WO2022145475A1 - 血液凝固能の評価方法および血栓症リスクの検査方法 - Google Patents

血液凝固能の評価方法および血栓症リスクの検査方法 Download PDF

Info

Publication number
WO2022145475A1
WO2022145475A1 PCT/JP2021/048977 JP2021048977W WO2022145475A1 WO 2022145475 A1 WO2022145475 A1 WO 2022145475A1 JP 2021048977 W JP2021048977 W JP 2021048977W WO 2022145475 A1 WO2022145475 A1 WO 2022145475A1
Authority
WO
WIPO (PCT)
Prior art keywords
inhibitor
blood coagulation
final concentration
blood
factor
Prior art date
Application number
PCT/JP2021/048977
Other languages
English (en)
French (fr)
Inventor
和也 細川
Original Assignee
藤森工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 藤森工業株式会社 filed Critical 藤森工業株式会社
Priority to US18/269,860 priority Critical patent/US20240044921A1/en
Priority to EP21915333.5A priority patent/EP4270010A1/en
Priority to JP2022573120A priority patent/JPWO2022145475A1/ja
Publication of WO2022145475A1 publication Critical patent/WO2022145475A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/86Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving blood coagulating time or factors, or their receptors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2333/00Assays involving biological materials from specific organisms or of a specific nature
    • G01N2333/435Assays involving biological materials from specific organisms or of a specific nature from animals; from humans
    • G01N2333/46Assays involving biological materials from specific organisms or of a specific nature from animals; from humans from vertebrates
    • G01N2333/4609Assays involving biological materials from specific organisms or of a specific nature from animals; from humans from vertebrates from reptiles
    • G01N2333/4613Snake venom
    • G01N2333/4616Snake venom from Russell's viper
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2333/00Assays involving biological materials from specific organisms or of a specific nature
    • G01N2333/435Assays involving biological materials from specific organisms or of a specific nature from animals; from humans
    • G01N2333/46Assays involving biological materials from specific organisms or of a specific nature from animals; from humans from vertebrates
    • G01N2333/4609Assays involving biological materials from specific organisms or of a specific nature from animals; from humans from vertebrates from reptiles
    • G01N2333/4613Snake venom
    • G01N2333/4633Snake venom from Echis carinatus; Ecarin

