WO2021101349A1 - Ror1 및 b7-h3에 결합하는 항체, 이를 포함하는 항체-약물 접합체 및 그 용도 - Google Patents

Ror1 및 b7-h3에 결합하는 항체, 이를 포함하는 항체-약물 접합체 및 그 용도 Download PDF

Info

Publication number
WO2021101349A1
WO2021101349A1 PCT/KR2020/016600 KR2020016600W WO2021101349A1 WO 2021101349 A1 WO2021101349 A1 WO 2021101349A1 KR 2020016600 W KR2020016600 W KR 2020016600W WO 2021101349 A1 WO2021101349 A1 WO 2021101349A1
Authority
WO
WIPO (PCT)
Prior art keywords
antibody
seq
ror1
antigen
amino acid
Prior art date
Application number
PCT/KR2020/016600
Other languages
English (en)
French (fr)
Inventor
김주희
권정아
박영돈
유병민
이보라
이수연
정진원
Original Assignee
에이비엘바이오 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 에이비엘바이오 주식회사 filed Critical 에이비엘바이오 주식회사
Publication of WO2021101349A1 publication Critical patent/WO2021101349A1/ko

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/68Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an antibody, an immunoglobulin or a fragment thereof, e.g. an Fc-fragment
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/28Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants

Definitions

  • the present invention relates to an antibody that specifically binds to ROR1 and B7-H3 proteins, an antibody-drug conjugate comprising the same, and a use thereof.
  • ROR1 is expressed during embryonic and fetal development and regulates cell polarity, cell migration, and neurite growth. As overexpression of ROR1 was observed in various cancer cells, it was classified as an oncofetal gene. In particular, it was found that ROR1 is overexpressed in chronic lymphocytic leukemia (CLL).
  • CLL chronic lymphocytic leukemia
  • CLL chronic lymphocytic leukemia
  • AML acute myeloid leukemia
  • MCL mantle cell lymphoma
  • ALL acute lymphocytic leukemia
  • DLBCL diffuse giant B-cell lymphoma
  • follicular follicular
  • blood cancers such as lymphoma (FL) and marginal zone lymphoma (MZL)
  • FL lymphoma
  • MZL marginal zone lymphoma
  • NSCLC non-small cell lung cancer
  • neuroblastoma brain cancer, colon cancer, epithelial squamous cell carcinoma, melanoma, myeloma, cervical cancer, thyroid cancer, head and neck cancer, and adrenal cancer.
  • ROR1 expression in such cancers is associated with poor prognosis in cancer patients and is known to affect cancer metastasis
  • B7-H3 (CD276) is a member of the B7 family and is a transmembrane protein including extracellular, transmembrane, and intracellular regions.
  • B7-H3 consists of a single pair of immunoglobulin variable domains and immunoglobulin constant domains (2Ig B7-H3) or two identical pairs (4Ig B7-H3) due to exon overlap.
  • B7-H3 protein is not always expressed in T cells, natural killer cells (NK cells), and antigen presenting cells (APCs) in normal tissues, but its expression can be induced.
  • B7-1 and B7-2 are mainly limited to immune cells such as antigen presenting cells
  • B7-H3 protein is not only used in osteoblasts, fibroblasts, fibroblast-like synovial cells and epithelial cells, but also in human liver and lung. , Bladder, testes, prostate, breast, placenta and lymphatic organs. This broad expression pattern suggests a more diverse immunological and non-immune function of B7-H3, especially in peripheral tissues.
  • B7-H3 expression is non-small cell lung cancer, renal cell carcinoma, neuroblastoma, colon cancer, pancreatic cancer, gastric cancer, lung cancer, prostate cancer, endometrial cancer, hepatocellular carcinoma, breast cancer, cervical cancer, osteosarcoma, oral cancer, bladder cancer, glioma, It is identified in various solid cancers such as melanoma, and has been reported to be expressed in hematologic cancers such as acute leukemia, multiple myeloma, and various types of lymphoma (Zhimeng Yea, Zhuojun Zhengb et al, Cell Physiol Biochem (2016), Elodie Picarda, Kim C. Ohaegbulam and Xingxing Zang, clinical cancer research (2016), Wei Zhang, Yagging Wang, Jing Wang et al, international journal of oncology (2015)).
  • ADCs generally have a disadvantage of having low stability in vivo compared to natural antibodies, but were developed to improve the low therapeutic effect, which is a disadvantage of natural antibodies, through binding with drugs. It is being developed in a form in which drugs having a specific drug such as cytotoxin are combined with a target-specific antibody in various ways, and an antibody-drug conjugate capable of inducing cancer cell death by binding a drug to a cancer cell-specific antibody has been commercialized.
  • An object of the present invention is to provide a dual specific antibody or antigen-binding fragment thereof that specifically binds to ROR1 and B7-H3 proteins.
  • An object of the present invention is to provide a nucleic acid encoding the dual specific antibody or antigen-binding fragment thereof.
  • An object of the present invention is to provide an antibody-drug conjugate (ADC) in which the bispecific antibody or antigen-binding fragment thereof is bound to a drug.
  • ADC antibody-drug conjugate
  • An object of the present invention is to provide a composition for preventing or treating cancer comprising the dual specific antibody or antigen-binding fragment thereof or antibody-drug conjugate (ADC).
  • ADC antibody-drug conjugate
  • the present invention is a bispecific antibody or antigen-binding fragment thereof that specifically binds to ROR1 and B7-H3 proteins,
  • HCDR1 comprising an amino acid sequence selected from the group consisting of SEQ ID NOs: 1, 2 and 3;
  • HCDR2 comprising an amino acid sequence selected from the group consisting of SEQ ID NOs: 5, 6, and 7;
  • HCDR3 comprising an amino acid sequence selected from the group consisting of SEQ ID NOs: 8, 9 and 10;
  • LCDR1 comprising an amino acid sequence selected from the group consisting of SEQ ID Nos: 11 to 13;
  • LCDR2 comprising an amino acid sequence selected from the group consisting of SEQ ID NOs: 14 to 16;
  • LCDR3 comprising an amino acid sequence selected from the group consisting of SEQ ID Nos: 17 to 19;
  • the antibody or antigen-binding fragment thereof specifically binding to the B7-H3 protein is HCDR1 comprising the amino acid sequence of SEQ ID NO: 57, HCDR2 comprising the amino acid sequence of SEQ ID NO: 58, and HCDR3 comprising the amino acid sequence of SEQ ID NO: 59 , And LCDR1 comprising the amino acid sequence of SEQ ID NO: 60, LCDR2 comprising the amino acid sequence of SEQ ID NO: 61, and LCDR3 comprising the amino acid sequence of SEQ ID NO: 62, or an antigen-binding fragment thereof.
  • the present invention provides a nucleic acid encoding the antibody or antigen-binding fragment thereof.
  • the present invention also provides an antibody-drug conjugate (ADC) in which the antibody or antigen-binding fragment thereof is bound to a drug.
  • ADC antibody-drug conjugate
  • the present invention also provides a composition for preventing or treating cancer comprising the antibody or antigen-binding fragment thereof, or an antibody-drug conjugate.
  • FIG. 1 is a result of an analysis (ELISA) of binding ability to ROR1 antigen of an anti-ROR1 monoclonal phage antibody prepared according to an embodiment of the present invention. It shows that each anti-ROR1 monoclonal antibody specifically binds to the extracellular region ROR1 antigen.
  • BCMA-Fc is a negative control, indicating that each anti-ROR1 monoclonal antibody specifically binds only to the ROR1 antigen and does not bind to the BCMA protein or the Fc used as a tag.
  • FIG. 2 is a result of measuring the binding ability (FACS) of an anti-ROR1 monoclonal phage antibody to a cell surface-expressing ROR1 antigen according to an embodiment of the present invention, and a JeKo-1 cell line is used as a cell expressing ROR1 on the cell surface. I did. It is shown that each anti-ROR1 monoclonal antibody specifically binds to ROR1 expressed on the cell surface.
  • FIG. 3 is a result of an analysis (ELISA) of binding ability to human ROR1 antigen of an anti-ROR1 IgG antibody prepared according to an embodiment of the present invention. It is shown that each antibody binds to the human ROR1 antigen in a concentration-dependent manner. The above results indicate that even after changing the monoclonal phage antibody to the IgG form, the binding ability to ROR1 is maintained.
  • Figure 4 is a result of the binding ability analysis (ELISA) to the mouse ROR1 antigen of the anti-ROR1 IgG antibody prepared according to an embodiment of the present invention. It is shown that each antibody binds to the mouse ROR1 antigen in a concentration-dependent manner. Through this experiment, it was confirmed that the anti-ROR1 antibody of the present invention has cross-reactivity to mouse ROR1.
  • ELISA binding ability analysis
  • the CHO-human ROR1 cell line is human ROR1
  • CHO-human ROR2 is human ROR2
  • CHO-mouse ROR1 is a cell line artificially overexpressing mouse ROR1.
  • Each antibody was shown to specifically bind to human ROR1 expressed on the cell surface and not to the family protein human ROR2.
  • the anti-ROR1 antibody of the present invention has cross-species cross-reactivity against mouse ROR1 by confirming that it also binds to a cell line artificially overexpressing mouse ROR1.
  • FIG. 6 is a result of measuring the binding ability (FACS) of an anti-ROR1 antibody prepared according to an embodiment of the present invention to a cell surface-expressed ROR1 antigen (FACS), as a ROR1 expression-positive cell line, JeKo-1 and Mino cell lines, and an ROR1 negative cell line, MCF7.
  • FACS binding ability
  • FIG. 7 is a result of measuring the binding ability (FACS) to the cell surface-expressed ROR1 antigen of the anti-ROR1 antibody prepared according to an embodiment of the present invention.
  • the MC38 human ROR1 cell line in which human ROR1 was artificially overexpressed in the mouse colon cancer cell line MC38 was used. Each antibody was shown to bind to a cell line overexpressing human ROR1 in a concentration-dependent manner.
  • FIG. 8 is a result of measuring the binding ability of an anti-ROR1 antibody prepared according to an embodiment of the present invention to a cell-expressing ROR1 antigen in various cancer cell lines (FACS).
  • ECD binding ability analysis of other proteins belonging to the B7 family of anti-B7-H3 antibodies prepared according to an embodiment of the present application. Each antibody was found to specifically recognize only the B7-H3 protein without binding to other proteins belonging to the B7 family.
  • FIG. 11 is a result of analyzing the cross-species reactivity of the anti-B7-H3 antibody prepared according to an embodiment of the present application by ELISA. Each antibody was shown to bind to monkey (cynomolgus) B7-H3 and mouse B7-H3 in a concentration-dependent manner.
  • FIG. 12 is a result of comparing the degree of binding strength to mouse B7-H3 protein of various anti-B7-H3 antibodies prepared according to an embodiment of the present application by ELISA.
  • the degree of binding of the antibodies according to the present application to mouse B7-H3 is different, but all of them were found to bind to mouse B7-H3 protein in a concentration-dependent manner.
  • FIG. 13 is a result of measuring the binding ability (FACS) to the cell surface-expressed B7-H3 antigen of the anti-B7-H3 antibody prepared according to an embodiment of the present application. It was shown that the anti-B7-H3 antibodies of the present application specifically bind only to MCF-7, a cell line overexpressing B7-H3, and do not bind to Jurkat, a cell line that does not express B7-H3.
  • FACS binding ability
  • FIG. 14 is a result of measuring the binding ability of an anti-B7-H3 antibody prepared according to an embodiment of the present application to a cell surface-expressed B7-H3 antigen by antibody concentration (FACS). Each antibody was shown to bind in a concentration-dependent manner to a cancer cell line expressing B7-H3.
  • Figure 16a is a graph measuring the cell binding ability of the single antibody and the double antibody to the cell line overexpressing B7-H3 and ROR1 (CHO-huROR1-huB7H3) by FACS.
  • Figure 16b is a graph measured by FACS on the cell binding capacity of a single antibody and a double antibody in a cell line overexpressing ROR1 (CHO-huROR1).
  • Figure 16c is a graph measured by FACS on the cell binding force of a single antibody and a double antibody in a cell line overexpressing B7-H3 (MC38-huB7H3).
  • Figure 17a is a graph measuring ADCC of a single antibody and a double antibody in a cell line overexpressing B7-H3 and ROR1 (CHO-huROR1-huB7H3).
  • Figure 17b is a graph measuring ADCC of a single antibody and a double antibody in a cell line overexpressing B7-H3 and ROR1 (CHO-huROR1-huB7H3).
  • 18A to 18J are results of evaluating ADCs manufactured using MMAE, PBD, and AB009 from various angles.
  • 19A to 19D are results of evaluating ADCs manufactured using DM1 from various angles.
  • 21A to 21D are results of comparative evaluation of the in vitro cytotoxicity of the diantibody ADC conjugated with various drugs according to the present application.
  • 22A and 22B are the results of confirming the antigen specificity of the cytotoxicity of the dual antibody ADC according to the present application.
  • 23A is a graph showing cytotoxicity against cancer cells according to the concentration of single antibody ADC and double antibody ADC (ROR1 antibody: C2E3)
  • Figure 23b is a graph showing the cytotoxicity of cancer cells according to the concentration of single antibody ADC and double antibody ADC (ROR1 antibody: BA6)
  • 23C is a graph showing cytotoxicity against cancer cells according to the concentration of single antibody ADC and double antibody ADC (ROR1 antibody: A2F2)
  • FIG. 24 is a graph confirming the apoptosis (apoptosis) effect of the calu-6 cell line by the double antibody ADC according to the present application.
  • 25 is a graph showing the concentration of the remaining antibody in plasma over time after administration of a diabolic or diabolic ADC to a rat.
  • the present invention is a bispecific antibody or antigen-binding fragment thereof that specifically binds to ROR1 and B7-H3 proteins,
  • HCDR1 comprising an amino acid sequence selected from the group consisting of SEQ ID NOs: 1, 2 and 3;
  • HCDR2 comprising an amino acid sequence selected from the group consisting of SEQ ID NOs: 5, 6, and 7;
  • HCDR3 comprising an amino acid sequence selected from the group consisting of SEQ ID NOs: 8, 9 and 10;
  • LCDR1 comprising an amino acid sequence selected from the group consisting of SEQ ID Nos: 11 to 13;
  • LCDR2 comprising an amino acid sequence selected from the group consisting of SEQ ID NOs: 14 to 16;
  • LCDR3 comprising an amino acid sequence selected from the group consisting of SEQ ID Nos: 17 to 19;
  • the antibody or antigen-binding fragment thereof specifically binding to the B7-H3 protein is HCDR1 comprising the amino acid sequence of SEQ ID NO: 57, HCDR2 comprising the amino acid sequence of SEQ ID NO: 58, and HCDR3 comprising the amino acid sequence of SEQ ID NO: 59 , And LCDR1 comprising the amino acid sequence of SEQ ID NO: 60, LCDR2 comprising the amino acid sequence of SEQ ID NO: 61, and LCDR3 comprising the amino acid sequence of SEQ ID NO: 62, or an antigen-binding fragment thereof.
  • the term "antibody” refers to an anti-ROR1 antibody that specifically binds to each of ROR1 and B7-H3 proteins, an anti-B7-H3 antibody, or that binds both ROR1 and B7-H3 proteins. It refers to a bispecific antibody (double antibody).
  • the scope of the present invention includes not only complete antibody forms that specifically bind to each of the ROR1 and B7-H3 proteins, but also parts of the complete antibody, antigen-binding fragments of the antibody molecules, and combinations thereof.
  • a complete antibody is a structure having two full-length light chains and two full-length heavy chains, and each light chain is linked to a heavy chain by a disulfide bond.
  • the term “heavy chain” refers to a full-length heavy chain comprising a variable region domain VH and three constant region domains CH1, CH2 and CH3 comprising an amino acid sequence having a sufficient variable region sequence to impart specificity to an antigen. And fragments thereof.
  • the term “light chain” as used herein refers to a full-length light chain including a variable region domain VL and a constant region domain CL comprising an amino acid sequence having a sufficient variable region sequence to impart specificity to an antigen, and fragments thereof. It all means.
  • the total antibody includes subtypes of IgA, IgD, IgE, IgM and IgG, and in particular IgG includes IgG1, IgG2, IgG3 and IgG4.
  • the heavy chain constant region has gamma ( ⁇ ), mu ( ⁇ ), alpha ( ⁇ ), delta ( ⁇ ) and epsilon ( ⁇ ) types, and has subclasses of gamma 1 ( ⁇ 1), gamma 2 ( ⁇ 2), and gamma 3 ( ⁇ 3). ), gamma4( ⁇ 4), alpha1( ⁇ 1) and alpha2( ⁇ 2).
  • the constant region of the light chain has kappa ( ⁇ ) and lambda ( ⁇ ) types.
  • the antigen-binding fragment or antibody fragment of an antibody refers to a fragment having an antigen-binding function, and includes Fab, F(ab'), F(ab')2, Fv, and the like.
  • Fab has a structure having a light chain and a heavy chain variable region, a light chain constant region, and a heavy chain first constant region (CH1), and has one antigen-binding site.
  • Fab' differs from Fab in that it has a hinge region including one or more cysteine residues at the C-terminus of the heavy chain CH1 domain.
  • F(ab')2 is generated when the cysteine residue of the hinge region of Fab' forms a disulfide bond.
  • Fv corresponds to the smallest antibody fragment having only a heavy chain variable region and a light chain variable region.
  • the double-chain Fv (two-chain Fv) is a non-covalent bond, and the heavy chain variable region and the light chain variable region are connected, and the single-chain Fv (single-chain Fv, scFv) is generally a variable region of the heavy chain and the variable region of the light chain through a peptide linker. Since the regions are covalently linked or directly linked at the C-terminus, a dimer-like structure such as a double-chain Fv can be formed.
  • Such antibody fragments can be produced using proteolytic enzymes (e.g., restriction digestion of the complete antibody with papain yields Fab, and digestion with pepsin yields F(ab')2), or genetic recombination technology It can be produced using.
  • proteolytic enzymes e.g., restriction digestion of the complete antibody with papain yields Fab, and digestion with pepsin yields F(ab')2
  • the antibody of the invention is a monoclonal antibody, multispecific antibody, human antibody, humanized antibody, chimeric antibody, scFv, Fab fragment, F(ab')2 fragment, disulfide-binding Fvs (sdFv) And an anti-idiotype (anti-Id) antibody, an epitope-binding fragment of the antibodies, a part of the antibodies, or a combination thereof, but is not limited thereto.
  • the heavy chain constant region may be selected from any one isotype of gamma ( ⁇ ), mu ( ⁇ ), alpha ( ⁇ ), delta ( ⁇ ), or epsilon ( ⁇ ).
  • the constant region is gamma 1 (IgG1), gamma 2 (IgG2), gamma 3 (IgG3), or gamma 4 (IgG4).
  • the light chain constant region may be kappa or lambda type.
  • the "variable region" of the antibody used in the present invention is an antibody comprising the amino acid sequence of the complementarity determining region (CDR; that is, CDR1, CDR2, and CDR3) and framework (FR). It refers to the light and heavy chain portions of a molecule.
  • VH means the variable domain of the heavy chain.
  • VL refers to the variable domain of the light chain.
  • CDR complement determining region
  • the antibody or antigen-binding fragment thereof that binds to each of the ROR1 and B7-H3 proteins according to the present invention may include, for example:
  • a heavy chain variable region comprising the heavy chain CDR1 of SEQ ID NO: 1, the heavy chain CDR2 of SEQ ID NO: 4, and the heavy chain CDR3 of SEQ ID NO: 8, and the light chain CDR1 of SEQ ID NO: 11, the light chain CDR2 of SEQ ID NO: 14, and the light chain of SEQ ID NO: 17
  • a light chain variable region comprising CDR3;
  • heavy chain CDR1 of SEQ ID NO: 2 heavy chain CDR2 of SEQ ID NO: 5, and heavy chain variable region comprising heavy chain CDR3 of SEQ ID NO: 9, and light chain CDR1 of SEQ ID NO: 12, light chain CDR2 of SEQ ID NO: 15, and light chain of SEQ ID NO: 18 A light chain variable region comprising CDR3;
  • heavy chain CDR1 of SEQ ID NO: 2 heavy chain CDR2 of SEQ ID NO: 6, and heavy chain variable region comprising heavy chain CDR3 of SEQ ID NO: 9, and light chain CDR1 of SEQ ID NO: 12, light chain CDR2 of SEQ ID NO: 15, and light chain of SEQ ID NO: 18 A light chain variable region comprising CDR3; or
  • heavy chain CDR1 of SEQ ID NO: 3 heavy chain CDR2 of SEQ ID NO: 7 and heavy chain variable region comprising heavy chain CDR3 of SEQ ID NO: 10
  • light chain CDR1 of SEQ ID NO: 13 light chain CDR2 of SEQ ID NO: 16
  • light chain of SEQ ID NO: 19 A light chain variable region comprising CDR3.
  • the anti-B7-H3 antibody comprises a heavy chain CDR1 of SEQ ID NO: 57, a heavy chain CDR2 of SEQ ID NO: 58, and a heavy chain variable region comprising a heavy chain CDR3 of SEQ ID NO: 59, and a light chain CDR1 of SEQ ID NO: 60, a light chain CDR2 of SEQ ID NO: 61, and sequence. It includes a light chain variable region comprising the light chain CDR3 of number 62.
  • Framework (FR) are variable domain residues other than CDR residues. Each variable domain typically has 4 FRs: FR1, FR2, FR3 and FR4.
  • the antibody or antigen-binding fragment thereof that binds to each of the ROR1 and B7-H3 proteins may include a heavy chain variable region and/or a light chain variable region as follows.
  • It may include a heavy chain variable region including an amino acid sequence having 90% or more sequence homology with an amino acid sequence selected from the group consisting of SEQ ID NOs: 20 to 23, 37, 42, 47, 52.
  • It may include a light chain variable region including an amino acid sequence having 90% or more sequence homology with an amino acid sequence selected from the group consisting of SEQ ID NOs: 24 to 26, 38, 43, 48, 53.
  • it may include:
  • the antibody or antigen-binding fragment thereof that specifically binds to the B7-H3 protein may include a heavy chain variable region including an amino acid sequence having 90% or more sequence homology to the amino acid sequence of SEQ ID NO: 63.
  • the antibody or antigen-binding fragment thereof that specifically binds to the B7-H3 protein may include a light chain variable region including an amino acid sequence having 90% or more sequence homology to the amino acid sequence of SEQ ID NO: 64. Specifically, it may include a heavy chain variable region of SEQ ID NO: 63 and a light chain variable region of SEQ ID NO: 64.
  • the scFv is a structure consisting of a single polypeptide chain containing the VH and VL domains of an antibody, and is an antibody fragment.
  • a polypeptide linker that allows the scFv to form the desired structure for antigen binding may be further included between the VH domain and the VL domain.
  • the VH and VL domains may be linked via a linker.
  • the linker may be a peptide linker, and may have a length of about 10-25 aa.
  • a hydrophilic amino acid such as glycine and/or serine may be included, but is not limited thereto.
  • the linker may include, for example, (GS) n , (GGS) n , (GSGGS) n or (G n S) m (n, m are each 1 to 10), but the linker is For example, (G n S) m (n, m may be 1 to 10, respectively).
  • “Phage display” is a technique for displaying a variant polypeptide as a fusion protein with at least a portion of an envelope protein on the surface of a phage, eg, fibrous phage particle.
  • the usefulness of phage display lies in the fact that it can quickly and efficiently classify sequences that bind to a target antigen with high affinity, targeting a large library of randomized protein variants. Displaying peptide and protein libraries on phage is widely used to screen millions of polypeptides to identify polypeptides with specific binding properties.
  • the antibody or antibody fragment of the present invention may include not only the sequence of the antibody described herein, but also a biological equivalent thereof, within a range capable of specifically recognizing each of the ROR1 and B7-H3 proteins.
  • additional changes can be made to the amino acid sequence of the antibody to further improve the binding affinity and/or other biological properties of the antibody.
  • Such modifications include, for example, deletions, insertions and/or substitutions of amino acid sequence residues of the antibody.
  • Such amino acid mutations are made based on the relative similarity of amino acid side chain substituents, such as hydrophobicity, hydrophilicity, charge, size, and the like.
  • arginine, lysine and histidine are all positively charged residues; Alanine, glycine and serine have similar sizes; It can be seen that phenylalanine, tryptophan and tyrosine have similar shapes. Thus, based on these considerations, arginine, lysine and histidine; Alanine, glycine and serine; And phenylalanine, tryptophan and tyrosine are biologically functional equivalents.
  • the antibody of the present invention or a nucleic acid molecule encoding the same is interpreted as including a sequence exhibiting substantial identity to the sequence described in SEQ ID NO:
  • the actual identity of the above is at least 90% when the sequence of the present invention and any other sequence are aligned to correspond as much as possible, and the aligned sequence is analyzed using an algorithm commonly used in the art. It means a sequence showing homology, most preferably at least 95% homology, 96% or more, 97% or more, 98% or more, 99% or more homology. Alignment methods for sequence comparison are known in the art.
  • NCBI Basic Local Alignment Search Tool can be accessed from NBCI, etc., and can be used in conjunction with sequence analysis programs such as blastp, blasm, blastx, tblastn and tblastx on the Internet.
  • BLAST is available at www.ncbi.nlm.nih.gov/BLAST/.
  • a method for comparing sequence homology using this program can be found at www.ncbi.nlm.nih.gov/BLAST/blast_help.html.
  • the antibody or antigen-binding fragment thereof of the present invention is 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98% compared to the specified sequence or all of the sequences described in the specification. , 99%, or more may have homology.
  • homology can be determined by sequence comparison and/or alignment by methods known in the art. For example, a sequence comparison algorithm (i.e., BLAST or BLAST 2.0), manual alignment, visual inspection can be used to determine the percent sequence homology of a nucleic acid or protein of the invention.
  • the antibody of the present invention can also be used by mutating the lysine of Kabat 149 of the antibody light chain to cysteine (K149C), thereby easily conjugating the drug without substantially affecting the affinity and stability of the antibody.
  • K149C antibody light chain to cysteine
  • cysteine mutated at position 149 of the antibody governing body reacts with a reducing agent such as dithiothreitol (DTT) to generate a thiol group at that position and binds to the drug by formation of thiosuccinimide by Michael addition.
  • DTT dithiothreitol
  • the present invention relates to a nucleic acid encoding the antibody or antigen-binding fragment thereof.
  • the nucleic acid encoding the antibody or antigen-binding fragment thereof of the present invention can be isolated to produce the antibody or antigen-binding fragment thereof recombinantly.
  • Nucleic acid has the meaning of comprehensively including DNA (gDNA and cDNA) and RNA molecules, and nucleotides, which are basic structural units in nucleic acids, include not only natural nucleotides, but also analogs with modified sugar or base moieties. .
  • the sequence of the nucleic acid encoding the heavy and light chain variable regions of the present invention can be modified. Such modifications include addition, deletion, or non-conservative or conservative substitution of nucleotides.
  • the DNA encoding the antibody is easily isolated or synthesized using conventional molecular biological techniques (e.g., by using an oliconucleotide probe capable of specifically binding to DNA encoding the antibody and heavy and light chains).
  • the nucleic acid is isolated and inserted into a replicable vector for further cloning (amplification of DNA) or for further expression.
  • the present invention relates to a recombinant expression vector comprising the nucleic acid in another aspect.
  • the term "vector” is a means for expressing a gene of interest in a host cell, and a viral vector such as a plasmid vector, cozmid vector, bacteriophage vector, adenovirus vector, retroviral vector, adeno-associated virus vector And the like.
  • Components of the vector generally include, but are not limited to, one or more of the following: a signal sequence, an origin of replication, one or more antibiotic resistance marker genes, enhancer elements, promoters, transcription termination sequences.
  • the nucleic acid encoding the antibody is operably linked, such as a promoter and a transcription termination sequence.
  • the vector may be fused with other sequences to facilitate purification of the antibody expressed therefrom.
  • the vector may contain an antibiotic resistance gene commonly used in the art as a selection marker.
  • the present invention relates to a host cell transfected with the recombinant expression vector.
  • the host cell used to generate the antibody of the present invention may be a prokaryotic, yeast, or higher eukaryotic cell commonly used in the art, but is not limited thereto.
  • the step of culturing the host cell to produce an antibody relates to a method for preparing an antibody or antigen-binding fragment thereof that specifically binds to ROR1 and B7-H3 proteins, comprising the steps of isolating and purifying the resulting antibody.
  • the host cells can be cultured in various media. Among commercially available media, it can be used as a culture media without limitation. All other essential supplements known to those skilled in the art may also be included in suitable concentrations. Culture conditions such as temperature, pH, etc. are already used with host cells selected for expression, which will be apparent to those skilled in the art.
  • the antibody or antigen-binding fragment thereof can be recovered by removing impurities by, for example, centrifugation or ultrafiltration, and the resultant can be purified using, for example, affinity chromatography. Further other purification techniques may be used such as anion or cation exchange chromatography, hydrophobic interaction chromatography, hydroxylapatite chromatography, and the like.
  • a bispecific antibody refers to an antibody having binding or antagonistic ability to one or more targets, and in a form in which an antibody having binding ability or antagonistic ability to two different targets is bound or an antibody having binding ability to one target and another target It refers to an antibody to which a substance having antagonistic activity against is bound.
  • Multispecific antibody refers to an antibody having binding specificity for at least three or more different antigens.
  • Multi-specific antibodies are tri-specific or more antibodies, for example, tri-specific antibodies, tetra-specific antibodies or targeting more than one target. It may include an antibody.
  • bispecific or multispecific antibodies Methods of making bispecific or multispecific antibodies are well known. Traditionally, recombinant production of bispecific antibodies is based on the co-expression of two or more immunoglobulin heavy/light chain pairs under conditions in which two or more heavy chains have different specificities.
  • a hybrid scFv can be prepared in a heterodimeric form by combining VL and VH of different scFvs with each other to make a diabody, and different scFvs can be linked to each other.
  • a tendem ScFv can be prepared, and a heterodimeric miniantibody can be prepared by expressing the CH1 and CL of Fab at the ends of each scFv, and some amino acids in the CH3 domain, which is the homodimeric domain of Fc, can be substituted.
  • these altered CH3 domains can be expressed at different ends of each scFv, thereby preparing a heterodimeric scFv type minibody.
  • Fabs against a specific antigen can be prepared in the form of a heterodimeric Fab by combining each other using a disulfide bond or a mediator.
  • the antigen-binding valency can be set to two, or by placing a hinge region between the Fab and the scFv, it can be prepared to have four antigen-binding values in a homodimeric form.
