WO2015030118A1 - (meth)acrylic resin - Google Patents

(meth)acrylic resin Download PDF

Info

Publication number
WO2015030118A1
WO2015030118A1 PCT/JP2014/072587 JP2014072587W WO2015030118A1 WO 2015030118 A1 WO2015030118 A1 WO 2015030118A1 JP 2014072587 W JP2014072587 W JP 2014072587W WO 2015030118 A1 WO2015030118 A1 WO 2015030118A1
Authority
WO
WIPO (PCT)
Prior art keywords
meth
acrylic resin
weight
group
optical film
Prior art date
Application number
PCT/JP2014/072587
Other languages
French (fr)
Japanese (ja)
Inventor
隆司 大西
佳之 塩谷
和成 安村
中西 秀高
洋平 今泉
Original Assignee
株式会社日本触媒
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日本触媒 filed Critical 株式会社日本触媒
Priority to KR1020157032532A priority Critical patent/KR102179714B1/en
Priority to CN201480046869.8A priority patent/CN105492473B/en
Priority to JP2015534286A priority patent/JP6253655B2/en
Publication of WO2015030118A1 publication Critical patent/WO2015030118A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F8/00Chemical modification by after-treatment
    • C08F8/30Introducing nitrogen atoms or nitrogen-containing groups
    • C08F8/32Introducing nitrogen atoms or nitrogen-containing groups by reaction with amines
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F20/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride, ester, amide, imide or nitrile thereof
    • C08F20/02Monocarboxylic acids having less than ten carbon atoms, Derivatives thereof
    • C08F20/10Esters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F20/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride, ester, amide, imide or nitrile thereof
    • C08F20/02Monocarboxylic acids having less than ten carbon atoms, Derivatives thereof
    • C08F20/52Amides or imides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/04Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of organic materials, e.g. plastics
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/12Optical coatings produced by application to, or surface treatment of, optical elements by surface treatment, e.g. by irradiation
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/14Protective coatings, e.g. hard coatings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2333/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers
    • C08J2333/04Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers esters
    • C08J2333/06Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers esters of esters containing only carbon, hydrogen, and oxygen, the oxygen atom being present only as part of the carboxyl radical
    • C08J2333/10Homopolymers or copolymers of methacrylic acid esters
    • C08J2333/12Homopolymers or copolymers of methyl methacrylate

Definitions

  • the present invention relates to a (meth) acrylic resin. More specifically, the present invention relates to polarized light used in a polarizing plate provided in an image display device such as a protective film for a substrate of an optical disk such as VD, CD, DVD, MD, and LD, and a liquid crystal display device such as an LCD.
  • Optical films represented by optical protective films such as child protective films, antireflection films used in organic EL displays (OLEDs), transparent conductive films formed with transparent conductive layers such as ITO layers, and the like.
  • the present invention relates to a mounted image display device and a (meth) acrylic resin that can be suitably used as a raw material for the optical film.
  • an optical film made of a cellulose-based resin produces a phase difference with respect to obliquely incident light, and the phase difference with respect to the obliquely incident light adversely affects viewing angle characteristics in a large liquid crystal display.
  • polymethyl methacrylate has been conventionally proposed as an optical material having excellent moldability, high surface hardness, high light transmittance, low birefringence, and low wavelength dependency (see, for example, Patent Document 2).
  • polymethyl methacrylate has a low glass transition temperature (Tg) of about 100 ° C. and is inferior in heat resistance, it is difficult to use it in applications requiring heat resistance, such as an image display device.
  • Tg glass transition temperature
  • JP 2009-265174 A Japanese Patent Laid-Open No. 06-102547 JP 2009-107180 A
  • the present invention has been made in view of the prior art, and can be suitably used as a raw material for optical films having excellent heat resistance, low birefringence, high surface hardness, and low photoelastic coefficient ( (Meth) acrylic resin, optical film using the (meth) acrylic resin, transparent conductive film using the (meth) acrylic resin and having a transparent conductive layer such as an ITO layer, and the optical It is an object of the present invention to provide an image display device on which a film is mounted.
  • R 1 and R 2 are each independently a hydrogen atom or an alkyl group having 1 to 8 carbon atoms, and R 3 represents a ring structure
  • (meth) acryl means “acryl” or “methacryl”.
  • a (meth) acrylic resin that can be suitably used as a raw material for an optical film having excellent heat resistance, low birefringence, high surface hardness, and low photoelastic coefficient, and the like
  • An optical film using an acrylic resin, a transparent conductive film using the (meth) acrylic resin and having a transparent conductive layer such as an ITO layer formed thereon, and an image display device on which the optical film is mounted are provided.
  • the (meth) acrylic resin of the present invention has the formula (I):
  • R 1 and R 2 are each independently a hydrogen atom or an alkyl group having 1 to 8 carbon atoms, and R 3 represents a ring structure
  • R 4 and R 5 are each independently a hydrogen atom or an alkyl group having 1 to 8 carbon atoms
  • R 6 is an alkyl group having 1 to 18 carbon atoms or a cycloalkyl group having 3 to 12 carbon atoms
  • an aryl group having 6 to 10 carbon atoms It has a repeating unit represented by
  • R 1 and R 2 are each independently a hydrogen atom or an alkyl group having 1 to 8 carbon atoms.
  • the alkyl group having 1 to 8 carbon atoms include methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, tert-butyl group, n-pentyl group, isopentyl group, n- Examples include a hexyl group, an isohexyl group, an n-heptyl group, an isoheptyl group, an n-octyl group, and a 2-ethylhexyl group, but the present invention is not limited to such examples.
  • a hydrogen atom or an alkyl group having 1 to 4 carbon atoms is preferable from the viewpoint of obtaining an optical film having excellent heat resistance and low birefringence.
  • R 3 represents a ring structure.
  • the ring structure include a cycloalkyl group having 3 to 12 carbon atoms and an aryl group having 6 to 10 carbon atoms.
  • the cycloalkyl group having 3 to 12 carbon atoms include a cyclopropyl group, a cyclobutyl group, a cyclopentyl group, a cyclohexyl group, and the like, but the present invention is not limited to such examples.
  • cycloalkyl groups a cycloalkyl group having 3 to 6 carbon atoms is preferable and a cyclohexyl group is more preferable from the viewpoint of obtaining an optical film having excellent heat resistance and low birefringence.
  • Examples of the aryl group having 6 to 10 carbon atoms include phenyl, benzyl, o-tolyl, m-tolyl, p-tolyl, 2,3-xylyl, 2,4-xylyl, 2,5- Examples include xylyl group, 2,6-xylyl group, 3,4-xylyl group, 3,5-xylyl group, 1-naphthyl group, 2-naphthyl group, binaphthyl group, anthryl group, and the like. It is not limited to illustration only.
  • aryl groups a phenyl group and a tolyl group are preferable from the viewpoint of obtaining an optical film having excellent heat resistance and low birefringence.
  • R 3 a cycloalkyl group having 3 to 6 carbon atoms, a phenyl group, and a tolyl group are preferable, and a cyclohexyl group and a phenyl group are more preferable from the viewpoint of obtaining an optical film having excellent heat resistance and low birefringence. preferable.
  • R 1 and R 2 are each independently a hydrogen atom or an alkyl group having 1 to 4 carbon atoms. , Preferably a hydrogen atom or a methyl group, and it is desirable that R 3 is a cyclohexyl group or a phenyl group, preferably a phenyl group.
  • the (meth) acrylic resin may contain two or more types of repeating units represented by the formula (I).
  • R 4 and R 5 are each independently a hydrogen atom or an alkyl group having 1 to 8 carbon atoms.
  • the alkyl group having 1 to 8 carbon atoms include methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, tert-butyl group, n-pentyl group, isopentyl group, n- Examples include a hexyl group, an isohexyl group, an n-heptyl group, an isoheptyl group, an n-octyl group, and a 2-ethylhexyl group, but the present invention is not limited to such examples.
  • an alkyl group having 1 to 4 carbon atoms is preferable from the viewpoint of obtaining an optical film having excellent heat resistance, low birefringence, high surface hardness, and low photoe
  • R 6 is an alkyl group having 1 to 18 carbon atoms, a cycloalkyl group having 3 to 12 carbon atoms, or an aryl group having 6 to 10 carbon atoms.
  • alkyl group having 1 to 18 carbon atoms include methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, tert-butyl group, pentyl group, hexyl group, heptyl group, octyl group.
  • cycloalkyl group having 3 to 12 carbon atoms examples include a cyclopropyl group, a cyclobutyl group, a cyclopentyl group, a cyclohexyl group, and the like, but the present invention is not limited to such examples.
  • Examples of the aryl group having 6 to 10 carbon atoms include phenyl, benzyl, o-tolyl, m-tolyl, p-tolyl, 2,3-xylyl, 2,4-xylyl, 2,5- Examples include xylyl group, 2,6-xylyl group, 3,4-xylyl group, 3,5-xylyl group, 1-naphthyl group, 2-naphthyl group, binaphthyl group, anthryl group, and the like. It is not limited to illustration only.
  • an alkyl group having 1 to 18 carbon atoms is preferable, and an alkyl group having 1 to 8 carbon atoms is preferable.
  • Group is more preferable, an alkyl group having 1 to 4 carbon atoms is more preferable, and a methyl group, an ethyl group, and an n-butyl group are still more preferable.
  • R 4 and R 5 are each independently from the viewpoint of obtaining an optical film having excellent heat resistance, low birefringence, high surface hardness, and low photoelastic coefficient.
  • a hydrogen atom or an alkyl group having 1 to 8 carbon atoms preferably a hydrogen atom or an alkyl group having 1 to 4 carbon atoms, more preferably a hydrogen atom or a methyl group
  • R 6 is an alkyl group having 1 to 18 carbon atoms
  • the (meth) acrylic resin may contain two or more types of repeating units represented by the formula (II).
  • the content of the repeating unit represented by the formula (I) in the (meth) acrylic resin is preferably from the viewpoint of improving the heat resistance and transparency of the (meth) acrylic resin and obtaining an optical film having a small birefringence.
  • the content of the repeating unit represented by the formula (II) in the (meth) acrylic resin is improved from the viewpoint of improving the moldability to the film, increasing the mechanical strength, and obtaining an optical film having a small birefringence.
  • it is 15% by weight or more, more preferably 20% by weight or more, and further preferably 25% by weight or more, and an optical film having improved birefringence and improved heat resistance and transparency of the (meth) acrylic resin is obtained.
  • it is preferably 95% by weight or less, more preferably 90% by weight or less, and still more preferably 85% by weight or less.
  • the (meth) acrylic resin includes, for example, repeating units other than the repeating unit represented by the formula (I) and the repeating unit represented by the formula (II), such as a styrene unit, within the range in which the object of the present invention is not hindered. Units may be included.
  • the repeating unit represented by the formula (I) and the repeating unit other than the repeating unit represented by the formula (II) are styrene units
  • the content of styrene units in all the repeating units is preferably 10% by weight or less. More preferably, it is 5% by weight or less, more preferably 2% by weight or less, and still more preferably 1% by weight or less.
  • the weight average molecular weight of the (meth) acrylic resin is preferably 10,000 or more, more preferably 30000 or more from the viewpoint of increasing the mechanical strength of the film, and preferably 500,000 or less from the viewpoint of improving the moldability to the film. More preferably, it is 300,000 or less.
  • the weight average molecular weight of the (meth) acrylic resin is a value obtained by gel permeation chromatography (GPC) under the following conditions.
  • the glass transition temperature of the (meth) acrylic resin is preferably 120 ° C. or higher, more preferably 130 ° C. or higher, further preferably 140 ° C. or higher, and even more preferably 150 ° C. or higher. is there.
  • the glass transition temperature of the (meth) acrylic resin is preferably 250 ° C. or less, more preferably 230 ° C. or less, further preferably 210 ° C. or less, and still more preferably, from the viewpoint of improving the molding processability to a film. It is 200 degrees C or less.
  • the glass transition temperature of the (meth) acrylic resin is a value obtained in accordance with JIS K7121. More specifically, a differential scanning calorimeter [trade name: Thermo plus EVO DSC-8230 manufactured by Rigaku Corporation] was used, and ⁇ -alumina was used as a reference, and about 10 mg of (meth) acrylic resin in a nitrogen gas atmosphere. Is a temperature obtained by raising the temperature from room temperature to 200 ° C. at a rate of temperature rise of 20 ° C./min and obtaining the starting point method from the obtained DSC curve.
  • the acid value of the (meth) acrylic resin is preferably 1.4 mmol / g or less, more preferably 0.8 mmol / g or less, and still more preferably 0.8, from the viewpoint of improving molding processability such as film formation. 5 mmol / g or less, still more preferably 0.3 mmol / g or less.
  • the acid value of the (meth) acrylic resin is a value when measured based on the method described in the following examples.
  • the absolute value of the stress optical coefficient (Cr) of the (meth) acrylic resin is preferably from the viewpoint of suppressing the birefringence by suppressing the anisotropy of the refractive index of the optical film made of the resin, for example, a stretched film. It is 0.3 ⁇ 10 ⁇ 9 Pa ⁇ 1 or less, more preferably 0.2 ⁇ 10 ⁇ 9 Pa ⁇ 1 or less, and further preferably 0.1 ⁇ 10 ⁇ 9 Pa ⁇ 1 or less.
