WO2022145174A1 - Optical film and manufacturing method therefor - Google Patents

Optical film and manufacturing method therefor Download PDF

Info

Publication number
WO2022145174A1
WO2022145174A1 PCT/JP2021/044567 JP2021044567W WO2022145174A1 WO 2022145174 A1 WO2022145174 A1 WO 2022145174A1 JP 2021044567 W JP2021044567 W JP 2021044567W WO 2022145174 A1 WO2022145174 A1 WO 2022145174A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
optical film
optical
polymer
thickness direction
Prior art date
Application number
PCT/JP2021/044567
Other languages
French (fr)
Japanese (ja)
Inventor
浩成 摺出寺
恭輔 井上
Original Assignee
日本ゼオン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本ゼオン株式会社 filed Critical 日本ゼオン株式会社
Priority to JP2022572951A priority Critical patent/JPWO2022145174A1/ja
Publication of WO2022145174A1 publication Critical patent/WO2022145174A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements

Definitions

  • the present invention relates to an optical film and a method for manufacturing the same.
  • a resin containing a crystalline polymer is generally superior in heat resistance to a resin containing an amorphous polymer. Therefore, a resin containing a crystalline polymer is used as a material for an optical film that is required to have heat resistance (Patent Documents 1 and 2).
  • the optical film When the optical film is used as a protective film for an optical element such as a polarizing element, it is preferable that the optical film does not change the optical characteristics required for the optical element. However, when an optical film made of a resin containing a crystalline polymer is combined with another optical element, the original optical characteristics of the optical element may be significantly changed. For example, when a polarizing plate in which a polarizing element and an optical film are combined is incorporated into an image display device, the optical film may change the color tone when observed from an inclined direction. On the other hand, the optical element can be used in a high temperature environment.
  • the optical film is less deformed at a high temperature, and for example, it is preferable that the occurrence of wrinkles at a high temperature is reduced. Therefore, it is an optical film made of a crystalline resin, and when combined with other optical elements, the original optical characteristics of the optical element are not significantly changed, and the occurrence of wrinkles at high temperatures is reduced. A film and a method for manufacturing the optical film are required.
  • the present inventor has formed an optical film from a resin having crystalline properties, and the retardation Rth, the in-plane retardation, and the heat of the optical film in the thickness direction of the optical film.
  • the above problems can be solved by keeping the expansion rate within a predetermined range, and have completed the present invention. That is, the present invention provides the following.
  • the optical film has a first surface and a second surface.
  • the central part which is the part including the center in the thickness direction
  • the first outer portion which is outside in the thickness direction with respect to the central portion and includes the first surface, and the first outer portion. It is composed of a second outer portion, which is outside in the thickness direction with respect to the central portion and is a portion including the second surface.
  • the retardation Rth in the thickness direction is positive in the central portion, and the retardation Rth is positive.
  • the retardation Rth in the thickness direction is negative in at least one of the first outer portion and the second outer portion.
  • the optical film according to [1]. [3] The optical film according to [1] or [2], which is long. [4] The optical film according to any one of [1] to [3], wherein the intrinsic birefringence value of the resin containing the crystalline polymer is positive.
  • the total thickness of the solvent layer formed on at least one surface of the film (a) in the step (2) is 10 ⁇ m or less. Manufacturing method of optical film.
  • an optical film made of a crystalline resin does not significantly change the original optical characteristics of the optical element when combined with other optical elements, and the occurrence of wrinkles at high temperatures is reduced. It is possible to provide an optical film and a method for manufacturing the optical film.
  • FIG. 1 is a sectional view schematically showing an optical film according to an embodiment of the present invention.
  • the "long" film means a film having a length of 5 times or more with respect to the width, preferably a film having a length of 10 times or more, and specifically, a roll.
  • the upper limit of the length of the film is not particularly limited and may be, for example, 100,000 times or less with respect to the width.
  • the angle formed by the optical axis (slow phase axis, transmission axis, absorption axis, etc.) of each layer in the member having a plurality of layers is the angle when the layer is viewed from the thickness direction unless otherwise specified. Represents.
  • the diagonal direction of a long film indicates an in-plane direction of the film, which is neither parallel nor perpendicular to the longitudinal direction of the film, unless otherwise specified.
  • the front direction of a certain film means the normal direction of the main surface of the film, and specifically, the direction of the polar angle 0 ° and the azimuth angle 0 ° of the main surface, unless otherwise specified. Point to.
  • the tilting direction of a film means a direction that is neither parallel nor perpendicular to the main surface of the film, and specifically, the polar angle of the main surface is larger than 0 ° and 90. Points in a range smaller than °.
  • a material having a positive intrinsic birefringence means a material in which the refractive index in the stretching direction is larger than the refractive index in the direction perpendicular to it, unless otherwise specified.
  • the material having a negative intrinsic birefringence means a material in which the refractive index in the stretching direction is smaller than the refractive index in the direction perpendicular to the refractive index, unless otherwise specified.
  • the value of the intrinsic birefringence can be calculated from the permittivity distribution.
  • nx represents the refractive index in the direction perpendicular to the thickness direction of the layer or film (in-plane direction) and in the direction giving the maximum refractive index.
  • ny represents the refractive index in the in-plane direction of the layer or film and orthogonal to the direction of nx.
  • nz represents the refractive index in the thickness direction of the layer or film.
  • d represents the thickness of the layer or film.
  • the measurement wavelength is 590 nm unless otherwise specified.
  • the longitudinal direction of the long film is usually parallel to the film transport direction in the production line.
  • the MD direction (machine direction) is the transport direction of the film in the production line, and is usually parallel to the longitudinal direction of the long film.
  • the TD direction (transverse direction) is a direction parallel to the film surface, a direction perpendicular to the MD direction, and usually parallel to the width direction of a long film.
  • the optical film according to the embodiment of the present invention is made of a resin containing a polymer having crystallinity, the absolute value of the retardation Rth in the thickness direction is 15 nm or less, and the in-plane retardation Re is 10 nm or less. Yes, the coefficient of thermal expansion is 0% or more and 7.5% or less.
  • the optical film of the present embodiment is combined with other optical elements, the original optical characteristics of the optical elements are not significantly changed, and the occurrence of wrinkles at high temperatures is reduced. Even if the optical film of the present embodiment is incorporated into an image display device as a polarizing plate in combination with a polarizing element, for example, the color tone when observed from an inclined direction does not change significantly.
  • the optical film according to the present embodiment is made of a resin containing a polymer having crystallinity, and is formed of the resin.
  • the "polymer having crystallinity” represents a polymer having a melting point Tm. That is, the "polymer having crystallinity” represents a polymer whose melting point can be observed with a differential scanning calorimeter (DSC).
  • a polymer having crystallinity may be referred to as a “crystalline polymer”.
  • a resin containing a crystalline polymer may be referred to as a "crystalline resin”. This crystalline resin is preferably a thermoplastic resin.
  • the crystalline polymer preferably has a positive intrinsic birefringence.
  • a crystalline polymer having positive intrinsic birefringence an optical film having desired optical properties can be easily produced.
  • the crystalline polymer may be, for example, a polyester such as polyethylene terephthalate (PET) or polyethylene naphthalate (PEN); a polyolefin such as polyethylene (PE) or polypropylene (PP); and is not particularly limited. It preferably contains an alicyclic structure.
  • PET polyethylene terephthalate
  • PEN polyethylene naphthalate
  • PP polypropylene
  • the polymer containing an alicyclic structure represents a polymer having an alicyclic structure in the molecule.
  • the polymer containing such an alicyclic structure can be, for example, a polymer obtained by a polymerization reaction using a cyclic olefin as a monomer or a hydride thereof.
  • Examples of the alicyclic structure include a cycloalkane structure and a cycloalkene structure.
  • the cycloalkane structure is preferable because it is easy to obtain an optical film having excellent properties such as thermal stability.
  • the number of carbon atoms contained in one alicyclic structure is preferably 4 or more, more preferably 5 or more, preferably 30 or less, more preferably 20 or less, and particularly preferably 15 or less. be. When the number of carbon atoms contained in one alicyclic structure is within the above range, mechanical strength, heat resistance, and moldability are highly balanced.
  • the ratio of the structural unit having an alicyclic structure to all the structural units is preferably 30% by weight or more, more preferably 50% by weight or more, and particularly preferably 70% by weight. % Or more. Heat resistance can be improved by increasing the proportion of structural units having an alicyclic structure as described above.
  • the ratio of structural units having an alicyclic structure to all structural units may be 100% by weight or less.
  • the balance other than the structural unit having an alicyclic structure is not particularly limited and may be appropriately selected depending on the purpose of use.
  • Examples of the crystalline polymer containing an alicyclic structure include the following polymers ( ⁇ ) to ( ⁇ ). Among these, the polymer ( ⁇ ) is preferable because it is easy to obtain an optical film having excellent heat resistance.
  • Polymer ( ⁇ ) An addition polymer of a cyclic olefin monomer having crystallinity.
  • Polymer ( ⁇ ) A hydride of the polymer ( ⁇ ) that has crystallinity.
  • the crystalline polymer containing an alicyclic structure includes a ring-opening polymer of dicyclopentadiene having crystalline property and a hydride of a ring-opening polymer of dicyclopentadiene. Those having crystalline properties are more preferable. Of these, a hydride of a ring-opening polymer of dicyclopentadiene, which has crystallinity, is particularly preferable.
  • the ratio of the structural unit derived from dicyclopentadiene to all the structural units is usually 50% by weight or more, preferably 70% by weight or more, more preferably 90% by weight or more. More preferably, it refers to a polymer of 100% by weight.
  • the hydride of the ring-opening polymer of dicyclopentadiene preferably has a high proportion of racemic diad.
  • the proportion of the repeating unit racemic diad in the hydride of the ring-opening polymer of dicyclopentadiene is preferably 51% or more, more preferably 70% or more, and particularly preferably 85% or more.
  • a high proportion of racemic diads indicates a high syndiotactic stereoregularity. Therefore, the higher the proportion of racemic diad, the higher the melting point of the hydride of the ring-opening polymer of dicyclopentadiene tends to be.
  • the proportion of racemo diads can be determined based on the 13 C-NMR spectral analysis described in Examples described below.
  • polymer ( ⁇ ) to the polymer ( ⁇ ) a polymer obtained by the production method disclosed in International Publication No. 2018/062067 can be used.
  • the melting point Tm of the crystalline polymer is preferably 200 ° C. or higher, more preferably 230 ° C. or higher, and preferably 290 ° C. or lower.
  • the crystalline polymer has a glass transition temperature Tg.
  • the specific glass transition temperature Tg of the crystalline polymer is not particularly limited, but is usually 85 ° C. or higher and usually 170 ° C. or lower.
  • the glass transition temperature Tg and melting point Tm of the polymer can be measured by the following methods. First, the polymer is melted by heating, and the melted polymer is rapidly cooled with dry ice. Subsequently, using this polymer as a test piece, the glass transition temperature Tg and melting point Tm of the polymer were measured at a heating rate of 10 ° C./min (heating mode) using a differential scanning calorimeter (DSC). Can be measured.
  • the weight average molecular weight (Mw) of the crystalline polymer is preferably 1,000 or more, more preferably 2,000 or more, preferably 1,000,000 or less, and more preferably 500,000 or less.
  • a crystalline polymer having such a weight average molecular weight has an excellent balance between molding processability and heat resistance.
  • the molecular weight distribution (Mw / Mn) of the crystalline polymer is preferably 1.0 or more, more preferably 1.5 or more, preferably 4.0 or less, and more preferably 3.5 or less.
  • Mn represents a number average molecular weight.
  • a crystalline polymer having such a molecular weight distribution is excellent in molding processability.
  • the weight average molecular weight (Mw) and molecular weight distribution (Mw / Mn) of the polymer can be measured as polystyrene-equivalent values by gel permeation chromatography (GPC) using tetrahydrofuran as a developing solvent.
  • the crystallinity of the crystalline polymer contained in the optical film is not particularly limited, but is usually higher than a certain level.
  • the high crystallinity of the crystalline polymer contained in the optical film can be confirmed by the magnitude of the coefficient of thermal expansion described later.
  • the specific range of crystallinity is preferably 10% or more, more preferably 15% or more, and particularly preferably 30% or more.
  • the crystallinity of the crystalline polymer can be measured by X-ray diffraction.
  • one type may be used alone, or two or more types may be used in combination at any ratio.
  • the proportion of the crystalline polymer in the crystalline resin is preferably 50% by weight or more, more preferably 70% by weight or more, and particularly preferably 90% by weight or more.
  • the ratio of the crystalline polymer is not more than the lower limit of the above range, the heat resistance of the optical film can be enhanced.
  • the upper limit of the proportion of the crystalline polymer may be 100% by weight or less.
  • the crystalline resin may contain any component in addition to the crystalline polymer.
  • Optional components include, for example, antioxidants such as phenol-based antioxidants, phosphorus-based antioxidants, sulfur-based antioxidants; light stabilizers such as hindered amine-based light stabilizers; petroleum-based waxes, Fishertroph waxes, etc.
  • Waxes such as polyalkylene wax; sorbitol compounds, metal salts of organic phosphates, metal salts of organic carboxylic acids, nucleating agents such as kaolin and talc; diaminostilben derivatives, coumarin derivatives, azole derivatives (eg, benzoxazole derivatives, etc.) Fluorowhitening agents such as benzotriazole derivatives, benzoimidazole derivatives, and benzothiazole derivatives), carbazole derivatives, pyridine derivatives, naphthalic acid derivatives, and imidazolone derivatives; benzophenone-based ultraviolet absorbers, salicylic acid-based ultraviolet absorbers, benzotriazole-based UV absorbers such as UV absorbers; Inorganic fillers such as talc, silica, calcium carbonate, glass fibers; Colorants; Flame retardants; Flame retardant aids; Antistatic agents; Plastics; Near infrared absorbers; Lubricants; Fillers ; And any polymer other than the crystalline
  • the absolute value of retardation Rth in the thickness direction is usually 15 nm or less, preferably 3 nm or less, more preferably 1 nm or less, usually 0 nm or more, and ideally 0 nm.
  • the absolute value of the retardation Rth in the thickness direction is equal to or less than the upper limit value, it is possible to prevent the optical characteristics of the optical element from being significantly changed when combined with other optical elements.
  • an optical film is used as an element of an image display device (for example, a protective film for a polarizing element), it is possible to reduce a change in the tint of an image when observed from an inclined direction.
  • the sign of the retardation Rth in the thickness direction (hereinafter, "letteration in the thickness direction” is also simply referred to as "Rth") changes in the thickness direction.
  • the Rth code is different between the central portion in the thickness direction of the optical film and at least one of the first outer portion and the second outer portion of the optical film, and the Rth of the central portion.
  • the sign is positive and the sign of at least one of the first outer portion and the second outer portion is negative, and the sign of Rth in the central portion is positive and the first outer portion.
  • the sign of Rth of both of the second outer portions is negative.
  • FIG. 1 is a sectional view schematically showing an optical film according to an embodiment of the present invention.
  • the optical film 100 is composed of a central portion 110, a first outer portion 121, and a second outer portion 122.
  • the optical film 100 has a first surface 100U and a second surface 100D.
  • the center 111 in the thickness direction of the optical film 100 is a surface equidistant from the first surface 100U and the second surface 100D.
  • the central portion 110 is a portion including the central 111 in the thickness direction.
  • the first outer portion 121 is located outside the central portion 110 in the thickness direction and includes the first surface 100U.
  • the second outer portion 122 is located outside the central portion 110 in the thickness direction and includes the second surface 100D.
  • the Rth value of the central portion 110 is positive, and the Rth value of the first outer portion 121 and the second outer portion 122 are both negative.
  • the optical film 100 in which the Rth value of the central portion 110 is positive and the Rth value of the first outer portion 121 and the second outer portion 122 is negative is manufactured from the crystalline resin by extrusion molding. It can be produced by a production method including coating an organic solvent on both sides of the extruded film to form a solvent layer. The reason why the optical film 100 can be manufactured by this manufacturing method is presumed as follows, but the present invention is not limited.
  • the extruded film is slightly stretched in the transport direction when the crystalline resin is extruded, and the thickness direction retardation Rth has a positive value.
  • the solvent penetrates into the extruded film. It is considered that the action of the infiltrated solvent causes microBrownian motion in the molecules of the crystalline polymer in the extruded film, and the molecular chains of the extruded film are oriented.
  • the surface area of the extruded film is large on the front surface and the back surface, which are the main surfaces. Therefore, as for the infiltration rate of the solvent, the infiltration rate in the thickness direction through the front surface or the back surface is high. Then, the orientation of the molecular chains of the crystalline polymer can proceed so that the molecules of the polymer are oriented in the thickness direction. Further, by applying the solvent to the extruded film instead of immersing the extruded film in the solvent, the solvent penetrates into the outer portion in the thickness direction of the extruded film, but reaches the central portion in the thickness direction of the extruded film. It is thought that it will not be reached.
  • the Rth in the central portion of the optical film is a positive value that is the same as or close to the value of the extruded film before the solvent is applied, and the first outer portion and the second outer portion of the optical film. It is considered that the refractive index in the thickness direction becomes large and Rth becomes a negative value.
  • the outer part of the optical film including the surface coated with the solvent has a large refractive index in the thickness direction, and the outer part has a negative Rth. It is considered to be a value. Further, it is considered that the outer portion of the optical film including the surface not coated with the solvent has a positive Rth value as in the central portion.
  • the optical film of the present embodiment has an in-plane retardation Re of usually 10 nm or less, preferably 5 nm or less, more preferably 3 nm or less, and usually 0 nm or more.
  • the in-plane retardation Re is not more than the upper limit value, the influence of the optical film on the original optical characteristics of the optical element can be reduced when the optical film is used as a protective film for the optical element.
  • the film retardation can be measured using a phase difference meter (for example, "AXoScan OPMF-1" manufactured by AXOMETRICS).
  • a phase difference meter for example, "AXoScan OPMF-1" manufactured by AXOMETRICS.
  • the optical film of the present embodiment has a coefficient of thermal expansion of usually 7.5% or less, preferably 7% or less, more preferably 6.5% or less, and usually 0% or more.
  • the coefficient of thermal expansion of the optical film is not more than the upper limit value, the heat resistance of the optical film can be improved.
  • the coefficient of thermal expansion is a value measured under the following conditions.
  • a sample is obtained by cutting out an optical film into a rectangular shape. This cutting is performed so that the longitudinal direction of the rectangular sample coincides with the MD direction (longitudinal direction in the long film) or the TD direction (width direction in the long film) of the film.
  • the linear expansion ⁇ L from a temperature of 20 ° C. to 130 ° C. is measured at a heating rate of 10 ° C./min.
  • the coefficient of thermal expansion RTMA of the optical film measured under the above conditions can be an index of the degree of crystallinity of the crystalline resin contained in the optical film.
  • the coefficient of thermal expansion of the optical film is within the above range, the heat resistance of the optical film can be improved.
  • the thickness of the optical film can be appropriately set according to the application of the optical film.
  • the thickness d of the optical film is preferably 5 ⁇ m or more, more preferably 10 ⁇ m or more, preferably 80 ⁇ m or less, and more preferably 70 ⁇ m or less.
  • the thickness d of the optical film is not less than the lower limit of the above range, the handleability can be improved and the strength can be increased. Further, when the thickness d of the optical film is not more than the upper limit value, it is easy to wind the long optical film.
  • the optical film of the present embodiment may be a single-wafer film or a long film.
  • Optical films are usually manufactured as long films. Long optical films can be efficiently combined with other long optical elements using the roll-to-roll method. Therefore, the optical film is preferably long.
  • the optical film of the present embodiment preferably has high transparency.
  • the specific total light transmittance of the optical film is preferably 80% or more, more preferably 85% or more, and particularly preferably 88% or more.
  • the total light transmittance of the optical film is usually 100% or less.
  • the total light transmittance of the optical film can be measured in the wavelength range of 400 nm to 700 nm using an ultraviolet / visible spectrometer.
  • the optical film of the present embodiment can be produced by any method.
  • the optical film can be manufactured by a manufacturing method including the following steps.
  • Step (1) A step of extruding a resin containing a crystalline polymer to obtain a film (a).
  • Step (2) A step of applying a solvent on at least one of the two surfaces of the film (a) to form a solvent layer to obtain a film (a').
  • Step (3) A step of drying the solvent layer of the film (a') to obtain the film (b).
  • the normal step (2) is performed after the step (1).
  • the normal step (3) is performed after the step (2).
  • the method for producing an optical film of the present embodiment may include any step in addition to the steps (1) to (3).
  • the resin containing the crystalline polymer is extruded to obtain a film (a).
  • the resin containing the crystalline polymer used in the step (1) can be the same as the resin containing the crystalline polymer contained in the optical film.
  • the crystallinity of the crystalline polymer contained in the film (a) is preferably small.
  • the specific crystallinity is preferably less than 10%, more preferably less than 5%, and particularly preferably less than 3%.
  • the manufacturing conditions by the extrusion molding method are as follows, for example.
  • the cylinder temperature (molten resin temperature) is preferably Tm or higher, more preferably “Tm + 20 ° C” or higher, preferably “Tm + 100 ° C” or lower, and more preferably “Tm + 50 ° C” or lower.
  • the cooling body that the molten resin extruded into a film comes into contact with first is not particularly limited, but a cast roll is usually used.
  • the cast roll temperature is preferably "Tg-50 ° C.” or higher, preferably "Tg + 70 ° C.” or lower, and more preferably "Tg + 40 ° C.” or lower.
  • the cooling roll temperature is preferably "Tg ⁇ 70 ° C.” or higher, more preferably “Tg ⁇ 50 ° C.” or higher, preferably “Tg + 60 ° C.” or lower, and more preferably “Tg + 30 ° C.” or lower.
  • Tm represents the melting point of the crystalline polymer
  • Tg represents the glass transition temperature of the crystalline polymer.
  • the thickness of the film (a) is preferably set according to the thickness of the optical film to be manufactured. Usually, by applying the solvent to the film (a) in the step (2), the thickness of the film is increased. On the other hand, when the method for producing an optical film includes a stretching step, the thickness of the film is reduced by stretching. Therefore, the thickness of the film (a) may be set in consideration of the change in the thickness in the step after the step (1) as described above. According to extrusion molding, the thickness of the film (a) can be easily controlled.
  • the film (a) may be a single-wafer film, but is preferably a long film.
  • the optical film can be continuously produced by the roll-to-roll method, so that the productivity of the optical film can be effectively increased.
  • the film (a) preferably has a small content of the organic solvent, and more preferably does not contain the organic solvent.
  • the ratio (solvent content) of the organic solvent contained in the film (a) to 100% by weight of the film (a) is preferably 1% or less, more preferably 0.5% or less, still more preferably 0.1%. It is less than or equal to, ideally 0.0%. Since the amount of the organic solvent contained in the film (a) before applying the organic solvent is small, it becomes easy to control the retardation Rth in the thickness direction of the optical film by the amount of the organic solvent applied.
  • a film (a) having a small content of organic solvent and usually containing no organic solvent can be obtained.
  • the solvent content of the film (a) can be measured by the density.
  • the in-plane retardation Re of the film (a) is preferably 10 nm or less, more preferably 8 nm or less, still more preferably 5 nm or less, and usually 0 nm or more.
  • the retardation Rth of the film (a) in the thickness direction is preferably 15 nm or less, more preferably 10 nm or less, still more preferably 8 nm or less, preferably 0 nm or more, more preferably 0.5 nm or more, still more preferably 1 nm or more. Is.
  • Such a low phase difference of the film (a) makes it easy to adjust the phase difference of the optical film to a desired range.
  • step (2) a solvent is applied on at least one surface of the two surfaces of the film (a) to form a solvent layer to obtain a film (a').
  • a film having a changed refractive index in the thickness direction in the vicinity of the surface can be obtained.
  • the solvent is usually an organic solvent.
  • the organic solvent a solvent that does not dissolve the crystalline polymer can be used.
  • preferable organic solvents include hydrocarbon solvents such as toluene, limonene and decalin; carbon disulfide; preferably toluene.
  • the type of the organic solvent may be one kind or two or more kinds.
  • the solvent may be applied on one surface, or the solvent may be applied on both of the two surfaces.
  • a method capable of controlling the thickness of the solvent layer formed on the surface of the film (a) by coating is preferably used.
  • the coating method include a wire bar coating method, a spray method, a roll coating method, a gravure coating method, a die coating method, a curtain coating method, a slide coating method, and an extrusion coating method, and the die coating method is preferable.
  • the total thickness of the solvent layer formed on at least one surface of the film (a) is usually 10 ⁇ m or less, preferably 9 ⁇ m or less, more preferably 8 ⁇ m or less, and usually larger than 0 ⁇ m.
  • the total thickness is the total thickness of the two solvent layers when the solvent is applied to both of the two surfaces of the film (a) to form the two solvent layers, and the film (a).
  • the solvent is applied to only one of the two surfaces to form only one solvent layer, it is the thickness of the one solvent layer.
  • the absolute value of the retardation Rth in the thickness direction of the optical film can be adjusted to a desired range. As the total thickness of the solvent layer is increased, the retardation Rth in the thickness direction of the film (b) tends to be smaller.
  • the absolute value of the retardation Rth in the thickness direction of the film (b) can be adjusted by adjusting the total thickness of the solvent layer according to the value of the retardation Rth in the thickness direction of the film (a). Further, by keeping the total thickness of the solvent layer within the above range, it is possible to reduce the occurrence of wrinkles in the film conveyed in the step (3) and improve the handleability of the film.
  • the solvent layer of the film (a') is dried to obtain the film (b). Thereby, the solvent in the solvent layer can be removed.
  • the drying method any method can be adopted depending on the boiling point of the solvent used. Examples of the drying method include natural drying, heat drying, vacuum drying, vacuum heating drying and the like.
  • the film (b) may contain a solvent.
  • the size of the retardation Rth in the thickness direction can be adjusted in the film (b).
  • the film (b) can be obtained as an optical film.
  • the method for producing the optical film may optionally include the step (4) in addition to the steps (1) to (3).
  • the step (4) is a step of stretching the film (b) obtained in the step (3). By stretching, the molecules of the crystalline polymer contained in the film (b) can be oriented in a direction corresponding to the stretching direction. Therefore, according to the step (4), optical characteristics such as birefringence Re / d in the in-plane direction, birefringence Re / d in the thickness direction, birefringence Rth / d in the thickness direction, and retardation Rth in the thickness direction of the film (b). In addition, the thickness d can be adjusted.
  • the stretching direction there is no limitation on the stretching direction, and examples thereof include a longitudinal direction, a width direction, and an oblique direction.
  • the diagonal direction is a direction perpendicular to the thickness direction and is neither parallel nor perpendicular to the width direction.
  • the stretching direction may be one direction or two or more directions.
  • a uniaxial stretching method such as a method of uniaxially stretching the film in the longitudinal direction (longitudinal uniaxial stretching method), a method of uniaxially stretching the film in the width direction (horizontal uniaxial stretching method); Biaxial stretching method such as simultaneous biaxial stretching method in which the film is stretched in the direction and width direction at the same time, and sequential biaxial stretching method in which the film is stretched in one of the longitudinal direction and the width direction and then stretched in the other direction; A method of stretching in a direction (diagonal stretching method); and the like can be mentioned.
  • the uniaxial stretching method there are a fixed uniaxial stretching method in which the end portion of the film is fixed, and a free uniaxial stretching method in which the end portion of the film is not fixed.
  • the draw ratio is preferably 1 time or more, more preferably 1.01 times or more, preferably 1.5 times or less, and more preferably 1.4 times or less. It is desirable that the specific draw ratio is appropriately set according to factors such as the optical characteristics, thickness, and strength of the film (b) to be stretched. When the stretching ratio is equal to or higher than the lower limit of the above range, the birefringence can be significantly changed by stretching. Further, when the draw ratio is not more than the upper limit of the above range, the direction of the slow phase axis can be easily controlled and the breakage of the film can be effectively suppressed.
  • the stretching temperature is preferably "Tg + 5 ° C.” or higher, more preferably “Tg + 10 ° C.” or higher, preferably “Tg + 100 ° C.” or lower, and more preferably "Tg + 90 ° C.” or lower.
  • Tg represents the glass transition temperature of the crystalline polymer.
  • a film (c) as a stretched film (b) can be obtained.
  • the thickness direction retardation Rth of the film (c) can be adjusted. Therefore, by stretching the film (b) by the step (4), the optical characteristics of the film (c) can be adjusted to a desired range as an optical film, and the film (c) can be obtained as an optical film.
  • the step (4) may further include any of the following steps in addition to the step of stretching the film (b) (referred to as step (4b)).
  • Step (4a) A step of preheating the film (b).
  • Step (4c) A step of heat-treating the film (b).
  • Step (4d) A step of cooling the film (c).
  • step (4) includes step (4a)
  • step (4a) is performed before normal step (4b).
  • step (4) includes step (4c) is performed after normal step (4b).
  • step (4d) is performed after the normal steps (4a) to (4c).
  • the heat treatment By heat treatment, the crystallinity of the crystalline polymer contained in the stretched film (b) can be promoted, and the coefficient of thermal expansion can usually be lowered. Therefore, the heat resistance of the optical film can be improved by the step (4c).
  • the heat treatment temperature is usually equal to or higher than the glass transition temperature of the crystalline polymer and lower than the melting point of the crystalline polymer of Tm. More specifically, the heat treatment temperature is preferably Tg ° C. or higher, more preferably Tg + 10 ° C. or higher, preferably Tm-20 ° C. or lower, and more preferably Tm-40 ° C. or lower. In the above temperature range, crystallization of the crystalline polymer can be rapidly promoted while suppressing white turbidity due to the progress of crystallization.
  • the heat treatment treatment time is preferably 1 second or longer, more preferably 5 seconds or longer, preferably 30 minutes or shorter, and more preferably 15 minutes or shorter.
  • the preheating temperature in the step (4a) is usually the same as the stretching temperature in the step (4b), but may be different.
  • the preheating temperature is preferably T1-10 ° C. or higher, more preferably T1-5 ° C. or higher, preferably T1 + 5 ° C. or lower, and more preferably T1 + 2 ° C. or lower with respect to the stretching temperature T1.
  • the preheating time is arbitrary, preferably 1 second or longer, more preferably 5 seconds or longer, and preferably 60 seconds or shorter, more preferably 30 seconds or shorter.
  • the cooling temperature in the step (4d) is set lower than the heating temperature in the step (step (4b) or step (4c)) performed before the step (4d).
  • the cooling time is arbitrary, preferably 1 second or longer, more preferably 5 seconds or longer, and preferably 30 seconds or shorter, more preferably 20 seconds or shorter.
  • the method for manufacturing the optical film includes the step (4)
  • the optical film after the step (4) may contain residual stress. Therefore, the method for producing an optical film may include, for example, a step of thermally shrinking the stretched film to remove residual stress.
  • residual stress can usually be removed by causing the film to undergo thermal shrinkage in an appropriate temperature range while keeping the stretched film flat.
  • a long film (a) can be manufactured from a crystalline resin, and a long optical film can be manufactured from the film (a).
  • the method for producing an optical film may include a step of winding the long optical film thus produced into a roll shape. Further, the method for producing an optical film may include a step of cutting a long optical film into a desired shape.
  • the optical film of the present embodiment is suitable for optical applications such as a protective film for an optical element and a base film for forming an optical element.
  • the hydrogenation rate of the polymer was measured by 1 H-NMR at 145 ° C. using orthodichlorobenzene - d4 as a solvent.
  • the glass transition temperature Tg and the melting point Tm of the polymer were measured as follows. First, the polymer was melted by heating, and the melted polymer was rapidly cooled with dry ice. Subsequently, using this polymer as a test piece, the glass transition temperature Tg and melting point Tm of the polymer were measured at a heating rate of 10 ° C./min (heating mode) using a differential scanning calorimeter (DSC). It was measured.
  • the film to be measured was cut to a size of 50 mm ⁇ 150 mm to obtain a film piece.
  • a tensile tester with a constant temperature and humidity chamber (“5564 type” manufactured by Instron) was used to freely uniaxially stretch the film piece.
  • the stretching temperature was (Tg + 15 ° C. of the resin forming the film), and the tensile speed was 1.5 times / min.
  • the slow-phase axial direction of the stretched film piece is determined by "AXoScan OPMF-1" manufactured by AXOMETRICS, and when the stretched direction and the slow-phase axial direction are parallel, the intrinsic birefringence of the resin constituting the film piece is determined. Is positive, and when the stretching direction and the slow-phase axial direction are perpendicular to each other, the intrinsic birefringence of the resin constituting the film piece is negative.
  • the ratio of racemic diads in the polymer was measured as follows. 13 C-NMR measurement of the polymer was carried out by applying the inverted-gated decoupling method at 200 ° C. using ordichlorobenzene - d4 as a solvent. In the results of this 13 C-NMR measurement, the signal of 43.35 ppm derived from meso-diad and the signal of 43.43 ppm derived from racemic diad were used as the reference shift with the peak of 127.5 ppm of orthodichlorobenzene - d4 as a reference shift. Was identified. Based on the intensity ratios of these signals, the proportion of racemic diads in the polymer was determined.
  • the retardation Rth in the thickness direction of the film to be measured was measured and set to Rth0.
  • the measurement was performed by "AXoScan OPMF-1" manufactured by AXOMETRICS.
  • the measurement was performed at a wavelength of 590 nm.
  • the following measurements were also performed with a similar device at a measurement wavelength of 590 nm.
  • the film was thinned by scraping a thickness of 1 ⁇ m from one surface of the film with sandpaper (Nos. 4000, 8000, 15000).
  • the retardation Rth in the thickness direction of the thinned film was measured and set to Rth1.
  • the operation of scraping a 1 ⁇ m surface layer from one surface of the film to thin the film and then measuring the retardation Rth of the thinned film is that the retardation Rth1 in the thickness direction of the thinned film has a code different from the code of Rth0. I repeated until it became. However, even if the surface layer is scraped to the center in the thickness direction of the film, if the sign of the retardation Rth1 in the thickness direction is not different from that of Rth0, the operation of scraping the surface layer of the film is completed.
  • Rth1 has a code different from the code of Rth0 while the surface layer is scraped to the center in the thickness direction of the film
  • the code of retardation Rth in the thickness direction of the central portion of the film to be measured is opposite to that of Rth0. It is a code, and the code of the retardation Rth in the thickness direction of the first outer part and the second outer part is the same as the code of Rth0. If the sign of the lettering Rth1 in the thickness direction does not differ from that of Rth0 even if the surface layer is scraped to the center in the thickness direction of the film, the lettering in the thickness direction of the center part, the first outer part, and the second outer part It is assumed that Rth has the same code as Rth0, respectively.
  • the thickness of the film was measured using a contact thickness meter (Code No. 543-390 manufactured by Mitutoyo Co., Ltd.).
  • the liquid crystal display device is a so-called O-mode device in which the pretilt angle of the liquid crystal cell is 1 ° and the absorption axis of the backlight side polarizing element is parallel to the slow axis of the liquid crystal cell when no voltage is applied. Is.
  • the absorption axis of the viewing side polarizing element and the absorption axis of the backlight side polarizing element are orthogonal to each other.
  • the liquid crystal display device was disassembled, the film to be evaluated was inserted between the backlight side polarizing element and the liquid crystal cell, and the film was reassembled to obtain a liquid crystal display device for evaluation.
  • the liquid crystal display device includes, from the visual side, a visual viewing side polarizing element, a color filter, a liquid crystal cell, the film, a backlight side polarizing element, and a backlight in this order.
  • the color of the obtained liquid crystal display device was evaluated at a polar angle of 60 °.
  • the slow-phase axial directions of the liquid crystal cell provided in the liquid crystal display device in a state where no voltage is applied are set to azimuth angles of 0 ° and 180 °, and the azimuth angles are 45 °, 135 °, 225 °, and 315 °.
  • the color was evaluated. Good; the color is black. Defective; the color is red or blue.
  • 0.014 parts of the tetrachlorotungsten phenylimide (tetrahydrofuran) complex was dissolved in 0.70 parts of toluene to prepare a solution.
  • 0.061 part of a diethylaluminum ethoxide / n-hexane solution having a concentration of 19% was added and stirred for 10 minutes to prepare a catalytic solution.
  • This catalyst solution was added to a pressure resistant reactor to initiate a ring-opening polymerization reaction. Then, the reaction was carried out for 4 hours while maintaining 53 ° C. to obtain a solution of a ring-opening polymer of dicyclopentadiene.
  • the number average molecular weight (Mn) and weight average molecular weight (Mw) of the obtained ring-opening polymer of dicyclopentadiene are 8,750 and 28,100, respectively, and the molecular weight distribution (Mw / Mn) obtained from these. was 3.21.
  • the hydride contained in the reaction solution and the solution were separated using a centrifuge and dried under reduced pressure at 60 ° C. for 24 hours to obtain a hydride of a crystallized dicyclopentadiene ring-opening polymer 28. I got 5 copies.
  • the hydrogenation rate of this hydride was 99% or more, the glass transition temperature Tg was 93 ° C., the melting point (Tm) was 267 ° C., and the ratio of racemo diad was 89%.
  • Antioxidant tetrakis [methylene-3- (3', 5'-di-t-butyl-4'-hydroxyphenyl) propionate] methane was added to 100 parts of the hydride of the obtained ring-opening polymer of dicyclopentadiene.
  • BASF Japan "Irganox (registered trademark) 1010" After mixing 1.1 parts, a twin-screw extruder equipped with four die holes with an inner diameter of 3 mm ⁇ (product name "TEM-37B", manufactured by Toshiba Machine Co., Ltd.) ).
  • a mixture of a hydride of a ring-opening polymer of dicyclopentadiene and an antioxidant was formed into a strand shape by hot melt extrusion molding, and then shredded with a strand cutter to obtain a pellet-shaped crystalline resin A. ..
  • the crystalline resin A produced in Production Example 1 is molded using a heat melt extrusion film molding machine equipped with a T-die to obtain an extruded film (thickness 38 ⁇ m) as a long film (a) having a width of about 400 mm. rice field.
  • the obtained extruded film was wound into a roll.
  • the evaluation results of the film (a) are as shown in the table below. Further, as a result of confirming the sign of the intrinsic birefringence value of the crystalline resin A using the film (a), the sign of the intrinsic birefringence value of the crystalline resin A was “positive”.
  • Step (3) Drying step
  • the film (a') was heated and dried in an oven at 100 ° C. for 2 minutes to obtain a long film (b).
  • the obtained film (b) was wound into a roll form.
  • the evaluation results of the film (b) are as shown in the table below.
  • the film (b) is supplied to a transverse stretching machine using the tenter method, and while adjusting the take-up tension and the tenter chain tension, the film (c) is fixed and uniaxially stretched 1.1 times in the lateral direction to form an optical film (c). ) was produced. Stretching was performed by preheating (4a): film (b) to 160 ° C, then; (4b): preheated film (b) at 160 ° C, and then; (4c): stretched film (b). ) Was kept tense at a temperature of 160 ° C.
  • Example 2 An optical film was obtained in the same manner as in Example 1 except that the following items were changed.
  • the thickness of the film (b) was 38 ⁇ m.
  • -In (1-2. Step (2)) the thickness of the toluene to be coated was changed to a thickness of 1.1 ⁇ m per one side (that is, a total thickness of 2.2 ⁇ m on both sides).
  • (1-4. Step (4)) was not performed on the film (b), and the obtained film (b) was evaluated as an optical film.
  • the temperature of all four preheating rolls was set to 100 ° C.
  • the temperatures of the two stretch rolls were all set to 160 ° C.
  • the temperatures of the two cooling rolls were all set to 60 ° C.
  • the rotation speeds of the two stretching rolls were adjusted, and the film (b) was stretched uniaxially at a magnification of 1.1 times.
  • Example 4 An optical film was obtained in the same manner as in Example 1 except that the following items were changed. -In (1-2. Step (2)), the thickness of the toluene to be coated was changed to a thickness of 30 ⁇ m per one side (that is, a total thickness of 60 ⁇ m on both sides). -In (1-4. Step (4)), instead of fixed uniaxial stretching using a transverse stretching machine, the film (b) was freely uniaxially stretched to obtain a film (c). The free uniaxial stretching was performed in the same operation as in Comparative Example 3.
  • Example 5 An optical film was obtained in the same manner as in Example 1 except that the following items were changed. -The film (b) was obtained by performing the following solvent dipping step on the film (a) without performing the steps (1-2. Step (2)) and (1-3. Step (3)). .. The film (a) was immersed in toluene by passing the film (a) through a bathtub filled with toluene. The time for the film (a) to pass through the bathtub (that is, the time for the film (a) to come into contact with toluene) was 5 seconds. The film (a) passed through the bathtub was passed through an oven at 80 ° C. to dry the film (a) immersed in toluene to obtain a film (b).
  • the optical film of Example 1 (film (c)) and the optical film of Example 2 (film (b)) have an absolute value of retardation of 15 nm or less in the thickness direction and an in-plane retardation Re of 10 nm or less.
  • R TMA is 0% or more and 7.5% or less.
  • the optical film of the example has a good evaluation of the viewing angle characteristic, and the number of wrinkles generated in the 105 ° C. heat resistance test is small.
  • the optical film of Comparative Example 1 having an RTMA of 7.5% or more has a large number of wrinkles generated in the 105 ° C. heat resistance test.
  • the optical films of Comparative Examples 2 to 5 in which the absolute value of the retardation in the thickness direction is larger than 15 nm or the in-plane retardation Re is larger than 10 nm have a poor evaluation of the viewing angle characteristics, and are inherent in the polarizing element. It can be seen that the optical characteristics are greatly changed.
  • optical films of Comparative Examples 1 and 2 obtained by the manufacturing method not including the step (2) and the step (3), and the comparative example obtained by the manufacturing method having a coating thickness larger than 10 ⁇ m in the step (2).
  • the optical films of 3 to 5 have poor viewing angle characteristics.