  • a dual target bibody with three antigen-binding values by fusing scFvs for different antigens at the light and heavy chain ends of the Fab, a dual target bibody with three antigen-binding values, and by fusing different scFvs to the light and heavy chain ends of the Fab, respectively, to the antigen. It can be obtained by chemically conjugating three different Fabs, a triple target bibody having three binding values for each.
  • a hybrid hybridoma aka quadromas
  • Trion Pharma a method of producing a bispecific antibody.
  • a bispecific antibody can be prepared in the form of a so-called'Holes and Knob' produced in a heterodimeric form by modifying some amino acids of the CH3 homodimeric domain of Fc for different heavy chains while sharing the light chain portion.
  • scFv in addition to the heterodimeric type of bispecific antibody, two different types of scFv can be fused to expression in a constant domain instead of the variable domain of the light and heavy chains of IgG, respectively, to prepare a homodimeric type of (scFv)4-IgG.
  • ImClone is based on IMC-1C11, a chimeric monoclonal antibody against human VEGFR-2, and at the amino terminus of the light chain of this antibody is a mouse platelet-derived growth factor receptor-alpha (Platelet-derived Growth Factor Receptor- ⁇ ).
  • CD20 multiple antigen binding to CD20 is achieved through the so-called'dock and lock (DNL)' method using the dimerization and docking domain (DDD) of the protein kinase A (PKA) R subunit and the anchoring domain of PKA. It can be produced with an antibody having
  • a wide variety of recombinant antibody formats can be developed, for example bispecific or multispecific antibodies of bivalent or higher, trivalent or higher or tetravalent or higher.
  • a bivalent or higher, trivalent or higher, or tetravalent or higher antibody indicates that each of two or more binding domains, three or more binding domains, or four or more binding domains are present in the antibody molecule.
  • the bispecific antibody according to the present invention may be comprised in the form of an IgG complete antibody or fragment thereof, for example in the form of a single chain Fv, VH domain and/or VL domain, Fab or (Fab)2.
  • the bispecific antibody according to the present invention may be, for example, a 1+1 form of a divalent bispecific antibody or a 2+2 form of a tetravalent bispecific antibody. .
  • the present invention relates to an antibody-drug conjugate (ADC) in which the antibody or antigen-binding fragment thereof is bound to a drug.
  • ADC antibody-drug conjugate
  • the antibody-drug conjugate requires that the anticancer drug is stably bound to the antibody before the anticancer drug is delivered to the target cancer cell.
  • the drug delivered to the target must be released from the antibody and induce the death of the target cell. For this, when the drug stably binds to the antibody and is released from the target cell, it must have sufficient cytotoxicity to induce the death of the target cell.
  • the antibody-drug conjugate of the present invention may be a cytotoxic drug conjugated to the N-terminus, C-terminus, amino acid residue, or a combination thereof of an antibody or antigen-binding fragment thereof.
  • the antibody-drug conjugate may be a drug conjugated to the N-terminus of the heavy or light chain of the antibody or antigen-binding fragment thereof, a cysteine residue, or a combination thereof.
  • a cytotoxic drug may be conjugated to an amine group at the N-terminus of the heavy or light chain of the antibody or antigen-binding fragment thereof.
  • the antibody or antigen-binding fragment thereof and a cytotoxic drug may be covalently bound.
  • the antibody or antigen-binding fragment thereof and a cytotoxic drug may be bound by an enzyme or light cleavable bond.
  • the antibody may be bound to the drug through a linker.
  • the linker is a site that connects the antibody and the drug, and allows the drug to be released from the antibody in a form that is cleavable under intracellular conditions, that is, in the intracellular environment, and reflects the long half-life of the antibody so that the antibody is stable during systemic circulation. , The binding of the linker and the drug should not affect the stability and pharmacokinetics of the antibody.
  • the linker may be linked to an antibody in a form previously bound to a drug.
  • the linker may comprise, for example, a cleavable linker or a non-cleavable linker.
  • a cleavable linker like a peptide linker, it may be cleaved by intracellular peptidases or protease enzymes, such as lysosomes or endosome proteases, and in the case of a non-cleavable linker, for example, a thioether linker allows the antibody to be subjected to intracellular hydrolysis. The drug may be released after non-selective degradation.
  • drug may also be used as the meaning of “drug-linker” including a linker. That is, the portion of the ADC configuration except for the antibody may be referred to as a “drug”.
  • the antibody-drug conjugate may be encapsulated into cancer cells through an endosome-lysosomal pathway after the antibody region of the ADC binds to an antigen of a target cancer cell to form an ADC-antigen complex.
  • the intracellular release of the cytotoxic drug is regulated by the internal environment of the endosome/lysosome.
  • the cleavable linker is pH sensitive and may be sensitive to hydrolysis at a specific pH value.
  • the pH sensitive linker can be hydrolyzed under acidic conditions.
  • acid labile linkers that can be hydrolyzed in lysosomes such as hydrazone, semicarbazone, thiosemicarbazone, cis-aconitic amide, orthoester, acetal, It may be ketal or the like.
  • the linker may be cleaved under reducing conditions, for example, a disulfide linker may correspond thereto.
  • the drug and/or drug-linker may be randomly conjugated through the lysine of the antibody, or may be conjugated through the cysteine exposed when the disulfide bond chain is reduced.
  • a linker-drug may be bonded through a genetically engineered tag, for example, a cysteine present in a peptide or protein.
  • the drug may, in one embodiment, be a chemotherapeutic agent or a toxin.
  • the drug may be an immunomodulatory compound, an anticancer agent, an antiviral agent, an antibacterial agent, an antifungal agent, an antiparasitic agent, or a combination thereof.
  • the drug may be a cytotoxic drug, and the cytotoxic drug refers to a substance, for example, a compound having a cytotoxic or cytostatic effect in vitro or in vivo.
  • Cytotoxicity refers to the effect of causing the destruction of cells by inhibiting or lowering the function of the cells.
  • Inhibition of cell proliferation refers to an effect of limiting cell growth function, such as limiting cell growth or cell proliferation.
  • the cytotoxic drug may be an anticancer agent, a radioisotope, a toxin, or a combination thereof.
  • the drug is a pyrrolobenzodiazepine dimer (PBD), and the linker and the antibody may be connected through the N10 or N10' position of the pyrrolobenzodiazepine dimer.
  • PBD pyrrolobenzodiazepine dimer
  • the linker and the antibody may be connected through the N10 or N10' position of the pyrrolobenzodiazepine dimer.
  • PBD pyrrolobenzodiazepine dimer
  • the linker and the antibody may be connected through the N10 or N10' position of the pyrrolobenzodiazepine dimer.
  • PBD pyrrolobenzodiazepine dimer
  • R, and R' are each independently H, OH, N 3 , CN, NO 2 , SH, NH 2 , ONH 2 , NHNH 2 , halo, substituted or unsubstituted C 1-8 alkyl, substituted or Unsubstituted C 3-8 cycloalkyl, substituted or unsubstituted C 1-8 alkoxy, substituted or unsubstituted C 1-8 alkylthio, substituted or unsubstituted C 3-20 heteroaryl, substituted or unsubstituted C 5-20 aryl or mono- or di-C 1-8 alkylamino,
  • C 1-8 alkyl, C 3-8 cycloalkyl, C 1-8 alkoxy, C 1-8 alkylthio, C 3-20 heteroaryl, C 5-20 aryl is substituted, H, OH, N 3 , CN, NO 2 , SH, NH 2 , ONH 2 , NNH 2 ,
  • a pyrrolobenzodiazepine dimer prodrug, a pharmaceutically acceptable salt or solvate thereof, may be used as a drug.
  • the antibody-drug conjugate of the present invention may be one in which an antibody and a pyrrolobenzodiazepine dimer compound are linked in the following structure:
  • Ab is the antibody of the present invention
  • the antibody-drug conjugate may be formed by Michael addition reaction between the thiol group generated by reduction of the cysteine of the antibody amino acid residue and the maleimide of the gastric pyrrolobenzodiazepine dimer compound to form thiosuccinimide ( See picture below).
  • the antibody and the cyclopropabenzidol (AB009) compound may be linked in a manner similar to the pyrrolobenzodiazepine dimer compound in the following structure:
  • the antibody-drug conjugate of the present invention may be a link between the antibody and the following MMAE (Monomethyl auristatin E) compound:
  • the antibody and the MMAE compound may be linked in a manner similar to the pyrrolobenzodiazepine dimer compound in the following structure:
  • the antibody-drug conjugate of the present invention may be the one in which the antibody and the following DM1 (Emtansine) compound are linked.
  • the antibody-drug conjugate of the present invention may be one in which the antibody and the MMAE compound are linked through a linker in the following structure:
  • the linker SMCC [4-(N-Maleimidomethyl) cyclohexanecarboxylic acid N-hydroxysuccinimide ester] binds to the amine group of the antibody amino acid, and then the maleimide group and payload present in the SMCC
  • the thiol group of (payload) may be formed by reacting with Michael addition to form thiosuccinimide.
  • the present invention comprises the step of conjugating the cytotoxic drug to the antibody or antigen-binding fragment thereof by incubating an antibody or antigen-binding fragment thereof that specifically binds to ROR1 and B7-H3 proteins and a cytotoxic drug. It provides a method of preparing an antibody-drug conjugate.
  • the present invention provides a composition for preventing or treating cancer comprising an antibody or antigen-binding fragment thereof specifically binding to ROR1 and B7-H3 protein, or an antibody-drug conjugate in which a drug is conjugated to the antibody or antigen-binding fragment thereof. do.
  • the composition is a pharmaceutical composition, for example, may include a pharmaceutically acceptable carrier.
  • the carrier is used in the sense of including an excipient, diluent or adjuvant.
  • the carrier is, for example, lactose, dextrose, sucrose, sorbitol, mannitol, xylitol, erythritol, maltitol, starch, gum acacia, alginate, gelatin, calcium phosphate, calcium silicate, cellulose, methyl cellulose, polyvinyl blood.
  • composition may contain a filler, an anti-aggregating agent, a lubricant, a wetting agent, a flavoring agent, an emulsifying agent, a preservative, or a combination thereof.
  • the pharmaceutical composition may be prepared in any formulation according to a conventional method.
  • the composition may be formulated, for example, in an oral dosage form (eg, powder, tablet, capsule, syrup, pill, or granule), or a parenteral formulation (eg, an injection).
  • the composition may be prepared in a systemic formulation or a topical formulation.
  • the pharmaceutical composition may further include other anticancer agents, steroid agents, cell therapy agents, or a combination thereof.
  • the pharmaceutical composition may be a composition for combined administration in which the antibody-drug conjugate according to an aspect and one or more other active ingredients are administered simultaneously or sequentially.
  • the pharmaceutical composition may be a composition for single administration or a composition for individual administration.
  • the composition of the antibody or antigen-binding fragment thereof may be a composition for parenteral administration
  • the anticancer agent may be a composition for oral administration.
  • the pharmaceutical composition may contain the antibody or antigen-binding fragment thereof, an anticancer agent, or a combination thereof in an effective amount.
  • effective amount refers to an amount sufficient to exhibit the effect of prophylaxis or treatment when administered to an individual in need thereof.
  • the effective amount can be appropriately selected by a person skilled in the art according to the cell or individual to be selected.
  • ROR1 ECD-Fc type protein with an Fc linked to the C-terminus of the extracellular region (ECD) of human ROR1 was used.
  • residues corresponding to amino acids 1 to 406 of the ROR1 amino acid sequence represented by NCBI reference number NP_0050032 were used as a protein containing the extracellular domain of ROR1.
  • the gene encoding the extracellular domain of ROR1 was purchased from Origene's cDNA (Origene, RC214967), and in order to purify the extracellular domain of ROR1, human IgG1 at the 3'end of the gene encoding the extracellular domain of ROR1
  • a gene encoding the derived Fc protein was synthesized and ligated (referred to as'ROR1-Fc' below).
  • the gene was introduced into a pcDNA3.1 vector to obtain a vector encoding ROR1-Fc nucleic acid in a mammalian cell line.
  • the expression vector was transiently transfected into HEK 293E cells and cultured in DMEM/F-12 medium at 8% CO 2 , 37°C to express ROR1-Fc, and the medium was collected every 72 hours. Combined and protein A affinity chromatography was used to purify the Fc-ROR1 ECD protein.
  • scFv single chain variable fragment
  • ROR1-Fc and negative control-Fc (BCMA-Fc) at a concentration of 10 ⁇ g/ml were added to PBS to adsorb proteins on the surface of the test tube overnight at 4° C. in an immunotube (maxisorp 444202), followed by bovine serum albumin. (BSA, Bovine serum albumin) 3% solution was added to the test tube to protect the surface to which ROR1-Fc was not adsorbed. After emptying the test tube, a 10 12 CFU antibody phage library dispersed in a 3% BSA solution was placed in an immune test tube adsorbed with a control Fc protein and reacted at room temperature for 1 hour (negative selection).
  • BSA Bovine serum albumin
  • phages unbound to the negative control group Fc were recovered and bound to ROR1-Fc-constricted immune test tubes.
  • Non-specifically bound phage was removed by washing 5 to 30 times with PBS-T (Phosphate buffered saline-0.05% Tween 20) solution, and the remaining antigen-specific phage antibody was recovered using 100 mM triethylamine solution.
  • PBS-T Phosphate buffered saline-0.05% Tween 20
  • ER2537 E. coli was infected for 1 hour at 37°C, and the infected E. coli was plated on 2X YT agar medium containing carbenicillin and incubated overnight at 37°C.
  • the phage pool was plated on LB-tetracycline/carbenicillin agar medium and cultured to obtain a single colony. Subsequently, a single clone was inoculated into a 96 deep well plate containing 400 ⁇ l of 2 X YT-tetracycline/carbenicillin medium per well and grown overnight, and then 10 ⁇ l of the culture medium was added to a new 390 ⁇ l of 2 X YT-tetracycline/carbenicillin. It was placed in a 96 deep well plate containing a medium and incubated at 37°C for 4 hours. 1 mM IPTG was added to the culture solution and incubated overnight at 30°C. The culture medium cultured overnight was centrifuged to obtain a supernatant.
  • clones expressing monoclonal soluble scFv binding to human ROR1-Fc antigen were selected using the ELISA method as follows (Steinberger Rader and Barbas III 2000 Phage display vectors In: Phage Display Laboratory Manual 1sted ColdSpringHarborLaboratoryPress NY USA pp119- 1112) Specifically, 100 ng per well of the recombinant human ROR1-Fc or BCMA-Fc prepared in Example 1.1.(1) was added to a 96-well microtiter plate (Nunc-Immuno Plates, NUNC, USA), and overnight at 4°C. Coated.
  • BCMA-Fc is a protein used as a negative control, and is a recombinant protein in which the extracellular domain region of human BCMA protein is linked to human Fc.
  • 200 ⁇ L of 3% BSA was added to each well, followed by blocking at 37° C. for 2 hours.
  • the monoclonal phage supernatant was prepared by mixing 1:1 with 3% BSA, and 100 ⁇ L of this mixture was loaded into the wells and then reacted at 37° C. for 2 hours. After washing 5 times with 300 ⁇ L of PBST, an anti-HA HRP-binding antibody was added and reacted at 37° C. for 1 hour, followed by washing 5 times with PBST.
  • clones that bind to the cell line expressing ROR1 were selected by flow cytometry. Specifically, 100 ⁇ l of the monoclonal scFv supernatant was reacted with a cancer cell line (JeKo-1) overexpressing ROR1 and washed twice with PBS. A clone that reacts with anti-HA-FITC antibody (Sigma, H7411) at 4°C for 30 minutes, washed twice with PBS, suspended in 200 ⁇ l of PBS, and bound to JeKo-1 cell line using FACSCalibur flow cytometer (BD Bioscience) was selected (Fig. 2).
  • antibody clones (A2F2, BA6, C2E3) that bind to the recombinant human ROR1 protein and the cell line expressing ROR1 were selected, and A2F2M1, a mutant in which point mutations to prevent post-translational modification (PTM), were introduced into the A2F2 clone.
  • A2F2M1 a mutant in which point mutations to prevent post-translational modification (PTM)
  • PTM post-translational modification
  • the nucleic acid sequence encoding the variable region and CDR sequence is included as part of a nucleic acid sequence encoding the following heavy and light chain full lengths in the order of C2E3, A2F2, A2F2 M1 and BA6: SEQ ID NOs: 27 (heavy chain) and 28 (light chain). ; SEQ ID NOs: 29 (heavy chain) and 30 (light chain); SEQ ID NOs: 31 (heavy chain) and 30 (light chain); SEQ ID NO: 33 (heavy chain) and 34 (light chain).
  • Example 1.1 In order to convert the sequence of each ROR1-specific monoclonal phage antibody obtained in Example 1.1 above into a full IgG (full IgG) form, encoding the heavy and light chain variable regions of each clone obtained in Example 1.1.
  • Nucleic acid was synthesized (Genotech, Korea) by synthesizing a gene encoding a human IgG1 subtype heavy chain (SEQ ID NO: 34) and light chain constant region (SEQ ID NO: 35 or 36) protein to encode each of the heavy and light chain variable regions.
  • Ligated with nucleic acid The nucleic acids encoding the light and heavy chains of each antibody were each cloned into a pcDNA3.1-based expression vector to obtain a vector encoding the antibody nucleic acid in a CHO-S mammalian cell line.
  • control group antibody a chimeric antibody in which human IgG1 was linked to the variable region of the existing anti-ROR1 antibody 2A2 (US 9,316,646) was used as the control group antibody.
  • variable heavy chain VH
  • variable light chain VL
  • heavy chain and light chain full length Light chain
  • the anti-ROR1 antibody C2E3, A2F2, A2F2M1, BA6 according to the present invention in IgG form is shown in the table below. Same as 2a to 2d.
  • a mutation such as K149C may be introduced into the constant region of the light chain for drug binding, and the light chain sequence into which such mutation was introduced is also shown in the table below.
  • CHO-S cells were adjusted to a concentration of 1.5X10 6 cells/ml in CD-CHO (Gibco, 10743) medium, and then cultured at 8% CO 2 , 37°C for 1 day.
  • CD-CHO Gibco, 10743
  • cells grown to 2.5 ⁇ 3X10 6 cells/ml were prepared at a concentration of 2.1X10 6 cells/ml using CD-CHO medium containing 1% DMSO, and then 8% CO 2 , at 37°C. Incubated for 3 hr. After centrifugation at 3000 rpm for 15 min, the supernatant was removed, and then resuspended in RPMI 1640 medium containing 25% FBS.
  • each vector expressing the heavy and light chains of Example 1.2.(1) was diluted in Opti-MEM medium at 1 ⁇ g per ml of medium, respectively, and PEI (Polysciences, 23966, stock concentration: 1 mg/ml) was used as a culture medium. It was diluted 8 ⁇ g per ml.
  • the vector and PEI mixture were mixed and allowed to stand for 10 min at room temperature, and then placed in a flask containing the cells prepared as described above, followed by incubation for 4 hr at 5% CO 2 , 37° C., 100 rpm, and the same as the culture volume. After adding a volume of CD-CHO medium, 8% CO 2 , 37° C., and incubated for 4 days at 110 rpm.
  • Example 1.3.(2) After equilibration by passing the equilibration buffer (50 mM Tris-HCl, pH 7.5, 100 mM NaCl) through Mab selectsure (GE healthcare, 5 mL), the culture solution of Example 1.3.(2) was added to the column (Mab selectsure (GE healthcare)). , 5mL)) to allow the expressed antibody to bind to the column. Thereafter, it was eluted with 50 mM Na-citrate (pH 3.4) and 100 mM NaCl solution, and then neutralized with 1M Tris-HCl (pH 9.0) to bring the final pH to 7.2. The buffer was exchanged with PBS (phosphate buffered saline, pH 7.4).
  • PBS phosphate buffered saline, pH 7.4
  • Example 1.2 The specific binding ability of the IgG antibody of each clone prepared in Example 1.2 and selected in Example 1.2 to the antigen was analyzed as follows.
  • Anti-ROR1 antibody-antigen binding affinity was evaluated using an ELISA-based solution binding test. Specifically, 96-well microtiter plates (Nunc-Immuno Plates, NUNC) were coated with the ROR1 protein described below at a concentration of 1 ⁇ g/ml in PBS solution at 4° C. for 16 hours, and the non-specific binding site was 3% BSA (bovine serum albumin) for 2 hours. In this case, the ROR1 protein was used as ROR1-Fc of Example 1.1. or recombinant human ROR1-His (Sino Biological, 13968-H08H) in the case of human ROR1.
  • ROR1-His used in ELISA was a protein of sino biological company (13968-H08H) as described in the sentence above, and the ROR1-His of Example 1.1, or the recombinant mouse ROR1 protein was used (Acrobiosystems, RO1-M5221- 100 ⁇ g).
  • the anti-ROR1 antibody prepared in Example 1.3 was added to the microtiter plate at the concentration shown in FIG. 2, and the binding ability was analyzed by ELISA as follows. Specifically, after 2 hours incubation, the plate was washed 5 times with PBS containing 0.05% Tween 20, and then HRP-conjugated Fab polyclonal antibody reagent (Pierce, 31414) was 1: Diluted at a rate of 10,000, put into the washed microtiter plate, and reacted at 37° C. for 1 hour to detect the ROR1 antibody bound to the plate.
  • TMB Tetramethylbenzidine, Sigma, T0440
  • the enzyme reaction was stopped with 0.5 mol/L of sulfuric acid, and absorbance was measured at 450 nm and 650 nm using a microplate reader (molecular device) (450 nm-650 nm).
  • FIGS. 3A and 3B, and FIG. 4 The results of analyzing the binding specificity for ROR1 together with several anti-ROR1 antibody clones are shown in FIGS. 3A and 3B, and FIG. 4. From this, it was confirmed that the anti-ROR1 antibody of the present invention binds human ROR1 and mouse ROR1 in a concentration-dependent manner, and the A2F2M1 clone introduced a point mutation in A2F2 to prevent post-translational modification (PTM) has the same binding power as the moclone. They also confirmed that they have. In addition, when comparing the cross-reactivity to the mouse ROR1 protein, it was found that the ROR1 antibody of the present invention has excellent binding power compared to the 2A2 control antibody used as a control group (FIG. 4).
  • an antibody against a specific antigen In order for an antibody against a specific antigen to be used in vivo such as a therapeutic antibody, it is essential to bind to an antigen expressed on the cell surface. Some antibodies bind to the purified antigen, but not to the antigen expressed on the cell surface. In this case, even if the antibody is administered in vivo, it is impossible to bind to the antigen. Therefore, the antibody cannot bind to the cells expressing the antigen, so that the therapeutic antibody cannot exhibit in vivo activity.
  • the ROR1 gene was transiently (CHO-human ROR1, CHO-human ROR2, CHO-mouse ROR1) or stably (MC38-human ROR1) transfected to artificially overexpress the expression of the ROR1 protein (respectively 5 and 7) or a cell line expressing ROR1 (JeKo-1, Mino) (Fig. 6) or a cell line not expressing ROR1 (MCF7) (Fig. 6) and an anti-ROR1 antibody using a FACSCalibur (BD Biosciences) instrument
  • MCF7 is a negative control that does not express ROR
  • CHO-human ROR2 is a negative control that expresses human ROR2.
  • JeKo-1, Mino, CHO-human ROR1, CHO-mouse ROR1, and MC38-human ROR1 are all cell lines expressing human ROR1 or mouse ROR1.
  • each ROR1 monoclonal antibody prepared in Example 1.3 was added from 10 ⁇ g/mL or 10 ⁇ g/mL. It was diluted 5 times and reacted at 4° C. for 1 hour after treatment. After the reaction, the cells were washed in PBS, and then 2 ⁇ l/1x10 5 of a FITC-labeled constant region (Fc)-specific antibody (Goat anti-human IgG FITC conjugate, Fc specific, Sigma, F9512, concentration: 20 mg/ml). Cells/200 ⁇ l PBS were suspended and reacted at 4° C.
  • Fc constant region
  • the anti-ROR1 antibody of the present invention is specifically, concentration-dependent in the extracellular region of human ROR1 originally expressed in cells (Fig. 6) and human ROR1 artificially overexpressed in cells (Fig. 5, Fig. 7). It was confirmed to be combined. In addition, it was confirmed that it did not bind to human ROR2, which is a family protein, and that there is cross-reactivity between species for mouse ROR1 (Fig. 5). When comparing the cross-reactivity to mouse ROR1 expressed on the cell surface, it was confirmed that the ROR1 antibody of the present invention has a better binding degree compared to 2A2, an antibody used as a control group (FIG. 5).
  • ROR1 is expressed in a variety of cancer cells, including chronic lymphocytic leukemia (CLL), B cell leukemia, lymphoma, acute myeloid leukemia (AML), Burkitt's lymphoma, mantle cell lymphoma (MCL), acute lymphocytic leukemia (ALL), and diffuse giant B cells.
  • CLL chronic lymphocytic leukemia
  • AML acute myeloid leukemia
  • MCL mantle cell lymphoma
  • ALL acute lymphocytic leukemia
  • diffuse giant B cells diffuse giant B cells.
  • Blood cancers such as lymphoma (DLBCL), follicular lymphoma (FL), and limbic lymphoma (MZL), as well as breast cancer, kidney cancer, ovarian cancer, stomach cancer, liver cancer, lung cancer, colon cancer, pancreatic cancer, skin cancer, bladder cancer, testicular cancer, uterine cancer, It has been reported to be overexpressed in various solid cancers such as prostate cancer, non-small cell lung cancer (NSCLC), neuroblastoma, brain cancer, colon cancer, epithelial squamous cell carcinoma, melanoma, myeloma, cervical cancer, thyroid cancer, head and neck cancer, and adrenal cancer.
  • NSCLC non-small cell lung cancer
  • NSCLC non-small cell lung cancer
  • neuroblastoma brain cancer
  • colon cancer epithelial squamous cell carcinoma
  • melanoma myeloma
  • myeloma cervical cancer
  • thyroid cancer head and neck cancer
  • adrenal cancer adrenal cancer
  • AGS ATCC CRL-1739TM, huamn gastric adenocarcinoma
  • NCI-N87 ATCC CRL-5822TM, human gastric carcinoma
  • MKN-28 KCLB 80102
  • human gastric adenocarcinoma human gastric adenocarcinoma
  • SNU-1750 KCLB 01750, human gastric adenocarcinoma
  • SNU-16 ATCC CRL5974TM, human gastric carcinoma
  • HCC1187 ATCC CRL-2322TM, huamn breast canccer TNM stage IIA grade 3
  • MDA -MB-231 ATCC HTB-26TM, human breast cancer
  • MDA-MB-468 ATCC HTB-132TM, human breast cancer
  • HCC70 ATCC CRL2315TM, human breast cancer TNM stage IIIA, grade 3
  • HCC1143 ATCC CRL-2321TM, TNMstageIIA, grade3, primary ductal carcinoma
  • BT20 ATCC HTB-19TM human breast cancer
  • HCC1806 ATCC CRL-2335TM, huamn breast canccer TNM stage IIB grade 2
  • HCC1937 ATCC CRL2336 TM, TNMstageIIB, grade3,
  • Example 1.3 After dissociating each cell line and washing in PBS, count the cells and adjust them to 2 ⁇ 10 5 cells/200 ⁇ l PBS, and then the clone name C2E3 antibody of each ROR1 monoclonal antibody prepared in Example 1.3 was 10 ⁇ g/mL. After treatment, it was reacted at 4° C. for 1 hour. After the reaction, the cells were washed in PBS, and then 2 ⁇ l/1x10 5 of a FITC-labeled constant region (Fc)-specific antibody (Goat anti-human IgG FITC conjugate, Fc specific, Sigma, F9512, concentration: 20 mg/ml). Cells/200 ⁇ l PBS were suspended and reacted at 4°C for 1 hour.
  • Fc constant region
  • the cells were washed in PBS and read using a FACSCalibur instrument.
  • the negative control was treated with only antibodies specific for the FITC-labeled constant region (Fc).
  • Fc FITC-labeled constant region
  • the anti-ROR1 antibody of the present invention was confirmed to bind to ROR1 expressed in various cancer cell lines derived from gastric cancer, breast cancer, lung cancer, colon cancer, acute lymphocytic leukemia (ALL), and mantle cell lymphoma (MCL).
  • ALL acute lymphocytic leukemia
  • MCL mantle cell lymphoma
  • Antigens used to perform phage display for preparation of anti-B7-H3 antibodies were purchased and used.
  • a recombinant B7-H3 protein 2318-B3/CF, R&D Systems
  • NP_001019907.1 amino acid sequences 1 to 461 of NP_001019907.1 and having a histidine-tag attached to the C-terminus. I did.
  • Antigens used for ELISA analysis, SPR analysis, or T cell activity analysis of the following examples were purchased and used as follows.
  • a recombinant B7-H3 protein (Sino Biological, 11188-H08H) and C-terminus containing amino acid sequences 1 to 461 of NP_001019907.1 and a histidine-tag bound to the C-terminus A protein to which the Fc portion of human IgG1 is bound (Sino Biological, 11188-H02H) was used.
  • Human-derived scFv (single-chain variable fragment) library (Mol. Cells OT, 225-235, February 28, 2009) that has the possibility of binding to various antigens, 2X YT (Amresco, J902-500G), ampicillin (Ampicilin) 100 ⁇ g / ml, 2% glucose (sigma, G7021) in a medium containing 2 x 10 10 inoculated and incubated for 2 to 3 hours at 37 °C so that the OD 600 value of 0.5 to 0.7 I did. After infecting the cultured E.
  • 2X YT [2X YT, Ampicillin 100 ⁇ g/ml, 1 mM IPTG (Duchefa, I1401)] was cultured in a medium at 30° C. for 16 hours to obtain a pie. Paper packing was induced. Subsequently, the cultured cells were centrifuged at 4°C and 4500 rpm for 20 minutes, and then 4% PEG 8000 (sigma, P2139) and 3% NaCl (Samchun, S2097) were added to the supernatant, and then dissolved well for 1 hour on ice. Reacted for a while. After centrifugation at 4° C.
  • the supernatant was discarded and suspended by adding PBS (Phosphate buffered saline, Gibco 10010-023) to the cell pellet.
  • PBS Phosphate buffered saline, Gibco 10010-023
  • the suspension was centrifuged at 4° C. and 1200 rpm for 10 minutes, and then the supernatant was transferred to a new tube and stored at 4° C. until use.
  • the non-specifically bound phage was washed three times with PBS-T (Phosphate buffered saline-0.05% Tween 20) solution and removed, and the remaining antigen-specific phage antibody was recovered by adding 1 ml of 100 mM triethylamine solution. Since the pH of the triethylamine solution is low, the recovered phage was neutralized with 1M Tris buffer (pH 7.4), and then infected with ER2537 E. coli grown at 0.8 to 1 at OD 600 at 37°C and 120 rpm for 1 hour and 30 minutes. .
  • PBS-T Phosphate buffered saline-0.05% Tween 20
  • the culture medium was centrifuged at 4°C and 4500 rpm for 15 minutes to remove the supernatant, and the infected E. coli was spread on 2X YT agar medium containing ampicillin and cultured at 37°C for 16 hours or more. All of the E. coli cultured on the next day were scraped and suspended in 5 ml of 2X YT ampicillin culture solution, and 50% glycerol was added to store some at -80° C. and phages were prepared for the rest of the experiment. After inoculating and growing 20 ⁇ l of cultured E.
  • coli in 2X TB containing ampicillin, helper phage infection was performed, and Examples 2.2.(1) and 2.2.(2) were repeated two more times to obtain a human B7-H3 protein-specific phage pool ( phage pool) was amplified and concentrated.
  • the following experiment was performed to select monoclonal antibodies that specifically bind to human B7-H3 protein from the phage pool obtained through the panning.
  • the phage pool was plated on LB-ampicillin agar medium and cultured to obtain a single colony. Subsequently, a single clone was inoculated into a 96 deep well plate containing 200 ⁇ l of super broth (SB) medium per well, incubated at 37° C. for 4 hours, and grown, and then some of the clones were transferred to another plate to make cell stock. 1mM IPTG was added to the remaining cell culture solution and incubated at 30° C. for 16 hours to induce the production of scFv.
  • SB super broth
  • the cultured culture was centrifuged at 4°C and 6000 rpm for 20 minutes, the supernatant was discarded and only cells were obtained. After lysing the cells using a TES solution, the cells were centrifuged again to obtain and use only the supernatant.
