 10) or Hole (Y349C/T366S/L368A/Y407V) (SEQ ID NO: 11) or Knob (Y349C/T366W) ) (SEQ ID NO: 12) or Hole (S354C/T366S/L368A/Y407V) (SEQ ID NO: 13).
  • the light chain of the first arm that binds to the first antigen consists of VL-CH3c-CLb or VL-CLb-CH3c.
  • CH3c refers to the IgG1 CH3 domain, and includes a mutation in Knob (T366W) (SEQ ID NO: 8) or Hole (T366S/L368A/Y407V) (SEQ ID NO: 9).
  • IgG1 CH3 domain is mutated to generate cysteine for disulfide bond, i.e.
  • Knob(S354C/T366W) (SEQ ID NO: 10) or Hole (Y349C/T366S/L368A/Y407V) (SEQ ID NO: 11) or Knob (Y349C/T366W) ) (SEQ ID NO: 12) or Hole (S354C/T366S/L368A/Y407V) (SEQ ID NO: 13).
  • CLb may be introduced with kappa type (SEQ ID NOs: 14,15) or Lambda type (SEQ ID NOs: 16,17).
  • the configuration of the heavy and light chains of the second arm that binds to the second antigen is as follows. It consists of VH-CH1-Hinge-CH2-CH3d or VH-CH1-Hinge-CH2-CH3d.
  • the IgG1 CH3d domain may comprise a mutation in Knob(T366W) (SEQ ID NO: 8) or Hole (T366S/L368A/Y407V) (SEQ ID NO: 9).
  • the IgG1 CH3d domain may also contain a mutation to generate a cysteine for a disulfide bond, ie, Knob(S354C/T366W) (SEQ ID NO: 10) or Hole (Y349C/T366S/L368A/Y407V) (SEQ ID NO: 11).
  • the composition of the light chain may include VL-CLb.
  • CLb may be introduced with kappa type (SEQ ID NO: 14) or Lambda type (SEQ ID NO: 16).
  • the structure of the heavy and light chains of the first arm that binds to the first antigen in the Q-SBL1 (SEQ ID NO: 31,32,62,63) bispecific antibody format is as follows.
  • the structure of the heavy chain of the first arm is in the order of VH-CH3a-Linker-CH1a-Hinge-CH2-CH3b.
  • the amino acid sequence of Linker was determined as GGGGSGGGGS (SEQ ID NO: 28).
  • the CH1a domain may use an IgG1 CH1 domain (SEQ ID NO: 5).
  • the hinge region may have an amino acid sequence of DKTHTCPPCP (SEQ ID NO: 22).
  • the CH3a domain includes a mutation for Hole mutation and formation of a disulfide bond with CH3c of the light chain, the mutant portion of the CH3a domain may be Hole (Y349C/T366S/L368A/Y407V) (SEQ ID NO: 11).
  • the CH3b domain may contain a mutation of Hole (T366S/L368A/Y407V) (SEQ ID NO: 9).
  • an elbow sequence AS may be added (SEQ ID NO: 25).
  • the configuration of the first arm light chain may comprise VL-CH3c-Linker-CLb.
  • the CH3c domain includes a mutation in Knob and a mutation for a disulfide bond with CH3a of the heavy chain, and the mutant portion of the CH3c domain may be Knob (S354C/T366W) (SEQ ID NO: 10).
  • the amino acid sequence of Linker may be GGGGSGGGGS (SEQ ID NO: 28).
  • the CLb domain is composed of a Kappa type, and may include a C216S (Eu numbering) mutation to remove a disulfide bond with the CH1 domain of the heavy chain of the first arm (SEQ ID NO: 17).
  • a C214S (Eu numbering) mutation may be included to remove a disulfide bond with the CH1 domain of the heavy chain of the first arm. This means that the disulfide bond to form the CH1a/CLb dimer is completely removed.
  • An elbow sequence RT was added between the VL region and the CH3a region (SEQ ID NO: 26).
  • the configuration of the heavy and light chains of the second arm that binds to the second antigen is as follows.
  • the construction of the heavy chain of the second arm may comprise VH-CH1-CH2-CH3d, and the CH3d domain may comprise a Knob(T366W) (SEQ ID NO:8) mutation.
  • the construction of the light chain of the second arm is VL-CLb.
  • CLb may include kappa type (SEQ ID NO: 14) or Lambda type (SEQ ID NO: 16).
  • R-SBL1 (SEQ ID NOs: 31,32,62,63) bispecific antibody format consists of an IgG4 CH1 domain amino acid sequence in the heavy chain region of the first arm that binds to the first antigen in a different portion from Q-SBL1 However, it may contain a C131S mutation to remove the disulfide bond with CLb of the light chain region of the first arm (SEQ ID NO: 19).
  • the present invention relates to a multispecific antibody comprising said bispecific antibody.
  • Multispecific or “multispecific” refers to a property of a binding protein capable of modulating the activity of a target by specifically binding to three or more different targets, for example, a monoclonal binding specifically to each target. It can be prepared by conjugation of an antibody or fragment thereof, has three or more distinct antigen-binding arms, and is monovalent for each antigen that binds thereto.
  • it may further include one or more antibody fragments that bind to an additional antigen to the N-terminus of the first arm or the second arm or the Fc 1 terminus of the first arm or the Fc 2 terminus of the second arm.
  • An antigen-binding fragment further comprising an antigen-binding fragment binding to an additional antigen to the N-terminus of the first arm or the second arm, or an antigen-binding fragment binding to an additional antigen to the Fc 2 terminus of the Fc 1 of the first arm or the Fc 2 of the second arm may additionally include.
  • the antibody fragment comprises a portion of an intact antibody, the antigen-binding or variable region of an intact antibody.
  • the antibody fragment may comprise a Fab, Fab', F(ab')2, Fv, scFv, or diabody.
  • an antibody fragment comprising VH3-CHa and VL3-CLb that binds to a third antigen may be included at the N-terminus of the first arm.
  • an antibody fragment in the form of scFv that binds to a third antigen at the Fc terminus may be included ( FIG. 7 ).
  • an antibody fragment comprising VH3-CHa and VL3-CLb that binds to a third antigen is included at the N-terminus of the first arm, and an scFv-type antibody that binds to a fourth antigen at the Fc terminus is included.
  • Antibody fragments may be included.
  • an antibody fragment in the form of scFv that binds to a third antigen and a fourth antigen may be included at the Fc terminus ( FIG. 8 ).
  • the dual specificity target form By representing the dual specificity target form, it can be extended to a tri-valent multispecific antibody and a tetra-valent multispecific antibody.
  • the representative dual specific target antibody form when the scFv form or Fab form targeting a new third antigen is linked to the N-terminal or C-terminal portion of the heavy chain region of the first arm or the heavy chain region of the second arm through a Linker, A tri-valent multispecific antibody is possible (FIG. 16).
  • the scFv form or Fab form as a target for the fourth antigen is further linked using a linker, a tetra-valent multispecific antibody is possible ( FIG. 17 ).
  • Variant may mean a mutation, for example, a substitution, addition, and/or deletion of the amino acid sequence constituting the heavy chain variable region and/or the light chain variable region, and any mutation as long as it does not impair antigen binding and efficacy. may be included without limitation.
  • the introduction of mutations in the binding protein according to the present invention may be applied to, for example, an external variable region or an internal variable region, or both an external variable region and an internal variable region.
  • a polypeptide, a binding protein, or a nucleic acid molecule encoding the same is construed to include a sequence exhibiting substantial identity to the sequence set forth in SEQ ID NO:.
  • Substantial identity is at least 61% homology, more preferably, when the sequence of the present invention and any other sequences are aligned to the maximum correspondence, and the aligned sequence is analyzed using an algorithm commonly used in the art. preferably at least 70% homology, even more preferably at least 80% homology, most preferably at least 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, It refers to a sequence showing at least 99% homology.
  • NCBI Basic Local Alignment Search Tool can be accessed from NBCI, etc.
  • the BLSAT can be accessed at www.ncbi.nlm.nih.gov/BLAST/.
  • a method for comparing sequence homology using this program can be found at www.ncbi.nlm.nih.gov/BLAST/blast_help.html.
  • sequences described herein are 60%, 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, It may also include sequences having 95%, 96%, 97%, 98%, 99%, or more homology.
  • homology can be determined by sequence comparison and/or alignment by methods known in the art. For example, a sequence comparison algorithm (ie, BLAST or BLAST 2.0), manual alignment, or visual inspection can be used to determine the percent sequence homology of a nucleic acid or protein of the invention.
  • the present invention also relates to a nucleic acid encoding said bispecific antibody.
  • the first arm and/or the second arm of the bispecific antibody may be recombinantly produced.
  • the nucleic acid is isolated and inserted into a replicable vector for further cloning (amplification of the DNA) or further expression. Based on this, the present invention relates to a vector comprising the nucleic acid from another aspect.
  • Nucleic acid has a meaning comprehensively encompassing DNA (gDNA and cDNA) and RNA molecules, and nucleotides, which are the basic building blocks of nucleic acids, include natural nucleotides as well as analogues in which sugar or base regions are modified. .
  • the sequence of the nucleic acid according to the present invention may be modified. Such modifications include additions, deletions, or non-conservative or conservative substitutions of nucleotides.
  • Vector components generally include, but are not limited to, one or more of the following: a signal sequence, an origin of replication, one or more marker genes, an enhancer element, a promoter, and a transcription termination sequence.
  • the term "vector” refers to a means for expressing a target gene in a host cell, including a plasmid vector; cozmid vector; viral vectors such as bacteriophage vectors, adenoviral vectors, retroviral vectors and adeno-associated viral vectors, and the like.
  • the nucleic acid encoding the antibody is operably linked to a promoter.
  • “Operably linked” means a functional association between a nucleic acid expression control sequence (eg, a promoter, signal sequence, or an array of transcriptional regulator binding sites) and another nucleic acid sequence, whereby the control sequence is linked to the other nucleic acid. to regulate the transcription and/or translation of the sequence.
  • a nucleic acid expression control sequence eg, a promoter, signal sequence, or an array of transcriptional regulator binding sites
  • a strong promoter capable of propagating transcription eg, tac promoter, lac promoter, lacUV5 promoter, lpp promoter, pL ⁇ promoter, pR ⁇ promoter, rac5 promoter, amp promoter, recA promoter, SP6 promoter, trp promoter and T7 promoter
  • a ribosome binding site for initiation of translation e.g, lac promoter, lacUV5 promoter, lpp promoter, pL ⁇ promoter, pR ⁇ promoter, rac5 promoter, amp promoter, recA promoter, SP6 promoter, trp promoter and T7 promoter
  • a promoter derived from the genome of a mammalian cell eg, a metallotionine promoter, a ⁇ -actin promoter, a human heglobin promoter, and a human muscle creatine promoter
  • a mammalian cell eg, a metallotionine promoter, a ⁇ -actin promoter, a human heglobin promoter, and a human muscle creatine promoter
  • Promoters derived from animal viruses e.g., adenovirus late promoter, vaccinia virus 7.5K promoter, SV40 promoter, cytomegalovirus (CMV) promoter, tk promoter of HSV, mouse mammary tumor virus (MMTV) promoter, LTR promoter of HIV , the promoter of Moloney virus, the promoter of Epstein Barr virus (EBV) and the promoter of Loose sarcoma virus (RSV)), and generally has a polyadenylation sequence as a transcription termination sequence.
  • animal viruses e.g., adenovirus late promoter, vaccinia virus 7.5K promoter, SV40 promoter, cytomegalovirus (CMV) promoter, tk promoter of HSV, mouse mammary tumor virus (MMTV) promoter, LTR promoter of HIV , the promoter of Moloney virus, the promoter of Epstein Barr virus (EBV) and the promoter of Loose sarcom
  • the vector may be fused with other sequences to facilitate purification of the antibody expressed therefrom.
  • the sequence to be fused includes, for example, glutathione S-transferase (Pharmacia, USA), maltose binding protein (NEB, USA), FLAG (IBI, USA) and 6x His (hexahistidine; Quiagen, USA).
  • the vector contains an antibiotic resistance gene commonly used in the art as a selection marker, and for example, ampicillin, gentamicin, carbenicillin, chloramphenicol, streptomycin, kanamycin, geneticin, neomycin and tetracycline. There is a resistance gene.
  • the present invention relates to a cell transformed with the above-mentioned vector.
  • the cells used to generate the bispecific antibodies of the invention can be, but are not limited to, prokaryotic, yeast or higher eukaryotic cells.
  • Bacillus genus strains such as Escherichia coli, Bacillus subtilis and Bacillus thuringiensis, Streptomyces, Pseudomonas (eg Pseudomonas putida), Proteus Prokaryotic host cells such as Proteus mirabilis and Staphylococcus (eg, Staphylocus carnosus) can be used.
  • animal cells are of greatest interest, and examples of useful host cell lines include COS-7, BHK, CHO, CHOK1, DXB-11, DG-44, CHO/-DHFR, CV1, COS-7, HEK293, BHK, TM4, VERO, HELA, MDCK, BRL 3A, W138, Hep G2, SK-Hep, MMT, TRI, MRC 5, FS4, 3T3, RIN, A549, PC12, K562, PER.C6, SP2/0, NS-0 , U20S, or may be HT1080, but is not limited thereto.
  • the present invention (a) culturing the cell; and (b) recovering the bispecific antibody from the cultured cells.
  • the cells may be cultured in various media. Among commercially available media, it can be used as a culture medium without limitation. All other essential supplements known to those skilled in the art may be included in appropriate concentrations. Culture conditions, such as temperature, pH, etc., are already in use with the host cells selected for expression, as will be apparent to those skilled in the art.
  • impurities are removed by, for example, centrifugation or ultrafiltration, and the resultant product may be purified using, for example, affinity chromatography. Additional other purification techniques may be used, such as anion or cation exchange chromatography, hydrophobic interaction chromatography, hydroxylapatite chromatography, and the like.
  • the first antigen was determined as a HER2 protein, and the heavy chain variable region amino acid sequence (SEQ ID NO: 3) and light chain variable region amino acid sequence (SEQ ID NO: 4) of Trastuzumab binding to HER2 were used for VH or VL in a dual-specific antibody format.
  • the second antigen was determined to be a VEGF-A target, and the heavy chain variable region amino acid sequence of bevacizumab (SEQ ID NO: 1), and the light chain variable region amino acid sequence (SEQ ID NO: 2) were used for VH or VL in a dual specific antibody format. . Amino acid sequence information was obtained through https://go.drugbank.com/.
  • the candidate group to which the linker of GGGGS is applied is Q-SBL2 (SEQ ID NO: 33,34,62,63) and R-SBL2 (SEQ ID NO: 51,52,62,63), and the candidate group to which the linker of GGGGSGGGGS is applied is Q-SBL1 (SEQ ID NO: 51,52,62,63) No.
  • an IgG1 hinge (EPKSSDKTHTCPPCP) (SEQ ID NO: 23) or an IgG4 hinge (ESKYGPPCPPCP) (SEQ ID NO: 24) was introduced into the amino acid sequence of the hinge region of the first arm into Q-SBL1 and R-SBL1 and the second arm ( arm), the hinge region amino acid sequence of EPKSCDKTHTCPPCP (SEQ ID NO: 21), and all candidates were the same, deriving a candidate group ( FIGS. 13A and 13B ).
  • the hinge region of the heavy chain region of the first arm is Q-SBL5 (SEQ ID NOs: 39,40,62,63) using an IgG1 hinge (EPKSSDKTHTCPPCP) (SEQ ID NO: 23).
  • R-SBL5 (SEQ ID NO: 57,58,62,63) is R-SBL5 (SEQ ID NO: 57,58,62,63) using IgG1 hinge (EPKSSDKTHTCPPCP) (SEQ ID NO: 23) as the hinge region of the first arm heavy chain region in R-SBL1
  • It is R-SBL6 (SEQ ID NO: 59,60,62,63) using an IgG4 hinge (ESKYGPPCPPCP) (SEQ ID NO: 24) as the hinge region of the heavy chain region of one arm.
  • a C220S (Eu numbering) mutation is included (SEQ ID NO: 23). The mutation is to remove the disulfide bond with CLb.
  • a candidate group was derived by exchanging the positions of the CH3 domain mutated with Knob or Hole included in the CH3 domain (FIG. 14). More specifically, in Q-SBL1, the CH3 domain of the Fab region in the first arm heavy chain region includes a Hole (Y349C/T366S/L368A/Y407V) (SEQ ID NO: 11), and the CH3 domain of the Fc region is Hole (T366S/L368A/Y407V) (SEQ ID NO: 9) is included.
  • the CH3 domain of the Fab region in the first arm light chain region includes Knob (S354C/T366W) (SEQ ID NO: 10).
  • the CH3 domain of the Fc region in the second arm heavy chain region includes Knob (T366W) (SEQ ID NO: 8).
  • Q-SBL6 (SEQ ID NOs: 41,42,62,63) includes Knob (S354C/T366W) (SEQ ID NO: 10) in the CH3 domain of the Fab region in the heavy chain region of the first arm, and CH3 of the Fc region
  • the domain contains Hole (T366S / L368A / Y407V) (SEQ ID NO: 9).
  • the CH3 domain of the Fab region in the first arm light chain region includes a Hole (Y349C/T366S/L368A/Y407V) (SEQ ID NO: 11).
  • the CH3 domain of the Fc region in the second arm heavy chain region includes Knob (T366W) (SEQ ID NO: 8).
  • Q-SBL7 (SEQ ID NOs: 43,44,62,64) is the CH3 domain of the Fab region in the first arm heavy chain region Hole (Y349C / T366S / L368A / Y407V) (SEQ ID NO: 11) is included,
  • the CH3 domain of the Fc region contains Knob (T366W) (SEQ ID NO: 8).
  • the CH3 domain of the Fab region in the first arm light chain region includes Knob (S354C/T366W) (SEQ ID NO: 10).
  • the CH3 domain of the Fc region in the second arm heavy chain region contains Hole (Y349C / T366S / L368A / Y407V) (SEQ ID NO: 11).
  • Q-SBL8 (SEQ ID NOs: 45,46,62,64) includes Knob (S354C/T366W) (SEQ ID NO: 10) in the CH3 domain of the Fab region in the first arm heavy chain region, and CH3 of the Fc region The domain contained Knob(T366W) (SEQ ID NO:8).
  • the CH3 domain of the Fab region in the first arm light chain region includes a Hole (Y349C/T366S/L368A/Y407V) (SEQ ID NO: 11).
  • the CH3 domain of the Fc region in the second arm heavy chain region contains Hole (T366S/L368A/Y407V) (SEQ ID NO: 9).
  • Q-SBL9 (SEQ ID NO: 47,48,61,62) generated a disulfide bond through point mutation in other amino acids of Knob and Hole in the CH3 domain of the heavy chain region of the first arm, and this is the biggest feature (Fig. 15).
  • the Q-SBL9 bispecific antibody format has the following configuration of the heavy and light chains of the first arm binding to the first antigen.
  • the structure of the heavy chain of the first arm is in the following order: VH-CH3a-Linker-CH1-Hinge-CH2-CH3b.
  • the amino acid sequence of the linker was determined by GGGGS (SEQ ID NO: 27).
  • the CH1 region uses the IgG1 CH1 domain.
  • the amino acid sequence of the Hinge region was EPKSSDKTHTCPPCP (SEQ ID NO: 23).
  • the CH3a domain includes mutations for Hole mutation and light chain CH3c and disulfide bonds, and the mutant portion of the CH3a domain is Hole (S354C/T366S/L368A/Y407V) (SEQ ID NO: 13).
  • the CH3b domain contains a mutation in Hole (Y349C/T366S/L368A/Y407V) (SEQ ID NO: 11).
  • the CH3b domain of the first arm forms a disulfide bond with the CH3d domain of the second arm.
  • An elbow sequence was added between the VH region and the CH3a region (SEQ ID NO: 25).
  • the light chain of the first arm consists of VL-CH3c-Linker-CLb.
  • the CH3c domain of the light chain includes a mutation in Knob and a mutation for a disulfide bond with CH3a of the heavy chain, the mutant portion of the CH3c domain is Knob (Y349C/T366W) (SEQ ID NO: 12).
  • the amino acid sequence of the linker is GGGGS (SEQ ID NO: 27).
  • the CLb domain is composed of a Kappa type (SEQ ID NO: 15), and the CLb domain contains a C216S (Eu numbering) mutation to remove a disulfide bond with the CH1 domain of the heavy chain of the first arm.
  • An elbow sequence was added between the VL region and the CH3a region (SEQ ID NO: 26).
  • the configuration of the heavy and light chains of the second arm that binds to the second antigen is as follows.
  • the heavy chain of the second arm consists of VH-CH1-CH2-CH3d, and the CH3d domain contains a Knob(S354C/T366W) (SEQ ID NO: 10) mutation. This part forms a disulfide bond with the CH3b domain of the heavy chain region of the first arm.
  • the composition of the light chain of the second arm is VL-CLb.
  • CLb includes kappa type (SEQ ID NO: 14) or Lambda type (SEQ ID NO: 16).
  • a vector plasmid containing the coding genes for the heavy chain region and the light chain region of the first arm and a vector plasmid containing the coding genes for the heavy chain region and the light chain region of the second arm were prepared. Genes encoding two heavy and light chains were inserted into one vector plasmid. CMV was used as the promoter, and woodchuck hepatitis virus post-transcriptional regulatory element (WPRE) was inserted after the coding gene to increase the expression level during transient expression.
  • WPRE woodchuck hepatitis virus post-transcriptional regulatory element
  • Octet quantitative analysis using a Protein A biosensor (Fortebio 18-5010) was used.
  • a known IgG1 type sample was used as a standard material to obtain a calibration curve, and the expression level of the sample was calculated using the calibration curve.
  • AKTA york 25/150 (Cytiva) using Protein A affinity chromatography, ion exchange chromatography (IEX), and hydrophobic interaction chromatography (HIC) for research and various analyzes on the bispecific antibody of the present invention
  • IEX ion exchange chromatography
  • HIC hydrophobic interaction chromatography
  • the culture solution obtained by expressing the bispecific antibody candidates of the present invention was filtered using 0.22 ⁇ m filter paper, and then primary purification was performed using a MabSelect SuRe (Cytiva) column, a type of Protein A affinity chromatography.
  • the first purification process was specifically performed as follows. After equilibrating the MabSelect Sure column with 50 mM Tris (pH 7.0) buffer solution, the filtered culture solution was loaded onto the column. Proteins not bound to the column were washed away by flowing the equilibration buffer solution for 5 cv. Thereafter, impurities non-specifically binding to the MabSelect Sure column were removed with a 50 mM Tris (pH 7.0) buffer solution containing 0.5 M sodium chloride and a 20 mM Bis-Tris (pH 5.5) buffer solution.
  • the bispecific antibody specifically binding to the MabSelect Sure column was eluted for 4 cv using a 0.2 M Glycine (pH 3.2) buffer solution.
  • the eluted bispecific antibody sample was neutralized to pH 5.0 using a 1.0 M Tris buffer solution, and then filtered with 0.22 ⁇ m filter paper.
  • Capto SP Cosmetic Standardization
  • a bispecific antibody sample neutralized to pH 5.0 was applied, and impurities not bound to the column were washed with the same buffer solution.
  • the bispecific antibody bound to the column was eluted using sodium chloride between 0.1 M and 1.0 M.
  • hydrophobic interaction chromatography was performed to remove high molecular weight (HMW) and low molecular weight (LMW) impurities from the bispecific antibody sample performed up to the second purification.
  • HMW high molecular weight
  • LMW low molecular weight
  • a Butyl-based sepharose column was used, and the sample was prepared by substituting a high-concentration salt buffer solution so that the salt concentration in the purified bispecific antibody purified by ion exchange chromatography was from 1.0 M to 1.5 M. After equilibrating the column with a 50 mM sodium acetate (pH 5.0) buffer solution having the same salt concentration as the applied sample, the prepared sample was loaded.
  • pH 5.0 sodium acetate
  • the bound bispecific antibody was eluted with salt-free 50 mM sodium acetate (pH 5.0) for 20 cv in a gradient manner.
  • the final purified bispecific antibody eluted with a purity of 95% or more is concentrated to a concentration of 1 - 2 mg/mL using a 10 kDa molecular-weight cut-off ultrafiltration tube, and then a buffer solution suitable for analysis conditions is used. was replaced with
  • FIG. 19 is a schematic diagram of an SDS-PAGE gel showing the protein content of the bispecific antibody candidates of the present invention, which were thirdly purified using hydrophobic interaction chromatography.
  • 20A, 20B, 20C, and 20D are chromatograms of bispecific antibody candidates that have undergone the final purification of the present invention, analyzed using size exclusion high performance liquid chromatography (SEC-HPLC).
  • each sample was mixed with 2.5 ⁇ L of 250 mM iodoacetamide or 14.2 M 2-mercaptoethanol, 2 ⁇ L of internal standard, and 25 ⁇ L of sodium dodecyl sulfate sample buffer, and heated at 70 °C for 10 minutes. After the analysis was completed, the data were analyzed in Compass for iCE software version 2.2.0 provided by the manufacturer.
  • CE-SDS sodium dodecyl capillary electrophoresis
  • rPA+CEX+HIC sodium dodecyl capillary electrophoresis
  • the thermal stability of the bispecific antibody candidate group was measured using differential scanning calorimetry (Microcal PEAQ-DSC Automated, Malvern). At this time, the protein concentration was used for measurement in the range of up to 1 mg/mL. The sample was heated from 25 °C to 110 °C at a rate of 200 °C/hr. Normalized heat capacity (Cp) data were corrected for the buffer solution baseline. Data were analyzed with Microcal PEAQ-DSC Automated software version 1.60 provided by the manufacturer. The melting point (Tm) was used to determine the temperature stability of the bispecific antibody under the conditions of 50 mM acetate pH 5.0. This is data evaluating the thermal stability of the bispecific antibody candidate group. All sample groups were tested only when the purity was 90% or higher as a result of SEC analysis. 22 shows representative DSC analysis results of Q-SBL2 and Q-SBL9.
  • rhVEGF 165 (R&D Systems) was coated in 96-well high-adsorption ELISA plates using 1x PBS pH7.4, and the coating concentration was 100 ⁇ l per well of 0.5 ⁇ g/ml. Coatings were performed overnight at 4 °C, washed 5 times with 0.05% PBS-T. Blocked with 200 ⁇ l/well of 2% BSA, incubated at 37 °C for 2 h, then washed 5 times with 0.05% PBS-T.
  • HRP-conjugated anti-his antibody (Abcam) diluted 1:10000 with PBS containing 2% BSA was added per well, incubated at 37 °C for 1 h, and with 0.05% PBS-T Washed 5 times.
  • the colorimetric substrate TMB (Bio-Rad) was added at 100 ⁇ l/well and allowed to develop at room temperature for 5 minutes.
  • 1M H2SO4 was added at 100 ⁇ l/well, and color development was stopped.
  • Absorbance was measured at a wavelength of 450 nm using a SpectraMax ABS Plus (Molecular Devices) instrument.
  • the EC50 values of Q-SBL1, Q-SBL2, Q-SBL3, and Q-SBL4 were compared and the EC50 values of R-SBL1, R-SBL2, R-SBL3, and R-SBL4 were compared as follows.
  • the EC50 values of Q-SBL5, R-SBL5, and R-SBL6 with changes in the hinge region were compared with those of Q-SBL1 and R-SBL1, respectively, as follows.
  • the comparison of Q-SBL1 and EC50 values of Q-SBL6, Q-SBL7, and Q-SBL8, which are candidate groups according to the position of the Knob/Hole is as follows. All sample groups were tested only when the purity was 90% or higher as a result of SEC analysis.
  • 14A and 14B show graphs of 4-parameter fitting of the double antigen binding affinity analysis.
  • vascular endothelial cells (HUVEC, Human umbilical vein endothelial cell) were purchased from Lonza and used in the experiment.
  • HUVEC Human umbilical vein endothelial cell
  • EBM-2 Libulized bovine heartbeat (Lonza)
  • EGM-2 EGM-2 Single Quot (Lonza) was used, and HUVEC cells were tested using cells within passage 5.
  • Cell culture was subcultured in a 37 °C, 5% CO 2 incubator, and the cell density in 25-T Flask did not exceed 80%.
  • vascular endothelial cells were cultured in EBM-2 culture medium containing 0.25% FBS (Lonza) at a density of 4000 cells/well in a 96-well plate for 6 hours.
  • Antibodies of various concentrations were pretreated with VEGF in a 96-well plate and then reacted at room temperature for 15 minutes.
  • the culture medium of the 96-well plate containing HUVEC cells was replaced with the EBM-2 culture medium containing 0.25% fetal bovine serum.
  • various concentrations of antibody and 20 ng/ml of VEGF were applied to each plate well.
  • WST-8 DOJINDO
  • absorbance was measured at a wavelength of 450 nm to compare the degree of cell proliferation under each condition (FIG. 24).
  • the Fc region of IgG1 induces an immune effector function by interacting with an Fc ⁇ receptor (Fc ⁇ R, Fc ⁇ Receptor) and a complement protein (C1q, Complement component 1q).
  • Antibody therapeutics by eliminating target cells through antibody-dependent cytotoxicity (ADCC), antibody-dependent cellular phagocytosis (ADCP), or complement-dependent cytotoxicity (CDC). plays an important role in enhancing the efficacy of Therefore, an ELISA experiment was performed to confirm the C1q binding activity of the bispecific antibody candidate group composed of the IgG1 framework.
  • the specific implementation process of ELISA was as follows.
  • the HRP-conjugated anti-C1q antibody (abcam) was diluted 1:2000 with 5% BSA (PBS-T), and then 100 ⁇ l per well was added, 25 Incubate at °C for 1 h.
  • the colorimetric substrate TMB (BIORAD) was added at 100 ⁇ l/well, and the color was developed at room temperature for 5 minutes. 1M H2SO4 was added at 100 ⁇ l/well, and color development was stopped. Absorbance was measured at a wavelength of 450 nm using a SpectraMax ABS Plus (Molecular Devices) instrument.
  • dual or multispecific antibody of the novel format it is possible to expect superior effects in disease treatment and diagnosis compared to single-target antibody treatment by simultaneously binding to two or more targets and inhibiting or increasing the activity of the target target.
  • dual or multispecific multivalent antibodies in novel formats can be provided.
  • the heterodimer is formed in a state in which non-specific binding of the heavy chain and the light chain is hardly observed, and the homodimer is also hardly generated. Therefore, high expression is possible through animal cells, and the purification process is not significantly different from that of monoclonal antibodies. In terms of stability, it shows more stability than general monoclonal antibodies.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Biochemistry (AREA)
  • Biophysics (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Molecular Biology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Immunology (AREA)
  • Oncology (AREA)
  • Peptides Or Proteins (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