Definitions

  • the present invention relates to a method for evaluating blood coagulation ability and a method for testing the risk of thrombosis.
  • thrombosis cancer-related thrombosis
  • thrombootic tendencies due to cancer, diabetes and infectious diseases are associated with microparticles derived from vascular endothelial cells and platelets, acidic phospholipids on the surface of activated platelets, and tissue factors in the blood, but especially cancer-related thrombosis.
  • the main cause of thrombosis is the activation of extrinsic coagulation by the expression of tissue factors in the surface of tumor cells and in tumor cells and tissue factors in monospheres and vascular endothelial cells due to an immune response to the tumor cells. It is considered to be one (Non-Patent Document 1).
  • blood coagulation tests such as APTT (activated partial thromboplastin time), PT (prothrombin time), ROTEM (trademark: rotational thromboelastometry), and TEG (thromboelastography) show deficiency of blood coagulation factors such as hemophilia and perioperative period.
  • the main purpose is to evaluate the blood-stopping function (proneness of bleeding), and it is not used to evaluate the degree of shortening of coagulation time caused by the tendency of blood clots caused by cancer or the like.
  • An object of the present invention is to provide a method capable of appropriately evaluating a pathological condition of hypercoagulation caused by extrinsic coagulation, microparticles, platelet activation, etc. in a blood coagulation test.
  • the present inventor has made diligent studies to solve the above problems.
  • the blood coagulation ability was evaluated by adding a contact factor inhibitor (one or more of FXI inhibitor, FXII inhibitor, calicrane inhibitor, etc.) and an inhibitor against Tissue Factor Pathway Inhibitor (TFPI) to the blood sample.
  • a contact factor inhibitor one or more of FXI inhibitor, FXII inhibitor, calicrane inhibitor, etc.
  • TFPI Tissue Factor Pathway Inhibitor
  • the present invention is characterized in that blood coagulation ability is measured by adding an inhibitor (TFPI inhibitor) to a contact factor inhibitor and a tissue factor pathway inhibitor (TFPI) to a blood sample.
  • TFPI inhibitor an inhibitor
  • TFPI tissue factor pathway inhibitor
  • the present invention is also a method for evaluating an intrinsic blood coagulation ability in vitro, which comprises adding both a contact factor inhibitor and an extrinsic blood coagulation inhibitor to a blood sample to measure the blood coagulation ability. I will provide a.
  • the present invention also provides reagents for measuring extrinsic blood coagulation in vitro, including contact factor inhibitors and TFPI inhibitors.
  • the present invention also provides reagents for measuring endogenous blood coagulation ability in vitro, including a contact factor inhibitor and an extrinsic blood coagulation inhibitor.
  • the contact factor inhibitor can be an FXI inhibitor, an FXII inhibitor and / or a kallikrein inhibitor. Measurements can be made by ROTEM and / or TEG.
  • the blood sample can be a blood sample of a cancer patient or a patient suspected of having cancer.
  • a contact factor inhibitor FXI inhibitor, FXII inhibitor and / or kallikrein inhibitor, etc.
  • a TFPI inhibitor a trace amount of tissue factor, microparticles, platelet activation, etc. It is possible to analyze the blood coagulation ability that sensitively reflects the hypercoagulable state caused by the above. Furthermore, by comparing the blood coagulation time with the addition of contact factor inhibitors and TFPI inhibitors with the blood coagulation time with the addition of extrinsic blood coagulation inhibitors (FVII inhibitors, tissue factor inhibitors, etc.), blood coagulation is enhanced.
  • FVII inhibitors, tissue factor inhibitors, etc. extrinsic blood coagulation inhibitors
  • tissue factor in the blood or other factors eg, acidic phospholipids such as microparticles and activated platelets.
  • tissue factor in the blood or other factors eg, acidic phospholipids such as microparticles and activated platelets.
  • FIG. 1 The figure which shows the result of Example 1.
  • FIG. 2 The figure which shows the result of Example 2.
  • FIG. 3 The figure which shows the result of Example 3.
  • the method for analyzing blood coagulation of the present invention is It is characterized in that blood coagulation ability is measured by adding an inhibitor against a contact factor inhibitor and a tissue factor pathway inhibitor (TFPI) to a blood sample.
  • TFPI tissue factor pathway inhibitor
  • the blood sample is preferably a whole blood sample, and may be a blood sample that has been anticoagulated with citric acid or the like. In that case, the anticoagulant treatment can be canceled with calcium or the like as described later, and the blood coagulation reaction can be started.
  • the blood sample is preferably a blood sample of a patient having a disease such as cancer or a patient suspected of having a disease such as cancer.
  • the contact factor inhibitor FXI (blood coagulation factor 11) inhibitor, FXII (blood coagulation factor 12) inhibitor, kallikrein inhibitor and the like are used, and two or more of these inhibitors are used. Is preferably mixed and added. In particular, by combining an FXII inhibitor and a kallikrein inhibitor, it is possible to satisfactorily evaluate the degree of shortening due to the enhancement of blood coagulation.
  • the inhibitor of the contact factor a small molecule compound, a peptide / protein, or the like can be used as the inhibitor of the contact factor.
  • the FXI inhibitor is not particularly limited as long as it is a substance having FXI inhibitory activity, but BMS-962212 (J Med Chem. 2017 Dec 14; 60 (23): 9703-9723) and FXI inhibitor aptamer (Sci Rep. 2017 May). 18; 7 (1): 2102. Selection and characterization of a DNA aptamer inhibiting coagulation factor XIa) and the like can be used.
  • the FXI inhibitor is preferably added at a final concentration of 100 nM to 100 ⁇ M.
  • the FXII inhibitor is not particularly limited as long as it is a substance having FXII inhibitory activity, but is a corntrypsin inhibitor (CTI) or a peptide inhibitor (for example, bicyclic peptide 61 (BP-61) or bicyclic peptide 73 (BP-73); J Med Chem. 2017 Feb 9; 60 (3): 1151-1158) etc. can be used.
  • CTI corntrypsin inhibitor
  • a peptide inhibitor for example, bicyclic peptide 61 (BP-61) or bicyclic peptide 73 (BP-73); J Med Chem. 2017 Feb 9; 60 (3): 1151-1158
  • the FXII inhibitor is preferably added at a final concentration of 10 ⁇ g / mL to 200 ⁇ g / mL.
  • BP61 and BP73 it is preferable to add them at a final concentration of 1 to 100 ⁇ g / mL.
  • the kallikrein inhibitor is not particularly limited, but a synthetic kallikrein inhibitor (for example, PKSI-527 (CAS No .: 128837-71-8) Abcam) or aprotinin is desirable. If it is PKSI-527, it is preferable to add it at a final concentration of 1 ⁇ M to 1 mM. If it is aprotinin, it is preferable to add it at a final concentration of 10 to 1000 KIU / mL.
  • the addition of both the FXII inhibitor and the kallikrein inhibitor sufficiently suppresses the blood coagulation reaction caused by the activation of the contact factor in whole blood, and it is possible to identify the enhancement of extrinsic coagulation, which is preferable.
  • an inhibitor of the activation of the unactivated coagulation factor FXII, FXI
  • an inhibitor of the enzyme activity of the activated coagulation factor FXIIa, FXIa
  • TFPI inhibitor a small molecule and a peptide / protein inhibitor can be used, and is not particularly limited as long as it is a substance capable of inhibiting the function of TFPI, but specifically, a TFPI inhibitor of a small molecule peptide (for example, , Compound 3; J Biol Chem. 2014 Jan 17; 289 (3): 1732-41).
  • a TFPI inhibitor of a small molecule peptide for example, Compound 3; J Biol Chem. 2014 Jan 17; 289 (3): 1732-41).
  • the TFPI inhibitor is added at a final concentration of 1 ⁇ g / mL to 200 ⁇ g / mL.
  • compound 3 Ac-FQSKpNVHVDGYFERL-Aib-AKL-NH 2
  • RNA aptamer inhibitors can also be used as other TFPI inhibitors.
  • BAX499 J Thromb Haemost. 2012 Aug; 10 (8): 1581-90.
  • BAX499 J Thromb Haemost. 2012 Aug; 10 (8): 1581-90.
  • BAX499 J Thromb Haemost. 2012 Aug; 10 (8): 1581-90.
  • BAX499 it is added at a final concentration of 1 nM to 1000 nM.
  • an anti-TFPI antibody having a TFPI inhibitory activity can also be used.
  • the method for analyzing blood coagulation is not particularly limited, and is used for whole blood such as ROTEM (Rotational Thromboelastometry), TEG (Thromboelastography), ClotPro (Hemonetics) SONOCLOT (Scienko), ACTAS (Fujimori Kogyo Co., Ltd .: WO2018 / 043420).
  • a device capable of evaluating blood coagulation is desirable. By using whole blood as a sample, it becomes possible to satisfactorily evaluate the hypercoagulation caused by cellular components (leukocytes / erythrocytes).
  • a contact factor inhibitor and a TFPI inhibitor are added to the blood of a healthy person and the blood of a patient with hypercoagulation in advance, and a blood coagulation test is performed to calculate the coagulation time and coagulation waveform. By looking at which one is closer to, it is possible to investigate whether a hypercoagulable state exists.
  • the results of the blood coagulation test conducted by adding the contact factor inhibitor and the TFPI inhibitor to the blood sample are obtained when the TFPI inhibitor is not added (in the absence of the TFPI inhibitor), that is, the contact factor inhibition is performed on the blood sample.
  • the hypercoagulation state may be mainly due to tissue factors in the blood or other (for example, microparticles or platelet activation). It is also possible to evaluate whether it is caused.
  • FVII inhibitors also called FVIIa inhibitors
  • tissue factor inhibitors tissue factor inhibitors
  • inactivity It is also possible to analyze the factors of the enhancement of blood coagulation by comparing with the results of the endogenous blood coagulation test conducted in the presence of FVIIa, etc.).
  • extrinsic blood coagulation inhibitor used in the endogenous blood coagulation test examples include FVII (blood coagulation factor 7) inhibitor, tissue factor inhibitor, inactivated FVIIa and the like.
  • FVII inhibitor an inhibitor for the activation of FVII or an inhibitor for the enzymatic activity of FVIIa can be used.
  • FVII inhibitors include synthetic peptides (A-183X; J Biol Chem. 2003 Jun 13; 278 (24): 21823-30) and synthetic small molecules (PCI-27483; 2019; 96 (4): 217-222). .Doi: 10.1159 / 000495988. Epub 2019 Mar 7.) and inactivated FVIIa (Eur J Vasc Endovasc Sur. 1998 Jun; 15 (6): 515-20. Doi: 10.1016 / s1078-5884 (98) 80112- 3.) and antibodies against tissue factors can be used.
  • FVII inhibitor for example, A183-X can be added at a final concentration of 1 nM to 1 ⁇ M.
  • PCI-27483 can be added at a final concentration of 10 nM to 10 ⁇ M.
  • the inactivated FVIIa can be added at a final concentration of 10 ng / mL to 100 ⁇ g / mL.
  • blood coagulation it is preferable to use whole blood for the analysis of blood coagulation performed by adding an extrinsic blood coagulation inhibitor.
  • blood coagulation can be analyzed by adding an extrinsic blood coagulation inhibitor and calcium chloride.
  • contact factor inhibitors FXI inhibitors, FXII inhibitors, kallikrein inhibitors
  • FXI inhibitors a contact factor inhibitor
  • FXII inhibitors a contact factor inhibitor
  • kallikrein inhibitors a contact factor inhibitor
  • the above-mentioned FXI (blood coagulation factor 11) inhibitor, FXII (blood coagulation factor 12) inhibitor, kallikrein inhibitor and the like are used, and the preferred concentration range thereof is also the same.
  • a trace amount of the blood coagulation activator may be further added as an activation reagent for the endogenous blood coagulation.
  • Trace amounts of blood coagulation activators include activated coagulation factors (FXa and thrombin) and FX (blood coagulation factor 10) activating enzymes (RVV-X; J Biol Chem) derived from Russel's viper venom (RVV). Using FX activators such as 1994 Apr 8; 269 (14): 10644-50.) And prothrombin activators such as Ecarin (Am J Hematol. 2020 Jul; 95 (7): 863-869.). Can be done.
  • RVV-X In the case of RVV-X, it can be used at a final concentration of 0.1 ng / mL to 1000 ng / mL. In the case of ecarin, it can be used at a final concentration of 0.1 mU to 100 mU.
  • These blood coagulation activators are not inhibited by contact factor inhibitors or extrinsic coagulation inhibitors. Further, it is desirable that the blood coagulation activator is added to the blood of a healthy person so that the blood coagulation time is 20 to 60 minutes. If the blood coagulation time in a healthy person is 20 minutes or more, it is possible to detect a shortening of the blood coagulation time in the blood of a patient with hypercoagulation.
  • an extrinsic blood coagulation inhibitor and a kallikrein inhibitor may be combined.
  • a kallikrein inhibitor is used alone as a contact factor inhibitor in addition to an extrinsic blood coagulation inhibitor, FXII is not directly inhibited, but FXIIa production is suppressed by suppressing the mutual activation of FXIIa and kallikrein. Is suppressed, so that activation in healthy subjects is extended to 20 minutes or more, and it is possible to detect a tendency for shortening of coagulation time in patients with hypercoagulability.
  • tumor cells may directly express tissue factor or emit microparticles that express tissue factor.
  • certain tumor cells express a glycoprotein called podoplanin, which directly activates platelets.
  • podoplanin which directly activates platelets.
  • the acidic phospholipids on the surface of activated platelets promote blood coagulation. It releases microparticles derived from vascular endothelium due to vascular endothelial damage caused by treatment with various anticancer agents.
  • VEGF inhibitor angiogenesis inhibition
  • the blood sample may be measured for blood coagulation by adding a contact factor inhibitor and a TFPI inhibitor immediately after collection, but it may be difficult to carry out a blood coagulation test immediately after blood collection. Therefore, the blood is collected in a blood collection container containing a reversible anticoagulant treatment agent, and at the start of measurement, a reagent containing an anticoagulant treatment release agent, a contact factor inhibitor and a TFPI inhibitor contained in the blood collection container is added, and blood coagulation is performed. It is desirable to analyze. For example, when blood is collected in a container containing sodium citrate as a reversible anticoagulant, calcium chloride, a contact factor inhibitor, and a TFPI inhibitor are added to analyze blood coagulation.
  • Such a combination of a reversible anticoagulant and a release agent includes heparin and a heparin neutralizer (hepalinase, polybrain, protamine, etc.), thrombin-inhibiting DNA aptamer, and thrombin-inhibiting DNA aptamer antisense DNA. can give.
  • citric acid When citric acid is used as a reversible anticoagulant, it is convenient to use a commercially available blood collection tube (or blood collection container) containing sodium citrate. However, when a vacuum blood collection tube containing sodium citrate having a rubber stopper made of butyl rubber is used, blood coagulation may be activated by contact with the rubber stopper and the coagulation time may be shortened. Therefore, it is preferable to use a blood collection tube containing citric acid that does not use a rubber stopper. For example, as a blood collection tube that does not use a rubber stopper, a Venoject blood collection tube (Terumo Corporation) sealed with a laminated film can be used.
  • a Venoject blood collection tube Teumo Corporation
  • Anticoagulants such as small amounts of heparin-like substances (heparin, low molecular weight heparin, pentasaccharides, heparan sulfate) may be added (WO2017 / 119508).
  • heparin-like substances heparin, low molecular weight heparin, pentasaccharides, heparan sulfate
  • the activation of the contact factor by the rubber stopper is suppressed by using the blood collection tube to which sodium citrate and an FXII inhibitor have been previously added to the blood collection tube. It is possible.
  • the present invention also provides a reagent kit for in vitro measurement of extrinsic blood coagulation ability, which comprises a contact factor inhibitor and a TFPI inhibitor.
  • the types of contact factor inhibitors and TFPI inhibitors are as described above, which are diluted at the time of use and added at a final concentration suitable for measuring blood coagulation ability (preferable final concentration range is as described above).
  • the present invention also provides a reagent kit for measuring endogenous blood coagulation ability in vitro, which comprises a contact factor inhibitor and an extrinsic blood coagulation inhibitor.
  • contact factor inhibitors and extrinsic blood coagulation inhibitors are as described above, and these are diluted at the time of use and added at a final concentration suitable for measuring blood coagulation ability (preferable final concentration range is as described above). Will be done.
  • the blood sample of this example is collected from a healthy human.
  • Example 1 ROTEM (Instrumentation Laboratory (IL)) was used for blood coagulation analysis. Blood was collected using a blood collection tube (5 mL) containing 3.2% sodium citrate manufactured by Terumo Corporation. This blood collection tube is sealed with a laminated film and no rubber stopper is used. The following reagents were added to 300 ⁇ L of whole blood and the blood coagulation waveform was analyzed.
  • IL Intra Laboratory
  • the results are shown in FIG.
  • the coagulation time (CT) of (1) to which only calcium chloride was added was 1336 seconds, whereas the CT of (2) to which an inhibitor for calcium chloride and TFPI was added was shortened to 801 seconds. Furthermore, in (3) and (4), CT was shortened to 452 and 371 seconds by the addition of a trace amount of tissue thromboplastin. The blood coagulation promoting effect of the TFPI inhibitor in the presence of trace tissue thromboplastin was shown.
  • Example 2 ROTEM (IL) was used for blood coagulation analysis. Blood was collected using a blood collection tube (5 mL) containing 3.2% sodium citrate manufactured by Terumo Corporation. This blood collection tube is sealed with a laminated film and no rubber stopper is used. The following reagents were added to 300 ⁇ L of whole blood and the blood coagulation waveform was analyzed.
  • the coagulation time (CT) of (2) was extended to 2245 seconds. Furthermore, the CT of (3) to which the trace tissue thromboplastin was added was shortened to 1304 seconds, and the CT of (4) to which the trace tissue thromboplastin and the TFPI inhibitor was added was shortened to 489 seconds.
  • the addition of the FXII inhibitor and the kallikrein inhibitor extended the coagulation time when the trace tissue thromboplastin was not added, and the addition of the trace tissue thromboplastin and the TFPI inhibitor significantly shortened the coagulation time. That is, the presence of FXII inhibitor, kallikrein inhibitor, and TFPI inhibitor made it possible to evaluate the effect of microtissue thromboplastin on promoting thrombus formation.
  • Example 2 Compared with Example 1, in Example 2 to which the contact factor inhibitor and the kallikrein inhibitor were added, blood coagulation was delayed in the absence of the trace tissue factor, but when the trace tissue thromboplastin and the TFPI inhibitor were added, the blood coagulation was delayed.
  • the blood coagulation time has been significantly reduced. That is, by adding a contact factor inhibitor and a TFPI inhibitor, it becomes easy to evaluate the thrombotic property of the trace tissue thromboplastin.
  • Example 3 ROTEM (IL) was used for blood coagulation analysis. Blood was collected using a blood collection tube (2 mL) containing 3.2% sodium citrate manufactured by Becton Dickinson. A rubber stopper is used for this blood collection tube. The following reagents were added to whole blood and the blood coagulation waveform was analyzed.
  • Example 4 ROTEM (IL) was used for blood coagulation analysis. Blood was collected using a blood collection tube containing 3.2% sodium citrate manufactured by Terumo Corporation. This blood collection tube is sealed with a laminated film and no rubber stopper is used. The following reagents were added to 300 ⁇ L of whole blood and the blood coagulation waveform was analyzed.
  • the addition of both (3) increased the degree of prolongation of the coagulation time (CT).
  • CT degree of prolongation of the coagulation time
  • the coagulation times (5), (6) and (7) when a small amount of Dadeinobin was added were equivalent to the CT values of around 600 seconds. Therefore, by adding both the FXII inhibitor and the kallikrein inhibitor, the reduction in the coagulation time due to the addition of the trace tissue factor becomes large, and it becomes easy to identify the hypercoagulation.
  • the reduction in the coagulation time of the non-additional contact factor inhibitors (4) and (8) was even smaller, indicating that it is not suitable for evaluation of hypercoagulation.
  • Example 5 ROTEM (IL) was used for blood coagulation analysis. Blood was collected using a blood collection tube (5 mL) containing 3.2% sodium citrate manufactured by Terumo Corporation. This blood collection tube is sealed with a laminated film and no rubber stopper is used. The following reagents were added to 300 ⁇ L of whole blood and the blood coagulation waveform was analyzed.
  • exosomes derived from vascular endothelial cells and cancer cells promote blood coagulation by having tissue factors and acidic phospholipids on the surface and cause thrombosis. It is also known that histones promote thrombus formation by activating platelets.
  • Example 6 ROTEM (IL) was used for blood coagulation analysis. Blood was collected using a blood collection tube (5 mL) containing 3.2% sodium citrate manufactured by Terumo Corporation. This blood collection tube is sealed with a laminated film and no rubber stopper is used. Escherichia coli-derived lipopolysaccharide (LPS; manufactured by Merk) (final concentration 1 ⁇ g / mL) or phorbol myristate acetate (PMA; manufactured by Merk) (final concentration 50 nM) or human histone H4 (manufactured by ABCAM) in 300 ⁇ L of whole blood. After adding (final concentration 2 ⁇ M) and incubating at 37 ° C.
  • LPS Escherichia coli-derived lipopolysaccharide
  • PMA phorbol myristate acetate
  • human histone H4 manufactured by ABCAM
  • Reagents for analyzing blood coagulation by adding (a) (b) (c) after adding histone H4 to blood and incubating at 37 ° C for 4 hours (10) Startem reagent (IL) (20 ⁇ L) and human histone H4 (manufactured by ABCAM) (final concentration 2 ⁇ M) (11) Calcium chloride (final concentration 12 mM), CTI (final concentration 20 ⁇ g / mL), PKSI-527 (final concentration 40 ⁇ M) and human histone H4 (manufactured by ABCAM) (final concentration 2 ⁇ M) (12) Calcium chloride (final concentration 12 mM), CTI (final concentration 20 ⁇ g / mL), PKSI-527 (final concentration 40 ⁇ M), TFPI inhibitor (compound3) (final concentration 50 ⁇ M), and human histone H4 (manufactured by ABCAM) ( Final concentration 2 ⁇ M)
  • LPS is known to promote and renew blood coagulation by expressing tissue factor on the monocyte surface via Toll-like receptor 4. It is also known that PMA acts on neutrophils and promotes thrombus formation by inducing extracellular traps (NETs) of neutrophils.
  • NETs extracellular traps
  • ROTEM ROTEM
  • Plasma and platelet-rich plasma were obtained by centrifuging the obtained blood at 3000 rpm (15 minutes) and 2400 rpm (7 minutes).
  • the same reagents (LPS, PMA, histone) as in Example 6 are added to these plasmas, and after incubation at 37 ° C. for 4 hours, the same reagents as in (1) to (12) of Example 6 are added. Blood coagulation waveforms were analyzed.
  • Example 7 ROTEM (IL) was used for blood coagulation analysis. Blood was collected using a blood collection tube (5 mL) containing 3.2% sodium citrate manufactured by Terumo Corporation. This blood collection tube is sealed with a laminated film and no rubber stopper is used. The following reagents were added to 300 ⁇ L of whole blood, and the blood coagulation waveform was analyzed.
  • CTI CTI, kallikrein inhibitor, FVIIa inhibitor, and a small amount are used for the purpose of evaluating the enhanced state of intrinsic blood coagulation in comparison with the evaluation of the enhanced state of extrinsic blood coagulation (2).
  • Blood coagulation was analyzed when RVV-FX or Ecarin was added (4) and (5), and when kallikrein inhibitor and FVIIa inhibitor were added (6).
  • RVV RVV activator
  • ecarin prothrombin activator
  • Thrombin produced by blood coagulation with trace amounts of ecarin or RVV-FX amplifies endogenous blood coagulation by activating FXI, FVIII, FV.
  • blood coagulation time due to activation of endogenous blood coagulation originating from FIXa produced by contact factor activation in a partial contact factor inhibition environment by adding an FVIIa inhibitor and a kallikrein inhibitor. Is being evaluated.
  • the A375-derived exosome contains a large amount of tissue factor.
  • the shortening of blood coagulation time was limited. This is because the shortening of blood coagulation by A375-derived exosomes is mainly due to the activation of extrinsic blood coagulation caused by tissue factors present on the surface of exosomes, and the activity of endogenous blood coagulation caused by acidic phospholipids and the like. The conversion is considered to be limited and minor.
  • Example 8 ROTEM (IL) was used for blood coagulation analysis. Blood was collected using a blood collection tube (5 mL) containing 3.2% sodium citrate manufactured by Terumo Corporation. This blood collection tube is sealed with a laminated film and no rubber stopper is used. Additive-free or LPS (final concentration 1 ⁇ g / mL) and PMA (final concentration 50 nM) were added to 300 ⁇ L of whole blood and incubated at 37 ° C. for 4 hours, and then in Examples 02 (1) to (6). Reagents were added and blood coagulation time was analyzed.
  • LPS final concentration 1 ⁇ g / mL
  • PMA final concentration 50 nM
  • Example 9 Clotpro (Haemonetics) was used for blood coagulation analysis. Blood was collected using a blood collection tube (5 mL) containing 3.2% sodium citrate manufactured by Terumo Corporation. This blood collection tube is sealed with a laminated film and no rubber stopper is used. After adding the reagents (1) to (6) or less to the collected whole blood (340 ⁇ L), any of the reagents (7) to (12) was added and the blood coagulation time was analyzed.
  • Clotpro (Haemonetics) was used for blood coagulation analysis. Blood was collected using a blood collection tube (5 mL) containing 3.2% sodium citrate manufactured by Terumo Corporation. This blood collection tube is sealed with a laminated film and no rubber stopper is used. The following reagents were added to whole blood and the blood coagulation waveform was analyzed.
  • Example 11 ROTEM (IL) was used for blood coagulation analysis. Blood was collected using a blood collection tube (5 mL) containing 3.2% sodium citrate manufactured by Terumo Corporation. This blood collection tube is sealed with a laminated film and no rubber stopper is used. The following reagents were added to whole blood and the blood coagulation waveform was analyzed.
  • coagulation promotion in the disease is due to factors other than tissue factor, such as microparticles. If it can be predicted that it is due to factors other than the extrinsic system such as platelet activation and there is a clear difference in the ROTEM waveforms when TFPI is added and when it is not added, the promotion of coagulation in the disease is due to the increase / enhancement of tissue factor. Can be predicted.
  • extrinsic coagulation with FXII and / or kallikrein inhibitors and TFPI inhibitors added
  • endogenous blood coagulation including factor XII and FVII inhibitors
  • Factors that promote blood coagulation can be analyzed.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hematology (AREA)
  • Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • Biomedical Technology (AREA)
  • Chemical & Material Sciences (AREA)
  • Immunology (AREA)
  • Urology & Nephrology (AREA)
  • Biotechnology (AREA)
  • Microbiology (AREA)
  • Cell Biology (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Investigating Or Analysing Biological Materials (AREA)