Abstract

An optical film comprising a resin that includes a polymer with a crystalline property, wherein the absolute value of the retardation Rth in the thickness direction is 15 nm or less, the in-plane retardation Re is 10 nm or less, and the thermal expansion coefficient is 0% to 7.5%.

Description

光学フィルム及びその製造方法Optical film and its manufacturing method
 本発明は、光学フィルム及びその製造方法に関する。 The present invention relates to an optical film and a method for manufacturing the same.
 結晶性を有する重合体を含む樹脂は、一般に、非晶性の重合体を含む樹脂と比較して耐熱性に優れている。そのため、結晶性を有する重合体を含む樹脂は、耐熱性が求められる光学フィルムの材料として用いられている(特許文献1、2)。 A resin containing a crystalline polymer is generally superior in heat resistance to a resin containing an amorphous polymer. Therefore, a resin containing a crystalline polymer is used as a material for an optical film that is required to have heat resistance (Patent Documents 1 and 2).
国際公開第2018/061841号(対応外国公報:米国特許出願公開第2019/255757号明細書)International Publication No. 2018/061841 (Corresponding Foreign Gazette: US Patent Application Publication No. 2019/255757) 国際公開第2018/124137号International Publication No. 2018/124137
 光学フィルムを、例えば偏光子などの光学要素の保護フィルムとして使用する場合、光学フィルムが当該光学要素に求められる光学特性を変化させないことが好ましい。
 しかし、結晶性を有する重合体を含む樹脂からなる光学フィルムを、他の光学要素と組み合わせると、その光学要素本来の光学特性を大きく変化させる場合があった。例えば、偏光子と光学フィルムとを組み合わせた偏光板を、画像表示装置に組み込むと、光学フィルムにより、傾斜方向から観察した場合の色味が変化する場合があった。
 一方、光学要素は、高温の環境で使用されうる。そのため光学要素と組み合わせて用いるためには、光学フィルムは、高温での変形が小さいことが好ましく、例えば、高温でのシワの発生が低減されていることが好ましい。
 したがって、結晶性を有する樹脂からなる光学フィルムであって、他の光学要素と組み合わせた場合に、その光学要素本来の光学特性を大きく変化させず、高温でのシワの発生が低減されている光学フィルム、及び、当該光学フィルムの製造方法が求められる。
When the optical film is used as a protective film for an optical element such as a polarizing element, it is preferable that the optical film does not change the optical characteristics required for the optical element.
However, when an optical film made of a resin containing a crystalline polymer is combined with another optical element, the original optical characteristics of the optical element may be significantly changed. For example, when a polarizing plate in which a polarizing element and an optical film are combined is incorporated into an image display device, the optical film may change the color tone when observed from an inclined direction.
On the other hand, the optical element can be used in a high temperature environment. Therefore, in order to use it in combination with an optical element, it is preferable that the optical film is less deformed at a high temperature, and for example, it is preferable that the occurrence of wrinkles at a high temperature is reduced.
Therefore, it is an optical film made of a crystalline resin, and when combined with other optical elements, the original optical characteristics of the optical element are not significantly changed, and the occurrence of wrinkles at high temperatures is reduced. A film and a method for manufacturing the optical film are required.
 本発明者は、前記課題を解決するべく、鋭意検討した結果、光学フィルムを、結晶性を有する樹脂から形成し、光学フィルムの厚み方向におけるレターデーションRth、面内レターデーション、及び光学フィルムの熱膨張率を所定の範囲内に収めることにより、前記課題が解決できることを見出し、本発明を完成させた。
 すなわち、本発明は、以下を提供する。
As a result of diligent studies to solve the above problems, the present inventor has formed an optical film from a resin having crystalline properties, and the retardation Rth, the in-plane retardation, and the heat of the optical film in the thickness direction of the optical film. We have found that the above problems can be solved by keeping the expansion rate within a predetermined range, and have completed the present invention.
That is, the present invention provides the following.
 [1] 結晶性を有する重合体を含む樹脂からなり、
 厚み方向におけるレターデーションRthの絶対値が、15nm以下であり、
 面内レターデーションReが、10nm以下であり、
 熱膨張率が、0%以上7.5%以下である、光学フィルム。
 [2] 光学フィルムが、第一の表面と第二の表面とを有し、
 厚み方向中央を含む部分である、中央部と、
 前記中央部に対して厚み方向外側にあり、前記第一の表面を含む部分である、第一の外側部と、
 前記中央部に対して厚み方向外側にあり、前記第二の表面を含む部分である、第二の外側部とから構成され、
 厚み方向におけるレターデーションRthが、前記中央部において正であり、
 厚み方向におけるレターデーションRthが、前記第一の外側部及び前記第二の外側部の少なくとも一方において、負である、
 [1]に記載の光学フィルム。
 [3] 長尺である、[1]又は[2]に記載の光学フィルム。
 [4] 前記結晶性を有する重合体を含む樹脂の固有複屈折値が、正である、[1]~[3]のいずれか一項に記載の光学フィルム。
 [5] [1]~[4]のいずれか一項に記載の光学フィルムの製造方法であって、
 結晶性を有する重合体を含む樹脂を、押出成形してフィルム(a)を得る工程(1)、
 前記フィルム(a)の二つの表面のうち、少なくとも一つの表面上に、溶媒を塗工して溶媒層を形成して、フィルム(a’)を得る工程(2)、及び
 前記フィルム(a’)の前記溶媒層を乾燥させて、フィルム(b)を得る工程(3)を含み、
 ここで、前記工程(2)において前記フィルム(a)の少なくとも一つの表面上に形成された前記溶媒層の総厚みが、10μm以下である、
 光学フィルムの製造方法。
[1] It is made of a resin containing a crystalline polymer.
The absolute value of retardation Rth in the thickness direction is 15 nm or less.
In-plane retardation Re is 10 nm or less,
An optical film having a coefficient of thermal expansion of 0% or more and 7.5% or less.
[2] The optical film has a first surface and a second surface.
The central part, which is the part including the center in the thickness direction,
The first outer portion, which is outside in the thickness direction with respect to the central portion and includes the first surface, and the first outer portion.
It is composed of a second outer portion, which is outside in the thickness direction with respect to the central portion and is a portion including the second surface.
The retardation Rth in the thickness direction is positive in the central portion, and the retardation Rth is positive.
The retardation Rth in the thickness direction is negative in at least one of the first outer portion and the second outer portion.
The optical film according to [1].
[3] The optical film according to [1] or [2], which is long.
[4] The optical film according to any one of [1] to [3], wherein the intrinsic birefringence value of the resin containing the crystalline polymer is positive.
[5] The method for producing an optical film according to any one of [1] to [4].
Step (1) of extruding a resin containing a crystalline polymer to obtain a film (a).
A step (2) of applying a solvent on at least one of the two surfaces of the film (a) to form a solvent layer to obtain a film (a'), and the film (a'. ) To dry the solvent layer to obtain a film (b), which comprises the step (3).
Here, the total thickness of the solvent layer formed on at least one surface of the film (a) in the step (2) is 10 μm or less.
Manufacturing method of optical film.
 本発明によれば、結晶性を有する樹脂からなる光学フィルムであって、他の光学要素と組み合わせた場合に、その光学要素本来の光学特性を大きく変化させず、高温でのシワの発生が低減されている光学フィルム、及び、当該光学フィルムの製造方法を提供できる。 According to the present invention, an optical film made of a crystalline resin does not significantly change the original optical characteristics of the optical element when combined with other optical elements, and the occurrence of wrinkles at high temperatures is reduced. It is possible to provide an optical film and a method for manufacturing the optical film.
図1は、本発明の一実施形態に係る光学フィルムを模式的に示す断面図である。FIG. 1 is a sectional view schematically showing an optical film according to an embodiment of the present invention.
 以下、本発明について実施形態及び例示物を示して詳細に説明する。ただし、本発明は以下に示す実施形態及び例示物に限定されるものではなく、本発明の請求の範囲及びその均等の範囲を逸脱しない範囲において任意に変更して実施しうる。 Hereinafter, the present invention will be described in detail by showing embodiments and examples. However, the present invention is not limited to the embodiments and examples shown below, and may be arbitrarily modified and carried out without departing from the scope of claims of the present invention and the equivalent scope thereof.
 以下の説明において、「長尺」のフィルムとは、幅に対して、5倍以上の長さを有するフィルムをいい、好ましくは10倍若しくはそれ以上の長さを有し、具体的にはロール状に巻き取られて保管又は運搬される程度の長さを有するフィルムをいう。フィルムの長さの上限は、特に制限は無く、例えば、幅に対して10万倍以下としうる。 In the following description, the "long" film means a film having a length of 5 times or more with respect to the width, preferably a film having a length of 10 times or more, and specifically, a roll. A film that has a length that allows it to be rolled up and stored or transported. The upper limit of the length of the film is not particularly limited and may be, for example, 100,000 times or less with respect to the width.
 以下の説明において、複数の層を備える部材における各層の光学軸(遅相軸、透過軸、吸収軸等)がなす角度は、別に断らない限り、前記の層を厚み方向から見たときの角度を表す。 In the following description, the angle formed by the optical axis (slow phase axis, transmission axis, absorption axis, etc.) of each layer in the member having a plurality of layers is the angle when the layer is viewed from the thickness direction unless otherwise specified. Represents.
 以下の説明において、長尺のフィルムの斜め方向とは、別に断らない限り、そのフィルムの面内方向であって、そのフィルムの長手方向に平行でもなく垂直でもない方向を示す。 In the following description, the diagonal direction of a long film indicates an in-plane direction of the film, which is neither parallel nor perpendicular to the longitudinal direction of the film, unless otherwise specified.
 以下の説明において、あるフィルムの正面方向とは、別に断らない限り、当該フィルムの主面の法線方向を意味し、具体的には前記主面の極角0°且つ方位角0°の方向を指す。 In the following description, the front direction of a certain film means the normal direction of the main surface of the film, and specifically, the direction of the polar angle 0 ° and the azimuth angle 0 ° of the main surface, unless otherwise specified. Point to.
 以下の説明において、あるフィルムの傾斜方向とは、別に断らない限り、当該フィルムの主面に平行でも垂直でもない方向を意味し、具体的には前記主面の極角が0°より大きく90°より小さい範囲の方向を指す。 In the following description, the tilting direction of a film means a direction that is neither parallel nor perpendicular to the main surface of the film, and specifically, the polar angle of the main surface is larger than 0 ° and 90. Points in a range smaller than °.
 以下の説明において、固有複屈折が正の材料とは、別に断らない限り、延伸方向の屈折率がそれに垂直な方向の屈折率よりも大きくなる材料を意味する。また、固有複屈折が負の材料とは、別に断らない限り、延伸方向の屈折率がそれに垂直な方向の屈折率よりも小さくなる材料を意味する。固有複屈折の値は誘電率分布から計算することができる。 In the following description, a material having a positive intrinsic birefringence means a material in which the refractive index in the stretching direction is larger than the refractive index in the direction perpendicular to it, unless otherwise specified. Further, the material having a negative intrinsic birefringence means a material in which the refractive index in the stretching direction is smaller than the refractive index in the direction perpendicular to the refractive index, unless otherwise specified. The value of the intrinsic birefringence can be calculated from the permittivity distribution.
 以下の説明において、層又はフィルムの面内レターデーションReは、別に断らない限り、Re=(nx-ny)×dで表される値である。また、層又はフィルムの厚み方向のレターデーションRthは、別に断らない限り、Rth=[{(nx+ny)/2}-nz]×dで表される値である。ここで、nxは、層又はフィルムの厚み方向に垂直な方向(面内方向)であって最大の屈折率を与える方向の屈折率を表す。nyは、層又はフィルムの前記面内方向であってnxの方向に直交する方向の屈折率を表す。nzは層又はフィルムの厚み方向の屈折率を表す。dは、層又はフィルムの厚みを表す。測定波長は、別に断らない限り、590nmである。 In the following description, the in-plane retardation Re of the layer or film is a value represented by Re = (nx-ny) × d unless otherwise specified. Further, the retardation Rth in the thickness direction of the layer or the film is a value represented by Rth = [{(nx + ny) / 2} -nz] × d unless otherwise specified. Here, nx represents the refractive index in the direction perpendicular to the thickness direction of the layer or film (in-plane direction) and in the direction giving the maximum refractive index. ny represents the refractive index in the in-plane direction of the layer or film and orthogonal to the direction of nx. nz represents the refractive index in the thickness direction of the layer or film. d represents the thickness of the layer or film. The measurement wavelength is 590 nm unless otherwise specified.
 以下の説明において、要素の方向が「平行」、「垂直」及び「直交」とは、別に断らない限り、本発明の効果を損ねない範囲内、例えば±3°、±2°又は±1°の範囲内での誤差を含んでいてもよい。 In the following description, unless the directions of the elements are "parallel", "vertical" and "orthogonal", they are within the range that does not impair the effect of the present invention, for example, ± 3 °, ± 2 ° or ± 1 °. It may include an error within the range of.
 以下の説明において、長尺のフィルムの長手方向は、通常は製造ラインにおけるフィルム搬送方向と平行である。また、MD方向(machine direction)は、製造ラインにおけるフィルムの搬送方向であり、通常は長尺のフィルムの長手方向と平行である。さらに、TD方向(transverse direction)は、フィルム面に平行な方向であって、前記MD方向に垂直な方向であり、通常は長尺のフィルムの幅方向と平行である。 In the following description, the longitudinal direction of the long film is usually parallel to the film transport direction in the production line. Further, the MD direction (machine direction) is the transport direction of the film in the production line, and is usually parallel to the longitudinal direction of the long film. Further, the TD direction (transverse direction) is a direction parallel to the film surface, a direction perpendicular to the MD direction, and usually parallel to the width direction of a long film.
[1.光学フィルムの概要]
 本発明の一実施形態に係る光学フィルムは、結晶性を有する重合体を含む樹脂からなり、厚み方向におけるレターデーションRthの絶対値が、15nm以下であり、面内レターデーションReが、10nm以下であり、熱膨張率が、0%以上7.5%以下である。
 本実施形態の光学フィルムは、他の光学要素と組み合わせた場合に、その光学要素本来の光学特性を大きく変化させず、かつ、高温でのシワの発生が低減されている。本実施形態の光学フィルムは、例えば偏光子と組み合わせて偏光板として画像表示装置に組み込んでも、傾斜方向から観察した場合の色味を大きく変化させない。
[1. Overview of optical film]
The optical film according to the embodiment of the present invention is made of a resin containing a polymer having crystallinity, the absolute value of the retardation Rth in the thickness direction is 15 nm or less, and the in-plane retardation Re is 10 nm or less. Yes, the coefficient of thermal expansion is 0% or more and 7.5% or less.
When the optical film of the present embodiment is combined with other optical elements, the original optical characteristics of the optical elements are not significantly changed, and the occurrence of wrinkles at high temperatures is reduced. Even if the optical film of the present embodiment is incorporated into an image display device as a polarizing plate in combination with a polarizing element, for example, the color tone when observed from an inclined direction does not change significantly.
[1.1.光学フィルムの材料]
 本実施形態に係る光学フィルムは、結晶性を有する重合体を含む樹脂からなり、当該樹脂から形成されている。
[1.1. Optical film material]
The optical film according to the present embodiment is made of a resin containing a polymer having crystallinity, and is formed of the resin.
 「結晶性を有する重合体」とは、融点Tmを有する重合体を表す。すなわち、「結晶性を有する重合体」とは、示差走査熱量計(DSC)で融点を観測することができる重合体を表す。以下の説明において、結晶性を有する重合体を、「結晶性重合体」ということがある。また、結晶性重合体を含む樹脂を「結晶性樹脂」ということがある。この結晶性樹脂は、好ましくは熱可塑性樹脂である。 The "polymer having crystallinity" represents a polymer having a melting point Tm. That is, the "polymer having crystallinity" represents a polymer whose melting point can be observed with a differential scanning calorimeter (DSC). In the following description, a polymer having crystallinity may be referred to as a “crystalline polymer”. Further, a resin containing a crystalline polymer may be referred to as a "crystalline resin". This crystalline resin is preferably a thermoplastic resin.
 結晶性重合体は、正の固有複屈折を有することが好ましい。正の固有複屈折を有する結晶性重合体を用いることにより、所望の光学特性を有する光学フィルムを容易に製造しうる。 The crystalline polymer preferably has a positive intrinsic birefringence. By using a crystalline polymer having positive intrinsic birefringence, an optical film having desired optical properties can be easily produced.
 結晶性重合体は、例えば、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)等のポリエステル;ポリエチレン(PE)、ポリプロピレン(PP)等のポリオレフィン;等でもよく、特に限定されることはないが、脂環式構造を含有することが好ましい。脂環式構造を含有する結晶性重合体を用いることにより、光学フィルムの機械特性、耐熱性、透明性、低吸湿性、寸法安定性及び軽量性を良好にできる。脂環式構造を含有する重合体とは、分子内に脂環式構造を有する重合体を表す。このような脂環式構造を含有する重合体は、例えば、環状オレフィンを単量体として用いた重合反応によって得られうる重合体又はその水素化物でありうる。 The crystalline polymer may be, for example, a polyester such as polyethylene terephthalate (PET) or polyethylene naphthalate (PEN); a polyolefin such as polyethylene (PE) or polypropylene (PP); and is not particularly limited. It preferably contains an alicyclic structure. By using the crystalline polymer containing an alicyclic structure, the mechanical properties, heat resistance, transparency, low hygroscopicity, dimensional stability and lightness of the optical film can be improved. The polymer containing an alicyclic structure represents a polymer having an alicyclic structure in the molecule. The polymer containing such an alicyclic structure can be, for example, a polymer obtained by a polymerization reaction using a cyclic olefin as a monomer or a hydride thereof.
 脂環式構造としては、例えば、シクロアルカン構造及びシクロアルケン構造が挙げられる。これらの中でも、熱安定性などの特性に優れる光学フィルムが得られ易いことから、シクロアルカン構造が好ましい。1つの脂環式構造に含まれる炭素原子の数は、好ましくは4個以上、より好ましくは5個以上であり、好ましくは30個以下、より好ましくは20個以下、特に好ましくは15個以下である。1つの脂環式構造に含まれる炭素原子の数が上記範囲内にあることで、機械的強度、耐熱性、及び成形性が高度にバランスされる。 Examples of the alicyclic structure include a cycloalkane structure and a cycloalkene structure. Among these, the cycloalkane structure is preferable because it is easy to obtain an optical film having excellent properties such as thermal stability. The number of carbon atoms contained in one alicyclic structure is preferably 4 or more, more preferably 5 or more, preferably 30 or less, more preferably 20 or less, and particularly preferably 15 or less. be. When the number of carbon atoms contained in one alicyclic structure is within the above range, mechanical strength, heat resistance, and moldability are highly balanced.
 脂環式構造を含有する結晶性重合体において、全ての構造単位に対する脂環式構造を有する構造単位の割合は、好ましくは30重量%以上、より好ましくは50重量%以上、特に好ましくは70重量%以上である。脂環式構造を有する構造単位の割合を前記のように多くすることにより、耐熱性を高めることができる。全ての構造単位に対する脂環式構造を有する構造単位の割合は、100重量%以下としうる。また、脂環式構造を含有する結晶性重合体において、脂環式構造を有する構造単位以外の残部は、格別な限定はなく、使用目的に応じて適宜選択しうる。 In the crystalline polymer containing an alicyclic structure, the ratio of the structural unit having an alicyclic structure to all the structural units is preferably 30% by weight or more, more preferably 50% by weight or more, and particularly preferably 70% by weight. % Or more. Heat resistance can be improved by increasing the proportion of structural units having an alicyclic structure as described above. The ratio of structural units having an alicyclic structure to all structural units may be 100% by weight or less. Further, in the crystalline polymer containing an alicyclic structure, the balance other than the structural unit having an alicyclic structure is not particularly limited and may be appropriately selected depending on the purpose of use.
 脂環式構造を含有する結晶性重合体としては、例えば、下記の重合体(α)~重合体(δ)が挙げられる。これらの中でも、耐熱性に優れる光学フィルムが得られ易いことから、重合体(β)が好ましい。
 重合体(α):環状オレフィン単量体の開環重合体であって、結晶性を有するもの。
 重合体(β):重合体(α)の水素化物であって、結晶性を有するもの。
 重合体(γ):環状オレフィン単量体の付加重合体であって、結晶性を有するもの。
 重合体(δ):重合体(γ)の水素化物であって、結晶性を有するもの。
Examples of the crystalline polymer containing an alicyclic structure include the following polymers (α) to (δ). Among these, the polymer (β) is preferable because it is easy to obtain an optical film having excellent heat resistance.
Polymer (α): A ring-opening polymer of a cyclic olefin monomer having crystallinity.
Polymer (β): A hydride of the polymer (α) having crystallinity.
Polymer (γ): An addition polymer of a cyclic olefin monomer having crystallinity.
Polymer (δ): A hydride of the polymer (γ) that has crystallinity.