본 발명은 Fab 영역의 일부에 CH3 다이머를 도입한 폴리펩타이드를 포함하는 신규 포맷의 이중 또는 다중 특이적 항체에 관한 것이다. 상기 신규 포맷의 이중 또는 다중 특이적 항체는 중쇄와 경쇄의 비특이적 결합이 거의 나타나지 않은 상태로 헤테로다이머를 이루고 호모다이머 또한 거의 생성되지 않아 동물세포를 통해 고발현이 가능하다. 또한, 기존의 단클론 항체의 정제 공정을 통해 수득할 수 있으며, 단클론 항체 이상의 안정성을 갖는다.

Description

이중 또는 다중 특이적 항체
본 발명은 신규 이중 또는 다중 특이적 항체에 관한 것으로, Fab 영역의 일부에 CH3 다이머를 도입한 폴리펩타이드를 포함하는 이중 또는 다중 특이적 항체에 관한 것이다.
최근 한 적응증에 대한 다양한 원인과 기작들이 밝혀지면서 치료제 개발에 있어 한 종류의 타겟에서 여러 종류의 타겟으로의 접근법이 대두되고 있다. 이에 항체를 이용한 치료제 개발에 있어 단일 특이적 항체의 특성을 두 종류 이상의 항원 단백질에 특이적으로 결합할 수 있는 이중 또는 다중 특이적 기적 첨가를 위하여 다양한 연구들이 수십년 동안 진행되고 있다.
대부분 바이오 항체 의약품은 IgG1, IgG4 등과 같이 단일 타겟 항체 백본으로 이뤄졌으나, 질병은 다양한 타겟에 대한 메커니즘이 작용하여, 한 개 타겟에 대한 항체치료제로서, 효능, 편의성, 부작용 등 한계에 노출되어 있다.
현재 여러 임상단계에서는 2개의 단클론항체(monoclonal antibody)의 병용 치료 (combination therapy)에 집중되어 있다. 이에 하나의 단백질에 2개 이상의 타겟에 결합하는 항체의 개발 필요성이 요구되고 있다.
약 20년 전부터 이에 대한 여러 연구논문이 나왔고, 현재, 허가 받은 이중타겟(bispecific) 항체가 소수 존재하고, 많은 수의 후보 물질이 임상단계에서 연구/개발 중이며, 기 허가된 대표 이중항체로는 예를 들어 Removab, Blincyto(BiTETM), Hemlibra이다.
하지만, 현재 개발된 이중 또는 다중 타겟 항체는 생산 수율 및 생산성, 용해성, 응집성, 안정성 등의 측면에서 개선/개량의 필요성이 여전히 존재한다.
이러한 기술적 배경하에서, 본 출원의 발명자들은 신규 포맷의 이중 또는 다중 특이적 다가의 항체를 개발하고자 예의 노력한 결과, Fab 영역에 CH3 다이머를 도입한 폴리펩타이드를 포함하는 이중 또는 다중 특이적 항체를 제작하여, 본 발명을 완성하였다.
발명의 요약
본 발명의 목적은 신규 이중 또는 다중 특이적 항체 플랫폼을 개발하는 데 있다.
상기 목적을 달성하기 위하여, 본 발명은 VH1-CHa-Fc1 및 VL1-CLb을 포함하는 제1항원에 결합하는 제1암 (arm); 및 VH2-CH1-Fc2 및 VL2-CL을 포함하는 제2항원에 결합하는 제2암을 포함하는 이중 특이적 항체이고,
상기 VH1 및 VH2은 각각 동일 또는 상이한 항원 결합 영역을 포함하는 중쇄 가변영역이고,
상기 VL1 및 VL2은 각각 동일 또는 상이한 항원 결합 영역을 포함하는 경쇄 가변영역이고,
상기 CHa는 i) IgG 중쇄 불변영역 또는 IgD 중쇄 불변영역 CH1, 및 IgG 중쇄 불변영역 CH2 또는 CH3를 포함하거나, 또는 ii) IgM 중쇄 불변영역 CH3를 포함하고,
상기 CLb는 i) IgG 경쇄 불변영역 λ 또는 κ를 포함하는 CL1 및 IgG 중쇄 불변영역 CH1, CH2, CH3로 구성된 군에서 선택되는 하나 이상을 포함하거나, 또는 ii) IgM 중쇄 불변영역 CH3를 포함하고,
상기 CHa 및 CLb가 연결되어 다이머를 형성하고,
상기 CH1은 IgG 중쇄 불변영역 CH1이고, CL은 IgG 경쇄 불변영역 CL이고,
상기 제1암의 Fc1 및 제2암의 Fc2는 결합하여 중쇄 불변영역 다이머를 형성한다.
본 발명은 또한, VH1-CHa-Fc1 및 VL1-CLb을 포함하는 제1항원에 결합하는 제1암 (arm); 및 VH2-CH1-Fc2 및 VL2-CL을 포함하는 제2항원에 결합하는 제2암을 포함하는 이중 특이적 항체이고,
상기 VH1 및 VH2은 각각 동일 또는 상이한 항원 결합 영역을 포함하는 중쇄 가변영역이고,
상기 VL1 및 VL2은 각각 동일 또는 상이한 항원 결합 영역을 포함하는 경쇄 가변영역이고,
상기 CHa는 IgG 중쇄 불변영역 CH3 및 IgG 중쇄 불변영역 CH1를 포함하고,
상기 CLb는 IgG 경쇄 불변영역 λ 또는 κ를 포함하는 CL1 및 IgG 중쇄 불변영역 CH3를 포함하고,
상기 CHa 및 CLb가 연결되어 다이머를 형성하고,
상기 CH1은 IgG 중쇄 불변영역 CH1이고, CL은 IgG 경쇄 불변영역 CL이고,
상기 제1암의 Fc1 및 제2암의 Fc2는 결합하여 중쇄 불변영역 다이머를 형성한다.
본 발명은 또한, 상기 이중 특이적 항체를 포함하는 다중 특이적 항체를 제공한다.
도 1은 제1후보의 이중 타겟 항체의 구조를 나타낸 것이다.
도 2는 제2후보의 이중 타겟 항체의 구조를 나타낸 것이다.
도 3은 제3후보의 이중 타겟 항체의 구조를 나타낸 것이다.
도 4는 제4후보의 이중 타겟 항체의 구조를 나타낸 것이다.
도 5는 제5후보의 이중 타겟 항체의 구조를 나타낸 것이다.
도 6은 제6후보의 이중 타겟 항체의 구조를 나타낸 것이다.
도 7은 제7후보의 이중 타겟 항체의 구조를 나타낸 것이다.
도 8은 3개 타겟에 결합하는 다중 타겟 항체의 구조를 나타낸 것이다.
도 9는 4개 타겟에 결합하는 다중 타겟 항체의 구조를 나타낸 것이다.
도 10은 예시적인 2가의 이중 특이적 항체 포맷을 나타낸다.
도 11은 Q-SBL1 및 R-SBL1 구조 각각의 이중 특이적 항체 포맷에 대한 개략도를 나타낸다.
도 12A-12B는 링커의 수에 따른 Q-SBL1(도 12A) 및 R-SBL1(도 12B)의 다양한 이중 특이적 항체 포맷의 개략도를 나타낸다.
도 13A-13B은 힌지 영역의 변화에 따른 Q-SBL1(도 13A) 및 R-SBL1(도 13B)의 다양한 이중특이적 항체 포맷의 개략도를 나타낸다.
도 14는 Knob-CH3/Hole-CH3 도메인을 상호 교환함으로써 Q-SBL1의 다양한 이중특이적 항체 포맷의 개략도를 나타낸다.
도 15는 각 Q-SBL9의 이중특이적 항체 포맷의 개략도를 나타낸다.
도 16은 예시적인 3가 이중특이적 항체 포맷을 나타낸다.
도 17은 예시적인 4가 이중특이적 항체 포맷을 나타낸다.
도 18은 ExpiCHO-S 배양 상청액을 일시적으로 생산함으로써 이중 특이적 항체 후보의 비환원 SDS-PAGE를 보여준다. (A) Q-SBL-1,2,3,4 및 R-SBL-1,2,3,4의 SDS-PAGE 겔 이미지(S: 사이즈 마커(kDa), 레인 1: Q-SBL-2, 레인 2 : Q-SBL-1, 레인 3 : Q-SBL-3, 레인 4 : Q-SBL-4, 레인 5 : R-SBL-2, 레인 6 : R-SBL-1, 레인 7 : R-SBL-3, 레인 8 :R-SBL-4), (B) Q-SBL-1, Q-SBL-5, R-SBL-1, R-SBL-5, R-SBL-6의 SDS-PAGE 겔 이미지(S: 사이즈 마커(kDa), 레인 1: Q-SBL-1, 레인 2: Q-SBL-5, 레인 3: R-SBL-1, 레인 4: R-SBL-5, 레인 5: R-SBL-6) , (C) SDS-PAGE Q-SBL-1, Q-SBL-6, Q-SBL-7, Q-SBL-8의 젤 이미지(S: 사이즈 마커(kDa), 레인 1: Q-SBL-1 , 레인 2: Q-SBL-6, 레인 3: Q-SBL-7, 레인 4: Q-SBL-8), (D) Q-SBL9의 SDS-PAGE 겔 이미지(S: 사이즈 마커 (kDa), 레인 1: Q-SBL9)
도 19는 3단계 정제된 이중 특이적 항체 생성물의 비환원 SDS-PAGE 분석을 나타낸다.
도 20A-20D은 각 정제 단계에 따른 이중 특이적 항체 산물의 SEC-HPLC 프로파일을 나타낸다(도 20A: Q-SBL1, 2, 3, 및 4, 도 20B: R-SBL1, 2, 3 및 4, 도 20C: Q-SBL5, R-SBL5 및 6, 도 20D: Q-SBL6, 7, 8 및 9)
도 21은 비환원 하에서 3단계 정제된 항체의 CE-SDS 분석을 보여준다.
도 22는 3단계 정제 Q-SBL2(A) 및 Q-SBL9(B)의 시차 주사 열량측정(DSC) 서모그램을 보여준다.
도 23A-23B은 이중 특이적 항체에 의한 VEGF 및 HER2에 대한 동시 이중 결합을 보여준다 (도 23A-A): ◆: Q-SBL1, ●: Q-SBL2, ▲: Q-SBL3. (도 23A-B) ●: Q-SBL1, ■: R-SBL1, ▲: R-SBL2, ◆: R-SBL3 (도 23A-C) ●: Q-SBL1, ■: Q-SBL5, ▲:R -SBL5, ◆: R-SBL6. (도 23A-D) ●: Q-SBL1, ■: Q-SBL6, ◆: Q-SBL7, ▲: Q-SBL8. (도 23B) ◆: Q-SBL9.
도 24는 Q-SBL9의 인간 제대 정맥 내피 세포(HUVEC)에 대한 이중 특이적 항체의 억제 효과를 보여준다. CCK-8 용액은 상이한 농도의 이중 특이적 항체의 2일간의 인큐베이션 후에 처리되었다. 각 샘플은 3회 실행되었다.
도 25는 이중 특이적 항체의 C1q 단백질 결합에 대한 분석 결과를 나타낸 것이다; ■ : Trastuzumab, ●: Q-SBL2, ▲: Q-SBL9.
발명의 상세한 설명 및 바람직한 구현예
다른 식으로 정의되지 않는 한, 본 명세서에서 사용된 모든 기술적 및 과학적 용어들은 본 발명이 속하는 기술분야에서 숙련된 전문가에 의해서 통상적으로 이해되는 것과 동일한 의미를 갖는다. 일반적으로, 본 명세서에서 사용된 명명법은 본 기술분야에서 잘 알려져 있고 통상적으로 사용되는 것이다.
본 발명은 일 관점에서, VH1-CHa-Fc1 및 VL1-CLb을 포함하는 제1항원에 결합하는 제1암 (arm); 및 VH2-CH1-Fc2 및 VL2-CL을 포함하는 제2항원에 결합하는 제2암을 포함하는 이중 특이적 항체이고,
상기 VH1 및 VH2은 각각 동일 또는 상이한 항원 결합 영역을 포함하는 중쇄 가변영역이고,
상기 VL1 및 VL2은 각각 동일 또는 상이한 항원 결합 영역을 포함하는 경쇄 가변영역이고,
상기 CHa는 i) IgG 중쇄 불변영역 또는 IgD 중쇄 불변영역 CH1, 및 IgG 중쇄 불변영역 CH2 또는 CH3를 포함하거나, 또는 ii) IgM 중쇄 불변영역 CH3를 포함하고,
상기 CLb는 i) IgG 경쇄 불변영역 λ 또는 κ를 포함하는 CL1 및 IgG 중쇄 불변영역 CH1, CH2, CH3로 구성된 군에서 선택되는 하나 이상을 포함하거나, 또는 ii) IgM 중쇄 불변영역 CH3를 포함하고,
상기 CH1은 IgG 중쇄 불변영역 CH1이고, CL은 IgG 경쇄 불변영역 CL이고,
상기 제1암의 Fc1 및 제2암의 Fc2는 결합하여 중쇄 불변영역 다이머를 형성한다.
“이특이적” 또는 “이중특이적”은 2개의 상이한 타겟에 특이적으로 결합하여 타겟의 활성을 조절할 수 있는 결합 단백질의 특성으로, 예를 들어 각 타겟에 특이적으로 결합하는 모노클로날 항체 또는 이의 단편의 접합에 의해 제조될 수 있으며, 2개의 구분된 항원 결합 암 (arm: 2개 타겟에 대한 특이성)을 보유하고, 이에 결합하는 각각의 항원에 대하여 1가이다.
상기 VH1 및 VH2은 각각 동일 또는 상이한 항원 결합 영역을 포함하는 중쇄 가변영역이다. 상기 상기 VL1 및 VL2은 각각 동일 또는 상이한 항원 결합 영역을 포함하는 경쇄 가변영역이다.
"폴리펩타이드"는 아미노산의 임의의 중합체 쇄를 의미한다. "펩타이드" 및 "단백질"이란 용어는 폴리펩타이드란 용어와 혼용할 수 있는 것으로서, 이 역시 아미노산의 중합체 쇄을 의미한다. "폴리펩타이드"는 천연 또는 합성 단백질, 단백질 단편 및 단백질 서열의 폴리펩타이드 유사체를 포함한다. 폴리펩타이드는 단량체 또는 중합체일 수 있다.
항체, 폴리펩타이드, 단백질 또는 펩타이드의 상호작용과 관련하여 "특이적 결합" 또는 "특이적으로 결합하는"은 그 상호작용이 화학종 상의 특정 구조(예컨대, 항원 결정인자 또는 에피토프)의 존재에 따라 이루어진다는 것을 의미한다. 예컨대, 항체는 일반적으로 단백질보다는 특정 단백질 구조를 인식하여 여기에 결합한다. 항체가 에피토프 "A"에 특이적이라면, 표지된 "A"와 항체를 포함하는 반응에서 에피토프 A(또는 유리된 미표지 A)를 포함하는 분자의 존재는 항체에 결합된 표지된 A의 양을 감소시킬 것이다.
항체는 4개의 폴리펩타이드 쇄, 즉 2개의 중쇄(H)와 2개의 경쇄(L)로 구성된 임의의 면역글로불린(Ig) 분자 또는 이러한 Ig 분자의 필수적인 에피토프 결합 특징을 갖는 임의의 기능성 단편, 돌연변이체, 변형체 또는 유도체를 의미한다. 이러한 돌연변이체, 변형체 또는 유도체의 구체예에 대해서는 이하에 논의되나, 이에 국한되지는 않는다.
“모노클로날 항체”는 실질적으로 동질적 항체 집단으로부터 수득한 항체, 즉 집단을 차지하고 있는 개개의 항체가 미량으로 존재할 수 있는 가능한 천연 발생적 돌연변이를 제외하고는 동일한 것을 지칭한다. 모노클로날 항체는 고도로 특이적이어서, 단일 항원 부위에 대항하여 유도된다. 전형적으로 상이한 결정인자(에피토프)에 대해 지시된 상이한 항체를 포함하는 통상의 (폴리클로날) 항체 제제와는 대조적으로, 각각의 모노클로날 항체는 항원 상의 단일 결정인자에 대해 지시된다.
"에피토프"은 항체가 특이적으로 결합할 수 있는 단백질 결정부위 (determinant)를 의미한다. 에피토프는 통상 화학적으로 활성인 표면 분자군, 예를 들어 아미노산 또는 당 측쇄로 구성되며, 일반적으로 특정한 3차원의 구조적 특징뿐만 아니라 특정한 전하 특성을 갖는다. 입체적 에피토프 및 비입체적 에피토프는 변성 용매의 존재하에서 전자에 대한 결합은 소실되지만 후자에 대해서는 소실되지 않는다는 점에서 구별된다.
"인간화" 형태의 비-인간 (예: 뮤린) 항체는 비-인간 면역글로불린으로부터 유래된 최소 서열을 함유하는 키메라 항체이다. 대부분의 경우, 인간화 항체는, 수용자의 초가변 영역으로부터의 잔기를 목적하는 특이성, 친화성 및 능력을 보유하고 있는 비-인간 종 (공여자 항체), 예를 들어 마우스, 랫트, 토끼 또는 비-인간 영장류의 초가변 영역로부터의 잔기로 대체시킨 인간 면역글로불린 (수용자 항체)이다.
“인간 항체”는 인간 면역글로불린으로부터 유래하는 분자로서 상보성 결정영역, 구조 영역을 포함한 항체를 구성하는 모든 아미노산 서열 전체가 인간의 면역글로불린으로 구성되어 있는 것을 의미한다.
완전한 항체에서, 각 중쇄는 중쇄 가변영역 (HCVR 또는 VH로 표시됨)과 중쇄 불변영역으로 구성된다. 중쇄 불변영역은 3개의 도메인, CH1, CH2 및 CH3으로 구성된다. 각 경쇄는 경쇄 가변영역과 경쇄 불변영역으로 구성된다. 경쇄 불변영역은 1개 도메인, CL로 구성된다. VH 및 VL 영역은 다시 상보성 결정 영역(CDR)이라 불리는 초가변성 영역들로 나뉠 수 있고, 여기에는 골격 영역(FR)이라는 더 보존적인 영역들이 산재되어 있다. "가변영역"은 상보성 결정 영역 (CDR; 즉, CDR1, CDR2, 및 CDR3), 및 골격 영역 (FR)의 아미노산 서열을 포함하는 항체 분자의 경쇄 및 중쇄 부분을 지칭한다. VH는 중쇄의 가변영역을 지칭한다. VL은 경쇄의 가변영역을 지칭한다.
"상보성 결정 영역” (CDR; 즉, CDR1, CDR2, 및 CDR3)은 항원 결합을 위해 필요한 존재인, 항체 가변영역의 아미노산 잔기를 지칭한다. 각 가변영역은 전형적으로, CDR1, CDR2 및 CDR3으로서 확인된 3개의 CDR 영역을 갖는다.
"골격 영역" (FR)은 CDR 잔기 이외의 가변영역 잔기이다. 각 가변영역은 전형적으로, FR1, FR2, FR3 및 FR4로서 확인된 4개의 FR을 가진다.
이들은 아미노 말단에서 카복시 말단으로 다음과 같은 순서에 따라 배열된다: FR1, CDR1, FR2, CDR2, FR3, CDR3, FR4. 면역글로불린 분자는 임의의 유형(예를 들어, IgG, IgE, IgM, IgD, IgA 및 IgY), 클래스(예를 들어, IgG1, IgG2, IgG3, IgG4, IgA1 및 IgA2) 또는 서브클래스일 수 있다.
Fab 단편은 경쇄 및 중쇄의 가변영역과 경쇄의 불변영역 및 중쇄의 첫 번째 불변영역(CH1)을 가지는 구조로 1개의 항원 결합 부위를 가진다. Fab' 단편은 중쇄 CH1 도메인의 C-말단에 하나 이상의 시스테인 잔기를 포함하는 힌지 영역(hinge region)을 가진다는 점에서 Fab와 차이가 있다. F(ab')2는 Fab'의 힌지 영역의 시스테인 잔기가 디설파이드 결합을 이루면서 생성된다. Fv는 중쇄 가변영역 및 경쇄 가변영역만을 가지고 있는 최소의 항체조각이다. 이중쇄 Fv(two-chain Fv)는 비공유 결합으로 중쇄 가변영역과 경쇄 가변영역이 연결되어 있고 단쇄 Fv(single-chain Fv, scFv)는 일반적으로 펩타이드 링커를 통하여 중쇄의 가변영역과 경쇄의 가변영역이 공유결합으로 연결되거나 또는 C-말단에서 바로 연결되어 있어서 이중쇄 Fv와 같이 다이머와 같은 구조를 이룰 수 있다. 이러한 항체 단편은 단백질 가수분해 효소를 이용해서 얻을 수 있고(예를 들어, 전체 항체를 파파인으로 제한 절단하면 Fab를 얻을 수 있고 펩신으로 절단하면 F(ab')2 단편을 얻을 수 있다), 유전자 재조합 기술을 통하여 제작할 수도 있다.
항원에 대한 특이적 결합능을 갖는 하나 이상의 항체 단편인 “항원 결합부”를 포함하며, 다른 항원에 특이적으로 결합할 수 있고, 이에 따라 이특이적, 이중 특이 또는 다중 특이형일 수 있다. 본 발명에서, 항원 결합부는 VH1 또는 VH2의 중쇄 가변영역 및 VL1 또는 VL2의 경쇄 가변영역에 포함되어 있으며, 각각은 동일 또는 상이한 항원 결합 영역을 포함한다.
서로 다른 두 개의 가변영역 (variable region)은 2개의 항원에 결합이 가능하다. 경쇄의 미스 페어링 (mispairing)을 최소화하기 위하여, 두 개 중 한쪽의 Fab 영역에는 Fab의 C-말단 부분 또는 Fab의 가변영역과 불변영역 사이에 IgG CH3 다이머 (dimer)를 추가로 도입할 수 있다. 두 개중 한쪽의 Fab 영역에 CH3 다이머를 추가로 도입함에 따라 Fab 영역의 두 개 암이 비대칭 형태를 이룰 수 있다. 두 개중 한쪽의 Fab 영역에서 CH1/CL 부분은 다양한 종류의 CH1 도메인을 도입할 수 있다. 이를 통해, 생산성 및 안정성이 우수한 이중 타겟 항체 혹은 다중 타겟 항체를 제조할 수 있다.