Abstract

血液試料に、接触因子阻害剤および組織因子経路阻害剤(TFPI)に対する阻害剤を添加して血液凝固能の評価を行うことを特徴とする、インビトロにおける外因系血液凝固能の評価方法、ならびに血液試料に、接触因子阻害剤と外因系血液凝固阻害剤の両方を添加して、血液凝固能の測定を行うことを特徴とする、インビトロにおける内因系血液凝固能の評価方法。

Description

血液凝固能の評価方法および血栓症リスクの検査方法
本発明は血液凝固能の評価方法および血栓症リスクの検査方法に関する。
癌、糖尿病及び様々な感染症や慢性炎症性疾患などにおいて、血液凝固機能が亢進し、血栓症発症リスクが高まることが知られている。特に癌患者における血栓症(癌関連血栓症)は癌患者の死亡要因の2位を占め、大きな問題となっているが、血液凝固の亢進状態を、簡便かつ適切に評価しうる検査手法は存在しない。
癌、糖尿病や感染症による血栓傾向には、血管内皮細胞や血小板由来のマイクロパーティクル、活性化血小板表面の酸性リン脂質、及び血中の組織因子などが関連しているが、特に癌関連の血栓症発症には、腫瘍細胞表面および腫瘍細胞中に含まれる組織因子や腫瘍細胞に対する免疫反応による単球や血管内皮細胞における組織因子の発現による外因系凝固の活性化が血栓症の主要な要因のひとつと考えられている(非特許文献1)。
したがって、これら疾患における血栓症発症リスクの検査は、上記の要因を包括的に反映する必要がある。
一方、APTT(活性化部分トロンボプラスチン時間)、PT(プロトロンビン時間)、ROTEM(商標:rotational thromboelastometry)、TEG(thromboelastography)などの血液凝固検査は、血友病などの血液凝固因子の欠損や周術期の止血機能(出血傾向)の評価を主な目的としており、癌等に起因する血栓傾向によって生じる凝固時間の短縮度合いを評価するのには使用されていない。
一般社団法人日本血栓止血学会ホームページ 用語集「癌と凝固」(https://www.jsth.org/glossary_detail/?id=291)
上記の通り、種々の要因による血液凝固の亢進を評価する適切な方法が求められていた。
本発明は、血液凝固試験において、外因系凝固、マイクロパーティクル、血小板活性化などに起因する血液凝固亢進病態を適切に評価できる方法を提供することを課題とする。
本発明者は上記課題を解決するために鋭意検討を行った。その結果、血液試料に、接触因子阻害剤(FXI阻害剤、FXII阻害剤、カリクレイン阻害剤などの1種以上)およびTissue Factor Pathway Inhibitor(TFPI)に対する阻害剤を添加して血液凝固能の評価を行うことで、癌、糖尿病及び感染症などにかかわる血液凝固亢進状態の評価が簡便に実施できることを見出し、本発明を完成させるに至った。
本発明は、血液試料に、接触因子阻害剤および組織因子経路阻害剤(TFPI)に対する阻害剤(TFPI阻害剤)を添加して血液凝固能の測定を行うことを特徴とする、インビトロにおける血液凝固能の評価方法を提供する。
本発明はまた、血液試料に、接触因子阻害剤と外因系血液凝固阻害剤の両方を添加して、血液凝固能の測定を行うことを特徴とする、インビトロにおける内因系血液凝固能の評価方法を提供する。
本発明はまた、接触因子阻害剤およびTFPI阻害剤を含む、インビトロにおける外因系血液凝固能測定のための試薬を提供する。
本発明はまた、接触因子阻害剤と外因系血液凝固阻害剤を含む、インビトロにおける内因系血液凝固能測定のための試薬を提供する。
ここで、接触因子阻害剤はFXI阻害剤、FXII阻害剤および/またはカリクレイン阻害剤であることができる。測定はROTEMおよび/またはTEGによって行うことができる。
また、血液試料は癌患者又は癌が疑われる患者の血液試料であることができる。
本発明の方法によれば、接触因子阻害剤(FXI阻害剤、FXII阻害剤および/またはカリクレイン阻害剤等)とTFPI阻害剤を添加することで、微量の組織因子やマイクロパーティクル、血小板活性化などに起因する凝固亢進状態を鋭敏に反映した血液凝固能の解析が可能となる。
さらに、接触因子阻害剤とTFPI阻害剤を添加した血液凝固時間と外因系血液凝固阻害剤(FVII阻害剤、組織因子阻害剤等)を添加した血液凝固時間を対比することで、血液凝固の亢進状態が血中の微量の組織因子に起因するか、その他の要因(例えば、マイクロパーティクルや活性化血小板等の酸性リン脂質)に起因するかを解析することが可能となる。
血液試料に、接触因子阻害剤と外因系血液凝固阻害剤の両方を添加して、血液凝固能の測定を行うことで、血中の組織因子の影響を除外し、マイクロパーティクルや活性化血小板等の酸性リン脂質等に起因する内因系血液凝固の亢進状態を評価することが可能である。
実施例1の結果を示す図。 実施例2の結果を示す図。 実施例3の結果を示す図。
本発明の血液凝固の解析方法は、
血液試料に、接触因子阻害剤および組織因子経路阻害剤(TFPI)に対する阻害剤を添加して血液凝固能の測定を行うことを特徴とする。
血液試料としては全血試料であることが好ましく、クエン酸等で抗凝固処理された血液試料であってもよい。その場合、後述のようにカルシウムなどで抗凝固処理を解除して、血液凝固反応を開始することができる。
血液試料は、癌などの疾患患者又は癌などの疾患が疑われる患者の血液試料であることが好ましい。
本発明の方法において、接触因子阻害剤としては、FXI(血液凝固第11因子)阻害剤、FXII(血液凝固第12因子)阻害剤、カリクレイン阻害剤などが用いられ、それら2種以上の阻害剤を混合して添加されることが好ましい。
特に、FXII阻害剤とカリクレイン阻害剤を組み合わせることで、血液凝固の亢進による短縮度合いを良好に評価することが可能となる。
接触因子の阻害剤は、低分子合成物やペプチド/蛋白などを用いることができる。
FXI阻害剤は、FXI阻害活性を有する物質であれば特に制限されないが、BMS-962212(J Med Chem. 2017 Dec 14;60(23):9703-9723)やFXI阻害アプタマー(Sci Rep. 2017 May 18;7(1):2102. Selection and characterization of a DNA aptamer inhibiting coagulation factor XIa)などを使用することができる。FXI阻害剤は、例えば、BMS-962212であれば終濃度100nM~100μMで添加されることが好ましい。
FXII阻害剤は、FXII阻害活性を有する物質であれば特に制限されないが、コーントリプシンインヒビター(CTI)やペプチド阻害剤(例えば、bicyclic peptide 61(BP-61)又はbicyclic peptide 73(BP-73);J Med Chem. 2017 Feb 9;60(3):1151-1158)などを使用することができる。FXII阻害剤は、例えばCTIであれば終濃度10μg/mL~200μg/mLで添加されることが好ましい。
BP61及びBP73であれば、終濃度1~100μg/mLで添加されることが好ましい。
カリクレイン阻害剤は、特に制限されないが合成カリクレイン阻害剤(例えばPKSI-527(CAS番号: 128837-71-8)Abcam社)やアプロチニンなどが望ましい。PKSI-527であれば、終濃度1μM~1mMで添加されることが好ましい。アプロチニンであれば、終濃度10~1000KIU/mLで添加されることが好ましい。
さらに好ましくは、FXII阻害剤とカリクレイン阻害剤の両方を添加することで、全血における接触因子活性化によっておこる血液凝固反応が十分に抑制され、外因系凝固の亢進の識別が可能となり好ましい。
接触因子の阻害剤としては、活性化されていない凝固因子(FXII, FXI)の活性化の阻害剤又は活性化凝固因子(FXIIa、FXIa)の酵素活性の阻害剤のどちらを用いることも可能である。
TFPI阻害剤としては、低分子及びペプチド/蛋白の阻害剤を用いることができ、TFPIの機能を阻害できる物質である限り特に制限されないが、具体的には、低分子ペプチドのTFPI阻害剤(例えば、compound 3; J Biol Chem . 2014 Jan 17;289(3):1732-41)が例示される。TFPI阻害剤は、例えば、compound3であれば、1μg/mL~200μg/mLの終濃度で添加される。compound 3, Ac-FQSKpNVHVDGYFERL-Aib-AKL-NH2
その他のTFPI阻害剤として、RNAアプタマー阻害剤を用いることもできる。
RNAアプタマー阻害剤としてBAX499(J Thromb Haemost. 2012 Aug;10(8):1581-90. )が挙げられる。例えば、BAX499であれば、1nM~1000nMの終濃度で添加される。
また、TFPI阻害活性を有する抗TFPI抗体などを使用することもできる。
血液凝固の解析方法としては、特に制限されず、ROTEM(Rotational Thromboelastometry)、TEG(Thromboelastography)、ClotPro(Hemonetics社) SONOCLOT(サイエンコ社)、ACTAS(藤森工業株式会社:WO2018/043420)など全血の血液凝固を評価できる装置が望ましい。
検体に全血を用いることで、細胞成分(白血球・赤血球)に起因する血液凝固亢進を良好に評価することが可能となる。
あらかじめ、健常者血液と血液凝固亢進患者の血液に、接触因子阻害剤およびTFPI阻害剤を添加して血液凝固試験を行って凝固時間や凝固波形を算出しておき、検体の凝固時間や凝固波形がいずれに近いかをみることで、血液凝固亢進状態が存在するかを調べることができる。
また、血液試料に接触因子阻害剤ならびにTFPI阻害剤を添加して行った血液凝固試験の結果を、TFPI阻害剤を添加しない場合(TFPI阻害剤非存在下)、すなわち、血液試料に接触因子阻害剤のみを添加して行った血液凝固試験の結果対比することで、血液凝固亢進状態が、主に血液中の組織因子に起因するものか、またはそれ以外(例えばマイクロパーティクルや血小板活性化)に起因するものかを評価することもできる。
例えば、TFPI阻害剤の有り無しの血液凝固時間やROTEM/TEGの波形を比較し、その延長度を評価することで、凝固亢進状態の要因の評価が可能となる。
また、接触因子阻害剤およびTFPI阻害剤を添加して行った外因系血液凝固試験の結果を、外因系血液凝固阻害剤(FVII阻害剤(FVIIa阻害剤とも呼ばれる)、組織因子阻害剤、不活性化FVIIa等)存在下に行った内因性血液凝固試験の結果と比較することによっても、血液凝固の亢進の要因を解析することが可能である。
すなわち、血液試料に、接触因子阻害剤と外因系血液凝固阻害剤の両方を添加して、血液凝固能の測定を行うことで、血中の組織因子に起因しない内因系の血液凝固の亢進状態を評価することができる。
内因性血液凝固試験に使用される外因系血液凝固阻害剤としては、FVII(血液凝固第7因子)阻害剤、組織因子阻害剤、不活性化FVIIa等が挙げられる。FVII阻害剤 はFVIIの活性化に対する阻害剤またはFVIIaの酵素活性に対する阻害剤を用いることができる。例えばFVII阻害剤としては、合成ペプチド(A-183X;J Biol Chem. 2003 Jun 13;278(24):21823-30)や合成低分子(PCI-27483; 2019;96(4):217-222. doi: 10.1159/000495988. Epub 2019 Mar 7.)や,不活性化FVIIa(Eur J Vasc Endovasc Sur. 1998 Jun;15(6):515-20. doi: 10.1016/s1078-5884(98)80112-3.)及び 組織因子に対する抗体等を用いることが可能である。
FVII阻害剤として、例えば、A183-Xであれば、1nM~1μMの終濃度で添加されることができる。
または、PCI-27483であれば、10nM~10μMの終濃度で添加されることができる。
又は、不活性化FVIIaであれば、10ng/mL~100μg/mLの終濃度で添加されることができる。
外因系血液凝固阻害剤を添加して行う血液凝固の解析は、全血を用いることが好ましい。クエン酸ナトリウムで抗凝固処理された血液を用いる場合は、外因系血液凝固阻害剤と塩化カルシウムを添加して、血液凝固の解析を行うことができる。
外因系血液凝固を阻害した内因系血液凝固の解析に関しては、外因系血液凝固阻害剤(FVII又は組織因子の阻害剤)に加えて、接触因子阻害剤(FXI阻害剤、FXII阻害剤、カリクレイン阻害剤)を添加することが好ましい。
接触因子阻害剤としては、上述したFXI(血液凝固第11因子)阻害剤、FXII(血液凝固第12因子)阻害剤、カリクレイン阻害剤などが用いられ、その好ましい濃度範囲も同様である。