  • a clone expressing a monoclonal soluble scFv that binds to the B7-H3-His antigen was selected using the ELISA method as follows (Steinberger. Rader and Barbas III. 2000. Phage display vectors.In: Phage Display Laboratory Manual.1 sted.ColdSpringHarbor Laboratory Press.NY.USA.pp.11.9-11.12).
  • the recombinant human B7-H3-his protein prepared in Example 2.1.(1) was diluted in PBS, and 100 ng per well was added, and 4°C Adsorbed overnight. After washing the protein on the plate the next day with PBST (Phosphate buffered saline-0.05% Tween 20), 200 ⁇ l of PBS buffer containing 3% BSA per well was added to prevent non-specific binding and reacted at 37°C for about 2 hours. Made it.
  • PBST Phosphate buffered saline-0.05% Tween 20
  • antibody clone B5 that binds to the recombinant human B7-H3 protein was selected, and the amino acid sequences and CDR sequences of the variable heavy and light chain regions of the B5 clone are shown in the following table.
  • Nucleic acid sequences encoding the B5 variable region are contained in SEQ ID NOs: 85 (heavy chain) and 86 (light chain).
  • the nucleic acids encoding the light and heavy chains of each antibody were each cloned into a pcDNA3.1-based expression vector to obtain a vector encoding the antibody nucleic acid in mammalian cell lines such as CHO-S.
  • a vector encoding the antibody nucleic acid in mammalian cell lines such as CHO-S.
  • Enoblituzumab as a control group antibody
  • the variable region sequence of the antibody was obtained in a patent (US 8,802,091) to obtain a gene, and it was cloned in the same manner as described above and named 84D.
  • variable heavy chain (VH), variable light chain (VL), heavy chain, and light chain full length (Light chain) sequences of the anti-B7-H3 antibody (B5) according to the present invention in IgG form are shown in Table 4 below.
  • a mutation such as K149C can be introduced into the constant region of the light chain for drug binding, and the light chain sequence into which such mutation is introduced is also shown in the table below.
  • ExpiCHO-S cells were cultured at 120 rpm in a shaking incubator at 8% CO 2 and 37°C. On the day of transfection, ExpiCHO-S cells were prepared by diluting by adding ExpiCHOTM Expression Medium (Thermo Fisher, A2910001) at a cell concentration of 6X10 6 cells/ml.
  • each vector expressing the heavy and light chains of Example 2.2.(1) was diluted in OptiPROTM SFM medium (Thermo Fisher, 12309050) at 1 ⁇ g per ml of medium, and ExpiFectamineTM CHO contained in the ExpiCHO Expression system was 3.2 ⁇ l/ml was diluted in OptiPROTM SFM medium.
  • the vector and the ExpiFectamineTM CHO mixture were mixed and reacted for 5 minutes at room temperature, and then the mixture was added to the prepared cells and cultured for 20 hours at 8% CO 2 , 37° C. and 120 rpm.
  • the cell culture solution was centrifuged at 4°C and 6000 rpm for 30 minutes, and then the supernatant was separated and stored in a refrigerator.
  • Example 2.2.(2) After equilibration by passing the equilibration buffer (50 mM Tris-HCl, pH7.5, 100 mM NaCl) through Mab selectsure (GE healthcare, 5 ml), the culture solution of Example 2.2.(2) was added to the column (Mab selectsure (GE)). healthcare, 5 ml)) to allow the expressed antibody to bind to the column. After that, it was eluted with 50mM Na-citrate (pH 3.4) and 100mM NaCl solution, and then neutralized with 1M Tris-HCl (pH 9.0) to bring the final pH to 7.2. The buffer was exchanged with PBS (phosphate buffered saline, pH 7.4).
  • PBS phosphate buffered saline, pH 7.4
  • Example 2.1 In order to confirm the specific binding ability of the anti-B7-H3 IgG antibody selected in Example 2.1, prepared in Example 2.2, to the B7-H3 antigen, it was analyzed using an ELISA-based solution binding test.
  • recombinant human B7-H3 protein was diluted to a concentration of 1 ⁇ g/ml in 96-well plates (Nunc-Immuno Plates, NUNC), and then 100 ⁇ l per well was added, followed by reaction at 4° C. for 16 hours to coat.
  • the recombinant human B7-H3 protein used was a product purchased for analysis in Example 2.1.
  • B7 family proteins have 20-40% amino acid identity to each other and have structural relevance, such as repetition of immunoglobulin domains. So, whether it specifically binds to B7-H3 protein rather than other B7 family proteins was analyzed as follows.
  • B7 family constituent proteins with structural similarity to confirm immune specific binding B7-1 (Sino Biological, Cat #: 10698-H08H), B7-2 (Sino Biological, Cat #: 10699-H08H), B7-DC ( Sino Biological, Cat #: 10292-H08H), B7-H1 (Sino Biological, Cat #: 10084-H08H), B7-H2 (Sino Biological, Cat #: 11559-H08H), B7-H4 (Sino Biological, Cat # : 10738-H08H), B7-H5 (Sino Biological, Cat #: 13482-H08H), B7-H6 (Sino Biological, Cat #: 16140-H08H), B7-H7 (Sino Biological, Cat #: 16139-H02H) was purchased and used.
  • a recombinant human B7 family protein was diluted to a concentration of 1 ⁇ g/ml in 96-well plates (Nunc-Immuno Plates, NUNC), and then 100 ⁇ l per well was added, followed by reaction at 4° C. for 16 hours to coat.
  • the recombinant protein used was a product purchased for analysis in Example 2.1.1.
  • a recombinant mouse B7-H3 protein (Sino Biological, Cat #: 50973-M08H) with a histidine tag bound to the C terminus and the Fc portion of human IgG1 are bound to the C terminus.
  • Monkey B7-H3 protein (Sino Biological, Cat #: 90806-C02H) antigen was purchased and used.
  • Recombinant human B7-H3, mouse B7-H3, and monkey B7-H3 proteins were diluted to a concentration of 1 ⁇ g/ml in 96-well plates (Nunc-Immuno Plates, NUNC) and added 100 ⁇ l per well. It was coated by reacting for a period of time.
  • the recombinant protein used was a product purchased for analysis in Example 2.1.
  • HRP-conjugated anti-human IgG F(ab')2 antibody (Goat anti-Human IgG F(ab')2 antibody (Goat anti-Human IgG F(ab')) to detect antibodies bound to human B7-H3, monkey B7-H3, and mouse B7-H3 )2 Cross-Adsorbed Secondary Antibody, HRP, Pierce, 31414) was diluted 1:10,000 in PBS containing 1% bovine serum albumin (BSA), and 100 ⁇ l per well was added and reacted at 37°C for about 1 hour. After washing again with PBST, 100 ⁇ l of TMB (Tetramethylbenzidine, Sigma, T0440) was added to develop color. After reacting at RT for 5 to 10 minutes , 50 ⁇ l of 1N H 2 SO 4 was added to terminate the reaction, and absorbance was measured at 450 nm and 650 nm using a microplate reader (molecular device).
  • TMB Tetramethylbenzidine
  • the ability of the anti-B7-H3 antibody of the present application prepared in Example 2.2 to bind to human B7-H3 expressed on the cell surface was measured through FACS analysis.
  • an antibody against a specific antigen to be used in vivo such as a therapeutic antibody, it is essential to bind to an antigen expressed on the cell surface.
  • Some antibodies bind to the purified antigen, but not to the antigen expressed on the cell surface. In this case, even if the antibody is administered in vivo, it is impossible to bind to the antigen. Therefore, the antibody cannot bind to the cells expressing the antigen, and thus, the therapeutic antibody cannot exhibit in vivo activity. Accordingly, it was confirmed through FACS analysis whether the anti-B7-H3 antibody of the present application binds to the cell surface expressed B7-H3.
  • human breast adenocarcinoma cell lines (MCF-7) expressing human B7-H3, ATCC® HTB-22TM, DLD1 (colorectal adenocarcinoma cell lines, ATCC® CCL-221TM), HCC1954 (TNM stage IIA) , grade 3, ductal carcinoma, ATCC® CRL-2338TM), and Jurkat (acute T cell leukemia, ATCC® TIB), a cancer cell line that does not express HCT116 (colon cancer cell, ATCC® CCL-247TM) and human B7-H3. -152TM) was used.
  • MCF-7 human breast adenocarcinoma cell lines expressing human B7-H3, ATCC® HTB-22TM, DLD1 (colorectal adenocarcinoma cell lines, ATCC® CCL-221TM), HCC1954 (TNM stage IIA) , grade 3, ductal carcinoma, ATCC® CRL-2338TM), and Jurkat (acute T cell leukemia, AT
  • each cell line was dissociated and washed with PBS buffer, and the number of cells was counted and prepared by adding 200 ⁇ l PBS to 2x105 cells per well.
  • Each of the anti-B7-H3 antibody and the control group antibody (84D) of Example 2.2 was diluted in PBS containing 1% BSA at a concentration of 10 ⁇ g/ml or 10 ⁇ g/ml, and mixed with cells prepared in advance. Then, it was reacted at 4°C for 1 hour.
  • FITC-labeled anti-human Fc FITC Goat anti-human IgG FITC conjugate, Fc specific, Sigma, F9512, concentration: 2.0 mg/ml was diluted 1:500 to 100 ⁇ l per well Treated and reacted for 1 hour at 4° C.
  • the negative control was treated with only FITC-labeled anti-human Fc FITC, washed twice with PBS buffer, and measured the degree of binding of anti-BCMA IgG using a FACSCalibur instrument. I did.
  • B7-H3 is expressed in various cancer cells.
  • Non-small cell lung cancer Renal cell carcinoma, Neuroblastoma, Colorectal cancer, Pancreatic cancer, and stomach cancer (Gastric cancer), Lung cancer, Prostate cancer, Endometrial cancer, Hepatocellular carcinoma, Lung cancer, Breast cancer, Cervical cancer ), Osteosarcoma, Oral carcinoma, Bladder cancer, Glioma, Melanoma, and other solid cancers.Acute leukemia, multiple myeloma, It has also been reported to be expressed in hematomas such as several types of lymphoma.
  • cancer cells A2780 human ovarian cancer, ECACC, 9312519
  • SKOV-3 human ovarian adenocarcinoma, ATCC® HTB-77TM
  • OVCAR-3 human ovarian adenocarcinoma, ATCC® HTB-161TM
  • HCT116 colon cancer cell, ThermoFIshcer Sci
  • HT29 ovalectal adenocarcinoma, ATCC® HTB-38TM
  • DLD-1 colonrectal adenocarcinoma cell lines, ATCC® CCL-221TM
  • Calu-6 Non-small-cell lung carcinoma, ATCC® HTB-56TM
  • HCC1954 NVM stage IIA, grade 3, ductal carcinoma, ATCC® CRL-2338TM
  • HCC1187 TMM stage IIA, ATCC® CLC-2322TM
  • kidney cancer cell line 786- 0 renal cell adenocarcinoma, ATCC® CRL
  • each B7-H3 monoclonal antibody prepared in Example 2.2 was treated with 10 ⁇ g/ml. It was reacted at 4°C for 1 hour. After the reaction, the cells were washed in PBS and then diluted 1:500 with a FITC-labeled constant region (Fc)-specific antibody (Goat anti-human IgG FITC conjugate, Fc specific, Sigma, F9512, concentration: 2.0 mg/ml). Then, 100 ⁇ l per well was treated and reacted at 4°C for 1 hour.
  • Fc constant region
  • the anti-B7-H3 antibody of the present application was confirmed to be bound in various cancer cell lines derived from ovarian cancer, colon cancer, non-small cell lung cancer, breast cancer, kidney cancer, pancreatic cancer, gastric cancer, cervical cancer, and lymphoma.
  • the anti-B7-H3 antibody of the present application exhibited higher binding power at the same concentration compared to 84D, which is an antibody used as a control group, so that the degree of binding to B7-H3 expressed on the cell surface is better.
  • Example 2.3.(3) it was confirmed through ELISA that the anti-B7-H3 antibody of the present application binds to both human B7-H3 and mouse B7-H3 recombinant proteins.
  • CT26 Mus mesculus colon carcinoma, ATCC® CRL-2638TM
  • B16F10 Musculus skin melanoma, ATCC® CRL-6475TM
  • TC-1 Musculus Lung tumor, ATCC® CRL-2493TM
  • each cell line was dissociated and washed with PBS buffer, and then the number of cells was counted and adjusted to 2 ⁇ 10 5 cells per well, and prepared by adding 200 ⁇ l PBS.
  • Each of the anti-B7-H3 antibody and the comparative antibody (84D) of Example 2.2 was diluted to 10 ⁇ g/ml concentration or 10 ⁇ g/ml concentration in PBS containing 1% BSA, and mixed with cells prepared in advance at 4°C. It was made to react for 1 hour. After washing twice with PBS buffer, FITC-labeled anti-human Fc FITC (Sigma, F9512) was diluted 1:500 and treated with 100 ⁇ l per well, followed by reaction at 4° C. for 1 hour. The control group was treated with only FITC-labeled anti-human Fc FITC. After washing twice with PBS buffer again, the degree of binding of anti-B7-H3 IgG was measured using a FACSCalibur instrument.
  • the diantibodies were constructed by the following method to design the amino acid sequence: IgG-linker-scFv or IgG-linker-VL-connector-VH.
  • IgG was an anti-ROR1 antibody or an anti-B7-H3 antibody, and consisted of an IgG1 subtype.
  • Linker consisted of a sequence of (G4S)3 [(GGGGS)3] directly linked to the C-terminus of the CH3 domain of IgG1.
  • the scFv was composed of a single chain Fv by linking the VH and VL domains constituting the anti-ROR1 antibody or anti-B7-H3 antibody with a sequence called a connector.
  • Connector is 20 amino acids in length consisting of (G4S)4 [(GGGGS)4].
  • the VH domain is located at the N-terminus in the order of VH-connector-VL, or the VL domain is located in the order of VL-connector-VH. It was configured to be located at the N-terminus (Table 6).
  • the heavy chain of the double antibody was designed in a configuration in which scFv was connected to the C-terminus of the IgG heavy chain as described above, and the light chain was designed in a general configuration of VL-CL.
  • scFv was connected to the C-terminus of the IgG heavy chain as described above
  • the light chain was designed in a general configuration of VL-CL.
  • Kabat 149 or Kabat 205 residues were used.
  • a configuration substituted with cysteine was also designed.
  • the designed sequence was derived from the nucleotide sequence encoding the amino acid through codon optimization, and dsDNA was produced through gene synthesis.
  • the produced gene fragment was cloned into pcDNA3.4 vector using restriction enzyme or HIFI assembly technique.
  • cysteine mutation described above was reflected during DNA synthesis or the base sequence was changed using NEB's Q5 mutagenesis kit.
  • A2F2M1 in which G in HCDR2 was changed to A was additionally produced.
  • the names of the prepared diabodies are “anti-ROR1 antibody x anti-B7-H3 antibody” or “anti-ROR1 antibodyy anti-B7-H3 antibody” using the name of the anti-ROR1 antibody and anti-B7-H3 antibody clone used. Antibody”.
  • the cloned diantibodies were transiently expressed using the ExpiCHO system, and the manufacturer's protocol was followed.
  • the antibody-expressed culture medium was centrifuged and filtered to remove the suspension, and the antibody was purified by affinity chromatography using MabselectureSure resin and size exclusion chromatography using Superdex200 resin.
  • the purity of the purified antibody was analyzed by HPLC using TSKgel SuperSW3000, and the purity was more than 95%.
  • a 96-well microtiter plate (NUNC, 446612) was placed in a PBS solution at 4°C for 16 hours at a concentration of 1 ⁇ g/ml of recombinant human ROR1 protein (Sino biological, 13968-H08H) or recombinant human B7-H3 (Sino biological, 11188-H08H), and non-specific binding was blocked with 1% BSA (Bovine Serum Albumin) at 37°C for 2 hours.
  • BSA Bovine Serum Albumin
  • a 96-well microtiter plate (NUNC, 446612) was coated with recombinant human B7-H3 protein (Sinobiological, 11188-H02H) at a concentration of 1 ⁇ g/ml in PBS solution at 4°C for 16 hours, and non-specific binding was 1%. Blocked with BSA (Bovine Serum Albumin) at 37°C for 2 hours. After blocking of non-specific binding, shake off the contents of the 96-well microtiter plate, put the diluted anti-ROR1/B7-H3 antibody into the well, and incubate at 37° C. for 2 hours, and the plate is 1XPBST Washed 5 times with.
  • BSA Bovine Serum Albumin
  • a recombinant human ROR1 protein (Sino biological, 13968-H08H) at a concentration of 1 ⁇ g/ml was added and incubated at 37° C. for 2 hours, followed by washing 5 times.
  • HRP-conjugated recombinant His-tag specific murine monoclonal antibody reagent (Sigma, 11965085001) was diluted and incubated at 37° C. for 1 hour, and the 96-well microtiter plate was washed 5 times with 1XPBST. Color development was performed using TMB (Tetramethylbenzidine, Sigma, T0440), and the absorbance at 450 nm was measured after stopping the color reaction using 0.5M sulfuric acid (Samjeon Pure Chemical, S1410).
  • Calu-3 cell line was prepared by washing twice with 1% BSA (Bovine Serum Albumin) to block non-specific binding.
  • BSA Bovine Serum Albumin
  • Anti-B7-H3 and anti-ROR1 antibodies were diluted 4 times from 100 nM and treated, incubated at 4° C. for 1 hour, and washed twice with 1% BSA.
  • Anti-human Fc FITC (Sigma, F9512) was diluted 1:500, incubated again at 4° C. for 1 hour, and washed twice with 1% BSA. After washing was completed, the cells were well released with 1XPBS (pH7.4) 150 and used to measure the average fluorescence intensity of the cells using a FACSCalibur (BD Bioscience) instrument.
  • the anti-ROR1 single antibody clones A2F2, C2E3 and BA6 and the anti-B7-H3 single antibody clone B5 were variously combined as described in Example 3 Diantibodies were prepared according to the method, and cell avidity of the diantibodies was compared with that of the single antibody using cells expressing ROR1 and B7-H3 at the same time.
  • a CHO-huROR1-huB7H3 cell line that artificially overexpressed the expression of ROR1 and B7-H3 proteins by stably transfecting the ROR1 and B7-H3 genes was used, and BD LSR Fortessa X- 20 (BD Biosciences) instrument was used to evaluate. Specifically, the overexpressing cell line was dissociated, washed with PBS, and then the number of cells was counted, and 20,000 cells per well were dispensed into a V-bottom 96-well plate (96 Well Plate-RV, Bioneer, 910D09).
  • the antibody diluted 4 times from 100 nM in 1% BSA solution was injected into the centrifuged cells at 100 ⁇ L per well, and then reacted at 4 °C for 1 hour. After 1 hour, the cells were washed twice with the same buffer, and then FITC-labeled constant region (Fc)-specific antibody (Goat anti-human IgG-FITC antibody produced in goat, Sigma, F9512) was 500 times added to 1% BSA. Dilute and inject 100 ⁇ L each, and react at 4°C for 1 hour. After the reaction, the cells were washed twice in the same buffer, resuspended in 100 ⁇ L of PBS, and flow cytometric analysis was performed using a FACS instrument.
  • Fc constant region
  • the FOI (fold of induction) value in the graph was expressed by dividing the MFI (Mean fluorescence intensity) of the experimental group treated with the antibody by the MFI value of the control group treated with only the secondary antibody.
  • Figure 16a is prepared by combining the anti-ROR1 antibody clone A2F2, C2E3 or BA6 with the anti-B7-H3 antibody clone B5, respectively, but the position of the anti-ROR1 antibody and the anti-B7-H3 antibody in the diantibody (IgG form and scFv form) of the different antibodies to the ROR1/B7-H3 overexpressing cell line. It has been shown that all of the diabodies used in the experiment can bind to cells at a higher level than that of a single antibody.
  • 16B and 16C show the binding power of the double antibody to the ROR1 alone overexpressing cell line or the B7-H3 alone overexpressing cell line, respectively. All of the tested diantibodies showed excellent or equal or higher avidity to single antibodies against ROR1 or B7-H3 overexpressing cell lines. From this, it was confirmed that the dual antibody of the present invention showed more excellent binding power not only because it targets two kinds of antigens at the same time, but also because the dual antibody itself has excellent physical properties. In addition, this improved binding ability can be interpreted as showing selectivity for cells expressing two targets (antigens) simultaneously compared to cells expressing a single target (antigen). It could be a feature that meets the goal of reducing toxicity and increasing efficacy.
  • the ADCC-inducing ability of the diantibodies and each single antibody was compared and evaluated.
  • Promega's ADCC Bioassay Effector Cell was used to evaluate the ability to induce a signal by FcgRIIIA in the effector cells according to antibody binding to target cells.
  • the CHO-huROR1-huB7H3 cell line overexpressing both ROR1 and B7-H3 was added to 15,000 cells per well in 96-well Solid White Flat Bottom Polystyrene TC-treated Microplates, Corning, 3917.
  • the medium was removed from the well plate, and 25 ⁇ L of an antibody prepared by diluting 4 times from 360 nM (final concentration: 120 nM) and an RPMI medium buffer to which 25 ⁇ L of 0.5% low IgG was added was added.
  • Effector cells (ADCC Bioassay effector cells, Promega, G7102) cultured under recommended conditions were added to the wells containing target cells and antibodies in a volume of 150,000 per well in a volume of 25 ⁇ L, and cultured for 16-24 hours in an incubator. After incubation, the 96-well plate was taken out of the incubator and left at room temperature for about 15 minutes, and 75 ⁇ L of Bio-GloTM buffer (Promega, G7940) was added to each well (1:1 volume ratio). Luminescence was measured using a luminescence plate reader (PHERAstar FS, BMG LABTECH). The FOI value in the graph was expressed by dividing the luminescence signal of the experimental group treated with the antibody by the signal of the control group not treated with the antibody.
  • the double antibody of the present invention has an improved ADCC signaling ability to a single antibody (FIGS. 17A and 17B). That is, in the ROR1/B7-H3 overexpressing cell line, the A2F2xB5 antibody and the BA6yB5 antibody induced ADCC signals with a greater width than the corresponding single antibodies (B5, BA6, A2F2). In particular, it was confirmed that the IC50 of the A2F2xB5 antibody compared to the B5 antibody decreased by about 6.7 times (Table 8).
  • the lysine of Kabat 149 in the constant region of the existing antibody light chain was mutated to cysteine (K149C), such as dithiothreitol (DTT).
  • K149C cysteine
  • DTT dithiothreitol
  • the antibody was prepared at 5 mg/ml or more through ultrafilteration/diafiltration (UF/DF), and 1M tris(hydroxymethyl)aminomethane (Tris-HCl), pH8.8, 500mM ethylene Diaminetetraacetic acid (Ethylenediaminetetraacetic acid, EDTA) was added so that the final antibody concentration was 5mg/ml, 75mM Tris-HCl, and 2mM EDTA. Add 100mM dithiothreitol (DTT) to the prepared antibody so that the antibody: DTT molar ratio is 1:20, and react at 25°C for 16.5 hours to free the antibody linked to the cysteine 149 of the light chain through a disulfide bond.
  • DTT dithiothreitol
  • the purified antibody was concentrated to 5 mg/ml or more through ultrafilteration/diafiltration (UF/DF). After that, to make an antibody-drug conjugate, an antibody to be reacted with 1M tris(hydroxymethyl)aminomethane (Tris-HCl, pH8.0) was added to a final concentration of 5mg/ml, 100mM tris(hydroxymethyl)aminomethane ( Tris-HCl, pH 8.0) was prepared, and the antibody: drug molar ratio was 1:10, and reacted at 25° C. for 16.5 hours.
  • UF/DF ultrafilteration/diafiltration
  • the purity of the prepared ADC was measured by size exclusion-high performance liquid chromatography (SE-HPLC). It was measured using a Tosoh TSKgel G3000SWxl column (Tosoh bioscience) on an Agilent 1200 series HPLC instrument, and the purity of each sample was determined by comparing the elution position of each sample and the area under the curve (AUC). The purity of the major peaks of ADC was 98.0% or more, and the overall process yield (based on antibody) was 20% or more, and as a result of measuring the drug-to-antibody ratio (DAR) of the double antibody ADC by LC/MS, 2 per antibody. It was confirmed that the dog drugs were conjugated (FIGS. 18A to 18J ).
  • SE-HPLC size exclusion-high performance liquid chromatography
  • An ADC was prepared in which a drug was conjugated to a lysine amine group by reacting SMCC and DM1 with an antibody.
  • the prepared antibody was diluted in reaction buffer A (50mM potassium phosphate, pH6.5), 50mM sodium chloride, 2mM ethylenediaminetetraacetic acid (EDTA), and then ultrafiltration/diafiltration (Ultrafilteration). /Diafiltration: UF/DF) to 20mg/ml or more.
  • reaction buffer A 50mM potassium phosphate, pH6.5
  • EDTA 2mM ethylenediaminetetraacetic acid
  • Ultrafilteration Ultrafiltration/diafiltration
  • the antibody-linker conjugate was the thiol group (-SH) group of the maleimide group in the linker and the drug was Michael Antibody-linker-drug conjugate was formed by formation of thiosuccinimide by addition, and the reaction product was then desalted with a Hiprep Desalting column (GE Healthcare) equilibrated with PBS to terminate the reaction and remove the unreacted product.
  • the conjugate was named'antibody-K-DM1'.
  • the drug-to-antibody ratio (DAR) of ADC was determined by liquid chromatography-mass spectrometry (LC/MS) method. 1 unit of PNGaseF (NEB) per 100 ⁇ g of 1 mg/ml ADC (in PBS) antibody was added and incubated at 37° C. for 15 hours to remove N-glycans.
  • DAR drug-to-antibody ratio
  • the purity of the prepared ADC was measured by size exclusion-high performance liquid chromatography (SE-HPLC). It was measured using a Tosoh TSKgel G3000SWxl column (Tosoh bioscience) on an Agilent 1200 series HPLC instrument, and the purity of each sample was determined by comparing the elution position of each sample and the area under the curve (AUC). It was confirmed that the purity of the major peaks of the ADC was 98.5% or more, and the overall process yield (based on antibody) was 20% or more (FIGS. 19a to 19d).
  • SE-HPLC size exclusion-high performance liquid chromatography
  • the cell killing ability of the prepared ADC was compared by adding the ADC to the cells and measuring the metabolic activity of the cells.
  • Cancer cell lines were cultured using each recommended culture medium.
  • 1 x 10 3 HCC1954 or 5 x 10 3 (Calu-3, KATOIII) or 1 x 10 4 (HCC1187) cells per well were inoculated in a volume of 50 ⁇ l and incubated for 3-4 hours.
  • 50 ⁇ l of ADC diluted at various concentrations was dispensed into a 96-well plate containing cells. Thereafter, the cells were cultured at 37° C. and 5% CO 2 for about 6 days. After the culture was completed, the survival degree of the cells was evaluated using the WST-8 kit. 10 ⁇ l of WST-8 (Dojindo) was added to each well and further incubated for 2 to 24 hours.
  • the amount of material reduced by metabolic activity of cells was evaluated by measuring absorbance at 450 nm wavelength using a SpectraMax plate reader.
  • a 4PL curve fitting was performed to calculate an IC 50 value (nM), which is a 50% cell death concentration.
  • cytotoxicity comparison results of DM1 conjugated ADC, MMAE conjugated ADC, and beat-gal CBI dimer conjugated ADC are shown in Figs. 21A to 21C, respectively, by combining several anti-ROR1 clones for the same anti-B7-H3 clone.
  • the result of comparing the effect after making the double antibody ADC is shown in FIG. 21D.
  • the diantibody ADC according to the present invention exhibited superior cytotoxicity not only compared to the single antibody ADC, but also compared to the group treated with the combination of ROR1 single antibody ADC and B7-H3 single antibody ADC. From these results, the effect of the diantibody ADC according to the present invention is a synergistic effect more than the additive effect by a simple combination of targets ROR1 and B7-H3, and it was interpreted that the excellent physical properties of the diantibody also contribute to such effect.
  • Example 7 Comparative evaluation of in vitro cytotoxicity of single antibody ADC and double antibody ADC
  • the cancer cell killing effect when the ADC was prepared using the double antibody of the present invention was compared with that of the single antibody.
  • As cell lines cancer cell lines that express both ROR1 and B7-H3, calu-3, calu-6, HCC1954, CAMA-1, NCI-N87, HCC1187, Capan-1, and panc-1 were used, and ADC was added to the cells. Cell death ability was compared by measuring the metabolic activity of cells.
  • the effect of the double antibody was the effect of the simple single antibody target combination
  • the effect of the control group treated with the anti-ROR1 single antibody and the anti-B7-H3 single antibody was also compared and evaluated. Cancer cell lines were cultured using each recommended culture medium.
  • Figs. 23a to 23c Cancer cell line cytotoxicity according to the concentration of single antibody or double antibody ADC is shown in Figs. 23a to 23c.
  • Figure 23a is a biantibody using B5 as an anti-B7-H3 antibody and C2E3 as an anti-ROR1 antibody
  • Figure 20B is a diabody using B5 as an anti-B7-H3 antibody, and BA6 as an anti-ROR1 antibody
  • Figure 20c is This is the cytotoxicity result of a diantibody using B5 as an anti-B7-H3 antibody and A2F2 as an anti-ROR1 antibody.
  • the double antibody ADC was more effective than the single antibody ADC.
  • the cytotoxicity was increased.
  • the cytotoxicity of ADC was slightly observed only at high concentration, and there was no difference in cytotoxicity between single antibody ADC and double antibody ADC. From this, it was confirmed that the high cytotoxicity of the double antibody ADC compared to the single antibody ADC is an antigen-dependent result, and from the result that the double antibody treatment showed higher cytotoxicity than the combination treatment of each single antibody, the double antibody ADC of the present invention It was confirmed that the excellent cytotoxicity was the effect of a simple combination of single antibodies.
  • Example 5 In order to demonstrate the 100-fold or more improved cytotoxicity ability identified in Example 5, the improved apoptosis ability of the ADC of the diantibodies was evaluated by comparing the ability to induce apoptosis.
  • ADC The ability to induce apoptosis by ADC was tested using Incucyte® Caspase 3/7 Green reagent (Sartorius, 4440).
  • Incucyte® Caspase 3/7 Green reagent (Sartorius, 4440).
  • calu-6 cells were placed 5 x 10 3 cells per well (50ul per well) and cultured for 24 hours.
  • ADC was prepared by diluting with culture medium.
  • Incucyte® Caspase 3/7 Green reagent was added to a 500-fold dilution.
  • the diluted ADC was put into a plate prepared with cells at 50ul per well. The plate was placed in an Incucyte instrument and phase and fluorescence were measured at 2 hour intervals through Incucyte software.
  • the green fluorescence signal increased over time.
  • the B5xC2E3-PBD and C2E3xB5-PBD double antibody ADCs it can be seen that apoptosis is initiated faster than the single antibody ADC, and the rate of apoptosis is also faster.
  • pharmacokinetic tests were performed in rats. Specifically, 7-week-old female SD rats were administered B5xC2E3, B5xBA6 and B5yBA6 5 mpk, B5xC2E3-PBD ADC 1 mpk through the tail vein, and blood was collected through the jugular vein to obtain a sample. Blood was collected before administration and at 0.167, 1, 4, 8, 24 hours, 2, 4, 7, 14, 21 and 28 days after administration. After separating the serum from the blood, the concentrations of the diantibodies and diantibodies ADC in the serum were determined by the following ELISA method.
  • the concentrations of the diantibodies and diantibody ADCs remaining in the blood were measured by an ELISA method based on antigen-binding ability.
  • human B7-H3-Fc (Sino, 11188-H02H) diluted with PBS buffer was coated on an ELISA plate for 16 hours in a refrigerator at 100 ng/well. After removing the supernatant, it was washed 5 times with PBS/0.05% Tween20. Thereafter, 200 ul per well of 1% BSA/PBS was added, followed by blocking at 37° C. for 2 hours. After removing the supernatant, it was washed 5 times with PBS/0.05% Tween20.
  • samples above the highest limit of quantitation (B5xC2E3, B5xC2E3-PBD and B5xBA6: 2000 ng/ml, B5yBA6: 15000 ng/ml) were first diluted with rat donor serum. Thereafter, the samples were diluted 20 times with 1% BSA/PBS, and 100 ul of the samples were added to the wells, followed by reaction at 37°C for 2 hours. After removing the supernatant, it was washed 5 times with PBS/0.05% Tween20.
  • both the biantibody and the biantibody ADC administration group showed a linear pharmacokinetic profile.
  • Half-life (T 1/2 ) was 8 days in the B5xC2E3 group, 6 days in the B5xC2E3-PBD group, 8 days in the B5xBA6 group, and 7 days in the B5yBA6 group, and the peak blood concentration (C max ) was 74.50 ug/ml in the B5xC2E3 group, B5xC2E3-PBD It was found to be 15.93 ug/ml in the group, 84.71 ug/ml in the B5xBA6 group, and 89.92 ug/ml in the B5yBA6 group.
  • the area under the concentration curve (AUC last ) from the start of administration to the last quantifiable time is B5xC2E3 group 5203.99 hr*ug/ml, B5xC2E3-PBD group 654.18 hr*ug/ml, B5xBA6 group 8403.90 hr*ug/ml and B5yBA6 group It was found to be 7954.10 hr*ug/ml.
  • biantibodies showed a half-life of 7 days or more, showing a value similar to the average half-life of antibodies in generally known rats, confirming that they were not inferior to the single antibody.
  • the half-life decreased to 72% compared to the antibody before conjugation, but the half-life of about 6 days was a value that allowed adequate drug exposure.
  • the antibody-drug conjugate to which a cytotoxic drug is conjugated thereto can be used to effectively prevent or treat cancer without toxicity.