본 발명에 따르면, IgG 유사 구조를 크게 벗어나지 않는다. IgG 구조를 크게 훼손한 구조는 단백질의 불안정성이 크게 높아질 가능성이 높다.
더욱이, 경쇄 미스 페어링 부분은 면역글로불린 (immunoglobulin) 구조의 불변영역을 추가로 도입하여, 미스 페어링 빈도수를 획기적으로 줄이고자 하였다. 2개의 Fab 암 중 1개의 암에 기존 알려진 중쇄의 불변영역 도메인 (constant region domain)을 도입함으로써, 경쇄 미스 페어링을 방지하도록 유도하였다.
제1후보의 이중 특이적 항체는 타겟에 결합하는 2개의 Fab 부분에서 왼쪽 암(제2암)에는 구조적 변형이 없으며, 오른쪽 암(제1암)에는 Ig 불변 도메인(CH3)을 추가로 도입하고, IgG1 CH1 및 이외에도 IgG1 CH1 대신에 다양한 종류의 CH1을 도입하고, 중쇄의 헤테로다이머 구성은 놉인홀 (Knob-in-hole) 구조를 도입할 수 있다.
제2후보의 이중 특이적 항체는 타겟에 결합하는 2개의 Fab 부분에서 오른쪽 Fab 암 부분을 변경할 수 있다. 변경된 부분은 제1후보의 이중 특이적 항체에서 CH3 도메인과 CH1 도메인의 위치를 변경할 수 있다.
제3후보의 이중 특이적 항체는 경우에 따라서, CH1/CL를 IgM의 CH3로 치환한 형태일 수 있다.
상기 CHa는 i) IgG 중쇄 불변영역 또는 IgD 중쇄 불변영역 CH1, 및 IgG 중쇄 불변영역 CH2 또는 CH3를 포함하거나, 또는 ii) IgM 중쇄 불변영역 CH3를 포함한다.
상기 CHa는 IgG1, IgG2, IgG3, IgG4, IgD 또는 IgM 유래일 수 있다. 구체적으로, CHa는 IgG1, IgG2, IgG3, IgG4, IgD 또는 IgM 유래 중쇄 불변영역 CH1, CH2, CH3로 구성된 군에서 선택된 하나 이상을 포함할 수 있다. 예를 들어, CHa는 제1암 중 N-말단에서 C-말단의 순서로 IgG1, IgG2, IgG3, IgG4, IgD 또는 IgM 유래 중쇄 불변영역 CH1, 및 IgG1, IgG2, IgG3, IgG4, IgD 또는 IgM 유래 CH3를 포함할 수 있다. 예를 들어, CHa는 제1암 중 N-말단에서 C-말단의 순서로 IgG1, IgG2, IgG3, IgG4, IgD 또는 IgM 유래 중쇄 불변영역 CH3 및 IgG1, IgG2, IgG3, IgG4, IgD 또는 IgM 유래 중쇄 불변영역 CH1을 포함할 수 있다. 경우에 따라서, CHa는 IgM 유래 중쇄 불변영역 CH3를 포함할 수 있다.
상기 CLb는 i) IgG 경쇄 불변영역 λ 또는 κ를 포함하는 CL1 및 IgG 중쇄 불변영역 CH1, CH2, CH3로 구성된 군에서 선택되는 하나 이상을 포함하거나, 또는 ii) IgM 중쇄 불변영역 CH3를 포함한다.
상기 CLb는 IgG1, IgG2, IgG3, IgG4, IgD 또는 IgM 유래일 수 있다. 구체적으로, CLb는 IgG1, IgG2, IgG3, IgG4, IgD 또는 IgM 유래 경쇄 불변영역 λ 또는 κ를 포함하는 CL1 및 IgG1, IgG2, IgG3, IgG4, IgD 또는 IgM 유래 중쇄 불변영역 CH1, CH2, CH3로 구성된 군에서 선택된 하나 이상을 포함할 수 있다. 예를 들어, CLb는 제1암 중 N-말단에서 C-말단의 순서로 IgG1, IgG2, IgG3, IgG4, IgD 또는 IgM 유래 경쇄 불변영역 λ 또는 κ를 포함하는 CL1, 및 IgG1, IgG2, IgG3, IgG4, IgD 또는 IgM 유래 중쇄 불변영역 CH3를 포함할 수 있다. 예를 들어, CLb는 제1암 중 N-말단에서 C-말단의 순서로 IgG1, IgG2, IgG3, IgG4, IgD 또는 IgM 유래 CH3 및 IgG1, IgG2, IgG3, IgG4, IgD 또는 IgM 유래 경쇄 불변영역 λ 또는 κ를 포함하는 CL1을 포함할 수 있다. 경우에 따라서, CLb는 IgM 유래 중쇄 불변영역 CH3를 포함할 수 있다.
상기 CH1은 IgG 중쇄 불변영역 CH1이고, CL은 IgG 경쇄 불변영역 CL이다. 상기 CH1 및 CL 각각은 IgG1, IgG2, IgG3, IgG4 또는 IgD 유래일 수 있다. 상기 CH1 및 CL은 비공유적 상호결합을 통해 Fab 단편과 같은 구조를 가질 수 있다.
"Fc 영역"은 온전한 항체의 파파인 분해에 의해 생성될 수 있는 면역글로불린 중쇄의 C-말단 영역을 정의하는데 사용된다. Fc 영역은 고유 서열 Fc 영역 또는 변이 Fc 영역일 수 있다. 면역글로불린의 Fc 영역은 일반적으로 2개의 불변 도메인, CH2 도메인 및 CH3 도메인을 포함하고, 임의로 CH4 도메인을 포함한다.
하나의 실시예에서, 상기 CHa 및 CLb는 각각 CH3를 포함할 수 있다. 구체적으로, 상기 CHa 및 CLb는 각각 IgG1, IgG2, IgG3 또는 IgG4 유래 CH3를 포함할 수 있다. 상기 CHa 및 CLb 공유적 또는 비공유적 상호결합을 통해 다이머를 형성할 수 있다.
상기 CHa 및 CLb은 이황화 결합 또는 이황화 결합없이 쇄간 연결된 형태일 수 있다. 구체적으로, 제1암의 CHa 및 CLb 중 각각 포함된 CH3를 통해 형성된 다이머, CHa 및 CLb 중 각각 포함된 CH1, CL1을 포함하는 Fab 영역에서 CH3 다이머는 이황화 결합을 통해 연결되고, CH1, CL1은 이황화 결합없이 연결될 수 있다.
경우에 따라서, CH3 도메인과 CH1 도메인은 링커로 연결될 수 있다. 상기 링커는 펩타이드 링커일 수 있으며, 약 5-25 aa 잔기를 포함하거나, 구체적으로 약 5-10 aa 잔기를 포함할 수 있다. 예를 들어, 글리신 및/또는 세린과 같은 친수성 아미노산이 포함될 수 있으나, 이에 제한되는 것은 아니다.
구체적으로, 상기 링커는 구조적 유연성을 부여하기 위하여 예를 들어, 글리신 링커 (G, Gly)p (p는 1 내지 10), GS 링커 (GnS)m (n, m은 각각 1 내지 10)을 포함할 수 있다. 구체적으로, 상기 링커는 GGGGS 또는 (GGGGS)2를 포함하거나, (G, Gly)p에서 p가 5-10인 5-10 aa의 글리신을 포함할 수 있다.
상기 제1암의 Fc1 및 제2암의 Fc2는 각각 중쇄 불변영역의 CH2 및 CH3 모노머를 포함한다. 상기 모노머는 중쇄 불변영역 Fc의 동일한 아미노산 서열을 지닌 2개의 불변 도메인 CH2-CH3를 통해 형성된 다이머 (dimer) 중 하나의 도메인을 의미한다. 상기 제1암의 Fc1 및 제2암의 Fc2는 결합하여 중쇄 불변영역 다이머를 형성한다.
상기 다이머는 동일한 아미노산 서열을 지닌 불변 도메인 CH3 사이의 결합에 의해 형성된 호모다이머 또는 아미노산 서열이 서로 다른 불변 도메인 CH3 사이의 결합에 의해 형성된 헤테로다이머를 포함할 수 있다.
경우에 따라서, CHa 및 CLb의 CH3 또는 Fc의 CH3 쌍 사이에 이황화 결합을 포함시키거나 또는 이황화 결합없이 쇄간 연결된 형태일 수 있다.
하나의 실시예에서, 상기 CHa의 CH1 및 CLb의 CL1은 이황화 결합을 통해 또는 이황화 결합없이 연결될 수 있다. 구체적으로, 상기 CHa의 CH1 및 CLb의 CL1은 이황화 결합없이 연결될 수 있다.
상기 CHa 및 CLb는 각각 CH3를 포함하고, 상기 CHa의 CH3 및 CLb의 CH3가 연결되어 다이머를 형성한다. 상기 CHa 및 CLb는 각각 CH3를 포함하고, CH3가 이황화 결합을 통해 다이머를 형성할 수 있다.
상기 CHa 및 CLb는 각각 CH3를 포함하고, 상기 CHa의 CH3 및 CLb의 CH3가 연결되어 다이머를 형성한다. 상기 CHa 및 CLb는 각각 CH3를 포함하고, CH3가 이황화 결합을 통해 다이머를 형성할 수 있다.
하나의 실시예에서, 상기 CHa 및 CLb 중 CH3가 연결되어 형성된 다이머 중 하나는 Y349C, S354C, T366S, T366W, L368A 및 Y407V로 구성된 군에서 선택되는 하나 이상을 포함하고, S354C, Y349C, T366W, T366S, L368A 및 Y407V로 구성된 군에서 선택되는 하나 이상을 포함하여 놉인홀 (knob-in-hole) 구조를 포함할 수 있다.
상기 다이머 중 하나는 T366W, S354C, Y349C로 구성된 군에서 선택되는 하나 이상을 포함하고, 다른 하나는 S354C, Y349C, T366S, L368A, Y407V로 구성된 군에서 선택되는 하나 이상을 포함하여, 놉인홀 (knob-in-hole) 구조를 포함할 수 있다. 구체적으로, 상기 CHa의 CH3 및 CLb의 CH3가 연결되어 형성된 다이머 중 하나는 S354C, T366S, L368A, Y407V을 포함하고, 다른 하나는 Y349C, T366W을 포함하여, 놉인홀 구조를 포함할 수 있다.
구체적으로, 상기 CHa의 CH1 및 CLb의 CL1은 이황화 결합없이 연결되고, i) CHa의 CH3 및 CLb의 CH3 중 어느 하나는 Y349C, T366S, L368A 및 Y407V로 구성된 군에서 선택되는 하나 이상을 포함하고, 다른 하나는 S354C 및/또는 T366W을 포함하거나, 또는 ii) CHa의 CH3 및 CLb의 CH3 중 어느 하나는 S354C, T366S, L368A 및 Y407V로 구성된 군에서 선택되는 하나 이상을 포함하고, 다른 하나는 Y349C 및/또는 T366W을 포함할 수 있다.
상기 CHa의 CH1 및 CLb의 CL1은 이황화 결합없이 연결되고, i) CHa의 CH3 및 CLb의 CH3 중 어느 하나는 Y349C, T366S, L368A 및 Y407V을 포함하고, 다른 하나는 S354C 및 T366W을 포함하거나, 또는 ii) CHa의 CH3 및 CLb의 CH3 중 어느 하나는 S354C, T366S, L368A 및 Y407V을 포함하고, 다른 하나는 Y349C 및 T366W을 포함할 수 있다.
하나의 실시예에서, 상기 Fc의 CH3 다이머 중 하나는 Y349C, S354C, T366S, T366W, L368A 및 Y407V로 구성된 군에서 선택되는 하나 이상을 포함하고, S354C, Y349C, T366W, T366S, L368A 및 Y407V로 구성된 군에서 선택되는 하나 이상을 포함하여 다이머 중 놉인홀 (knob-in-hole) 구조를 포함할 수 있다.
IgG (Immunoglobulin G)의 Fc의 도메인에 돌연변이를 유발하여, 안정적으로 비대칭 헤테로다이머를 형성한다. 또한, 중쇄의 헤테로다이머 구조는 알려진 놉인홀 (knob-in-hole) 구조를 도입한다.
제넨텍에서 처음 1997년 논문을 통해 공개된 놉인홀 (knob-in-hole) 원리는 현재 다양한 개발사에서 가장 많이 도입하는 구조이다. 놉인홀 (knob-in-hole) 구조를 도입하되, 놉인홀 (knob-in-hole) 구조 또한 100% 헤테로다이머가 형성되는 것은 아니며, 최적의 형질감염 (transfection) 조건을 확립하여 높은 헤테로다이머 비율을 보여줌으로써, 생산수율 향상을 도모하고자 하였다.
다른 두 개의 Ig 중쇄의 CH3 도메인에 돌연변이를 유도하여, 하나의 Ig 중쇄의 CH3 도메인에는 hole 구조를, 또 다른 Ig 중쇄의 CH3 도메인에는 knob 구조를 만들어, 두 개의 Ig 중쇄가 헤테로다이머 (heterodimer)를 형성하도록 유도하는 것이다.
놉-인투-홀(knob-into-hole) 기술은 CH3 도메인 상호작용부위의 소수성 코어에 위치에 있는 잔기들을 대해서, 한쪽 중쇄 CH3 도메인에는 측쇄의 크기가 큰 소수성 아미노산 잔기들을 측쇄가 작은 소수성 아미노산으로 치환하여 hole 구조로 만들고, 다른 중쇄 CH3 도메인에는 측쇄의 크기가 작은 소수성 아미노산 잔기들을 측쇄가 큰 소수성 아미노산으로 치환하여 knob 구조를 만들어, 2개의 돌연변이 쌍이 도입된 중쇄 불변부위 돌연변이 쌍을 공동발현시켜 헤테로다이머 중쇄불변부위가 형성되도록 할 수 있다.
상기 knob 구조를 형성하기 위해 하나의 실시예에서, CHa 및 CLb의 CH3 또는 Fc의 CH3 중 S354C, Y349C, T366W, T366S, L368A 및 Y407V로 구성된 군에서 선택되는 하나 이상을 포함할 수 있다. 상기 CHa 및 CLb의 CH3 또는 Fc의 CH3 중 hole 구조를 형성하기 위해 예를 들어, Y349C, S354C, T366S, T366W, L368A 및 Y407V로 구성된 군에서 선택되는 하나 이상을 포함할 수 있다.
다른 실시예에서, 상기 knob 구조를 형성하기 위해 예를 들어, T366W를 포함할 수 있다. 상기 hole 구조를 형성하기 위해 예를 들어, T366S, L368A 및 Y407V로 구성된 군에서 선택되는 하나 이상을 포함할 수 있다. 구체적으로, 상기 knob 구조를 형성하기 위해 예를 들어, Y349C, T366W를 포함할 수 있다. 상기 hole 구조를 형성하기 위해 예를 들어, S354C, T366S, L368A, Y407V로 구성된 군에서 선택되는 하나 이상을 포함할 수 있다.
이중 또는 다중항체의 다양한 형태에서 2가지의 VH/VL 아미노산서열은 bevacizumab 과 Trastuzumab 의 VH/VL 아미노산 서열을 사용할 수 있다. Amino acid numbering은 IMGT 넘버링 시스템에 따른 것일 수 있다 (http://www.imgt.org/IMGTScientificChart/Numbering/Hu_IGHGnber.html#refs 에 따라 Eu index에 기초를 둔다).
각 후보에서 사용된 구체적 서열은 다음과 같다.
Figure PCTKR2021020103-appb-img-000001
Figure PCTKR2021020103-appb-img-000002
Figure PCTKR2021020103-appb-img-000003
Figure PCTKR2021020103-appb-img-000004
Figure PCTKR2021020103-appb-img-000005
도 10에 따르면, [A]의 경우, 하나의(왼쪽의 제2암) 에피토프에 결합하는 중쇄 영역의 CH3 도메인에 knob 구조를 가지고, 이황화 결합을 도입하게 위해 S354C, T366W 돌연변이를 가진다. 경우에 따라서, 이황화 결합을 도입하지 않을 수도 있다.
또 다른 에피토프에 결합하는 (오른쪽 제1암) 중쇄 영역은 CH1 도메인의 C-말단에 연결된 CH3 도메인은 hole 구조를 가지고 T366S, L368A, Y407V 돌연변이를 가진다. 경우에 따라서, 이황화 결합을 도입할 수도 있다. 이 때 Y349C 돌연변이를 가진다. 중쇄 영역의 CH2 도메인 C-말단에 연결된 CH3 도메인은 hole 구조를 가지며, 이황화 결합을 도입하여 Y349C, T366S, L368A, Y407V의 돌연변이를 가진다. 경우에 따라서, 이황화 결합을 도입하지 않을 수도 있다. 경쇄영역의 CL 도메인의 C-말단에 연결된 CH3 도메인은 knob 구조를 가지고 T366W 돌연변이를 가진다. 경우에 따라서, 이황화 결합을 도입할 수도 있다. 이 때 S354C 돌연변이를 가진다. 중쇄영역 CH1 도메인은 다양한 타입의 CH1 도메인이 도입될 수 있다.
또 다른 에피토프에 결합하는 (오른쪽 제1암) 중쇄 영역의 IgG1 CH1 도메인의 C-말단에는 E216, P217, K218, S219, C220를 추가할 수 있다. CL 도메인과의 이황화 결합을 형성하기 위함이다. CH3 도메인 서열은 Uniprot 사이트의 IGHG1을 따른다(https://www.uniprot.org/uniprot/P01857). IgD CH1 도메인 서열은 https://www.uniprot.org/uniprot/P01880에서 아미노산 1~98번까지 아미노산 서열이다. IgM CH1 도메인 서열은 https://www.uniprot.org/uniprot/P01871에서 아미노산 1~105 번까지 아미노산 서열이다.
[H]의 경우, 하나의(왼쪽의 제2암) 에피토프에 결합하는 중쇄 영역의 CH3 도메인에 knob 구조를 가지고, 이황화 결합을 도입하게 위해 S354C, T366W 돌연변이를 가진다.
경우에 따라서, 이황화 결합을 도입하지 않을 수도 있고 S354로 유지된다.
또 다른 에피토프에 결합하는 (오른쪽 제1암) 중쇄영역은 VH 도메인의 C-말단에 연결된 CH3 도메인은 hole 구조를 가지고 T366S, L368A, Y407V 돌연변이를 가진다. 경우에 따라서, 이황화 결합을 도입할 수도 있다. 이는 Y349C 돌연변이를 가진다. 중쇄 영역의 CH2 도메인의 C-말단에 연결된 CH3 도메인은 hole 구조를 가지며, 이황화 결합을 도입하여 Y349C, T366S, L368A, Y407V의 돌연변이를 가진다. 경우에 따라서, 이황화 결합을 도입하지 않을 수도 있다. Y349로 유지된다. 경쇄영역의 VL 도메인의 C-말단에 연결된 CH3 도메인은 knob 가지고 T366W 돌연변이를 가진다. 경우에 따라서, 이황화 결합을 도입할 수도 있다. 이는 S354C 돌연변이를 가진다. 중쇄 영역 CH1 도메인은 다양한 타입의 CH1 도메인이 도입될 수 있다.
또 다른 에피토프에 결합하는 (오른쪽 제1암) 중쇄 영역의 VH 도메인의 C-말단에 엘보우 (elbow) 서열인 A118, S119을 추가하고, 그 뒤에 다양한 타입의 CH3 도메인이 연결되어 있다. 여기서 CH3 도메인의 서열은 https://www.uniprot.org/uniprot/P01857에 나타낸 서열에서 엘보우 서열인 G341, Q342를 제거하고 P343부터 K447까지 포함한다. 경쇄영역의 VL 도메인의 C-말단에 엘보우 서열인 R108, T109을 추가하고, 그 뒤에 다양한 타입의 CH3 도메인이 연결되어 있다.
[N]의 경우 하나의(왼쪽의 제2암) 에피토프에 결합하는 중쇄 영역의 CH3 도메인에 knob 구조를 가지고, 이황화 결합을 도입하게 위해 S354C, T366W 돌연변이를 가진다.
또 다른 에피토프에 결합하는 (오른쪽 제1암) 중쇄 영역의 VH 도메인의 C-말단에 엘보우 서열인 A118, S119을 추가하고, 그 뒤에 IgM CH3 도메인이 연결되어 있다. 경쇄 영역의 VL 도메인의 C-말단에 엘보우 서열인 R108, T109을 추가하고, 그 뒤에 IgM CH3 도메인이 연결되어 있다. IgM CH3 도메인 서열은 https://www.uniprot.org/uniprot/P01871에서 아미노산 220~323번까지 아미노산 서열이다.