外因系血液凝固阻害剤と接触因子阻害剤の両方を添加した場合には、内因系血液凝固の活性化試薬として、微量の血液凝固活性化剤をさらに添加してもよい。 微量の血液凝固活性化剤としては、活性化凝固因子(FXaやトロンビン)及びラッセル蛇毒(Russel’s viper venom; RVV)由来のFX(血液凝固第10因子)活性化酵素(RVV-X;J Biol Chem. 1994 Apr 8;269(14):10644-50.)などのFX活性化剤、エカリン(Am J Hematol. 2020 Jul;95(7):863-869.)などのプロトロンビン活性化剤を用いることができる。
RVV-Xの場合には、0.1ng/mL~1000ng/mLの終濃度で使用することが可能である。
エカリンの場合には、0.1mU~100mUの終濃度で使用することが可能である。
これら血液凝固活性剤は、接触因子阻害剤や外因系凝固阻害剤による阻害を受けない。
また、血液凝固活性化剤は、健常者の血液において血液凝固時間が20分~60分になるように添加されることが望ましい。健常者における血液凝固時間が20分以上であれば、血液凝固亢進患者の血液における血液凝固時間の短縮を検出することが可能である。
または、外因系血液凝固阻害剤とカリクレイン阻害剤を組み合わせてもよい。
外因系血液凝固阻害剤に加え接触因子阻害剤としてカリクレイン阻害剤を単独で用いた場合には、FXIIは直接的には阻害されないが、FXIIaとカリクレインの相互活性化が抑制されることでFXIIa産生が抑制されるため、健常者における活性化が20分以上にまで延長され、血液凝固亢進の患者における凝固時間の短縮傾向を検出することが可能である。
さらに、TFPI阻害剤無しとの結果の比較、または外因系血液凝固阻害剤存在下の内因系血液凝固の解析結果と比較し、血液凝固亢進の要因を解析することで、たとえば、組織因子に起因するものであれば抗凝固薬を、血小板活性化によるものであれば抗血小板薬を投与するなど、治療に反映することが可能である。
例えば、癌関連の血栓症においては、腫瘍の種類や治療薬によって、種々の凝固亢進状態の要因が発現する。
例えば、腫瘍細胞が直接的に組織因子を発現する、または組織因子を発現したマイクロパーティクルを放出することがある。また、ある種の腫瘍細胞はポドプラニンという糖タンパクを発現しており、血小板を直接的に活性化する。活性化した血小板表面の酸性リン脂質により血液凝固を促進する。種々の抗がん剤の治療による血管内皮障害による血管内皮由来のマイクロパーティクルなどを放出する。特に血管新生阻害(VEGF阻害薬)による血管内皮細胞の障害による静脈血栓症発症は多く報告されている。
このように、腫瘍に関連する血液凝固亢進病態の要因は複数あるが、組織因子の影響が強い場合は、TFPI阻害剤の存在下と非存在下の血液凝固の差または前述の外因系凝固と内因系凝固の解析結果の差、が大きくなり、反対に、マイクロパーティクルや血小板活性化による影響が強い場合は、差分は小さくなる。
このようにTFPIに対する阻害剤の存在下と非存在下の血液凝固を対比、または外因系及び内因系の血液凝固を対比することで、血液凝固亢進の度合いや要因を解析することが可能である。
なお、血液検体は、採取後、直ちに、接触因子阻害剤とTFPI阻害剤を添加して血液凝固を測定してもよいが、採血直後の血液凝固の検査の実施が困難な場合がある。
よって、可逆的な抗凝固処理剤を含む採血容器で採取し、測定開始時に、採血容器に含まれる抗凝固処理の解除剤と接触因子阻害剤とTFPI阻害剤を含む試薬を添加し、血液凝固の解析を行うことが望ましい。
例えば、可逆的な抗凝固剤としてクエン酸ナトリウムを含む容器で血液を採取した場合には、塩化カルシウムと接触因子阻害剤とTFPI阻害剤を添加して血液凝固を解析する。
このような、可逆的な抗凝固剤と解除剤の組み合わせとしては、ヘパリンとヘパリン中和剤(へパリナーゼ、ポリブレーン、プロタミン等)、トロンビン阻害DNAアプタマーとトロンビン阻害DNAアプタマーのアンチセンスDNAなどがあげられる。
可逆的な抗凝固剤としてクエン酸を用いた場合には、市販のクエン酸ナトリウムを含む採血管(または採血用容器)を用いることができ便利である。
ただし、ブチルゴム製のゴム栓を有するクエン酸ナトリウムを含む真空採血管を用いた場合には、ゴム栓との接触により血液凝固が活性化され、凝固時間が短縮されることがある。
よって、ゴム栓を使用しないクエン酸を含む採血管を用いることが好ましい。
例えばゴム栓を使用しない採血管としてラミネートフィルムでシールされたベノジェクト採血管(テルモ社)などが使用できる。
ゴム栓のクエン酸を含む採血管を用いて採取した血液で検査する場合には、血液凝固時間を延長するために、血液凝固の検査時に塩化カルシウムと接触因子阻害剤とTFPI阻害剤に加えて、少量のヘパリン様物質(ヘパリン、低分子ヘパリン、ペンタサッカライド、ヘパラン硫酸)などの抗凝固物質を添加してもよい(WO2017/119508)。
この場合、健常人におけるROTEMやClotPro(enicor GmbH)などの装置を用いた血液凝固時間は、20-60分程度になるように調整されることが望ましい。
または、ゴム栓を用いたクエン酸ナトリウムを含む採血管を用いる場合に、採血管にあらかじめクエン酸ナトリウムとFXII阻害剤を添加された採血管を用いてゴム栓による接触因子の活性化を抑制することが可能である。
全血をクエン酸ナトリウムで抗凝固処理すると、血小板や白血球などの細胞成分の機能が低下することがある。よって、血小板や白血球の活性化状態をよりよく反映したい場合には、クエン酸ナトリウムと塩化カルシウム以外の可逆的抗凝固剤と解除剤の組み合わせ(すなわち、ヘパリンとへパリナーゼ、トロンビン阻害DNAアプタマーとアンチセンスDNA)を用いることが好ましい。
本発明はまた、接触因子阻害剤およびTFPI阻害剤を含む、インビトロにおける外因系血液凝固能測定のための試薬キットを提供する。接触因子阻害剤およびTFPI阻害剤の種類は上述したとおりであり、これらは、使用時に希釈されて血液凝固能測定に適した終濃度(好ましい終濃度の範囲は上述のとおり)で添加される。
本発明はまた、接触因子阻害剤と外因系血液凝固阻害剤を含む、インビトロにおける内因系血液凝固能測定のための試薬キットを提供する。接触因子阻害剤および外因系血液凝固阻害剤の種類は上述したとおりであり、これらは、使用時に希釈されて血液凝固能測定に適した終濃度(好ましい終濃度の範囲は上述のとおり)で添加される。
以下、実施例を挙げて本発明をより具体的に説明するが、本発明は以下の態様には限定されない。本実施例の血液検体は、特に記載のない限り健常ヒトより採血したものである。
実施例1
血液凝固の解析にROTEM(Instrumentation Laboratory(IL)社)を用いた。
血液はテルモ社製の3.2%クエン酸ナトリウムを含む採血管(5mL)を用い採取した。
本採血管はラミネートフィルムでシールされ、ゴム栓が使用されていない。
全血 300μLに、以下の試薬を添加して血液凝固波形を解析した。
 (1)塩化カルシウム試薬であるStartem試薬(IL社)20μL(終濃度12mM)
 (2)Startem試薬(IL社)20μL(終濃度12mM)とTFPI阻害剤(compound3)(終濃度100μg/mL)
 (3)Startem試薬(IL社)20μL(終濃度12mM)とTFPI阻害剤(compound3)(終濃度100μg/mL)とウサギ脳由来組織トロンボプラスチン(終濃 0.45ng/mL)
 (4)Startem試薬(IL社)20μL(終濃度12mM)とTFPI阻害剤(compound3)(終濃度100μg/mL)とウサギ脳由来組織トロンボプラスチン(終濃度 0.9ng/mL)
結果を図1に示す。塩化カルシウムのみを添加した(1)の凝固時間(CT)が1336秒であったのに対し、塩化カルシウムとTFPIに対する阻害剤を添加した(2)のCTは801秒と短縮した。さらに(3)と(4)では、微量の組織トロンボプラスチンの添加により、CTは452及び371秒に短縮した。
TFPI阻害剤による微量組織トロンボプラスチン存在下の血液凝固促進作用が示された。
実施例2
血液凝固の解析にROTEM(IL社)を用いた。
血液はテルモ社製の3.2%クエン酸ナトリウムを含む採血管(5mL)を用い採取した。
本採血管はラミネートフィルムでシールされ、ゴム栓が使用されていない。
全血 300μLに、以下の試薬を添加して血液凝固波形を解析した。
 (1)塩化カルシウム(終濃度12mM)とCTI(終濃度50μg/mL)
 (2)塩化カルシウム(終濃度12mM)とCTI(終濃度20μg/mL)とPKSI-527(終濃度40μM)
 (3)塩化カルシウム(終濃度12mM)とCTI(終濃度20μg/mL)とPKSI-527(終濃度40μM)とウサギ脳由来組織トロンボプラスチン(終濃度 0.45ng/mL)
 (4)塩化カルシウム(終濃度12mM)とCTI(終濃度20μg/mL)とPKSI-527(終濃度40μM)とウサギ脳由来組織トロンボプラスチン(終濃度 0.45ng/mL)とTFPI阻害剤(compound3)(終濃度100μg/mL)
結果を図2に示す。FXII因子阻害剤とカリクレイン阻害剤の両方を添加することで、(2)の凝固時間(CT)は2245秒に延長された。さらに、微量組織トロンボプラスチンを添加した(3)のCTは1304秒に短縮され、微量の組織トロンボプラスチンとTFPI阻害剤を添加した(4)のCTは489秒まで短縮された。FXII阻害剤とカリクレイン阻害剤を添加することで微量組織トロンボプラスチン非添加時の凝固時間は延長され、さらに微量組織トロンボプラスチンとTFPI阻害剤を添加した場合には、大幅に凝固時間が短縮した。
すなわち、FXII阻害剤とカリクレイン阻害剤とTFPI阻害剤の存在により、微量組織トロンボプラスチンによる血栓形成の促進効果の評価が可能になった。
実施例1と比べ、接触因子阻害剤とカリクレイン阻害剤を添加した実施例2では、微量組織因子非存在下の血液凝固が遅延しているが、微量組織トロンボプラスチンとTFPI阻害剤を添加した場合には血液凝固時間は大幅に短縮されている。すなわち、接触因子阻害剤とTFPI阻害剤を添加することで、微量組織トロンボプラスチンによる易血栓性の評価が容易になる。
実施例3
血液凝固の解析にROTEM(IL社)を用いた。
血液はベクトンディッキンソン社製の3.2%クエン酸ナトリウムを含む採血管(2mL)を用い採取した。本採血管はゴム栓が使用されている。
全血に、以下の試薬を添加して血液凝固波形を解析した。
 (1)塩化カルシウム(終濃度12mM)とCTI(終濃度50μg/mL)
 (2)塩化カルシウム(終濃度12mM)とCTI(終濃度20μg/mL)とPKSI-527(終濃度40μM)とヘパラン硫酸(終濃度1μg/mL)
 (3)塩化カルシウム(終濃度12mM)とCTI(終濃度20μg/mL)とPKSI-527(終濃度40μM)とヘパラン硫酸(終濃度1μg/mL)とウサギ脳由来組織トロンボプラスチン(終濃度 0.9ng/mL)
 (4)塩化カルシウム(終濃度12mM)とCTI(終濃度20μg/mL)とPKSI-527(終濃度40μM)とヘパラン硫酸(終濃度1μg/mL)とウサギ脳由来組織トロンボプラスチン(終濃度 0.9ng/mL)とTFPI阻害剤(compound3)(終濃度100μg/mL)
結果を図3に示す。ゴム栓を使用した採血管を用いた場合には、ゴム栓の影響で血液凝固が促進されることがある。(2)のようにゴム栓の凝固促進効果はヘパラン硫酸により抑制されうる。
さらに、微量の組織トロンボプラスチンを添加した(3)のCTは1451秒であったが、さらにTFPI阻害剤を添加した(4)はCTが440秒に短縮された。
接触因子阻害剤とヘパラン硫酸とTFPI阻害剤を添加することで、微量の組織因子による血液凝固促進効果を評価することが可能であった。
実施例4
血液凝固の解析にROTEM(IL社)を用いた。
血液はテルモ社製の3.2%クエン酸ナトリウムを含む採血管を用い採取した。
本採血管はラミネートフィルムでシールされ、ゴム栓が使用されていない。
全血300μLに、以下の試薬を添加して血液凝固波形を解析した。
 (1)塩化カルシウム(終濃度12mM)とCTI(終濃度20μg/mL)
 (2)塩化カルシウム(終濃度12mM)とPKSI-527(終濃度40μM)
 (3)塩化カルシウム(終濃度12mM)とCTI(終濃度20μg/mL)とPKSI-527(終濃度40μM)
 (4)Startem試薬(IL社)(20μL)
 (5)塩化カルシウム(終濃度12mM)とCTI(終濃度20μg/mL)とヒト遺伝子組み換え組織因子(デイドイノビン;シーメンス社)(1000倍希釈を1%添加)
 (6)塩化カルシウム(終濃度12mM)とPKSI-527(終濃度40μM)とヒト遺伝子組み換え組織因子(デイドイノビン;シーメンス社)(1000倍希釈を1%添加)