  • the stress optical coefficient (Cr) of the (meth) acrylic resin is a value when measured based on the method described in the following examples.
  • the thickness direction retardation Rth of the optical film after biaxial stretching can be 20 nm or less.
  • the (meth) acrylic resin can be obtained, for example, by imidizing a (meth) acrylic resin having a repeating unit represented by the formula (II) with an imidizing agent.
  • the (meth) acrylic resin (hereinafter simply referred to as “(meth) acrylic resin”) having a repeating unit represented by the formula (II) is, for example, the formula (III):
  • the monomer represented by the formula (III) may contain other monomers as long as the object of the present invention is not inhibited.
  • (meth) acrylic acid is used as the other monomer
  • (meth) acrylic acid is contained in the monomer represented by formula (III) at a content of 45% by weight or less, preferably 40% by weight or less. Can do.
  • Examples of the monomer represented by the formula (III) include alkyl (meth) acrylates having 1 to 18 carbon atoms in the alkyl group, cycloalkyl (meth) acrylates having 3 to 12 carbon atoms in the cycloalkyl group, and carbon numbers in the aryl group. 6 to 10 aryl (meth) acrylates. These (meth) acrylates may be used alone or in combination of two or more.
  • alkyl (meth) acrylate having an alkyl group having 1 to 18 carbon atoms examples include methyl (meth) acrylate, ethyl (meth) acrylate, n-propyl (meth) acrylate, isopropyl (meth) acrylate, n-butyl ( (Meth) acrylate, isobutyl (meth) acrylate, tert-butyl (meth) acrylate, pentyl (meth) acrylate, hexyl (meth) acrylate, heptyl (meth) acrylate, octyl (meth) acrylate, decyl (meth) acrylate, dodecyl ( Examples include meth) acrylate, tetradecyl (meth) acrylate, pentadecyl (meth) acrylate, hexadecyl (meth) acrylate, heptadecyl (
  • the present invention is not limited only to those exemplified.
  • Examples of the cycloalkyl (meth) acrylate having 3 to 12 carbon atoms in the cycloalkyl group include cyclopropyl (meth) acrylate, cyclobutyl (meth) acrylate, cyclopentyl (meth) acrylate, cyclohexyl (meth) acrylate, and the like.
  • the present invention is not limited to such examples.
  • Examples of the aryl (meth) acrylate having 6 to 10 carbon atoms in the aryl group include phenyl (meth) acrylate, benzyl (meth) acrylate, o-tolyl (meth) acrylate, m-tolyl (meth) acrylate, p- Tolyl (meth) acrylate, 2,3-xylyl (meth) acrylate, 2,4-xylyl (meth) acrylate, 2,5-xylyl (meth) acrylate, 2,6-xylyl (meth) acrylate, 3,4- Examples include xylyl (meth) acrylate, 3,5-xylyl (meth) acrylate, 1-naphthyl (meth) acrylate, 2-naphthyl (meth) acrylate, binaphthyl (meth) acrylate, anthryl (meth) acrylate, etc. The invention is not limited to such examples
  • Examples of the method for polymerizing the monomer represented by the formula (III) include a bulk polymerization method, a solution polymerization method, an emulsion polymerization method, a suspension polymerization method, and the like, but the present invention is limited only to such examples. It is not a thing.
  • Examples of the method of imidizing the (meth) acrylic resin with an imidizing agent include a known imidizing method.
  • a specific method for imidizing a (meth) acrylic resin with an imidizing agent for example, (1) A (meth) acrylic resin can be dissolved, the (meth) acrylic resin is dissolved in a solvent inert to imidization, and an imidizing agent is added to the obtained (meth) acrylic resin solution And by reacting the (meth) acrylic resin with an imidizing agent, the (meth) acrylic resin is imidized with an imidizing agent (batch reaction method), (2) An imidizing agent is added to a molten (meth) acrylic resin using an extruder or the like, and the (meth) acrylic resin and the imidizing agent are reacted to imidize the (meth) acrylic resin.
  • Method (melt kneading method) is not limited to such examples.
  • a batch reaction tank pressure vessel
  • the batch-type reaction vessel preferably has a structure in which a solution in which a (meth) acrylic resin is dissolved in a solvent can be heated and stirred, and an imidizing agent can be added. Since the viscosity of the solution may increase as the reaction proceeds, it is more preferable that the stirring efficiency is excellent.
  • Examples of the batch-type reaction vessel (pressure vessel) include a Max blend (registered trademark) agitation vessel manufactured by Sumitomo Heavy Industries, Ltd., but the present invention is not limited to such examples. Absent.
  • examples of the solvent inert to imidization include aliphatic alcohols such as methanol, ethanol, n-propanol, isopropanol, n-butanol, and isobutanol; benzene, toluene, xylene, and chlorobenzene. And aromatic compounds such as chlorotoluene; ether compounds and the like, but the present invention is not limited to such examples.
  • These solvents may be used alone or in combination of two or more. Among these solvents, toluene and a mixed solvent of toluene and methanol are preferable.
  • the reaction temperature for reacting the (meth) acrylic resin with the imidizing agent is such that the (meth) acrylic resin is efficiently imidized with the imidizing agent and (meth) acrylic due to an excessive thermal history ( )
  • the reaction temperature for reacting the (meth) acrylic resin with the imidizing agent is such that the (meth) acrylic resin is efficiently imidized with the imidizing agent and (meth) acrylic due to an excessive thermal history ( )
  • it is preferably 160 to 400 ° C, more preferably 180 to 350 ° C, still more preferably 200 to 300 ° C.
  • an extruder In the melt kneading method, an extruder can be used.
  • the extruder include a single-screw extruder, a twin-screw extruder, and a multi-screw extruder, but the present invention is not limited to such examples.
  • a (meth) acrylic resin and an imidizing agent can be efficiently mixed, and therefore a twin screw extruder is preferable.
  • the twin screw extruder include, for example, a non-meshing type co-rotating twin screw extruder, a meshing type co-rotating twin screw extruder, a non-meshing different direction rotating twin screw extruder, and a meshing type.
  • twin screw extruder Although a different direction rotation type twin screw extruder etc. are mentioned, this invention is not limited only to this illustration. These extruders may be used singly or two or more may be connected in series. Among the twin screw extruders, the meshing type co-rotating twin screw extruder is preferable because it can rotate at high speed and can efficiently mix the (meth) acrylic resin and the imidizing agent.
  • imidation of the (meth) acrylic resin is performed by, for example, charging the (meth) acrylic resin from the raw material charging unit of the extruder, melting the (meth) acrylic resin, and filling the cylinder. Thereafter, the imidizing agent can be injected into the extruder with an addition pump.
  • the temperature of the reaction zone (resin temperature) in the extruder is preferably from the viewpoint of efficiently progressing the imidization reaction of the (meth) acrylic resin and improving chemical resistance and heat resistance. 180 ° C. or higher, more preferably 220 ° C. or higher, from the viewpoint of suppressing the decomposition of the (meth) acrylic resin and improving the bending resistance of the optical film, preferably 380 ° C. or lower, more preferably 350 ° C. or lower, Preferably it is 300 degrees C or less.
  • the reaction zone in the said extruder means the area
  • the imidization of the (meth) acrylic resin can be promoted by lengthening the reaction time between the (meth) acrylic resin and the imidizing agent in the reaction zone in the extruder.
  • the time required for imidation of the (meth) acrylic resin in the reaction zone in the extruder is preferably 10 seconds or longer, more preferably 30 seconds or longer from the viewpoint of sufficiently imidizing the (meth) acrylic resin.
  • the pressure of the (meth) acrylic resin in the extruder is preferably not less than atmospheric pressure, more preferably not less than 1 MPa, preferably considering the pressure resistance of the extruder. 50 MPa or less, more preferably 30 MPa or less.
  • the extruder prefferably provides the extruder with a vent that can be depressurized to atmospheric pressure or less in order to remove unreacted imidizing agent and by-products in the extruder.
  • the number of vents may be only one or plural.
  • the imidizing agent examples include arylamines having 6 to 10 carbon atoms such as cycloalkylamine having 3 to 12 carbon atoms such as cyclohexylamine, aniline, benzylamine, toluidine, and trichloroaniline.
  • arylamines having 6 to 10 carbon atoms such as cycloalkylamine having 3 to 12 carbon atoms
  • cyclohexylamine, aniline, benzylamine, toluidine, and trichloroaniline such as cyclohexylamine, aniline, benzylamine, toluidine, and trichloroaniline.
  • these imidizing agents may be used alone or in combination of two or more.
  • cyclohexylamine, aniline and toluidine are preferable, and aniline is more preferable from the viewpoint of obtaining an optical film having excellent heat resistance and low birefringence.
  • the amount of the imidizing agent varies depending on the content of the repeating unit represented by the formula (I) and the content of the repeating unit represented by the formula (II) in the (meth) acrylic resin to be obtained, it should be decided unconditionally. Therefore, it is preferable to adjust the (meth) acrylic resin so that the repeating unit represented by the formula (I) and the repeating unit represented by the formula (II) are contained at a predetermined content. In other words, the content of the repeating unit represented by the formula (I) and the repeating unit represented by the formula (II) in the (meth) acrylic resin can be easily adjusted by adjusting the amount of the imidizing agent. Can do.
  • a carboxyl group or an acid anhydride group may be by-produced.
  • many carboxyl groups or acid anhydride groups may remain in the (meth) acrylic resin.
  • the viscosity of the (meth) acrylic resin increases, so that, for example, molding processability during filming is reduced. There is a risk.
  • hydrolysis of the acid anhydride group proceeds, and the durability of the resin and film may be reduced.
  • the carboxyl group and acid anhydride group contained in the (meth) acrylic resin into an ester it is preferable to convert the carboxyl group and acid anhydride group contained in the (meth) acrylic resin into an ester.
  • Examples of the method for converting a carboxyl group and an acid anhydride group contained in the (meth) acrylic resin into an ester include a method for converting to an ester described in US Pat. No. 4,727,117, The present invention is not limited to such examples.
  • esterifying the (meth) acrylic resin with an esterifying agent for example, in the same manner as the method of imidizing the (meth) acrylic resin with an imidizing agent, (1)
  • the (meth) acrylic resin can be dissolved, the (meth) acrylic resin is dissolved in a solvent inert to esterification, and the resulting (meth) acrylic resin solution is esterified.
  • esterification method By adding an agent and reacting the (meth) acrylic resin with the esterifying agent to esterify the (meth) acrylic resin with the esterifying agent (batch reaction method), (2) An esterifying agent is added to the molten (meth) acrylic resin using an extruder or the like, and the (meth) acrylic resin and the esterifying agent are reacted to thereby change the (meth) acrylic resin. Esterification method (melt kneading method) However, the present invention is not limited to such examples.
  • esterifying agent examples include dimethyl carbonate, 2,2-dimethoxypropane, dimethyl sulfoxide, triethyl orthoformate, trimethyl orthoacetate, trimethyl orthoformate, diphenyl carbonate, dimethyl sulfate, methyl toluene sulfonate, methyl trifluoromethyl sulfonate.
  • the amount of the esterifying agent per 100 parts by weight of the (meth) acrylic resin is usually preferably 0 to 32 parts by weight, more preferably 0 to 16 parts by weight.
  • the esterifying agent can be used in combination with a catalyst.
  • the catalyst include aliphatic tertiary amines such as trimethylamine, triethylamine, and tributylamine, and base catalysts such as diazabicycloundecene and diazabicyclononene, but the present invention is limited only to such examples. Is not to be done. These catalysts may be used alone or in combination of two or more. Among these catalysts, diazabicycloundecene is preferable from the viewpoint of reducing costs and preventing adverse effects such as coloring on the meth) acrylic resin.
  • the amount of the catalyst is not particularly limited, but is usually preferably 0 to 10 parts by weight, more preferably 0 to 5 parts by weight, and still more preferably 0 to 2 parts by weight per 100 parts by weight of the (meth) acrylic resin. is there.
  • a glutarimide resin is obtained by imidizing a (meth) acrylic resin such as polymethylmethacrylate (PMMA) with a primary amine. It is known to go through an acid structure.
  • PMMA polymethylmethacrylate
  • a glutaric anhydride resin is prepared from a (meth) acrylic resin using an extruder or the like, and the glutaric anhydride resin produced as necessary is isolated.
  • a glutarimide structure can be efficiently generated in (meth) acryl. This method is effective when, for example, aniline having a smaller basicity than an alkylamine such as methylamine is used as an imidizing agent.
  • a catalyst When preparing a glutaric anhydride resin from a (meth) acrylic resin, a catalyst can be used from the viewpoint of promoting a cyclization reaction to a glutaric anhydride structure.
  • a catalyst for promoting the cyclization reaction to a glutaric anhydride structure at least one selected from the group consisting of acids, bases and salts thereof can be used.
  • kinds of acids, bases and salts thereof are not particularly limited.
  • the catalyst is preferably used within the range where the (meth) acrylic resin is not adversely affected such as coloring and the transparency of the (meth) acrylic resin is not lowered.