[S, U] 의 경우 하나의(왼쪽의 제2암) 에피토프에 결합하는 중쇄 영역의 CH3 도메인에 knob 구조를 가지고, 이황화 결합을 도입하기 위해 S354C, T366W 돌연변이를 가진다. 또 다른 에피토프에 결합하는 (오른쪽 제1암) 중쇄 영역 VH 도메인의 C-말단에 엘보우 서열인 A118, S119을 추가하고, 그 뒤에 GGGGS 계열의 링커를 연결한다. 그리고, 추가로 다양한 타입의 CH3 도메인이 연결되어 있다. GGGGS 링커는 GGGGS 반복 서열의 개수가 1부터 5까지 다양한 길이로 연결되어 있다.
각 후보에 대한 구체적 서열은 다음과 같다.
Figure PCTKR2021020103-appb-img-000006
Figure PCTKR2021020103-appb-img-000007
Figure PCTKR2021020103-appb-img-000008
Figure PCTKR2021020103-appb-img-000009
Figure PCTKR2021020103-appb-img-000010
Figure PCTKR2021020103-appb-img-000011
Figure PCTKR2021020103-appb-img-000012
Figure PCTKR2021020103-appb-img-000013
Figure PCTKR2021020103-appb-img-000014
Figure PCTKR2021020103-appb-img-000015
Figure PCTKR2021020103-appb-img-000016
Figure PCTKR2021020103-appb-img-000017
Figure PCTKR2021020103-appb-img-000018
Figure PCTKR2021020103-appb-img-000019
Figure PCTKR2021020103-appb-img-000020
Figure PCTKR2021020103-appb-img-000021
Figure PCTKR2021020103-appb-img-000022
Figure PCTKR2021020103-appb-img-000023
Figure PCTKR2021020103-appb-img-000024
Figure PCTKR2021020103-appb-img-000025
Figure PCTKR2021020103-appb-img-000026
Figure PCTKR2021020103-appb-img-000027
본 발명은 다른 관점에서, VH1-CHa-Fc1 및 VL1-CLb을 포함하는 제1항원에 결합하는 제1암 (arm); 및 VH2-CH1-Fc2 및 VL2-CL을 포함하는 제2항원에 결합하는 제2암을 포함하는 이중 특이적 항체이고,
상기 VH1 및 VH2은 각각 동일 또는 상이한 항원 결합 영역을 포함하는 중쇄 가변영역이고,
상기 VL1 및 VL2은 각각 동일 또는 상이한 항원 결합 영역을 포함하는 경쇄 가변영역이고,
상기 CHa는 IgG 중쇄 불변영역 CH3 및 IgG 중쇄 불변영역 CH1를 포함하고,
상기 CLb는 IgG 경쇄 불변영역 λ 또는 κ를 포함하는 CL1 및 IgG 중쇄 불변영역 CH3를 포함하고,
상기 CH1은 IgG 중쇄 불변영역 CH1이고, CL은 IgG 경쇄 불변영역 CL이고,
상기 제1암의 Fc1 및 제2암의 Fc2는 결합하여 중쇄 불변영역 다이머를 형성한다.
상기 IgG 중쇄 불변영역 CH3는 IgG1, IgG2, IgG3 또는 Ig4 유래 중쇄 불변영역 CH3을 포함할 수 있다.
상기 IgG 중쇄 불변영역 CH1은 IgG1, IgG2, IgG3 또는 Ig4 유래 중쇄 불변영역 CH1을 포함할 수 있다. 구체적으로, 상기 IgG 중쇄 불변영역 CH1은 IgG1 또는 Ig4 유래 중쇄 불변영역 CH1을 포함할 수 있다.
상기 CHa는 제1암 중 N-말단에서 C-말단의 순서로 IgG 중쇄 불변영역 CH1 및 IgG 중쇄 불변영역 CH3를 포함할 수 있다. 상기 CHa는 제1암 중 N-말단에서 C-말단의 순서로 IgG 중쇄 불변영역 CH3 및 IgG 중쇄 불변영역 CH1을 포함할 수 있다.
상기 CLb는 제1암 중 N-말단에서 C-말단의 순서로 IgG 경쇄 불변영역 λ 또는 κ를 포함하는 CL1, 및 IgG 유래 중쇄 불변영역 CH3를 포함할 수 있다. 예를 들어, CLb는 제1암 중 N-말단에서 C-말단의 순서로 IgG 유래 중쇄 불변영역 CH3 및 IgG 유래 경쇄 불변영역 λ 또는 κ를 포함하는 CL1을 포함할 수 있다.
하나의 실시예에서, 상기 CHa의 CH1 및 CLb의 CL1은 이황화 결합을 통해 또는 이황화 결합없이 연결될 수 있다. 구체적으로, 상기 CHa의 CH1 및 CLb의 CL1은 이황화 결합없이 연결될 수 있다.
상기 CHa 및 CLb는 각각 CH3를 포함하고, 상기 CHa의 CH3 및 CLb의 CH3가 연결되어 다이머를 형성한다. 상기 CHa 및 CLb는 각각 CH3를 포함하고, CH3가 이황화 결합을 통해 다이머를 형성할 수 있다.
구체적으로, 제1암의 CHa 및 CLb 중 각각 포함된 CH3를 통해 형성된 다이머, CHa 및 CLb 중 각각 포함된 CH1, CL1을 포함하는 Fab 영역에서 CH3 다이머는 이황화 결합을 통해 연결되고, CH1, CL1은 이황화 결합없이 연결될 수 있다.
상기 다이머 중 하나는 T366W, S354C, Y349C로 구성된 군에서 선택되는 하나 이상을 포함하고, 다른 하나는 S354C, Y349C, T366S, L368A, Y407V로 구성된 군에서 선택되는 하나 이상을 포함하여, 놉인홀 (knob-in-hole) 구조를 포함할 수 있다. 구체적으로, 상기 CHa의 CH3 및 CLb의 CH3가 연결되어 형성된 다이머 중 하나는 S354C, T366S, L368A, Y407V을 포함하고, 다른 하나는 Y349C, T366W을 포함하여, 놉인홀 구조를 포함할 수 있다.
구체적으로, 상기 CHa의 CH1 및 CLb의 CL1은 이황화 결합없이 연결되고, i) CHa의 CH3 및 CLb의 CH3 중 어느 하나는 Y349C, T366S, L368A 및 Y407V로 구성된 군에서 선택되는 하나 이상을 포함하고, 다른 하나는 S354C 및/또는 T366W을 포함하거나, 또는 ii) CHa의 CH3 및 CLb의 CH3 중 어느 하나는 S354C, T366S, L368A 및 Y407V로 구성된 군에서 선택되는 하나 이상을 포함하고, 다른 하나는 Y349C 및/또는 T366W을 포함할 수 있다.
상기 CHa의 CH1 및 CLb의 CL1은 이황화 결합없이 연결되고, i) CHa의 CH3 및 CLb의 CH3 중 어느 하나는 Y349C, T366S, L368A 및 Y407V을 포함하고, 다른 하나는 S354C 및 T366W을 포함하거나, 또는 ii) CHa의 CH3 및 CLb의 CH3 중 어느 하나는 S354C, T366S, L368A 및 Y407V을 포함하고, 다른 하나는 Y349C 및 T366W을 포함할 수 있다.
상기 CHa의 CH3 또는 CLb의 CH3는 서열번호 8 내지 13의 서열을 포함할 수 있다. CHa의 CH3 또는 CLb의 CH3는 IgG1 CH3 도메인의 Knob(T366W) (서열번호 8) 또는 Hole(T366S/L368A/Y407V) (서열번호 9)의 돌연변이를 포함할 수 있다. IgG1 CH3 도메인은 이황화 결합을 위해 시스테인을 발생시키기 위한 돌연변이, 즉, Knob(S354C/T366W) (서열번호 10) 또는 Hole(Y349C/T366S/L368A/Y407V) (서열번호 11) 또는 Knob(Y349C/T366W) (서열번호 12) 또는 Hole(S354C/T366S/L368A/Y407V) (서열번호 13)도 포함할 수 있다.
경우에 따라서, 상기 CHa의 CH3 및 CH1, CLb의 CH3 및 CL1는 링커로 연결될 수 있다. 상기 링커는 펩타이드 링커일 수 있으며, 약 5-25 aa 길이, 구체적으로 약 5-10 aa 길이를 가질 수 있다. 예를 들어, 글리신 및/또는 세린과 같은 친수성 아미노산이 포함될 수 있으나, 이에 제한되는 것은 아니다.
구체적으로, 상기 링커는 구조적 유연성을 부여하기 위하여 예를 들어, 글리신 링커 (G, Gly)p (p는 1 내지 10), GS 링커 (GnS)m (n, m은 각각 1 내지 10)을 포함할 수 있다. 구체적으로, 상기 링커는 GGGGS 또는 (GGGGS)2를 포함하거나, (G, Gly)p에서 p가 5-10인 5-10 aa의 글리신을 포함할 수 있다.
상기 상기 제1암의 Fc1 및 제2암의 Fc2에 의해 형성된 다이머 중 포함된 CH3 다이머는 모노머 각각이 이황화 결합을 통해 연결 또는 이황화 결합없이 연결될 수 있다. 하나의 실시예에서, 상기 Fc의 CH3 다이머 중 하나는 Y349C, S354C, T366S, T366W, L368A 및 Y407V로 구성된 군에서 선택되는 하나 이상을 포함하고, S354C, Y349C, T366W, T366S, L368A 및 Y407V로 구성된 군에서 선택되는 하나 이상을 포함하여 다이머 중 놉인홀 (knob-in-hole) 구조를 포함할 수 있다.
상기 제1암 및 제2암은 힌지를 통해 연결될 수 있다. 상기 제1암 및 제2암은 다음으로 구성된 군에서 선택되는 하나 이상의 서열을 포함하여 형성된 힌지를 통해 연결될 수 있다:
DKTHTCPPCP;
EPKSSDKTHTCPPCP; 및
ESKYGPPCPPCP.
제1항원과 제2항원에 대해 동시에 결합하는 이중 특이적 항체 포맷의 구성은 다음과 같다. 이중 특이적 항체 포맷은 총 4개의 폴리펩타이드 즉, 2개의 중쇄(H)와 2개의 경쇄가 조합되어 형성된다. 제1항원에 결합하는 제1암(arm)의 중쇄와 경쇄의 구성은 다음과 같다. 중쇄는 VH-CH3a-CH1a-Hinge-CH2-CH3b 또는 VH-CH1a-CH3a-Hinge-CH2-CH3b을 포함한다. 여기서 CH3a는 IgG1 CH3 도메인의 서열을 포함하고, CH1a는 IgG1 CH1 도메인(서열번호 5) 또는 IgG4 CH1 도메인(서열번호 18, 19) 또는 IgD CH1 도메인(서열번호 20)의 서열이 포함될 수 있다. CH3a 또는 CH3b는 IgG1 CH3 도메인의 Knob(T366W) (서열번호 8) 또는 Hole(T366S/L368A/Y407V) (서열번호 9)의 돌연변이를 포함할 수 있다. IgG1 CH3 도메인은 이황화 결합을 위해 시스테인을 발생시키기 위한 돌연변이, 즉, Knob(S354C/T366W) (서열번호 10) 또는 Hole(Y349C/T366S/L368A/Y407V) (서열번호 11) 또는 Knob(Y349C/T366W) (서열번호 12) 또는 Hole(S354C/T366S/L368A/Y407V) (서열번호 13)도 포함할 수 있다. 제1항원에 결합하는 제1암(arm)의 경쇄의 구성은 VL-CH3c-CLb 또는 VL-CLb-CH3c 로 구성되어있다. 여기서 CH3c는 IgG1 CH3 도메인을 나타내는데, Knob(T366W) (서열번호 8) 또는 Hole(T366S/L368A/Y407V) (서열번호 9)의 돌연변이를 포함한다. IgG1 CH3 도메인은 이황화 결합을 위해 시스테인을 발생시키기 위한 돌연변이, 즉, Knob(S354C/T366W) (서열번호 10) 또는 Hole(Y349C/T366S/L368A/Y407V) (서열번호 11) 또는 Knob(Y349C/T366W) (서열번호 12) 또는 Hole(S354C/T366S/L368A/Y407V) (서열번호 13)도 포함할 수 있다. CLb는 kappa type(서열번호 14,15) 또는 Lambda type(서열번호 16,17)이 도입될 수 있다.
제2항원에 결합하는 제2암(arm)의 중쇄와 경쇄의 구성은 다음과 같다. VH-CH1-Hinge-CH2-CH3d 또는 VH-CH1-Hinge-CH2-CH3d의 구성으로 되어있다. IgG1 CH3d 도메인은 Knob(T366W) (서열번호 8) 또는 Hole(T366S/L368A/Y407V) (서열번호 9)의 돌연변이를 포함할 수 있다. IgG1 CH3d 도메인은 이황화 결합을 위해 시스테인을 발생시키기 위한 돌연변이, 즉, Knob(S354C/T366W) (서열번호 10) 또는 Hole(Y349C/T366S/L368A/Y407V) (서열번호 11)도 포함할 수 있다. 경쇄의 구성은 VL-CLb를 포함할 수 있다. CLb는 kappa type(서열번호 14) 혹은 Lambda type(서열번호 16)이 도입될 수 있다.
Q-SBL1(서열번호 31,32,62,63) 이중 특이성 항체 포맷에서 제1항원에 결합하는 제1암(arm)의 중쇄와 경쇄의 구성은 다음과 같다. 제1암의 중쇄의 구성은 VH-CH3a-Linker-CH1a-Hinge-CH2-CH3b의 순서로 구성으로 되어있다. 여기서 Linker의 아미노산 서열은 GGGGSGGGGS(서열번호 28)로 결정하였다. CH1a 도메인은 IgG1 CH1 도메인(서열번호 5)을 사용할 수 있다. CH1a 도메인은 CLb와의 이황화 결합을 제거하기 위하여, 힌지 영역은 아미노산 서열을 DKTHTCPPCP(서열번호 22)로 할 수 있다. CH3a 도메인은 Hole의 돌연변이와 경쇄의 CH3c와 이황화 결합 형성을 위해 돌연변이를 포함하는데, CH3a 도메인의 돌연변이 부분은 Hole(Y349C/T366S/L368A/Y407V) (서열번호 11)일 수 있다. CH3b 도메인은 Hole(T366S/L368A/Y407V) (서열번호 9)의 돌연변이를 포함할 수 있다. VH 영역과 CH3a 영역 사이에는 엘보우 (elbow) 서열 AS를 추가할 수 있다 (서열번호 25).
제1암 경쇄의 구성은 VL-CH3c-Linker-CLb를 포함할 수 있다. CH3c 도메인은 Knob의 돌연변이와 중쇄의 CH3a와 이황화 결합을 위한 돌연변이를 포함하는데, CH3c 도메인의 돌연변이 부분은 Knob(S354C/T366W) (서열번호 10) 일 수 있다. Linker의 아미노산 서열은 GGGGSGGGGS(서열번호 28)일 수 있다. CLb 도메인은 Kappa type으로 구성되어 있고, 제1암 중쇄의 CH1 도메인과 이황화 결합을 제거하기 위하여 C216S(Eu numbering) 돌연변이를 포함할 수 있다(서열번호 17). CLb 도메인이 Lambda type일 경우에는 제1암 중쇄의 CH1 도메인과 이황화 결합을 제거하기 위하여 C214S(Eu numbering) 돌연변이를 포함할 수 있다. 이는 CH1a/CLb 다이머를 이루기 위한 이황화 결합은 완전히 제거되는 것이다. VL 영역과 CH3a 영역 사이에는 엘보우 (elbow) 서열 RT를 추가 하였다(서열번호 26).
제2항원에 결합하는 제2암(arm)의 중쇄와 경쇄의 구성은 다음과 같다. 제2암의 중쇄의 구성은 VH-CH1-CH2-CH3d를 포함할 수 있고, CH3d 도메인은 Knob(T366W) (서열번호 8) 돌연변이를 포함할 수 있다. 제2암의 경쇄의 구성은 VL-CLb이다. CLb는 kappa type(서열번호 14) 또는 Lambda type(서열번호 16)을 포함할 수 있다.
Figure PCTKR2021020103-appb-img-000028
R-SBL1(서열번호 31,32,62,63) 이중 특이성 항체 포맷은 Q-SBL1과 다른 부분은 제1항원에 결합하는 제1암의 중쇄 영역에서 CH1a 도메인 부분만 IgG4 CH1 도메인 아미노산 서열로 구성되어 있는데, 제1암(arm)의 경쇄 영역의 CLb와 이황화 결합을 제거 하기 위하여 C131S 돌연변이를 포함할 수 있다(서열번호 19).
Figure PCTKR2021020103-appb-img-000029
본 발명은 다른 관점에서, 상기 이중 특이적 항체를 포함하는 다중 특이적 항체에 관한 것이다.
“다특이적” 또는 “다중특이적”은 3개 이상의 상이한 타겟에 특이적으로 결합하여 타겟의 활성을 조절할 수 있는 결합 단백질의 특성으로, 예를 들어 각 타겟에 특이적으로 결합하는 모노클로날 항체 또는 이의 단편의 접합에 의해 제조될 수 있으며, 3개 이상의 구분된 항원 결합 암 (arm)을 보유하고, 이에 결합하는 각각의 항원에 대하여 1가이다.
상기 제1암 또는 제2암의 N말단 또는 제1암의 Fc1 또는 제2암의 Fc2 말단에 추가 항원에 결합하는 예를 들어, 하나 이상의 항체 단편을 추가로 포함할 수 있다. 상기 제1암 또는 제2암의 N말단에 추가 항원에 결합하는 항원 결합 단편을 추가로 포함하거나, 제1암의 Fc1 또는 제2암의 Fc2 말단에 추가 항원에 결합하는 항원 결합 단편을 추가로 포함할 수 있다. 이를 통해 3개 이상의 항원을 타겟하는 다중 특이적 항체를 제작할 수 있다.
상기 항체 단편은 무손상 항체의 일부, 무손상 항체의 항원 결합 또는 가변 영역을 포함한다. 예를 들어, 상기 항체 단편은 Fab, Fab', F(ab')2, Fv, scFv, 또는 디아바디를 포함할 수 있다.
하나의 실시예에서, 제1암의 N-말단에 제3의 항원에 결합하는 VH3-CHa 및 VL3-CLb을 포함하는 항체 단편이 포함될 수 있다. 경우에 따라서, Fc 말단에 제3의 항원에 결합하는 scFv 형태의 항체 단편이 포함될 수 있다 (도 7).
또 다른 실시예에서, 제1암의 N-말단에 제3의 항원에 결합하는 VH3-CHa 및 VL3-CLb을 포함하는 항체 단편이 포함되고, Fc 말단에 제4의 항원에 결합하는 scFv 형태의 항체 단편이 포함될 수 있다. 경우에 따라서, Fc 말단에 제3의 항원 및 제4의 항원에 결합하는 scFv 형태의 항체 단편이 포함될 수 있다 (도 8).
이중 특이성 타겟 형태를 대표로 하여, 3가 다중항체(Tri-valent multispecific antibody) 및 4가 다중항체 (Tetra-valent multispecific antibody)로 확장할 수 있다. 대표 이중 특이적 타겟 항체 형태에서 제1암의 중쇄영역 혹은 제2암의 중쇄영역의 N-말단 또는 C-말단 부분에 새로운 제3항원을 타겟으로 하는 scFv 형태 또는 Fab 형태를 Linker를 통해 연결하면 3가 다중항체(Tri-valent multispecific antibody)가 가능하다(도 16). 추가로 제4항원에 대한 타겟으로 scFv 형태 혹은 Fab형태를 linker를 이용하여 추가로 연결하면 4가 다중항체(Tetra-valent multispecific antibody)가 가능하다(도 17).
“변이체”는 중쇄 가변영역 및/또는 경쇄 가변영역을 구성하는 아미노산 서열의 변이, 예를 들어 치환, 부가 및/또는 결실을 의미할 수 있으며, 항원 결합 및 효능을 저해하지 않는 한, 임의의 변이가 제한없이 포함될 수 있다. 본 발명에 따른 결합 단백질에서 변이의 도입은 예를 들어 외부 가변영역 또는 내부 가변영역, 또는 외부 가변영역 및 내부 가변영역 모두에 적용될 수 있다.