Abstract

본 발명은 ROR1 및 B7-H3 단백질에 특이적으로 결합하는 항체, 이를 포함하는 항체-약물 결합체 및 그의 용도에 관한 것이다.

Description

ROR1 및 B7-H3에 결합하는 항체, 이를 포함하는 항체-약물 접합체 및 그 용도
본 발명은 ROR1 및 B7-H3 단백질에 특이적으로 결합하는 항체, 이를 포함하는 항체-약물 결합체 및 그의 용도에 관한 것이다.
ROR1은 배아 및 태아 발생과정에서 발현되어 세포 극성, 세포 이동, 및 신경돌기 성장 등을 조절한다. 다양한 암세포에서 ROR1의 과발현이 관찰됨에 따라 종양태아성 유전자(oncofetal gene)로 분류되었다. 특히 ROR1은 만성 림프구성 백혈병(CLL: chronic lymphocytic leukemia)에 과발현 한다는 것이 밝혀졌다. 만성 림프구성 백혈병(CLL) 외에도 B세포 백혈병, 림프종, 급성 골수성 백혈병(AML), 버킷 림프종, 외투세포림프종(MCL), 급성림프구성백혈병(ALL), 미만성거대B세포림프종(DLBCL), 여포성림프종(FL), 변연부림프종(MZL) 등의 혈액암은 물론 유방암, 신장암, 난소암, 위암, 간암, 폐암, 대장암, 췌장암, 피부암, 방광암, 고환암, 자궁암, 전립선암, 비소세포 폐암(NSCLC), 신경모세포종, 뇌암, 결장암, 상피 편평세포암, 흑색종, 골수종, 자궁경부암, 갑상선암, 두경부암 및 부신암 등의 다양한 고형암에서도 과발현되는 것으로 보고되었다. 이와 같은 암에서 ROR1의 발현은 암환자의 좋지 않은 예후와 관련이 있으며, 암 전이에도 영향을 미치는 것으로 알려져 있다.
B7-H3(CD276)는 B7 패밀리의 일원으로 세포외영역, 막통과영역 및 세포내영 역을 포함하는 막관통 단백질이다. B7-H3는 2개의 세포외영역은 엑손 중복으로 인해 면역글로불린 가변 도메인과 면역글로불린 불변 도메인의 단일쌍(2Ig B7-H3)또는 2개의 동일한 쌍(4Ig B7-H3)로 구성된다. B7-H3 단백질은 정상조직에서 T 세포, 자연 살해 세포 (NK cell, natural killer cell) 및 항원제시세포(APC, antigen presenting cell)에서 항상 발현하는 것은 아니지만 그 발현이 유도될 수 있다. B7-1 과 B7-2의 발현이 주로 항원제시세포와 같은 면역세포에만 국한되어 있음에도 불구하고 B7-H3 단백질은 골아 세포, 섬유아세포, 섬유 모세포 유사 활막 세포 및 상피 세포뿐만 아니라 사람의 간, 폐, 방광, 고환, 전립선, 유방, 태반 및 림프관 기관 등에서도 발현된다. 이 넓은 발현 양상은 특히 말초 조직에서 B7-H3의 보다 다양한 면역학적 및 비-면역 기능을 암시한다.
최근 B7-H3 발현은 비소세포폐암, 신장 세포암, 신경 모세포종, 대장암, 췌장암, 위암, 폐암, 전립선암, 자궁내막암, 간세포암, 유방암, 자궁경부암, 골육종, 구강암, 방광암, 신경교종, 흑색종 등 다양한 고형암에서 확인되며, 급성 백혈병 다발성 골수종, 여러 종류의 림프종과 같은 혈액암에서도 발현되는 것으로 보고 되어 있다(Zhimeng Yea, Zhuojun Zhengb et al, Cell Physiol Biochem(2016), Elodie Picarda, Kim C. Ohaegbulam and Xingxing Zang, clinical cancer research(2016), Wei Zhang, Yanfang Wang, Jing Wang et al,international journal of oncology(2015)).
한편, 항체의 표적 특이성 때문에 항체를 이용한 다양한 치료 방법이 개발되고 있으며, 항체를 포함하는 다양한 형태의 의약, 예를 들어 항체-약물 결합체(Antibody-Drug Conjugate, ADC)등이 개발되고 있다. 이에, 항체 또는 항체-약물 결합체에 대하여 생체 내 안정성을 증가시키고, 치료 효과를 극대화하는 방법이 계속적으로 연구되고 있다.
이 중 ADC는 일반적으로 천연 항체에 비해서 생체 내 안정성이 낮은 단점이 있으나, 천연 항체가 가진 단점인 낮은 치료 효과를 약물과의 결합을 통하여 개선하고자 개발되었다. 표적 특이적 항체에 싸이토톡신 등 특정 약효를 가지는 약물이 다양하게 결합한 형태로 개발되고 있으며, 암세포 특이적 항체에 약물을 결합시켜 암세포 사멸을 유도할 수 있는 항체-약물 결합체가 상용화된 바 있다.
이러한 기술적 배경하에서, 본 출원의 발명자들은 ROR1 및 B7-H3에 동시에 결합하는 이중특이항체를 개발하고자 예의 노력한 결과, 우수한 이중특이항체의 특성 및 효능 등을 확인하고, 항체-약물 접합체 제작에도 활용할 수 있음을 확인함으로써, 본 발명을 완성하였다.
발명의 요약
본 발명의 목적은 ROR1 및 B7-H3 단백질에 특이적으로 결합하는 이중 특이적 항체 또는 이의 항원 결합 단편을 제공하는데 있다.
본 발명의 목적은 상기 이중 특이적 항체 또는 이의 항원 결합단편을 코딩하는 핵산을 제공하는데 있다.
본 발명의 목적은 상기 이중 특이적 항체 또는 이의 항원 결합단편이 약물에 결합된 항체-약물 접합체 (ADC)를 제공하는데 있다.
본 발명의 목적은 상기 이중 특이적 항체 또는 이의 항원 결합단편 또는 항체-약물 접합체 (ADC)를 포함하는 암 예방 또는 치료용 조성물을 제공하는데 있다.
상기 목적을 달성하기 위하여, 본 발명은 ROR1 및 B7-H3 단백질에 특이적으로 결합하는 이중 특이적 항체 또는 이의 항원 결합 단편으로,
상기 ROR1 단백질에 특이적으로 항체 또는 이의 항원 결합 단편은
서열번호 1, 2 및 3로 구성된 군에서 선택되는 아미노산 서열을 포함하는 HCDR1;
서열번호 5, 6, 및 7로 구성된 군에서 선택되는 아미노산 서열을 포함하는 HCDR2;
서열번호 8, 9 및 10로 구성된 군에서 선택되는 아미노산 서열을 포함하는 HCDR3;
서열번호 11 내지 13로 구성된 군에서 선택되는 아미노산 서열을 포함하는 LCDR1;
서열번호 14 내지 16로 구성된 군에서 선택되는 아미노산 서열을 포함하는 LCDR2; 및
서열번호 17 내지 19로 구성된 군에서 선택되는 아미노산 서열을 포함하는 LCDR3;
상기 B7-H3 단백질에 특이적으로 결합하는 항체 또는 이의 항원 결합 단편은 서열번호 57의 아미노산 서열을 포함하는 HCDR1, 서열번호 58의 아미노산 서열을 포함하는 HCDR2, 서열번호 59의 아미노산 서열을 포함하는 HCDR3, 및 서열번호 60의 아미노산 서열을 포함하는 LCDR1, 서열번호 61의 아미노산 서열을 포함하는 LCDR2, 서열번호 62의 아미노산 서열을 포함하는 LCDR3를 포함하는 이중 특이적 항체 또는 이의 항원 결합 단편에 관한 것이다.
본 발명은 상기 항체 또는 이의 항원 결합단편을 코딩하는 핵산을 제공한다.
본 발명은 또한, 상기 항체 또는 이의 항원 결합단편이 약물에 결합된 항체-약물 접합체 (ADC)를 제공한다.
본 발명은 또한, 상기 항체 또는 이의 항원 결합단편, 또는 항체-약물 접합체를 포함하는 암 예방 또는 치료용 조성물을 제공한다.
도 1은 본 발명의 일 구현예에 따라 제조된 항-ROR1 단일클론 파아지항체의 ROR1 항원에 대한 결합능 분석 (ELISA) 결과이다. 각 항-ROR1 단일클론 항체가 세포외영역 ROR1 항원에 특이적으로 결합하는 것을 나타낸다. 도 1에 BCMA-Fc는 음성 대조군으로 각 항-ROR1 단일클론 항체가 ROR1 항원에만 특이적으로 결합하고 BCMA 단백질 또는 태그로 사용한 Fc에는 결합하지 않음을 나타낸다.
도 2는 본 발명의 일 구현예에 따른 항-ROR1 단일클론 파아지 항체의 세포 표면발현 ROR1 항원에 대한 결합능 측정 (FACS) 결과이며, ROR1을 세포 표면에서 발현하는 세포로는 JeKo-1 세포주를 사용하였다. 각 항-ROR1 단일클론 항체가 세포 표면에서 발현되는 ROR1에 특이적으로 결합하는 것을 나타낸다.
도 3은 본 발명의 일 구현예에 따라 제조된 항-ROR1 IgG 항체의 인간 ROR1 항원에 대한 결합능 분석 (ELISA) 결과이다. 각 항체들이 농도의존적으로 인간 ROR1 항원에 결합하는 것을 나타낸다. 상기 결과는 단일클론 파아지 항체를 IgG 형태로 변경한 후에도 ROR1에 대한 결합능을 유지하는 것을 나타낸다.
도 4는 본 발명의 일 구현예에 따라 제조된 항-ROR1 IgG 항체의 마우스 ROR1 항원에 대한 결합능 분석 (ELISA) 결과이다. 각 항체들이 농도의존적으로 마우스 ROR1 항원에 결합하는 것을 나타낸다. 본 실험을 통해 본 발명의 항-ROR1 항체가 마우스 ROR1에 대한 교차반응성이 있음을 확인하였다.
도 5는 본 발명의 일 구현예에 따라 제조된 항-ROR1 항체의 세포 표면 발현 ROR1 항원에 대한 결합능 측정 (FACS) 결과로, CHO-human ROR1 세포주는 인간 ROR1을, CHO-human ROR2는 인간 ROR2를, CHO-mouse ROR1은 마우스 ROR1을 인위적으로 과발현시킨 세포주이다. 각 항체는 세포 표면에서 발현되는 인간 ROR1에 특이적으로 결합하고 패밀리 단백질인 인간 ROR2에는 결합하지 않는 것으로 나타났다. 또한, 마우스 ROR1을 인위적으로 과발현시킨 세포주에도 결합하는 것을 확인함으로써 본 발명의 항-ROR1 항체가 마우스 ROR1에 대한 종간 교차반응성이 있음을 확인하였다.
도 6은 본 발명의 일 구현예에 따라 제조된 항-ROR1 항체의 세포 표면 발현 ROR1 항원에 대한 결합능 측정 (FACS) 결과로, ROR1 발현 양성 세포주로 JeKo-1 및 Mino 세포주, ROR1 음성 세포주로 MCF7 세포주를 사용하였다. 각 항체들은 세포 표면에서 발현되는 ROR1에 특이적으로 결합하고, ROR1을 발현하지 않는 세포주인 MCF7에서는 결합하지 않는 것으로 나타났다.
도 7은 본 발명의 일 구현예에 따라 제조된 항-ROR1 항체의 세포 표면 발현 ROR1 항원에 대한 결합능 측정 (FACS) 결과이다. 인간 ROR1을 마우스 대장암 세포주인 MC38에 인위적으로 과발현시킨 MC38 human ROR1 세포주를 사용하였다. 각 항체들은 인간 ROR1을 과발현한 세포주에 농도의존적으로 결합하는 것으로 나타났다.
도 8은 본 발명의 일 구현예에 따라 제조된 항-ROR1 항체의 세포발현 ROR1 항원에 대한 결합능을 다양한 암세포주에서 측정한 결과이다(FACS).
도 9는 본원의 일 구현예에 따라 제조된 항 B7-H3 항체의 B7-H3 단백질의 세포외영역(ECD, Extra Cellular Domain)에 대한 결합능 분석(ELISA) 결과이다. 본 발명의 항 B7-H3 항체는 농도 의존적으로 인간 B7-H3 단백질의 세포외영역에 결합하는 것으로 나타났다.
도 10는 본원의 일 구현예에 따라 제조된 항 B7-H3 항체의 B7 패밀리에 속하는 다른 단백질들의 ECD에 대한 결합능 분석(ELISA) 결과이다. 각 항체들은 B7 패밀리에 속하는 다른 단백질에는 결합하지 않고, B7-H3 단백질만을 특이적으로 인식하는 것으로 나타났다.
도 11은 본원의 일 구현예에 따라 제조된 항 B7-H3 항체의 종간 교차 반응성을 ELISA로 분석한 결과이다. 각 항체들은 농도 의존적으로 원숭이(cynomolgus) B7-H3와 마우스 B7-H3에 결합하는 것으로 나타났다.
도 12는 본원의 일 구현예에 따라 제조된 다양한 항 B7-H3 항체의 마우스 B7-H3 단백질에 대한 결합력 정도를 ELISA로 비교한 결과이다. 본원에 따른 항체의 마우스 B7-H3에 대한 결합정도는 상이하나, 모두 농도 의존적으로 마우스 B7-H3 단백질에 결합하는 것으로 나타났다.
도 13는 본원의 일 구현예에 따라 제조된 항 B7-H3 항체의 세포 표면 발현 B7-H3 항원에 대한 결합능 측정(FACS) 결과이다. 본원의 항 B7-H3 항체들은 B7-H3를 과발현하는 세포주인 MCF-7에만 특이적으로 결합하고 B7-H3를 발현하지 않는 세포주인 Jurkat에는 결합하지 않는 것으로 나타났다.
도 14은 본원의 일 구현예에 따라 제조된 항 B7-H3 항체의 세포 표면 발현 B7-H3 항원에 대한 결합능을 항체 농도별로 측정한(FACS) 결과이다. 각 항체들은 B7-H3를 발현하는 암세포주에 농도 의존적으로 결합하는 것으로 나타났다.
도 15은 본원에 따른 항 B7-H3 항체의 마우스 유래 암세포주(CT26, B16F10, 및 TC-1)에 대한 결합능을 측정한(FACS) 결과이다. 각 B7-H3 단일클론 항체들은 마우스 유래 암세포주의 표면에서 발현하는 B7-H3도 특이적으로 인식하는 것으로 나타났다.
도 16a는 B7-H3 와 ROR1을 과발현하는 세포주에(CHO-huROR1-huB7H3) 단독항체와 이중항체의 세포결합력을 FACS로 측정한 그래프이다.
도 16b는 ROR1을 과발현하는 세포주에서(CHO-huROR1) 단독항체와 이중항체의 세포결합력을 FACS로 측정한 그래프이다.
도 16c는 B7-H3를 과발현하는 세포주에서(MC38-huB7H3) 단독항체와 이중항체의 세포결합력을 FACS로 측정한 그래프이다.
도 17a는 B7-H3 와 ROR1을 과발현하는 세포주에서(CHO-huROR1-huB7H3) 단일 항체와 이중항체의 ADCC를 측정한 그래프이다.
도 17b는 B7-H3 와 ROR1을 과발현하는 세포주에서(CHO-huROR1-huB7H3) 단일 항체와 이중항체의 ADCC를 측정한 그래프이다.
도 18a 내지 도 18j은 MMAE, PBD 및 AB009를 이용하여 각각 제조된 ADC를 다각도로 평가한 결과이다.
도 19a 내지 도 19d는 DM1을 이용하여 제조된 ADC를 다각도로 평가한 결과이다.
도 20은 본원에 따른 이중항체 ADC의 세포독성을 단독항체 ADC, 또는 단독항체 ADC들의 조합과 비교평가한 결과이다.
도 21a 내지 21d는 본원에 따라 다양한 약물이 접합된 이중항체 ADC의 시험관 내 세포독성을 비교평가한 결과이다.
도 22a 및 22b는 본원에 따른 이중항체 ADC의 세포독성의 항원 특이성을 확인한 결과이다.
도 23a는 단독항체 ADC와 이중항체 ADC의 농도에 따른 암 세포에 대한 세포독성을 나타낸 그래프이다(ROR1 항체: C2E3)
도 23b는 단독항체 ADC와 이중항체 ADC의 농도에 따른 암 세포에 대한 세포독성을 나타낸 그래프이다(ROR1 항체: BA6)
도 23c는 단독항체 ADC와 이중항체 ADC의 농도에 따른 암 세포에 대한 세포독성을 나타낸 그래프이다(ROR1 항체: A2F2)
도 24는 본원에 따른 이중항체 ADC에 의한 calu-6 세포주의 세포사멸(apoptosis) 효과를 확인한 그래프이다.
도 25는 랫드에 이중항체 또는 이중항체 ADC를 투여 후 시간에 따른 혈장 중 남아있는 항체의 농도를 나타낸 그래프이다.
발명의 상세한 설명 및 바람직한 구현예
다른 식으로 정의되지 않는 한, 본 명세서에서 사용된 모든 기술적 및 과학적 용어들은 본 발명이 속하는 기술분야에서 숙련된 전문가에 의해서 통상적으로 이해되는 것과 동일한 의미를 갖는다. 일반적으로, 본 명세서에서 사용된 명명법은 본 기술분야에서 잘 알려져 있고 통상적으로 사용되는 것이다.
본 발명은 일 관점에서, ROR1 및 B7-H3 단백질에 특이적으로 결합하는 이중 특이적 항체 또는 이의 항원 결합 단편으로,
상기 ROR1 단백질에 특이적으로 항체 또는 이의 항원 결합 단편은
서열번호 1, 2 및 3로 구성된 군에서 선택되는 아미노산 서열을 포함하는 HCDR1;
서열번호 5, 6, 및 7로 구성된 군에서 선택되는 아미노산 서열을 포함하는 HCDR2;
서열번호 8, 9 및 10로 구성된 군에서 선택되는 아미노산 서열을 포함하는 HCDR3;
서열번호 11 내지 13로 구성된 군에서 선택되는 아미노산 서열을 포함하는 LCDR1;
서열번호 14 내지 16로 구성된 군에서 선택되는 아미노산 서열을 포함하는 LCDR2; 및
서열번호 17 내지 19로 구성된 군에서 선택되는 아미노산 서열을 포함하는 LCDR3;
상기 B7-H3 단백질에 특이적으로 결합하는 항체 또는 이의 항원 결합 단편은 서열번호 57의 아미노산 서열을 포함하는 HCDR1, 서열번호 58의 아미노산 서열을 포함하는 HCDR2, 서열번호 59의 아미노산 서열을 포함하는 HCDR3, 및 서열번호 60의 아미노산 서열을 포함하는 LCDR1, 서열번호 61의 아미노산 서열을 포함하는 LCDR2, 서열번호 62의 아미노산 서열을 포함하는 LCDR3를 포함하는 이중 특이적 항체 또는 이의 항원 결합 단편에 관한 것이다.
본 명세서에서 사용된 용어, "항체(antibody)"는 ROR1 및 B7-H3 단백질 각각에 특이적으로 결합하는 항-ROR1 항체, 항-B7-H3 항체, 또는 ROR1 및 B7-H3 단백질에 모두 결합하는 이중특이적 항체 (이중항체)를 의미한다. 본 발명의 범위에는 ROR1 및 B7-H3 단백질 각각에 특이적으로 결합하는 완전한 항체 형태 뿐만 아니라, 완전한 항체의 일부, 상기 항체 분자의 항원 결합 단편 및 이들의 조합도 포함된다.
완전한 항체는 2개의 전체 길이의 경쇄 및 2개의 전체 길이의 중쇄를 가지는 구조이며, 각각의 경쇄는 중쇄와 다이설파이드 결합으로 연결되어 있다.
본 명세서에서 사용되는 용어, "중쇄"는 항원에 특이성을 부여하기 위한 충분한 가변영역 서열을 갖는 아미노산 서열을 포함하는 가변영역 도메인 VH 및 3개의 불변영역 도메인 CH1, CH2 및 CH3을 포함하는 전체길이 중쇄 및 이의 단편을 모두 의미한다. 또한, 본 명세서에서 사용되는 용어, "경쇄"는 항원에 특이성을 부여하기 위한 충분한 가변영역 서열을 갖는 아미노산 서열을 포함하는 가변영역 도메인 VL 및 불변영역 도메인 CL을 포함하는 전체길이 경쇄 및 이의 단편을 모두 의미한다.
상기 전체 항체는 IgA, IgD, IgE, IgM 및 IgG의 아형(subtype)을 포함하며, 특히 IgG는 IgG1, IgG2, IgG3 및 IgG4를 포함한다. 중쇄 불변영역은 감마(γ), 뮤(μ), 알파(α), 델타(δ) 및 엡실론(ε) 타입을 가지고 서브클래스로 감마1(γ1), 감마2(γ2), 감마3(γ3), 감마4(γ4), 알파1(α1) 및 알파2(α2)를 가진다. 경쇄의 불변영역은 카파(κ) 및 람다(λ) 타입을 가진다.
항체의 항원 결합 단편 또는 항체 단편이란 항원 결합 기능을 보유하고 있는 단편을 의미하며, Fab, F(ab'), F(ab')2 및 Fv 등을 포함한다. 항체 단편 중 Fab는 경쇄 및 중쇄의 가변영역과 경쇄의 불변영역 및 중쇄의 첫 번째 불변영역(CH1)을 가지는 구조로 1개의 항원 결합 부위를 가진다. Fab'는 중쇄 CH1 도메인의 C-말단에 하나 이상의 시스테인 잔기를 포함하는 힌지 영역(hinge-region)을 가진다는 점에서 Fab와 차이가 있다. F(ab')2는 Fab'의 힌지 영역의 시스테인 잔기가 다이설파이드 결합을 이루면서 생성된다.
Fv는 중쇄 가변영역 및 경쇄 가변영역만을 가지고 있는 최소의 항체조각에 해당한다. 이중쇄 Fv(two-chain Fv)는 비공유결합으로 중쇄 가변영역과 경쇄 가변영역이 연결되어 있고, 단쇄 Fv(single-chain Fv, scFv)는 일반적으로 펩타이드 링커를 통하여 중쇄의 가변영역과 경쇄의 가변영역이 공유결합으로 연결되거나 또는 C-말단에서 바로 연결되어 있어서 이중쇄 Fv와 같이 다이머와 같은 구조를 이룰 수 있다. 이러한 항체 단편은 단백질 가수분해 효소를 이용하거나 (예를 들어, 완전한 형태의 항체를 파파인으로 제한 절단하면 Fab를 얻을 수 있고 펩신으로 절단하면 F(ab')2를 얻을 수 있다), 유전자 재조합 기술을 이용하여 제작할 수 있다.
하나의 실시예에서, 본 발명의 항체는 단일클론 항체, 다특이적 항체, 인간 항체, 인간화 항체, 키메라 항체, scFv, Fab 단편, F(ab')2 단편, 다이설파이드-결합 Fvs (sdFv) 및 항-이디오타입(항-Id) 항체, 상기 항체들의 에피토프-결합 단편, 상기 항체들의 일부 또는 이들의 조합을 포함하나, 이에 한정되는 것은 아니다.
상기 중쇄 불변영역은 감마(γ), 뮤(μ), 알파(α), 델타(δ) 또는 엡실론(ε) 중의 어느 한 이소타입으로부터 선택될 수 있다. 예를 들어, 불변영역은 감마1 (IgG1), 감마 2 (IgG2), 감마 3 (IgG3) 또는 감마 4 (IgG4)이다. 경쇄 불변영역은 카파 또는 람다 형일 수 있다.본 발명에서 사용된 항체의 "가변영역"은 상보성 결정 영역 (CDR; 즉 CDR1, CDR2, 및 CDR3) 및 프레임워크 (FR)의 아미노산 서열을 포함하는 항체 분자의 경쇄 및 중쇄 부분을 의미한다. VH는 중쇄의 가변 도메인을 의미한다. VL은 경쇄의 가변 도메인을 의미한다.
"상보성 결정 영역(complement determining region, CDR)"은 항원 결합을 위해 필요한 존재인, 항체 가변 도메인의 아미노산 잔기를 의미한다. 각 가변 도메인은 전형적으로 CDR1, CDR2 및 CDR3로 확인된 3개의 CDR 영역을 갖는다.
본 발명에 따른 ROR1 및 B7-H3 단백질 각각에 결합하는 항체 또는 이의 항원 결합단편은 예를 들어, 다음을 포함할 수 있다:
항-ROR1 항체
(i) 서열번호 1의 중쇄 CDR1, 서열번호 4의 중쇄 CDR2 및 서열번호 8의 중쇄 CDR3을 포함하는 중쇄 가변영역, 및 서열번호 11의 경쇄 CDR1, 서열번호 14의 경쇄 CDR2 및 서열번호 17의 경쇄 CDR3를 포함하는 경쇄 가변영역;
(ii) 서열번호 2의 중쇄 CDR1, 서열번호 5의 중쇄 CDR2 및 서열번호 9의 중쇄 CDR3을 포함하는 중쇄 가변영역, 및 서열번호 12의 경쇄 CDR1, 서열번호 15의 경쇄 CDR2 및 서열번호 18의 경쇄 CDR3를 포함하는 경쇄 가변영역;
(iii) 서열번호 2의 중쇄 CDR1, 서열번호 6의 중쇄 CDR2 및 서열번호 9의 중쇄 CDR3을 포함하는 중쇄 가변영역, 및 서열번호 12의 경쇄 CDR1, 서열번호 15의 경쇄 CDR2 및 서열번호 18의 경쇄 CDR3를 포함하는 경쇄 가변영역; 또는
(iv) 서열번호 3의 중쇄 CDR1, 서열번호 7의 중쇄 CDR2 및 서열번호 10의 중쇄 CDR3을 포함하는 중쇄 가변영역, 및 서열번호 13의 경쇄 CDR1, 서열번호 16의 경쇄 CDR2 및 서열번호 19의 경쇄 CDR3를 포함하는 경쇄 가변영역.
항-B7-H3 항체는 서열번호 57의 중쇄 CDR1, 서열번호 58의 중쇄 CDR2 및 서열번호 59의 중쇄 CDR3을 포함하는 중쇄 가변영역, 및 서열번호 60의 경쇄 CDR1, 서열번호 61의 경쇄 CDR2 및 서열번호 62의 경쇄 CDR3를 포함하는 경쇄 가변영역을 포함한다.
"프레임워크(FR)"은 CDR 잔기 이외의 가변 도메인 잔기이다. 각 가변 도메인은 전형적으로, FR1, FR2, FR3 및 FR4의 4개의 FR을 갖는다.
상기 ROR1 및 B7-H3 단백질 각각에 결합하는 항체 또는 이의 항원 결합단편은 다음과 같은 중쇄 가변영역 및/또는 경쇄 가변영역을 포함할 수 있다.
항-ROR1 항체
서열번호 20 내지 23, 37, 42, 47, 52로 구성된 군에서 선택되는 아미노산 서열과 90% 이상의 서열 상동성을 가지는 아미노산 서열을 포함하는 중쇄 가변영역을 포함할 수 있다.
서열번호 24 내지 26, 38, 43, 48, 53로 구성된 군에서 선택되는 아미노산 서열과 90% 이상의 서열 상동성을 가지는 아미노산 서열을 포함하는 경쇄 가변영역을 포함할 수 있다.
구체적으로, 다음을 포함할 수 있다:
서열번호 20의 중쇄 가변영역 및 서열번호 24의 경쇄 가변영역;
서열번호 21의 중쇄 가변영역 및 서열번호 25의 경쇄 가변영역;
서열번호 22의 중쇄 가변영역 및 서열번호 26의 경쇄 가변영역;
서열번호 23의 중쇄 가변영역 및 서열번호 27의 경쇄 가변영역;
서열번호 37의 중쇄 가변영역 및 서열번호 38의 경쇄 가변영역;
서열번호 42의 중쇄 가변영역 및 서열번호 43의 경쇄 가변영역;
서열번호 47의 중쇄 가변영역 및 서열번호 48의 경쇄 가변영역; 또는
서열번호 52의 중쇄 가변영역 및 서열번호 53의 경쇄 가변영역.
상기 B7-H3 단백질에 특이적으로 결합하는 항체 또는 이의 항원 결합 단편은 서열번호 63의 아미노산 서열과 90% 이상의 서열 상동성을 가지는 아미노산 서열을 포함하는 중쇄가변영역을 포함할 수 있다. 상기 B7-H3 단백질에 특이적으로 결합하는 항체 또는 이의 항원 결합 단편은 서열번호 64의 아미노산 서열과 90% 이상의 서열 상동성을 가지는 아미노산 서열을 포함하는 경쇄 가변영역을 포함할 수 있다. 구체적으로, 서열번호 63의 중쇄 가변영역 및 서열번호 64의 경쇄 가변영역을 포함할 수 있다.
scFv는 항체의 VH 및 VL 도메인을 포함하는 단일 폴리펩티드 쇄로 이루어진 구조체로, 항체 단편이다. scFv가 항원 결합을 위해 목적하는 구조를 형성할 수 있도록 하는 폴리펩티드 링커를 VH 도메인과 VL 도메인 사이에 추가로 포함할 수 있다.
하나의 실시예에서, 항체의 VH 및 VL 도메인을 포함하는 단일쇄 Fv (scFv)에서 VH 및 VL 도메인은 링커를 통해 연결될 수 있다. 상기 링커는 펩타이드 링커일 수 있으며, 약 10-25 aa 길이를 가질 수 있다. 예를 들어, 글리신 및/또는 세린과 같은 친수성 아미노산이 포함될 수 있으나, 이에 제한되는 것은 아니다. 구체적으로, 상기 링커는 예를 들어, (GS)n, (GGS)n, (GSGGS)n 또는 (GnS)m (n, m은 각각 1 내지 10)을 포함할 수 있으나, 상기 링커는 예를 들어 (GnS)m (n, m은 각각 1 내지 10)일 수 있다.
"파지 디스플레이"는 변이체 폴리펩티드를 파지, 예를 들어 섬유상 파지 입자의 표면 상에 외피 단백질의 적어도 일부와의 융합 단백질로서 디스플레이하는 기술이다. 파지 디스플레이의 유용성은 무작위화 단백질 변이체의 큰 라이브러리를 대상으로 하여, 표적 항원과 고친화도로 결합하는 서열을 신속하고도 효율적으로 분류할 수 있다는 사실에 있다. 펩티드 및 단백질 라이브러리를 파지 상에 디스플레이하는 것은 특이적 결합 특성을 지닌 폴리펩티드를 알아보기 위해 수 백만개의 폴리펩티드를 스크리닝하는데 널리 사용고 있다.
본 발명의 항체 또는 항체 단편은 ROR1 및 B7-H3 단백질 각각을 특이적으로 인식할 수 있는 범위 내에서, 본 명세서에 기재된 항체의 서열뿐만 아니라, 이의 생물학적 균등물도 포함할 수 있다. 예를 들면, 항체의 결합 친화도 및/또는 기타 생물학적 특성을 보다 더 개선시키기 위하여 항체의 아미노산 서열에 추가적인 변화를 줄 수 있다. 이러한 변형은 예를 들어, 항체의 아미노산 서열 잔기의 결실, 삽입 및/또는 치환을 포함한다. 이러한 아미노산 변이는 아미노산 곁사슬 치환체의 상대적 유사성, 예컨대, 소수성, 친수성, 전하, 크기 등에 기초하여 이루어진다. 아미노산 곁사슬 치환체의 크기, 모양 및 종류에 대한 분석에 의하여, 아르기닌, 라이신과 히스티딘은 모두 양전하를 띤 잔기이고; 알라닌, 글라이신과 세린은 유사한 크기를 가지며; 페닐알라닌, 트립토판과 타이로신은 유사한 모양을 갖는다는 것을 알 수 있다. 따라서, 이러한 고려 사항에 기초하여, 아르기닌, 라이신과 히스티딘; 알라닌, 글라이신과 세린; 그리고 페닐알라닌, 트립토판과 타이로신은 생물학적으로 기능 균등물이라 할 수 있다.
상술한 생물학적 균등 활성을 갖는 변이를 고려한다면, 본 발명의 항체 또는 이를 코딩하는 핵산 분자는 서열번호에 기재된 서열과 실질적인 동일성(substantial identity)을 나타내는 서열도 포함하는 것으로 해석된다. 상기의 실질적인 동일성은, 상기한 본 발명의 서열과 임의의 다른 서열을 최대한 대응되도록 얼라인하고, 당업계에서 통상적으로 이용되는 알고리즘을 이용하여 얼라인된 서열을 분석한 경우에, 최소 90%의 상동성, 가장 바람직하게는 최소 95%의 상동성, 96% 이상, 97% 이상, 98% 이상, 99% 이상의 상동성을 나타내는 서열을 의미한다. 서열비교를 위한 얼라인먼트 방법은 당업계에 공지되어 있다. NCBI Basic Local Alignment Search Tool(BLAST)은 NBCI 등에서 접근 가능하며, 인터넷 상에서 blastp, blasm, blastx, tblastn 및 tblastx와 같은 서열 분석 프로그램과 연동되어 이용할 수 있다. BLAST는 www.ncbi.nlm.nih.gov/BLAST/에서 접속 가능하다. 이 프로그램을 이용한 서열 상동성 비교 방법은 www.ncbi.nlm.nih.gov/BLAST/blast_ help.html에서 확인할 수 있다.
이에 기초하여, 본 발명의 항체 또는 그의 항원 결합 단편은 명세서에 기재된 명시된 서열 또는 전체와 비교하여 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, 또는 그 이상의 상동성을 가질 수 있다. 이러한 상동성은 당업계에 공지된 방법에 의한 서열 비교 및/또는 정렬에 의해 결정될 수 있다. 예를 들어, 서열 비교 알고리즘(즉, BLAST 또는 BLAST 2.0), 수동 정렬, 육안 검사를 이용하여 본 발명의 핵산 또는 단백질의 퍼센트 서열 상동성을 결정할 수 있다.
본 발명의 항체는 또한, 항체 경쇄의 Kabat 149번의 라이신(Lysine)을 시스테인(Cystein)으로 돌연변이화시킴으로써 (K149C), 항체의 친화성 및 안정성에 실질적인 영향을 미치지 않으면서도 용이하게 약물을 접합시켜 ADC를 제조할 수 있다. 예를 들어, 항체 경세의 149번 위치에서 돌연변이화된 시스테인은 디티오트레이톨(dithiothreitol: DTT)와 같은 환원제를 반응시켜 해당 위치에 티올기를 생성하고 Michael addition에 의한 thiosuccinimide 형성에 의해 약물과 결합할 수 있다.
본 발명은 다른 관점에서, 상기 항체 또는 그의 항원 결합 단편을 코딩하는 핵산에 관한 것이다. 본 발명의 항체 또는 그의 항원 결합 단편을 코딩하는 핵산을 분리하여 항체 또는 그의 항원 결합 단편을 재조합적으로 생산할 수 있다.
"핵산"은 DNA(gDNA 및 cDNA) 및 RNA 분자를 포괄적으로 포함하는 의미를 가지며, 핵산에서 기본 구성단위인 뉴클레오타이드는 자연의 뉴클레오타이드 뿐만 아니라, 당 또는 염기 부위가 변형된 유사체(analogue)도 포함한다. 본 발명의 중쇄 및 경쇄 가변영역을 코딩하는 핵산의 서열은 변형될 수 있다. 상기 변형은 뉴클레오타이드의 추가, 결실, 또는 비보존적 치환 또는 보존적 치환을 포함한다.
상기 항체를 암호화하는 DNA는 통상적인 분자생물학적 수법을 사용하여 (예를 들어, 항체와 중쇄와 경쇄를 암호화하는 DNA와 특이적으로 결합할 수 있는 올리코뉴클레오타이드 프로브를 사용함으로써) 용이하게 분리 또는 합성할 수 있으며, 핵산을 분리하고, 이를 복제 가능한 벡터 내로 삽입하여 추가로 클로닝하거나(DNA의 증폭) 또는 추가로 발현시킨다. 이를 바탕으로, 본 발명은 또 다른 관점에서 상기 핵산을 포함하는 재조합 발현 벡터에 관한 것이다.
본 명세서에서 사용되는 용어, "벡터"는 숙주세포에서 목적 유전자를 발현시키기 위한 수단으로, 플라스미드 벡터, 코즈미드 벡터, 박테리오파지 벡터, 아데노바이러스 벡터, 레트로바이러스 벡터, 아데노-연관 바이러스 벡터와 같은 바이러스 벡터 등을 포함한다. 벡터의 성분으로는 일반적으로 다음 중의 하나 이상이 포함되지만, 그에 제한되지 않는다: 신호 서열, 복제 기점, 하나 이상의 항생제 내성 마커 유전자, 증강인자 요소, 프로모터, 전사 종결 서열. 항체를 코딩하는 핵산은 프로모터 및 전사 종결 서열 등과 같이 작동적으로 연결되어 있다.
경우에 따라서, 벡터는 그로부터 발현되는 항체의 정제를 용이하게 하기 위하여 다른 서열과 융합될 수도 있다. 상기 벡터는 선택표지로서 당업계에서 통상적으로 이용되는 항생제 내성 유전자를 포함할 수 있다.
본 발명은 또 다른 관점에서, 상기 재조합 발현 벡터로 형질감염된 숙주세포에 관한 것이다. 본 발명의 항체를 생성시키기 위해 사용된 숙주세포는 당업계에서 통상적으로 사용되는 원핵생물, 효모 또는 고등 진핵생물 세포일 수 있으나, 이에 제한되는 것은 아니다.
본 발명은 또 다른 관점에서, 상기 숙주세포를 배양하여 항체를 생성하는 단계; 및 생성된 항체를 분리 및 정제하는 단계를 포함하는, ROR1 및 B7-H3 단백질에 특이적으로 결합하는 항체 또는 이의 항원 결합단편의 제조방법에 관한 것이다.
상기 숙주세포는 각종 배지에서 배양할 수 있다. 시판용 배지 중 제한없이 배양 배지로서 사용할 수 있다. 당업자에게 공지되어 있는 기타 모든 필수 보충물이 적당한 농도로 포함될 수도 있다. 배양 조건, 예를 들어 온도, pH 등이 발현을 위해 선별된 숙주세포와 함께 이미 사용되고 있고, 이는 당업자에게 명백할 것이다.
상기 항체 또는 그의 항원 결합 단편의 회수는 예를 들어 원심분리 또는 한외여과에 의해 불순물을 제거하고, 그 결과물을 예를 들어 친화 크로마토그래피 등을 이용하여 정제할 수 있다. 추가의 기타 정제 기술 예를 들어 음이온 또는 양이온 교환 크로마토그래피, 소수성 상호 작용 크로마토그래피, 히드록실아파타이트 크로마토그래피 등이 사용될 수 있다.
이중특이적 항체는 하나 이상의 타겟에 결합능 또는 길항능을 가지는 항체를 의미하며, 2개의 서로 다른 타겟에 대한 결합능 또는 길항능을 가지는 항체가 결합된 형태 또는 한 타겟에 대한 결합능을 가지는 항체와 다른 타겟에 대한 길항능을 가지는 물질이 결합되어 있는 항체를 의미한다.
다중특이적 항체는 적어도 3 이상의 상이한 항원에 대해 결합 특이성을 가지는 항체를 의미한다. 다중특이적(multi-specific) 항체는 삼중특이적(Tri-specific) 이상의 항체, 예를 들어 삼중특이적(Tri-specific) 항체, 사중특이적(Tetra-specific) 항체 또는 그 이상의 타겟을 표적하는 항체를 포함할 수 있다.
이중특이적 또는 다중특이적 항체에 속하는 항체들은 scFv 기반 항체, Fab 기반 항체 및 IgG 기반 항체 등으로 구분할 수 있다. 이중특이적 또는 다중특이적 항체의 경우 두 개 이상의 신호를 동시에 억제 또는 증폭시킬 수 있기 때문에 하나의 신호를 억제/증폭하는 경우보다 더욱 효과적일 가능성이 있다. 또한 각각의 신호를 각각의 신호억제제로 처리했을 경우와 비교하면, 저용량 투약이 가능하며, 이론적으로 동일한 시간 및 공간에서의 두 개 이상의 신호를 억제/증폭시킬 수 있다. 다만 단독항체를 이중항체로 제조시 위와 같은 이론적인 효과가 실제로 나타날지, 예상치 못한 부작용이 없는지, 그리고 단독항체의 조합과 대비하여 상승적 효과나 불리한 효과가 나타날지 여부는 실제로 제조하여 보기 전에는 쉽게 예측할 수 없다.
이중특이적 또는 다중특이적 항체의 제조 방법은 널리 공지되어 있다. 전통적으로, 이중특이적 항체의 재조합 생산은 두 개 이상의 중쇄가 상이한 특이성을 가지는 조건에서 두 개 이상의 면역글로불린 중쇄/경쇄 쌍의 공동 발현을 근간으로 한다.
scFv를 기반으로 하는 이중특이적 또는 다중특이적 항체의 경우, 상이한 scFv들의 VL과 VH를 각기 서로 조합하여 혼성 scFv를 heterodimeric 형태로 제조하여 디아바디(diabody)를 만들 수 있고, 상이한 scFv를 서로 연결해서 tendem ScFv를 제조할 수 있으며, Fab의 CH1과 CL을 각각의 scFv의 말단에 발현시켜 heterodimeric 미니항체(miniantibody)를 제조할 수 있고, Fc의 homodimeric 도메인인 CH3 도메인의 일부 아미노산을 치환하여 'knob into hole' 형태의 heterodimeric 구조로 변경시켜, 이들 변경된 CH3 도메인을 상이한 각각의 scFv 말단에 발현시킴으로써 heterodimeric scFv 형태의 미니바디(minibody)를 제조할 수 있다.