  • Examples of the acid include hydrochloric acid, sulfuric acid, p-toluenesulfonic acid, phosphoric acid, phosphorous acid, phenylphosphonic acid, methyl phosphate, and the like, but the present invention is not limited to such examples.
  • Examples of the base include metal hydroxides, amines, imines, alkali metal derivatives, alkoxides, ammonium hydroxide salts, and the like, but the present invention is not limited to such examples.
  • Examples of the acid and base salts include metal acetates, metal stearates, metal carbonates, etc., but the present invention is not limited to such examples.
  • a compound having an alkali metal is preferable because an excellent reaction promoting effect is exhibited even in a small amount.
  • the compound having an alkali metal include alkali metal hydroxides such as lithium hydroxide, sodium hydroxide and potassium hydroxide, sodium methoxide, sodium ethoxide, sodium phenoxide, potassium methoxide, potassium ethoxide and potassium phenoxide.
  • the alkali metal alkoxide compound such as lithium acetate, sodium acetate, potassium acetate, and sodium stearate include organic carboxylic acid alkali metal salts, but the present invention is not limited to such examples.
  • sodium hydroxide, sodium methoxide, lithium acetate and sodium acetate are preferable, and sodium methoxide and lithium acetate are more preferable.
  • the amount of the catalyst is not particularly limited, but it is usually preferably about 0.01 to 1 part by weight per 100 parts by weight of the (meth) acrylic resin.
  • the (meth) acrylic resin may contain other thermoplastic resins as long as the object of the present invention is not impaired.
  • Other thermoplastic resins include, for example, olefinic polymers such as polyethylene, polypropylene, ethylene-propylene copolymer, poly (4-methyl-1-pentene); halogen-containing polymers such as vinyl chloride and chlorinated vinyl resins; (Meth) acrylic polymers such as polymethyl methacrylate; styrene polymers such as polystyrene, styrene-methyl methacrylate copolymer, styrene-acrylonitrile copolymer, acrylonitrile-butadiene-styrene block copolymer; polyethylene terephthalate, poly Polyesters such as butylene terephthalate and polyethylene naphthalate; biodegradable polyesters such as polylactic acid and polybutylene succinate; polyamides such as nylon 6, nylon 66, nylon 610; polyaceter Polycarbon
  • the (meth) acrylic resin includes, for example, antioxidants such as hindered phenol antioxidants, phosphorus antioxidants, sulfur antioxidants, and the like within the range in which the object of the present invention is not hindered; Stabilizers such as stabilizers, weathering stabilizers and heat stabilizers; reinforcing materials such as glass fibers and carbon fibers; near infrared absorbers; difficulties such as tris (dibromopropyl) phosphate, triallyl phosphate and antimony oxide
  • An antistatic agent such as an anionic surfactant, a cationic surfactant, or a nonionic surfactant; a colorant such as an inorganic pigment, an organic pigment, or a dye; a filler such as an organic filler or an inorganic filler; Resin modifiers; plasticizers; lubricants and the like may be included.
  • the optical film of the present invention can be manufactured using a (meth) acrylic resin by, for example, a melt extrusion molding method such as a T-die method or an inflation method, a cast molding method, a press molding method, or the like.
  • a melt extrusion method such as a T-die method or an inflation method
  • a cast molding method such as a cast molding method
  • a press molding method such as a press molding method, or the like.
  • a melt extrusion method for example, a single screw extruder, a twin screw extruder, or the like can be used.
  • the optical film of the present invention can be obtained.
  • the optical film of the present invention is preferably uniaxially stretched or biaxially stretched, and biaxially stretched. Is more preferable.
  • Examples of the method for biaxially stretching the optical film of the present invention include a sequential biaxial stretching method and a simultaneous biaxial stretching method.
  • the present invention is not limited to such examples.
  • the stretching temperature when stretching the optical film of the present invention is preferably a glass transition of a (meth) acrylic resin from the viewpoint of stretching the optical film without causing breakage of the optical film and sufficiently aligning the molecules.
  • the stretching ratio of the optical film is preferably about 1.5 to 3 times from the viewpoint of increasing the mechanical strength in both the longitudinal direction and the transverse direction perpendicular to the longitudinal direction. More preferably, it is about 5 to 2.5 times.
  • the dimensional change rate of the stretched optical film is preferably 1.0% or less, more preferably 0.7% or less, from the viewpoint of improving the durability of a film subjected to secondary processing such as an ITO film. More preferably, it is 0.5% or less, and still more preferably 0.2% or less.
  • the thickness of the optical film of the present invention cannot be determined unconditionally because it varies depending on its use.
  • a protective film used for an image display device such as an organic EL display device, an antireflection film, a polarizing film
  • the thickness of the optical film is The thickness is preferably 1 to 250 ⁇ m, more preferably 10 to 100 ⁇ m, still more preferably 20 to 80 ⁇ m.
  • the thickness of the optical film is preferably 20 It is ⁇ 400 ⁇ m, more preferably 30 to 350 ⁇ m, still more preferably 40 to 300 ⁇ m.
  • the thickness of an optical film is a thickness when it measures using a Digimatic micrometer [product made from Mitutoyo Corporation], for example.
  • the in-plane retardation Re of the optical film of the present invention is preferably 20 nm or less, more preferably 10 nm or less, and further preferably 5 nm or less, from the viewpoint of suppressing the refractive index anisotropy of the optical film and reducing the birefringence. Still more preferably, it is 3 nm or less.
  • the absolute value of the thickness direction retardation Rth of the optical film of the present invention is preferably from the viewpoint of suppressing the anisotropy of the refractive index of the optical film and reducing the birefringence similarly to the in-plane retardation Re. Is 20 nm or less, more preferably 10 nm or less, still more preferably 5 nm or less, and even more preferably 3 nm or less.
  • the in-plane retardation Re and the thickness direction retardation Rth of the optical film with respect to light having a wavelength of 590 nm are calculated using the retardation film / optical material inspection apparatus [manufactured by Otsuka Electronics Co., Ltd., product number: RETS-100]. It is a value when used and measured under the condition of an incident angle of 40 °.
  • the absolute value of the photoelastic coefficient with respect to light having a wavelength of 590 nm of the optical film of the present invention is preferably 10 ⁇ 10 ⁇ 12 Pa ⁇ 1 or less from the viewpoint of suppressing light leakage, particularly light leakage in a high-temperature and high-humidity environment. More preferably, it is 6 ⁇ 10 ⁇ 12 Pa ⁇ 1 or less.
  • the photoelastic coefficient of the optical film with respect to light with a wavelength of 590 nm is cut into 20 mm ⁇ 50 mm with the stretching direction of the optical film as the long side, and a sample is prepared.
  • This sample is an ellipsometer [manufactured by JASCO Corporation , Product number: M-150], and birefringence is measured at three points while applying a stress load of 5 to 25 N parallel to the stretching direction. It is a value when the inclination of refraction is obtained as a photoelastic coefficient.
  • the linear expansion coefficient in the temperature range of 60 to 100 ° C. of the optical film of the present invention is preferably 80 ⁇ 10 ⁇ 6 K ⁇ 1 or less, more preferably 70 ⁇ 10 ⁇ from the viewpoint of suppressing dimensional change in a high temperature environment. 6 K -1 or less.
  • the linear expansion coefficient of the optical film at 60 to 100 ° C. is determined from 60 ° C. to 100 ° C. under the following measurement conditions using a thermomechanical measuring apparatus (manufactured by Shimadzu Corporation, product number: TMA-60). It was calculated as the slope at. ⁇ Measurement condition ⁇ ⁇ Sample size: 5 mm ⁇ 20 mm (the long side is the stretching direction) Sample pretreatment: After pretreatment at 60 ° C. for 15 hours, cooling to room temperature Measurement weight: 5 g ⁇ Raising rate: 5 ° C / min
  • the water absorption of the optical film of the present invention is preferably 3.0% or less, more preferably 2.5% or less, and even more preferably 2.0% or less, from the viewpoint of improving the molding processability to an ITO film, for example. It is.
  • the water absorption rate of the optical film is a value when measured based on the method described in the following examples.
  • a coating layer may be formed on the surface of the optical film of the present invention as necessary.
  • the coating layer include an antistatic layer, an adhesive layer, an adhesive layer, an easy-adhesion layer, an antiglare layer (non-glare) layer, a photocatalyst layer, an antifouling layer, an antireflection layer, a hard coat layer, an ultraviolet shielding layer, and a heat ray.
  • a shielding layer, an electromagnetic wave shielding layer, a gas barrier layer, etc. are mentioned, this invention is not limited only to this illustration.
  • the optical film of the present invention has a weak positive birefringence based on the repeating unit represented by the formula (I) and a weak negative birefringence based on the repeating unit represented by the formula (II).
  • the birefringence of the two cancels each other out, it has a low birefringence as a whole.
  • the optical film of the present invention has a repeating unit represented by the formula (I), it has excellent heat resistance, and has substantially no repeating unit based on an aromatic vinyl monomer typified by styrene. In some cases, it has excellent properties of having a hard surface hardness and a low photoelastic coefficient, which are characteristics based on the repeating unit represented by the formula (II).
  • the optical film of the present invention is, for example, a protective film for an optical disc, a polarizer protective film used for a polarizing plate of an image display device such as a liquid crystal display device, a retardation film, a viewing angle compensation film, a light diffusion film, a reflective film, a reflective film. It is expected to be used for applications such as a prevention film, an antiglare film, a brightness enhancement film, a conductive film for a touch panel, a diffusion plate, a light guide, and a prism sheet. Therefore, the optical film of the present invention is expected to be suitably used for applications such as image display devices such as liquid crystal display devices and capacitive touch panels.
  • a transparent conductive layer, an optical adjustment layer, a transparent hard coat layer, an antiglare layer, an antireflection layer, and the like may be formed on at least one surface of the optical film of the present invention.
  • the optical film having a transparent conductive layer formed on at least one surface of the optical film of the present invention can be used as a transparent conductive film.
  • the transparent conductive layer include an inorganic compound layer having a property of reflecting infrared rays, such as an indium-tin oxide (ITO) layer, and a metal mesh layer made of a metal such as silver, copper, nickel, and tungsten.
  • ITO indium-tin oxide
  • the present invention is not limited to such examples.
  • the thickness of the transparent conductive layer is preferably 0.001 to 10 ⁇ m, more preferably 0.005 to 1 ⁇ m, and more preferably from the viewpoint of improving conductivity and light transmittance. Preferably, it is 0.01 to 0.5 ⁇ m.
  • the thickness of the transparent conductive layer is preferably from 0.1 to 30 ⁇ m, more preferably from 0.1 to 10 ⁇ m, from the viewpoint of improving conductivity and light transmittance. More preferably, it is 1 to 5 ⁇ m.
  • the optical adjustment layer is a layer for appropriately adjusting the transmittance or reflectance of incident light.
  • the optical adjustment layer is formed by alternately arranging a low refractive index layer having a relatively low refractive index and a high refractive index layer having a relatively high refractive index. It can be formed by laminating.
  • Example 1 (A) Preparation of (meth) acrylic resin Methyl methacrylate (manufactured by Sumitomo Chemical Co., Ltd., trade name: Sumipex EX, weight average molecular weight: 140,000) 29.5 parts by weight, aniline 27.3 parts by weight in a 2 liter autoclave Parts and 33.2 parts by weight of toluene were charged. The autoclave was heated to 240 ° C. and stirred for 3 hours to obtain a reaction solution.
  • Methyl methacrylate manufactured by Sumitomo Chemical Co., Ltd., trade name: Sumipex EX, weight average molecular weight: 140,000
  • the reaction solution obtained above was subjected to a vent type screw having a barrel temperature of 260 ° C., a rotation speed of 70 rpm, a degree of vacuum of 13.3 to 400 hPa (10 to 300 mmHg), a rear vent number of 1, and a forevent number of 2.
  • Transparent (meth) acrylic is introduced into a shaft extruder (hole diameter: 15 mm, L / D: 45) at a processing rate of 300 g / h in terms of resin amount, devolatilized and extruded in this extruder. A resin pellet was obtained.
  • the weight average molecular weight of the (meth) acrylic resin obtained above was 100,000.
  • the (meth) acrylic resin obtained above has a repeating unit in the formula (I) wherein R 1 is a methyl group, R 2 is a hydrogen atom, and R 3 is a phenyl group. , R 4 is a hydrogen atom, R 5 is a methyl group, R 6 is a (meth) acrylic resin having a repeating unit having a methyl group and having a glass transition temperature of 142 ° C.
  • the imidation ratio of the (meth) acrylic resin, the content of repeating units represented by the formula (II), and the stress optical coefficient (Cr) were examined based on the following method.
  • the imidization ratio of the (meth) acrylic resin was 9.6%
  • the content of the repeating unit represented by the formula (II) was 82.1% by weight
  • the stress optical coefficient (Cr) was ⁇ 0.01. ⁇ 10 -9 Pa -1
  • [Imidation rate] (Meth) imidization ratio of acrylic resin, 1803Cm the absorption derived from a carboxylic acid anhydride group in the vicinity of -1, the absorption derived from the ester carbonyl group in the vicinity of 1720 cm -1, an imide carbonyl groups near 1680 cm -1
  • the imidization ratio was determined from the intensity ratio with the absorption derived from.