생물학적 균등 활성을 갖는 변이를 고려한다면, 본 발명에서 폴리펩타이드, 결합 단백질 또는 이를 코딩하는 핵산 분자는 서열번호에 기재된 서열과 실질적인 동일성(substantial identity)을 나타내는 서열도 포함하는 것으로 해석된다. 실질적인 동일성은 본 발명의 서열과 임의의 다른 서열을 최대한 대응되도록 얼라인하고, 당업계에서 통상적으로 이용되는 알고리즘을 이용하여 얼라인된 서열을 분석한 경우에, 최소 61% 이상의 상동성, 보다 바람직하게는 70% 이상의 상동성, 보다 더 바람직하게는 80% 이상의 상동성, 가장 바람직하게는 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% 이상의 상동성을 나타내는 서열을 의미한다. 서열비교를 위한 얼라인먼트 방법은 당업계에 공지되어 있다. NCBI Basic Local Alignment Search Tool(BLAST)은 NBCI 등에서 접근 가능하며, 인터넷 상에서 blastp, blasm, blastx, tblastn 및 tblastx와 같은 서열 분석 프로그램과 연동되어 이용할 수 있다. BLSAT는 www.ncbi.nlm.nih.gov/BLAST/에서 접속 가능하다. 이 프로그램을 이용한 서열 상동성 비교 방법은 www.ncbi.nlm.nih.gov/BLAST/blast_ help.html에서 확인할 수 있다.
이에 기초하여, 본 발명에 기재된 서열은 명세서에 기재된 명시된 서열 또는 전체와 비교하여 60%, 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, 또는 그 이상의 상동성을 가지는 서열도 포함할 수 있다. 이러한 상동성은 당업계에 공지된 방법에 의한 서열 비교 및/또는 정렬에 의해 결정될 수 있다. 예를 들어, 서열 비교 알고리즘(즉, BLAST 또는 BLAST 2.0), 수동 정렬, 육안 검사를 이용하여 본 발명의 핵산 또는 단백질의 퍼센트 서열 상동성을 결정할 수 있다.
본 발명은 또한, 상기 이중 특이적 항체를 코딩하는 핵산에 관한 것이다.
상기 이중 특이적 항체의 제1암 및/또는 제2암을 재조합적으로 생산할 수 있다. 핵산을 분리하고, 이를 복제 가능한 벡터 내로 삽입하여 추가로 클로닝하거나 (DNA의 증폭) 또는 추가로 발현시킨다. 이를 바탕으로, 본 발명은 또 다른 관점에서 상기 핵산을 포함하는 벡터에 관한 것이다.
"핵산"는 DNA(gDNA 및 cDNA) 및 RNA 분자를 포괄적으로 포함하는 의미를 가지며, 핵산에서 기본 구성단위인 뉴클레오타이드는 자연의 뉴클레오타이드 뿐만 아니라, 당 또는 염기 부위가 변형된 유사체(analogue)도 포함한다. 본 발명에 따른 핵산의 서열은 변형될 수 있다. 상기 변형은 뉴클레오타이드의 추가, 결실, 또는 비보존적 치환 또는 보존적 치환을 포함한다.
상기 DNA를 통해 통상적인 과정을 사용하여 (예를 들어, DNA와 특이적으로 결합할 수 있는 올리고뉴클레오티드 프로브를 사용함으로써) 결합 단백질의 제1암 및/또는 제2암 코딩 DNA를 용이하게 분리 또는 합성한다. 많은 벡터가 입수 가능하다. 벡터 성분에는 일반적으로, 다음 중의 하나 이상이 포함되지만, 그에 제한되지 않는다: 신호 서열, 복제 기점, 하나 이상의 마커 유 전자, 증강인자 요소, 프로모터, 및 전사 종결 서열.
본 명세서에서 사용되는 용어, "벡터"는 숙주세포에서 목적 유전자를 발현시키기 위한 수단으로 플라스미드 벡터; 코즈미드 벡터; 박테리오파지 벡터, 아데노바이러스 벡터, 레트로바이러스 벡터 및 아데노-연관 바이러스벡터 같은 바이러스 벡터 등을 포함한다. 상기 벡터에서 항체를 코딩하는 핵산은 프로모터와 작동적으로 연결되어 있다.
“작동적으로 연결”은 핵산 발현조절서열(예: 프로모터, 신호서열, 또는 전사조절인자 결합 위치의 어레이)과 다른 핵산 서열사이의 기능적인 결합을 의미하며, 이에 의해 상기 조절서열은 상기 다른 핵산 서열의 전사 및/또는 해독을 조절하게 된다.
원핵세포를 숙주로 하는 경우에는, 전사를 진행시킬 수 있는 강력한 프로모터(예컨대, tac 프로모터, lac 프로모터, lacUV5 프로모터, lpp 프로모터, pLλ 프로모터, pRλ프로모터, rac5 프로모터, amp 프로모터, recA 프로모터, SP6 프로모터, trp 프로모터 및 T7 프로모터 등), 해독의 개시를 위한 라이보좀 결합 자리 및 전사/해독 종결 서열을 포함하는 것이 일반적이다. 또한, 예를 들어, 진핵 세포를 숙주로 하는 경우에는, 포유동물 세포의 지놈으로부터 유래된 프로모터(예: 메탈로티오닌 프로모터, β-액틴 프로모터, 사람 헤로글로빈 프로모터 및 사람 근육 크레아틴 프로모터) 또는 포유동물 바이러스로부터 유래된 프로모터(예: 아데노바이러스 후기 프로모터, 백시니아 바이러스 7.5K 프로모터, SV40프로모터, 사이토메갈로바이러스(CMV) 프로모터, HSV의 tk 프로모터, 마우스 유방종양 바이러스(MMTV) 프로모터, HIV의 LTR 프로모터, 몰로니 바이러스의 프로모터엡스타인바 바이러스(EBV)의 프로모터 및 로우스 사코마 바이러스(RSV)의 프로모터)가 이용될 수 있으며, 전사 종결 서열로서 폴리아데닐화 서열을 일반적으로 갖는다.
경우에 따라서, 벡터는 그로부터 발현되는 항체의 정제를 용이하게 하기 위하여 다른 서열과 융합될 수도 있다. 융합되는 서열은, 예컨대 글루타티온 S-트랜스퍼라제(Pharmacia, USA), 말토스 결합 단백질(NEB, USA), FLAG(IBI, USA) 및 6x His(hexahistidine; Quiagen, USA) 등이 있다.
상기 벡터는 선택표지로서 당업계에서 통상적으로 이용되는 항생제 내성 유전자를 포함하며, 예를 들어 암피실린, 겐타마이신, 카베니실린, 클로람페니콜, 스트렙토마이신, 카나마이신, 게네티신, 네오마이신 및 테트라사이클린에 대한 내성 유전자가 있다.
본 발명은 또 다른 관점에서, 상기 언급된 벡터로 형질전환된 세포에 관한 것이다. 본 발명의 이중 특이적 항체를 생성시키기 위해 사용된 세포는 원핵생물, 효모 또는 고등 진핵생물 세포일 수 있으며, 이에 제한되는 것은 아니다.
에스케리치아 콜라이(Escherichia coli), 바실러스 서브틸리스 및 바실러스 츄린겐시스와 같은 바실러스 속 균주, 스트렙토마이세스(Streptomyces), 슈도모나스(Pseudomonas)(예를 들면, 슈도모나스 푸티다(Pseudomonas putida)), 프로테우스미라빌리스(Proteus mirabilis) 및 스타필로코쿠스(Staphylococcus)(예를 들면, 스타필로코쿠스 카르노수스(Staphylocus carnosus))와 같은 원핵 숙주세포를 이용할 수 있다.
다만, 동물 세포에 대한 관심이 가장 크며, 유용한 숙주 세포주의 예는 COS-7, BHK, CHO, CHOK1, DXB-11, DG-44, CHO/-DHFR, CV1, COS-7, HEK293, BHK, TM4, VERO, HELA, MDCK, BRL 3A, W138, Hep G2, SK-Hep, MMT, TRI, MRC 5, FS4, 3T3, RIN, A549, PC12, K562, PER.C6, SP2/0, NS-0, U20S, 또는 HT1080일 수 있으나, 이에 제한되는 것은 아니다.
본 발명은 또 다른 관점에서, (a) 상기 세포를 배양하는 단계; 및 (b) 상기 배양된 세포에서 이중 특이적 항체를 회수하는 단계를 포함하는 상기 이중 특이적 항체의 제조방법에 관한 것이다.
상기 세포는 각종 배지에서 배양할 수 있다. 시판용 배지 중 제한없이 배양 배지로서 사용할 수 있다. 당업자에게 공지되어 있는 기타 모든 필수 보충물이 적당한 농도로 포함될 수도 있다. 배양 조건, 예를 들어 온도, pH 등이 발현을 위해 선별된 숙주 세포와 함께 이미 사용되고 있고, 이는 당업자에게 명백할 것이다.
상기 이중 특이적 항체의 회수는 예를 들어 원심분리 또는 한외여과에 의해 불순물을 제거하고, 그 결과물을 예를 들어 친화 크로마토그래피 등을 이용하여 정제할 수 있다. 추가의 기타 정제 기술 예를 들어 음이온 또는 양이온 교환 크로마토그래피, 소수성 상호 작용 크로마토그래피, 히드록실아파타이트 크로마토그래피 등이 사용될 수 있다.
이하, 실시예를 통하여 본 발명을 보다 상세히 설명하고자 한다. 이들 실시예는 오로지 본 발명을 보다 구체적으로 설명하기 위한 것으로, 본 발명의 범위가 이들 실시예에 의해 제한되지 않는다는 것은 당해 기술분야에서 통상의 지식을 가진 자에게 있어 자명한 것이다. 따라서 본 발명의 실질적인 범위는 첨부된 청구항들과 그것들의 등가물에 의하여 정의된다고 할 것이다.
실시예 1. anti-VEGF x anti-HER2 이중 특이적 항체 설계
제1항원은 HER2 단백질로 결정하였고, HER2에 결합하는 Trastuzumab의 중쇄 가변영역 아미노산 서열(서열번호 3), 경쇄 가변영역 아미노산 서열(서열번호 4)을 이중 특이적 항체 포맷의 VH 또는 VL에 사용하였다. 제2항원은 VEGF-A 타겟으로 결정하였고, Bevacizumab의 중쇄 가변영역 아미노산 서열(서열번호 1), 그리고, 경쇄 가변영역 아미노산 서열(서열번호 2)을 이중 특이적 항체 포맷의 VH 또는 VL에 사용하였다. 아미노산 서열 정보는 https://go.drugbank.com/을 통해 확보하였다.
최적의 이중 특이적 항체 포맷을 선별하기 위하여 다양한 후보군을 도출하였다. Q-SBL1과 R-SBL1을 기본 포맷 항체로 하여 총 3가지의 엔지니어링을 시도하였는데, 첫번째 제1암(arm)의 Fab 영역에서 CH3 다이머와 CH1/CL 사이에 링커의 길이에 다양성을 주었다(도 12A, 도 12B). i) GGGGS(서열번호 27) ii) GGGGSGGGGS(서열번호 28) iii) GGGGSGGGGSGGGGS(서열번호 29) iv) GGGGSGGGGSGGGGSGGGGS(서열번호 30)을 Q-SBL1(서열번호 31,32,62,63)과 R-SBL1(서열번호 49,50,62,63)의 링커 부분에 적용하였다. GGGGS의 링커가 적용된 후보군은 Q-SBL2(서열번호 33,34,62,63), R-SBL2(서열번호 51,52,62,63)이며, GGGGSGGGGS의 링커가 적용된 후보군은 Q-SBL1(서열번호 31,32,62,63), R-SBL1(서열번호 49,50,62,63) 이며, GGGGSGGGGSGGGGS의 링커가 적용된 후보군은 Q-SBL3(서열번호 35,36,62,63), R-SBL3(서열번호 53,54,62,63)이며, GGGGSGGGGSGGGGSGGGGS의 링커가 적용된 후보군은 Q-SBL4(서열번호 37,38,62,63), R-SBL4(서열번호 55,56,62,63)이다.
Figure PCTKR2021020103-appb-img-000030
Figure PCTKR2021020103-appb-img-000031
두번째, 제1암(arm)의 힌지 영역 아미노산 서열에 IgG1 힌지 (EPKSSDKTHTCPPCP) (서열번호 23) 또는 IgG4 힌지 (ESKYGPPCPPCP) (서열번호 24)를 Q-SBL1과 R-SBL1에 도입하고 제2암(arm)의 힌지 영역 아미노산 서열은 EPKSCDKTHTCPPCP(서열번호 21)로서, 모든 후보군이 동일한 것으로 후보군을 도출하였다(도 13A, 도 13B). Q-SBL1에서 제1암(arm)의 중쇄 영역의 힌지 영역을 IgG1 힌지 (EPKSSDKTHTCPPCP) (서열번호 23)을 사용한 것이 Q-SBL5(서열번호 39,40,62,63)이다. R-SBL1에서 제1암(arm) 중쇄 영역의 힌지 영역을 IgG1 힌지 (EPKSSDKTHTCPPCP) (서열번호 23)을 사용한 것이 R-SBL5(서열번호 57,58,62,63) 이며, R-SBL1에서 제1암(arm)의 중쇄 영역의 힌지 영역을 IgG4 힌지 (ESKYGPPCPPCP) (서열번호 24)을 사용한 것이 R-SBL6(서열번호 59,60,62,63) 이다. 여기서 제1암(arm)의 IgG1 힌지를 사용할 경우 C220S(Eu numbering) 돌연변이를 포함하고 있다(서열번호 23). 돌연변이는 CLb와 이황화 결합을 제거하기 위함이다.
Figure PCTKR2021020103-appb-img-000032
Figure PCTKR2021020103-appb-img-000033
세번째, CH3 도메인에 포함된 Knob 혹은 Hole로 돌연변이 되어있는 CH3 도메인의 위치를 서로 교환하여 후보군을 도출하였다(도 14). 더 자세히 설명하면, Q-SBL1은 제1암(arm) 중쇄 영역에서 Fab 영역의 CH3 도메인은 Hole(Y349C/T366S/L368A/Y407V) (서열번호 11)이 포함되어 있고, Fc 영역의 CH3 도메인은 Hole(T366S/L368A/Y407V) (서열번호 9) 이 포함되어 있다. 제1암(arm) 경쇄 영역에서 Fab 영역의 CH3 도메인은 Knob(S354C/T366W) (서열번호 10) 이 포함되어 있다. 아울러, 제2암(arm) 중쇄 영역에서 Fc 영역의 CH3 도메인은 Knob(T366W) (서열번호 8)이 포함되어 있다.
Q-SBL6(서열번호 41,42,62,63)은 제1암(arm) 중쇄 영역에서 Fab 영역의 CH3 도메인은 Knob(S354C/T366W) (서열번호 10)이 포함되어 있고, Fc 영역의 CH3 도메인은 Hole(T366S/L368A/Y407V) (서열번호 9)이 포함되어 있다. 제1암(arm) 경쇄 영역에서 Fab 영역의 CH3 도메인은 Hole(Y349C/T366S/L368A/Y407V) (서열번호 11)이 포함되어 있다. 아울러, 제2암(arm) 중쇄 영역에서 Fc 영역의 CH3 도메인은 Knob(T366W) (서열번호 8) 이 포함되어 있다.
Q-SBL7(서열번호 43,44,62,64)은 제1암(arm) 중쇄 영역에서 Fab 영역의 CH3 도메인은 Hole(Y349C/T366S/L368A/Y407V) (서열번호 11)이 포함되어 있고, Fc 영역의 CH3 도메인은 Knob(T366W) (서열번호 8)이 포함되어 있다. 제1암(arm) 경쇄 영역에서 Fab 영역의 CH3 도메인은 Knob(S354C/T366W) (서열번호 10) 이 포함되어 있다. 아울러, 제2암(arm) 중쇄 영역에서 Fc 영역의 CH3 도메인은 Hole(Y349C/T366S/L368A/Y407V) (서열번호 11)이 포함되어 있다. Q-SBL8(서열번호 45,46,62,64)은 제1암(arm) 중쇄 영역에서 Fab 영역의 CH3 도메인은 Knob(S354C/T366W) (서열번호 10)이 포함되어 있고, Fc 영역의 CH3 도메인은 Knob(T366W) (서열번호 8) 이 포함되어 있다. 제1암(arm) 경쇄 영역에서 Fab 영역의 CH3 도메인은 Hole(Y349C/T366S/L368A/Y407V) (서열번호 11)이 포함되어 있다. 아울러, 제2암(arm) 중쇄 영역에서 Fc 영역의 CH3 도메인은 Hole(T366S/L368A/Y407V) (서열번호 9)이 포함되어 있다.
Figure PCTKR2021020103-appb-img-000034
네번째, Q-SBL9(서열번호 47,48,61,62)은 제1암 중쇄영역의 CH3 도메인에서 Knob과 Hole 부분의 다른 아미노산에 점 돌연변이를 통해 이황화 결합을 생성시켰고 이것이 가장 큰 특징이다(도 15). 더 자세히 살펴보면, Q-SBL9 이중 특이성 항체 포맷은 제1항원에 결합하는 제1암(arm)의 중쇄와 경쇄의 구성은 다음과 같다. 제1암의 중쇄의 구성은 VH-CH3a-Linker-CH1-Hinge-CH2-CH3b의 순서로 구성으로 되어있다. 여기서 링커의 아미노산 서열은 GGGGS(서열번호 27) 로 결정하였다. CH1 region 은 IgG1 CH1 도메인을 사용한다. CH1 도메인은 CL과의 이황화 결합을 제거하기 위하여, Hinge region 아미노산서열을 EPKSSDKTHTCPPCP(서열번호 23) 로 하였다. CH3a 도메인은 Hole의 돌연변이와 경쇄의 CH3c와 이황화 결합을 위해 돌연변이를 포함하는데, CH3a 도메인의 돌연변이 부분은 Hole(S354C/T366S/L368A/Y407V) (서열번호 13)이다. CH3b 도메인은 Hole(Y349C/T366S/L368A/Y407V) (서열번호 11)의 돌연변이를 포함한다. 제1암의 CH3b 도메인은 제2암의 CH3d 도메인과 이황화 결합을 이룬다. VH 영역과 CH3a 영역 사이에는 엘보우 서열을 추가 하였다(서열번호 25).
제1암의 경쇄의 구성은 VL-CH3c-Linker-CLb로 구성되어 있다. 경쇄의 CH3c 도메인은 Knob의 돌연변이와 중쇄의 CH3a와 이황화 결합을 위한 돌연변이를 포함하는데, CH3c 도메인의 돌연변이 부분은 Knob(Y349C/T366W) (서열번호 12)이다. 링커의 아미노산 서열은 GGGGS(서열번호 27)이다. CLb 도메인은 Kappa type(서열번호 15)으로 구성되어 있고, CLb 도메인은 제1암 중쇄의 CH1 도메인과 이황화 결합을 제거하기 위하여 C216S(Eu numbering) 돌연변이를 포함하고 있다. VL 영역과 CH3a 영역 사이에는 엘보우 서열을 추가 하였다(서열번호 26).
제2항원에 결합하는 제2암(arm)의 중쇄와 경쇄의 구성은 다음과 같다. 제2암의 중쇄의 구성은 VH-CH1-CH2-CH3d로 구성되어 있고, CH3d 도메인은 Knob(S354C/T366W) (서열번호 10) 돌연변이를 포함한다. 이 부분은 제1암의 중쇄영역 CH3b 도메인과 이황화 결합을 이룬다. 제2암의 경쇄의 구성은 VL-CLb 이다. CLb는 kappa type(서열번호 14) 또는 Lambda type(서열번호 16)을 포함한다.
Figure PCTKR2021020103-appb-img-000035
각 후보의 구체적 구성은 다음과 같다.
Figure PCTKR2021020103-appb-img-000036
Figure PCTKR2021020103-appb-img-000037
Figure PCTKR2021020103-appb-img-000038
Figure PCTKR2021020103-appb-img-000039
Figure PCTKR2021020103-appb-img-000040
Figure PCTKR2021020103-appb-img-000041
Figure PCTKR2021020103-appb-img-000042
Figure PCTKR2021020103-appb-img-000043
Figure PCTKR2021020103-appb-img-000044
Figure PCTKR2021020103-appb-img-000045
Figure PCTKR2021020103-appb-img-000046
실시예 2. 이중 특이적 항체 생산