 具体的には、脂環式構造を含有する結晶性重合体としては、ジシクロペンタジエンの開環重合体であって結晶性を有するもの、及び、ジシクロペンタジエンの開環重合体の水素化物であって結晶性を有するものがより好ましい。中でも、ジシクロペンタジエンの開環重合体の水素化物であって結晶性を有するものが特に好ましい。ここで、ジシクロペンタジエンの開環重合体とは、全構造単位に対するジシクロペンタジエン由来の構造単位の割合が、通常50重量%以上、好ましくは70重量%以上、より好ましくは90重量%以上、更に好ましくは100重量%の重合体をいう。 Specifically, the crystalline polymer containing an alicyclic structure includes a ring-opening polymer of dicyclopentadiene having crystalline property and a hydride of a ring-opening polymer of dicyclopentadiene. Those having crystalline properties are more preferable. Of these, a hydride of a ring-opening polymer of dicyclopentadiene, which has crystallinity, is particularly preferable. Here, in the open-ring polymer of dicyclopentadiene, the ratio of the structural unit derived from dicyclopentadiene to all the structural units is usually 50% by weight or more, preferably 70% by weight or more, more preferably 90% by weight or more. More preferably, it refers to a polymer of 100% by weight.
 ジシクロペンタジエンの開環重合体の水素化物は、ラセモ・ダイアッドの割合が高いことが好ましい。具体的には、ジシクロペンタジエンの開環重合体の水素化物における繰り返し単位のラセモ・ダイアッドの割合は、好ましくは51%以上、より好ましくは70%以上、特に好ましくは85%以上である。ラセモ・ダイアッドの割合が高いことは、シンジオタクチック立体規則性が高いことを表す。よって、ラセモ・ダイアッドの割合が高いほど、ジシクロペンタジエンの開環重合体の水素化物の融点が高い傾向がある。
 ラセモ・ダイアッドの割合は、後述する実施例に記載の13C-NMRスペクトル分析に基づいて決定できる。
The hydride of the ring-opening polymer of dicyclopentadiene preferably has a high proportion of racemic diad. Specifically, the proportion of the repeating unit racemic diad in the hydride of the ring-opening polymer of dicyclopentadiene is preferably 51% or more, more preferably 70% or more, and particularly preferably 85% or more. A high proportion of racemic diads indicates a high syndiotactic stereoregularity. Therefore, the higher the proportion of racemic diad, the higher the melting point of the hydride of the ring-opening polymer of dicyclopentadiene tends to be.
The proportion of racemo diads can be determined based on the 13 C-NMR spectral analysis described in Examples described below.
 上記重合体(α)~重合体(δ)としては、国際公開第2018/062067号に開示されている製造方法により得られる重合体を用いうる。 As the polymer (α) to the polymer (δ), a polymer obtained by the production method disclosed in International Publication No. 2018/062067 can be used.
 結晶性重合体の融点Tmは、好ましくは200℃以上、より好ましくは230℃以上であり、好ましくは290℃以下である。このような融点Tmを有する結晶性重合体を用いることによって、成形性と耐熱性とのバランスに更に優れた光学フィルムを得ることができる。 The melting point Tm of the crystalline polymer is preferably 200 ° C. or higher, more preferably 230 ° C. or higher, and preferably 290 ° C. or lower. By using a crystalline polymer having such a melting point Tm, an optical film having a better balance between moldability and heat resistance can be obtained.
 通常、結晶性重合体は、ガラス転移温度Tgを有する。結晶性重合体の具体的なガラス転移温度Tgは、特に限定されないが、通常は85℃以上、通常170℃以下である。 Normally, the crystalline polymer has a glass transition temperature Tg. The specific glass transition temperature Tg of the crystalline polymer is not particularly limited, but is usually 85 ° C. or higher and usually 170 ° C. or lower.
 重合体のガラス転移温度Tg及び融点Tmは、以下の方法によって測定できる。まず、重合体を、加熱によって融解させ、融解した重合体をドライアイスで急冷する。続いて、この重合体を試験体として用いて、示差走査熱量計(DSC)を用いて、10℃/分の昇温速度(昇温モード)で、重合体のガラス転移温度Tg及び融点Tmを測定しうる。 The glass transition temperature Tg and melting point Tm of the polymer can be measured by the following methods. First, the polymer is melted by heating, and the melted polymer is rapidly cooled with dry ice. Subsequently, using this polymer as a test piece, the glass transition temperature Tg and melting point Tm of the polymer were measured at a heating rate of 10 ° C./min (heating mode) using a differential scanning calorimeter (DSC). Can be measured.
 結晶性重合体の重量平均分子量(Mw)は、好ましくは1,000以上、より好ましくは2,000以上であり、好ましくは1,000,000以下、より好ましくは500,000以下である。このような重量平均分子量を有する結晶性重合体は、成形加工性と耐熱性とのバランスに優れる。 The weight average molecular weight (Mw) of the crystalline polymer is preferably 1,000 or more, more preferably 2,000 or more, preferably 1,000,000 or less, and more preferably 500,000 or less. A crystalline polymer having such a weight average molecular weight has an excellent balance between molding processability and heat resistance.
 結晶性重合体の分子量分布(Mw/Mn)は、好ましくは1.0以上、より好ましくは1.5以上であり、好ましくは4.0以下、より好ましくは3.5以下である。ここで、Mnは数平均分子量を表す。このような分子量分布を有する結晶性重合体は、成形加工性に優れる。 The molecular weight distribution (Mw / Mn) of the crystalline polymer is preferably 1.0 or more, more preferably 1.5 or more, preferably 4.0 or less, and more preferably 3.5 or less. Here, Mn represents a number average molecular weight. A crystalline polymer having such a molecular weight distribution is excellent in molding processability.
 重合体の重量平均分子量(Mw)及び分子量分布(Mw/Mn)は、テトラヒドロフランを展開溶媒とするゲル・パーミエーション・クロマトグラフィー(GPC)により、ポリスチレン換算値として測定しうる。 The weight average molecular weight (Mw) and molecular weight distribution (Mw / Mn) of the polymer can be measured as polystyrene-equivalent values by gel permeation chromatography (GPC) using tetrahydrofuran as a developing solvent.
 光学フィルムに含まれる結晶性重合体の結晶化度は、特段の制限はないが、通常は、ある程度以上高い。光学フィルムに含まれる結晶性重合体の結晶化度がある程度高いことは、後述する熱膨張率の大きさによって確認しうる。光学フィルムの熱膨張率が小さいほど、光学フィルムに含まれる結晶性重合体の結晶化度は高い傾向にある。
 具体的な結晶化度の範囲は、好ましくは10%以上、より好ましくは15%以上、特に好ましくは30%以上である。
 結晶性重合体の結晶化度は、X線回折法によって測定しうる。
The crystallinity of the crystalline polymer contained in the optical film is not particularly limited, but is usually higher than a certain level. The high crystallinity of the crystalline polymer contained in the optical film can be confirmed by the magnitude of the coefficient of thermal expansion described later. The smaller the coefficient of thermal expansion of the optical film, the higher the crystallinity of the crystalline polymer contained in the optical film.
The specific range of crystallinity is preferably 10% or more, more preferably 15% or more, and particularly preferably 30% or more.
The crystallinity of the crystalline polymer can be measured by X-ray diffraction.
 結晶性重合体は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。 As the crystalline polymer, one type may be used alone, or two or more types may be used in combination at any ratio.
 結晶性樹脂における結晶性重合体の割合は、好ましくは50重量%以上、より好ましくは70重量%以上、特に好ましくは90重量%以上である。結晶性重合体の割合が前記範囲の下限値以上である場合、光学フィルムの耐熱性を高めることができる。結晶性重合体の割合の上限は、100重量%以下でありうる。 The proportion of the crystalline polymer in the crystalline resin is preferably 50% by weight or more, more preferably 70% by weight or more, and particularly preferably 90% by weight or more. When the ratio of the crystalline polymer is not more than the lower limit of the above range, the heat resistance of the optical film can be enhanced. The upper limit of the proportion of the crystalline polymer may be 100% by weight or less.
 結晶性樹脂は、結晶性重合体に加えて、任意の成分を含みうる。任意の成分としては、例えば、フェノール系酸化防止剤、リン系酸化防止剤、イオウ系酸化防止剤等の酸化防止剤;ヒンダードアミン系光安定剤等の光安定剤;石油系ワックス、フィッシャートロプシュワックス、ポリアルキレンワックス等のワックス;ソルビトール系化合物、有機リン酸の金属塩、有機カルボン酸の金属塩、カオリン及びタルク等の核剤;ジアミノスチルベン誘導体、クマリン誘導体、アゾール系誘導体(例えば、ベンゾオキサゾール誘導体、ベンゾトリアゾール誘導体、ベンゾイミダゾール誘導体、及びベンゾチアソール誘導体)、カルバゾール誘導体、ピリジン誘導体、ナフタル酸誘導体、及びイミダゾロン誘導体等の蛍光増白剤;ベンゾフェノン系紫外線吸収剤、サリチル酸系紫外線吸収剤、ベンゾトリアゾール系紫外線吸収剤等の紫外線吸収剤;タルク、シリカ、炭酸カルシウム、ガラス繊維等の無機充填材;着色剤;難燃剤;難燃助剤;帯電防止剤;可塑剤;近赤外線吸収剤;滑剤;フィラー;及び、軟質重合体等の、結晶性重合体以外の任意の重合体;などが挙げられる。任意の成分は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。 The crystalline resin may contain any component in addition to the crystalline polymer. Optional components include, for example, antioxidants such as phenol-based antioxidants, phosphorus-based antioxidants, sulfur-based antioxidants; light stabilizers such as hindered amine-based light stabilizers; petroleum-based waxes, Fishertroph waxes, etc. Waxes such as polyalkylene wax; sorbitol compounds, metal salts of organic phosphates, metal salts of organic carboxylic acids, nucleating agents such as kaolin and talc; diaminostilben derivatives, coumarin derivatives, azole derivatives (eg, benzoxazole derivatives, etc.) Fluorowhitening agents such as benzotriazole derivatives, benzoimidazole derivatives, and benzothiazole derivatives), carbazole derivatives, pyridine derivatives, naphthalic acid derivatives, and imidazolone derivatives; benzophenone-based ultraviolet absorbers, salicylic acid-based ultraviolet absorbers, benzotriazole-based UV absorbers such as UV absorbers; Inorganic fillers such as talc, silica, calcium carbonate, glass fibers; Colorants; Flame retardants; Flame retardant aids; Antistatic agents; Plastics; Near infrared absorbers; Lubricants; Fillers ; And any polymer other than the crystalline polymer, such as a soft polymer; and the like. As the arbitrary component, one kind may be used alone, or two or more kinds may be used in combination at any ratio.
[1.2.光学フィルムの特性]
 (厚み方向におけるレターデーションRth)
 本実施形態の光学フィルムは、厚み方向におけるレターデーションRthの絶対値が、通常15nm以下、好ましくは3nm以下、より好ましくは1nm以下であり、通常0nm以上であり、理想的には0nmである。厚み方向におけるレターデーションRthの絶対値が、前記上限値以下であることにより、他の光学要素と組み合わせた場合に、その光学要素本来の光学特性を大きく変化させないようにしうる。例えば、光学フィルムを画像表示装置の要素(例えば、偏光子の保護フィルム)として用いた場合に、傾斜方向から観察した場合の画像の色味の変化を低減しうる。
[1.2. Characteristics of optical film]
(Letteration Rth in the thickness direction)
In the optical film of the present embodiment, the absolute value of retardation Rth in the thickness direction is usually 15 nm or less, preferably 3 nm or less, more preferably 1 nm or less, usually 0 nm or more, and ideally 0 nm. When the absolute value of the retardation Rth in the thickness direction is equal to or less than the upper limit value, it is possible to prevent the optical characteristics of the optical element from being significantly changed when combined with other optical elements. For example, when an optical film is used as an element of an image display device (for example, a protective film for a polarizing element), it is possible to reduce a change in the tint of an image when observed from an inclined direction.
 本実施形態の光学フィルムは、厚み方向におけるレターデーションRth(以下、「厚み方向におけるレターデーション」を、単に「Rth」ともいう。)の符号が、厚み方向において変化していることが好ましい。具体的には、光学フィルムの厚み方向中央部と、光学フィルムが有する、第一の外側部及び第二の外側部の少なくとも一方とで、Rthの符号が異なることが好ましく、中央部のRthの符号が正であり、第一の外側部及び前記第二の外側部の少なくとも一方のRthの符号が負であることがより好ましく、中央部のRthの符号が正であり、第一の外側部及び前記第二の外側部の両方のRthの符号が負であることが更に好ましい。光学フィルムが、前記の好ましい構成を備えることによって、所望の範囲にあるレターデーションを容易に実現できる。 In the optical film of the present embodiment, it is preferable that the sign of the retardation Rth in the thickness direction (hereinafter, "letteration in the thickness direction" is also simply referred to as "Rth") changes in the thickness direction. Specifically, it is preferable that the Rth code is different between the central portion in the thickness direction of the optical film and at least one of the first outer portion and the second outer portion of the optical film, and the Rth of the central portion. It is more preferable that the sign is positive and the sign of at least one of the first outer portion and the second outer portion is negative, and the sign of Rth in the central portion is positive and the first outer portion. And it is more preferable that the sign of Rth of both of the second outer portions is negative. By providing the optical film with the above-mentioned preferable configuration, it is possible to easily realize the lettering within a desired range.
 図1は、本発明の一実施形態に係る光学フィルムを模式的に示す断面図である。光学フィルム100は、中央部110と、第一の外側部121と、第二の外側部122とから構成される。
 光学フィルム100は、第一の表面100Uと第二の表面100Dとを有する。光学フィルム100の厚み方向中央111は、第一の表面100Uと第二の表面100Dとから等距離の面である。中央部110は、厚み方向中央111を含む部分である。第一の外側部121は、中央部110よりも厚み方向外側にあり、第一の表面100Uを含む部分である。第二の外側部122は、中央部110よりも厚み方向外側にあり、第二の表面100Dを含む部分である。
FIG. 1 is a sectional view schematically showing an optical film according to an embodiment of the present invention. The optical film 100 is composed of a central portion 110, a first outer portion 121, and a second outer portion 122.
The optical film 100 has a first surface 100U and a second surface 100D. The center 111 in the thickness direction of the optical film 100 is a surface equidistant from the first surface 100U and the second surface 100D. The central portion 110 is a portion including the central 111 in the thickness direction. The first outer portion 121 is located outside the central portion 110 in the thickness direction and includes the first surface 100U. The second outer portion 122 is located outside the central portion 110 in the thickness direction and includes the second surface 100D.
 中央部110のRthの値は正であり、第一の外側部121及び第二の外側部122のRthの値は両方とも負である。 The Rth value of the central portion 110 is positive, and the Rth value of the first outer portion 121 and the second outer portion 122 are both negative.
 このように、中央部110のRthの値が正であり、第一の外側部121及び第二の外側部122のRthの値が負である光学フィルム100は、結晶性樹脂から押出成形により製造された、押出フィルムの両面上に、有機溶媒を塗工して溶媒層を形成することを含む製造方法により製造しうる。本製造方法により、光学フィルム100を製造しうる理由は、下記のように推察されるが、本発明を限定するものではない。 As described above, the optical film 100 in which the Rth value of the central portion 110 is positive and the Rth value of the first outer portion 121 and the second outer portion 122 is negative is manufactured from the crystalline resin by extrusion molding. It can be produced by a production method including coating an organic solvent on both sides of the extruded film to form a solvent layer. The reason why the optical film 100 can be manufactured by this manufacturing method is presumed as follows, but the present invention is not limited.
 押出フィルムは、結晶性樹脂を押出成形する際に、搬送方向にわずかに延伸されて、厚み方向レターデーションRthが正の値となっていると考えられる。
 押出フィルムの両面上に溶媒を塗工することにより、その溶媒が押出フィルム中に浸入する。浸入した溶媒の作用により、押出フィルム中の結晶性重合体の分子にミクロブラウン運動が生じ、押出フィルムの分子鎖が配向すると考えられる。
It is considered that the extruded film is slightly stretched in the transport direction when the crystalline resin is extruded, and the thickness direction retardation Rth has a positive value.
By applying a solvent on both sides of the extruded film, the solvent penetrates into the extruded film. It is considered that the action of the infiltrated solvent causes microBrownian motion in the molecules of the crystalline polymer in the extruded film, and the molecular chains of the extruded film are oriented.
 ところで、押出フィルムの表面積は、主表面であるオモテ面及びウラ面が大きい。よって、溶媒の浸入速度は、前記のオモテ面又はウラ面を通った厚み方向への浸入速度が、大きい。そうすると、前記の結晶性重合体の分子鎖の配向は、当該重合体の分子が厚み方向に配向するように進行しうる。また、押出フィルムを溶媒に浸漬するのではなく、押出フィルムに溶媒を塗工することにより、溶媒は押出フィルムの厚み方向における外側部には侵入するが、押出フィルムの厚み方向における中央部には到達しないと考えられる。
 その結果、光学フィルムの中央部のRthは、溶媒を塗工する前の押出フィルムの値と同じか近い値であって正の値であり、光学フィルムの第一の外側部及び第二外側部は、厚み方向の屈折率が大きくなって、Rthが負の値となると考えられる。
By the way, the surface area of the extruded film is large on the front surface and the back surface, which are the main surfaces. Therefore, as for the infiltration rate of the solvent, the infiltration rate in the thickness direction through the front surface or the back surface is high. Then, the orientation of the molecular chains of the crystalline polymer can proceed so that the molecules of the polymer are oriented in the thickness direction. Further, by applying the solvent to the extruded film instead of immersing the extruded film in the solvent, the solvent penetrates into the outer portion in the thickness direction of the extruded film, but reaches the central portion in the thickness direction of the extruded film. It is thought that it will not be reached.
As a result, the Rth in the central portion of the optical film is a positive value that is the same as or close to the value of the extruded film before the solvent is applied, and the first outer portion and the second outer portion of the optical film. It is considered that the refractive index in the thickness direction becomes large and Rth becomes a negative value.
 押出フィルムの片面上のみに、溶媒を塗工した場合は、溶媒が塗工された面を含む光学フィルムの外側部は、厚み方向の屈折率が大きくなって、当該外側部はRthが負の値となると考えられる。また、溶媒が塗工されなかった面を含む光学フィルムの外側部は、中心部と同様にRthが正の値となると考えられる。 When the solvent is applied only on one side of the extruded film, the outer part of the optical film including the surface coated with the solvent has a large refractive index in the thickness direction, and the outer part has a negative Rth. It is considered to be a value. Further, it is considered that the outer portion of the optical film including the surface not coated with the solvent has a positive Rth value as in the central portion.
 (面内レターデーションRe)
 本実施形態の光学フィルムは、面内レターデーションReが通常10nm以下、好ましくは5nm以下、より好ましくは3nm以下であり、通常0nm以上である。面内レターデーションReが前記上限値以下であることにより、光学フィルムを光学要素の保護フィルムとして用いた場合に、光学フィルムが光学要素本来の光学特性に与える影響を低減しうる。
(In-plane Letteration Re)
The optical film of the present embodiment has an in-plane retardation Re of usually 10 nm or less, preferably 5 nm or less, more preferably 3 nm or less, and usually 0 nm or more. When the in-plane retardation Re is not more than the upper limit value, the influence of the optical film on the original optical characteristics of the optical element can be reduced when the optical film is used as a protective film for the optical element.
 フィルムのレターデーションは、位相差計(例えば、AXOMETRICS社製「AxoScan OPMF-1」)を用いて測定しうる。 The film retardation can be measured using a phase difference meter (for example, "AXoScan OPMF-1" manufactured by AXOMETRICS).
 (熱膨張率)
 本実施形態の光学フィルムは、熱膨張率が、通常7.5%以下、好ましくは7%以下、より好ましくは6.5%以下であり、通常0%以上である。光学フィルムの熱膨張率が、前記上限値以下であることにより、光学フィルムの耐熱性が向上しうる。
(Coefficient of thermal expansion)
The optical film of the present embodiment has a coefficient of thermal expansion of usually 7.5% or less, preferably 7% or less, more preferably 6.5% or less, and usually 0% or more. When the coefficient of thermal expansion of the optical film is not more than the upper limit value, the heat resistance of the optical film can be improved.
 ここで、熱膨張率は、下記の条件で測定される値である。
 光学フィルムを長方形状に切り出して試料を得る。この切り出しは、長方形状の試料の長手方向が、フィルムのMD方向(長尺のフィルムにおける長手方向)又はTD方向(長尺のフィルムにおける幅方向)に一致するように、行う。
 得られた試料の長手方向に50mNの張力を加えた状態で、昇温速度10℃/分で、温度20℃から130℃までの線膨張ΔLを測定する。
 測定された線膨張ΔLの値を、元の長さ(即ち、線膨張前の長さL)で割り算して、下記式に従いMD及びTD方向の熱膨張率(%)を求めその平均値を光学フィルムの熱膨張率RTMA(%)とする。
 熱膨張率(%)=(ΔL/L)×100
Here, the coefficient of thermal expansion is a value measured under the following conditions.
A sample is obtained by cutting out an optical film into a rectangular shape. This cutting is performed so that the longitudinal direction of the rectangular sample coincides with the MD direction (longitudinal direction in the long film) or the TD direction (width direction in the long film) of the film.
With a tension of 50 mN applied in the longitudinal direction of the obtained sample, the linear expansion ΔL from a temperature of 20 ° C. to 130 ° C. is measured at a heating rate of 10 ° C./min.
Divide the measured value of linear expansion ΔL by the original length (that is, the length L before linear expansion) to obtain the coefficient of thermal expansion (%) in the MD and TD directions according to the following formula, and calculate the average value. The coefficient of thermal expansion of the optical film is RTMA (%).
Coefficient of thermal expansion (%) = (ΔL / L) × 100
 以上の条件で測定される光学フィルムの熱膨張率RTMAは、光学フィルムに含まれる結晶性樹脂の結晶化度の大きさの指標となりうる。光学フィルムの熱膨張率RTMAが小さいほど、光学フィルムに含まれる結晶性樹脂の結晶化度は、大きい傾向がある。