  • the imidization rate is a ratio of imide carbonyl groups in all carbonyl groups.
  • (meth) acrylic resin (weight: a) and 1,1,2,2-tetrachloroethane (molecular weight: 167.85, weight: b) as an internal standard are dissolved in heavy acetone, Area ratio of peak derived from internal standard (5.9 ppm, 2 protons) and R 6 proton adjacent to ester carbonyl group [peak area A derived from R 6 proton adjacent to ester carbonyl group and internal standard proton From the ratio to the peak area B derived from (peak area A / peak area B)], the content of the repeating unit represented by the formula (II) was calculated.
  • R 4 of the repeating unit represented by the formula (II) is a hydrogen atom
  • R 5 is a methyl group
  • R 6 is a methyl group
  • Stress optical coefficient (Cr) The stress optical coefficient (Cr) of the (meth) acrylic resin is obtained by cutting an unstretched film into a 60 mm ⁇ 20 mm rectangle, selecting a weight so that the stress is 1 N / mm 2 or less, and attaching it to the lower end of the unstretched film. It was.
  • This unstretched film was set at a temperature of 3 ° C. higher than the glass transition temperature of the (meth) acrylic resin at a constant temperature dryer (manufactured by ASONE, product number: DOV-450A) with a distance between chucks of 40 mm. After stretching by holding for about 30 minutes, heating was stopped, and cooling was performed at a cooling rate of about 1 ° C./min until the temperature became 40 ° C. lower than the glass transition temperature of the (meth) acrylic resin. Then, the obtained stretched film was taken out from the constant temperature dryer, and the length, thickness and weight of the stretched film were measured, and the in-plane retardation Re of the stretched film was measured.
  • the length, thickness and weight of the stretched film were measured in the same manner as described above using four kinds of weights so that the stress was 1 N / mm 2 or less, and the film was stretched. In-plane retardation Re was measured.
  • nx is the refractive index in the slow axis direction in the plane of the film (direction showing the maximum refractive index in the film plane), and ny is the fast axis direction in the plane of the film (perpendicular to nx in the film plane).
  • is a stress (N / m 2 ) on stretching.
  • the obtained unstretched film was cut into 96 mm ⁇ 96 mm and stretched at a temperature of 157 ° C. at 240 mm / min using a sequential biaxial stretching machine (manufactured by Toyo Seiki Seisakusho, product number: X-6S). Biaxial stretching was sequentially performed so that the stretching ratio was doubled in the order of the machine direction (MD direction) and the transverse direction (TD direction).
  • MD direction machine direction
  • TD direction transverse direction
  • the stretched film obtained above was quickly taken out from the test apparatus and cooled to obtain an optical film having a thickness of 40 ⁇ m.
  • Table 1 shows the glass transition temperature of the (meth) acrylic resin as an index of heat resistance.
  • Haze and total light transmittance were measured using a turbidimeter [Nippon Denshoku Industries Co., Ltd., product number: NDH 5000].
  • the MIT fold resistance test number was determined by cutting an optical film into 15 mm length and 90 mm length according to JIS P8115, and using the obtained test piece, an MIT fold resistance test machine [ Measured by applying a load of 200 g in an atmosphere having a temperature of 23 ° C. and a relative humidity of 50% using a tester industry, product number: BE-201].
  • film impact strength was measured in accordance with ASTM D3420 in an atmosphere at a temperature of 23 ° C. and a relative humidity of 50% using a film impact tester [Tester Sangyo Co., Ltd., product number: BU-302]. .
  • Pencil Hardness According to JIS K5600-5-4 (1999), a pencil scratch hardness tester (manufactured by Yasuda Seiki Seisakusho Co., Ltd.) was used and measured at a load of 750 g.
  • Example 2 (A) Preparation of (meth) acrylic resin
  • a (meth) acrylic resin was obtained in the same manner as in Example 1 except that the reaction temperature of the autoclave was changed to 245 ° C.
  • the weight average molecular weight of the obtained (meth) acrylic resin was 100,000.
  • the (meth) acrylic resin obtained above has a repeating unit in the formula (I) wherein R 1 is a methyl group, R 2 is a hydrogen atom, and R 3 is a phenyl group. , R 4 is a hydrogen atom, R 5 is a methyl group, R 6 is a (meth) acrylic resin having a repeating unit having a methyl group and a glass transition temperature of 152 ° C.
  • the imidization ratio of the (meth) acrylic resin, the content of repeating units represented by the formula (II), and the stress optical coefficient (Cr) were examined in the same manner as in Example 1.
  • the imidation ratio of the (meth) acrylic resin was 20.9%
  • the content of the repeating unit represented by the formula (II) was 60.4% by weight
  • the stress optical coefficient (Cr) was 0.02 ⁇ 10 ⁇ 9 Pa ⁇ 1 .
  • Example 2 Production of optical film
  • the (meth) acrylic resin obtained above was used as the (meth) acrylic resin
  • the T-die temperature was 280 ° C
  • the roll temperature was 150 ° C
  • the stretching temperature was 167 ° C.
  • Example 3 (A) Preparation of (meth) acrylic resin (meth) acrylic resin in Example 1, except that the reaction temperature of the autoclave was changed to 247 ° C and the barrel temperature was changed to 270 ° C. Got.
  • the obtained (meth) acrylic resin had a weight average molecular weight of 90,000.
  • the (meth) acrylic resin obtained above has a repeating unit in the formula (I) wherein R 1 is a methyl group, R 2 is a hydrogen atom, and R 3 is a phenyl group. , R 4 is a hydrogen atom, R 5 is a methyl group, R 6 is a (meth) acrylic resin having a repeating unit having a methyl group and a glass transition temperature of 160 ° C.
  • the imidization ratio of the (meth) acrylic resin, the content of repeating units represented by the formula (II), and the stress optical coefficient (Cr) were examined in the same manner as in Example 1.
  • the imidation ratio of the (meth) acrylic resin was 23.9%
  • the content of the repeating unit represented by the formula (II) was 55.6% by weight
  • the stress optical coefficient (Cr) was 0.04 ⁇ 10 ⁇ 9 Pa ⁇ 1 .
  • Example 2 Production of optical film
  • the (meth) acrylic resin obtained above was used as the (meth) acrylic resin
  • the T-die temperature was 285 ° C
  • the roll temperature was 155 ° C
  • the stretching temperature was 285 ° C
  • An optical film having a thickness of 40 ⁇ m was obtained in the same manner as in Example 1 except that was changed to 175 ° C.
  • Example 4 Preparation of (meth) acrylic resin A (meth) acrylic resin was prepared in the same manner as in Example 1, except that the reaction temperature of the autoclave was changed to 250 ° C and the barrel temperature was changed to 270 ° C. Got. The obtained (meth) acrylic resin had a weight average molecular weight of 90,000.
  • the (meth) acrylic resin obtained above has a repeating unit in the formula (I) wherein R 1 is a methyl group, R 2 is a hydrogen atom, and R 3 is a phenyl group. , R 4 is a hydrogen atom, R 5 is a methyl group, R 6 is a (meth) acrylic resin having a repeating unit having a methyl group and a glass transition temperature of 167 ° C.
  • the imidization ratio of the (meth) acrylic resin, the content of repeating units represented by the formula (II), and the stress optical coefficient (Cr) were examined in the same manner as in Example 1.
  • the imidation ratio of the (meth) acrylic resin was 30.9%
  • the content of the repeating unit represented by the formula (II) was 45.5% by weight
  • the stress optical coefficient (Cr) was 0.05 ⁇ . 10 ⁇ 9 Pa ⁇ 1 .
  • Example 2 Production of optical film
  • the (meth) acrylic resin obtained above was used as the (meth) acrylic resin
  • the T-die temperature was 295 ° C
  • the roll temperature was 165 ° C
  • the stretching temperature An optical film having a thickness of 40 ⁇ m was obtained in the same manner as in Example 1 except that was changed to 182 ° C.
  • Example 5 (A) Preparation of (meth) acrylic resin 6,6 ′, 6 ′′-(1,3,5-) as an ultraviolet absorber with respect to 100 parts by weight of the (meth) acrylic resin obtained in Example 1 Triazine-2,4,6-triyl) tris (3-hexyloxy-2-methylphenol) [manufactured by ADEKA, trade name: ADK STAB (registered trademark) LA-F70], ultraviolet rays at a ratio of 0.66 parts by weight
  • the absorbent was added to the (meth) acrylic resin, kneaded at 260 ° C. using a twin screw extruder, and extruded to obtain transparent (meth) acrylic resin pellets.
  • the weight average molecular weight of the obtained (meth) acrylic resin was 100,000.
  • the (meth) acrylic resin obtained above has a repeating unit in the formula (I) wherein R 1 is a methyl group, R 2 is a hydrogen atom, and R 3 is a phenyl group. , R 4 is a hydrogen atom, R 5 is a methyl group, R 6 is a (meth) acrylic resin having a repeating unit having a methyl group and having a glass transition temperature of 142 ° C.
  • the imidization ratio of the (meth) acrylic resin, the content of repeating units represented by the formula (II), and the stress optical coefficient (Cr) were examined in the same manner as in Example 1.
  • the imidation ratio of the (meth) acrylic resin was 9.6%
  • the content of the repeating unit represented by the formula (II) was 82.1% by weight
  • the stress optical coefficient (Cr) was 0.03 ⁇ 10 ⁇ 9 Pa ⁇ 1 .
  • Example 1 An optical film having a thickness of 40 ⁇ m was used in the same manner as in Example 1 except that the (meth) acrylic resin obtained above was used as the (meth) acrylic resin. Got.
  • Example 6 Preparation of (meth) acrylic resin In a reaction kettle equipped with a stirrer, temperature sensor, cooling pipe and nitrogen gas introduction pipe, 79.4 parts by weight of methyl methacrylate, 20.6 parts by weight of methacrylic acid, polymerization solvent As a mixed solvent of 65.2 parts by weight of toluene and 16.3 parts by weight of methanol, and 0.05 parts by weight of an antioxidant (manufactured by ADEKA, trade name: ADK STAB 2112), n-dodecyl mercaptan as a chain transfer agent 0.2 part by weight was charged, and the temperature was raised to 80 ° C. while passing nitrogen gas through the reaction kettle.
  • ADEKA trade name: ADK STAB 2112
  • dimethyl-2,2′-azobis (2-methylpropionate) [manufactured by Wako Pure Chemical Industries, Ltd., trade name: V-601] is used as a polymerization initiator. 10 parts by weight is added to the reaction kettle, and dimethyl-2,2′-azobis (2-methylpropionate) [manufactured by Wako Pure Chemical Industries, Ltd., trade name: V-601] 0.20 part by weight was added dropwise to the reaction kettle over 2 hours, and solution polymerization was performed under reflux at about 80 to 85 ° C., and after completion of the addition of dimethyl-2,2′-azobis (2-methylpropionate), an additional 4 Aged over time.
  • the content of repeating units derived from methacrylic acid in the (meth) acrylic resin contained in the obtained polymer solution was 21.2% by weight. Moreover, the weight average molecular weight of the (meth) acrylic resin was 100,000.
  • the (meth) acrylic resin obtained above has a repeating unit in the formula (I) wherein R 1 is a methyl group, R 2 is a hydrogen atom, and R 3 is a phenyl group. , R 4 is a hydrogen atom, R 5 is a methyl group, R 6 is a methyl group, has a repeating unit, and has a glass transition temperature of 154 ° C. (meth) acrylic resin.
  • the imidization ratio of the (meth) acrylic resin, the content of repeating units represented by the formula (II), and the stress optical coefficient (Cr) were examined in the same manner as in Example 1.
  • the imidation ratio of the (meth) acrylic resin was 23.1%
  • the content of the repeating unit represented by the formula (II) was 56.9% by weight
  • the stress optical coefficient (Cr) was 0.04 ⁇ 10 ⁇ 9 Pa ⁇ 1 .
  • Example 2 Production of optical film
  • the (meth) acrylic resin obtained above was used as the (meth) acrylic resin
  • the T-die temperature was 285 ° C
  • the roll temperature was 150 ° C
  • the stretching temperature. was changed to 169 ° C.
  • an optical film having a thickness of 40 ⁇ m was obtained in the same manner as in Example 1.
  • Example 7 (A) Preparation of (meth) acrylic resin
  • the polymer solution obtained in Example 6 was subjected to a barrel temperature of 260 ° C., a rotation speed of 70 rpm, a degree of vacuum of 13.3 to 400 hPa (10 to 300 mmHg), and a rear vent number of 1. Introduced into a vent type screw twin screw extruder (hole diameter: 15 mm, L / D: 45) with a fore vent number of 2 at a processing speed of 300 g / h in terms of resin amount, and devolatilized in this extruder. By extrusion, transparent (meth) acrylic resin pellets were obtained.
  • the obtained (meth) acrylic resin had a weight average molecular weight of 100,000 and a glass transition temperature of 136 ° C.