Fab을 기반으로 하는 이중특이적 또는 다중특이적 항체의 경우, 특정 항원에 대한 개별 Fab'를 이황화결합 또는 매개체를 이용해서 서로 조합하여 heterodimeric Fab 형태로 제조할 수 있고, 특정 Fab의 중쇄 또는 경쇄의 말단에 상이한 항원에 대한 scFv를 발현시킴으로써 항원 결합가(valency)를 2개로 하거나, Fab과 scFv 사이에 경첩부위(hinge region)를 둠으로써 homodimeric 형태로 4개의 항원결합가를 가지도록 제조할 수 있다. 또한, Fab의 경쇄 말단과 중쇄 말단에 상이한 항원에 대한 scFv를 융합시킴으로써 항원에 대한 결합가를 3개로 만든 이중표적 바이바디(bibody), Fab의 경쇄 말단과 중쇄 말단에 상이한 scFv를 각각 융합시킴으로써 항원에 대한 결합가를 3개로 가지도록 한 삼중표적 바이바디, 상이한 Fab 3개를 화학적으로 접합시킴으로써 수득할 수 있다.
IgG를 기반으로 하는 이중특이적 또는 다중특이적 항체의 경우, 트리온파마(Trion Pharma)사에 의해 마우스와 렛트 하이브리도마를 다시 교잡함으로써, 하이브리드 하이브리도마, 일명 쿼드로마(quadromas)를 제조하여 이중특이적 항체를 생산하는 방법이 알려져 있다. 또한, 경쇄부분은 공유하면서, 상이한 중쇄에 대해서 Fc의 CH3 homodimeric 도메인의 일부 아미노산을 변형시켜 heterodimeric 형태로 제작한 이른 바 'Holes and Knob' 형태로 이중특이적 항체를 제조할 수 있다. heterodimeric 형태의 이중특이적 항체 이외에, 상이한 2종의 scFv를 IgG의 경쇄와 중쇄의 가변 도메인 대신 constant 도메인에 각각 융합 발현시켜 homodimeric 형태의 (scFv)4-IgG로 제조할 수 있다. 또한, 임클론(ImClone)사는 인간 VEGFR-2에 대한 키메릭 단클론항체인 IMC-1C11을 기반으로하여, 이 항체의 경쇄 아미노 말단에 마우스 혈소판유도성장인자수용체-알파(Platelet-derived Growth Factor Receptor-α)에 대한 single variable domain만을 융합시켜 이중특이적 항체를 제작하여 보고하였다. 또한, 단백질 카이네이즈 A(protein kinase A, PKA) R 서브유닛의 dimerization and docking domain(DDD)과 PKA의 anchoring domain을 이용한 이른 바 'dock and lock(DNL)' 방법을 통해서 CD20에 대한 다수의 항원결합가를 지니는 항체로 제작할 수 있다.
매우 다양한 재조합 항체 포맷, 예를 들면, 2가 이상, 3가 이상 또는 4가 이상의 이중특이적 또는 다중특이적 항체로 개발될 수 있다. 2가 이상, 3가 이상 또는 4가 이상의 항체는 각각 2개 이상의 결합 도메인, 3개 이상의 결합 도메인 또는 4개 이상의 결합 도메인이 항체 분자에 존재한다는 것을 표시한다.
구체적 실시예에서, 본 발명에 따른 이중 특이적 항체는 IgG 완전한 항체 또는 이의 단편 형태 예를 들어 단일쇄 Fv, VH 도메인 및/또는 VL 도메인, Fab 또는 (Fab)2의 형태로 포함할 수 있다.
본 발명에 따른 이중 특이적 항체는 예를 들어 1+1 형태의 2가 이중 특이적 항체 또는 2+2 형태의 4가 이중 특이적 항체일 수 있다. .
본 발명은 또 다른 관점에서, 상기 항체 또는 이의 항원 결합단편이 약물에 결합된 항체-약물 접합체 (ADC)에 관한 것이다.
항체-약물 접합체는 타겟 암세포로 항암 약물을 전달하기 전까지 항암 약물이 항체에 안정적으로 결합되어 있어야 한다. 타겟으로 전달된 약물은 항체로부터 유리되어 타겟 세포의 사멸을 유도해야 한다. 이를 위해서는 약물이 항체에 안정적으로 결합함과 동시에 타겟 세포에서 유리될 때는 타겟 세포의 사멸을 유도할 충분한 세포독성을 가져야 한다.
예를 들어, 본 발명의 항체-약물 접합체는 항체 또는 그의 항원 결합 단편의 N-말단, C-말단, 아미노산 잔기, 또는 이들의 조합에 세포독성 약물이 접합된 것일 수 있다. 상기 항체-약물 접합체는 항체 또는 그의 항원 결합 단편의 중쇄 또는 경쇄의 N-말단, 시스테인 잔기, 또는 이들의 조합에 약물이 접합된 것일 수 있다. 상기 항체-약물 접합체는 항체 또는 그의 항원 결합 단편의 중쇄 또는 경쇄의 N-말단의 아민기에 세포독성 약물이 접합될 수 있다. 상기 항체 또는 그의 항원 결합 단편과 세포독성 약물은 공유 결합에 의해 결합된 것일 수 있다. 상기 항체 또는 그의 항원 결합 단편과 세포독성 약물은 효소 또는 빛에 의해 절단 가능한 결합에 의해 결합된 것일 수 있다.
하나의 실시예에서, 상기 항체는 링커를 통하여 약물에 결합될 수 있다. 상기 링커는 항체와 약물 사이를 연결하는 부위로, 세포내 조건에서 절단 가능한 형태 즉, 세포 내 환경에서 항체에서 약물이 방출될 수 있도록 하며, 항체의 긴 반감기를 반영하여 항체가 전신 순환 중에는 안정하고, 링커와 약물의 결합이 항체의 안정성 및 약물 동태에 영향을 주지 않아야 한다. 상기 링커는 약물과 미리 결합된 형태로서 항체와 연결될 수도 있다.
상기 링커는 예를 들어 절단성 링커 또는 비절단성 링커를 포함할 수 있다. 절단성 링커의 경우 펩타이드 링커와 같이 세포 내 펩티다아제 또는 프로테아제 효소 예를 들어 리소좀 또는 엔도좀 프로테아제에 의해 절단될 수 있고, 비절단성 링커의 경우 예를 들어 티오에테르 링커는 항체가 세포내 가수분해에 의해 비선택적으로 분해된 후에 약물이 방출될 수 있다.
본 발명의 항체-약물 접합체가 링커를 포함하는 경우, “약물”은 링커를 포함하는 “약물-링커”의 의미로도 사용될 수 있다. 즉, ADC의 구성에서 항체를 제외한 부분을 포괄하여 “약물”로 지칭할 수 있다.
상기 항체-약물 접합체는 표적 암세포의 항원에 ADC의 항체영역이 결합하여 ADC-항원 복합체를 형성한 후 엔도좀-리소좀 경로로 암세포 내부로 내포화될 수 있다. 이 경우 세포 독성 약물의 세포 내 방출은 엔도솜/리소좀의 내부 환경에 의해 조절된다.
하나의 실시예에서, 상기 절단성 링커는 pH 민감성으로, 특정 pH 값에서 가수분해에 민감할 수 있다. 일반적으로, pH 민감성 링커는 산성 조건에서 가수분해될 수 있음을 나타낸다. 예를 들어, 리소좀에서 가수분해될 수 있는 산성 불안정 링커 예를 들어, 하이드라존, 세미카바존, 티오세미카바존, 시스-아코니틱 아마이드 (cis-aconitic amide), 오르쏘에스테르, 아세탈, 케탈 등일 수 있다.
다른 실시예에서, 상기 링커는 환원 조건에서 절단될 수도 있으며, 예를 들어 이황화 링커가 이에 해당할 수 있다.
상기 약물 및/또는 약물-링커는 항체의 라이신을 통해 무작위로 접합되거나, 이황화 결합 사슬을 환원하였을 때 노출되는 시스테인을 통해 접합될 수 있다. 경우에 따라서, 유전공학적으로 제작된 태그 예를 들어, 펩타이드 또는 단백질에 존재하는 시스테인을 통해 링커-약물이 결합될 수 있다.
상기 약물은 하나의 실시예에서, 화학요법제 또는 톡신일 수 있다. 다른 실시예에서, 상기 약물은 면역 조절 화합물, 항암제, 항바이러스제, 항균제, 항진균제, 항기생충제 또는 이들의 조합일 수 있다.
상기 약물은 세포독성 약물(cytotoxic drug)일 수 있으며, 세포독성 약물이란 시험관 내 또는 생체 내에서 세포독성 또는 세포증식 억제 효과를 갖는 물질, 예를 들어 화합물을 말한다. "세포독성"은 세포의 기능을 억제하거나 저하시켜 세포의 파괴를 야기시키는 효과를 말한다. "세포증식 억제"는 세포성장 또는 세포 증식의 제한 등과 같이 세포생장 기능을 제한하는 효과를 말한다.
상기 세포독성 약물은 항암제, 방사선 동위원소, 독소, 또는 이들의 조합일 수 있다.
구체적 실시예에서, 상기 약물은 피롤로벤조디아제핀 다이머 (PBD)이고, 피롤로벤조디아제핀 이량체의 N10 또는 N10' 위치를 통해 링커와 항체가 연결될 수 있다. 피롤로벤조디아제핀 이량체의 N10 및 N'10 위치에 각각 독립적으로 -C(O)O*, -S(O)O*, -C(O)*, -C(O)NR*, -S(O)2NR*, -P(O)R'NR*, -S(O)NR*, 및 -PO2NR*기로 이루어진 그룹으로부터 선택되는 어느 하나가 부착되며,
여기에서 *은 링커가 부착되는 부분이고,
여기에서, R, 및 R'은 각각 독립적으로 H, OH, N3, CN, NO2, SH, NH2, ONH2, NHNH2, 할로, 치환되거나 비치환된 C1-8알킬, 치환되거나 비치환된 C3-8사이클로알킬, 치환되거나 비치환된 C1-8알콕시, 치환되거나 비치환된 C1-8알킬티오, 치환되거나 비치환된 C3-20헤테로아릴, 치환되거나 비치환된 C5-20아릴 또는 모노- 또는 다이-C1-8알킬아미노이고,
여기에서 C1-8알킬, C3-8사이클로알킬, C1-8알콕시, C1-8알킬티오, C3-20헤테로아릴, C5-20아릴이 치환되는 경우, H, OH, N3, CN, NO2, SH, NH2, ONH2, NNH2,
할로, C1-6알킬, C1-6알콕시 및 C6-12아릴로 이루어진 그룹으로부터 선택되는 치환기로 치환되는,
피롤로벤조디아제핀 이량체 전구체(pyrrolobenzodiazepine dimer prodrug), 이의 약학적으로 허용되는 염 또는 용매화물이 약물로 사용될 수 있다.
예를 들어, 본 발명의 항체-약물 접합체는 항체와 피롤로벤조디아제핀 다이머 화합물이 아래와 같은 구조로 연결된 것일 수 있다:
Figure PCTKR2020016600-appb-I000001
위 식에서 Ab는 본 발명의 항체이며, 항체-약물 접합체는 항체 아미노산 잔기의 시스테인이 환원되어 생성된 티올기와 위 피롤로벤조디아제핀 다이머 화합물의 말레이미드가 Michael addition 반응하여 thiosuccinimide를 형성함으로써 형성된 것일 수 있다 (아래 그림 참조).
Figure PCTKR2020016600-appb-I000002
본 발명의 항체-약물 접합체는 항체와 아래의 싸이클로프로파벤지돌 (AB009) 화합물이 연결된 것일 수 있다.
Figure PCTKR2020016600-appb-I000003
예를 들어, 본 발명의 항체-약물 접합체는 항체와 싸이클로프로파벤지돌 (AB009) 화합물이 피롤로벤조디아제핀 다이머 화합물과 유사한 방식에 의해 아래와 같은 구조로 연결된 것일 수 있다:
Figure PCTKR2020016600-appb-I000004
본 발명의 항체-약물 접합체는 항체와 아래의 MMAE (Monomethyl auristatin E) 화합물이 연결된 것일 수 있다:
Figure PCTKR2020016600-appb-I000005
예를 들어, 본 발명의 항체-약물 접합체는 항체와 MMAE 화합물이 피롤로벤조디아제핀 다이머 화합물과 유사한 방식에 의해 아래와 같은 구조로 연결된 것일 수 있다:
Figure PCTKR2020016600-appb-I000006
본 발명의 항체-약물 접합체는 항체와 아래의 DM1 (Emtansine) 화합물이 연결된 것일 수 있다.
Figure PCTKR2020016600-appb-I000007
.
예를 들어, 본 발명의 항체-약물 접합체는 항체와 MMAE 화합물이 링커를 통해 아래와 같은 구조로 연결된 것일 수 있다:
Figure PCTKR2020016600-appb-I000008
예를 들어, 위와 같은 구조의 항체-약물 접합체는, 링커인 SMCC [4-(N-Maleimidomethyl) cyclohexanecarboxylic acid N-hydroxysuccinimide ester]가 항체 아미노산의 아민기와 결합한 후, SMCC에 존재하는 말레이미드기와 페이로드(payload)의 티올기가 Michael addition 반응하여 thiosuccinimide를 형성함으로써 형성된 것일 수 있다.
본 발명은 다른 관점에서, ROR1 및 B7-H3 단백질에 특이적으로 결합하는 항체 또는 그의 항원 결합 단편과 세포독성 약물을 인큐베이션하여 상기 항체 또는 그의 항원 결합 단편에 상기 세포독성 약물을 접합시키는 단계를 포함하는 항체-약물 접합체를 제조하는 방법을 제공한다.
본 발명은 ROR1 및 B7-H3 단백질에 특이적으로 결합하는 항체 또는 그의 항원 결합 단편 또는 상기 항체 또는 그의 항원 결합 단편에 약물이 접합된 항체-약물 접합체를 포함하는 암의 예방 또는 치료용 조성물을 제공한다.
상기 조성물은 약학적 조성물로, 예를 들어 약학적으로 허용 가능한 담체를 포함할 수 있다. 상기 담체는 부형제, 희석제 또는 보조제를 포함하는 의미로 사용된다. 상기 담체는 예를 들면, 락토스, 덱스트로스, 수크로스, 소르비톨, 만니톨, 자일리톨, 에리트리톨, 말티톨, 전분, 아카시아 고무, 알기네이트, 젤라틴, 칼슘 포스페이트, 칼슘 실리케이트, 셀룰로스, 메틸 셀룰로스, 폴리비닐 피롤리돈, 물, 생리식염수, PBS와 같은 완충액, 메틸히드록시 벤조에이트, 프로필히드록시 벤조에이트, 탈크, 마그네슘 스테아레이트, 및 미네랄 오일로 이루어진 군으로부터 선택된 것일 수 있다. 상기 조성물은 충진제, 항응집제, 윤활제, 습윤제, 풍미제, 유화제, 보존제, 또는 이들의 조합을 포함할 수 있다.
상기 약학적 조성물은 통상의 방법에 따라 임의의 제형으로 준비될 수 있다. 상기 조성물은 예를 들면, 경구 투여 제형(예를 들면, 분말, 정제, 캡슐, 시럽, 알약, 또는 과립), 또는 비경구 제형(예를 들면, 주사제)으로 제형화될 수 있다. 또한, 상기 조성물은 전신 제형, 또는 국부 제형으로 제조될 수 있다.
상기 약학적 조성물은 다른 항암제, 스테로이드 제제, 세포치료제, 또는 이들의 조합을 더 포함할 수 있다.
상기 약학적 조성물은 일 양상에 따른 항체-약물 접합체와 하나 이상의 다른 유효 성분을 동시 또는 순차로 투여하는 병용 투여용 조성물일 수 있다.
상기 약학적 조성물은 단일 투여용 조성물 또는 개별 투여용 조성물일 수 있다. 예를 들어, 상기 항체 또는 그의 항원 결합 단편의 조성물은 비경구 투여 제형의 조성물이고, 항암제는 경구 투여 제형의 조성물일 수 있다.
상기 약학적 조성물은 상기 항체 또는 그의 항원 결합 단편, 항암제, 또는 이들의 조합을 유효한 양으로 포함할 수 있다. 용어 "유효한 양"은 예방 또는 치료를 필요로 하는 개체에게 투여되는 경우 예방 또는 치료의 효과를 나타내기에 충분한 양을 말한다. 상기 유효한 양은 당업자가 선택되는 세포 또는 개체에 따라 적절하게 선택할 수 있다. 질환의 중증도, 환자의 연령, 체중, 건강, 성별, 환자의 약물에 대한 민감도, 투여 시간, 투여 경로 및 배출 비율, 치료 기간, 사용된 조성물과 배합 또는 동시 사용되는 약물을 포함한 요소 및 기타 의학 분야에 잘 알려진 요소에 따라 결정될 수 있다.
실시예
이하 실시예를 통하여 보다 상세하게 설명한다. 그러나, 이들 실시예는 예시적으로 설명하기 위한 것으로 본 발명의 범위가 이들 실시예에 한정되는 것은 아니다.
실시예 1. 항-ROR1 항체의 준비
1. ROR1 항체의 제조
(1) 항원
항원으로서는 인간 ROR1의 세포외영역(ECD)의 C-말단에 Fc가 연결된 ROR1 ECD-Fc 형태의 단백질을 사용하였다.
상기 항원의 제조를 위해 구체적으로 ROR1의 세포외도메인을 포함하는 단백질로서 NCBI 참조번호 NP_0050032로 표시되는 ROR1 아미노산 서열의 1번 아미노산 내지 406번 아미노산에 해당하는 잔기를 이용하였다. 상기 ROR1의 세포외 도메인을 코딩하는 유전자는 Origene사의 cDNA를 구매하여 사용하였다(Origene, RC214967) 또한, 추후 ROR1 세포외도메인을 정제하기 위하여 ROR1 세포외도메인을 코딩하는 유전자의 3'말단에는 인간 IgG1 유래의 Fc 단백질을 코딩하는 유전자를 합성하여 연결하였다(하기 'ROR1-Fc'로 명명) 상기 유전자를 pcDNA3.1 벡터에 도입하여, 포유동물 세포주에서 ROR1-Fc 핵산을 암호화하는 벡터를 확보하였다.
상기 발현벡터를 HEK 293E세포에 일시적으로 트랜스펙션 시켜 DMEM/F-12 배지에서 8% CO2, 37℃ 조건에서 배양함으로써 ROR1-Fc 발현하고, 매 72시간 마다 배지를 수집하였으며, 이어 배지를 합하고 단백질 A 친화성 크로마토그래피를 사용하여 Fc-ROR1 ECD 단백질을 정제하였다.
(2) 파이지 라이브러리 스크리닝을 통한 항체 선별
라이브러리 파아지(Library phage)의 제조
다양한 항원에 대한 결합 다양성을 가진 인간 유래 scFv(single chain variable fragment) 라이브러리(Yang et al, 2009 Mol Cells 27:225) 유전자를 가진 대장균 2 x 1010을 2X YT(Amresco, J902-500G), 카베니실린(Duchefa, C01090025) 100 ㎍/㎖, 2% 글루코스(sigma, G7021)를 포함하는 배지에서 37℃에서 2시간 내지 3시간 동안 배양한 후(OD600=0.5~0.7) 헬퍼 파아지(helper phage)를 감염시켜 2X YT [2X YT, 카베니실린, 카나마이신(Duchfa, K0126) 70 ㎍/㎖, 1 mM IPTG(Duchefa, I1401)] 배지에 30℃에서 16시간 동안 배양하여 파이지 패킹을 유도하였다. 이어 배양한 세포를 원심분리(6000 rpm, 15분, 4℃)한 후, 상등액에 4% PEG8000(sigma, P2139)과 3% NaCl(Samchun, S2097)을 첨가하여 잘 녹인 후 얼음에서 1시간 동안 반응시켰다. 다시 원심분리(8000rpm, 20분, 4℃)한 후, 펠렛에 PBS(Phosphate buffered saline, Gibco 10010-023)를 첨가하여 현탁한 다음 원심분리(12000rpm, 10분, 4℃)하여 라이브러리 파아지를 포함하는 상등액을 새 튜브에 넣어 사용시까지 4℃에서 보관하였다.
파아지 디스플레이(Phage display)를 통한 패닝(panning)
인간 ROR1 단백질과 결합하는 항체를 선별하기 위해 실시예 1.1.(1)에서 제조된 ROR1-Fc 단백질을 이용하여 다음과 같이 패닝을 총 3회 진행하였다.
구체적으로 면역시험관(immunotube, maxisorp 444202)에 10 ㎍/㎖ 농도의 ROR1-Fc와 음성대조군-Fc(BCMA-Fc)를 PBS에 첨가하여 4℃에서 밤새 시험관 표면에 단백질을 흡착시킨 후 우혈청 알부민(BSA, Bovine serum albumin) 3% 용액을 시험관에 첨가하여 ROR1-Fc가 흡착되지 않은 표면을 보호하였다. 시험관을 비운 후 BSA 3% 용액에 분산된 1012 CFU의 항체 파지 라이브러리를 대조군 Fc 단백질이 흡착되어 있는 면역시험관에 넣고 상온에서 1시간 반응시켰다(negative selection). 이어 음성대조군 Fc에 비결합된 파지들을 회수하여 ROR1-Fc가 협착된 면역시험관에 결합시켰다. 비특이적으로 결합한 파지를 PBS-T(Phosphate buffered saline-0.05% Tween 20) 용액으로 5회~30회 씻어내어 제거하고, 남아있는 항원 특이적 파지항체를 100 mM 트리에틸아민 용액을 이용하여 회수하였다. 회수된 파지를 1M 트리스 버퍼(pH 7.4)로 중화시킨 후 ER2537 대장균에 37℃에서 1시간 감염시키고 감염된 대장균을 카베니실린을 포함하는 2X YT 한천배지에 도말하여 37℃에서 밤새 배양하였다. 다음날 배양된 대장균을 4 ㎖의 2X YT 카베니실린 배양액에 현탁하고 15% 글리세롤을 첨가하여 일부는 -80℃에 보관하고 나머지는 다음 실험을 위해 파아지를 제조하였다. 이러한 과정을 총 3라운드 반복하여 ROR1 항원 특이적인 파아지 풀(phage pool)을 증폭 및 농축하였다.
단일클론 파아지 항체 선별(single clone screening)
상기 패닝을 통해 얻은 파아지 풀(phage pool)로부터 ROR1에 특이적으로 결합하는 단일클론항체를 선별하기 위해 다음과 같은 실험을 수행하였다.
농축된 풀로부터 단일클론을 분리하기 위해, LB-테트라사이클린/카베니실린 한천배지에 상기 파아지 풀을 도말한 후 배양하여 단일 콜로니를 확보하였다. 이어 단일 클론을 웰당 400 ㎕의 2 X YT-테트라사이클린/카베니실린 배지가 들어간 96 깊은 웰 플레이트에 접종하여 밤새 키운 후, 배양액 10 ㎕를 새로운 390㎕의 2 X YT-테트라사이클린/카베니실린 배지가 포함된 96 깊은 웰 플레이트에 넣어 37℃에서 4시간 배양했다. 상기 배양액에 1 mM IPTG 되게 넣어 주고 30℃에서 밤새 배양했다. 밤새 배양한 배양액을 원심분리하여 상등액을 취하였다.
이어 다음과 같이 ELISA 방법을 사용하여 인간 ROR1-Fc 항원과 결합하는 단일클론 가용성 scFv를 발현하는 클론을 선택하였다(Steinberger Rader and Barbas III 2000 Phage display vectors In: Phage Display Laboratory Manual 1sted ColdSpringHarborLaboratoryPress NY USA pp119-1112) 구체적으로 96-웰 미세역가 플레이트(Nunc-Immuno Plates, NUNC, USA)에 실시예 1.1.(1)에서 준비한 재조합 인간 ROR1-Fc 또는 BCMA-Fc를 well당 100 ng 넣고, 4℃에서 밤새 코팅하였다. BCMA-Fc는 음성대조군으로 사용한 단백질로 인간 BCMA 단백질의 세포외도메인 영역을 인간 Fc에 연결한 재조합 단백질이다. 3% BSA를 각 웰당 200 μL씩 넣어 37℃에서 2시간 블록킹 하였다. 상기 단일클론 파지 상등액은 3% BSA와 1:1로 섞어서 준비하여, 이 혼합액을 100 μL씩 상기 웰에 로딩한 뒤 37℃에서 2시간 반응시켰다. PBST 300 μL로 5회 세척한 후, 항-HA HRP 결합 항체를 넣고 37℃에서 1시간 반응시킨 후, PBST로 5회 세척하였다. TMB(Tetramethylbenzidine, Sigma, T0440) 100 μL를 넣어 발색한 후, 1N H2SO4 50 μL를 넣어 반응을 정지한 후, 450 nm 및 650 nm에서 흡광도를 측정하여, ROR1 1 ㎍/mL 코팅했을 때 흡광도 값이 450 nm 및 650 nm에서 10 이상인 클론을 선별하였다(도 1).
이어 ROR1을 발현하는 세포주에 결합하는 클론은 유세포분석으로 선별하였다. 구체적으로 상기 단일 클론 scFv 상등액 100 ㎕를 ROR1을 과발현하는 암세포주(JeKo-1)와 반응시킨 후 PBS로 2회 세척하였다. 항-HA-FITC 항체(Sigma, H7411)와 4℃에서 30분간 반응한 후 PBS로 2회 세척 후 PBS 200 ㎕로 현탁하여 FACSCalibur flow cytometer(BD Bioscience)를 이용하여 JeKo-1 세포주에 결합하는 클론을 선별하였다(도 2).
이로부터 재조합 인간 ROR1 단백질 및 ROR1을 발현하는 세포주에 결합하는 항체 클론들(A2F2, BA6, C2E3)을 선별하였으며, A2F2 클론에 번역후 변형 (PTM) 방지를 위한 점돌연변이를 도입한 변이체인 A2F2M1도 제작하였다. 상기 각 항체의 scFv 형태의 중쇄 가변영역 및 경쇄 가변영역의 아미노산 서열 및 CDR 서열은 다음 표 1a 및 표 1b와 같다.
Figure PCTKR2020016600-appb-T000001
Figure PCTKR2020016600-appb-I000009
상기 가변영역 및 CDR 서열을 코딩하는 핵산 서열은 C2E3, A2F2, A2F2 M1 및 BA6의 순서대로 하기 중쇄 및 경쇄 전장을 코딩하는 핵산서열의 일부로 포함되어 있다: 서열번호 27(중쇄) 및 28(경쇄); 서열번호 29(중쇄) 및 30(경쇄); 서열번호 31(중쇄) 및 30(경쇄); 서열번호 33(중쇄) 및 34(경쇄)이다.
2. 항-ROR1 scFv의 전체 IgG 형태로 변환 및 생산
(1) 항-ROR1 scFv의 전체 IgG 형태로의 클로닝
상기 실시예 1.1.에서 확보한, 각 ROR1 특이적 단일클론 파아지 항체의 서열을 전체 IgG(full IgG) 형태로 변환하기 위해, 실시예 1.1.에서 확보한 각 클론의 중쇄 및 경쇄 가변영역을 코딩하는 핵산을 합성하였다(제노텍, 대한민국) 인간 IgG1 서브타입의 중쇄(서열번호 34)와 경쇄 불변영역(서열번호 35 또는 36) 단백질을 코딩하는 유전자를 합성하여 상기 각 중쇄와 경쇄 가변영역을 코딩하는 핵산과 연결하였다. 각 항체의 경쇄와 중쇄를 암호화하는 핵산은 각각 pcDNA3.1 기반의 발현 벡터에 클로닝하여 CHO-S 포유동물세포주에서 항체 핵산을 암호화하는 벡터를 확보하였다.
비교군 항체로는 기존 항-ROR1 항체인 2A2(US 9,316,646)의 가변영역에 인간 IgG1을 연결한 키메라 항체를 비교군 항체로 사용하였다.
IgG 형태의 본 발명에 따른 항-ROR1 항체 (C2E3, A2F2, A2F2M1, BA6)의 가변 중쇄 (VH), 가변 경쇄 (VL), 중쇄 전장 (Heavy chain) 및 경쇄 전장 (Light chain) 서열은 아래 표 2a 내지 2d 와 같다. IgG 형태의 항-ROR1 항체가 ADC에 사용되는 경우, 약물의 결합을 위해 경쇄의 불변 영역에 K149C와 같은 돌연변이가 도입될 수 있으며, 그러한 돌연변이가 도입된 경쇄 서열 역시 아래 표에 나타나 있다.
Figure PCTKR2020016600-appb-T000002
Figure PCTKR2020016600-appb-I000010
Figure PCTKR2020016600-appb-I000011
Figure PCTKR2020016600-appb-I000012
(2) 항-ROR1 IgG 항체의 발현
CHO-S 세포를 CD-CHO(Gibco, 10743) 배지에 1.5X106 cells/ml로 농도를 맞춘 후, 8% CO2, 37℃에서 1일 동안 배양하였다. DNA 트랜스펙션 당일 2.5~3X106 cells/ml로 자란 세포를 1% DMSO가 포함되어 있는 CD-CHO 배지를 이용하여 2.1X106 cells/ml의 농도로 준비한 후, 8% CO2, 37℃에서 3 hr 배양하였다. 3000rpm에서 15 min 원심분리 후, 상등액을 제거한 후, 25% FBS가 포함된 RPMI 1640 배지에 재현탁 하였다. 이어 실시예 1.2.(1)의 중쇄와 경쇄를 발현하는 각 벡터를 각각 배지 ml당 1 ㎍씩 Opti-MEM 배지에 희석하고, PEI(Polysciences, 23966, stock 농도: 1 mg/ml)는 배양 배지 ml당 8 ㎍ 희석하였다. 상기 벡터 및 PEI 혼합물을 섞어 상온에서 10 min 동안 정치한 후, 상기와 같이 준비된 세포가 포함된 플라스크에 넣은 후, 5% CO2, 37℃, 100 rpm으로 4 hr 배양한 후, 배양부피와 동일한 부피의 CD-CHO 배지를 넣어준 후, 8% CO2, 37℃, 110 rpm에서 4일 동안 배양하였다.
(3) 항-ROR1 IgG 항체의 분리 정제
평형화 완충액(50 mM Tris-HCl, pH7.5, 100 mM NaCl)을 Mab selectsure(GE healthcare, 5mL)에 통과시켜 평형시킨 이후, 실시예 1.3.(2)의 배양액을 컬럼(Mab selectsure(GE healthcare, 5mL))에 통과하여 발현된 항체가 컬럼에 결합하도록 하였다. 이 후, 50 mM Na-citrate(pH 3.4), 100 mM NaCl 용액으로 용출시킨 후, 1M Tris-HCl(pH 9.0)을 이용하여 중화시켜 최종 pH가 7.2가 되게 하였다. 완충액을 PBS(phosphate buffered saline, pH 7.4)로 교환하였다.
3. 항-ROR1 IgG 항체의 ROR1에 대한 결합 특이성 분석
(1) 항-ROR1 IgG 항체의 ROR1 항원(세포외 영역)에 대한 결합능 분석(ELISA)
상기 실시예 1.2.에서 제조된, 실시예 1.2.에서 선별된 각 클론의 IgG 항체의 항원에 대한 특이적 결합능을 하기와 같이 분석하였다.
항-ROR1 항체-항원 결합 친화도는 ELISA-기반 용액 결합시험을 사용하여 평가하였다. 구체적으로 96-웰 미세역가 플레이트(Nunc-Immuno Plates, NUNC)를 4℃에서 16시간 동안 PBS 용액 중의 1 ㎍/㎖ 농도의 아래 기술한 ROR1 단백질로 코팅하고, 비특이적 결합부위는 3% BSA(bovine serum albumin)로 2시간 동안 차단시켰다. 이때 ROR1 단백질은 인간 ROR1의 경우 실시예 1.1.의 ROR1-Fc 또는 재조합 인간 ROR1-His(Sino Biological, 13968-H08H)을 사용하였다. ELISA에서 사용한 ROR1-His는 위의 문장에 기재한 바와 같이 sino biological사(13968-H08H)의 단백질로 실시예 1.1.의 ROR1-His, 또는 재조합 마우스 ROR1 단백질을 사용하였다(Acrobiosystems, RO1-M5221-100㎍).
이어 96-웰 미세역가 플레이트상에서 실시예 1.3.에서 준비한 항-ROR1 항체를 도 2에 기재된 농도로 미세역가 플레이트 추가한 후 결합능을 다음과 같이 ELISA로 분석하였다. 구체적으로 2시간 항온처리 한 후에, 상기 플레이트를 0.05%의 트윈 20(tween 20)을 포함하는 PBS로 5회 세척한 후, HRP-접합된 Fab 다중클로날 항체 시약(Pierce, 31414)을 1:10,000 비율로 희석하여 상기 세척된 미세역가플레이트에 넣고, 1시간 동안 37℃에서 반응시켜, 플레이트에 결합된 ROR1 항체를 검출하였다. 반응 후 TMB(Tetramethylbenzidine, Sigma, T0440)를 사용하여 발색시켰다. 효소반응을 0.5 mol/L의 황산에 의해서 중지시키고, 마이크로 플레이트 리더기(molecular device)를 이용하여 450nm 및 650nm에서 흡광도를 측정하였다(450 nm - 650 nm).
여러 항-ROR1 항체 클론들과 함께 ROR1에 대한 결합 특이성을 분석한 결과는 도 3a 및 도 3b, 및 도 4에 기재되어 있다. 이로부터 본 발명의 항-ROR1 항체는 인간 ROR1과 마우스 ROR1에 농도 의존적으로 결합함을 확인하였으며, 번역후 변형 (PTM) 방지를 위해 A2F2에 점돌연변이를 도입한 A2F2M1 클론이 모클론과 동일한 결합력을 가진다는 사실도 확인하였다. 또한 마우스 ROR1 단백질에 대한 교차반응성을 비교하였을 때 본 발명 ROR1 항체가 비교군으로 사용한 2A2 대조항체 대비 결합력이 우수한 것으로 나타났다 (도 4).
(2) 항-ROR1 IgG 항체의 세포 표면 발현 ROR1 항원에 대한 특이적 결합능 측정(FACS)
특정 항원에 대한 항체가 치료용 항체 등 생체 내에서 사용되기 위해서는 세포 표면 발현 항원에 결합하는 것이 필수적인 요소이다. 일부 항체의 경우 정제된 항원에는 결합하지만 세포 표면 발현 항원에는 결합하지 않는다. 이런 경우 생체 내로 항체를 투여하여도 항원에 대한 결합이 불가능 하므로 항원을 발현하고 있는 세포에 항체가 결합하지 못하여 치료용 항체 등 생체 내에서의 활성을 보일 수 없다.
이에 본 발명의 항-ROR1 항체가 세포 표면 발현 ROR1에 결합하는지 여부를 FACS 분석을 통하여 확인하였다.
이 실험을 위하여 ROR1 유전자를 일시적으로(CHO-human ROR1, CHO-human ROR2, CHO-mouse ROR1) 또는 안정적으로(MC38-human ROR1) 트렌스펙션시켜 ROR1 단백질의 발현을 인위적으로 과발현시킨 세포주(각각 도 5 및 도 7) 또는 ROR1을 발현하는 세포주(JeKo-1, Mino)(도 6) 또는 ROR1을 발현하지 않는 세포주(MCF7)(도 6)와 FACSCalibur(BD Biosciences) 기기를 이용하여 항-ROR1 항체와 ROR1의 결합된 정도를 다음과 같이 측정하였다. MCF7는 ROR1을 발현하지 않는 음성대조군이고, CHO-human ROR2는 인간 ROR2를 발현하는 음성대조군이다. JeKo-1, Mino, CHO-human ROR1, CHO-mouse ROR1, MC38-human ROR1은 모두 인간 ROR1 또는 마우스 ROR1을 발현 하는 세포주이다.
구체적으로 각 세포주를 해리시키고 PBS에서 세척한 후, 세포수를 계수하여 2x105 cells/200㎕ PBS로 맞춘 뒤, 실시예 1.3.에서 준비된 각 ROR1 단일클론항체를 10 μg/mL 또는 10 μg/mL으로부터 5배씩 희석하여 처리 후 4℃에서 1시간 반응하였다. 반응 후 세포를 PBS에서 세척한 뒤 FITC 표지된 불가변영역(Fc) 특이적인 항체(Goat anti-human IgG FITC conjugate, Fc specific, Sigma, F9512, 농도:20 mg/ml)를 2 ㎕/1x105 cells/200㎕ PBS로 현탁하여 4℃에서 1시간 반응하였다. 일시적으로 과발현시킨 인간 ROR1, 인간 ROR2, 마우스 ROR1의 발현 정도의 확인은 상업적으로 판매되는 FACS 분석용 항체(anti-ROR1 : R&D Systems, FAB2000G, anti-ROR2 : R&D, FAB20641P)를 이용하여 분석하였다. 반응 후 세포를 PBS에서 세척하고 FACSCalibur 기기를 이용하여 판독하였다. 음성대조군(2nd Ab)은 FITC 라벨링된 불가변영역(Fc) 특이적인 항체만 처리하였다. 각각의 ROR1 단일클론항체를 처리한 실험군에서 이동된 판독 결과를 대조군의 이동된 판독 결과와 비교하였다(MFI Ratio:MFI of anti-ROR1 / MFI of 2nd Ab).
결과는 도 5, 도 6 및 도 7에 기재되어 있다. 그 결과 본 발명의 항-ROR1 항체는 세포에서 원래 발현되는 인간 ROR1(도 6) 및 세포에서 인위적으로 과발현 된 인간 ROR1(도 5, 도 7)의 세포외영역에 특이적으로, 농도의존적인 양상으로 결합함을 확인하였다. 또한 패밀리 단백질인 인간 ROR2에는 결합하지 않고, 마우스 ROR1에 대해서는 종간 교차반응성이 있음을 확인하였다(도 5). 세포표면에 발현하는 마우스 ROR1에 대한 교차반응성을 비교하였을 때 본 발명의 ROR1 항체가 비교군으로 사용한 항체인 2A2 대비 결합정도가 더 우수함을 확인하였다 (도 5).
(3) 항-ROR1 IgG 항체의 다양한 암종에서의 세포 표면 발현 ROR1 항원에 대한 결합능 측정(FACS)
이어 FACS 분석을 통하여 본 발명의 항-ROR1 항체가 다양한 종류의 암세포주에서 세포 표면 발현 ROR1에 결합하는지 여부를 확인하였다. ROR1은 다양한 암세포에서 발현하는데 만성 림프구성 백혈병(CLL), B세포 백혈병, 림프종, 급성골수성 백혈병(AML), 버킷 림프종, 외투세포림프종(MCL), 급성림프구성백혈병(ALL), 미만성거대B세포림프종(DLBCL), 여포성림프종(FL), 변연부림프종(MZL) 등의 혈액암은 물론 유방암, 신장암, 난소암, 위암, 간암, 폐암, 대장암, 췌장암, 피부암, 방광암, 고환암, 자궁암, 전립선암, 비소세포 폐암(NSCLC), 신경모세포종, 뇌암, 결장암, 상피 편평세포암, 흑색종, 골수종, 자궁경부암, 갑상선암, 두경부암 및 부신암 등의 다양한 고형암에서도 과발현되는 것으로 보고 되어있다.