 光学フィルムの熱膨張率が、前記範囲にあることによって、光学フィルムの耐熱性を向上させうる。
The coefficient of thermal expansion RTMA of the optical film measured under the above conditions can be an index of the degree of crystallinity of the crystalline resin contained in the optical film. The smaller the coefficient of thermal expansion RTMA of the optical film, the higher the crystallinity of the crystalline resin contained in the optical film tends to be.
When the coefficient of thermal expansion of the optical film is within the above range, the heat resistance of the optical film can be improved.
 (厚み)
 光学フィルムの厚みは、光学フィルムの用途に応じて適切に設定できる。光学フィルムの厚みdは、好ましくは5μm以上、より好ましくは10μm以上であり、好ましくは80μm以下、より好ましくは70μm以下である。光学フィルムの厚みdが前記範囲の下限値以上である場合、ハンドリング性を良好にしたり、強度を高くしたりできる。また、光学フィルムの厚みdが上限値以下である場合、長尺の光学フィルムの巻取りが容易である。
(Thickness)
The thickness of the optical film can be appropriately set according to the application of the optical film. The thickness d of the optical film is preferably 5 μm or more, more preferably 10 μm or more, preferably 80 μm or less, and more preferably 70 μm or less. When the thickness d of the optical film is not less than the lower limit of the above range, the handleability can be improved and the strength can be increased. Further, when the thickness d of the optical film is not more than the upper limit value, it is easy to wind the long optical film.
 本実施形態の光学フィルムは、枚葉のフィルムであってもよく、長尺のフィルムであってもよい。通常、光学フィルムは長尺のフィルムとして製造される。長尺の光学フィルムは、ロール・トゥ・ロール法を用いて効率的に他の長尺の光学要素と組み合わされうる。したがって、光学フィルムは、長尺であることが好ましい。 The optical film of the present embodiment may be a single-wafer film or a long film. Optical films are usually manufactured as long films. Long optical films can be efficiently combined with other long optical elements using the roll-to-roll method. Therefore, the optical film is preferably long.
 (透明性)
 本実施形態の光学フィルムは、高い透明性を有することが好ましい。光学フィルムの具体的な全光線透過率は、好ましくは80%以上、より好ましくは85%以上、特に好ましくは88%以上である。光学フィルムの全光線透過率は、通常100%以下である。光学フィルムの全光線透過率は、紫外・可視分光計を用いて、波長400nm~700nmの範囲で測定しうる。
(transparency)
The optical film of the present embodiment preferably has high transparency. The specific total light transmittance of the optical film is preferably 80% or more, more preferably 85% or more, and particularly preferably 88% or more. The total light transmittance of the optical film is usually 100% or less. The total light transmittance of the optical film can be measured in the wavelength range of 400 nm to 700 nm using an ultraviolet / visible spectrometer.
[2.光学フィルムの製造方法]
 本実施形態の光学フィルムは、任意の方法により製造しうる。例えば、光学フィルムは、下記工程を含む製造方法により製造しうる。
 工程(1):結晶性を有する重合体を含む樹脂を、押出成形してフィルム(a)を得る工程。
 工程(2):前記フィルム(a)の二つの表面のうち、少なくとも一つの表面上に、溶媒を塗工して溶媒層を形成して、フィルム(a’)を得る工程。
 工程(3):前記フィルム(a’)の前記溶媒層を乾燥させて、フィルム(b)を得る工程。
 通常工程(2)は、工程(1)の後に行われる。通常工程(3)は、工程(2)の後に行われる。本実施形態の光学フィルムの製造方法は、前記工程(1)~(3)に加えて、任意の工程を含んでいてもよい。
[2. Optical film manufacturing method]
The optical film of the present embodiment can be produced by any method. For example, the optical film can be manufactured by a manufacturing method including the following steps.
Step (1): A step of extruding a resin containing a crystalline polymer to obtain a film (a).
Step (2): A step of applying a solvent on at least one of the two surfaces of the film (a) to form a solvent layer to obtain a film (a').
Step (3): A step of drying the solvent layer of the film (a') to obtain the film (b).
The normal step (2) is performed after the step (1). The normal step (3) is performed after the step (2). The method for producing an optical film of the present embodiment may include any step in addition to the steps (1) to (3).
[2.1.工程(1)]
 工程(1)では、結晶性重合体を含む樹脂を、押出成形してフィルム(a)を得る。
 工程(1)で用いる結晶性重合体を含む樹脂は、光学フィルムに含まれる結晶性重合体を含む樹脂と同じでありうる。ただし、フィルム(a)に含まれる結晶性重合体の結晶化度は、小さいことが好ましい。具体的な結晶化度は、好ましくは10%未満、より好ましくは5%未満、特に好ましくは3%未満である。有機溶媒を塗工する前のフィルム(a)に含まれる結晶性重合体の結晶化度が低いと、有機溶媒の塗工量によって光学フィルムの厚み方向のレターデーションRthを制御することが、容易となる。
[2.1. Process (1)]
In the step (1), the resin containing the crystalline polymer is extruded to obtain a film (a).
The resin containing the crystalline polymer used in the step (1) can be the same as the resin containing the crystalline polymer contained in the optical film. However, the crystallinity of the crystalline polymer contained in the film (a) is preferably small. The specific crystallinity is preferably less than 10%, more preferably less than 5%, and particularly preferably less than 3%. When the crystallinity of the crystalline polymer contained in the film (a) before coating with the organic solvent is low, it is easy to control the retardation Rth in the thickness direction of the optical film by the amount of coating of the organic solvent. It becomes.
 押出成形法による製造条件は、例えば下記のとおりである。
 シリンダー温度(溶融樹脂温度)は、好ましくはTm以上、より好ましくは「Tm+20℃」以上であり、好ましくは「Tm+100℃」以下、より好ましくは「Tm+50℃」以下である。また、フィルム状に押し出された溶融樹脂が最初に接触する冷却体は特に限定されないが、通常はキャストロールを用いる。このキャストロール温度は、好ましくは「Tg-50℃」以上であり、好ましくは「Tg+70℃」以下、より好ましくは「Tg+40℃」以下である。さらに、冷却ロール温度は、好ましくは「Tg-70℃」以上、より好ましくは「Tg-50℃」以上であり、好ましくは「Tg+60℃」以下、より好ましくは「Tg+30℃」以下である。このような条件でフィルム(a)を製造する場合、厚み1μm~1mmのフィルム(a)を容易に製造できる。ここで、「Tm」は、結晶性重合体の融点を表し、「Tg」は結晶性重合体のガラス転移温度を表す。
The manufacturing conditions by the extrusion molding method are as follows, for example.
The cylinder temperature (molten resin temperature) is preferably Tm or higher, more preferably "Tm + 20 ° C" or higher, preferably "Tm + 100 ° C" or lower, and more preferably "Tm + 50 ° C" or lower. Further, the cooling body that the molten resin extruded into a film comes into contact with first is not particularly limited, but a cast roll is usually used. The cast roll temperature is preferably "Tg-50 ° C." or higher, preferably "Tg + 70 ° C." or lower, and more preferably "Tg + 40 ° C." or lower. Further, the cooling roll temperature is preferably "Tg −70 ° C.” or higher, more preferably “Tg −50 ° C.” or higher, preferably “Tg + 60 ° C.” or lower, and more preferably “Tg + 30 ° C.” or lower. When the film (a) is manufactured under such conditions, the film (a) having a thickness of 1 μm to 1 mm can be easily manufactured. Here, "Tm" represents the melting point of the crystalline polymer, and "Tg" represents the glass transition temperature of the crystalline polymer.
 フィルム(a)の厚みは、製造しようとする光学フィルムの厚みに応じて設定することが好ましい。通常、工程(2)でフィルム(a)に溶媒を塗工することにより、フィルムの厚みは大きくなる。他方、光学フィルムの製造方法が、延伸工程を含む場合、延伸によってフィルムの厚みは小さくなる。したがって、前記のような工程(1)よりも後の工程における厚みの変化を考慮して、フィルム(a)の厚みを設定してもよい。
 押出成形によれば、フィルム(a)の厚みを容易に制御しうる。
The thickness of the film (a) is preferably set according to the thickness of the optical film to be manufactured. Usually, by applying the solvent to the film (a) in the step (2), the thickness of the film is increased. On the other hand, when the method for producing an optical film includes a stretching step, the thickness of the film is reduced by stretching. Therefore, the thickness of the film (a) may be set in consideration of the change in the thickness in the step after the step (1) as described above.
According to extrusion molding, the thickness of the film (a) can be easily controlled.
 フィルム(a)は、枚葉のフィルムであってもよいが、長尺のフィルムであることが好ましい。長尺のフィルム(a)を用いることにより、ロール・トゥ・ロール法による光学フィルムの連続的な製造が可能であるので、光学フィルムの生産性を効果的に高めることができる。 The film (a) may be a single-wafer film, but is preferably a long film. By using the long film (a), the optical film can be continuously produced by the roll-to-roll method, so that the productivity of the optical film can be effectively increased.
 フィルム(a)は、有機溶媒の含有量が小さいことが好ましく、有機溶媒を含まないことがより好ましい。フィルム(a)の重量100%に対する当該フィルム(a)に含まれる有機溶媒の比率(溶媒含有率)は、好ましくは1%以下、より好ましくは0.5%以下、更に好ましくは0.1%以下であり、理想的には0.0%である。有機溶媒を塗工する前のフィルム(a)に含まれる有機溶媒の量が少ないことにより、有機溶媒の塗工量によって光学フィルムの厚み方向のレターデーションRthを制御することが、容易となる。 The film (a) preferably has a small content of the organic solvent, and more preferably does not contain the organic solvent. The ratio (solvent content) of the organic solvent contained in the film (a) to 100% by weight of the film (a) is preferably 1% or less, more preferably 0.5% or less, still more preferably 0.1%. It is less than or equal to, ideally 0.0%. Since the amount of the organic solvent contained in the film (a) before applying the organic solvent is small, it becomes easy to control the retardation Rth in the thickness direction of the optical film by the amount of the organic solvent applied.
 押出成形によれば、有機溶媒の含有量が小さい、通常有機溶媒を含まないフィルム(a)が得られうる。 According to extrusion molding, a film (a) having a small content of organic solvent and usually containing no organic solvent can be obtained.
 フィルム(a)の溶媒含有率は、密度によって測定しうる。 The solvent content of the film (a) can be measured by the density.
 フィルム(a)の面内レターデーションReは、好ましくは10nm以下、より好ましくは8nm以下、更に好ましくは5nm以下であり、通常0nm以上である。
フィルム(a)の厚み方向のレターデーションRthは、好ましくは15nm以下、より好ましくは10nm以下、更に好ましくは8nm以下であり、好ましくは0nm以上、より好ましくは0.5nm以上、更に好ましくは1nm以上である。
 フィルム(a)の位相差が、このように低いことによって、光学フィルムの位相差を、所望の範囲に調整することが容易となる。
The in-plane retardation Re of the film (a) is preferably 10 nm or less, more preferably 8 nm or less, still more preferably 5 nm or less, and usually 0 nm or more.
The retardation Rth of the film (a) in the thickness direction is preferably 15 nm or less, more preferably 10 nm or less, still more preferably 8 nm or less, preferably 0 nm or more, more preferably 0.5 nm or more, still more preferably 1 nm or more. Is.
Such a low phase difference of the film (a) makes it easy to adjust the phase difference of the optical film to a desired range.
[2.2.工程(2)]
 工程(2)では、フィルム(a)の二つの表面のうち、少なくとも一つの表面上に、溶媒を塗工して溶媒層を形成して、フィルム(a’)を得る。
 工程(2)により、表面近傍における厚み方向の屈折率が変化したフィルムを得うる。
[2.2. Process (2)]
In the step (2), a solvent is applied on at least one surface of the two surfaces of the film (a) to form a solvent layer to obtain a film (a').
By the step (2), a film having a changed refractive index in the thickness direction in the vicinity of the surface can be obtained.
 溶媒は、通常有機溶媒である。有機溶媒としては、結晶性重合体を溶解しないものを用いうる。好ましい有機溶媒の例としては、トルエン、リモネン、デカリン等の炭化水素溶媒;二硫化炭素;が挙げられ、好ましくはトルエンである。有機溶媒の種類は、1種類でもよく、2種類以上でもよい。 The solvent is usually an organic solvent. As the organic solvent, a solvent that does not dissolve the crystalline polymer can be used. Examples of preferable organic solvents include hydrocarbon solvents such as toluene, limonene and decalin; carbon disulfide; preferably toluene. The type of the organic solvent may be one kind or two or more kinds.
 フィルム(a)の二つの表面(二つの主表面)のうち、一つの表面上に溶媒を塗工してもよく、二つの表面の両方に溶媒を塗工してもよい。塗工法は、好ましくは塗工によりフィルム(a)の表面に形成される溶媒層の厚みを制御しうる方法が用いられる。
 塗工法の例としては、ワイヤーバーコート法、スプレー法、ロールコート法、グラビアコート法、ダイコート法、カーテンコート法、スライドコート法、及びエクストルージョンコート法が挙げられ、ダイコート法が好ましい。
Of the two surfaces (two main surfaces) of the film (a), the solvent may be applied on one surface, or the solvent may be applied on both of the two surfaces. As the coating method, a method capable of controlling the thickness of the solvent layer formed on the surface of the film (a) by coating is preferably used.
Examples of the coating method include a wire bar coating method, a spray method, a roll coating method, a gravure coating method, a die coating method, a curtain coating method, a slide coating method, and an extrusion coating method, and the die coating method is preferable.
 フィルム(a)の少なくとも一つの表面上に形成された溶媒層の総厚みは、通常10μm以下、好ましくは9μm以下、より好ましくは8μm以下であり、通常0μmより大きい。
 ここで、総厚みとは、フィルム(a)の二つの表面の両方に溶媒を塗工して二つの溶媒層を形成した場合は、二つの溶媒層の厚みの合計であり、フィルム(a)の二つの表面の一方のみに溶媒を塗工して一つの溶媒層のみを形成した場合は、その一つの溶媒層の厚みである。
The total thickness of the solvent layer formed on at least one surface of the film (a) is usually 10 μm or less, preferably 9 μm or less, more preferably 8 μm or less, and usually larger than 0 μm.
Here, the total thickness is the total thickness of the two solvent layers when the solvent is applied to both of the two surfaces of the film (a) to form the two solvent layers, and the film (a). When the solvent is applied to only one of the two surfaces to form only one solvent layer, it is the thickness of the one solvent layer.
 溶媒層の総厚みを、前記範囲内に収めることにより、光学フィルムの厚み方向のレターデーションRthの絶対値を、所望の範囲に調整しうる。
 溶媒層の総厚みを大きくするほど、フィルム(b)の厚み方向のレターデーションRthは小さくなる傾向がある。フィルム(a)の厚み方向のレターデーションRthの値に応じて、溶媒層の総厚みを調整することにより、フィルム(b)の厚み方向のレターデーションRthの絶対値を、調整しうる。
 さらに、溶媒層の総厚みを、前記範囲内に収めることにより、工程(3)において搬送されるフィルムにシワが発生することを低減して、フィルムのハンドリング性を高めることができる。
By keeping the total thickness of the solvent layer within the above range, the absolute value of the retardation Rth in the thickness direction of the optical film can be adjusted to a desired range.
As the total thickness of the solvent layer is increased, the retardation Rth in the thickness direction of the film (b) tends to be smaller. The absolute value of the retardation Rth in the thickness direction of the film (b) can be adjusted by adjusting the total thickness of the solvent layer according to the value of the retardation Rth in the thickness direction of the film (a).
Further, by keeping the total thickness of the solvent layer within the above range, it is possible to reduce the occurrence of wrinkles in the film conveyed in the step (3) and improve the handleability of the film.
[2.3.工程(3)]
 工程(3)では、フィルム(a’)の前記溶媒層を乾燥させて、フィルム(b)を得る。これにより、溶媒層の溶媒が除去されうる。
 乾燥方法として、用いた溶媒の沸点に応じて任意の方法を採用しうる。乾燥方法の例としては、自然乾燥、加熱乾燥、減圧乾燥、減圧加熱乾燥等が挙げられる。
[2.3. Process (3)]
In the step (3), the solvent layer of the film (a') is dried to obtain the film (b). Thereby, the solvent in the solvent layer can be removed.
As the drying method, any method can be adopted depending on the boiling point of the solvent used. Examples of the drying method include natural drying, heat drying, vacuum drying, vacuum heating drying and the like.
 工程(2)において塗工された溶媒層の溶媒の一部又は全部は、フィルム(a’)に取り込まれて、重合体の内部に入り込みうる。したがって、工程(3)において、溶媒の沸点以上で乾燥を行ったとしても、フィルム(a’)から容易には溶媒を完全に除去することは難しい。よって、フィルム(b)は、溶媒を含みうる。 Part or all of the solvent in the solvent layer coated in the step (2) can be incorporated into the film (a') and enter the inside of the polymer. Therefore, in the step (3), it is difficult to completely remove the solvent from the film (a') even if the film is dried above the boiling point of the solvent. Therefore, the film (b) may contain a solvent.
 工程(2)において、溶媒層の総厚みを調整することにより、フィルム(b)において、厚み方向におけるレターデーションRthの大きさを調整しうる。工程(2)における溶媒層の総厚みを調整することにより、所望の光学特性を有するフィルム(b)が得られる場合、フィルム(b)を光学フィルムとして得ることができる。 By adjusting the total thickness of the solvent layer in the step (2), the size of the retardation Rth in the thickness direction can be adjusted in the film (b). By adjusting the total thickness of the solvent layer in the step (2), if a film (b) having desired optical characteristics can be obtained, the film (b) can be obtained as an optical film.
[2.4.工程(4)]
 光学フィルムの製造方法は、任意で、工程(1)~(3)に加えて工程(4)を含んでいてもよい。工程(4)は、工程(3)で得られたフィルム(b)を延伸する工程である。
 延伸により、フィルム(b)に含まれる結晶性重合体の分子を延伸方向に応じた方向に配向させることができる。よって、工程(4)によれば、フィルム(b)の面内方向の複屈折Re/d、面内レターデーションRe、厚み方向の複屈折Rth/d、厚み方向のレターデーションRth等の光学特性;並びに、厚みdを調整することができる。
[2.4. Process (4)]
The method for producing the optical film may optionally include the step (4) in addition to the steps (1) to (3). The step (4) is a step of stretching the film (b) obtained in the step (3).
By stretching, the molecules of the crystalline polymer contained in the film (b) can be oriented in a direction corresponding to the stretching direction. Therefore, according to the step (4), optical characteristics such as birefringence Re / d in the in-plane direction, birefringence Re / d in the thickness direction, birefringence Rth / d in the thickness direction, and retardation Rth in the thickness direction of the film (b). In addition, the thickness d can be adjusted.
 延伸方向に制限はなく、例えば、長手方向、幅方向、斜め方向などが挙げられる。ここで、斜め方向とは、厚み方向に対して垂直な方向であって、幅方向に平行でもなく垂直でもない方向を表す。また、延伸方向は、一方向でもよく、二以上の方向でもよい。よって、延伸方法としては、例えば、フィルムを長手方向に一軸延伸する方法(縦一軸延伸法)、フィルムを幅方向に一軸延伸する方法(横一軸延伸法)等の、一軸延伸法;フィルムを長手方向に延伸すると同時に幅方向に延伸する同時二軸延伸法、フィルムを長手方向及び幅方向の一方に延伸した後で他方に延伸する逐次二軸延伸法等の、二軸延伸法;フィルムを斜め方向に延伸する方法(斜め延伸法);などが挙げられる。
 一軸延伸法の別の例としては、フィルムの端部を固定して行う、固定一軸延伸法、フィルムの端部を固定せずに行う、自由一軸延伸法が挙げられる。
There is no limitation on the stretching direction, and examples thereof include a longitudinal direction, a width direction, and an oblique direction. Here, the diagonal direction is a direction perpendicular to the thickness direction and is neither parallel nor perpendicular to the width direction. Further, the stretching direction may be one direction or two or more directions. Therefore, as the stretching method, for example, a uniaxial stretching method such as a method of uniaxially stretching the film in the longitudinal direction (longitudinal uniaxial stretching method), a method of uniaxially stretching the film in the width direction (horizontal uniaxial stretching method); Biaxial stretching method such as simultaneous biaxial stretching method in which the film is stretched in the direction and width direction at the same time, and sequential biaxial stretching method in which the film is stretched in one of the longitudinal direction and the width direction and then stretched in the other direction; A method of stretching in a direction (diagonal stretching method); and the like can be mentioned.
As another example of the uniaxial stretching method, there are a fixed uniaxial stretching method in which the end portion of the film is fixed, and a free uniaxial stretching method in which the end portion of the film is not fixed.
 延伸倍率は、好ましくは1倍以上、より好ましくは1.01倍以上であり、好ましくは1.5倍以下、より好ましくは1.4倍以下である。具体的な延伸倍率は、延伸するフィルム(b)の光学特性、厚み、強度などの要素に応じて適切に設定することが望ましい。
 延伸倍率が前記範囲の下限値以上である場合、延伸によって複屈折を大きく変化させることができる。また、延伸倍率が前記範囲の上限値以下である場合、遅相軸の方向を容易に制御したり、フィルムの破断を効果的に抑制したりできる。
The draw ratio is preferably 1 time or more, more preferably 1.01 times or more, preferably 1.5 times or less, and more preferably 1.4 times or less. It is desirable that the specific draw ratio is appropriately set according to factors such as the optical characteristics, thickness, and strength of the film (b) to be stretched.
When the stretching ratio is equal to or higher than the lower limit of the above range, the birefringence can be significantly changed by stretching. Further, when the draw ratio is not more than the upper limit of the above range, the direction of the slow phase axis can be easily controlled and the breakage of the film can be effectively suppressed.