  • the pellet obtained above is a vent type screw twin screw extruder (hole diameter: 15 mm, L / D) having a barrel temperature of 270 ° C., a rotation speed of 300 rpm, a degree of vacuum of 13.3 to 400 hPa (10 to 300 mmHg), and a single vent. : 45) was introduced from the hopper at a processing rate of 300 g / h in terms of resin amount, and aniline was injected from the hopper at a feeding rate of 277 g / h from the hopper, and extruded to give a transparent ( A pellet of (meth) acrylic resin was obtained.
  • the obtained (meth) acrylic resin had a weight average molecular weight of 90,000.
  • the (meth) acrylic resin obtained above has a repeating unit in the formula (I) wherein R 1 is a methyl group, R 2 is a hydrogen atom, and R 3 is a phenyl group. , R 4 is a hydrogen atom, R 5 is a methyl group, R 6 is a (meth) acrylic resin having a repeating unit having a methyl group and a glass transition temperature of 148 ° C.
  • the imidization ratio of the (meth) acrylic resin, the content of repeating units represented by the formula (II), and the stress optical coefficient (Cr) were examined in the same manner as in Example 1.
  • the imidation ratio of the (meth) acrylic resin was 16.8%
  • the content of the repeating unit represented by the formula (II) was 67.4% by weight
  • the stress optical coefficient (Cr) was 0.01 ⁇ 10 ⁇ 9 Pa ⁇ 1 .
  • Example 2 Production of optical film
  • the (meth) acrylic resin obtained above was used as the (meth) acrylic resin
  • the T-die temperature was 275 ° C
  • the roll temperature was 145 ° C
  • the stretching temperature was 163 ° C.
  • the reaction solution obtained above had a barrel temperature of 260 ° C., a rotation speed of 70 rpm, a degree of vacuum of 13.3 to 400 hPa (10 to 300 mmHg), a rear vent number of 1, and a forevent number of 2 Transparent resin by introducing into a vent type screw twin screw extruder (hole diameter: 15 mm, L / D: 45) at a processing rate of 300 g / h in terms of resin amount, devolatilizing and extruding in this extruder Pellets were obtained.
  • the resulting methyl methacrylate-styrene imide resin had a glass transition temperature of 143 ° C. and a weight average molecular weight of 90,000.
  • the imidization ratio and stress optical coefficient (Cr) of the methyl methacrylate-styrene imide resin obtained above were measured in the same manner as in Example 1.
  • the imidation ratio of the methyl methacrylate-styrene imide resin was 89.5%
  • the stress optical coefficient (Cr) was ⁇ 1.72 ⁇ 10 ⁇ 9 Pa ⁇ 1 .
  • the styrene content in the methyl methacrylate-styrene imide resin obtained above was measured based on the following method, the styrene content was 44.9% by weight.
  • the styrene content of the resin was determined by measuring the 1 H-NMR spectrum using an NMR measurement apparatus (manufactured by Varian, trade name: Unity Plus 400), and measuring the area of hydrogen atoms derived from the aromatic ring on the low magnetic field side and the high magnetic field side. Measurement was based on the area ratio of aliphatic hydrogen atoms.
  • Example 2 Production of optical film In Example 1, except that the methyl methacrylate-styrene imide resin obtained above was used in place of the (meth) acrylic resin and the stretching temperature was changed to 158 ° C. In the same manner as in Example 1, an optical film having a thickness of 40 ⁇ m was obtained.
  • Comparative Example 2 (A) Preparation of (meth) acrylic resin
  • methyl methacrylate-styrene copolymer was changed to methyl methacrylate-styrene copolymer [manufactured by Nippon Steel & Sumikin Chemical Co., Ltd., trade name: Estyrene MS700, weight average molecular weight: 130,000] and a methyl methacrylate-styrene imide resin was obtained in the same manner as in Comparative Example 1 except that the amount of the 40% methylamine-methanol solution was changed to 3.5 parts by weight.
  • the obtained methyl methacrylate-styrene imide resin had a weight average molecular weight of 90,000 and a glass transition temperature of 152 ° C.
  • the methyl methacrylate-styrene imide resin had an imidation ratio of 90.8% and a stress optical coefficient (Cr) of 0.09 ⁇ 10 ⁇ 9 Pa ⁇ 1 .
  • Comparative Example 3 (A) Preparation of (meth) acrylic resin
  • methyl methacrylate-styrene copolymer was changed to methyl methacrylate-styrene copolymer [manufactured by Nippon Steel & Sumikin Chemical Co., Ltd., trade name: Estyrene MS800, weight average molecular weight: 130,000] and a methyl methacrylate-styrene imide resin was obtained in the same manner as in Comparative Example 1 except that the amount of the 40% methylamine-methanol solution was changed to 4 parts by weight.
  • the resulting methyl methacrylate-styrene imide resin had a weight average molecular weight of 90,000 and a glass transition temperature of 160 ° C.
  • the imidation ratio of the methyl methacrylate-styrene imide resin was 92.6%, and the stress optical coefficient (Cr) was 0.93 ⁇ 10 ⁇ 9 Pa ⁇ 1 .
  • each of the optical films obtained in each example has good heat resistance, haze, total light transmittance, MIT folding resistance and impact strength, and in-plane retardation.
  • the thickness direction retardation is small, it has low birefringence, high surface hardness (pencil hardness), and excellent properties such as a small absolute value of the photoelastic coefficient.
  • Production Example 1 In a reaction kettle equipped with a stirrer, a temperature sensor, a cooling pipe and a nitrogen gas introduction pipe, 79.4 parts by weight of methyl methacrylate, 20.6 parts by weight of methacrylic acid, 90.0 parts by weight of toluene as a polymerization solvent and 22. A mixed solvent with 5 parts by weight and 0.05 parts by weight of an antioxidant (manufactured by ADEKA, trade name: ADK STAB 2112) were charged, and the temperature was raised to 73 ° C. while passing nitrogen gas into the reaction kettle.
  • an antioxidant manufactured by ADEKA, trade name: ADK STAB 2112
  • dimethyl-2,2′-azobis (2-methylpropionate) [manufactured by Wako Pure Chemical Industries, Ltd., trade name: V-601] is used as a polymerization initiator. 25 parts by weight was added to the reaction kettle, and dimethyl-2,2′-azobis (2-methylpropionate) [Wako Pure Chemical Industries, Ltd.] was added to a mixed solvent of 7.3 parts by weight of toluene and 1.8 parts by weight of methanol. (Trade name: V-601, manufactured by Kogyo Co., Ltd.) Solution polymerization was carried out under reflux at about 71 to 76 ° C. while adding 0.35 parts by weight of the solution dissolved in the reaction kettle over 2 hours. After completion of the dropwise addition of dimethyl-2,2′-azobis (2-methylpropionate), aging was carried out for an additional 4 hours.
  • the content of repeating units derived from methacrylic acid in the (meth) acrylic resin contained in the polymer solution obtained above was 20.6% by weight. Moreover, the weight average molecular weight of the (meth) acrylic resin was 110,000.
  • Vent type screw twin screw extruder having a barrel temperature of 290 ° C., a rotation speed of 70 rpm, a degree of vacuum of 13.3 to 400 hPa (10 to 300 mmHg), a rear vent number of 1, and a forevent number of 2 (Pore diameter: 15 mm, L / D: 45) is introduced at a processing rate of 300 g / h in terms of resin amount, devolatilized in this twin-screw extruder, and extruded with a residence time of about 0.9 minutes in the shaft. As a result, a transparent (meth) acrylic resin pellet was obtained.
  • the weight average molecular weight of the (meth) acrylic resin obtained above was 100,000, and the glass transition temperature was 131 ° C.
  • the anhydrous glutar oxidation rate of the (meth) acrylic resin obtained above was investigated based on the following method. As a result, the anhydrous (glutaric) oxidation rate of the obtained (meth) acrylic resin was 17.5%.
  • Anhydrous glutar oxidation rate (Meth) glutaric anhydride oxidation rate of the acrylic resin, the absorption derived from a carboxylic acid anhydride group in the vicinity of 1803cm -1, and the absorption derived from the ester carbonyl group in the vicinity of 1720 cm -1, imide carbonyl near 1680 cm -1
  • the anhydrous glutar oxidation rate was determined from the intensity ratio with the absorption derived from the group.
  • the anhydrous glutar oxidation rate is the ratio of carboxylic anhydride groups in all carbonyl groups.
  • Example 8 The pellet obtained in Production Example 1 has a barrel temperature of 290 ° C., a rotation speed of 300 rpm, a degree of vacuum of 13.3 to 400 hPa (10 to 300 mmHg), a vent type screw twin screw extruder having a single vent (hole diameter: 15 mm, L / D: 45) is introduced from the hopper at a processing rate of 420 g / h in terms of resin amount, and aniline is injected from the hopper after the hopper at a charging rate of 101 g / h. By extruding in about 1 minute, transparent (meth) acrylic resin pellets were obtained.
  • the weight average molecular weight of the (meth) acrylic resin obtained above was 90,000.
  • the (meth) acrylic resin includes a repeating unit in which R 1 is a methyl group, R 2 is a hydrogen atom, and R 3 is a phenyl group in the formula (I) and in the formula (II), R 4 is It was a (meth) acrylic resin which has a repeating unit which is a hydrogen atom, R 5 is a methyl group, R 6 is a methyl group, and has a glass transition temperature of 162 ° C.
  • the imidation ratio of the (meth) acrylic resin obtained above was 44.1%
  • the content of the repeating unit represented by the formula (II) was 37.3% by weight
  • the stress optical coefficient (Cr) was 0.08.
  • ⁇ 10 -9 Pa -1 content of the metal in the said (meth) acrylic-type resin was investigated based on the following method. As a result, the metal content in the obtained (meth) acrylic resin was 470 ppm.
  • Production Example 2 In a reaction kettle equipped with a stirrer, a temperature sensor, a cooling pipe and a nitrogen gas introduction pipe, 79.4 parts by weight of methyl methacrylate, 20.6 parts by weight of methacrylic acid, 90.0 parts by weight of toluene as a polymerization solvent and 22. A mixed solvent with 5 parts by weight and 0.05 parts by weight of an antioxidant (manufactured by ADEKA, trade name: ADK STAB 2112) were charged, and the temperature was raised to 73 ° C. while passing nitrogen gas into the reaction kettle.
  • an antioxidant manufactured by ADEKA, trade name: ADK STAB 2112
  • dimethyl-2,2′-azobis (2-methylpropionate) [manufactured by Wako Pure Chemical Industries, Ltd., trade name: V-601] is used as a polymerization initiator. 25 parts by weight was added to the reaction kettle, and dimethyl-2,2′-azobis (2-methylpropionate) [Wako Pure Chemical Industries, Ltd.] was added to a mixed solvent of 7.3 parts by weight of toluene and 1.8 parts by weight of methanol. (Trade name: V-601, manufactured by Kogyo Co., Ltd.) Solution polymerization was carried out under reflux at about 71 to 76 ° C. while adding 0.35 parts by weight of the solution dissolved in the reaction kettle over 2 hours. After completion of the dropwise addition of dimethyl-2,2′-azobis (2-methylpropionate), aging was carried out for an additional 4 hours.
  • the content of repeating units derived from methacrylic acid in the (meth) acrylic resin contained in the polymer solution obtained above was 20.6% by weight. Moreover, the weight average molecular weight of the (meth) acrylic resin was 110,000.
  • Vent type screw twin screw extruder having a barrel temperature of 280 ° C., a rotation speed of 70 rpm, a degree of vacuum of 13.3 to 400 hPa (10 to 300 mmHg), a rear vent number of 1, and a forevent number of 2 (Pore diameter: 15 mm, L / D: 45), introduced at a processing rate of 420 g / h in terms of resin amount, devolatilized in this twin-screw extruder, and extruded in a shaft residence time of about 3.2 minutes As a result, a transparent (meth) acrylic resin pellet was obtained.
  • the weight average molecular weight of the (meth) acrylic resin obtained above was 97,000, and the glass transition temperature was 131 ° C. Moreover, the anhydrous glutar oxidation rate of the (meth) acrylic resin was 16.3%.
  • Example 9 The pellet obtained in Production Example 2 was a vent type screw twin screw extruder (hole diameter: 15 mm, L) with a barrel temperature of 290 ° C., a rotation speed of 300 rpm, a degree of vacuum of 13.3 to 400 hPa (10 to 300 mmHg), and a single vent. / D: 45) is introduced from the hopper at a processing rate of 420 g / h in terms of resin amount, and aniline is injected from the hopper after the hopper at a charging rate of 101 g / h. By extruding in about 2 minutes, transparent (meth) acrylic resin pellets were obtained.
  • the weight average molecular weight of the (meth) acrylic resin obtained above was 89,000.
  • the (meth) acrylic resin includes a repeating unit in which R 1 is a methyl group, R 2 is a hydrogen atom, and R 3 is a phenyl group in the formula (I) and in the formula (II), R 4 is It was a (meth) acrylic resin having a repeating unit that is a hydrogen atom, R 5 is a methyl group, R 6 is a methyl group, and has a glass transition temperature of 167 ° C.
  • the imidation ratio of the (meth) acrylic resin obtained above was 47.2%, the content of the repeating unit represented by the formula (II) was 35.4% by weight, and the stress optical coefficient (Cr) was 0.11. ⁇ 10 -9 Pa -1
  • the metal content in the (meth) acrylic resin was 235 ppm.