이 실험을 위하여 다음과 같은 다양한 종류의 암세포주를 사용하였다: AGS (ATCC  CRL-1739™, huamn gastric adenocarcinoma), NCI-N87 (ATCC  CRL-5822™, human gastric carcinoma), MKN-28 (KCLB 80102, human gastric adenocarcinoma), SNU-1750 (KCLB 01750, human gastric adenocarcinoma), SNU-16 (ATCC CRL5974™, human gastric carcinoma), HCC1187 (ATCC  CRL-2322™, huamn breast canccer TNM stage IIA grade 3), MDA-MB-231 ATCC  HTB-26™, human breast cancer), MDA-MB-468 (ATCC  HTB-132™, human breast cancer), HCC70 (ATCC CRL2315™, human breast cancer TNM stage IIIA, grade 3), HCC1143 (ATCC  CRL-2321™, TNMstageIIA, grade3, primary ductal carcinoma), BT20(ATCC  HTB-19™ human breast cancer), HCC1806 (ATCC  CRL-2335™, huamn breast canccer TNM stage IIB grade 2), HCC1937 (ATCC CRL2336™, TNMstageIIB, grade3, primary ductal carcinoma), BT474 (ATCC  HTB-20™, ductal carcinoma), MCF7 (ATCC  HTB-22™, breast cancer metastatic site), H460 (ATCC  HTB-177™, large cell lung cancer), A549 (ATCC  CCL-185™, lung carcinoma), NCI-H1975 (ATCC  CRL-5908™, non-small cell lung cancer), H1437 (ATCC  CRL5872™, stage1,adenocarcinomanonsmallcelllungcancer),Calu-6(ATCC  HTB-56™, anaplastic lung carcinoma), HCT116 (ATCC  CCL-247™, colorectal carcinoma), DLD-1 (ATCC  CCL-221™, Dukes' type C, colorectal adenocarcinoma), HT29 (ATCC  HTB-38™, colorectal adenocarcinoma), 697 (DSMZACC 42, acute myeloblastic leukemia), Kasumi-2 (ATCC  CRL-2724™, acute myeloblastic leukemia), Mino (ATCC CRL3000™, Mantle Cell Lymphoma), JeKo-1(ATCC CRL3006™, Mantle Cell Lymphoma), Jurkat (ATCC  TIB-152™, acute Tcell leukemia). 상기 세포주에 대하여 본 발명의 항-ROR1 항체를 이용하여 ROR1에 대한 결합을 FACS (FACSCalibur, BD Biosciences)로 분석하였다.
구체적으로 각 세포주를 해리시키고 PBS에서 세척한 후, 세포를 계수하여 2x105 cells/200㎕ PBS로 맞춘 뒤, 실시예 1.3.에서 준비된 각 ROR1 단일클론 항체중 클론명 C2E3 항체를 10 μg/mL으로 처리 후 4℃에서 1시간 반응하였다. 반응 후 세포를 PBS에서 세척한 뒤 FITC 표지된 불가변영역(Fc) 특이적인 항체(Goat anti-human IgG FITC conjugate, Fc specific, Sigma, F9512, 농도: 20 mg/ml)를 2 ㎕/1x105 cells/200㎕ PBS로 현탁하여 4℃에서 1시간 반응하였다. 반응 후 세포를 PBS에서 세척하고 FACSCalibur 기기를 이용하여 판독하였다. 음성대조군은 FITC 라벨링된 불가변영역(Fc) 특이적인 항체만 처리하였다. 각 암세포주간 ROR1의 발현정도를 비교하기 위하여 본 발명의 ROR1 단일클론항체(C2E3)를 처리한 실험군에서 이동된 판독 결과를 대조군에서 이동된 판독 결과로 나눈 값(MFI Ratio : MFI of anti-ROR1 / MFI of 2nd Ab)을 표기하였다.
결과는 도 8에 기재되어 있다. 그 결과 본 발명의 항-ROR1 항체는 위암, 유방암, 폐암, 대장암, 급성림프구성백혈병(ALL), 및 외투세포림프종(MCL)유래의 다양한 암세포주에서 발현되는 ROR1에 결합이 확인되었다.
실시예 2. 항-B7-H3 항체의 준비
1. 항체의 제조
(1) 항원의 제조
항 B7-H3 항체 제조를 위한 파지 디스플레이 수행에 사용되는 항원을 구매하여 사용하였다. 인간 B7-H3의 경우 NP_001019907.1의 아미노산 서열 1번에서 461번을 포함하며 C 말단에 히스티딘-태그(His tag)가 결합되어 있는 재조합 B7-H3 단백질(2318-B3/CF, R&D Systems) 사용하였다.
하기 실시예의 ELISA 분석, SPR 분석 또는 T 세포 활성 분석에 사용되는 항원을 다음과 같이 구매하여 사용하였다. 인간 B7-H3의 경우 NP_001019907.1의 아미노산 서열 1번에서 461번을 포함하며 C 말단에 히스티딘-태그(His tag)가 결합되어 있는 재조합 B7-H3 단백질(Sino Biological, 11188-H08H)과 C 말단에 인간 IgG1의 Fc 부분이 결합되어 있는 단백질(Sino Biological, 11188-H02H)을 사용하였다.
(2) 파이지 라이브러리 스크리닝을 통한 항체 선별 제조
라이브러리 파아지(Library phage)의 제조
다양한 항원에 대한 결합 가능성을 가지는 인간 유래 scFv(single-chain variable fragment) 라이브러리(Mol. Cells OT, 225-235, February 28, 2009) 유전자를 가진 대장균을 2X YT(Amresco, J902-500G), 암피실린(Ampicilin)이 100 ㎍/㎖, 2% 글루코스(sigma, G7021)를 포함하는 배지에 2 x 1010 개를 접종하여 37℃에서 2시간에서 3시간 동안 배양하여 OD600 값이 0.5에서 0.7이 되도록 하였다. 배양한 대장균을 헬퍼 파아지(helper phage)를 감염시킨 후, 2X YT [2X YT, 암피실린(Ampicilin) 100 ㎍/㎖, 1 mM IPTG(Duchefa, I1401)] 배지에 30℃에서 16시간 동안 배양하여 파이지 패킹을 유도하였다. 이어 배양한 세포를 4℃, 4500 rpm 조건으로 20분 동안 원심분리한 후, 상등액에 4% PEG 8000(sigma, P2139)과 3% NaCl(Samchun, S2097)을 첨가하여 잘 녹인 후 얼음 위에서 1시간 동안 반응시켰다. 다시 4℃, 8000 rpm 조건으로 원심분리 한 후, 상등액은 버리고 세포 펠렛에 PBS(Phosphate buffered saline, Gibco 10010-023)를 첨가하여 현탁하였다. 현탁액을 4℃, 1200 rpm 조건으로 10분간 원심분리한 후, 상등액을 새 튜브로 옮겨 사용 시까지 4℃에서 보관하였다.
파아지 디스플레이(Phage display)를 통한 패닝(panning)
인간 B7-H3 단백질과 결합하는 항체를 선별하기 위해 실시예 2.1.(1)의 히스티딘-태그(His tag)가 결합되어 있는 재조합 B7-H3 단백질을 이용하여 다음과 같이 패닝을 총 3회 진행하였다.
구체적으로 면역시험관(immunotube, maxisorp 444202)에 2 ㎍/㎖ 농도의 재조합 인간 B7-H3 단백질을 1㎖ 첨가하여 37℃, 200rpm 조건에서 1시간 반응시켜 시험관 표면에 단백질을 흡착시켰다. 이어 상등액을 제거하고 탈지유(Skim milk)가 3% 포함된 용액을 시험관에 첨가하여 실온에서 1시간 반응시켰다. 이를 통해 재조합 인간 B7-H3 단백질이 흡착되지 않은 면역시험관 표면에 Skim milk를 흡착시켜 비특이적 결합을 차단하였다. 이어 상등액을 제거한 후, 실시예 2.1.(2)에서 준비한 파지 라이브러리의 1012 CFU를 3% Skim milk가 포함된 용액에 섞어 상기 면역시험에 넣고 37℃, 150 rpm조건에서 1시간 반응시켜 인간 B7-H3 단백질 특이적인 파지가 항원에 결합하도록 하였다.
이어 비특이적으로 결합한 파지를 PBS-T(Phosphate buffered saline-0.05% Tween 20) 용액으로 3회 씻어내어 제거하고, 남아있는 항원 특이적 파지 항체를 100 mM 트리에틸아민 용액을 1 ㎖ 넣어 회수하였다. 트리에틸아민 용액의 pH가 낮기 때문에 회수된 파지를 1M Tris 완충액(pH 7.4)으로 중화시킨 후, OD600에서 0.8~1로 키운 ER2537 대장균에 37℃, 120 rpm 조건에서 1시간 30분 동안 감염시켰다. 배양액을 4℃, 4500 rpm 조건으로 15분간 원심분리하여 상층액을 제거하고 가라앉은 세포를 감염된 대장균을 암피실린(Ampicilin)을 포함하는 2X YT 한천배지에 도말하여 37℃에서 16시간 이상 배양하였다. 다음날 배양된 대장균을 모두 긁어 5㎖의 2X YT 암피실린 배양액에 현탁하고 50% 글리세롤을 첨가하여 일부는 -80℃에 보관하고 나머지는 다음 실험을 위해 파아지를 제조하였다. 배양된 대장균 20 ㎕를 암피실린이 포함된 2X TB에 접종하여 키운 후 헬퍼 파아지 감염시키고 실시예 2.2.(1)과 2.2.(2)를 2번 더 반복하여 인간 B7-H3 단백질 특이적인 파아지 풀(phage pool)을 증폭 및 농축하였다.
단일클론 파아지 항체 선별(single clone screening)
상기 패닝을 통해 얻은 파아지 풀 (phage pool)로부터 인간 B7-H3 단백질에 특이적으로 결합하는 단일클론항체를 선별하기 위해 다음과 같은 실험을 수행하였다.
농축된 풀로부터 단일클론을 분리하기 위해, LB-암피실린 한천배지에 상기 파아지 풀을 도말한 후 배양하여 단일 콜로니를 확보하였다. 이어 단일 클론을 웰당 200 ㎕의 super broth(SB)배지가 들어간 96 깊은 웰 플레이트에 접종하여 37℃에서 4시간 배양하여 키운 후, 일부를 다른 플레이트에 옮겨 Cell stock을 만들었다. 남아 있는 세포 배양액에 1mM IPTG 되게 넣어 주고 30℃에서 16시간 동안 배양하여 scFv의 생산을 유도하였다. 배양한 배양액을 4℃, 6000 rpm 조건으로 20분간 원심분리한 후 상등액을 버리고 세포만을 얻은 후 TES 용액을 이용하여 세포를 용해시킨 후에 다시 원심분리하여 상등액만 얻어서 사용하였다.
이어 다음과 같이 ELISA 방법을 사용하여 B7-H3-His 항원(2318-B3/CF,R&D Systems)과 결합하는 단일클론 가용성 scFv를 발현하는 클론을 선택하였다(Steinberger. Rader and Barbas III. 2000. Phage display vectors. In: Phage Display Laboratory Manual. 1sted. ColdSpringHarborLaboratoryPress. NY. USA. pp.11.9-11.12). 구체적으로 96-웰 플레이트(Nunc-Immuno Plates, NUNC, Rochester, NY, USA)에 실시예 2.1.(1)에서 준비한 재조합 인간 B7-H3-his 단백질을 PBS에 희석하여 웰당 100 ng 넣고, 4℃에서 밤새 흡착시켰다. 다음날 플레이트에 단백질을 PBST(Phosphate buffered saline-0.05% Tween 20)로 씻어준 후, 비특이적인 결합을 방지하기 위해 3% BSA이 포함된 PBS 완충용액을 웰당 200 ㎕을 넣고 37℃에서 약 2시간 반응시켰다. 이어 PBST로 다시 씻어 준 후 미리 원심분리하여 준비한 파지가 포함된 상등액을 각 웰당 100 ㎕ 넣고 37℃에서 약 1시간 반응시켰다. 이어 PBST로 씻어준 후 인간 B7-H3에 결합된 파지를 검출하기 위해 항-HA HRP(Horseradish peroxidase)결합 항체(Roche, 12 013 819 001)를 1% BSA가 포함된 PBS에 1:5000으로 희석하여 웰당 100 ㎕ 넣고 37℃에서 약 1시간 반응시켰다. 다시 PBST로 씻어 준 후 TMB (Tetramethylbenzidine, Thermo, 34028) 100 ㎕ 넣어 발색시켰다. RT에서 5~10분간 반응시킨 후 1N H2SO4를 50 ㎖ 넣어 반응을 종료하였다. 450nm에서 흡광도를 측정하여 값이 1.0 이상인 클론을 선별하였다.
이로부터 재조합 인간 B7-H3 단백질에 결합하는 항체 클론 B5를 선별하였으며, B5 클론의 중쇄 가변 및 경쇄 가변영역의 아미노산 서열 및 CDR 서열은 다음 표와 같다.
Figure PCTKR2020016600-appb-T000003
Figure PCTKR2020016600-appb-I000013
상기 B5 가변영역을 코딩하는 핵산 서열은 서열번호 85(중쇄) 및 86(경쇄)에 포함되어 있다.
2. 항 B7-H3 scFv의 전체 IgG 형태로 변환 및 생산
(1) 항 B7-H3 scFv의 전체 IgG 형태로의 클로닝
상기 실시예 2.1.에서 확보한, 각 인간 B7-H3 특이적 단일클론 파아지 항체의 서열을 전체 IgG(full IgG) 형태로 변환하기 위해, 실시예 2.1.에서 확보한 각 클론의 중쇄 및 경쇄 가변영역을 코딩하는 핵산을 합성하였다(제노텍, 대한민국). 인간 IgG1 서브타입의 중쇄 (서열번호 65)와 경쇄 불변영역(서열번호 66 또는 67) 단백질을 코딩하는 유전자 (서열번호 68 및 69)를 합성하여 상기 각 중쇄와 경쇄 가변영역을 코딩하는 핵산과 연결하였다. 각 항체의 경쇄와 중쇄를 암호화하는 핵산은 각각 pcDNA3.1 기반의 발현 벡터에 클로닝하여 CHO-S 등의 포유동물세포주에서 항체 핵산을 암호화하는 벡터를 확보하였다. 또한 기존 항 B7-H3 항체인 Enoblituzumab를 비교군 항체로 사용하기 위해 항체의 가변영역 서열을 특허(US 8,802,091)에서 확보하여 유전자를 확보하였고 상술한 방법과 동일하게 클로닝하여 84D로 명명하여 사용하였다.
IgG 형태의 본 발명에 따른 항 B7-H3 항체 (B5)의 가변 중쇄 (VH), 가변 경쇄 (VL), 중쇄 전장 (Heavy chain) 및 경쇄 전장 (Light chain) 서열은 아래 표 4와 같다. IgG 형태의 항 B7-H3 항체가 ADC에 사용되는 경우, 약물의 결합을 위해 경쇄의 불변 영역에 K149C와 같은 돌연변이가 도입될 수 있으며, 그러한 돌연변이가 도입된 경쇄 서열 역시 아래 표에 나타나 있다.
Figure PCTKR2020016600-appb-T000004
(2) 항 B7-H3 항체의 발현
항 B7-H3 항체의 발현은 Thermo사에서 개발한 ExpiCHO-S™(Thermo Fisher, A29127) 세포를 이용하였고, 항체의 발현은 제조사의 ExpiCHO™ Expression System Kit(Thermo Fisher, A29133) 프로토콜에 준수하여 수행하였다.
제조방법을 간단히 설명하면, ExpiCHO-S 세포를 8% CO2, 37℃ 조건의 진탕배양기(shaking incubator)에서 120 rpm 조건으로 배양하였다. 트랜스펙션(Transfection) 당일 ExpiCHO-S 세포를 6X106 cells/㎖의 세포 농도로 ExpiCHO™ Expression Medium(Thermo Fisher, A2910001)을 첨가하여 희석하여 준비하였다.
이어 실시예 2.2.(1)의 중쇄와 경쇄를 발현하는 각 벡터를 각각 배지 ㎖당 1㎍씩 OptiPRO™ SFM 배지(Thermo Fisher, 12309050)에 희석하고, ExpiCHO Expression system에 포함되어 있는 ExpiFectamine™CHO를 ㎖당 3.2 ㎕를 OptiPRO™ SFM 배지 희석하였다. 상기 벡터 및 ExpiFectamine™CHO 혼합물을 서로 섞어 상온에서 5분 동안 반응시킨 후, 준비된 세포에 혼합물을 넣어 8% CO2, 37℃, 120 rpm 조건으로 20시간 배양하였다. 20시간 후에 ExpiCHO™ Expression System Kit(Thermo Fisher, A29133)에 포함되어 있는 Enhencer1, ExpiCHO™ Feed를 각각 ㎖당 2.2 ㎕, 240 ㎕를 세포에 첨가한 후 8% CO2, 37℃, 120 rpm 조건으로 7일에서 10일정도 배양하였다.
배양이 끝난 후 세포배양액을 4℃, 6000 rpm 조건으로 30분간 원심분리한 후, 상등액을 분리하여 냉장보관하였다.
(3) 항 B7-H3 항체의 분리 정제
평형화 완충액(50 mM Tris-HCl, pH7.5, 100 mM NaCl)을 Mab selectsure(GE healthcare, 5 ㎖)에 통과시켜 평형시킨 이후, 실시예 2.2.(2)의 배양액을 컬럼(Mab selectsure(GE healthcare, 5 ㎖))에 통과하여 발현된 항체가 컬럼에 결합하도록 하였다. 이 후, 50mM Na-citrate(pH 3.4), 100mM NaCl 용액으로 용출시킨 후, 1M Tris-HCl(pH 9.0)을 이용하여 중화시켜 최종 pH가 7.2가 되게 하였다. 완충액을 PBS(phosphate buffered saline, pH 7.4)로 교환하였다.
3. 항 B7-H3 IgG 항체의 B7-H3 에 대한 결합 특이성 분석
(1) 항 B7-H3 IgG 항체의 재조합 B7-H3 항원에 대한 결합능 분석 (ELISA)
상기 실시예 2.2.에서 제조된, 실시예 2.1.에서 선별된 항 B7-H3 IgG 항체의 B7-H3 항원에 대한 특이적 결합능을 확인하기 위해 ELISA 기반 용액 결합 시험을 사용하여 분석하였다.
구체적으로 96-웰 플레이트(Nunc-Immuno Plates, NUNC)에 재조합 인간 B7-H3 단백질을 1 ㎍/㎖ 농도로 희석하여 웰당 100 ㎕씩 넣어 준 후, 4℃에서 16시간 동안 반응하여 코팅하였다. 사용한 재조합 인간 B7-H3 단백질은 실시예 2.1.에서 분석용으로 구매한 제품을 사용하였다.
이어 단백질을 제거하고 PBST로 씻어 준 후, 1% BSA(bovine serum albumin)가 포함된 PBS 버퍼를 웰당 200 ㎕ 넣고 37℃에서 2시간 동안 반응시켜 비 특이적인 결합을 차단시켰다. 이어 96-웰 플레이트상에서 실시예 2.2.에서 준비한 항 B7-H3 항체를 10 ㎍/㎖을 기준으로 일정 비율로 희석한 후, 각 웰에 100 ㎕ 넣고 37℃에서 1시간 동안 반응시켰다. 이어 PBST로 씻어 준 후 인간 B7-H3에 결합된 항체를 검출하기 위해 HRP-접합 항 인간 IgG F(ab')2 항체(Goat anti-Human IgG F(ab')2 Cross-Adsorbed Secondary Antibody, HRP, Pierce, 31414)를 1% 우 혈청 알부민(BSA)이 포함된 PBS에 1:10,000으로 희석하여 웰당 100 ㎕ 넣고 37℃에서 약 1시간 반응시켰다. 다시 PBST로 씻어준 후 TMB(Tetramethylbenzidine, Sigma, T0440) 100 ㎕ 넣어 발색시켰다. RT에서 5~10분간 반응시킨 후 1N H2SO4를 50 ㎕ 넣어 반응을 종료하고 마이크로 플레이트 리더기(molecular device)를 이용하여 450nm과 650nm에서 흡광도를 측정하였다.
결과는 도 9에 기재되어 있다. ELISA 방법을 이용한 결합능 측정 결과 본 발명의 항 B7-H3 항체는 인간 B7-H3의 세포외영역에 농도 의존적으로 결합함을 확인하였다.
(2) 항 B7-H3 항체의 B7 패밀리의 다른 단백질들에 결합능 분석
B7 패밀리 단백질은 서로 20~40%의 아미노산 동일성을 가지고 있으며 면역글로불린 도메인의 반복성과 같이 구조적 관련성을 가진다. 그래서 다른 B7 패밀리 단백질이 아닌 B7-H3 단백질에 특이적으로 결합하는지 아래와 같이 분석하였다.
면역 특이 결합성 확인을 위해 구조적 유사성을 가지는 B7 패밀리 구성 단백질: B7-1(Sino Biological, Cat #: 10698-H08H), B7-2(Sino Biological, Cat #: 10699-H08H), B7-DC(Sino Biological, Cat #: 10292-H08H), B7-H1(Sino Biological, Cat #: 10084-H08H), B7-H2(Sino Biological, Cat #: 11559-H08H), B7-H4(Sino Biological, Cat #: 10738-H08H), B7-H5(Sino Biological, Cat #: 13482-H08H), B7-H6(Sino Biological, Cat #: 16140-H08H), B7-H7(Sino Biological, Cat #: 16139-H02H)은 구매하여 사용하였다.
구체적으로 96-웰 플레이트(Nunc-Immuno Plates, NUNC)에 재조합 인간 B7 패밀리 단백질을 1 ㎍/㎖ 농도로 희석하여 웰당 100 ㎕씩 넣어준 후, 4℃에서 16시간 동안 반응하여 코팅하였다. 사용한 재조합 단백질은 실시예 2.1.1.에서 분석용으로 구매한 제품을 사용하였다.
이어 단백질을 제거하고 PBST로 씻어준 후, 1% BSA(bovine serum albumin)가 포함된 PBS 버퍼를 웰당 200 ㎕ 넣고 37℃에서 2시간 동안 반응시켜 비 특이적인 결합을 차단시켰다. 이어 96-웰 플레이트상에서 실시예 2.2.에서 준비한 항 B7-H3 항체를 10 ㎍/㎖으로 희석한 후, 각 웰에 100 ㎕ 넣고 37℃에서 1시간 동안 반응시켰다. 이어 PBST로 씻어 준 후 항원에 결합된 항체를 검출하기 위해 HRP-접합 항 인간 IgG F(ab')2 항체(Goat anti-Human IgG F(ab')2 Cross-Adsorbed Secondary Antibody, HRP, Pierce, 31414)를 1% 우 혈청 알부민(BSA)이 포함된 PBS에 1:10,000으로 희석하여 웰당 100 ㎕ 넣고 37℃에서 약 1시간 반응시켰다. 다시 PBST로 씻어준 후 TMB(Tetramethylbenzidine, Sigma, T0440) 100 ㎕ 넣어 발색시켰다. RT에서 5~10분간 반응시킨 후 1N H2SO4를 50 ㎕ 넣어 반응을 종료하고 마이크로 플레이트 리더기(molecular device)를 이용하여 450nm 및 650nm에서 흡광도를 측정하였다.
결과는 도 10에 기재되어 있다. ELISA 법을 이용한 결합능 측정 결과 항 B7-H3 항체는 B7 패밀리 단백질이 아닌 B7-H3에만 특이적으로 결합함을 확인하였다.
(3) 항 B7-H3 항체의 인간, 원숭이, 및 마우스 B7-H3 항원에 대한 종간 교차 반응성 분석
인간에 대한 임상 진행 이전에 항 B7-H3 항체의 항체 효능 및 면역 조절기 활성을 평가하기 위해서는 설치류 또는 영장류 모델에서의 평가가 중요하다. 인간 B7-H3의 서열은 원숭이와 마우스에서 90% 이상 상동성을 공유하고 있다. 실시예 2.2.에서 제조된 본원의 항 B7-H3 항체의 마우스 또는 원숭이 B7-H3에 대한 교차 반응성을 다음과 같이 ELISA 분석법을 통해 분석하였다.
종간 교차반응성을 확인하기 위해 C 말단에 히스티딘 태그(His tag)이 결합된 재조합 마우스 B7-H3 단백질(Sino Biological, Cat #: 50973-M08H)와 C 말단에 인간 IgG1의 Fc 부분이 결합되어 있는 재조합 원숭이 B7-H3 단백질(Sino Biological, Cat #: 90806-C02H) 항원을 구매하여 사용하였다.
96-웰 플레이트(Nunc-Immuno Plates, NUNC)에 재조합 인간 B7-H3, 마우스 B7-H3, 원숭이 B7-H3 단백질을 1 ㎍/㎖ 농도로 희석하여 웰당 100 ㎕씩 넣어준 후, 4℃에서 16시간 동안 반응하여 코팅하였다. 사용한 재조합 단백질은 실시예 2.1.에서 분석용으로 구매한 제품을 사용하였다.
이어 단백질을 제거하고 PBST로 씻어 준 후, 1% BSA(bovine serum albumin)가 포함된 PBS 버퍼를 웰당 200 ㎕ 넣고 37℃에서 2시간 동안 반응시켜 비특이적인 결합을 차단시켰다. 이어 96-웰 플레이트상에서 실시예 2.2.에서 준비한 항 B7-H3 항체를 10 ㎍/㎖부터 일정 비율로 희석한 후, 각 웰에 100 ㎕ 넣고 37℃에서 1시간 동안 반응시켰다. 이어 PBST로 씻어준 후 인간 B7-H3, 원숭이 B7-H3, 마우스 B7-H3에 결합한 항체를 검출하기 위해 HRP-접합 항 인간 IgG F(ab')2 항체(Goat anti-Human IgG F(ab')2 Cross-Adsorbed Secondary Antibody, HRP, Pierce, 31414)를 1% 우 혈청 알부민(BSA)이 포함된 PBS에 1:10,000으로 희석하여 웰당 100 ㎕ 넣고 37℃에서 약 1시간 반응시켰다. 다시 PBST로 씻어준 후 TMB(Tetramethylbenzidine, Sigma, T0440) 100 ㎕ 넣어 발색시켰다. RT에서 5~10분간 반응시킨 후 1N H2SO4를 50 ㎕ 넣어 반응을 종료하고 마이크로 플레이트 리더기(molecular device)를 이용하여 450nm 및 650nm에서 흡광도를 측정하였다.
결과는 도 11과 도 12에 기재되어 있다. ELISA 법을 이용한 결합능 측정 결과 항 B7-H3 항체는 인간, 원숭이 및 마우스 B7-H3에 특이적으로 결합함을 확인하였다. 본원의 항 B7-H3 항체는 인간과 원숭이의 B7-H3에 대한 결합 정도는 유사하게 나타났으나 마우스 B7-H3에 대한 결합 정도는 상대적으로 낮았다(도 11). 각 항체 클론별 마우스 B7-H3에 대한 결합정도는 상이였으며, 비교항체로 사용한 84D 항체는 마우스 B7-H3 단백질에 결합하지 않는 것으로 관찰되었다(도 12).
(4) 항 B7-H3 항체의 세포표면 발현 B7-H3 항원에 대한 결합능 측정
이어 FACS 분석을 통하여 실시예 2.2.에서 제조된 본원의 항 B7-H3 항체가 세포 표면에서 발현되는 인간 B7-H3에 결합하는 능력을 측정하였다. 특정 항원에 대한 항체가 치료용 항체 등 생체 내에서 사용되기 위해서는 세포 표면 발현 항원에 결합하는 것이 필수적인 요소이다. 일부 항체의 경우 정제된 항원에는 결합하지만 세포 표면 발현 항원에는 결합하지 않는다. 이런 경우 생체내로 항체를 투여하여도 항원에 대한 결합이 불가능 하므로 항원을 발현하고 있는 세포에 항체가 결합하지 못하여 치료용 항체 등 생체 내에서의 활성을 보일 수 없다. 이에 본원의 항 B7-H3 항체가 세포 표면 발현 B7-H3에 결합하는지 여부를 FACS 분석을 통하여 확인하였다.
실험을 위하여 인간 B7-H3를 발현하는 암세포주인 MCF-7(Human breast adenocarcinoma cell line, ATCC® HTB-22™), DLD1(colorectal adenocarcinoma cell lines, ATCC® CCL-221™), HCC1954(TNM stage IIA, grade 3, ductal carcinoma, ATCC® CRL-2338™), 및 HCT116(colon cancer cell, ATCC® CCL-247™) 및 인간 B7-H3를 발현하지 않는 암세포주인 Jurkat(acute T cell leukemia, ATCC® TIB-152™)을 이용하였다.
구체적으로 각 세포주를 해리시키고 PBS 버퍼로 세척한 후, 세포수를 계수하여 웰당 2x105 cells로 맞춰 200 ㎕ PBS 넣어 준비한다. 실시예 2.2.의 항 B7-H3 항체 및 비교군 항체(84D) 각각을 1% BSA가 포함된 PBS에 10 ㎍/㎖ 농도 또는 10 ㎍/㎖농도부터 일정 비율로 희석하여 미리 준비해둔 세포와 혼합하여 4℃에서 1시간 반응시켰다. PBS 버퍼를 이용하여 2회 세척 후, FITC 표지된 항-human Fc FITC(Goat anti-human IgG FITC conjugate, Fc specific, Sigma, F9512, 농도: 2.0 mg/㎖를 1:500으로 희석하여 웰당 100 ㎕ 처리하여 4℃에서 1시간 반응시켰다. 음성 대조군은 FITC 표지된 항-human Fc FITC만 처리하였다. 다시 PBS 버퍼를 이용해 2회 세척 후, FACSCalibur 기기를 이용하여 항-BCMA IgG가 결합된 정도를 측정하였다.
각각의 B7-H3 단일클론항체를 처리한 실험군에서 인간 B7-H3-단일클론항체-FITC 결합에 의한 이동된 판독 결과를 음성 대조군 결합과 비교하였다. 결과는 B7-H3 단일클론항체를 처리한 실험군에서 이동된 판독 결과를 음성대조군에서 이동된 판독 결과로 나눈 값(MFI)으로 표기하였으며, 도 13 및 도 14에 기재되어 있다. FACS법을 이용한 결합능 측정 결과 항 B7-H3 항체는 세포표면에 발현하는 인간 B7-H3에 특이적으로 그리고 농도 의존적인 양상으로 결합함을 확인하였다.
(5) 항-B7-H3 IgG 항체의 다양한 암종에서의 세포 표면 발현 B7-H3 항원에 대한 결합능 측정
이어 FACS 분석을 통하여 본원의 항 B7-H3 항체가 다양한 종류의 암세포주에서 세포 표면 발현 B7-H3에 결합하는 지 여부를 확인하였다. B7-H3는 다양한 암세포에서 발현하는데 비소 세포 폐암(Non-small cell lung cancer), 신장 세포 암(Renal cell carcinoma), 신경 모세포종(Neuroblastoma), 대장암(Colorectal cancer), 췌장암(Pancreatic cancer), 위암(Gastric cancer), 폐암(Lung cancer), 전립선 암(Prostate cancer), 자궁 내막 암(Endometrial cancer), 간세포 암(Hepatocellular carcinoma), 폐암(Lung cancer), 유방암(Breast cancer), 자궁경부암(Cervical cancer), 골육종(Osteosarcoma), 구강암(Oral carcinoma), 방광암(Bladder cancer), 신경 교종(Glioma), 흑색 종(Melanoma) 등 다양한 고형암에서 확인되며 급성 백혈병(Acute leukemia), 다발성 골수종(multiple myeloma), 여러 종류의 림프종(lymphoma)와 같은 혈액종에서도 발현되는 것으로 보고 되어있다.
이 실험을 위하여 다양한 종류의 암세포 A2780(human ovarian cancer, ECACC,93112519), SKOV-3(human ovarian adenocarcinoma, ATCC® HTB-77™), OVCAR-3(human ovarian adenocarcinoma, ATCC® HTB-161™), HCT116(colon cancer cell, ThermoFIshcer Sci), HT29(olorectal adenocarcinoma,ATCC® HTB-38™), DLD-1(colorectal adenocarcinoma cell lines, ATCC® CCL-221™), Calu-6(Non-small-cell lung carcinoma, ATCC® HTB-56™), HCC1954(TNM stage IIA, grade 3, ductal carcinoma, ATCC® CRL-2338™), HCC1187(TNM stage IIA,ATCC® CLC-2322™), 신장암 세포주 786-0(renal cell adenocarcinoma, ATCC® CRL-1932™), A498(kidney carcinoma, ATCC® HTB-44™), Panc-1(pancreas epithelioid carcinoma, TCC® CRL-1469™), NCI-N87(gastric carcinoma, TCC® CRL-5822™), HeLa(cervix adenocarcinoma, ATCC® CCL-2™), JeKo-1(Lymphoma, ATCC® CRL-3006™)와 FACSCalibur(BD Biosciences) 기기를 이용하여 항 B7-H3 항체와 B7-H3의 결합된 정도를 다음과 같이 측정하였다.
구체적으로 각 세포주를 해리시키고 PBS에서 세척한 후, 세포수를 계수하여 2x105 cells/200 ㎕ PBS로 맞춘 뒤, 실시예 2.2.에서 준비된 각 B7-H3 단일클론 항체를 10 ㎍/㎖으로 처리 후 4℃에서 1시간 반응하였다. 반응 후 세포를 PBS에서 세척한 뒤 FITC 표지된 불가변영역(Fc) 특이적인 항체(Goat anti-human IgG FITC conjugate, Fc specific, Sigma, F9512, 농도: 2.0 mg/㎖)를 1:500으로 희석하여 웰당 100 ㎕ 처리하여 4℃에서 1시간 반응시켰다. 반응 후 세포를 PBS에서 세척하고 FACSCalibur 기기를 이용하여 판독하였다. 음성대조군은 FITC 라벨링된 불가변영역(Fc) 특이적인 항체만 처리하였다. 각 암세포주간 B7-H3의 발현정도를 비교하기 위하여 각 B7-H3 단일클론항체를 처리한 실험군에서 이동된 판독 결과를 음성대조군에서 이동된 판독 결과로 나눈 값(MFI)을 표기하였다. 결과는 표 5에 기재되어 있다.
Figure PCTKR2020016600-appb-T000005
FACS법을 이용한 결합능 측정 결과 본원의 항 B7-H3 항체는 난소암, 대장암, 비소세포폐암, 유방암, 신장암, 췌장암, 위암, 자궁경부암, 림프종 유래의 다양한 암세포주에서 결합이 확인되었다. 또한 본원의 항 B7-H3 항체는 비교군으로 사용한 항체인 84D와 비교하여 동일한 농도에서 더 높은 결합력을 나타내어 세포 표면 발현 B7-H3에 대한 결합정도가 더 우수함을 확인하였다.
(6) 항 B7-H3 항체의 마우스유래 암세포의 마우스 B7-H3 항원에 대한 결합능 측정(FACS)
이어 FACS 분석을 통하여 본원의 항 B7-H3 항체가 세포 표면 발현 마우스 B7-H3에 결합하는 능력을 측정하였다. 실시예 2.3.(3)에서 본원의 항 B7-H3 항체가 인간 B7-H3와 마우스 B7-H3 재조합 단백질에 모두 결합함을 ELISA 법을 통하여 확인하였다. 본원의 항 B7-H3 항체가 마우스 암세포주의 세포 표면에 발현하는 마우스 B7-H3에 결합하는지 여부를 확인하기 위하여 마우스 유래 암세포주인 CT26 (Mus mesculus colon carcinoma, ATCC® CRL-2638™), B16F10(Mus musculus skin melanoma, ATCC® CRL-6475™), TC-1(Mus musculus Lung tumor, ATCC® CRL-2493™)세포주를 사용하였다.
구체적으로 각 세포주를 해리시키고 PBS 버퍼로 세척한 후, 세포수를 계수하여 웰당 2x105 cells로 맞춰 200 ㎕ PBS 넣어 준비한다. 실시예 2.2.의 항 B7-H3 항체 및 비교 항체(84D) 각각을 1% BSA가 포함된 PBS에 10 ㎍/㎖ 농도 또는 10 ㎍/㎖농도로 희석하여 미리 준비해둔 세포와 혼합하여 4℃에서 1시간 반응시켰다. PBS 버퍼를 이용하여 2회 세척 후, FITC 표지된 항-human Fc FITC(Sigma, F9512)를 1:500으로 희석하여 웰당 100 ㎕ 처리하여 4℃에서 1시간 반응시켰다. 대조군은 FITC 표지된 항-human Fc FITC만 처리하였다. 다시 PBS 버퍼를 이용해 2회 세척 후, FACSCalibur 기기를 이용하여 항-B7-H3 IgG가 결합된 정도를 측정하였다.
각각의 B7-H3 단일클론항체를 처리한 실험군에서 인간 B7-H3-단일클론항체-FITC 결합에 의한 이동된 판독 결과를 대조군 결합과 비교하였다. 결과는 도 15에 기재되어 있다. FACS법을 이용한 결합능 측정 결과 본원의 항 B7-H3 항체들은 세포표면에 발현하는 마우스 B7-H3에 특이적으로 결합함을 확인하였다.
실시예 3. 이중 항체의 설계 및 제조
1. 항-ROR1/B7-H3 이중항체의 발현 벡터의 클로닝
이중항체는 다음의 방법으로 구성하여 아미노산 서열을 디자인하였다: IgG-linker-scFv 혹은 IgG-linker-VL-connector-VH.
IgG는 anti-ROR1 항체 혹은 anti-B7-H3 항체이며 IgG1 서브타입 (subtype)으로 구성하였다.