 (7)塩化カルシウム(終濃度12mM)とCTI(終濃度20μg/mL)とPKSI-527(終濃度40μM) とヒト遺伝子組み換え組織因子(デイドイノビン;シーメンス社)(1000倍希釈を1%添加)
 (8)Startem試薬(IL社)とヒト遺伝子組み換え組織因子(デイドイノビン;シーメンス社)(1000倍希釈を1%添加)
CT及びCFTの結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
FXII因子阻害剤単独(1)及びカリクレイン阻害剤単独(2)の場合に比べ、両方を添加(3)することで、凝固時間(CT)は延長度が増した。
一方、デイドイノビンを微量添加した場合の凝固時間(5)(6)(7)は、CT値が600秒前後と同等であった。よって、FXII阻害剤とカリクレイン阻害剤の両方を加えることで微量組織因子添加による凝固時間の短縮幅が大きくなり、凝固亢進の識別が容易になる。一方、接触因子阻害剤の非添加(4)(8)の凝固時間の短縮幅はさらに小さく、凝固亢進の評価としては適さないことが示された。
実施例5
血液凝固の解析にROTEM(IL社)を用いた。
血液はテルモ社製の3.2%クエン酸ナトリウムを含む採血管(5mL)を用い採取した。
本採血管はラミネートフィルムでシールされ、ゴム栓が使用されていない。
全血300μLに、以下の試薬を添加して血液凝固波形を解析した。
 (1)Startem試薬(IL社)(20μL)
 (2)塩化カルシウム(終濃度12mM)とCTI(終濃度20μg/mL)とPKSI-527(終濃度40μM)
 (3)塩化カルシウム(終濃度12mM)とCTI(終濃度20μg/mL)とPKSI-527(終濃度40μM)及びTFPI阻害剤(compound3)(終濃度50μM)
 (4)Startem試薬(IL社)(20μL)とヒト臍帯静脈内皮細胞由来エクソソーム(終濃度 1μg/mL)
 (5)塩化カルシウム(終濃度12mM)とCTI(終濃度20μg/mL)とPKSI-527(終濃度40μM)とヒト臍帯静脈内皮細胞(HUVEC)由来エクソソーム(終濃度 1μg/mL)
 (6)塩化カルシウム(終濃度12mM)とCTI(終濃度20μg/mL)とPKSI-527(終濃度40μM)及びTFPI阻害剤(compound3)(終濃度50μM)とヒト臍帯静脈内皮細胞(HUVEC)由来エクソソーム(終濃度 1μg/mL)
 (7)Startem試薬(IL社)(20μL)とヒト悪性黒色腫A375細胞由来エクソソーム(終濃度1μg/mL)
 (8)塩化カルシウム(終濃度12mM)とCTI(終濃度20μg/mL)とPKSI-527(終濃度40μM)と ヒト悪性黒色腫A375細胞由来エクソソーム(終濃度1μg/mL)
 (9)塩化カルシウム(終濃度12mM)とCTI(終濃度20μg/mL)とPKSI-527(終濃度40μM)及びTFPI阻害剤(compound3)(終濃度50μM)とヒト悪性黒色腫A375細胞由来エクソソーム(終濃度1μg/mL)
 (10)Startem試薬(IL社)(20μL) とヒト ヒストンH4(ABCAM社製)(終濃度2μM)
 (11)塩化カルシウム(終濃度12mM)とCTI(終濃度20μg/mL)とPKSI-527(終濃度40μM)とヒト ヒストンH4(ABCAM社製)(終濃度2μM)
 (12)塩化カルシウム(終濃度12mM)とCTI(終濃度20μg/mL)とPKSI-527(終濃度40μM)及びTFPI阻害剤(compound3)(終濃度50μg/mL)とヒト ヒストンH4(ABCAM社製)(終濃度2μM)
CT値の結果を表2に示す。
Figure JPOXMLDOC01-appb-T000002
血管内皮細胞や癌細胞由来のエクソソームは、表面に組織因子や酸性リン脂質を有することで血液凝固を促進し、血栓症の要因になることが知られている。
また、ヒストンは血小板を活性化することで血栓形成を促進することが知られる。
STARTEM試薬(1)(4)(7)(10)と比べ、CTIとカリクレイン阻害剤を添加した場合(2)(5)(8)(11)では、血栓促進物質の添加による血液凝固の短縮幅が大きく、特にA375細胞由来エクソソームの添加(8)により大きく血液凝固時間が短縮した。
CTIとカリクレイン阻害剤とTFPI阻害剤を添加した場合、A375細胞由来エクソソームとヒストンH4添加の両方の血液凝固時間が短縮した。(9)(12)
さらに、癌細胞(A375)由来のエクソソームでは正常細胞(HUVEC)由来のエクソソームに比べて血液凝固の亢進度が大きいことが確認された。
実施例6
血液凝固の解析にROTEM(IL社)を用いた。
血液はテルモ社製の3.2%クエン酸ナトリウムを含む採血管(5mL)を用い採取した。
本採血管はラミネートフィルムでシールされ、ゴム栓が使用されていない。
全血300μLに、大腸菌由来リポポリサッカライド(LPS;Merk社製)(終濃度1μg/mL)または、phorbol myristate acetate (PMA;Merk社製)(終濃度50nM)または ヒト ヒストンH4(ABCAM社製)(終濃度2μM)を添加して、4時間37℃でインキュベーションした後に、さらに(a)~(c)の試薬を添加して血液凝固波形を解析した。
 (a)Startem試薬(IL社)(20μL)
 (b)塩化カルシウム(終濃度12mM)とCTI(終濃度20μg/mL)とPKSI-527(終濃度40μM)
 (c)塩化カルシウム(終濃度12mM)とCTI(終濃度20μg/mL)とPKSI-527(終濃度40μM)及びTFPI阻害剤(compound3)(終濃度50μM)
以下は、最終的な添加試薬の組み合わせとなる。
血液に何も添加せず4時間37℃インキュベーションした後に、(a)(b)(c)を添加して血液凝固を解析した場合
 (1)Startem試薬(IL社)(20μL)
 (2)塩化カルシウム(終濃度12mM)とCTI(終濃度20μg/mL)とPKSI-527(終濃度40μM)
 (3)塩化カルシウム(終濃度12mM)とCTI(終濃度20μg/mL)とPKSI-527(終濃度40μM)とTFPI阻害剤(compound3)(終濃度50μM)
血液にLPSを添加して4時間37℃インキュベーションした後に、(a)(b)(c)を添加して血液凝固を解析した場合
 (4)Startem試薬(IL社)(20μL)と大腸菌由来リポポリサッカライド(LPS;Merk社製)(終濃度1μg/mL)
 (5)塩化カルシウム(終濃度12mM)とCTI(終濃度20μg/mL)とPKSI-527(終濃度40μM)と大腸菌由来リポポリサッカライド(LPS;Merk社製)(終濃度1μg/mL)
 (6)塩化カルシウム(終濃度12mM)とCTI(終濃度20μg/mL)とPKSI-527(終濃度40μM)及びTFPI阻害剤(compound3)(終濃度50μM)と大腸菌由来リポポリサッカライド(LPS;Merk社製)(終濃度1μg/mL)
血液にPMAを添加して4時間37℃インキュベーションした後に、(a)(b)(c)を添加して血液凝固を解析した試薬
 (7)Startem試薬(IL社)(20μL)とphorbol myristate acetate (PMA;Merk社製)(終濃度50nM)
 (8)塩化カルシウム(終濃度12mM)とCTI(終濃度20μg/mL)とPKSI-527(終濃度40μM)と ヒト悪性黒色腫A375細胞由来エクソソーム(終濃度1μg/mL)とphorbol myristate acetate (PMA;Merk社製)(終濃度50nM)
 (9)塩化カルシウム(終濃度12mM)とCTI(終濃度20μg/mL)とPKSI-527(終濃度40μM)とTFPI阻害剤(compound3)(終濃度50μM)とヒト悪性黒色腫A375細胞由来エクソソーム(終濃度1μg/mL)とphorbol myristate acetate (PMA;Merk社製)(終濃度50nM)
血液にヒストンH4を添加して4時間37℃インキュベーションした後に、(a)(b)(c)を添加して血液凝固を解析した試薬
 (10)Startem試薬(IL社)(20μL) とヒト ヒストンH4(ABCAM社製)(終濃度2μM)
 (11)塩化カルシウム(終濃度12mM)とCTI(終濃度20μg/mL)とPKSI-527(終濃度40μM)とヒト ヒストンH4(ABCAM社製)(終濃度2μM)
 (12)塩化カルシウム(終濃度12mM)とCTI(終濃度20μg/mL)とPKSI-527(終濃度40μM)とTFPI阻害剤(compound3)(終濃度50μM)とヒト ヒストンH4(ABCAM社製)(終濃度2μM)
CT及びCFTの結果を表3に示す。
Figure JPOXMLDOC01-appb-T000003
LPSはToll-like receptor 4を介して単球表面に組織因子を発現させ血液凝固を亢進更新することが知られている。また、PMAは好中球に作用し、好中球細胞外トラップ(NETs)を誘導することで血栓形成を促進することが知られている。
STARTEM試薬(1)(4)(7)(10)では、LPS, PMA, ヒストン等の血栓促進物質による短縮幅は小さい。一方、と比べ、CTIとカリクレイン阻害剤を添加した場合(2)(5)(8)(11)では、LPS、PMA、ヒストン等の血栓促進物質の添加による血液凝固の短縮幅が大きい。さらにCTIとカリクレイン阻害剤とTFPI阻害剤を添加した場合(3)(6)(9)(12)において、血栓促進物質を添加した血液の血液凝固時間が短く、さらに、組織因子発現を促すLPSの添加によって血液凝固が大きく促進される(6)ことが確認された。
(比較例)
血液凝固の解析にROTEM(IL社)を用いた。
血液はテルモ社製の3.2%クエン酸ナトリウムを含む採血管(5mL)を用い採取した。
本採血管はラミネートフィルムでシールされ、ゴム栓が使用されていない。
得られた血液を3000rpm(15分)及び2400rpm(7分)遠心することで血漿と多血小板血漿を得た。これら血漿に実施例6と同様の試薬(LPS、PMA、ヒストン)を添加して、4時間37℃でインキュベーションした後に、実施例6の(1)~(12)と同様の試薬を添加して血液凝固波形を解析した。
結果を表4に示す。
Figure JPOXMLDOC01-appb-T000004
検体に血漿及び多血小板血漿を用いた場合には、接触因子阻害剤を加えた場合には、血液凝固時間が1時間以上(-)になりCT値がえられないことが多く、解析に不適であった。このことより血液凝固の亢進の評価には全血であることが好ましいことが分かる。
実施例7
血液凝固の解析にROTEM(IL社)を用いた。
血液はテルモ社製の3.2%クエン酸ナトリウムを含む採血管(5mL)を用い採取した。
本採血管はラミネートフィルムでシールされ、ゴム栓が使用されていない。
全血300μLに、以下の試薬を添加して、血液凝固波形を解析した。
 (1)Startem試薬(IL社)(20μL)
 (2)塩化カルシウム(終濃度12mM)とCTI(終濃度20μg/mL)とPKSI-527(終濃度40μM)
(3)塩化カルシウム(終濃度12mM)とCTI(終濃度20μg/mL)とPKSI-527(終濃度40μM)とFVIIa阻害剤(A-183X)(終濃度 100nM)
 (4)塩化カルシウム(終濃度12mM)とCTI(終濃度20μg/mL)とPKSI-527(終濃度40μM)とFVIIa阻害剤(A-183X)(終濃度 100nM)とラッセル蛇毒FX活性化酵素(RVV-FX)(終濃度 5ng/ml)
 (5)塩化カルシウム(終濃度12mM)とCTI(終濃度20μg/mL)とPKSI-527(終濃度40μM)とFVIIa阻害剤(A-183X)(終濃度 100nM)とエカリン(終濃度 4mU/ml単位)
 (6)塩化カルシウム(終濃度12mM)とPKSI-527(終濃度40μM)とFVIIa阻害剤(A-183X)(終濃度 100nM)
さらに、(1)から(6)の試薬に、血液凝固促進物質として、A375由来エクソソーム(終濃度1μg/mL)を添加して対比実験を行った。
CTとCFTの結果を表5に示す。
Figure JPOXMLDOC01-appb-T000005
本実施例では、外因系の血液凝固の亢進状態の評価(2)と対比して、内因系血液凝固の亢進状態を評価することを目的に、CTIとカリクレイン阻害剤とFVIIa阻害剤と微量のRVV-FX又はエカリンを添加した場合(4)及び(5)、さらにカリクレイン阻害剤とFVIIa阻害剤を添加した場合(6)の血液凝固を解析した。
(4)と(5)では、接触因子活性化とFVIIaの活性を抑制した状態で、微量なRVV(FX活性化剤)又はエカリン(プロトロンビン活性化剤)を添加することで、内因系の血液凝固の評価をしている。微量のエカリンまたはRVV-FXで血液凝固により産生されたトロンビンは、FXI, FVIII,FVを活性化することで、内因系血液凝固を増幅する。
 