제1암의 중쇄 영역과 경쇄 영역의 코딩 유전자를 포함하는 벡터 플라스미드와 제2암의 중쇄 영역과 경쇄 영역의 코딩 유전자를 포함하는 벡터 플라스미드를 제조하였다. 하나의 벡터 플라스미드에 2개의 중쇄와 경쇄를 코딩하는 유전자를 삽입하였다. 프로모터는 CMV를 사용하였고, 코딩유전자 뒤에는 WPRE (woodchuck hepatitis virus post-transcriptional regulatory element) 를 삽입하여 일시적 발현 (transient expression) 시, 발현양이 증가하도록 설계하였다.
제1암의 중쇄 영역과 경쇄 영역의 코딩 유전자를 포함하는 벡터 플라스미드와 제2암의 중쇄 영역과 경쇄 영역의 코딩 유전자를 포함하는 벡터 플라스미드를 통해 ExpiCHO-S 동물세포(Thermo Fisher A29127)에 공동형질감염 (co-transfection)을 진행하였다. 형질감염을 위해서 ExpiFectamine CHO Transfection Kit (Thermo Fisher A29130)를 해당 매뉴얼에 따라 사용하였다. 형질감염 후 2주 뒤에 이중 특이적 항체를 얻기 위해 원심분리 (10000xg, 15mins)를 통해 상층액을 얻고 해당 상층액을 필터링 (0.22μm)하여 잔여 세포 부스러기 (cell debris)를 제거하였다. 도 18은 상층액을 SDS-PAGE를 통해 발현 패턴 (expression pattern)을 비환원 (non-reducing) 조건에서 확인하였다.
실시예 3. 이중 특이적 항체 발현
이중 특이적 항체의 정량을 위해 Protein A 바이오센서(Fortebio 18-5010)를 이용한 Octet 정량분석법을 이용하였다. 알려진 IgG1 타입 샘플을 표준 (standard) 물질로 사용하여 검량선을 구하고 해당 검량선을 통해 샘플의 발현량을 계산하였다.
Figure PCTKR2021020103-appb-img-000047
실시예 4. 이중 특이적 항체 정제
본 발명의 이중 특이적 항체에 대한 연구와 다양한 분석을 위하여 Protein A 친화성 크로마토그래피, 이온교환 크로마토그래피 (IEX), 및 소수성 상호반응 크로마토그래피 (HIC) 등을 가지고 AKTA avant 25/150 (Cytiva) 단백질 정제 시스템을 사용하여 95% 순도 이상의 정제된 이중 특이적 항체를 분리하였다. 각 정제 공정 단계에서 수득한 이중 특이적 항체 물질은 8% Bis-Tris 겔과 MES 버퍼를 이용한 SDS-PAGE를 수행하여 물질을 확인하였다. 또한 이중 특이적 항체의 순도는 TSKgel G3000SWxl (Tosoh Bioscience) 컬럼을 사용한 크기 배제 고성능 액체 크로마토그래피 (SEC-HPLC) 를 이용하여 측정하였다.
본 발명의 이중 특이적 항체 후보군들을 발현하여 얻어진 상기 배양액을 0.22 μm 여과지를 이용하여 여과한 후, Protein A 친화성 크로마토그래피의 일종인 MabSelect SuRe (Cytiva) 컬럼을 사용하여 1차 정제를 진행하였다.
상기 1차 정제 공정은 구체적으로 아래와 같이 수행되었다. MabSelect Sure 컬럼을 50 mM Tris (pH 7.0) 버퍼 용액으로 평형화 시킨 후, 여과한 배양액을 컬럼에 로딩 하였다. 컬럼에 결합하지 않은 단백질을 상기의 평형 버퍼 용액을 5 cv 동안 흘려주어 씻어 내었다. 그 후 MabSelect Sure 컬럼에 비특이적으로 결합하고 있는 불순물을 0.5 M sodium chloride 가 포함된 50 mM Tris (pH 7.0) 버퍼 용액과 20 mM Bis-Tris (pH 5.5) 버퍼 용액으로 제거하였다. 그 다음 MabSelect Sure 컬럼에 특이적으로 결합하는 이중 특이적 항체를 0.2 M Glycine (pH 3.2) 버퍼 용액을 이용하여 4 cv 동안 용출을 수행하였다. 용출한 이중 특이적 항체 시료를 1.0 M Tris 버퍼 용액을 이용하여 pH 5.0으로 중화시킨 후 0.22 μm 여과지로 여과하였다.
다음 정제 공정은 이온교환 크로마토그래피 중 양이온 교환 크로마토그래피인 Capto SP (Cytiva)컬럼을 사용하여 수행되었고 상세 내용은 아래와 같았다. 50 mM sodium acetate (pH 5.0) 버퍼 용액으로 Capto SP 컬럼을 안정화 시킨 후, pH 5.0으로 중화한 이중 특이적 항체 시료를 적용하고 컬럼에 결합하지 않는 불순물 등을 동일한 버퍼 용액으로 세척하였다. 컬럼에 결합된 이중 특이적 항체는 0.1 M 에서 1.0 M 사이의 sodium chloride 를 이용하여 용출하였다.
마지막 정제 공정은 2차 정제까지 수행한 이중 특이적 항체 시료에서 High molecular weight (HMW) 및 Low molecular weight (LMW) 불순물을 제거하기 위하여 소수성 상호반응 크로마토그래피를 수행하였다. 본 공정에서는 Butyl 계열의 sepharose 컬럼을 사용하였고, 이온교환 크로마토그래피 정제를 수행한 이중 특이적 항체 정제물 내에 salt 농도가 1.0 M 에서 1.5 M 이 되도록 고농도의 salt 버퍼 용액으로 치환하여 시료를 준비하였다. 적용 시료와 동일한 salt 농도를 갖는 50 mM sodium acetate (pH 5.0) 버퍼 용액으로 컬럼을 평형화 시킨 후 상기의 준비된 시료를 로딩 하였다. 결합된 이중 특이적 항체는 salt 가 없는 50 mM sodium acetate (pH 5.0) 를 20 cv 동안 gradient 방식으로 용출하였다. 95% 이상의 순도로 용출된 이중 특이적 항체 최종 정제물은 10 kDa molecular-weight cut-off 한외여과 (ultrafiltration) 튜브를 이용하여 1 - 2 mg/mL 농도로 농축한 후 분석 조건에 따라 적합한 버퍼 용액으로 치환하였다.
도 19는 본 발명의 이중 특이적 항체 후보군들을 소수성 상호반응 크로마토그래피를 이용해 3차 정제한 단백질 함량을 보여주는 SDS-PAGE 겔을 도식한 것이다.
도 20A, 20B, 20C, 20D는 본 발명의 최종 정제를 수행한 이중 특이적 항체 후보군들을 크기 배제 고성능 액체 크로마토그래피 (SEC-HPLC)를 이용해 분석하여 크로마토그램을 도식한 것이다.
Figure PCTKR2021020103-appb-img-000048
실시예 5. 이중 특이적 항체 특성 분석
5-1. CE-SDS 분석
이중 특이적 항체 후보군의 비환원 혹은 환원 조건하에서의 순도 분석을 위하여, 소듐 도데실 설페이트 모세관 전기영동(CE-SDS)에 Maurice (Protein Simple)와 Maurice CE-SDS PLUS Application Kit (Protein simple)이 사용되었다. 1회 분석 시, 단백질 A 레진 (Protein A resin)을 이용한 정제 후의 검체 분석에서는 단백질이 최대 2 mg/mL 농도로 25 μL가 사용되었고, Protein A resin/양이온 교환 크로마토그래피(CEX)/소수성 결합 크로마토그래피 (HIC) 정제 후의 검체 분석에서는 단백질이 최대 1 mg/mL 농도로 25 μL가 사용되었다. 분석을 위하여 각 검체를 2.5 μL의 250 mM iodoacetamide 혹은 14.2 M 2-mercaptoethanol, 2 μL의 내부 표준 물질, 25 μL의 소듐 도데실 설페이트 검체 완충 용액과 섞은 후 70 ℃에서 10분간 가열하였다. 분석완료 후 데이터는 제조사에서 제공하는 Compass for iCE 소프트웨어 버전 2.2.0에서 분석되었다.
도 21은 3-step(rPA+CEX+HIC) 정제 후 비 환원 조건의 CE-SDS상에서 결과를 분석한 자료이다. 이중 특이적 항체 후보군들을 3-step(rPA+CEX+HIC) 정제를 모두 거친 후 소듐 도데실 모세관 전기영동(CE-SDS)으로 순도를 확인한 결과, 제1암(arm)의 Fab 영역에서 CH3 다이머와 CH1/CL 사이에 링커의 길이에 다양성을 주었던 후보군의 경우 GGGGSGGGGSGGGGSGGGGS의 링커가 적용된 후보군인 Q-SBL4 혹은 R-SBL4가 가장 적은 순도를 보였다. 두번째, 제1암(arm)의 힌지 영역 아미노산 서열에 IgG1 힌지 (EPKSSDKTHTCPPCP) 또는 IgG4 힌지 (ESKYGPPCPPCP)를 도입하여 도출한 후보군은 모두 3-step(rPA+CEX+HIC) 정제 이후에도 순도가 개선되지 않았다. 마지막으로, CH3 도메인에 포함된 Knob 혹은 Hole로 돌연변이 되어있는 도메인의 위치를 서로 교환하여 도출한 후보군에서는 Knob/Hole 도메인 위치를 모두 바꾸어준 Q-SBL8에서 가장 높은 순도를 보였다. 전체적으로는 Q-SBL2, Q-SBL9이 순도 측면에서는 우수한 결과를 보인다.
Figure PCTKR2021020103-appb-img-000049
5-2. 열 안정성 (Thermal stability)
이중 특이적 항체 후보군의 열 안정성은 시차 주사 열량계 (Differential scanning calorimetry : Microcal PEAQ-DSC Automated, Malvern)를 이용하여 측정하였다. 이 때, 단백질 농도는 최대 1 mg/mL의 범위로 측정에 사용하였다. 검체는 25°C에서 110°C까지 200°C/hr의 속도로 가열되었다. 정규화된 열용량(Cp)데이터는 완충 용액 기준선에 대하여 보정되었다. 데이터는 제조사에서 제공하는 Microcal PEAQ-DSC Automated software version 1.60으로 분석되었다. 융점(Tm)은 50 mM 아세테이트 pH 5.0 조건 하에서 이중 특이적 항체의 온도 안정성을 결정하는데 사용되었다. 이중 특이적 항체 후보군의 열 안정성을 평가한 자료이다. 모든 샘플군은 SEC 분석 결과 순도 90% 이상인 경우에 한해서 실험을 진행하였다. 도 22는 대표적으로 Q-SBL2 와 Q-SBL9의 DSC analysis 결과를 보여주었다.
Figure PCTKR2021020103-appb-img-000050
5-3. 이중 항원 결합 ELISA (Dual Antigen Binding ELISA)
ELISA의 구체적인 구현 프로세스는 하기와 같다. rhVEGF 165 (R&D Systems)를 1x PBS pH7.4를 이용하여 96-웰 고-흡착 ELISA 플레이트에 코팅하였고, 코팅 농도는 0.5 μg/ml 웰당 100 μl이었다. 4°C에서 밤새 코팅을 수행하고, 0.05% PBS-T로 5회 세척하였다. 2% BSA 200 μl/웰로 블록킹하고, 37°C에서 2시간 동안 인큐베이션시킨 후, 0.05% PBS-T로 5회 세척하였다. 2% BSA로 연속적으로 희석한 (Serially diluted, 10 ~ 0.0005 μg/ml) 이중 특이적 항체와 1 μg/ml로 희석한 rhHER2-his (R&D Systems)를 동량 혼합한 후 37 °C에서 1시간 동안 인큐베이션 시켰다. 마이크로플레이트를 0.05% PBS-T로 5회 세척한 후, 앞서 혼합한 이형 이량체 항체와 rhHER2-his 샘플을 100 μl씩 각 웰에 첨가하고 37 °C에서 2시간 동안 인큐베이션하고, 0.05% PBS-T로 5회 세척했다. 그 후, 2% BSA를 함유하는 PBS 와 1:10000으로 희석한 HRP가 접합된 항 his 항체 (Abcam)를 웰당 100 μl 첨가하고, 37 °C에서 1시간 동안 인큐베이션하고, 0.05% PBS-T로 5회 세척했다. 비색 기질 TMB (Bio-Rad)를 100 μl/웰로 첨가하고, 실온에서 5분 동안 발색시켰다. 1M H2SO4를 100 μl/웰로 첨가하고, 발색을 종료시켰다. 흡광도는 SpectraMax ABS Plus(Molecular Devices) 기기를 이용하여 450 nm의 파장에서 측정하였다. 그 결과 Q-SBL1, Q-SBL2, Q-SBL3, Q-SBL4의 EC50 값을 비교한 것과 R-SBL1, R-SBL2, R-SBL3, R-SBL4 의 EC50값을 비교한 것은 다음과 같다. 힌지 영역에 변화를 준 Q-SBL5, R-SBL5, R-SBL6의 EC50 값을 각각 Q-SBL1와 R-SBL1과 비교한 것은 다음과 같다. 마지막으로, Knob/Hole 의 위치에 따른 후보군인 Q-SBL6, Q-SBL7, Q-SBL8을 Q-SBL1과 EC50값을 비교한 것은 다음과 같다. 모든 샘플군은 SEC 분석 결과 순도 90% 이상인 경우에 한해서 실험을 진행하였다. 도 14A, 14B 는 이중 항원 결합 친화도 분석의 4-파라미터 피팅 (4-parameter fitting)한 그래프를 보여주었다.
Figure PCTKR2021020103-appb-img-000051
5-4. HUVEC 증식 분석 (HUVEC proliferation assay)
이중 특이성 항체의 세포 증식 억제 효과를 확인하기 위해 혈관 내피세포(HUVEC, Human umbilical vein endothelial cell)를 Lonza사에서 구매하여 실험에 사용하였다. HUVEC(Lonza) 세포 배양은 EGM-2 Single Quot(Lonza)가 포함된 EBM-2(Lonza)를 사용하였으며, HUVEC 세포는 계대 5 이내의 세포들을 이용하여 실험하였다. 세포 배양은 37°C, 5% CO2 배양기에서 계대배양 하였으며 25-T Flask에서 세포 밀집도가 80%가 넘지 않도록 하였다. 혈관 내피세포의 증식 억제 효과 분석을 위해서, 혈관 내피세포를 96 웰 플레이트에 4000 세포/웰의 밀도로 0.25% FBS(Lonza)가 포함된 EBM-2 배양액에서 6시간 동안 배양하였다. 다양한 농도의 항체를 96 웰 플레이트에 VEGF와 선 처리한 후 15분 동안 실온에서 반응시켰다. 0.25% 우태 혈청이 포함되어있는 EBM-2 배양액으로 HUVEC 세포가 있는 96 웰 플레이트의 배양액을 교체하였다. 그 다음으로 다양한 농도의 항체와 20 ng/ml의 VEGF를 각각의 플레이트 웰에 처리하였다. 70시간 배양 후 WST-8(DOJINDO)을 5시간 처리하여 450 nm 파장에서 흡광도를 측정함으로써 각 조건의 세포 증식 정도를 비교하였다(도 24).
Figure PCTKR2021020103-appb-img-000052
인간의 혈관내피세포 배양액에 VEGF를 단독으로 처리하거나, 이중 특이적 항체를 처리했을 때 혈관내피세포의 성장율이 VEGF 단독 처리군에 비해 혈관내피세포 성장률이 감소하였으며, 이중 특이적 항체 R-SBL3를 제외한 9 종의 이중 타겟 항체는 10nM 이하의 IC 50값을 보였다. 모든 샘플군은 SEC 분석 결과 순도 90% 이상인 경우에 한해서 실험을 진행하였다.
5-5. C1q 결합 분석 (C1q binding ELISA)
IgG1의 Fc 영역은 Fcγ 수용체 (FcγR, Fcγ Receptor) 및 보체 단백질 (C1q, Complement component 1q)과 상호작용하여 면역 효과기 기능 (immune effector function)을 유도한다. 이는 항체 의존성 세포독성 (ADCC, Antibody-Dependent Cell-mediated Cytotoxicity), 식균작용 (ADCP, Antibody-Dependent Cellular Phagocytosis) 또는 보체 의존성 세포독성 (CDC, Complement-Dependent Cytotoxicity)을 통해 표적 세포를 제거함으로써 항체 치료제의 효능 증대에 중요한 역할을 한다. 따라서 IgG1 골격으로 구성된 이중특이성 항체 후보군의 C1q 결합 활성을 확인하고자 ELISA 실험을 진행하였다. ELISA의 구체적인 구현 프로세스는 하기와 같았다. 1x PBS pH7.4에 연속적으로 희석한 이중 특이적 항체를 (Serially diluted, 540.5 ~ 0.3 nM) 웰당 100 μl씩 96-웰 고-흡착 ELISA 플레이트에 코팅하였다. 4°C에서 밤새 코팅을 수행하고, 0.05% PBS-T로 5회 세척하였다. 5% BSA (PBS) 200 μl/웰로 블록킹하고, 25°C에서 2시간 동안 인큐베이션시킨 후, 0.05% PBS-T로 5회 세척하였다. 5% BSA (PBS-T)로 C1q 단백질을 5 μg/ml로 희석한 후, 100 μl씩 각 웰에 첨가하고 25ºC에서 2시간 동안 인큐베이션시켰다. 마이크로플레이트를 0.05% PBS-T로 5회 세척한 후, 5% BSA (PBS-T)로 HRP가 접합된 항 C1q 항체 (abcam)를 1:2000으로 희석한 후, 웰당 100 μl 첨가하고, 25 °C에서 1시간 동안 인큐베이션하였다. 0.05% PBS-T로 5회 세척 후, 비색 기질 TMB (BIORAD)를 100 μl/웰로 첨가하고, 실온에서 5분 동안 발색시켰다. 1M H2SO4를 100 μl/웰로 첨가하고, 발색을 종료시켰다. 흡광도는 SpectraMax ABS Plus(Molecular Devices) 기기를 이용하여 450 nm의 파장에서 측정하였다. 그 결과 Trastuzumab, Q-SBL2, Q-SBL9 의 EC50 값을 비교한 것은 다음과 같다. 모든 샘플군은 SEC 분석 결과 순도 90% 이상인 경우에 한해서 실험을 진행하였다. 도 25는 C1q 결합 ELISA의 4-파라미터 피팅 (4-parameter fitting)한 그래프를 보여주었다.
Figure PCTKR2021020103-appb-img-000053
이상으로 본 발명의 내용의 특정한 부분을 상세히 기술하였는바, 당업계의 통상의 지식을 가진 자에게 있어서, 이러한 구체적 기술은 단지 바람직한 실시양태일 뿐이며, 이에 의해 본 발명의 범위가 제한되는 것이 아닌 점은 명백할 것이다. 따라서, 본 발명의 실질적인 범위는 첨부된 청구항들과 그것들의 등가물에 의하여 정의된다고 할 것이다.
본 발명에 따른 신규 포맷의 이중 또는 다중 특이적 항체를 통해, 두 가지 이상의 타겟에 동시에 결합하여 목적하는 타겟의 활성을 억제 또는 증가시킴으로써 단일 표적 항체 치료에 비하여 질병 치료와 진단에 우수한 효과를 기대할 수 있는 신규 포맷의 이중 또는 다중 특이적 다가의 항체를 제공할 수 있다.
또한, 본 발명에 따르면 중쇄와 경쇄의 비특이적 결합이 거의 나타나지 않은 상태로 헤테로다이머를 이루고 있으며, 호모다이머 또한 거의 생성되지 않는다. 따라서, 동물세포를 통해 고발현이 가능하며, 정제 공정 또한 단클론 항체의 공정과 크게 다를 바 없다. 안정성 측면에서도 일반적인 단클론 항체 이상의 안정성을 보여주고 있다. 이러한 이중 특이적 항체 포맷을 활용하여, 다양한 이중 특이적 항체 의약품 개발이 가능하고 복합적인 질병을 가지고 있는 환자의 치료에 사용될 수 있다.