  • Production Example 3 In a reaction kettle equipped with a stirrer, a temperature sensor, a cooling pipe and a nitrogen gas introduction pipe, 79.4 parts by weight of methyl methacrylate, 20.6 parts by weight of methacrylic acid, 90.0 parts by weight of toluene as a polymerization solvent and 22. A mixed solvent with 5 parts by weight and 0.05 parts by weight of an antioxidant (manufactured by ADEKA, trade name: ADK STAB 2112) were charged, and the temperature was raised to 73 ° C. while passing nitrogen gas into the reaction kettle.
  • an antioxidant manufactured by ADEKA, trade name: ADK STAB 2112
  • dimethyl-2,2′-azobis (2-methylpropionate) [manufactured by Wako Pure Chemical Industries, Ltd., trade name: V-601] is used as a polymerization initiator. 25 parts by weight was added to the reaction kettle, and dimethyl-2,2′-azobis (2-methylpropionate) [Wako Pure Chemical Industries, Ltd.] was added to a mixed solvent of 7.3 parts by weight of toluene and 1.8 parts by weight of methanol. (Trade name: V-601, manufactured by Kogyo Co., Ltd.) Solution polymerization was carried out under reflux at about 71 to 76 ° C. while adding 0.35 parts by weight of the solution dissolved in the reaction kettle over 2 hours. After completion of the dropwise addition of dimethyl-2,2′-azobis (2-methylpropionate), the mixture was further aged for 4 hours to obtain a polymer solution.
  • the content of repeating units derived from methacrylic acid in the (meth) acrylic resin contained in the polymer solution obtained above was 20.6% by weight. Moreover, the weight average molecular weight of the (meth) acrylic resin was 110,000.
  • Vent type screw twin screw extruder having a barrel temperature of 290 ° C., a rotation speed of 70 rpm, a degree of vacuum of 13.3 to 400 hPa (10 to 300 mmHg), a rear vent number of 1, and a forevent number of 2 (Pore diameter: 15 mm, L / D: 45) Introduced at a processing rate of 300 g / h in terms of resin amount, devolatilized in this extruder, and extruded in a shaft residence time of about 3.0 minutes A transparent (meth) acrylic resin pellet was obtained.
  • the weight average molecular weight of the (meth) acrylic resin obtained above was 100,000, and the glass transition temperature was 130 ° C. Moreover, the anhydrous glutar oxidation rate of the (meth) acrylic resin was 15.9%.
  • Example 10 The pellet obtained in Production Example 3 was a vent type screw twin screw extruder (hole diameter: 15 mm, L) with a barrel temperature of 290 ° C., a rotation speed of 300 rpm, a degree of vacuum of 13.3 to 400 hPa (10 to 300 mmHg), and a single vent. / D: 45) is introduced from the hopper at a treatment rate of 432 g / h in terms of resin amount, and aniline is injected from the hopper after the hopper at a feed rate of 104 g / h. By extruding in about 2 minutes, transparent (meth) acrylic resin pellets were obtained.
  • the weight average molecular weight of the (meth) acrylic resin obtained above was 92,000.
  • the (meth) acrylic resin includes a repeating unit in which R 1 is a methyl group, R 2 is a hydrogen atom, and R 3 is a phenyl group in the formula (I) and in the formula (II), R 4 is It was a (meth) acrylic resin having a repeating unit that is a hydrogen atom, R 5 is a methyl group, R 6 is a methyl group, and has a glass transition temperature of 161 ° C.
  • the imidation ratio of the (meth) acrylic resin obtained above was 42.0%, the content of the repeating unit represented by the formula (II) was 38.5% by weight, and the stress optical coefficient (Cr) was 0.07. ⁇ 10 -9 Pa -1
  • the metal content in the (meth) acrylic resin was 135 ppm.
  • Example 2 Using the pellets obtained in Examples 8 to 10, in Example 1, except that the T die temperature, roll temperature, and stretching temperature were changed as shown in Table 2, the thickness was 40 ⁇ m. An optical film was obtained.
  • the optical films obtained in each Example all have good heat resistance, haze, total light transmittance, MIT folding resistance and impact strength, and in-plane retardation.
  • the thickness direction retardation is small, it has low birefringence, high surface hardness (pencil hardness), and excellent properties such as a small absolute value of the photoelastic coefficient.
  • Production Example 4 In a reaction kettle equipped with a stirrer, a temperature sensor, a cooling pipe and a nitrogen gas introduction pipe, 79.4 parts by weight of methyl methacrylate, 20.6 parts by weight of methacrylic acid, 90.0 parts by weight of toluene as a polymerization solvent and 22. A mixed solvent with 5 parts by weight and 0.05 parts by weight of an antioxidant (manufactured by ADEKA, trade name: ADK STAB 2112) were charged, and the temperature was raised to 73 ° C. while passing nitrogen gas into the reaction kettle.
  • an antioxidant manufactured by ADEKA, trade name: ADK STAB 2112
  • dimethyl-2,2′-azobis (2-methylpropionate) [manufactured by Wako Pure Chemical Industries, Ltd., trade name: V-601] is used as a polymerization initiator. 25 parts by weight was added to the reaction kettle, and dimethyl-2,2′-azobis (2-methylpropionate) [Wako Pure Chemical Industries, Ltd.] was added to a mixed solvent of 7.3 parts by weight of toluene and 1.8 parts by weight of methanol. (Trade name: V-601, manufactured by Kogyo Co., Ltd.) Solution polymerization was carried out under reflux at about 71 to 76 ° C. while adding 0.35 parts by weight of the solution dissolved in the reaction kettle over 2 hours. After completion of the dropwise addition of dimethyl-2,2′-azobis (2-methylpropionate), the mixture was further aged for 4 hours to obtain a polymer solution.
  • the content of repeating units derived from methacrylic acid in the (meth) acrylic resin contained in the polymer solution obtained above was 20.6% by weight. Moreover, the weight average molecular weight of the (meth) acrylic resin was 110,000.
  • Vent type screw twin screw extruder having a barrel temperature of 290 ° C., a rotational speed of 238 rpm, a degree of vacuum of 13.3 to 400 hPa (10 to 300 mmHg), a rear vent number of 1, and a forevent number of 2 (Pore diameter: 15 mm, L / D: 45) Introduced at a processing rate of 300 g / h in terms of resin amount, devolatilized in this extruder, and extruded with an in-shaft residence time of about 0.9 minutes. A transparent (meth) acrylic resin pellet was obtained.
  • the weight average molecular weight of the (meth) acrylic resin obtained above was 100,000, and the glass transition temperature was 131 ° C.
  • the pellet obtained above was a barrel type screw twin screw extruder (hole diameter: 15 mm, bore temperature: 290 ° C., rotation speed: 300 rpm, degree of vacuum: 13.3 to 400 hPa (10 to 300 mmHg), one vent number) L / D: 45) is introduced from the hopper at a processing rate of 420 g / h in terms of resin amount, and aniline is injected from the hopper after the hopper at a charging rate of 162 g / h. By extruding in about 6 minutes, transparent (meth) acrylic resin pellets were obtained. The weight average molecular weight of the (meth) acrylic resin obtained above was 94,000.
  • the (meth) acrylic resin obtained above has a repeating unit in the formula (I) wherein R 1 is a methyl group, R 2 is a hydrogen atom, and R 3 is a phenyl group. , R 4 is a hydrogen atom, R 5 is a methyl group, R 6 is a (meth) acrylic resin having a repeating unit having a methyl group and a glass transition temperature of 161 ° C.
  • the imidation ratio of the (meth) acrylic resin obtained above was 44.1%, the content of the repeating unit represented by the formula (II) was 37.3% by weight, and the stress optical coefficient (Cr) was 0.12 ⁇ 10 ⁇ 9 Pa ⁇ 1 .
  • the acid value of the (meth) acrylic resin was 1.27 mmol / g.
  • Example 11 The pellet obtained in Production Example 4 has a barrel temperature of 260 ° C., a rotation speed of 300 rpm, a degree of vacuum of 13.3 to 400 hPa (10 to 300 mmHg), a vent type screw twin screw extruder having a single vent (hole diameter: 15 mm, L / D: 45) is introduced from the hopper at a processing rate of 420 g / h in terms of resin amount, and 16.0 parts by weight of dimethyl carbonate (DBC) and diazabicycloundecene (DBU) with respect to the raw material resin after the hopper. ) A mixed liquid of 2.0 parts by weight was injected with a liquid pump, and extruded with an in-shaft residence time of about 5.2 minutes to obtain transparent (meth) acrylic resin pellets.
  • DDC dimethyl carbonate
  • DBU diazabicycloundecene
  • the (meth) acrylic resin obtained above had a weight average molecular weight of 80,000.
  • the (meth) acrylic resin includes a repeating unit in which R 1 is a methyl group, R 2 is a hydrogen atom, and R 3 is a phenyl group in the formula (I) and in the formula (II), R 4 is It was a (meth) acrylic resin having a hydrogen atom, a repeating unit in which R 5 is a methyl group, R 6 is a methyl group, and a glass transition temperature of 148 ° C.
  • the imidation ratio of the (meth) acrylic resin obtained above was 47.9%, the content of the repeating unit represented by the formula (II) was 59.1% by weight, and the stress optical coefficient (Cr) was ⁇ 0.18. ⁇ 10 -9 Pa -1 Moreover, the acid value of the (meth) acrylic resin was 0.13 mmol / g.
  • the pellet obtained above is put into a single screw extruder (hole diameter: 20 mm, L / D: 25), the T die temperature is adjusted to 275 ° C., and melt extrusion is performed from a coat hanger type T die (width 150 mm). And was discharged onto a cooling roll having a roll temperature of 145 ° C. to produce an unstretched film having a thickness of 160 ⁇ m.
  • the unstretched film obtained above was cut into 96 mm ⁇ 96 mm, and using a sequential biaxial stretching machine (manufactured by Toyo Seiki Seisakusho, product number: X-6S), a stretching speed of 240 mm / min at a temperature of 168 ° C. Then, biaxial stretching was sequentially performed so that the stretching ratio was doubled in the order of the machine direction (MD direction) and the transverse direction (TD direction). After biaxial stretching of the unstretched film, the obtained stretched film was quickly taken out from the test apparatus and cooled to obtain an optical film having a thickness of 40 ⁇ m.
  • the in-plane retardation and thickness direction retardation of the obtained optical film were 4.5 nm and ⁇ 13.3 nm, respectively.
  • the measuring method of a water absorption rate and a dimensional change rate is as follows. Also in the following examples and comparative examples, the water absorption rate and the dimensional change rate were examined based on the following method.
  • the unstretched film obtained above is absorbed in water by storing it in a thermostatic bath at 85 ° C. and a relative humidity of 85%, taken out from the thermostatic bath after 250 hours, and the mass of the unstretched film after water absorption (Y ) Was measured.
  • the sample was stored in a thermostat at 85 ° C. and a relative humidity of 85%, taken out of the thermostat after 250 hours, and the lengths of the four pieces of the sample (Lb1, Lb2, Lb3, Lb4) were measured again. .
  • La represents the length of one side before the test
  • Lb represents the length of one piece after the test
  • Production Example 5 In a reaction kettle equipped with a stirrer, a temperature sensor, a cooling pipe and a nitrogen gas introduction pipe, 79.4 parts by weight of methyl methacrylate, 20.6 parts by weight of methacrylic acid, 90.0 parts by weight of toluene as a polymerization solvent and 22. A mixed solvent with 5 parts by weight and 0.05 parts by weight of an antioxidant (manufactured by ADEKA, trade name: ADK STAB 2112) were charged, and the temperature was raised to 73 ° C. while passing nitrogen gas into the reaction kettle.
  • an antioxidant manufactured by ADEKA, trade name: ADK STAB 2112
  • dimethyl-2,2′-azobis (2-methylpropionate) [manufactured by Wako Pure Chemical Industries, Ltd., trade name: V-601] is used as a polymerization initiator. 25 parts by weight was added to the reaction kettle, and dimethyl-2,2′-azobis (2-methylpropionate) [Wako Pure Chemical Industries, Ltd.] was added to a mixed solvent of 7.3 parts by weight of toluene and 1.8 parts by weight of methanol. (Trade name: V-601, manufactured by Kogyo Co., Ltd.) Solution polymerization was carried out under reflux at about 71 to 76 ° C. while adding 0.35 parts by weight of the solution dissolved in the reaction kettle over 2 hours. After completion of the dropwise addition of dimethyl-2,2′-azobis (2-methylpropionate), aging was carried out for an additional 4 hours.
  • the content of repeating units derived from methacrylic acid in the (meth) acrylic resin contained in the polymer solution obtained above was 20.6% by weight. Moreover, the weight average molecular weight of the (meth) acrylic resin was 110,000.
  • Vent type screw twin screw extruder having a barrel temperature of 290 ° C., a rotational speed of 238 rpm, a reduced pressure of 13.3 to 400 hPa (10 to 300 mmHg), a rear vent number of 1, and a forevent number of 2 (Pore diameter: 15 mm, L / D: 45) Introduced at a processing speed of 480 g / h in terms of resin amount, devolatilized in this extruder, and extruded with a shaft residence time of about 3.7 minutes A transparent (meth) acrylic resin pellet was obtained.