 延伸温度は、好ましくは「Tg+5℃」以上、より好ましくは「Tg+10℃」以上であり、好ましくは「Tg+100℃」以下、より好ましくは「Tg+90℃」以下である。ここで、「Tg」は結晶性重合体のガラス転移温度を表す。延伸温度が前記範囲の下限値以上である場合、フィルム(b)を十分に軟化させて延伸を均一に行うことができる。また、延伸温度が前記範囲の上限値以下である場合、結晶性重合体の結晶化の進行によるフィルム(b)の硬化を抑制できるので、延伸を円滑に行うことができる。また、延伸によって複屈折を大きく変化させうる。さらに、通常は、延伸後に得られるフィルムのヘイズを小さくして透明性を高めることができる。 The stretching temperature is preferably "Tg + 5 ° C." or higher, more preferably "Tg + 10 ° C." or higher, preferably "Tg + 100 ° C." or lower, and more preferably "Tg + 90 ° C." or lower. Here, "Tg" represents the glass transition temperature of the crystalline polymer. When the stretching temperature is equal to or higher than the lower limit of the above range, the film (b) can be sufficiently softened and stretched uniformly. Further, when the stretching temperature is not more than the upper limit of the above range, the curing of the film (b) due to the progress of crystallization of the crystalline polymer can be suppressed, so that stretching can be smoothly performed. In addition, birefringence can be significantly changed by stretching. In addition, the haze of the film, usually obtained after stretching, can be reduced to increase transparency.
 前記の延伸処理を施すことにより、延伸されたフィルム(b)としてのフィルム(c)を得ることができる。前記のように、工程(4)での延伸によって複屈折が変化しうるので、フィルム(c)の厚み方向レターデーションRthの調整を行うことができる。よって、フィルム(b)の工程(4)による延伸によって、フィルム(c)の光学特性を、光学フィルムとして所望の範囲に調整することができ、フィルム(c)を光学フィルムとして得ることができる。 By performing the above stretching treatment, a film (c) as a stretched film (b) can be obtained. As described above, since the birefringence can be changed by the stretching in the step (4), the thickness direction retardation Rth of the film (c) can be adjusted. Therefore, by stretching the film (b) by the step (4), the optical characteristics of the film (c) can be adjusted to a desired range as an optical film, and the film (c) can be obtained as an optical film.
 工程(4)は、フィルム(b)を延伸する工程(工程(4b)とする。)に加えて、さらに下記工程のいずれかを含んでいてもよい。
 工程(4a):フィルム(b)を予熱する工程。
 工程(4c):フィルム(b)を熱処理する工程。
 工程(4d):フィルム(c)を冷却する工程。
The step (4) may further include any of the following steps in addition to the step of stretching the film (b) (referred to as step (4b)).
Step (4a): A step of preheating the film (b).
Step (4c): A step of heat-treating the film (b).
Step (4d): A step of cooling the film (c).
 工程(4)が工程(4a)を含む場合、工程(4a)は通常工程(4b)の前に行われる。
 工程(4)が工程(4c)を含む場合、工程(4c)は通常工程(4b)の後に行われる。
 工程(4)が工程(4d)を含む場合、工程(4d)は、通常工程(4a)~(4c)の後に行われる。
When step (4) includes step (4a), step (4a) is performed before normal step (4b).
When step (4) includes step (4c), step (4c) is performed after normal step (4b).
When the step (4) includes the step (4d), the step (4d) is performed after the normal steps (4a) to (4c).
 熱処理により、延伸されたフィルム(b)に含まれる結晶性重合体の結晶化を進行させて、通常は、熱膨張率を低下させうる。よって、工程(4c)により、光学フィルムの耐熱性を向上させうる。 By heat treatment, the crystallinity of the crystalline polymer contained in the stretched film (b) can be promoted, and the coefficient of thermal expansion can usually be lowered. Therefore, the heat resistance of the optical film can be improved by the step (4c).
 熱処理温度は、通常、結晶性重合体のガラス転移温度Tg以上、結晶性重合体の融点Tm以下である。より詳細には、熱処理温度は、好ましくはTg℃以上、より好ましくはTg+10℃以上であり、好ましくはTm-20℃以下、より好ましくはTm-40℃以下である。前記の温度範囲では、結晶化の進行による白濁を抑制しながら、速やかに結晶性重合体の結晶化を進行させることができる。 The heat treatment temperature is usually equal to or higher than the glass transition temperature of the crystalline polymer and lower than the melting point of the crystalline polymer of Tm. More specifically, the heat treatment temperature is preferably Tg ° C. or higher, more preferably Tg + 10 ° C. or higher, preferably Tm-20 ° C. or lower, and more preferably Tm-40 ° C. or lower. In the above temperature range, crystallization of the crystalline polymer can be rapidly promoted while suppressing white turbidity due to the progress of crystallization.
 熱処理の処理時間は、好ましくは1秒以上、より好ましくは5秒以上であり、好ましくは30分以下、より好ましくは15分以下である。 The heat treatment treatment time is preferably 1 second or longer, more preferably 5 seconds or longer, preferably 30 minutes or shorter, and more preferably 15 minutes or shorter.
 工程(4a)における予熱温度は、通常、工程(4b)における延伸温度と同じであるが、異なっていてもよい。予熱温度は、延伸温度T1に対し、好ましくはT1-10℃以上、より好ましくはT1-5℃以上であり、好ましくはT1+5℃以下、より好ましくはT1+2℃以下である。予熱時間は任意であり、好ましくは1秒以上、より好ましくは5秒以上でありえ、また、好ましくは60秒以下、より好ましくは30秒以下でありえる。 The preheating temperature in the step (4a) is usually the same as the stretching temperature in the step (4b), but may be different. The preheating temperature is preferably T1-10 ° C. or higher, more preferably T1-5 ° C. or higher, preferably T1 + 5 ° C. or lower, and more preferably T1 + 2 ° C. or lower with respect to the stretching temperature T1. The preheating time is arbitrary, preferably 1 second or longer, more preferably 5 seconds or longer, and preferably 60 seconds or shorter, more preferably 30 seconds or shorter.
 工程(4d)における冷却温度は、工程(4d)の前に行われる工程(工程(4b)又は工程(4c))における加熱温度よりも低く設定される。冷却時間は任意であり、好ましくは1秒以上、より好ましくは5秒以上でありえ、また、好ましくは30秒以下、より好ましくは20秒以下でありえる。 The cooling temperature in the step (4d) is set lower than the heating temperature in the step (step (4b) or step (4c)) performed before the step (4d). The cooling time is arbitrary, preferably 1 second or longer, more preferably 5 seconds or longer, and preferably 30 seconds or shorter, more preferably 20 seconds or shorter.
 光学フィルムの製造方法が、工程(4)を含む場合、工程(4)後の光学フィルムには残留応力が含まれうる。そこで、光学フィルムの製造方法は、例えば、延伸後のフィルムを熱収縮させて残留応力を除去する緩和処理を行う工程を含んでいてもよい。緩和処理では、通常、延伸されたフィルムを平坦に維持しながら、適切な温度範囲でフィルムに熱収縮を生じさせることで、残留応力を除去できる。 When the method for manufacturing the optical film includes the step (4), the optical film after the step (4) may contain residual stress. Therefore, the method for producing an optical film may include, for example, a step of thermally shrinking the stretched film to remove residual stress. In the relaxation treatment, residual stress can usually be removed by causing the film to undergo thermal shrinkage in an appropriate temperature range while keeping the stretched film flat.
 前記の製造方法によれば、結晶性樹脂から長尺のフィルム(a)を製造し、フィルム(a)から長尺の光学フィルムを製造することができる。光学フィルムの製造方法は、このように製造された長尺の光学フィルムをロール状に巻き取る工程を含んでいてもよい。さらに、光学フィルムの製造方法は、長尺の光学フィルムを所望の形状に切り出す工程を含んでいてもよい。 According to the above-mentioned manufacturing method, a long film (a) can be manufactured from a crystalline resin, and a long optical film can be manufactured from the film (a). The method for producing an optical film may include a step of winding the long optical film thus produced into a roll shape. Further, the method for producing an optical film may include a step of cutting a long optical film into a desired shape.
[3.光学フィルムの用途]
 本実施形態の光学フィルムは、他の光学要素と組み合わせた場合に、その光学要素本来の光学特性を大きく変化させず、高温でのシワの発生が低減されている。したがって、本実施形態の光学フィルムは、光学要素の保護フィルム、光学要素を形成するための基材フィルムなどの光学用途として、好適である。
[3. Applications of optical film]
When the optical film of the present embodiment is combined with other optical elements, the original optical characteristics of the optical elements are not significantly changed, and the occurrence of wrinkles at high temperatures is reduced. Therefore, the optical film of the present embodiment is suitable for optical applications such as a protective film for an optical element and a base film for forming an optical element.
 以下、実施例を示して本発明について具体的に説明する。ただし、本発明は以下に示す実施例に限定されるものではなく、本発明の請求の範囲及びその均等の範囲を逸脱しない範囲において任意に変更して実施しうる。 Hereinafter, the present invention will be specifically described with reference to examples. However, the present invention is not limited to the examples shown below, and may be arbitrarily modified and carried out without departing from the scope of claims of the present invention and the equivalent scope thereof.
 以下の説明において、量を表す「%」及び「部」は、別に断らない限り、重量基準である。また、以下に説明する操作は、別に断らない限り、常温(20℃±15℃)及び常圧(1atm)の条件において行った。 In the following explanation, "%" and "part" indicating the amount are based on weight unless otherwise specified. Further, the operations described below were performed under the conditions of normal temperature (20 ° C. ± 15 ° C.) and atmospheric pressure (1 atm) unless otherwise specified.
[評価方法]
(重合体の重量平均分子量Mw及び数平均分子量Mnの測定方法)
 重合体の重量平均分子量Mw及び数平均分子量Mnは、ゲル・パーミエーション・クロマトグラフィー(GPC)システム(東ソー社製「HLC-8320」)を用いて、ポリスチレン換算値として測定した。測定の際、カラムとしてはHタイプカラム(東ソー社製)を用い、溶媒としてはテトラヒドロフランを用いた。また、測定時の温度は、40℃であった。
[Evaluation method]
(Method for measuring weight average molecular weight Mw and number average molecular weight Mn of polymer)
The weight average molecular weight Mw and the number average molecular weight Mn of the polymer were measured as polystyrene-equivalent values using a gel permeation chromatography (GPC) system (“HLC-8320” manufactured by Tosoh Corporation). At the time of measurement, an H type column (manufactured by Tosoh Corporation) was used as the column, and tetrahydrofuran was used as the solvent. The temperature at the time of measurement was 40 ° C.
(重合体の水素化率の測定方法)
 重合体の水素化率は、オルトジクロロベンゼン-dを溶媒として、145℃で、H-NMRにより測定した。
(Measuring method of hydrogenation rate of polymer)
The hydrogenation rate of the polymer was measured by 1 H-NMR at 145 ° C. using orthodichlorobenzene - d4 as a solvent.
(ガラス転移温度Tg及び融点Tmの測定方法)
 重合体のガラス転移温度Tg及び融点Tmの測定は、以下のようにして行った。まず、重合体を、加熱によって融解させ、融解した重合体をドライアイスで急冷した。続いて、この重合体を試験体として用いて、示差走査熱量計(DSC)を用いて、10℃/分の昇温速度(昇温モード)で、重合体のガラス転移温度Tg及び融点Tmを測定した。
(Measurement method of glass transition temperature Tg and melting point Tm)
The glass transition temperature Tg and the melting point Tm of the polymer were measured as follows. First, the polymer was melted by heating, and the melted polymer was rapidly cooled with dry ice. Subsequently, using this polymer as a test piece, the glass transition temperature Tg and melting point Tm of the polymer were measured at a heating rate of 10 ° C./min (heating mode) using a differential scanning calorimeter (DSC). It was measured.
(固有複屈折値の符号の確認)
 測定対象のフィルムを50mm×150mmの寸法にカットしてフィルム片を得た。測定装置として、恒温恒湿槽付の引張試験機(インストロン社製「5564型」)を用いて、フィルム片を自由一軸延伸した。延伸温度は、(フィルムを形成する樹脂のTg+15℃)、引張速度は、1.5倍/minとした。
 その後、AXOMETRICS社製「AxoScan OPMF-1」により延伸したフィルム片の遅相軸方向を決定し、延伸方向と遅相軸方向とが平行である場合に、フィルム片を構成する樹脂の固有複屈折が正であるとし、延伸方向と遅相軸方向とが垂直である場合に、フィルム片を構成する樹脂の固有複屈折が負であるとした。
(Confirmation of the sign of the intrinsic birefringence value)
The film to be measured was cut to a size of 50 mm × 150 mm to obtain a film piece. As a measuring device, a tensile tester with a constant temperature and humidity chamber (“5564 type” manufactured by Instron) was used to freely uniaxially stretch the film piece. The stretching temperature was (Tg + 15 ° C. of the resin forming the film), and the tensile speed was 1.5 times / min.
After that, the slow-phase axial direction of the stretched film piece is determined by "AXoScan OPMF-1" manufactured by AXOMETRICS, and when the stretched direction and the slow-phase axial direction are parallel, the intrinsic birefringence of the resin constituting the film piece is determined. Is positive, and when the stretching direction and the slow-phase axial direction are perpendicular to each other, the intrinsic birefringence of the resin constituting the film piece is negative.
(重合体のラセモ・ダイアッドの割合の測定方法)
 重合体のラセモ・ダイアッドの割合の測定は以下のようにして行った。オルトジクロロベンゼン-dを溶媒として、200℃で、inverse-gated decoupling法を適用して、重合体の13C-NMR測定を行った。この13C-NMR測定の結果において、オルトジクロロベンゼン-dの127.5ppmのピークを基準シフトとして、メソ・ダイアッド由来の43.35ppmのシグナルと、ラセモ・ダイアッド由来の43.43ppmのシグナルとを同定した。これらのシグナルの強度比に基づいて、重合体のラセモ・ダイアッドの割合を求めた。
(Measuring method of racemic diad ratio of polymer)
The ratio of racemic diads in the polymer was measured as follows. 13 C-NMR measurement of the polymer was carried out by applying the inverted-gated decoupling method at 200 ° C. using ordichlorobenzene - d4 as a solvent. In the results of this 13 C-NMR measurement, the signal of 43.35 ppm derived from meso-diad and the signal of 43.43 ppm derived from racemic diad were used as the reference shift with the peak of 127.5 ppm of orthodichlorobenzene - d4 as a reference shift. Was identified. Based on the intensity ratios of these signals, the proportion of racemic diads in the polymer was determined.
(Re、Rthの測定方法)
 フィルムの面内レターデーションRe及び厚み方向のレターデーションRthは、AXOMETRICS社製「AxoScan OPMF-1」により測定した。この際、測定は、波長590nmで行った。
(Measurement method of Re and Rth)
The in-plane retardation Re and the thickness direction retardation Rth of the film were measured by "AXoScan OPMF-1" manufactured by AXOMETRICS. At this time, the measurement was performed at a wavelength of 590 nm.
(フィルムの中央部及び外側部におけるRthの符号確認)
 測定対象のフィルムについて厚み方向のレターデーションRthを測定し、Rth0とした。測定は、AXOMETRICS社製「AxoScan OPMF-1」により行った。測定は、波長590nmで行った。以下の測定も測定波長590nmで、同様の装置により行った。
 次いで、フィルムの表面を水で濡らしながら、サンドペーパー(4000番、8000番、15000番)でフィルムの一方の面から1μmの厚みを削り取ってフィルムを薄くした。
 次いで、薄くしたフィルムの厚み方向のレターデーションRthを測定し、Rth1とした。フィルムの一方の面から1μmの表層を削り取ってフィルムを薄くし、次いで薄くしたフィルムのレターデーションRthを測定する操作を、薄くしたフィルムの厚み方向のレターデーションRth1が、Rth0の符号と異なる符号となるまで、繰り返した。ただし、フィルムの厚み方向の中央まで表層を削り取っても、厚み方向のレターデーションRth1の符号がRth0と異なる符号とならない場合は、フィルムの表層を削る操作を終了した。
 フィルムの厚み方向の中央まで表層を削り取る間において、Rth1が、Rth0の符号と異なる符号となった場合、測定対象のフィルムにおいて、中央部の厚み方向におけるレターデーションRthの符号は、Rth0と逆の符号であり、第一外側部及び第二外側部の厚み方向のレターデーションRthの符号は、Rth0の符号と同じ符号であるとした。
 フィルムの厚み方向の中央まで表層を削り取っても、厚み方向のレターデーションRth1の符号がRth0と異なる符号とならない場合は、中央部、第一外側部、及び第二外側部の厚み方向のレターデーションRthは、それぞれRth0と同じ符号であるとした。
(Confirmation of Rth sign in the center and outside of the film)
The retardation Rth in the thickness direction of the film to be measured was measured and set to Rth0. The measurement was performed by "AXoScan OPMF-1" manufactured by AXOMETRICS. The measurement was performed at a wavelength of 590 nm. The following measurements were also performed with a similar device at a measurement wavelength of 590 nm.
Then, while wetting the surface of the film with water, the film was thinned by scraping a thickness of 1 μm from one surface of the film with sandpaper (Nos. 4000, 8000, 15000).
Next, the retardation Rth in the thickness direction of the thinned film was measured and set to Rth1. The operation of scraping a 1 μm surface layer from one surface of the film to thin the film and then measuring the retardation Rth of the thinned film is that the retardation Rth1 in the thickness direction of the thinned film has a code different from the code of Rth0. I repeated until it became. However, even if the surface layer is scraped to the center in the thickness direction of the film, if the sign of the retardation Rth1 in the thickness direction is not different from that of Rth0, the operation of scraping the surface layer of the film is completed.
If Rth1 has a code different from the code of Rth0 while the surface layer is scraped to the center in the thickness direction of the film, the code of retardation Rth in the thickness direction of the central portion of the film to be measured is opposite to that of Rth0. It is a code, and the code of the retardation Rth in the thickness direction of the first outer part and the second outer part is the same as the code of Rth0.
If the sign of the lettering Rth1 in the thickness direction does not differ from that of Rth0 even if the surface layer is scraped to the center in the thickness direction of the film, the lettering in the thickness direction of the center part, the first outer part, and the second outer part It is assumed that Rth has the same code as Rth0, respectively.
(フィルムの厚みの測定方法)
 フィルムの厚みは、接触式厚さ計(MITUTOYO社製 Code No.543-390)を用いて測定した。
(Measuring method of film thickness)
The thickness of the film was measured using a contact thickness meter (Code No. 543-390 manufactured by Mitutoyo Co., Ltd.).
(フィルムの熱膨張率RTMAの測定方法)
 フィルムを5mm×20mmの短冊状(長方形状)に切り出して、試料を得た。この切り出しは、短冊状の試料の長手方向が、フィルムのMD方向(長尺のフィルムにおける長手方向)又はTD方向(長尺のフィルムにおける幅方向)に一致するように、行った。
 この試料の長手方向に50mNの張力を加えた状態で、昇温速度10℃/分で、温度20℃から130℃までの線膨張を測定した。測定は、熱機械分析装置(エスエスアイ・ナノテクノロジー社製「TMA/SS7100」)を用いて行った。測定された線膨張の値を、元の長さ(即ち、線膨張前の長さ)で割り算して、MD及びTD方向の熱膨張率(%)を求めその平均値を熱膨張率RTMA(%)とした。
(Measurement method of thermal expansion coefficient RTMA of film)
The film was cut into strips (rectangular) having a size of 5 mm × 20 mm to obtain a sample. This cutting was performed so that the longitudinal direction of the strip-shaped sample coincided with the MD direction (longitudinal direction in the long film) or the TD direction (width direction in the long film) of the film.
With a tension of 50 mN applied in the longitudinal direction of this sample, linear expansion from a temperature of 20 ° C. to 130 ° C. was measured at a heating rate of 10 ° C./min. The measurement was performed using a thermomechanical analyzer (“TMA / SS7100” manufactured by SSI Nanotechnology Co., Ltd.). The measured linear expansion value is divided by the original length (that is, the length before linear expansion) to obtain the coefficient of thermal expansion (%) in the MD and TD directions, and the average value is the coefficient of thermal expansion RTMA . It was set to (%).
(視野角特性の評価)
 市販のIPS方式液晶表示装置(LGディスプレイ社製)を準備した。該液晶表示装置は、液晶セルのプレティルト角が1°であり、またバックライト側偏光子の吸収軸と電圧無印加時における液晶セルの遅相軸とが平行である、いわゆるO-モードの装置である。視認側偏光子の吸収軸と、バックライト側偏光子の吸収軸とは、直交している。液晶表示装置を分解して、バックライト側偏光子と液晶セルとの間に評価対象のフィルムを挿入して組み立て直し、評価用の液晶表示装置を得た。液晶表示装置は、視認側から、視認側偏光子、カラーフィルタ、液晶セル、当該フィルム、バックライト側偏光子、及びバックライトをこの順で備える。得られた液晶表示装置について、極角60°における色味を評価した。具体的には、液晶表示装置が備える液晶セルの、電圧無印加の状態での遅相軸方向を、方位角0°及び180°として、方位角45°、135°、225°、315°における色味を評価した。
良;色味が黒色である。
不良;色味が赤色又は青色である。
(Evaluation of viewing angle characteristics)
A commercially available IPS liquid crystal display device (manufactured by LG Display) was prepared. The liquid crystal display device is a so-called O-mode device in which the pretilt angle of the liquid crystal cell is 1 ° and the absorption axis of the backlight side polarizing element is parallel to the slow axis of the liquid crystal cell when no voltage is applied. Is. The absorption axis of the viewing side polarizing element and the absorption axis of the backlight side polarizing element are orthogonal to each other. The liquid crystal display device was disassembled, the film to be evaluated was inserted between the backlight side polarizing element and the liquid crystal cell, and the film was reassembled to obtain a liquid crystal display device for evaluation. The liquid crystal display device includes, from the visual side, a visual viewing side polarizing element, a color filter, a liquid crystal cell, the film, a backlight side polarizing element, and a backlight in this order. The color of the obtained liquid crystal display device was evaluated at a polar angle of 60 °. Specifically, the slow-phase axial directions of the liquid crystal cell provided in the liquid crystal display device in a state where no voltage is applied are set to azimuth angles of 0 ° and 180 °, and the azimuth angles are 45 °, 135 °, 225 °, and 315 °. The color was evaluated.
Good; the color is black.
Defective; the color is red or blue.
(105℃耐熱試験後におけるシワの本数)
 室温23℃の環境下で、評価対象のフィルムを150mm×150mmの大きさの正方形に切り出し、試料フィルムとした。この試料フィルムを、105℃のオーブン内で100時間加熱した後、23℃(室温)まで冷却した。冷却後の試料フィルムについて、発生するシワの本数を測定した。評価基準は以下のとおりである。
良:シワが0本である。
可:シワが1本ある。
不良:シワが2本以上ある。
(Number of wrinkles after 105 ° C heat resistance test)