Linker는 IgG1의 CH3 도메인의 C-말단에 바로 연결되는 (G4S)3 [(GGGGS)3]의 서열로 구성하였다.
scFv는 anti-ROR1 항체 혹은 anti-B7-H3 항체를 구성하는 VH, VL 도메인을 connector라 부르는 서열로 연결하여 single chain Fv로 구성하였다. Connector는 (G4S)4 [(GGGGS)4]로 구성되는 20개 길이의 아미노산이며 구성에 따라 VH-connector-VL순으로 VH 도메인이 N-말단에 위치하거나 VL-connector-VH 순으로 VL 도메인이 N-말단에 위치하도록 구성하였다 (표 6).
Figure PCTKR2020016600-appb-T000006
이중항체의 중쇄는 위에 기술한 대로 IgG 중쇄의 C-말단에 scFv를 연결한 구성으로 디자인하였고, 경쇄는 VL-CL의 일반적인 구성으로 디자인하였으며, 약물 접합을 위해 Kabat 149번이나 Kabat 205번 잔기를 시스테인으로 치환한 구성도 추가로 디자인하였다.
scFv는 생체내 안정성을 위해 VH 도메인의 Kabat 44번에 해당하는 잔기와 VL 도메인의 Kabat 100번에 해당되는 잔기 (각각 프레임워크 내 위치)를 시스테인으로 치환하여 intrachain disulfide bond가 형성되도록 하였다.
디자인한 서열은 코돈 최적화를 통해 해당 아미노산을 코딩하는 염기서열을 도출하였고, 유전자합성을 통해 dsDNA를 제작하였다. 제작한 유전자 단편은 제한효소를 사용하거나 HIFI assembly 기법을 이용하여 pcDNA3.4 벡터에 클로닝 하였다.
위에 기술한 시스테인 돌연변이는 DNA 합성시 반영을 하거나 NEB사의 Q5 mutagenesis kit를 이용하여 염기서열을 변경하였다. 또한 A2F2의 경우 번역 후 변형 (post-translational modification)의 방지를 위해 HCDR2 내의 G를 A로 변경한 A2F2M1을 추가로 제작하였다.
제조된 이중항체의 명칭은 사용된 항-ROR1 항체 및 항-B7-H3 항체 클론명을 이용하여 “항-ROR1 항체x항-B7-H3 항체” 또는 “항-ROR1 항체y항-B7-H3 항체”로 표기하였다.
본 실시예에 따라 설계되고 제조된 이중항체의 예시는 아래 표 7a 내지 7h에 나타나 있다.
Figure PCTKR2020016600-appb-T000007
Figure PCTKR2020016600-appb-I000014
Figure PCTKR2020016600-appb-I000015
Figure PCTKR2020016600-appb-I000016
Figure PCTKR2020016600-appb-I000017
Figure PCTKR2020016600-appb-I000018
Figure PCTKR2020016600-appb-I000019
Figure PCTKR2020016600-appb-I000020
Figure PCTKR2020016600-appb-I000021
Figure PCTKR2020016600-appb-I000022
Figure PCTKR2020016600-appb-I000023
Figure PCTKR2020016600-appb-I000024
Figure PCTKR2020016600-appb-I000025
Figure PCTKR2020016600-appb-I000026
Figure PCTKR2020016600-appb-I000027
Figure PCTKR2020016600-appb-I000028
2. 항-ROR1/B7-H3 이중항체의 발현, 정제 및 분석
(1) 이중항체의 발현 및 정제
클로닝된 이중항체는 ExpiCHO 시스템을 이용하여 임시 발현하였으며 제조사의 프로토콜을 따랐다. 항체가 발현된 배양액은 원심분리와 필터를 사용하여 부유물을 제거하였고 MabselectureSure 레진을 이용한 친화크로마토그래피와 Superdex200 레진을 이용한 크기배제크로마토그래피를 이용하여 항체를 정제하였다. 정제한 항체의 순도는 TSKgel SuperSW3000을 이용한 HPLC로 분석하였으며 그 순도는 95% 이상이었다.
(2) 단일항원을 이용한 ELISA-기반 용액 결합시험 (Single antigen capture ELISA, SACE)
96-웰 미세역가 플레이트(NUNC, 446612)를 4°C에서 16시간 동안 PBS 용액 중의 1 μg/ml 농도의 재조합 인간 ROR1 단백질(Sino biological, 13968-H08H) 또는 재조합 인간 B7-H3(Sino biological, 11188-H08H)로 코팅하고, 비특이적 결합은 1% BSA(Bovine Serum Albumin)로 37℃에서 2시간동안 차단시켰다. 비특이적 결합의 차단 후, 96-웰 미세역가 플레이트에 담긴 내용물을 털어내고 농도에 맞게 희석한 항-ROR1 또는 항-B7-H3 항체를 넣어준 후 37℃에서 2시간동안 인큐베이션 시킨 후 1XPBST로 5회 세척하였다. HRP(horseradish peroxidase)가 접합된 항-인간 Fab 특이적 염소 다중클론 항체 시약을 희석하여 1시간동안 37℃에서 인큐베이션 해주고, 96-웰 미세역가 플레이트를 1XPBST로 5회 세척하였다. TMB(Tetramethylbenzidine, Sigma, T0440)를 사용하여 발색을 진행하고, 0.5M 황산(삼전순약, S1410)을 이용하여 발색반응을 멈춘 후 450 nm에서의 흡광도를 측정하였다.
(3) 이중항원을 이용한 ELISA-기반 용액 결합시험 (Dual antigen capture ELISA, DACE)
96-웰 미세역가 플레이트(NUNC, 446612)를 4°C에서 16시간 동안 PBS 용액 중의 1 μg/ml 농도의 재조합 인간 B7-H3 단백질(Sinobiological, 11188-H02H)로 코팅하고, 비특이적 결합은 1% BSA(Bovine Serum Albumin)로 37℃에서 2시간동안 차단시켰다. 비특이적 결합의 차단 후, 96-웰 미세역가 플레이트에 담긴 내용물을 털어내고, 농도에 맞게 희석한 항-ROR1/B7-H3 항체를 웰에 넣어준 후 37℃에서 2시간동안 인큐베이션하고, 플레이트를 1XPBST로 5회 세척하였다. 다음으로 1 μg/ml 농도의 재조합 인간 ROR1 단백질(Sino biological, 13968-H08H)을 넣어주고 2시간동안 37℃에서 인큐베이션 시킨 후 5회 세척하였다. HRP가 접합된 재조합 His-tag 특이적 쥐 단일클론 항체 시약(Sigma, 11965085001)을 희석하여 37℃에서 1시간동안 인큐베이션 해주고, 96-웰 미세역가 플레이트를 1XPBST로 5회 세척하였다. TMB(Tetramethylbenzidine, Sigma, T0440)를 사용하여 발색을 진행하고, 0.5M 황산(삼전순약, S1410)을 이용하여 발색반응을 멈춘 후 450 nm에서의 흡광도를 측정하였다.
(4) 유세포분석시험 (FACS)
Calu-3 세포주는 비특이적 결합의 차단을 위해 1% BSA(Bovine Serum Albumin)로 2회 세척해 준비하였다. 항-B7-H3 및 항-ROR1 항체를 100 nM부터 4배씩 희석하여 처리해 준 후 4℃에서 1시간동안 인큐베이션 시키고, 1% BSA로 2회 세척하였다. 항-인간 Fc FITC(Sigma, F9512)를 1:500으로 희석하여 다시 4℃에서 1시간동안 인큐베이션 한 후 1% BSA로 2회 세척하였다. 세척이 완료된 세포는 1XPBS(pH7.4) 150 로 잘 풀어주고 FACSCalibur(BD Bioscience) 기기를 이용하여 세포의 평균 형광 광도를 측정하는데 이용하였다.
실시예 4. 단독항체와 이중항체의 세포 결합력 비교평가
항-ROR1/B7-H3 이중항체의 세포결합력을 평가하기 위하여, 항-ROR1 단독항체 클론인 A2F2, C2E3 및 BA6와 항-B7-H3 단독항체 클론인 B5를 다양하게 조합하여 실시예 3에 기재된 방법에 따라 이중항체를 제조하였고, ROR1과 B7-H3를 동시에 발현하는 세포들을 사용하여 이중항체의 세포 결합력을 단독항체와 비교평가하였다.
세포 결합력 비교를 위한 세포주로서, ROR1과 B7-H3 유전자를 안정적으로 형질전환(transfection)시켜 ROR1 및 B7-H3 단백질의 발현을 인위적으로 과발현 시킨 CHO-huROR1-huB7H3 세포주를 사용했고 BD LSR Fortessa X-20(BD Biosciences) 기기를 이용하여 평가하였다. 구체적으로, 과발현 세포주를 해리시키고 PBS로 세척한 후 세포수를 계수하여 V-바닥 96-웰 플레이트(96 Well Plate-RV, Bioneer, 910D09)에 웰 당 20,000개의 세포를 분주하였다. 1% BSA 용액에 100 nM부터 4배씩 희석한 항체를 원심분리한 세포에 웰 당 100 μL씩 주입한 후, 4°C에서 1시간 동안 반응하였다. 1시간 후, 세포를 동일한 버퍼로 2번 세척한 뒤, FITC 표지된 불변 영역(Fc) 특이적인 항체(Goat anti-human IgG-FITC antibody produced in goat, Sigma, F9512)를 1% BSA에 500배 희석하여 100 μL씩 주입하고 4°C에서 1시간 동안 반응하였다. 반응 후, 세포를 동일한 버퍼에 2번 세척하고 PBS 100 μL에 재현탁시켜 FACS 기기를 이용해 유동 세포 분석을 수행하였다. 측정 당 1만개의 세포가 검출되었고, FlowJo 소프트웨어로 데이터를 분석했다. 그래프의 FOI(Fold of induction) 값은 항체를 처리한 실험군의 MFI(Mean fluorescence intensity)를 이차항체만 처리한 대조군의 MFI 값으로 나누어 표기하였다.
도 16a는 항-ROR1 항체 클론인 A2F2, C2E3 또는 BA6를 항-B7-H3 항체 클론인 B5와 조합하여 각각 제조하되 이중항체 내에서의 항-ROR1 항체와 항-B7-H3 항체의 위치 (IgG form 및 scFv form)를 달리한 이중항체들의 ROR1/B7-H3 과발현 세포주에 대한 결합을 보여주고 있다. 실험에 사용된 모든 이중항체가 단독항체에 비해 더 높은 수준으로 세포에 결합할 수 있음을 보여주고 있다.
도 16b 및 도 16c는 각각 ROR1 단독 과발현 세포주 혹은 B7-H3 단독 과발현 세포주에 대한 이중항체의 결합력을 보여주고 있다. 시험된 이중항체들은 모두 ROR1 또는 B7-H3 과발현 세포주에 대해서 단독항체들에 대해 우수하거나 동등 이상의 결합력을 나타내었다. 이로부터 본 발명의 이중항체들이 더욱 우수한 결합력을 보이는 것은 단순히 2종의 항원을 동시에 타겟하기 때문만이 아니라 이중항체 자체가 우수한 물성을 가지기 때문임을 확인할 수 있었다. 또한, 이와 같이 향상된 결합능은 단일 표적(항원) 발현 세포와 대비하여 두 개의 표적(항원)이 동시에 발현하는 세포에 대한 선택성을 보여주는 것으로 해석할 수 있어, 종양치료법 고안에 있어 중요한 요소인 선택성에 의한 독성 감소, 효력증가라는 목표에 부합하는 특징이 될 수 있을 것이다.
실시예 5. 단독항체와 이중항체의 항체매개 세포독성 (ADCC, Antibody-derived cell cytotoxicity) 확인
이중항체의 향상된 결합능과 선택능이 약리적 효과의 개선으로 실제로 이어지는지 평가하기 위해, 이중항체와 각각의 단독항체의 ADCC 유도 능력을 비교평가하였다.
프로메가의 ADCC Bioassay Effector Cell (G7102)을 사용하여 표적세포에의 항체결합에 따른 작용세포에서의 FcgRIIIA에 의한 신호 유도능을 평가하였다.
구체적으로, ROR1 및 B7-H3을 모두 과발현하는 CHO-huROR1-huB7H3 세포주를 96-웰 백색 편평 바닥 플레이트(96-well Solid White Flat Bottom Polystyrene TC-treated Microplates, Corning, 3917)에 웰 당 15,000개 세포를 분주하여 20-24시간 동안 37°C, 5% 이산화탄소 조건에서 배양하였다. 배양 후, 웰 플레이트에서 배지를 제거하고 25 μL의 0.5% low IgG를 첨가한 RPMI 배지 버퍼와 360 nM(최종 농도는 120 nM)부터 4배씩 희석하여 준비한 항체 25 μL를 첨가하였다. 권장 조건 하에서 배양한 효과기 세포 (ADCC Bioassay effector cells, Promega, G7102)를 표적세포와 항체가 포함된 웰에 웰 당 150,000개씩 25 μL 부피로 첨가하여 배양기에서 16-24 시간을 배양하였다. 배양 후, 96-웰 플레이트를 배양기에서 꺼내 상온에 15분 정도 두고, 75 μL의 Bio-Glo™ 버퍼 (Promega, G7940)를 각 웰(1:1 부피비)에 첨가하였다. 발광 플레이트 리더(PHERAstar FS, BMG LABTECH)를 사용하여 발광을 측정하였다. 그래프의 FOI 값은 항체를 처리한 실험군의 발광신호를 항체를 처리하지 않은 대조군의 신호로 나누어 표기하였다.
그 결과, 본 발명의 이중항체는 단독항체에 향상된 ADCC 신호유도능을 가진다는 사실을 확인하였다 (도 17a 및 도 17b). 즉, ROR1/B7-H3 과발현 세포주에서 A2F2xB5 항체 및 BA6yB5항체는 상응하는 단독항체(B5, BA6, A2F2)에 비해 더 큰 폭으로 ADCC 신호를 유도하였다. 특히, B5 항체 대비 A2F2xB5 항체는 IC50 가 약 6.7배 감소하였음을 확인하였다 (표 8).
Figure PCTKR2020016600-appb-T000008
실시예 6. 이중항체 ADC의 제조
1. ADC의 제조 및 확인
(1) engineered cysteine에 접합
항체 경쇄의 아미노산 149번에 약물을 접합시키기 위해, 기존 항체 경쇄 불변 영역 내 Kabat 149번의 라이신(Lysine)을 시스테인(Cysteine)으로 돌연변이화 시키고(K149C), 디티오트레이톨(dithiothreitol: DTT)와 같은 환원제를 반응시켜 항체 경쇄 K149C에 티올기를 생성한 후, Michael addition에 의한 thiosuccinimide 형성을 통해 항체와 약물을 접합하였다. 구체적으로, 한외여과/투석여과(Ultrafilteration/Diafiltration: UF/DF)를 통해 항체를 5mg/ml 이상으로 준비하고 1M 트리스(히드록시메틸)아미노메테인 (Tris-HCl), pH8.8, 500mM 에틸렌다이아민테트라아세트산 (Ethylenediaminetetraacetic acid, EDTA)를 첨가하여, 최종 항체의 농도가 5mg/ml, 75mM Tris-HCl, 2mM EDTA 가 되도록 하였다. 준비된 항체에 100mM 디티오트레이톨(dithiothreitol: DTT)를 항체: DTT 몰비가 1:20 이 되도록 가하고, 25℃에서 16.5시간 반응시켜 항체 경쇄의 시스테인 149번에 이황화 결합(disulfide bond)을 통해 연결된 Free-시스테인(Cystein)을 떼어냈다. 이과정을 Decapping이라 하고, 이후 Decapping 된 항체만 분리하기 위해 양이온 크로마토그래피 (Cation exchange chromatography: CEX) 정제 방법을 사용하였다. 반응물은 SPHP-A 버퍼 [10mM 석신산(succinate), pH5.0]로 평형화한 hitrap SPHP컬럼(GE Healthcare)에 SPHP-B 버퍼 [50mM 트리스(히드록시메틸)아미노메테인 (Tris-HCl), pH7.5, 0.5M 염화나트륨(Sodium chloride)]으로 용출하였다. Decapping된 항체를 다시 결합하기 위해 1M 트리스(히드록시메틸)아미노메테인 (Tris-HCl, pH7.5)를 사용하여 산화(Oxidation) 시킬 항체를 75mM Tris-HCl (pH7.5)로 준비하고, 산화형 비타민 C인 디하이드로아스코르빈산(dehydroascorbic acid, DHAA)를 항체: DHAA 비를 1:20로 첨가하고 25℃에서 빛을 차단하여 2시간 동안 Reoxidation 시켰다. 그 뒤 Reoxidation된 항체만 분리하기 위해 양이온 크로마토 그래피 (Cation exchange chromatography: CEX) 정제 방법을 사용하여, SPHP-C 버퍼 [10mM 석신산(succinate) pH 5.0, 0.5 M 염화나트륨(Sodium chloride)]로 용출하였다. 정제된 항체는 한외여과/투석여과(Ultrafilteration/Diafiltration: UF/DF)를 통해 5mg/ml 이상으로 농축하였다. 그 이후 항체-약물 결합체를 만들기 위해 1M 트리스(히드록시메틸)아미노메테인 (Tris-HCl, pH8.0)로 반응시킬 항체를 최종 농도 5mg/ml, 100mM 트리스(히드록시메틸)아미노메테인 (Tris-HCl, pH8.0)로 준비하고, 항체: 약물 몰비가 1:10 이 되도록 가하여 25℃에서 16.5시간 동안 반응시켰다. 이후 항체-약물 결합체만 분리하기 위해 양이온 크로마토그래피 (Cation exchange chromatography: CEX) 정제 방법을 사용하여, SPHP-C 버퍼 [10mM 석신산(succinate) pH 5.0, 0.5 M 염화나트륨(Sodium chloride)]로 용출하였다. 그 이후 DAR2 인 항체-약물 결합체만 분리하기 위해 소수성 상호반응 크로마토그래피(Hydrophobic interaction chromatography:HIC)를 이용하였다. 이를 위해 Hitrap Butyl HP 컬럼 (GE Healthcare)을 HIC-A 버퍼 [50mM 인산칼륨(Potassium phosphate), pH7.0, 1.0 M 황산 암모늄(Ammonium sulfate)]로 평형화하고, HIC-B 버퍼 [50mM 인산칼륨(Potassium phosphate), pH7.0, 30% 아이소프로필 알코올(2-Propanol)] 로 용출하였다. 이후 아이소프로필 알코올(2-Propanol)을 제거하기 위해 한외여과/투석여과(Ultrafilteration/Diafiltration: UF/DF)를 통해 항체를 HA 버퍼 [20mM 히스티딘(Histidine), pH5.5, 240mM 수크로스(sucrose)]로 교환하여 최종 항체-약물 결합체를 제조하였고, 약물로서 모노메틸 아우리스타틴 E(Monomethyl auristatin E: MMAE)을 이용하여 제조된 ADC를 ‘항체(K149C)-T-MMAE’ 라 명명하였다. 그 외에도 피롤로벤조디아제핀(pyrrolobenzodiazepine: PBD) 및 AB009를 사용하여서도 ADC를 제조하였으며, 제조된 항체는 각각 '항체(K149C)-T-PBD' 및 '항체(K149C)-T-AB009'로 명명하였다.
제조된 ADC의 순도는 크기 배제-고성능 액체크로마토그래피(SE-HPLC)로 측정하였다. Agilent 1200 시리즈 HPLC 기기에서 Tosoh TSKgel G3000SWxl 컬럼(Tosoh bioscience)을 사용하여 측정하였고, 각 시료가 용출되는 위치와 곡선하면적(area under the curve: AUC)을 비교하여 각 시료의 순도를 결정하였다. ADC의 주요 피크의 순도는 98.0% 이상이었고, 전체 공정 수율(항체 기준)은 20% 이상이었으며, 이중항체 ADC의 DAR(drug-to-antibody ratio)를 LC/MS로 측정한 결과 항체 1개당 2개의 약물이 접합되어 있음을 확인하였다 (도 18a 내지 18j).
(2) 항체의 라이신 아민기에 약물을 접합시킨 ADC의 제조
항체에 SMCC와 DM1을 반응시켜 라이신 아민기에 약물을 접합시킨 ADC를 제조하였다.
준비된 항체를 반응 버퍼 A (50mM 인산칼륨(Potassium phosphate, pH6.5), 50mM 염화나트륨(Sodium chloride), 2mM 에틸렌다이아민테트라아세트산(ethylenediaminetetraacetic acid; EDTA)에 희석한 후, 한외여과/투석여과(Ultrafilteration/Diafiltration: UF/DF)를 통해 20mg/ml 이상으로 농축하였다. 준비된 항체에 25mM SMCC(4-(N-Maleimidomethyl) cyclohexanecarboxylic acid N-hydroxysuccinimide ester) 링커를 항체: 링커 몰비가 1:7.5 가 되도록 가하고, 25℃에서 2시간 반응시켜 항체 Lysine의 아민(NH2)기에 링커를 결합하였다. 그 후 반응을 중지시키기 위해 100% 아세트산 (Acetic acid)을 0.005% 첨가하여 시료의 pH를 4.5로 낮추어 반응을 정지 시켰다. 이후 항체-링커 결합체만 분리하기 위해 반응물은 반응 버퍼 A로 평형화한 Hiprep Desalting 컬럼(GE Healthcare)으로 탈염하여 미반응물을 제거하였다. 분리된 반응 물질은 10mg/ml 이상으로 농축한 뒤 10mM DM1 (Emtansine)을 항체:DM1 몰비가 1:8.5 가 되도록 가하고 25℃에서 16.5시간 반응시켰다. 항체-링커 결합체는 링커내 말레이미드(Maleimide)기의 싸이올(thiol group, -SH)기와 약물이 Michael addition에 의한 thiosuccinimide 형성으로 항체-링커-약물 결합체를 형성하였다. 이후 반응물은 PBS로 평형화한 Hiprep Desalting 컬럼(GE Healthcare)으로 탈염하여 반응을 종결시키고 미반응물을 제거하였다. 제조된 항체-링커-약물 접합체는 ‘항체-K-DM1’으로 명명하였다.
ADC의 약물-항체의 비(drug-to-antibody ratio: DAR)는 액체 크로마토그래피-질량분석(LC/MS) 방법으로 결정하였다. 1 ㎎/㎖의 ADC(PBS 중) 항체 100 ㎍ 당 1 유닛의 PNGaseF(NEB)를 가하고 37℃에서 15 시간 동안 인큐베이션하여 N-글리칸을 제거하였다. Waters UPLC I-class 장비와 Waters Synapt G2-S로 구성된 LC/MS 장비에 Acquity UPLC BEH200 SEC 1.7 ㎛(4.6*150 mm) 컬럼을 장착한 후 30%(v/v) 아세토니트릴, 0.1%(v/v) 포름산, 및 0.05% 트리플루오로아세트산(Trifluoroacetic acid: TFA)의 이동상으로 평형화시켰다. 여기에 N-글리칸이 제거된 시료 5 ㎍을 로딩하여 LC/MS를 수행하였다. LC/MS 결과로 얻은 분자량 분포로부터 각 화학종의 상대함량을 가중평균하여 DAR를 결정하였다. 제조된 ADC의 DAR은 2.9~3.8로, 항체 당 약 2.9~3.8개의 약물 분자가 결합한 것으로 나타났다 (표 9).
Figure PCTKR2020016600-appb-T000009
제조된 ADC의 순도는 크기 배제-고성능 액체크로마토그래피(SE-HPLC)로 측정하였다. Agilent 1200 시리즈 HPLC 기기에서 Tosoh TSKgel G3000SWxl 컬럼(Tosoh bioscience)을 사용하여 측정하였고, 각 시료가 용출되는 위치와 곡선하면적(area under the curve: AUC)을 비교하여 각 시료의 순도를 결정하였다. ADC의 주요 피크의 순도는 98.5% 이상이었고, 전체 공정 수율(항체 기준)은 20% 이상임을 확인하였다 (도 19a 내지 19d).
2. 이중항체 ADC의 시험관 내 세포독성 평가
제조된 ADC의 세포 사멸능력을 평가하기 위해, 세포에 ADC를 가하고 세포의 대사활성을 측정하는 방법으로 세포의 사멸 능력을 비교하였다.
암 세포주는 권장되는 각 배양배지를 사용하여 배양하였다. 96-웰 배양 플레이트에 웰당 1 x 103(HCC1954) 또는 5 x 103(Calu-3, KATOIII) 또는 1 x 104(HCC1187) 개의 세포를 50㎕ 부피로 접종하고 3~4시간 배양한 뒤, 여러 농도로 희석한 ADC 50㎕를 세포가 있는 96-웰 플레이트에 분주하였다. 그 후 세포를 37℃, 5% CO2에서 약 6일간 배양하였다. 배양이 종료된 후 세포의 생존 정도를 WST-8 키트를 이용하여 평가하였다. 10 ㎕의 WST-8(Dojindo)을 각 웰에 가하고 2 내지 24시간 동안 추가 배양하였다. 세포의 대사 활동에 의해 환원된 물질의 양을 SpectraMax 플레이트 리더를 사용하여 450 nm 파장에서 흡광도를 측정하여 평가하였다. 흡광도와 ADC 농도간 반응곡선은 4PL 커브 피팅을 수행하여 50% 세포 사멸 농도인 IC50 값(nM)을 산출하였다.
결과는 도 20 내지 21에 나타내었다. ROR1과 B7-H3를 동시에 과발현하는 암세포주(Calu-3, HCC1187, HCC1954)에서 이중항체 ADC(B5xC2E3-drug 또는 C2E3xB5-drug)의 세포독성이 단독항체 ADC(B5-drug or C2E3-drug)에 비해 세포독성이 높게 나타났다. 또한 이중항체 ADC의 세포독성은 단독항체 ADC들의 병용처리(C2E3-drug + B5-drug) 보다 시너지 효과가 있는 것을 확인하였다. 반면에 ROR1과 B7-H3가 거의 발현하지 않는 세포(KATOIII)에서는 ADC들의 세포독성이 나타나지 않았다.
추가적으로, DM1 conjugated ADC, MMAE conjugated ADC 및 beat-gal CBI dimer conjugated ADC의 세포 독성 비교 결과가 각각 도 21a 내지 21c에 나타나 있으며, 동일한 anti-B7-H3 클론에 대해 여러 가지 anti-ROR1 클론을 조합하여 이중항체 ADC를 만든 후 그 효과를 비교한 결과가 도 21d에 나타나 있다.
실험 결과, 본 발명에 따른 이중항체 ADC는 단독항체 ADC에 비해서 뿐만 아니라, ROR1 단독항체 ADC 및 B7-H3 단독항체 ADC의 조합을 처리한 군에 비해서도 한층 우수한 세포독성을 나타내었다. 이러한 결과로부터, 본 발명에 따른 이중항체 ADC의 효과는 타겟인 ROR1 및 B7-H3의 단순 조합에 의한 상가효과 이상의 상승효과이며, 이중항체의 우수한 물성 또한 그러한 효과에 기여하는 것으로 해석되었다.
3. 이중항체 ADC 세포독성의 특이성 확인
이중항체가 갖는 세포독성의 효과가 각 항체의 항원 특이적으로 나타나는지 확인하였다.
첫째, 이중항체 ADC의 세포독성이 drug이 결합하지 않은 C2E3 IgG 또는 B5 IgG를 처리했을 때 저해되는지 확인하였다. 실시예 5.2.와 같은 방법으로 시험관 내 세포독성을 확인하였다. ADC를 처리하기 2시간 전에 C2E3 IgG 또는 B5 IgG 200nM을 넣어준 후 ADC를 처리하였다. 그 결과 C2E3 IgG 또는 B5 IgG에 의해 이중항체 ADC의 세포독성이 저해되는 것을 확인하였다(도 22a).
둘째, 이중항체 ADC의 세포독성이 ROR1 항원에 의해 저해되는지 확인하였다. 실시예 4.2.와 같은 방법으로 시험관 내 세포독성을 확인하였다. ROR1 항원(R&D systems) 100nM을 ADC와 동시에 처리하였다. 그 결과 ROR1 항원에 의해 이중항체 ADC의 세포독성이 저해되는 것을 확인하였다(도 22b). 즉, 이중항체 ADC의 세포독성이 ROR1 또는 B7-H3 항체, ROR1 항원에 의해 저해되는 것을 확인함으로써, 이중항체 ADC의 세포독성은 항원 특이적으로 나타나는 현상이라는 것을 확인하였다.
실시예 7. 단독항체 ADC와 이중항체 ADC의 시험관 내 세포독성 비교평가
본 발명의 이중항체를 이용하여 ADC를 제조하였을 때의 암세포 사멸효과를 단독항체와 비교 평가하였다. 세포주로는 ROR1과 B7-H3을 모두 발현하는 암세포주인 calu-3, calu-6, HCC1954, CAMA-1, NCI-N87, HCC1187, Capan-1 및 panc-1을 사용하였으며, 세포에 ADC를 가하고 세포의 대사활성을 측정하는 방법으로 세포 사멸능력을 비교하였다. 이중항체의 효과가 단순한 단독항체 타겟 조합의 효과인지 여부를 확인하기 위해, 항-ROR1 단독항체와 항-B7-H3 단독항체를 함께 처리한 대조군에서의 효과도 함께 비교평가하였다. 암 세포주는 권장되는 각 배양배지를 사용하여 배양하였다. 96-웰 배양 플레이트에 웰당 1 x 103(HCC1954, calu-6) 또는 5 x 103(Calu-3, KATOIII, Capan-1) 또는 1 x 104(HCC1187, NCI-N87) 개의 세포를 50ul 부피로 접종하고 3~4시간 배양한 뒤, 여러 농도로 희석한 ADC 50ul를 세포가 있는 96-웰 플레이트에 분주하였다. 그 후 세포를 37℃, 5% CO2에서 약 6일간 배양하였다. 살아있는 세포수는 WST-8 (Dojindo)을 사용하여 정량 하였다.
단독항체 또는 이중항체 ADC의 농도에 따른 암세포주 세포독성은 도 23a 내지 도 23c에 나타내었다.
도 23a는 항-B7-H3 항체로 B5, 항-ROR1 항체로 C2E3를 사용한 이중항체, 도 20b는 항-B7-H3 항체로 B5, 항-ROR1 항체로 BA6을 사용한 이중항체, 그리고 도 20c는 항-B7-H3 항체로 B5, 항-ROR1 항체로 A2F2를 사용한 이중항체의 세포독성 결과이다. ROR1과 B7-H3을 모두 발현하는 암세포주(calu-3, calu-6, HCC1954, CAMA-1, NCI-N87, HCC1187, Capan-1, panc-1)들에서 단독항체 ADC보다 이중항체 ADC의 세포독성이 증가하는 것을 확인하였다. 반면 ROR1과 B7-H3가 거의 발현하지 않는 KATOIII 세포주에서 ADC의 세포독성은 고농도에서만 약간 보였고, 단독항체 ADC와 이중항체 ADC의 세포독성 차이는 없었다. 이로부터 단독항체 ADC 대비 이중항체 ADC의 높은 세포독성은 항원 의존적인 결과라는 것을 확인하였으며, 단독항체 각각의 조합 처리시보다 이중항체 처리시 더욱 높은 세포독성이 나타난 결과로부터 본 발명의 이중항체 ADC의 우수한 세포독성은 단순한 단독항체의 조합 상의 효과임을 확인하였다.
실시예 8. 단독항체 ADC와 이중항체 ADC의 세포자살 유도 능력 평가
실시예 5에서 확인한 100배 이상 향상된 세포독성 능력을 설명하기 위해, 이중항체의 ADC의 향상된 세포사멸 능력을 세포자살 유도 능력을 비교하여 평가하였다.
ADC에 의한 세포자살 유도 능력은 Incucyte® Caspase 3/7 Green reagent (Sartorius, 4440)를 사용하여 실험하였다. 96-웰 플레이트에 calu-6 세포를 웰당 5 x 103개씩 (웰당 50ul) 넣고 24시간 배양하였다. ADC는 배양배지로 희석하여 준비하였다. ADC 희석에 사용된 배지에는 Incucyte® Caspase 3/7 Green reagent가 500배 희석이 되게 넣어주었다. 희석된 ADC는 세포가 준비된 플레이트에 웰당 50ul씩 넣어주었다. 플레이트는 Incucyte기기에 넣고 Incucyte software를 통해 2시간 간격으로 phase와 형광을 측정하였다.
그 결과 도 24와 같이 시간이 지남에 따라 녹색 형광 시그널이 증가하였다. B5xC2E3-PBD, C2E3xB5-PBD 이중항체 ADC의 경우에는 단독항체 ADC에 비해 세포사멸이 더 빨리 개시되고 있음을 알 수 있으며 세포사멸의 속도도 더 빨랐음을 볼 수 있다. 이러한 결과는 실시예 7에서 확인한 이중항체 ADC의 향상된 세포독성이 보다 빠른 세포사멸 유도에 의해 이뤄진 것임을 의미한다.
실시예 9. 이중항체와 이중항체 ADC의 생체 내 안정성의 확인
이중항체 및 이중항체 ADC의 생체내 안정성을 평가하기 위해, 랫드에서 약물동태학 시험을 수행하였다. 구체적으로, 7주령의 암컷 SD 랫드에 B5xC2E3, B5xBA6 및 B5yBA6 5 mpk, B5xC2E3-PBD ADC 1 mpk를 꼬리정맥으로 투여하고, 경정맥을 통해 채혈하여 시료를 확보하였다. 투여 전, 투여 후 0.167, 1, 4, 8, 24시간, 2, 4, 7, 14, 21 및 28일에 채혈하였다. 혈액에서 혈청을 분리한 후 다음 ELISA 방법으로 혈청내 이중항체 및 이중항체 ADC의 농도를 결정하였다.
접합된 약물인 PBD에 상관없이, 혈중에 남아있는 이중항체 및 이중항체 ADC를 항원-결합력 기반의 ELISA 방법으로 그 농도를 측정하였다. 이를 위해 ELISA 플레이트에 PBS 완충액으로 희석한 인간 B7-H3-Fc (Sino, 11188-H02H)를 100 ng/웰 냉장상태로 16시간 동안 코팅을 진행하였다. 상등액을 제거한 후, PBS/0.05% Tween20으로 5회 세척하였다. 이후 1%BSA/PBS를 웰당 200 ul씩 가한 후 37℃에서 2시간 블로킹하였다. 상등액을 제거한 후, PBS/0.05% Tween20으로 5회 세척하였다. 이후 최고 정량 한계 (B5xC2E3, B5xC2E3-PBD 및 B5xBA6: 2000 ng/ml, B5yBA6: 15000 ng/ml) 이상 샘플의 경우 랫드 공혈청으로 먼저 희석하였다. 그 후 1%BSA/PBS로 20배 희석하여 시료를 100 ul씩 웰에 넣은 후 37℃에서 2시간 반응시켰다. 상등액을 제거한 후, PBS/0.05% Tween20으로 5회 세척하였다. 마지막으로 0.8 mg/ml 농도의 항 인간 IgG F(ab’)2-HRP (Pierce, 31414)를 1%BSA/PBS에 의해 1:40000-50000로 희석하여 100 ul씩 분주하고, 37℃ 1시간 반응 후 5회 세척하였다. TMB (Tetramethylbenzidine, Sigma, T0440)를 사용하여 15분 동안 발색 시킨 후 0.5 mol/L의 황산을 가하여 반응을 중지시켰다. SpectraMax 마이크로 플레이트 리더기 (Molecular device)를 사용하여 450nm에서 흡광도를 측정하였다. 도 25의 시간에 따른 농도 변화 그래프를 WinNonlin 8.0 소프트웨어 (Certara)로 비 구획 모델에 근거하여 이중항체 및 이중항체 ADC의 혈중 반감기 등 약동학적 지표를 산출하였다. 농도 곡선하면적은 선형 사다리꼴 선형 보간법을 사용하였고, 반감기는 48시간부터 672시간까지 적용 도출하여 표 10에 기재하였다.
Figure PCTKR2020016600-appb-T000010
도 25의 시간에 따른 농도 변화 그래프 결과를 보면 이중항체 및 이중항체 ADC 투여군 모두 선형 약동학 프로파일을 보였다. 반감기 (T1/2)는 B5xC2E3군 8일, B5xC2E3-PBD군 6일, B5xBA6군 8일 및 B5yBA6군 7일로 나타났고, 최고혈중농도 (Cmax)는 B5xC2E3군 74.50 ug/ml, B5xC2E3-PBD군 15.93 ug/ml, B5xBA6군 84.71 ug/ml 및 B5yBA6군 89.92 ug/ml로 나타났다. 투여시작시점부터 마지막 정량 가능한 시점까지의 농도 곡선하면적 (AUClast)은 B5xC2E3군 5203.99 hr*ug/ml, B5xC2E3-PBD군 654.18 hr*ug/ml, B5xBA6군 8403.90 hr*ug/ml 및 B5yBA6군 7954.10 hr*ug/ml로 나타났다.
이중항체들은 모두 7일 이상의 반감기를 보여 일반적으로 알려진 랫드에서의 항체 반감기 평균과 유사한 값을 보여 단독항체 대비 열등하지 않음을 확인하였다. 이중항체 ADC의 경우 conjugation 이전 항체 대비하여 72%수준으로 감소한 반감기를 보였으나 6일정도의 반감기로 적정한 수준의 약물노출이 가능한 수치였다.
이상으로 본 발명의 내용의 특정한 부분을 상세히 기술하였는바, 당업계의 통상의 지식을 가진 자에게 있어서, 이러한 구체적 기술은 단지 바람직한 실시양태일 뿐이며, 이에 의해 본 발명의 범위가 제한되는 것이 아닌 점은 명백할 것이다. 따라서, 본 발명의 실질적인 범위는 첨부된 청구항들과 그것들의 등가물에 의하여 정의된다고 할 것이다.
ROR1 및 B7-H3 단백질에 특이적으로 결합하는 항체 또는 그의 항원 결합 단편, 이에 세포독성 약물이 접합된 항체-약물 접합체 및 그의 용도에 따르면, 독성 없이 암을 효과적으로 예방 또는 치료하는데 이용할 수 있다.
전자파일 첨부하였음.