  • the weight average molecular weight of the (meth) acrylic resin obtained above was 102,000, and the glass transition temperature was 130 ° C.
  • the pellet obtained above was a barrel type screw twin screw extruder (hole diameter: 15 mm, bore temperature: 290 ° C., rotation speed: 300 rpm, degree of vacuum: 13.3 to 400 hPa (10 to 300 mmHg), one vent number) L / D: 45) was introduced from the hopper at a treatment rate of 432 g / h in terms of resin amount, and aniline was injected from the hopper after the hopper at a feed rate of 250 g / h, and the residence time in the shaft was 5 By extruding in about 5 minutes, transparent (meth) acrylic resin pellets were obtained.
  • the weight average molecular weight of the (meth) acrylic resin obtained above was 97,000.
  • the (meth) acrylic resin obtained above has a repeating unit in the formula (I) wherein R 1 is a methyl group, R 2 is a hydrogen atom, and R 3 is a phenyl group. , R 4 is a hydrogen atom, R 5 is a methyl group, R 6 is a methyl group, and a (meth) acrylic resin having a glass transition temperature of 171 ° C.
  • the imidation ratio of the (meth) acrylic resin obtained above was 52.6%
  • the content of the repeating unit represented by the formula (II) was 29.5% by weight
  • the stress optical coefficient (Cr) was 0.00. It was 23 ⁇ 10 ⁇ 9 Pa ⁇ 1 .
  • the acid value of the (meth) acrylic resin was 1.58 mmol / g.
  • Example 12 The pellet obtained in Production Example 5 has a barrel temperature of 260 ° C., a rotation speed of 300 rpm, a degree of vacuum of 13.3 to 400 hPa (10 to 300 mmHg), a vent type screw twin screw extruder having a single vent (hole diameter: 15 mm, L / D: 45) is introduced from the hopper at a processing rate of 420 g / h in terms of resin amount, and 16.0 parts by weight of dimethyl carbonate (DBC) and diazabicycloundecene (DBU) with respect to the raw material resin after the hopper.
  • DBC dimethyl carbonate
  • DBU diazabicycloundecene
  • the (meth) acrylic resin obtained above has a repeating unit in the formula (I) wherein R 1 is a methyl group, R 2 is a hydrogen atom, and R 3 is a phenyl group. , R 4 is a hydrogen atom, R 5 is a methyl group, R 6 is a (meth) acrylic resin having a repeating unit having a methyl group and a glass transition temperature of 155 ° C.
  • the imidation ratio of the (meth) acrylic resin obtained above was 50.1%, the content of the repeating unit represented by the formula (II) was 44.2% by weight, and the stress optical coefficient (Cr) was ⁇ 0.05. ⁇ 10 -9 Pa -1 Moreover, the acid value of the (meth) acrylic resin was 0.77 mmol / g.
  • the pellet obtained above is put into a single screw extruder (hole diameter: 20 mm, L / D: 25), the T die temperature is adjusted to 280 ° C., and melt extrusion is performed from a coat hanger type T die (width 150 mm). Then, the film was discharged onto a cooling roll having a roll temperature of 150 ° C. to produce an unstretched film having a thickness of 160 ⁇ m.
  • the unstretched film obtained above was cut into 96 mm ⁇ 96 mm, and was sequentially 240 mm / min at a temperature of 175 ° C. using a biaxial stretching machine (manufactured by Toyo Seiki Seisakusho, product number: X-6S). Biaxial stretching was performed sequentially so that the stretching ratio was doubled in the order of the machine direction (MD direction) and the transverse direction (TD direction) at the stretching speed of.
  • MD direction machine direction
  • TD direction transverse direction
  • the in-plane retardation and the thickness direction retardation of the optical film obtained above were 0.4 nm and ⁇ 2.7 nm, respectively.
  • Production Example 6 In a reaction kettle equipped with a stirrer, a temperature sensor, a cooling pipe and a nitrogen gas introduction pipe, 79.4 parts by weight of methyl methacrylate, 20.6 parts by weight of methacrylic acid, 90.0 parts by weight of toluene as a polymerization solvent and 22. A mixed solvent with 5 parts by weight and 0.05 parts by weight of an antioxidant (manufactured by ADEKA, trade name: ADK STAB 2112) were charged, and the temperature was raised to 73 ° C. while passing nitrogen gas into the reaction kettle.
  • an antioxidant manufactured by ADEKA, trade name: ADK STAB 2112
  • dimethyl-2,2′-azobis (2-methylpropionate) [manufactured by Wako Pure Chemical Industries, Ltd., trade name: V-601] is used as a polymerization initiator. 25 parts by weight was added to the reaction kettle, and dimethyl-2,2′-azobis (2-methylpropionate) [Wako Pure Chemical Industries, Ltd.] was added to a mixed solvent of 7.3 parts by weight of toluene and 1.8 parts by weight of methanol. (Trade name: V-601, manufactured by Kogyo Co., Ltd.) Solution polymerization was carried out under reflux at about 71 to 76 ° C. while adding 0.35 parts by weight of the solution dissolved in the reaction kettle over 2 hours. After completion of the dropwise addition of dimethyl-2,2′-azobis (2-methylpropionate), aging was carried out for an additional 4 hours.
  • the content of repeating units derived from methacrylic acid in the (meth) acrylic resin contained in the polymer solution obtained above was 20.6% by weight. Moreover, the weight average molecular weight of the (meth) acrylic resin was 110,000.
  • the polymerization solution obtained above was subjected to a vent type screw having a barrel temperature of 280 ° C., a rotation speed of 238 rpm, a degree of vacuum of 13.3 to 400 hPa (10 to 300 mmHg), a rear vent number of 1, and a forevent number of 2. It is introduced into a shaft extruder (hole diameter: 15 mm, L / D: 45) at a processing speed of 624 g / h in terms of resin amount, devolatilized in this extruder, and pushed in a shaft residence time of about 2.6 minutes. As a result, a transparent (meth) acrylic resin pellet was obtained.
  • the weight average molecular weight of the (meth) acrylic resin obtained above was 98,000, and the glass transition temperature was 130 ° C.
  • the pellet obtained above was a barrel type screw twin screw extruder (hole diameter: 15 mm, bore temperature: 290 ° C., rotation speed: 300 rpm, degree of vacuum: 13.3 to 400 hPa (10 to 300 mmHg), one vent number) L / D: 45) was introduced from the hopper at a processing rate of 420 g / h in terms of resin amount, and aniline was injected from the hopper after the hopper at a charging rate of 202 g / h. By extruding in about 5 minutes, transparent (meth) acrylic resin pellets were obtained.
  • the weight average molecular weight of the (meth) acrylic resin obtained above was 92,000.
  • the (meth) acrylic resin obtained above has a repeating unit in the formula (I) wherein R 1 is a methyl group, R 2 is a hydrogen atom, and R 3 is a phenyl group. , R 4 is a hydrogen atom, R 5 is a methyl group, R 6 is a (meth) acrylic resin having a repeating unit having a methyl group and a glass transition temperature of 178 ° C.
  • the imidation ratio of the (meth) acrylic resin obtained above was 54.6%, the content of the repeating unit represented by the formula (II) was 26.2% by weight, and the stress optical coefficient (Cr) was 0.20 ⁇ 10 ⁇ 9 Pa ⁇ 1 . Moreover, the acid value of the (meth) acrylic resin was 1.40 mmol / g.
  • Example 13 The pellet obtained in Production Example 6 was a vent type screw twin screw extruder (hole diameter: 15 mm, L) with a barrel temperature of 290 ° C., a rotation speed of 300 rpm, a degree of vacuum of 13.3 to 400 hPa (10 to 300 mmHg), and a single vent. / D: 45) is introduced from the hopper at a processing rate of 420 g / h in terms of resin amount, and 16.0 parts by weight of dimethyl carbonate (DBC) and diazabicycloundecene (DBU) with respect to the raw material resin after the hopper. ) A mixed liquid of 2.0 parts by weight was injected with a liquid pump, and extruded with an in-shaft residence time of about 5.2 minutes to obtain transparent (meth) acrylic resin pellets.
  • DBC dimethyl carbonate
  • DBU diazabicycloundecene
  • the weight average molecular weight of the (meth) acrylic resin obtained above was 83,000.
  • the (meth) acrylic resin obtained above has a repeating unit in the formula (I) wherein R 1 is a methyl group, R 2 is a hydrogen atom, and R 3 is a phenyl group. , R 4 is a hydrogen atom, R 5 is a methyl group, R 6 is a (meth) acrylic resin having a repeating unit having a methyl group and a glass transition temperature of 158 ° C.
  • the imidation ratio of the (meth) acrylic resin obtained above was 52.2%, the content of the repeating unit represented by the formula (II) was 43.5% by weight, and the stress optical coefficient (Cr) was ⁇ 0.12. ⁇ 10 -9 Pa -1
  • the acid value of the (meth) acrylic resin was 0.48 mmol / g.
  • the pellet obtained above is put into a single screw extruder (hole diameter: 20 mm, L / D: 25), the T die temperature is adjusted to 285 ° C., and melt extrusion is performed from a coat hanger type T die (width 150 mm). And was discharged onto a cooling roll having a roll temperature of 155 ° C. to produce an unstretched film having a thickness of 160 ⁇ m.
  • the unstretched film obtained above was cut out to 96 mm ⁇ 96 mm, and was successively 240 mm / min at a temperature of 178 ° C. using a biaxial stretching machine (manufactured by Toyo Seiki Seisakusho, product number: X-6S). Biaxial stretching was performed sequentially so that the stretching ratio was doubled in the order of the machine direction (MD direction) and the transverse direction (TD direction) at the stretching speed of.
  • MD direction machine direction
  • TD direction transverse direction
  • the in-plane retardation and the thickness direction retardation of the optical film obtained above were 2.1 nm and ⁇ 8.0 nm, respectively.
  • each of the optical films obtained in each Example is excellent in that the water absorption of the unstretched film is low and the thickness direction retardation change value and the dimensional change rate of the stretched film are small. It can be seen that these have the properties.
  • the optical films obtained in each example all have good heat resistance, haze, total light transmittance, MIT folding resistance and impact strength, and in-plane retardation.
  • the thickness direction retardation is small, it has low birefringence, high surface hardness (pencil hardness), and excellent properties such as a small absolute value of the photoelastic coefficient.
  • Example 14 In a reaction kettle equipped with a stirrer, temperature sensor, cooling pipe and nitrogen gas introduction pipe, 70 parts by weight of ethyl methacrylate, 30 parts by weight of methacrylic acid, 78.8 parts by weight of toluene as a polymerization solvent and 33.8 parts by weight of methanol A mixed solvent and an antioxidant (manufactured by ADEKA, trade name: ADK STAB 2112) were added in an amount of 0.05 part by weight, and the temperature was raised to 73 ° C. while passing nitrogen gas through the reaction kettle.
  • ADEKA trade name: ADK STAB 2112
  • dimethyl-2,2′-azobis (2-methylpropionate) [manufactured by Wako Pure Chemical Industries, Ltd., trade name: V-601] is used as a polymerization initiator. 25 parts by weight was added to the reaction kettle, and dimethyl-2,2′-azobis (2-methylpropionate) [Wako Pure Chemical Industries, Ltd.] was added to a mixed solvent of 6.4 parts by weight of toluene and 2.7 parts by weight of methanol. (Trade name: V-601, manufactured by Kogyo Co., Ltd.) Solution polymerization was carried out under reflux at about 71 to 76 ° C. while adding 0.35 parts by weight of the solution dissolved in the reaction kettle over 2 hours. After completion of the dropwise addition of dimethyl-2,2′-azobis (2-methylpropionate), aging was carried out for an additional 4 hours.
  • the content of repeating units derived from methacrylic acid in the (meth) acrylic resin contained in the polymer solution obtained above was 30.2% by weight. Moreover, the weight average molecular weight of the (meth) acrylic resin was 122,000.
  • Vent type screw twin screw extruder having a barrel temperature of 290 ° C., a rotation speed of 160 rpm, a degree of vacuum of 13.3 to 400 hPa (10 to 300 mmHg), a rear vent number of 1, and a forevent number of 2 (Pore diameter: 15 mm, L / D: 45) Introduced at a processing rate of 420 g / h in terms of resin amount, devolatilized in this extruder, and extruded in a shaft residence time of about 3.6 minutes. A transparent (meth) acrylic resin pellet was obtained.
  • the weight average molecular weight of the (meth) acrylic resin obtained above was 113,000, and the glass transition temperature was 109 ° C.
  • the pellet obtained in the above was a barrel type screw twin screw extruder (hole diameter: 15 mm, bore temperature: 290 ° C., rotation speed: 300 rpm, reduced pressure: 13.3 to 400 hPa (10 to 300 mmHg), single vent number) L / D: 45) was introduced from the hopper at a processing rate of 420 g / h in terms of resin amount, and aniline was injected from the hopper after the hopper at a charging rate of 202 g / h. By extruding in about 2 minutes, transparent (meth) acrylic resin pellets were obtained.
  • the weight average molecular weight of the (meth) acrylic resin obtained above was 10.11,000.