In an environment of room temperature of 23 ° C., the film to be evaluated was cut into a square having a size of 150 mm × 150 mm and used as a sample film. This sample film was heated in an oven at 105 ° C. for 100 hours and then cooled to 23 ° C. (room temperature). The number of wrinkles generated on the cooled sample film was measured. The evaluation criteria are as follows.
Ryo: There are no wrinkles.
Possible: There is one wrinkle.
Defective: There are two or more wrinkles.
(ハンドリング性の評価)
 フィルム(b)の搬送中に発生するフィルムのシワを目視により確認した。
評価基準は以下のとおりである。
良:シワが発生していない、または、フィルムが折れない程度の小さいシワのみが発生した。
不良:フィルムが折れる程度の大きいシワが発生した。
(Evaluation of handleability)
The wrinkles of the film generated during the transportation of the film (b) were visually confirmed.
The evaluation criteria are as follows.
Good: No wrinkles or only small wrinkles that did not break the film.
Defective: Wrinkles large enough to break the film occurred.
[製造例1.結晶性樹脂Aの製造]
 金属製の耐圧反応器を、充分に乾燥した後、窒素置換した。この金属製耐圧反応器に、シクロヘキサン154.5部、ジシクロペンタジエン(エンド体含有率99%以上)の濃度70%シクロヘキサン溶液42.8部(ジシクロペンタジエンの量として30部)、及び1-ヘキセン1.9部を加え、53℃に加温した。
[Manufacturing example 1. Production of crystalline resin A]
The pressure resistant reactor made of metal was sufficiently dried and then replaced with nitrogen. In this metal pressure resistant reactor, 154.5 parts of cyclohexane, 42.8 parts of a 70% cyclohexane solution of dicyclopentadiene (endo content of 99% or more) (30 parts as the amount of dicyclopentadiene), and 1- 1.9 parts of hexene was added and heated to 53 ° C.
 テトラクロロタングステンフェニルイミド(テトラヒドロフラン)錯体0.014部を0.70部のトルエンに溶解し、溶液を調製した。この溶液に、濃度19%のジエチルアルミニウムエトキシド/n-ヘキサン溶液0.061部を加えて10分間攪拌して、触媒溶液を調製した。この触媒溶液を耐圧反応器に加えて、開環重合反応を開始した。その後、53℃を保ちながら4時間反応させて、ジシクロペンタジエンの開環重合体の溶液を得た。得られたジシクロペンタジエンの開環重合体の数平均分子量(Mn)及び重量平均分子量(Mw)は、それぞれ、8,750及び28,100であり、これらから求められる分子量分布(Mw/Mn)は3.21であった。 0.014 parts of the tetrachlorotungsten phenylimide (tetrahydrofuran) complex was dissolved in 0.70 parts of toluene to prepare a solution. To this solution, 0.061 part of a diethylaluminum ethoxide / n-hexane solution having a concentration of 19% was added and stirred for 10 minutes to prepare a catalytic solution. This catalyst solution was added to a pressure resistant reactor to initiate a ring-opening polymerization reaction. Then, the reaction was carried out for 4 hours while maintaining 53 ° C. to obtain a solution of a ring-opening polymer of dicyclopentadiene. The number average molecular weight (Mn) and weight average molecular weight (Mw) of the obtained ring-opening polymer of dicyclopentadiene are 8,750 and 28,100, respectively, and the molecular weight distribution (Mw / Mn) obtained from these. Was 3.21.
 得られたジシクロペンタジエンの開環重合体の溶液200部に、停止剤として1,2-エタンジオール0.037部を加えて、60℃に加温し、1時間攪拌して重合反応を停止させた。ここに、ハイドロタルサイト様化合物(協和化学工業社製「キョーワード(登録商標)2000」)を1部加えて、60℃に加温し、1時間攪拌した。その後、濾過助剤(昭和化学工業社製「ラヂオライト(登録商標)#1500」)を0.4部加え、PPプリーツカートリッジフィルター(ADVANTEC東洋社製「TCP-HX」)を用いて吸着剤と溶液を濾別した。 To 200 parts of the obtained solution of the ring-opening polymer of dicyclopentadiene, 0.037 parts of 1,2-ethanediol was added as a terminator, heated to 60 ° C., and stirred for 1 hour to stop the polymerization reaction. I let you. A part of a hydrotalcite-like compound (“Kyoward (registered trademark) 2000” manufactured by Kyowa Chemical Industry Co., Ltd.) was added thereto, and the mixture was heated to 60 ° C. and stirred for 1 hour. After that, 0.4 part of a filtration aid ("Radiolite (registered trademark) # 1500" manufactured by Showa Kagaku Kogyo Co., Ltd.) was added, and a PP pleated cartridge filter ("TCP-HX" manufactured by ADVANTEC Toyo Co., Ltd.) was used as an adsorbent. The solution was filtered off.
 濾過後のジシクロペンタジエンの開環重合体の溶液200部(重合体量30部)に、シクロヘキサン100部を加え、クロロヒドリドカルボニルトリス(トリフェニルホスフィン)ルテニウム0.0043部を添加して、水素圧6MPa、180℃で4時間水素化反応を行なった。これにより、ジシクロペンタジエンの開環重合体の水素化物を含む反応液が得られた。この反応液は、水素化物が析出してスラリー溶液となっていた。 To 200 parts of a solution of a ring-opening polymer of dicyclopentadiene after filtration (polymer amount: 30 parts), 100 parts of cyclohexane is added, 0.0043 parts of chlorohydride carbonyltris (triphenylphosphine) ruthenium is added, and hydrogen is added. The hydrogenation reaction was carried out at a pressure of 6 MPa and 180 ° C. for 4 hours. As a result, a reaction solution containing a hydride of a ring-opening polymer of dicyclopentadiene was obtained. In this reaction solution, hydride was precipitated to form a slurry solution.
 前記の反応液に含まれる水素化物と溶液とを、遠心分離器を用いて分離し、60℃で24時間減圧乾燥して、結晶性を有するジシクロペンタジエンの開環重合体の水素化物28.5部を得た。この水素化物の水素化率は99%以上、ガラス転移温度Tgは93℃、融点(Tm)は267℃、ラセモ・ダイアッドの割合は89%であった。 The hydride contained in the reaction solution and the solution were separated using a centrifuge and dried under reduced pressure at 60 ° C. for 24 hours to obtain a hydride of a crystallized dicyclopentadiene ring-opening polymer 28. I got 5 copies. The hydrogenation rate of this hydride was 99% or more, the glass transition temperature Tg was 93 ° C., the melting point (Tm) was 267 ° C., and the ratio of racemo diad was 89%.
 得られたジシクロペンタジエンの開環重合体の水素化物100部に、酸化防止剤(テトラキス〔メチレン-3-(3’,5’-ジ-t-ブチル-4’-ヒドロキシフェニル)プロピオネート〕メタン;BASFジャパン社製「イルガノックス(登録商標)1010」)1.1部を混合後、内径3mmΦのダイ穴を4つ備えた二軸押出し機(製品名「TEM-37B」、東芝機械社製)に投入した。ジシクロペンタジエンの開環重合体の水素化物及び酸化防止剤の混合物を、熱溶融押出し成形によりストランド状に成形した後、ストランドカッターにて細断して、ペレット形状の結晶性樹脂Aを得た。前記の二軸押出し機の運転条件は、以下のとおりであった。
・バレル設定温度=270~280℃
・ダイ設定温度=250℃
・スクリュー回転数=145rpm
Antioxidant (tetrakis [methylene-3- (3', 5'-di-t-butyl-4'-hydroxyphenyl) propionate] methane was added to 100 parts of the hydride of the obtained ring-opening polymer of dicyclopentadiene. BASF Japan "Irganox (registered trademark) 1010") After mixing 1.1 parts, a twin-screw extruder equipped with four die holes with an inner diameter of 3 mmΦ (product name "TEM-37B", manufactured by Toshiba Machine Co., Ltd.) ). A mixture of a hydride of a ring-opening polymer of dicyclopentadiene and an antioxidant was formed into a strand shape by hot melt extrusion molding, and then shredded with a strand cutter to obtain a pellet-shaped crystalline resin A. .. The operating conditions of the twin-screw extruder were as follows.
・ Barrel set temperature = 270 to 280 ° C
・ Die set temperature = 250 ℃
・ Screw rotation speed = 145 rpm
[実施例1]
 (1-1.工程(1):結晶性樹脂Aからなるフィルムの製造)
 製造例1で製造した結晶性樹脂Aを、Tダイを備える熱溶融押出しフィルム成形機を用いて成形し、およそ幅400mmの、長尺のフィルム(a)としての押出フィルム(厚み38μm)を得た。得られた押出フィルムを、巻き取ってロールの形態とした。フィルム(a)の評価結果は下表に記載のとおりであった。またフィルム(a)を用いて、結晶性樹脂Aの固有複屈折値の符号を確認した結果、結晶性樹脂Aの固有複屈折値の符号は、「正」であった。
 前記のフィルム成形機の運転条件は、以下のとおりであった。
 ・バレル設定温度=280℃~300℃
 ・ダイ温度=270℃
 ・キャストロール温度=80℃
[Example 1]
(1-1. Step (1): Production of film made of crystalline resin A)
The crystalline resin A produced in Production Example 1 is molded using a heat melt extrusion film molding machine equipped with a T-die to obtain an extruded film (thickness 38 μm) as a long film (a) having a width of about 400 mm. rice field. The obtained extruded film was wound into a roll. The evaluation results of the film (a) are as shown in the table below. Further, as a result of confirming the sign of the intrinsic birefringence value of the crystalline resin A using the film (a), the sign of the intrinsic birefringence value of the crystalline resin A was “positive”.
The operating conditions of the film forming machine were as follows.
・ Barrel set temperature = 280 ° C to 300 ° C
・ Die temperature = 270 ℃
・ Cast roll temperature = 80 ℃
 (1-2.工程(2):塗工工程)
 (1-1)で作製したフィルム(a)としての押出フィルムのロールから、押出フィルムを繰り出し、押出フィルムの両面上にダイコーターでトルエンを片面あたり2μmの厚み(すなわち、両面で合計4μmの厚み)で塗工した。これにより、フィルム(a)の二つの表面上に、それぞれ溶媒層としてのトルエン層が形成されて、フィルム(a’)が得られた。フィルム(a’)の二つの表面上に形成された溶媒層の総厚みは、4μmである。
(1-2. Process (2): Coating process)
The extruded film is unwound from the roll of the extruded film as the film (a) produced in (1-1), and toluene is spread on both sides of the extruded film with a die coater to a thickness of 2 μm per side (that is, a total thickness of 4 μm on both sides). ) Was applied. As a result, a toluene layer as a solvent layer was formed on each of the two surfaces of the film (a), and the film (a') was obtained. The total thickness of the solvent layers formed on the two surfaces of the film (a') is 4 μm.
 (1-3.工程(3):乾燥工程)
 その後、フィルム(a’)を100℃のオーブン内で2分間加熱乾燥し、長尺のフィルム(b)を得た。得られたフィルム(b)を巻き取って、ロールの形態とした。フィルム(b)の評価結果は下表に記載のとおりであった。
(1-3. Step (3): Drying step)
Then, the film (a') was heated and dried in an oven at 100 ° C. for 2 minutes to obtain a long film (b). The obtained film (b) was wound into a roll form. The evaluation results of the film (b) are as shown in the table below.
 (1-4.工程(4):延伸加熱工程)
 フィルム(b)をテンター法を用いた横延伸機に供給し、引取り張力とテンターチェーン張力とを調整しながら、横方向に1.1倍に固定一軸延伸し、光学フィルムとしてのフィルム(c)を作製した。延伸を、(4a):フィルム(b)を160℃に予熱し、次いで;(4b):予熱されたフィルム(b)を160℃で延伸し、次いで;(4c):延伸されたフィルム(b)を緊張させた状態で、温度160℃で保持して結晶化を促進させ、次いで;(4d):結晶化が促進されたフィルム(b)を温度100℃で冷却する;ことにより実施した。
 フィルム(c)の厚みは、35μmであった。また、フィルム(c)の評価結果は下表に記載のとおりであった。
(1-4. Step (4): Stretching heating step)
The film (b) is supplied to a transverse stretching machine using the tenter method, and while adjusting the take-up tension and the tenter chain tension, the film (c) is fixed and uniaxially stretched 1.1 times in the lateral direction to form an optical film (c). ) Was produced. Stretching was performed by preheating (4a): film (b) to 160 ° C, then; (4b): preheated film (b) at 160 ° C, and then; (4c): stretched film (b). ) Was kept tense at a temperature of 160 ° C. to promote crystallization, and then; (4d): the crystallized film (b) was cooled at a temperature of 100 ° C.;
The thickness of the film (c) was 35 μm. The evaluation results of the film (c) are as shown in the table below.
[実施例2]
 以下の事項を変更した以外は、実施例1と同様にして、光学フィルムを得た。フィルム(b)の厚みは、38μmであった。
 ・(1-2.工程(2))において、塗工するトルエンの厚みを変更して、片面あたり1.1μmの厚み(すなわち、両面で合計2.2μmの厚み)とした。
 ・フィルム(b)に対して、(1-4.工程(4))を行わず、得られたフィルム(b)を光学フィルムとして評価した。
[Example 2]
An optical film was obtained in the same manner as in Example 1 except that the following items were changed. The thickness of the film (b) was 38 μm.
-In (1-2. Step (2)), the thickness of the toluene to be coated was changed to a thickness of 1.1 μm per one side (that is, a total thickness of 2.2 μm on both sides).
(1-4. Step (4)) was not performed on the film (b), and the obtained film (b) was evaluated as an optical film.
[比較例1]
 以下の事項を変更した以外は、実施例1と同様にして、光学フィルムを得た。
 ・(1-2.工程(2))~(1-4.工程(4))を行わず、フィルム(a)を光学フィルムとして評価した。
[Comparative Example 1]
An optical film was obtained in the same manner as in Example 1 except that the following items were changed.
-The film (a) was evaluated as an optical film without performing (1-2. Step (2)) to (1-4. Step (4)).
[比較例2]
 以下の事項を変更した以外は、実施例1と同様にして、光学フィルムを得た。
 ・(1-2.工程(2))及び(1-3.工程(3))を行わなかった。
 ・(1-4.工程(4))において、フィルム(b)の代わりに、(1-1.工程(1))で得られたフィルム(a)を用いた。
[Comparative Example 2]
An optical film was obtained in the same manner as in Example 1 except that the following items were changed.
-(1-2. Step (2)) and (1-3. Step (3)) were not performed.
-In (1-4. Step (4)), the film (a) obtained in (1-1. Step (1)) was used instead of the film (b).
[比較例3]
 以下の事項を変更した以外は、実施例1と同様にして、光学フィルムを得た。
 ・(1-2.工程(2))において、塗工するトルエンの厚みを変更して、片面あたり6μmの厚み(すなわち、両面で合計12μmの厚み)とした。
 ・(1-4.工程(4))において、横延伸機を用いて固定一軸延伸する代わりに、下記方法に従いフィルム(b)を自由一軸延伸して、フィルム(c)を得た。
 延伸機として、予熱ロールを4本、延伸ロールを2本、及び冷却ロールを2本を、この順で備えるロール縦延伸機を用いた。このロール縦延伸機は、2本の延伸ロールの回転速度に差を設けることにより、延伸を行う装置である。4本の予熱ロールの温度はすべて100℃に設定した。2本の延伸ロールの温度はすべて160℃に設定した。2本の冷却ロールの温度はすべて60℃に設定した。2本の延伸ロールの回転速度をそれぞれ調整して、フィルム(b)を倍率1.1倍に縦一軸延伸した。
[Comparative Example 3]
An optical film was obtained in the same manner as in Example 1 except that the following items were changed.
-In (1-2. Step (2)), the thickness of the toluene to be coated was changed to a thickness of 6 μm per one side (that is, a total thickness of 12 μm on both sides).
-In (1-4. Step (4)), instead of fixed uniaxial stretching using a transverse stretching machine, the film (b) was freely uniaxially stretched according to the following method to obtain a film (c).
As the stretching machine, a roll longitudinal stretching machine equipped with four preheating rolls, two stretching rolls, and two cooling rolls in this order was used. This roll longitudinal stretching machine is a device that stretches by providing a difference in the rotation speeds of the two stretching rolls. The temperature of all four preheating rolls was set to 100 ° C. The temperatures of the two stretch rolls were all set to 160 ° C. The temperatures of the two cooling rolls were all set to 60 ° C. The rotation speeds of the two stretching rolls were adjusted, and the film (b) was stretched uniaxially at a magnification of 1.1 times.
[比較例4]
 以下の事項を変更した以外は、実施例1と同様にして、光学フィルムを得た。
 ・(1-2.工程(2))において、塗工するトルエンの厚みを変更して、片面あたり30μmの厚み(すなわち、両面で合計60μmの厚み)とした。
 ・(1-4.工程(4))において、横延伸機を用いて固定一軸延伸する代わりに、フィルム(b)を自由一軸延伸して、フィルム(c)を得た。自由一軸延伸は、比較例3と同様の操作で行った。
[Comparative Example 4]
An optical film was obtained in the same manner as in Example 1 except that the following items were changed.
-In (1-2. Step (2)), the thickness of the toluene to be coated was changed to a thickness of 30 μm per one side (that is, a total thickness of 60 μm on both sides).
-In (1-4. Step (4)), instead of fixed uniaxial stretching using a transverse stretching machine, the film (b) was freely uniaxially stretched to obtain a film (c). The free uniaxial stretching was performed in the same operation as in Comparative Example 3.
[比較例5]
 以下の事項を変更した以外は、実施例1と同様にして、光学フィルムを得た。
・フィルム(a)に対して、(1-2.工程(2))及び(1-3.工程(3))を行わず、下記の溶媒浸漬工程を行って、フィルム(b)を得た。
  フィルム(a)を、トルエンで満たされた浴槽中を通過させることにより、フィルム(a)をトルエンに浸漬した。フィルム(a)が当該浴槽中を通過する時間(すなわち、フィルム(a)がトルエンに接触する時間)は5秒間であった。当該浴槽中を通過させたフィルム(a)を、80℃のオーブン中を通過させることにより、トルエンに浸漬されたフィルム(a)を乾燥して、フィルム(b)を得た。
・(1-4.工程(4))において、延伸温度及び延伸倍率を下記のとおりに変更して、フィルム(c)を得た。
  延伸倍率を、1.5倍とした。延伸を、(4a):フィルム(b)を110℃に予熱し、次いで;(4b):予熱されたフィルム(b)を110℃で延伸し、次いで;(4c):延伸されたフィルム(b)を緊張させた状態で、温度170℃で保持して結晶化を促進させ、次いで;(4d):結晶化が促進されたフィルム(b)を温度100℃で冷却する;ことにより実施した。
[Comparative Example 5]
An optical film was obtained in the same manner as in Example 1 except that the following items were changed.
-The film (b) was obtained by performing the following solvent dipping step on the film (a) without performing the steps (1-2. Step (2)) and (1-3. Step (3)). ..
The film (a) was immersed in toluene by passing the film (a) through a bathtub filled with toluene. The time for the film (a) to pass through the bathtub (that is, the time for the film (a) to come into contact with toluene) was 5 seconds. The film (a) passed through the bathtub was passed through an oven at 80 ° C. to dry the film (a) immersed in toluene to obtain a film (b).
-In (1-4. Step (4)), the stretching temperature and the stretching ratio were changed as follows to obtain a film (c).
The draw ratio was 1.5 times. Stretching was performed by preheating (4a): film (b) to 110 ° C, then; (4b): preheated film (b) at 110 ° C, and then; (4c): stretched film (b). ) Was kept tense at a temperature of 170 ° C. to promote crystallization, and then; (4d): the crystallization-promoted film (b) was cooled at a temperature of 100 ° C.;
[結果]
 実施例及び比較例で得られた光学フィルムの製造条件、物性、及び評価について、表1又は表2に示す。下表において、略号は下記の意味を表す。
「COP」:製造例1で得られた、ジシクロペンタジエンの開環重合体の水素化物であって結晶性であるものを含む樹脂
「Rtha」:フィルム(a)の厚み方向におけるレターデーションRth
「Rea」:フィルム(a)の面内レターデーションRe
「Rthb」:フィルム(b)の厚み方向におけるレターデーションRth
「Reb」:フィルム(b)の面内レターデーションRe
「Rthc」:フィルム(c)の厚み方向におけるレターデーションRth
「Rec」:フィルム(c)の面内レターデーションRe
「RTMA」:フィルムの熱膨張率
「固定」:固定一軸延伸
「自由」:自由一軸延伸
[result]
The production conditions, physical properties, and evaluations of the optical films obtained in Examples and Comparative Examples are shown in Table 1 or Table 2. In the table below, the abbreviations have the following meanings.
"COP": A resin containing a hydride of the ring-opening polymer of dicyclopentadiene obtained in Production Example 1 and which is crystalline. "Rsa": Lettering Rth in the thickness direction of the film (a).
"Rea": In-plane lettering Re of film (a)
"Rthb": Lettering Rth in the thickness direction of the film (b)
"Reb": In-plane lettering Re of film (b)
"Rthc": Lettering Rth in the thickness direction of the film (c)
"Rec": In-plane lettering Re of film (c)
" RTMA ": Thermal expansion coefficient of film "Fixed": Fixed uniaxial stretching "Free": Free uniaxial stretching
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 以上の結果から、以下の事項が分かる。
 実施例1の光学フィルム(フィルム(c))及び実施例2の光学フィルム(フィルム(b))は、厚み方向におけるレターデーションの絶対値が15nm以下、面内レターデーションReが10nm以下であり、RTMAが0%以上7.5%以下である。実施例の光学フィルムは、視野角特性の評価が良好であり、105℃耐熱試験において発生するシワの本数が少ない。
From the above results, the following matters can be understood.
The optical film of Example 1 (film (c)) and the optical film of Example 2 (film (b)) have an absolute value of retardation of 15 nm or less in the thickness direction and an in-plane retardation Re of 10 nm or less. R TMA is 0% or more and 7.5% or less. The optical film of the example has a good evaluation of the viewing angle characteristic, and the number of wrinkles generated in the 105 ° C. heat resistance test is small.
 一方、RTMAが7.5%以上である比較例1の光学フィルムは、105℃耐熱試験において発生するシワの本数が多い。また、厚み方向におけるレターデーションの絶対値が15nmより大きいか、又は面内レターデーションReが10nmより大きい比較例2~5の光学フィルムは、視野角特性の評価が不良であり、偏光子本来の光学特性を大きく変化させていることがわかる。 On the other hand, the optical film of Comparative Example 1 having an RTMA of 7.5% or more has a large number of wrinkles generated in the 105 ° C. heat resistance test. Further, the optical films of Comparative Examples 2 to 5 in which the absolute value of the retardation in the thickness direction is larger than 15 nm or the in-plane retardation Re is larger than 10 nm have a poor evaluation of the viewing angle characteristics, and are inherent in the polarizing element. It can be seen that the optical characteristics are greatly changed.
 また、工程(2)及び工程(3)を含まない製造方法で得られた比較例1及び2の光学フィルム、工程(2)において、塗工厚みが10μmより大きい製造方法により得られた比較例3~5の光学フィルムは、視野角特性が不良である。 Further, the optical films of Comparative Examples 1 and 2 obtained by the manufacturing method not including the step (2) and the step (3), and the comparative example obtained by the manufacturing method having a coating thickness larger than 10 μm in the step (2). The optical films of 3 to 5 have poor viewing angle characteristics.
 以上の結果は、本発明に係る光学フィルムが、他の光学要素と組み合わせた場合に、その光学要素本来の光学特性を大きく変化させず、高温でのシワの発生(105℃耐熱試験におけるシワの発生)が低減されていることを示すものである。 The above results show that when the optical film according to the present invention is combined with other optical elements, the original optical characteristics of the optical elements do not change significantly, and wrinkles occur at high temperatures (wrinkles in the 105 ° C. heat resistance test). It indicates that the occurrence) is reduced.
 100  光学フィルム
 100U 第一の表面
 100D 第二の表面
 110  中央部
 111  厚み方向中央
 121  第一の外側部
 122  第二の外側部
100 Optical film 100U First surface 100D Second surface 110 Central part 111 Thickness direction center 121 First outer part 122 Second outer part