(6)では、FVIIa阻害剤とカリクレイン阻害剤を添加し、部分的な接触因子の阻害環境下において接触因子活性化により産生されるFIXaを起点とする内因系血液凝固の活性化による血液凝固時間を評価している。
ヒト悪性黒色腫A375細胞由来エクソソームの非添加の場合に、STARTEM試薬を添加した場合(1)に比べ、塩化カルシウムとCTIとカリクレイン阻害剤を添加した(2)は、大きく血液凝固時間が延長される。一方、塩化カルシウムとCTIとカリクレイン阻害剤とFVIIa阻害剤を添加した場合(3)は、(2)に比べて延長幅は小さい。
これは、健常人の血液中の組織因子が非常に少なく血液凝固に与える影響が軽微であることを示す。
(2)に対してさらにヒト悪性黒色腫A375細胞由来エクソソームを添加した場合に、血液凝固時間は大きく短縮するが、(3)に対してA375由来エクソソームを添加した場合の血液凝固時間の短縮は限定的である。これによりA375由来エクソソームには、多量の組織因子が含まれていると考えられる。
一方、(4)(5)(6)に対してA375由来エクソソームを添加した場合の血液凝固時間の短縮は限定的であった。
これは、A375由来エクソソームによる血液凝固短縮は、主にエクソソーム表面に存在する組織因子に起因した外因系血液凝固の活性化によるものであり、酸性リン脂質等に起因する内因系の血液凝固の活性化は限定的軽微であると考えられる。
実施例8
血液凝固の解析にROTEM(IL社)を用いた。
血液はテルモ社製の3.2%クエン酸ナトリウムを含む採血管(5mL)を用い採取した。
本採血管はラミネートフィルムでシールされ、ゴム栓が使用されていない。
全血300μLに、添加剤無し又はLPS(終濃度1μg/mL)及びPMA(終濃度 50nM)を添加して、4時間37℃でインキュベーションした後に、実施例02の(1)~(6)の試薬を添加して血液凝固時間を解析した。
CTとCFTの結果を表6に示す。
Figure JPOXMLDOC01-appb-T000006
(2)に対してLPSを添加した場合に、血液凝固時間は大きく短縮する。また(3)に対してLPSを添加した場合にも、血液凝固は中程度に短縮する。さらに、(4)(5)(6)に対してLPSを添加した場合においても、血液凝固時間の短縮が確認された。
このことより、LPSの添加によって、組織因子の発現による外因系凝固の活性化に加え、内因系の血液凝固の活性化も引き起こされていると考えられる。
一方、(2)にPMAを添加した場合には、中程度の血液凝固時間の短縮が起きるが、(4)(5)(6)にPMAを添加した場合の血液凝固時間の短縮は限定的であった。
この結果より、PMAの添加では、LPSに比べ弱い外因系の血液凝固の活性化が起きていると考えられる。
実施例9
血液凝固の解析にclotpro(Haemonetics社)を用いた。
血液はテルモ社製の3.2%クエン酸ナトリウムを含む採血管(5mL)を用い採取した。
本採血管はラミネートフィルムでシールされ、ゴム栓が使用されていない。
採血した全血(340μL)に、(1)~(6)以下の試薬を添加した後に、(7)~(12)のいずれかの試薬を添加して血液凝固時間を解析した。
(1) BP61(FXII阻害剤) 終濃度5μg/mL
(2) BP73(FXII阻害剤) 終濃度 5μg/mL
(3) BP61(FXII阻害剤) 終濃度5μg/mLとPKSI-527(終濃度40μM)
(4)  BP73(FXII阻害剤) 終濃度 5μg/mLとPKSI-527(終濃度40μM)
(5) CTI終濃度20μg/mL
(6) CTI終濃度 20μg/mLとPKSI-527(終濃度40μM)
(7) 塩化カルシウム(終濃度12mM)
(8) 塩化カルシウム(終濃度12mM)、CTI(終濃度 20μg/mL)及びPKSI-527(終濃度40μM)
(9) 塩化カルシウム(終濃度12mM)、BP61(終濃度 10μg/mL)及びPKSI-527(終濃度40μM)
(10)塩化カルシウム(終濃度12mM)、BP61(終濃度 20μg/mL)及びPKSI-527(終濃度40μM)
(11)塩化カルシウム(終濃度12mM)、BP73(終濃度 10μg/mL)及びPKSI-527(終濃度40μM)
(12)塩化カルシウム(終濃度12mM)、BP73(終濃度 20μg/mL)及びPKSI-527(終濃度40μM)
CT及びCFTの結果を以下の表7に示す。
Figure JPOXMLDOC01-appb-T000007
FXII阻害剤として、CTI,BP61,BP73のいずれも使用することが可能であった。さらにカリクレイン阻害剤と併用することで接触因子を抑制し、血液凝固時間を延長した。
実施例10
血液凝固の解析にclotpro(Haemonetics社)を用いた。
血液はテルモ社製の3.2%クエン酸ナトリウムを含む採血管(5mL)を用い採取した。
本採血管はラミネートフィルムでシールされ、ゴム栓が使用されていない。
全血に、以下の試薬を添加して、血液凝固波形を解析した。
 (1)Startem試薬(IL社)(20μL)
 (2)塩化カルシウム(終濃度12mM)とCTI(終濃度20μg/mL)とPKSI-527(終濃度40μM)
 (3)塩化カルシウム(終濃度12mM)とCTI(終濃度20μg/mL)とPKSI-527(終濃度40μM)及びTFPI阻害剤(compound3)(終濃度50μM)
 (4)Startem試薬(IL社)(20μL)とA375由来エクソソーム(終濃度1μg/mL)
 (5)塩化カルシウム(終濃度12mM)とCTI(終濃度20μg/mL)とPKSI-527(終濃度40μM) とA375由来エクソソーム(終濃度1μg/mL)
 (6)塩化カルシウム(終濃度12mM)とCTI(終濃度20μg/mL)とPKSI-527(終濃度40μM)及びTFPI阻害剤(compound3)(終濃度50μM)とA375由来エクソソーム(終濃度1μg/mL)
CTとCFTの結果を以下の表8に示す。
Figure JPOXMLDOC01-appb-T000008
A375由来エクソソームの添加により、(5)(6)で顕著に血液凝固が促進しており、凝固亢進効果の評価が可能であった。
実施例11
血液凝固の解析にROTEM(IL社)を用いた。
血液はテルモ社製の3.2%クエン酸ナトリウムを含む採血管(5mL)を用い採取した。
本採血管はラミネートフィルムでシールされ、ゴム栓が使用されていない。
全血に、以下の試薬を添加して、血液凝固波形を解析した。
(1)塩化カルシウム(終濃度12mM)とCTI(終濃度20μg/mL)とPKSI-527(終濃度40μM)とFVIIa阻害剤(A-183X)(終濃度 100nM)とエカリン(終濃度 1mU/ml単位)
(2)塩化カルシウム(終濃度12mM)とCTI(終濃度20μg/mL)とPKSI-527(終濃度40μM)とFVIIa阻害剤(A-183X)(終濃度 100nM)とエカリン(終濃度 2mU/ml単位)
(3)塩化カルシウム(終濃度12mM)とCTI(終濃度20μg/mL)とPKSI-527(終濃度40μM)とFVIIa阻害剤(A-183X)(終濃度 100nM)とエカリン(終濃度 4mU/ml単位)
結果を以下の表9に示す。
Figure JPOXMLDOC01-appb-T000009
接触因子阻害剤と外因系血液凝固阻害剤(FVIIa阻害剤)とともに、血液凝固活性化剤として1mU~4mU のエカリンを添加することで、健常人より採取した血液において血液凝固が20分以上に延長された。
通常の血液検体(外部から組織因子は加えない)において、もし、TFPI添加時、非添加時のROTEM波形が同程度であれば、疾患における凝固促進は組織因子以外の要因、例えば、マイクロパーティクル、血小板活性化など外因系以外の要因によると予測することができ、TFPI添加時、非添加時のROTEM波形において明らかに差が生じるのであれば、疾患における凝固促進は組織因子の増加・亢進によるものと予測することができる。
さらに、外因系凝固の評価(FXII阻害剤および/またはカリクレイン阻害剤とTFPI阻害剤を添加)と内因系の血液凝固の評価(接触因子阻害剤およびFVII阻害剤を含む)を対比することでも、血液凝固の亢進の要因を解析することができる。
このようにして、癌などの疾患における血栓症リスクの予測やその要因解析などを行うことができる。
 