Claims (28)

  1. VH1-CHa-Fc1 및 VL1-CLb을 포함하는 제1항원에 결합하는 제1암 (arm); 및 VH2-CH1-Fc2 및 VL2-CL을 포함하는 제2항원에 결합하는 제2암을 포함하는 이중 특이적 항체이고,
    상기 VH1 및 VH2은 각각 동일 또는 상이한 항원 결합 영역을 포함하는 중쇄 가변영역이고,
    상기 VL1 및 VL2은 각각 동일 또는 상이한 항원 결합 영역을 포함하는 경쇄 가변영역이고,
    상기 CHa는 i) IgG 중쇄 불변영역 또는 IgD 중쇄 불변영역 CH1, 및 IgG 중쇄 불변영역 CH2 또는 CH3를 포함하거나, 또는 ii) IgM 중쇄 불변영역 CH3를 포함하고,
    상기 CLb는 i) IgG 경쇄 불변영역 λ 또는 κ를 포함하는 CL1 및 IgG 중쇄 불변영역 CH1, CH2, CH3로 구성된 군에서 선택되는 하나 이상을 포함하거나, 또는 ii) IgM 중쇄 불변영역 CH3를 포함하고,
    상기 CH1은 IgG 중쇄 불변영역 CH1이고, CL은 IgG 경쇄 불변영역 CL이고,
    상기 제1암의 Fc1 및 제2암의 Fc2는 결합하여 중쇄 불변영역 다이머를 형성한다.
  2. 제1항에 있어서, 상기 CHa 및 CLb는 IgG1, IgG2, IgG3, IgG4, IgD 또는 IgM 유래인 이중 특이적 항체.
  3. 제1항에 있어서, 상기 제1암 중 CHa는 N 말단에서 C-말단의 순서로 IgG1, IgG2, IgG3, IgG4, IgD 또는 IgM 유래 중쇄 불변영역 CH1, 및 IgG1, IgG2, IgG3, IgG4, IgD 또는 IgM 유래 CH3를 포함하는 이중 특이적 항체.
  4. 제1항에 있어서, 상기 제1암 중 CHa는 N 말단에서 C-말단의 순서로 IgG1, IgG2, IgG4, IgG3, IgD 또는 IgM 유래 중쇄 불변영역 CH3 및 IgG1, IgG2, IgG3, IgG4, IgD 또는 IgM 유래 중쇄 불변영역 CH1를 포함하는 이중 특이적 항체.
  5. 제1항에 있어서, 상기 제1암 중 CHa는 IgM 유래 중쇄 불변영역 CH3를 포함하는 이중 특이적 항체.
  6. 제1항에 있어서, 상기 제1암 중 CLb는 N 말단에서 C-말단의 순서로 IgG1, IgG2, IgG3, IgG4, IgD 또는 IgM 유래 경쇄 불변영역 CL1 및 IgG1, IgG2, IgG3, IgG4, IgD 또는 IgM 유래 중쇄 불변영역 CH3를 포함하는 이중 특이적 항체.
  7. 제1항에 있어서, 상기 제1암 중 CLb는 N 말단에서 C-말단의 순서로 IgG1, IgG2, IgG3, IgG4, IgD 또는 IgM 유래 CH3 및 IgG1, IgG2, IgG3, IgG4, IgD 또는 IgM 유래 CL1를 포함하는 이중 특이적 항체.
  8. 제1항에 있어서, 상기 제1암 중 CLb는 IgM 유래 중쇄 불변영역 CH3를 포함하는 이중 특이적 항체.
  9. 제1항에 있어서, 상기 CHa의 CH1 및 CLb의 CL1은 이황화 결합없이 연결된 이중 특이적 항체.
  10. 제1항에 있어서, 상기 CHa 및 CLb는 각각 CH3를 포함하고, CH3가 이황화 결합을 통해 다이머를 형성하는 이중 특이적 항체.
  11. 제1항에 있어서, 상기 CHa 및 CLb는 각각 CH3를 포함하고, CH3가 연결되어 형성된 다이머 중 하나는 Y349C, S354C, T366S, T366W, L368A 및 Y407V로 구성된 군에서 선택되는 하나 이상을 포함하고, S354C, Y349C, T366W, T366S, L368A 및 Y407V로 구성된 군에서 선택되는 하나 이상을 포함하여 놉인홀 (knob-in-hole) 구조를 포함하는 이중 특이적 항체.
  12. 제1항에 있어서, 상기 CHa의 CH1 및 CLb의 CL1은 이황화 결합없이 연결되고, i) CHa의 CH3 및 CLb의 CH3 중 어느 하나는 Y349C, T366S, L368A 및 Y407V로 구성된 군에서 선택되는 하나 이상을 포함하고, 다른 하나는 S354C 및/또는 T366W을 포함하거나, 또는 ii) CHa의 CH3 및 CLb의 CH3 중 어느 하나는 S354C, T366S, L368A 및 Y407V로 구성된 군에서 선택되는 하나 이상을 포함하고, 다른 하나는 Y349C 및/또는 T366W을 포함하는, 이중 특이적 항체.
  13. 제1항에 있어서, 상기 Fc의 CH3 다이머 중 하나는 Y349C, S354C, T366S, T366W, L368A 및 Y407V로 구성된 군에서 선택되는 하나 이상을 포함하고, S354C, Y349C, T366W, T366S, L368A 및 Y407V로 구성된 군에서 선택되는 하나 이상을 포함하여 다이머 중 놉인홀 (knob-in-hole) 구조를 포함하는 이중 특이적 항체.
  14. VH1-CHa-Fc1 및 VL1-CLb을 포함하는 제1항원에 결합하는 제1암 (arm); 및 VH2-CH1-Fc2 및 VL2-CL을 포함하는 제2항원에 결합하는 제2암을 포함하는 이중 특이적 항체이고,
    상기 VH1 및 VH2은 각각 동일 또는 상이한 항원 결합 영역을 포함하는 중쇄 가변영역이고,
    상기 VL1 및 VL2은 각각 동일 또는 상이한 항원 결합 영역을 포함하는 경쇄 가변영역이고,
    상기 CHa는 IgG 중쇄 불변영역 CH3 및 IgG 중쇄 불변영역 CH1를 포함하고,
    상기 CLb는 IgG 경쇄 불변영역 λ 또는 κ를 포함하는 CL1 및 IgG 중쇄 불변영역 CH3를 포함하고,
    상기 CH1은 IgG 중쇄 불변영역 CH1이고, CL은 IgG 경쇄 불변영역 CL이고,
    상기 제1암의 Fc1 및 제2암의 Fc2는 결합하여 중쇄 불변영역 다이머를 형성한다.
  15. 제14항에 있어서, 상기 IgG 중쇄 불변영역 CH1은 IgG1, IgG2, IgG3 또는 IgG4 유래 CH1인 이중 특이적 항체.
  16. 제14항에 있어서, 상기 CHa의 CH1 및 CLb의 CL1은 이황화 결합없이 연결된 이중 특이적 항체.
  17. 제14항에 있어서, 상기 CHa 및 CLb의 CH3는 이황화 결합을 통해 다이머를 형성하는 이중 특이적 항체.
  18. 제14항에 있어서, 상기 CHa의 CH3 및 CLb의 CH3가 연결되어 형성된 다이머 중 하나는 T366W, S354C, Y349C로 구성된 군에서 선택되는 하나 이상을 포함하고, 다른 하나는 S354C, Y349C, T366S, L368A, Y407V로 구성된 군에서 선택되는 하나 이상을 포함하여, 놉인홀 (knob-in-hole) 구조를 포함하는 이중 특이적 항체.
  19. 제14항에 있어서, 상기 CHa의 CH3 및 CLb의 CH3가 연결되어 형성된 다이머 중 하나는 S354C, T366S, L368A, Y407V을 포함하고, 다른 하나는 Y349C, T366W을 포함하여, 놉인홀 구조를 포함하는 이중 특이적 항체.
  20. 제14항에 있어서, 상기 CHa의 CH3 또는 CLb의 CH3는 서열번호 8 내지 13의 서열을 포함하는 이중 특이적 항체.
  21. 제14항에 있어서, 상기 CHa의 CH1 및 CLb의 CL1은 이황화 결합없이 연결되고, i) CHa의 CH3 및 CLb의 CH3 중 어느 하나는 Y349C, T366S, L368A 및 Y407V로 구성된 군에서 선택되는 하나 이상을 포함하고, 다른 하나는 S354C 및/또는 T366W을 포함하거나, 또는 ii) CHa의 CH3 및 CLb의 CH3 중 어느 하나는 S354C, T366S, L368A 및 Y407V로 구성된 군에서 선택되는 하나 이상을 포함하고, 다른 하나는 Y349C 및/또는 T366W을 포함하는, 이중 특이적 항체.
  22. 제14항에 있어서, 상기 CHa의 CH3 및 CH1, CLb의 CH3 및 CL1는 링커로 연결된 이중 특이적 항체.
  23. 제22항에 있어서, 상기 링커는 5 내지 10 aa의 잔기를 포함하는 이중 특이적 항체.
  24. 제14항에 있어서, 상기 제1암의 Fc1 및 제2암의 Fc2에 의해 형성된 CH3 다이머는 모노머 각각이 이황화 결합을 통해 연결 또는 이황화 결합없이 연결된 이중 특이적 항체.
  25. 제14항에 있어서, 상기 제1암 및 제2암은 힌지를 통해 연결된 이중 특이적 항체.
  26. 제14항에 있어서, 상기 제1암 및 제2암은 다음으로 구성된 군에서 선택되는 하나 이상의 서열을 포함하여 형성된 힌지를 통해 연결된 이중 특이적 항체:
    DKTHTCPPCP;
    EPKSSDKTHTCPPCP; 및
    ESKYGPPCPPCP.
  27. 제1항 내지 제26항 중 어느 한 항에 따른 이중 특이적 항체를 포함하는 다중 특이적 항체.
  28. 제27항에 있어서, 상기 이중 특이적 항체 중 제1암 또는 제2암의 N말단에 추가 항원에 결합하는 항원 결합 단편을 추가로 포함하거나, 제1암의 Fc1 또는 제2암의 Fc2 말단에 추가 항원에 결합하는 항원 결합 단편을 추가로 포함하는 다중 특이적 항체.
PCT/KR2021/020103 2020-12-29 2021-12-29 이중 또는 다중 특이적 항체 WO2022146003A1 (ko)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN202180093319.1A CN116867800A (zh) 2020-12-29 2021-12-29 双特异性或多特异性抗体
EP21915801.1A EP4286408A1 (en) 2020-12-29 2021-12-29 Bi- or multi-specific antibody
AU2021411896A AU2021411896A1 (en) 2020-12-29 2021-12-29 Bi- or multi-specific antibody
CA3203831A CA3203831A1 (en) 2020-12-29 2021-12-29 Bi- or multi-specific antibody
JP2023540751A JP2024502095A (ja) 2020-12-29 2021-12-29 二重または多重特異性抗体{Bi or Multi-Specific Antibody}