Claims (8)

  1. ROR1 및 B7-H3 단백질에 특이적으로 결합하는 이중 특이적 항체 또는 이의 항원 결합 단편으로,
    상기 ROR1 단백질에 특이적으로 항체 또는 이의 항원 결합 단편은
    서열번호 1 내지 3으로 구성된 군에서 선택되는 아미노산 서열을 포함하는 HCDR1;
    서열번호 4 내지 7로 구성된 군에서 선택되는 아미노산 서열을 포함하는 HCDR2;
    서열번호 8 내지 10으로 구성된 군에서 선택되는 아미노산 서열을 포함하는 HCDR3;
    서열번호 11 내지 13으로 구성된 군에서 선택되는 아미노산 서열을 포함하는 LCDR1;
    서열번호 14 내지 16으로 구성된 군에서 선택되는 아미노산 서열을 포함하는 LCDR2; 및
    서열번호 17 내지 19로 구성된 군에서 선택되는 아미노산 서열을 포함하는 LCDR3을 포함하고,
    상기 B7-H3 단백질에 특이적으로 결합하는 항체 또는 이의 항원 결합 단편은 서열번호 57의 아미노산 서열을 포함하는 HCDR1, 서열번호 58의 아미노산 서열을 포함하는 HCDR2, 서열번호 59의 아미노산 서열을 포함하는 HCDR3, 및 서열번호 60의 아미노산 서열을 포함하는 LCDR1, 서열번호 61의 아미노산 서열을 포함하는 LCDR2, 서열번호 62의 아미노산 서열을 포함하는 LCDR3를 포함하는, 이중 특이적 항체 또는 이의 항원 결합 단편.
  2. 제1항에 있어서,
    상기 ROR1 단백질에 특이적으로 항체 또는 이의 항원 결합 단편은
    서열번호 1의 HCDR1, 서열번호 4의 HCDR2, 서열번호 8의 HCDR3;
    서열번호 2의 HCDR1, 서열번호 5의 HCDR2, 서열번호 9의 HCDR3;
    서열번호 2의 HCDR1, 서열번호 6의 HCDR2, 서열번호 9의 HCDR3; 또는
    서열번호 3의 HCDR1, 서열번호 7의 HCDR2, 서열번호 10의 HCDR3을 포함하고,
    서열번호 11의 LCDR2, 서열번호 14의 LCDR2, 서열번호 17의 LCDR3;
    서열번호 12의 LCDR2, 서열번호 15의 LCDR2, 서열번호 18의 LCDR3; 또는
    서열번호 13의 LCDR2, 서열번호 16의 LCDR2, 서열번호 19의 LCDR3;
    을 포함하는, 이중 특이적 항체 또는 이의 항원 결합 단편.
  3. 제1항에 있어서, 상기 ROR1 단백질에 특이적으로 항체 또는 이의 항원 결합 단편은 서열번호 20 내지 23, 37, 42, 47, 52로 구성된 군에서 선택되는 아미노산 서열과 90% 이상의 서열 상동성을 가지는 아미노산 서열을 포함하는 중쇄가변영역, 및
    서열번호 24 내지 26, 38, 43, 48, 53로 구성된 군에서 선택되는 아미노산 서열과 90% 이상의 서열 상동성을 가지는 아미노산 서열을 포함하는 경쇄가변영역을 포함하고,
    상기 B7-H3 단백질에 특이적으로 결합하는 항체 또는 이의 항원 결합 단편은 서열번호 63 또는 83의 아미노산 서열과 90% 이상의 서열 상동성을 가지는 아미노산 서열을 포함하는 중쇄가변영역, 및
    서열번호 64 또는 84의 아미노산 서열과 90% 이상의 서열 상동성을 가지는 아미노산 서열을 포함하는 경쇄가변영역을 포함하는, 이중 특이적 항체 또는 이의 항원 결합 단편.
  4. 제1항에 있어서, 전장 항체, 단쇄 항체, 단쇄 Fvs (scFv), Fab, F(ab') 및 이의 조합으로 구성된 군에서 선택되는 하나 이상을 포함하는, 이중 특이 항체 또는 이의 항원 결합 단편.
  5. 제1항 내지 제4항 중 어느 한 항에 따른 이중 특이적 항체 또는 이의 항원 결합단편을 코딩하는 핵산.
  6. 제1항 내지 제4항 중 어느 한 항에 따른 이중 특이적 항체 또는 이의 항원 결합단편이 약물에 결합된 항체-약물 접합체 (ADC).
  7. 제6항에 있어서, 상기 약물은 피롤로벤조디아제핀 다이머 (PBD), 싸이클로프로파벤지돌 다이머 (AB009), MMAE (Monomethyl auristatin E) 및 DM1으로 구성된 군에서 선택되는 하나 이상인, 항체-약물 접합체.
  8. 제1항 내지 제4항 중 어느 한 항에 따른 이중 특이적 항체 또는 이의 항원 결합단편, 또는 제6항의 항체-약물 접합체를 포함하는 암 예방 또는 치료용 조성물.
PCT/KR2020/016600 2019-11-21 2020-11-23 Ror1 및 b7-h3에 결합하는 항체, 이를 포함하는 항체-약물 접합체 및 그 용도 WO2021101349A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201962938912P 2019-11-21 2019-11-21
US62/938,912 2019-11-21

Publications (1)

Publication Number Publication Date
WO2021101349A1 true WO2021101349A1 (ko) 2021-05-27

Family

ID=75981415

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2020/016600 WO2021101349A1 (ko) 2019-11-21 2020-11-23 Ror1 및 b7-h3에 결합하는 항체, 이를 포함하는 항체-약물 접합체 및 그 용도

Country Status (1)

Country Link
WO (1) WO2021101349A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024014930A1 (ko) * 2022-07-15 2024-01-18 에이비엘바이오 주식회사 항-ror1 항체, 이를 포함하는 이중특이성 항체, 및 이들의 용도

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130010117A (ko) * 2010-03-04 2013-01-25 마크로제닉스, 인크. B7―h3에 반응성인 항체, 면역학적으로 활성인 이들의 단편 및 이들의 사용법
JP2017501702A (ja) * 2013-12-20 2017-01-19 フレッド ハッチンソン キャンサー リサーチ センター タグ化キメラエフェクター分子およびそのレセプター
KR20180069067A (ko) * 2015-10-30 2018-06-22 엔비이-테라퓨틱스 아게 안티-ror1 항체
KR20180100238A (ko) * 2016-01-22 2018-09-07 얀센 바이오테크 인코포레이티드 항-ror1 항체, ror1 × cd3 이중특이성 항체, 및 이를 사용하는 방법
US20190336615A1 (en) * 2017-01-27 2019-11-07 Silverback Therapeutics, Inc. Tumor targeting conjugates and methods of use thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130010117A (ko) * 2010-03-04 2013-01-25 마크로제닉스, 인크. B7―h3에 반응성인 항체, 면역학적으로 활성인 이들의 단편 및 이들의 사용법
JP2017501702A (ja) * 2013-12-20 2017-01-19 フレッド ハッチンソン キャンサー リサーチ センター タグ化キメラエフェクター分子およびそのレセプター
KR20180069067A (ko) * 2015-10-30 2018-06-22 엔비이-테라퓨틱스 아게 안티-ror1 항체
KR20180100238A (ko) * 2016-01-22 2018-09-07 얀센 바이오테크 인코포레이티드 항-ror1 항체, ror1 × cd3 이중특이성 항체, 및 이를 사용하는 방법
US20190336615A1 (en) * 2017-01-27 2019-11-07 Silverback Therapeutics, Inc. Tumor targeting conjugates and methods of use thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024014930A1 (ko) * 2022-07-15 2024-01-18 에이비엘바이오 주식회사 항-ror1 항체, 이를 포함하는 이중특이성 항체, 및 이들의 용도

Similar Documents

Publication Publication Date Title
WO2019225777A1 (ko) 항-ror1 항체 및 그 용도
WO2019225787A1 (ko) 항-b7-h3 항체 및 그 용도
WO2017052241A1 (en) Novel anti-mesothelin antibody and composition comprising the same
WO2016137108A1 (en) Novel antibody binding to tfpi and composition comprising the same
WO2019050362A2 (ko) 인간 dlk1에 대한 항체 및 이의 용도
WO2022039490A1 (en) Anti-b7-h4/anti-4-1bb bispecific antibodies and use thereof
WO2018174544A2 (ko) Muc1에 특이적으로 결합하는 항체 및 그의 용도
WO2018026248A1 (ko) 프로그램화된 세포 사멸 단백질(pd-1)에 대한 신규 항체 및 이의 용도
WO2021020846A1 (en) Anti-her2/anti-4-1bb bispecific antibody and use thereof
WO2022177394A1 (ko) Pd-l1 및 cd47에 대한 이중특이적 단일 도메인 항체 및 이의 용도
WO2019078699A2 (ko) 항-vista 항체 및 이의 용도
WO2010047509A9 (ko) 친화도와 안정성이 향상된 항 dr5 항체, 및 이를 포함하는 암 예방 또는 치료용 조성물
WO2021101349A1 (ko) Ror1 및 b7-h3에 결합하는 항체, 이를 포함하는 항체-약물 접합체 및 그 용도
WO2019190206A1 (ko) 클라우딘 3의 ecl-2에 특이적으로 결합하는 항체, 이의 단편 및 이들의 용도
WO2021101346A1 (en) Anti-ror1/anti-4-1bb bispecific antibodies and uses thereof
WO2021020845A1 (en) Anti-egfr/anti-4-1bb bispecific antibody and use thereof
WO2020251316A1 (ko) α-SYN/IGF1R에 대한 이중 특이 항체 및 그 용도
WO2022149837A1 (ko) 항-fgfr3 항체 및 이의 용도
WO2022124866A1 (ko) 항-pd-1 항체 및 이의 용도
WO2022124864A1 (ko) 항-tigit 항체 및 이의 용도
WO2018026249A1 (ko) 프로그램화된 세포 사멸 단백질 리간드-1 (pd-l1)에 대한 항체 및 이의 용도
WO2022177392A1 (ko) Cd47에 대한 단일 도메인 항체 및 이의 용도
WO2022055299A1 (ko) 인터루킨-4 수용체 알파 서브유닛과 인터루킨-5 수용체 알파 서브유닛에 동시에 결합하는 이중특이항체 및 이의 용도
WO2021071319A1 (ko) 다중 특이적 융합 단백질 및 이의 용도
WO2022035201A1 (ko) Il-12 및 항-fap 항체를 포함하는 융합단백질 및 이의 용도

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20891165

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20891165

Country of ref document: EP

Kind code of ref document: A1