Claims (16)

  1. 血液試料に、接触因子阻害剤および組織因子経路阻害剤(TFPI)に対する阻害剤を添加して血液凝固能の測定を行うことを特徴とする、インビトロにおける外因系血液凝固能の評価方法。
  2. 接触因子阻害剤がFXI(血液凝固第11因子)阻害剤、FXII(血液凝固第12因子)阻害剤および/またはカリクレイン阻害剤である、請求項1に記載の方法。
  3. 接触因子阻害剤がFXII阻害剤とカリクレイン阻害剤の両方である、請求項1に記載の方法。
  4. TFPI阻害剤非存在下の血液凝固能の測定結果と比較を行う、請求項1~3のいずれか一項に記載の血液凝固能の解析方法。
  5. 血液試料に、接触因子阻害剤と外因系血液凝固阻害剤の両方を添加して、血液凝固能の測定を行うことを特徴とする、インビトロにおける内因系血液凝固能の評価方法。
  6. 外因系血液凝固阻害剤が、FVII(血液凝固第7因子)阻害剤、組織因子阻害剤、および不活性化FVIIaのいずれか1種以上である請求項5に記載の方法。
  7. さらに、血液凝固活性化剤としてプロトロンビン活性化剤および/または血液凝固第10因子活性化剤を含む、請求項5または6に記載の方法。
  8. プロトロンビン活性化剤がエカリンである、請求項7に記載の方法。
  9. 血液凝固第10因子活性化剤がラッセル蛇毒由来FX活性化酵素(RVV-FX)である請求項7に記載の方法。
  10. 血液試料が全血である、請求項1~9のいずれか一項に記載の方法。
  11. 請求項1~4のいずれか一項に記載の外因系血液凝固の評価と請求項5~9のいずれか一項に記載の内因系血液凝固の評価との比較を行うことを特徴とする、血液凝固能の解析方法。
  12. 測定がROTEM(Rotational Thromboelastometry)および/またはTEG(Thromboelastography)による、請求項1~11のいずれか一項に記載の方法。
  13. 前記血液試料が癌患者又は癌が疑われる患者の血液試料である、請求項1~12のいずれか一項に記載の方法。
  14. 接触因子阻害剤およびTFPI阻害剤を含む、インビトロにおける外因系血液凝固能測定のための試薬。
  15. 接触因子阻害剤と外因系血液凝固阻害剤を含む、インビトロにおける内因系血液凝固能測定のための試薬。
  16. さらに血液凝固活性化剤を含む、請求項15に記載の試薬。
     
PCT/JP2021/048977 2020-12-28 2021-12-28 血液凝固能の評価方法および血栓症リスクの検査方法 WO2022145475A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US18/269,860 US20240044921A1 (en) 2020-12-28 2021-12-28 Method for evaluating blood coagulation performance, and method for inspecting risk of thrombosis
EP21915333.5A EP4270010A1 (en) 2020-12-28 2021-12-28 Method for evaluating blood coagulation performance, and method for inspecting risk of thrombosis
JP2022573120A JPWO2022145475A1 (ja) 2020-12-28 2021-12-28

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020219401 2020-12-28
JP2020-219401 2020-12-28

Publications (1)

Publication Number Publication Date
WO2022145475A1 true WO2022145475A1 (ja) 2022-07-07

Family

ID=82260820

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/048977 WO2022145475A1 (ja) 2020-12-28 2021-12-28 血液凝固能の評価方法および血栓症リスクの検査方法

Country Status (4)

Country Link
US (1) US20240044921A1 (ja)
EP (1) EP4270010A1 (ja)
JP (1) JPWO2022145475A1 (ja)
WO (1) WO2022145475A1 (ja)

Citations (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06324048A (ja) * 1993-05-15 1994-11-25 Shimizu Seiyaku Kk 血液凝固能検査用試薬及び血液凝固能の検査方法
JP2003505678A (ja) * 1999-07-23 2003-02-12 ザ スクリップス リサーチ インスティテュート 全血の凝固因子活性を測定する方法
JP2003517610A (ja) * 1999-12-15 2003-05-27 ペンタファルム・リミテッド 血液学的アッセイ及び試薬
JP2008191171A (ja) * 1997-07-23 2008-08-21 Tokuyama Corp 凝固パラメーターを決定するためのキット
JP2008241621A (ja) * 2007-03-28 2008-10-09 Sysmex Corp 血液凝固測定用試薬及び組織因子安定化方法
US20090042217A1 (en) * 2006-01-27 2009-02-12 Rappaport Family Institute For Research In The Medical Sciences Methods and Kits for Determining Blood Coagulation
JP2010085411A (ja) * 2008-10-02 2010-04-15 Siemens Healthcare Diagnostics Products Gmbh 血液凝固アッセイ
JP2011527897A (ja) * 2008-07-17 2011-11-10 ディアグノスチカ・スタゴ 循環組織因子のインビトロアッセイ方法及び凝固疾患の検出における使用
WO2014116275A1 (en) * 2013-01-24 2014-07-31 Portola Pharmaceuticals, Inc. INHIBITION OF TISSUE FACTOR PATHWAY INHIBITOR WITH FACTOR Xa DERIVATIVES
JP2014521952A (ja) * 2011-07-26 2014-08-28 オブシェストヴォ エス オグラニチェノイ オトヴェトストヴェノスチュ“ゲマトロジチェスカヤ コーポラティシヤ” 不均一系(ばらつき)におけるタンパク質分解酵素活性の空間分布および時間分布を求めるための方法、これを実現するための装置、不均一系におけるタンパク質分解酵素活性の空間分布および時間分布の変化をもとに、止血系の欠陥を診断するための方法
JP2014531413A (ja) * 2011-08-23 2014-11-27 シナプス・ビー.ブイ.Synapse B.V. 異物表面との接触による血液凝固系の活性化の熱安定性阻害剤
JP2015509923A (ja) * 2012-01-30 2015-04-02 バクスター・インターナショナル・インコーポレイテッドBaxter International Incorp0Rated 非抗凝固性の硫酸化またはスルホン酸化多糖
WO2015156322A1 (ja) * 2014-04-08 2015-10-15 藤森工業株式会社 血液性状検査用マイクロチップおよび血液性状検査用装置
WO2017119508A1 (ja) 2016-01-07 2017-07-13 藤森工業株式会社 採血管、試薬及びそれらを利用した血液性状分析方法
JP2017530349A (ja) * 2014-09-09 2017-10-12 ペロスフィア インコーポレイテッド マイクロ流体チップベースの一般的な凝固アッセイ
WO2018043420A1 (ja) 2016-08-29 2018-03-08 藤森工業株式会社 血液凝固検査装置及び血液凝固検査方法
WO2018128002A1 (ja) * 2017-01-06 2018-07-12 ソニー株式会社 血液凝固系解析装置、血液凝固系解析システム、血液凝固系解析方法、及び血液凝固系解析用プログラム、並びに、出血量予測装置、出血量予測システム、出血量予測方法、及び出血量予測用プログラム
JP2019521324A (ja) * 2016-05-13 2019-07-25 ザ・スクリップス・リサーチ・インスティテュートThe Scripps Research Institute 抗血栓療法および止血療法のための組成物および方法