Claims (6)

  1.  結晶性を有する重合体を含む樹脂からなり、
     厚み方向におけるレターデーションRthの絶対値が、15nm以下であり、
     面内レターデーションReが、10nm以下であり、
     熱膨張率が、0%以上7.5%以下である、光学フィルム。
    It consists of a resin containing a crystalline polymer.
    The absolute value of retardation Rth in the thickness direction is 15 nm or less.
    In-plane retardation Re is 10 nm or less,
    An optical film having a coefficient of thermal expansion of 0% or more and 7.5% or less.
  2.  光学フィルムが、第一の表面と第二の表面とを有し、
     厚み方向中央を含む部分である、中央部と、
     前記中央部に対して厚み方向外側にあり、前記第一の表面を含む部分である、第一の外側部と、
     前記中央部に対して厚み方向外側にあり、前記第二の表面を含む部分である、第二の外側部とから構成され、
     厚み方向におけるレターデーションRthが、前記中央部において正であり、
     厚み方向におけるレターデーションRthが、前記第一の外側部及び前記第二の外側部の少なくとも一方において、負である、
     請求項1に記載の光学フィルム。
    The optical film has a first surface and a second surface,
    The central part, which is the part including the center in the thickness direction,
    The first outer portion, which is outside in the thickness direction with respect to the central portion and includes the first surface, and the first outer portion.
    It is composed of a second outer portion, which is outside in the thickness direction with respect to the central portion and is a portion including the second surface.
    The retardation Rth in the thickness direction is positive in the central portion, and the retardation Rth is positive.
    The retardation Rth in the thickness direction is negative in at least one of the first outer portion and the second outer portion.
    The optical film according to claim 1.
  3.  長尺である、請求項1又は2に記載の光学フィルム。 The optical film according to claim 1 or 2, which is long.
  4.  前記結晶性を有する重合体を含む樹脂の固有複屈折値が、正である、請求項1~3のいずれか一項に記載の光学フィルム。 The optical film according to any one of claims 1 to 3, wherein the intrinsic birefringence value of the resin containing the crystalline polymer is positive.
  5.  請求項1~4のいずれか一項に記載の光学フィルムの製造方法であって、
     結晶性を有する重合体を含む樹脂を、押出成形してフィルム(a)を得る工程(1)、
     前記フィルム(a)の二つの表面のうち、少なくとも一つの表面上に、溶媒を塗工して溶媒層を形成して、フィルム(a’)を得る工程(2)、及び
     前記フィルム(a’)の前記溶媒層を乾燥させて、フィルム(b)を得る工程(3)を含み、
     ここで、前記工程(2)において前記フィルム(a)の少なくとも一つの表面上に形成された前記溶媒層の総厚みが、10μm以下である、
     光学フィルムの製造方法。
    The method for manufacturing an optical film according to any one of claims 1 to 4.
    Step (1) of extruding a resin containing a crystalline polymer to obtain a film (a).
    A step (2) of applying a solvent on at least one of the two surfaces of the film (a) to form a solvent layer to obtain a film (a'), and the film (a'. ) To dry the solvent layer to obtain a film (b), which comprises the step (3).
    Here, the total thickness of the solvent layer formed on at least one surface of the film (a) in the step (2) is 10 μm or less.
    Manufacturing method of optical film.
  6.  更に前記フィルム(b)を延伸する工程(4)を含む、請求項5に記載の光学フィルムの製造方法。 The method for producing an optical film according to claim 5, further comprising a step (4) of stretching the film (b).
PCT/JP2021/044567 2020-12-28 2021-12-03 Optical film and manufacturing method therefor WO2022145174A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022572951A JPWO2022145174A1 (en) 2020-12-28 2021-12-03