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2020-0185664 2020-12-29
KR20200185664 2020-12-29

Publications (1)

Publication Number Publication Date
WO2022146003A1 true WO2022146003A1 (ko) 2022-07-07

Family

ID=82260916

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2021/020103 WO2022146003A1 (ko) 2020-12-29 2021-12-29 이중 또는 다중 특이적 항체

Country Status (7)

Country Link
EP (1) EP4286408A1 (ko)
JP (1) JP2024502095A (ko)
KR (1) KR20220095163A (ko)
CN (1) CN116867800A (ko)
AU (1) AU2021411896A1 (ko)
CA (1) CA3203831A1 (ko)
WO (1) WO2022146003A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024059854A3 (en) * 2022-09-16 2024-05-23 The Trustees Of Columbia University In The City Of New York Bispecific antibody for t-cell modulation

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013012733A1 (en) * 2011-07-15 2013-01-24 Biogen Idec Ma Inc. Heterodimeric fc regions, binding molecules comprising same, and methods relating thereto
KR101431319B1 (ko) * 2009-05-27 2014-08-20 에프. 호프만-라 로슈 아게 삼중특이성 또는 사중특이성 항체
US20170306044A1 (en) * 2014-10-09 2017-10-26 Engmab Ag Bispecific antibodies against cd3epsilon and ror1 for use in the treatment of ovarian cancer
US20180016354A1 (en) * 2014-12-05 2018-01-18 Merck Patent Gmbh Domain-exchanged antibody

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101431319B1 (ko) * 2009-05-27 2014-08-20 에프. 호프만-라 로슈 아게 삼중특이성 또는 사중특이성 항체
WO2013012733A1 (en) * 2011-07-15 2013-01-24 Biogen Idec Ma Inc. Heterodimeric fc regions, binding molecules comprising same, and methods relating thereto
US20170306044A1 (en) * 2014-10-09 2017-10-26 Engmab Ag Bispecific antibodies against cd3epsilon and ror1 for use in the treatment of ovarian cancer
US20180016354A1 (en) * 2014-12-05 2018-01-18 Merck Patent Gmbh Domain-exchanged antibody

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
HONGYAN LIU, ABHISHEK SAXENA, SACHDEV S. SIDHU, DONGHUI WU: "Fc Engineering for Developing Therapeutic Bispecific Antibodies and Novel Scaffolds", FRONTIERS IN IMMUNOLOGY, vol. 8, XP055396345, DOI: 10.3389/fimmu.2017.00038 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024059854A3 (en) * 2022-09-16 2024-05-23 The Trustees Of Columbia University In The City Of New York Bispecific antibody for t-cell modulation

Also Published As

Publication number Publication date
EP4286408A1 (en) 2023-12-06
KR20220095163A (ko) 2022-07-06
CN116867800A (zh) 2023-10-10
AU2021411896A1 (en) 2023-08-17
JP2024502095A (ja) 2024-01-17
AU2021411896A9 (en) 2024-10-17
CA3203831A1 (en) 2022-07-07

Similar Documents

Publication Publication Date Title
WO2014084607A1 (ko) 항체 중쇄불변부위의 이종이중체 고효율 형성을 유도하는 ch3 도메인 변이체 쌍, 이의 제조방법, 및 용도
WO2020197230A1 (ko) 인간 히알루로니다제 ph20의 변이체와 약물을 포함하는 피하투여용 약학 조성물
WO2017052241A1 (en) Novel anti-mesothelin antibody and composition comprising the same
WO2019098682A1 (ko) 항-her2 항체 또는 그의 항원 결합 단편, 및 이를 포함하는 키메라 항원 수용체
WO2017065484A1 (ko) 효모접합을 이용한 항체 ch3 도메인 이종이중체 돌연변이쌍 제조방법 및 이에 의하여 제조된 ch3 돌연변이체 쌍
WO2015058573A1 (zh) 拮抗抑制程序性死亡受体pd-1与其配体结合的单克隆抗体及其编码序列与用途
WO2016137108A1 (en) Novel antibody binding to tfpi and composition comprising the same
WO2020231199A1 (ko) 신규 변형 면역글로불린 fc 융합단백질 및 그의 용도
WO2022039490A1 (en) Anti-b7-h4/anti-4-1bb bispecific antibodies and use thereof
WO2014025198A2 (ko) Lfa3 변이체 및 상기 변이체 또는 lfa3 cd2 결합영역과 이에 표적 특이적 폴리펩타이드가 연결된 융합단백질 및 그 용도
WO2022146003A1 (ko) 이중 또는 다중 특이적 항체
WO2020251316A1 (ko) α-SYN/IGF1R에 대한 이중 특이 항체 및 그 용도
WO2021071319A1 (ko) 다중 특이적 융합 단백질 및 이의 용도
WO2020101365A1 (ko) 안정성이 향상된 항 c-met 항체 또는 그의 항원 결합 단편
WO2019125070A1 (ko) 악성 b 세포를 특이적으로 인지하는 항체 또는 그의 항원 결합 단편, 이를 포함하는 키메라 항원 수용체 및 이의 용도
WO2018026249A1 (ko) 프로그램화된 세포 사멸 단백질 리간드-1 (pd-l1)에 대한 항체 및 이의 용도
WO2023003331A1 (en) Sirp-alpha variants and use thereof
WO2021101349A1 (ko) Ror1 및 b7-h3에 결합하는 항체, 이를 포함하는 항체-약물 접합체 및 그 용도
WO2023287212A1 (ko) 조절 t 세포 표면 항원의 에피토프 및 이에 특이적으로 결합하는 항체
WO2022035201A1 (ko) Il-12 및 항-fap 항체를 포함하는 융합단백질 및 이의 용도
WO2022169269A1 (ko) 항 ctla-4 항체 및 이의 용도
WO2020204305A1 (ko) 항-메소텔린 항체, 항-cd3 항체 또는 항-egfr 항체를 포함하는 융합 단백질 및 이를 포함하는 이중 특이적 또는 삼중 특이적 항체 및 이의 용도
WO2023171958A1 (ko) 코티닌을 표적하는 항체 또는 그의 항원 결합 단편, 이를 포함하는 키메라 항원 수용체 및 이들의 용도
WO2018194376A1 (ko) 단백질의 순도 및 항원에 대한 친화성이 향상된 폴리펩티드, 이의 항체 또는 항원 결합 단편과의 복합체, 및 이들의 제조방법
WO2021137655A1 (ko) SUPER-REPRESSOR IκB에 대한 항체 및 이의 용도

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21915801

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 3203831

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 2023540751

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 202180093319.1

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 2021411896

Country of ref document: AU

Date of ref document: 20211229

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2021915801

Country of ref document: EP

Effective date: 20230731