Patent Citations (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06324048A (ja) * 1993-05-15 1994-11-25 Shimizu Seiyaku Kk 血液凝固能検査用試薬及び血液凝固能の検査方法
JP2008191171A (ja) * 1997-07-23 2008-08-21 Tokuyama Corp 凝固パラメーターを決定するためのキット
JP2003505678A (ja) * 1999-07-23 2003-02-12 ザ スクリップス リサーチ インスティテュート 全血の凝固因子活性を測定する方法
JP2003517610A (ja) * 1999-12-15 2003-05-27 ペンタファルム・リミテッド 血液学的アッセイ及び試薬
US20090042217A1 (en) * 2006-01-27 2009-02-12 Rappaport Family Institute For Research In The Medical Sciences Methods and Kits for Determining Blood Coagulation
JP2008241621A (ja) * 2007-03-28 2008-10-09 Sysmex Corp 血液凝固測定用試薬及び組織因子安定化方法
JP2011527897A (ja) * 2008-07-17 2011-11-10 ディアグノスチカ・スタゴ 循環組織因子のインビトロアッセイ方法及び凝固疾患の検出における使用
JP2010085411A (ja) * 2008-10-02 2010-04-15 Siemens Healthcare Diagnostics Products Gmbh 血液凝固アッセイ
JP2014521952A (ja) * 2011-07-26 2014-08-28 オブシェストヴォ エス オグラニチェノイ オトヴェトストヴェノスチュ“ゲマトロジチェスカヤ コーポラティシヤ” 不均一系(ばらつき)におけるタンパク質分解酵素活性の空間分布および時間分布を求めるための方法、これを実現するための装置、不均一系におけるタンパク質分解酵素活性の空間分布および時間分布の変化をもとに、止血系の欠陥を診断するための方法
JP2014531413A (ja) * 2011-08-23 2014-11-27 シナプス・ビー.ブイ.Synapse B.V. 異物表面との接触による血液凝固系の活性化の熱安定性阻害剤
JP2015509923A (ja) * 2012-01-30 2015-04-02 バクスター・インターナショナル・インコーポレイテッドBaxter International Incorp0Rated 非抗凝固性の硫酸化またはスルホン酸化多糖
WO2014116275A1 (en) * 2013-01-24 2014-07-31 Portola Pharmaceuticals, Inc. INHIBITION OF TISSUE FACTOR PATHWAY INHIBITOR WITH FACTOR Xa DERIVATIVES
WO2015156322A1 (ja) * 2014-04-08 2015-10-15 藤森工業株式会社 血液性状検査用マイクロチップおよび血液性状検査用装置
JP2017530349A (ja) * 2014-09-09 2017-10-12 ペロスフィア インコーポレイテッド マイクロ流体チップベースの一般的な凝固アッセイ
WO2017119508A1 (ja) 2016-01-07 2017-07-13 藤森工業株式会社 採血管、試薬及びそれらを利用した血液性状分析方法
JP2019521324A (ja) * 2016-05-13 2019-07-25 ザ・スクリップス・リサーチ・インスティテュートThe Scripps Research Institute 抗血栓療法および止血療法のための組成物および方法
WO2018043420A1 (ja) 2016-08-29 2018-03-08 藤森工業株式会社 血液凝固検査装置及び血液凝固検査方法
WO2018128002A1 (ja) * 2017-01-06 2018-07-12 ソニー株式会社 血液凝固系解析装置、血液凝固系解析システム、血液凝固系解析方法、及び血液凝固系解析用プログラム、並びに、出血量予測装置、出血量予測システム、出血量予測方法、及び出血量予測用プログラム

Non-Patent Citations (16)

* Cited by examiner, † Cited by third party
Title
AM J HEMATOL, vol. 95, no. 7, July 2020 (2020-07-01), pages 863 - 869
CHOWDARY PRATIMA: "Anti-tissue factor pathway inhibitor (TFPI) therapy: a novel approach to the treatment of haemophilia", INTERNATIONAL JOURNAL OF HEMATOLOGY, vol. 111, no. 1, 9 October 2018 (2018-10-09), NL , pages 42 - 50, XP036979117, ISSN: 0925-5710, DOI: 10.1007/s12185-018-2548-6 *
CRISTINA PUY, TUCKER ERIK I, MATAFONOV ANTON, CHENG QIUFANG, ZIENTEK KEITH D, GAILANI DAVE, AS GRUBER AND, MCCARTY OWEN J T: "Activated factor XI increases the procoagulant activity of the extrinsic pathway by inactivating tissue factor pathway inhibitor", BLOOD, vol. 125, no. 9, 13 January 2015 (2015-01-13), pages 1488 - 1496, XP055293619, DOI: 10.1182/blood-2014-10-604587 *
EUR JVASC ENDOVASC SUR, vol. 15, no. 6, June 1998 (1998-06-01), pages 515 - 20
HATO, TAKAAKI: "Evaluation of Anti-thrombotic Drugs in View of Recent Mechanism for Venous Thrombus Formation", PHLEBOLOGY, vol. 26, no. 1, 25 February 2015 (2015-02-25), JP , pages 1 - 8, XP009537970, ISSN: 0915-7395, DOI: 10.7134/phlebol.14-26 *
J BIOL CHEM., vol. 269, no. 14, 8 April 1994 (1994-04-08), pages 10644 - 50
J BIOL CHEM., vol. 278, no. 24, 13 June 2003 (2003-06-13), pages 21823 - 30
J BIOL CHEM., vol. 289, no. 3, 17 January 2014 (2014-01-17), pages 1732 - 41
J MED CHEM, vol. 60, no. 23, 14 December 2017 (2017-12-14), pages 9703 - 9723
J MED CHEM., vol. 60, no. 3, 9 February 2017 (2017-02-09), pages 1151 - 1158
J THROMB HAEMOST, vol. 10, no. 8, August 2012 (2012-08-01), pages 1581 - 90
NAZAKAWA, NOZOMI; YOSHIHARA, SAORI; KAGA, RIEKO; AOKI, YOSHIKAZU; IGARASHI, SUMIKO: "Current status of coagulation test and examination of pre-measurement variable factors", ZENNINKAI RESEARCH ANNUAL REPORT, no. 33, 1 April 2012 (2012-04-01), pages 76 - 80, XP009537971, ISSN: 0916-8826 *
OSAMU TAKAMIYA: "Discrepancies between coagulation test results and clinical symptoms-a new way of thinking about coagulation mechanisms", vol. 9, no. 1, 29 February 2008 (2008-02-29), pages 60 - 68, XP009537958 *
SCI REP, vol. 7, no. 1, 18 May 2017 (2017-05-18), pages 2102
TAKASHI MORITA: "A new way of thinking about the blood coagulation mechanism", JAPANESE JOURNAL OF PEDIATRIC HEMATOLOGY, vol. 17, no. 2, 1 January 2003 (2003-01-01), JP , pages 49 - 57, XP009537960, ISSN: 0913-8706, DOI: 10.11412/jjph1987.17.49 *
YUJIRO ASADA: "Issues with new oral anticoagulants Coagulation factors that do not contribute to bleeding and their inhibition Factors XI and XII", MEDICINA, vol. 49, no. 6, 10 June 2012 (2012-06-10), JP , pages 1046 - 1048, XP009537968, ISSN: 0025-7699 *

Also Published As

Publication number Publication date
US20240044921A1 (en) 2024-02-08
JPWO2022145475A1 (ja) 2022-07-07
EP4270010A1 (en) 2023-11-01

Similar Documents

Publication Publication Date Title
Agarwal et al. Evaluation of coagulation abnormalities in acute liver failure
von Meijenfeldt et al. Prothrombotic changes in patients with COVID‐19 are associated with disease severity and mortality
Potze et al. Preserved hemostatic status in patients with non-alcoholic fatty liver disease
Paar et al. Anticoagulant action of low, physiologic, and high albumin levels in whole blood
Iba et al. Potential diagnostic markers for disseminated intravascular coagulation of sepsis
Senzolo et al. Increased anticoagulant response to low‐molecular‐weight heparin in plasma from patients with advanced cirrhosis
Habib et al. Evidence of rebalanced coagulation in acute liver injury and acute liver failure as measured by thrombin generation
Cardenas et al. Measuring thrombin generation as a tool for predicting hemostatic potential and transfusion requirements following trauma
Kim et al. Circulating levels of DNA-histone complex and dsDNA are independent prognostic factors of disseminated intravascular coagulation
Uemura et al. Comprehensive analysis of ADAMTS13 in patients with liver cirrhosis
Santucci et al. Measurement of tissue factor activity in whole blood
Agarwal et al. Hemostasis in patients with acute kidney injury secondary to acute liver failure
Ollivier et al. Detection of endogenous tissue factor levels in plasma using the calibrated automated thrombogram assay
Raffa et al. Hypercoagulability in patients with chronic noncirrhotic portal vein thrombosis
Curnow et al. Reduced fibrinolysis and increased fibrin generation can be detected in hypercoagulable patients using the overall hemostatic potential assay
Hansson et al. The effect of corn trypsin inhibitor and inhibiting antibodies for FXIa and FXIIa on coagulation of plasma and whole blood
Reddel et al. Detection of hypofibrinolysis in stable coronary artery disease using the overall haemostatic potential assay
Andersen et al. Thromboelastometry as a supplementary tool for evaluation of hemostasis in severe sepsis and septic shock
Debaugnies et al. Evaluation of the procoagulant activity in the plasma of cancer patients using a thrombin generation assay
Hisada et al. Circulating tissue factor‐positive extracellular vesicles and their association with thrombosis in different diseases
Sayyadi et al. Status of major hemostatic components in the setting of COVID-19: The effect on endothelium, platelets, coagulation factors, fibrinolytic system, and complement
Hellum et al. Microparticle-associated tissue factor activity measured with the Zymuphen MP-TF kit and the calibrated automated thrombogram assay
Cibor et al. Levels and activities of von Willebrand factor and metalloproteinase with thrombospondin type-1 motif, number 13 in inflammatory bowel diseases
Boknäs et al. Associations between hemostatic markers and mortality in COVID-19–Compounding effects of D-dimer, antithrombin and PAP complex
Peyvandi et al. No changes of parameters nor coagulation activation in healthy subjects vaccinated for SARS-Cov-2

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21915333

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022573120

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 18269860

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2021915333

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021915333

Country of ref document: EP

Effective date: 20230728