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-218337 2020-12-28
JP2020218337 2020-12-28

Publications (1)

Publication Number Publication Date
WO2022145174A1 true WO2022145174A1 (en) 2022-07-07

Family

ID=82260385

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/044567 WO2022145174A1 (en) 2020-12-28 2021-12-03 Optical film and manufacturing method therefor

Country Status (3)

Country Link
JP (1) JPWO2022145174A1 (en)
TW (1) TW202239832A (en)
WO (1) WO2022145174A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007106794A (en) * 2005-10-11 2007-04-26 Fujifilm Corp Cellulose ester film, manufacturing method of the same, optical compensation film, polarizing plate and image display device
JP2008265268A (en) * 2007-03-22 2008-11-06 Fujifilm Corp Production process of thermoplastic resin film, and optical compensation film and polarization plate for liquid crystal display panel
JP2008307831A (en) * 2007-06-15 2008-12-25 Fujifilm Corp Cyclic polyolefine type resin film and its manufacturing method
WO2015030118A1 (en) * 2013-08-30 2015-03-05 株式会社日本触媒 (meth)acrylic resin
JP2015171819A (en) * 2015-04-30 2015-10-01 日東電工株式会社 Method for manufacturing adhesive layer-carrying optical film
JP2018018096A (en) * 2013-03-08 2018-02-01 富士フイルム株式会社 Optical film, polarizing plate, and liquid crystal display
WO2018124137A1 (en) * 2016-12-28 2018-07-05 日本ゼオン株式会社 Optical film and polarizing plate

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007106794A (en) * 2005-10-11 2007-04-26 Fujifilm Corp Cellulose ester film, manufacturing method of the same, optical compensation film, polarizing plate and image display device
JP2008265268A (en) * 2007-03-22 2008-11-06 Fujifilm Corp Production process of thermoplastic resin film, and optical compensation film and polarization plate for liquid crystal display panel
JP2008307831A (en) * 2007-06-15 2008-12-25 Fujifilm Corp Cyclic polyolefine type resin film and its manufacturing method
JP2018018096A (en) * 2013-03-08 2018-02-01 富士フイルム株式会社 Optical film, polarizing plate, and liquid crystal display
WO2015030118A1 (en) * 2013-08-30 2015-03-05 株式会社日本触媒 (meth)acrylic resin
JP2015171819A (en) * 2015-04-30 2015-10-01 日東電工株式会社 Method for manufacturing adhesive layer-carrying optical film
WO2018124137A1 (en) * 2016-12-28 2018-07-05 日本ゼオン株式会社 Optical film and polarizing plate

Also Published As

Publication number Publication date
TW202239832A (en) 2022-10-16
JPWO2022145174A1 (en) 2022-07-07

Similar Documents

Publication Publication Date Title
JP4918944B2 (en) Polarizing plate using biaxially oriented polyethylene terephthalate film
JP2012220879A (en) Biaxially oriented polyethylene terephthalate film for protecting polarizer
JP6264408B2 (en) Polarizer
JP5991416B2 (en) Polarizer
JPWO2020175217A1 (en) Resin film manufacturing method, retardation film and its manufacturing method
WO2022145174A1 (en) Optical film and manufacturing method therefor
WO2021020023A1 (en) Phase contrast film and production method therefor
WO2022145152A1 (en) Optical film and method for producing same
WO2021153695A1 (en) Retardation film manufacturing method
WO2016002665A1 (en) Optical film and method for manufacturing same
WO2021107108A1 (en) Phase contrast film and method for producing same
JP2022103558A (en) Multilayer film and manufacturing method thereof, and optical film and manufacturing method thereof
WO2021039934A1 (en) Phase contrast film and production method therefor
WO2022145238A1 (en) Birefringence film, method for manufacturing same, and method for manufacturing optical film
JP2022103573A (en) Optical film, method for manufacturing the same, and method for manufacturing stretch film
JP2022116820A (en) Manufacturing method of optical film
JP2024049134A (en) Method for manufacturing optical film
JP2022116871A (en) Optical film, and manufacturing method thereof
JP2022103574A (en) Optical film and method for manufacturing the same
JP2018055108A (en) Liquid crystal display polarizer protective film, polarizing plate, and liquid crystal display
JP2022104366A (en) Optical film and method for manufacturing the same
WO2022163416A1 (en) Optical film, production method therefor, and polarizing film
JP7103125B2 (en) Resin film manufacturing method
WO2022145171A1 (en) Multilayer film, optical film, and manufacturing method
WO2020137305A1 (en) Optical film

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21915035

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022572951

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21915035

Country of ref document: EP

Kind code of ref document: A1