  • the (meth) acrylic resin obtained above has a repeating unit in the formula (I) wherein R 1 is a methyl group, R 2 is a hydrogen atom, and R 3 is a phenyl group. , R 4 is a hydrogen atom, R 5 is a methyl group, R 6 is a (meth) acrylic resin having a repeating unit of an ethyl group and a glass transition temperature of 168 ° C.
  • the imidation ratio of the (meth) acrylic resin obtained above was 54.6%, the content of the repeating unit represented by the formula (II) was 26.0% by weight, and the stress optical coefficient (Cr) was 0.02 ⁇ 10 ⁇ 9 Pa ⁇ 1 .
  • the acid value of the (meth) acrylic resin was 0.88 mmol / g.
  • the pellet obtained above is put into a single screw extruder (hole diameter: 20 mm, L / D: 25), the T die temperature is adjusted to 290 ° C., and melt extrusion is performed from a coat hanger type T die (width 150 mm). And was discharged onto a cooling roll having a roll temperature of 163 ° C. to produce an unstretched film having a thickness of 160 ⁇ m.
  • the unstretched film obtained above was cut out into 96 mm ⁇ 96 mm, and successively 240 mm / min at a temperature of 188 ° C. using a biaxial stretching machine (manufactured by Toyo Seiki Seisakusho, product number: X-6S). Biaxial stretching was performed sequentially so that the stretching ratio was doubled in the order of the machine direction (MD direction) and the transverse direction (TD direction) at the stretching speed of.
  • MD direction machine direction
  • TD direction transverse direction
  • the in-plane retardation and the thickness direction retardation of the optical film obtained above were 0.4 nm and 1.4 nm, respectively.
  • Example 15 In a reaction kettle equipped with a stirrer, a temperature sensor, a cooling pipe and a nitrogen gas introduction pipe, 60 parts by weight of n-butyl methacrylate, 40 parts by weight of methacrylic acid, 67.5 parts by weight of toluene as a polymerization solvent and 45 parts by weight of methanol A mixed solvent and an antioxidant (manufactured by ADEKA, trade name: ADK STAB 2112) were added in an amount of 0.05 part by weight, and the temperature was raised to 73 ° C. while passing nitrogen gas through the reaction kettle.
  • ADEKA trade name: ADK STAB 2112
  • dimethyl-2,2′-azobis (2-methylpropionate) [manufactured by Wako Pure Chemical Industries, Ltd., trade name: V-601] is used as a polymerization initiator. 25 parts by weight was added to the reaction kettle, and dimethyl-2,2′-azobis (2-methylpropionate) [Wako Pure Chemical Industries, Ltd.] was added to a mixed solvent of 5.5 parts by weight of toluene and 3.6 parts by weight of methanol. (Trade name: V-601, manufactured by Kogyo Co., Ltd.) Solution polymerization was carried out under reflux at about 71 to 76 ° C. while adding 0.35 parts by weight of the solution dissolved in the reaction kettle over 2 hours. After completion of the dropwise addition of dimethyl-2,2′-azobis (2-methylpropionate), aging was performed for another 5 hours.
  • the content of repeating units derived from methacrylic acid in the (meth) acrylic resin contained in the polymer solution obtained above was 40.1% by weight. Moreover, the weight average molecular weight of the (meth) acrylic resin was 145,000.
  • the polymer solution obtained above was subjected to a vent type screw having a barrel temperature of 290 ° C., a rotation speed of 70 rpm, a degree of vacuum of 13.3 to 400 hPa (10 to 300 mmHg), a rear vent number of 1, and a forevent number of 2. It is introduced into a shaft extruder (hole diameter: 15 mm, L / D: 45) at a processing rate of 420 g / h in terms of resin amount, devolatilized in this extruder, and pushed in a shaft residence time of about 3.6 minutes. As a result, a transparent (meth) acrylic resin pellet was obtained.
  • the weight average molecular weight of the (meth) acrylic resin obtained above was 1280, and the glass transition temperature was 98 ° C.
  • the pellet obtained above was a barrel type screw twin screw extruder (hole diameter: 15 mm, bore temperature: 290 ° C., rotation speed: 300 rpm, degree of vacuum: 13.3 to 400 hPa (10 to 300 mmHg), one vent number) L / D: 45) is introduced from the hopper at a processing rate of 456 g / h in terms of resin amount, and aniline is injected from the hopper after the hopper at a feed rate of 378 g / h, and the residence time in the shaft is 5 By extruding in about 2 minutes, transparent (meth) acrylic resin pellets were obtained.
  • the weight average molecular weight of the (meth) acrylic resin obtained above was 107,000.
  • the (meth) acrylic resin obtained above has a repeating unit in the formula (I) wherein R 1 is a methyl group, R 2 is a hydrogen atom, and R 3 is a phenyl group. , R 4 is a hydrogen atom, R 5 is a methyl group, R 6 is a (meth) acrylic resin having a repeating unit of an n-butyl group and having a glass transition temperature of 162 ° C.
  • the imidation ratio of the (meth) acrylic resin obtained above was 61.8%, the content of the repeating unit represented by the formula (II) was 22.6% by weight, and the stress optical coefficient (Cr) was 0.09 ⁇ 10 ⁇ 9 Pa ⁇ 1 .
  • the acid value of the (meth) acrylic resin was 0.92 mmol / g.
  • the pellet obtained above is put into a single screw extruder (hole diameter: 20 mm, L / D: 25), the T die temperature is adjusted to 285 ° C., and melt extrusion is performed from a coat hanger type T die (width 150 mm). And was discharged onto a cooling roll having a roll temperature of 155 ° C. to produce an unstretched film having a thickness of 160 ⁇ m.
  • the unstretched film obtained above was cut out to 96 mm ⁇ 96 mm, and successively 240 mm / min at a temperature of 182 ° C. using a biaxial stretching machine (manufactured by Toyo Seiki Seisakusho, product number: X-6S). Biaxial stretching was performed sequentially so that the stretching ratio was doubled in the order of the machine direction (MD direction) and the transverse direction (TD direction) at the stretching speed of.
  • MD direction machine direction
  • TD direction transverse direction
  • the in-plane retardation and the thickness direction retardation of the optical film obtained above were 1.2 nm and 6.1 nm, respectively.
  • each of the optical films obtained in each Example is excellent in that the water absorption rate of the unstretched film is low and the thickness direction retardation change value and the dimensional change rate of the stretched film are small. It can be seen that these have the properties.
  • the optical films obtained in each example all have good heat resistance, haze, total light transmittance, MIT folding resistance and impact strength, and in-plane retardation.
  • the thickness direction retardation is small, it has low birefringence, high surface hardness (pencil hardness), and excellent properties such as a small absolute value of the photoelastic coefficient.

Abstract

A (meth)acrylic resin comprising a (meth)acrylic resin, wherein the (meth)acrylic resin has a repeating unit represented by formula (I) (wherein R1 and R2 independently represent a hydrogen atom or an alkyl group having 1 to 8 carbon atoms; and R3 represents a ring structure) and a repeating unit represented by formula (II) (wherein R4 and R5 independently represent a hydrogen atom or an alkyl group having 1 to 8 carbon atoms; and R6 represents an alkyl group having 1 to 18 carbon atoms, a cycloalkyl group having 3 to 12 carbon atoms, or an aryl group having 6 to 10 carbon atoms).

Description

(メタ)アクリル系樹脂(Meth) acrylic resin
 本発明は、(メタ)アクリル系樹脂に関する。さらに詳しくは、本発明は、例えば、VD、CD、DVD、MD、LDなどの光ディスクの基板の保護フィルム、LCDなどの液晶表示装置などの画像表示装置に備えられている偏光板に用いられる偏光子保護フィルムなどの光学用保護フィルム、有機ELディスプレイ(OLED)に用いられる反射防止フィルム、ITO層などの透明導電層が形成された透明導電性フィルムなどに代表される光学フィルム、前記光学フィルムが搭載された画像表示装置、および前記光学フィルムの原料として好適に使用することができる(メタ)アクリル系樹脂に関する。 The present invention relates to a (meth) acrylic resin. More specifically, the present invention relates to polarized light used in a polarizing plate provided in an image display device such as a protective film for a substrate of an optical disk such as VD, CD, DVD, MD, and LD, and a liquid crystal display device such as an LCD. Optical films represented by optical protective films such as child protective films, antireflection films used in organic EL displays (OLEDs), transparent conductive films formed with transparent conductive layers such as ITO layers, and the like. The present invention relates to a mounted image display device and a (meth) acrylic resin that can be suitably used as a raw material for the optical film.
 近年、画像表示装置には、画像の鮮明度の向上の要望により、高度な光学特性を有する光学材料の開発が求められている。高度な光学特性の1つとして複屈折が小さいことが要求されている。一般に、光学材料に用いられる高分子化合物は、その分子の主鎖方向の屈折率と当該主鎖方向に対して垂直方向の屈折率とが異なるため、複屈折が生じる。複屈折が小さい光学フィルム用高分子材料として、トリアセチルセルロースなどのセルロース系樹脂が提案されている(例えば、特許文献1参照)。 In recent years, the development of optical materials having high optical properties has been demanded for image display devices due to the demand for improvement in image clarity. As one of the advanced optical characteristics, low birefringence is required. In general, a polymer compound used for an optical material has birefringence because the refractive index in the main chain direction of the molecule is different from the refractive index in the direction perpendicular to the main chain direction. As a polymer material for an optical film having a small birefringence, a cellulose-based resin such as triacetyl cellulose has been proposed (for example, see Patent Document 1).
 しかし、セルロース系樹脂からなる光学フィルムは、斜め方向の入射光に対して位相差が生じ、当該斜め方向の入射光に対する位相差は、大型の液晶ディスプレイでは、視野角特性に悪影響を及ぼすという欠点を有する。 However, an optical film made of a cellulose-based resin produces a phase difference with respect to obliquely incident light, and the phase difference with respect to the obliquely incident light adversely affects viewing angle characteristics in a large liquid crystal display. Have
 一方、成形加工性に優れ、表面硬度が高く、高光線透過率、低複屈折および低波長依存性を有する光学材料として、旧来からポリメチルメタクリレートが提案されている(例えば、特許文献2参照)。しかし、ポリメチルメタクリレートは、ガラス転移温度(Tg)が100℃程度と低いため耐熱性に劣ることから、耐熱性が求められる用途、例えば、画像表示装置に使用することが困難とされている。 On the other hand, polymethyl methacrylate has been conventionally proposed as an optical material having excellent moldability, high surface hardness, high light transmittance, low birefringence, and low wavelength dependency (see, for example, Patent Document 2). . However, since polymethyl methacrylate has a low glass transition temperature (Tg) of about 100 ° C. and is inferior in heat resistance, it is difficult to use it in applications requiring heat resistance, such as an image display device.
 そこで、ポリメチルメタクリレートなどのアクリル系樹脂の耐熱性を改善する方法として、押出機を用いてアクリル系樹脂を押出成形によって光学フィルムを成形する際に、アクリル系樹脂をメチルアミンで処理することにより、アクリル系樹脂をイミド化させることが提案されている(例えば、特許文献3参照)。しかし、アクリル系樹脂をメチルアミンでイミド化させることによって得られる樹脂は、正の複屈折が大きいという欠点がある。 Therefore, as a method for improving the heat resistance of acrylic resins such as polymethyl methacrylate, when forming an optical film by extrusion molding of an acrylic resin using an extruder, the acrylic resin is treated with methylamine. It has been proposed to imidize acrylic resins (for example, see Patent Document 3). However, a resin obtained by imidizing an acrylic resin with methylamine has a drawback of large positive birefringence.
特開2009-265174号公報JP 2009-265174 A 特開平06-102547号公報Japanese Patent Laid-Open No. 06-102547 特開2009-107180号公報JP 2009-107180 A
 本発明は、前記従来技術に鑑みてなされたものであり、耐熱性に優れ、複屈折が小さく、表面硬度が高く、光弾性係数が小さい光学フィルムの原料などとして好適に使用することができる(メタ)アクリル系樹脂、当該(メタ)アクリル系樹脂が用いられた光学フィルム、当該(メタ)アクリル系樹脂が用いられ、ITO層などの透明導電層が形成された透明導電性フィルム、および前記光学フィルムが搭載された画像表示装置を提供することを課題とする。 The present invention has been made in view of the prior art, and can be suitably used as a raw material for optical films having excellent heat resistance, low birefringence, high surface hardness, and low photoelastic coefficient ( (Meth) acrylic resin, optical film using the (meth) acrylic resin, transparent conductive film using the (meth) acrylic resin and having a transparent conductive layer such as an ITO layer, and the optical It is an object of the present invention to provide an image display device on which a film is mounted.
 本発明は、
(1) 式(I):
The present invention
(1) Formula (I):
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
(式中、R1およびR2は、それぞれ独立して、水素原子または炭素数1~8のアルキル基、R3は、環構造を示す)
で表わされる繰返し単位および式(II):
(Wherein R 1 and R 2 are each independently a hydrogen atom or an alkyl group having 1 to 8 carbon atoms, and R 3 represents a ring structure)
Repeating units represented by the formula (II):
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
(式中、R4およびR5は、それぞれ独立して、水素原子または炭素数1~8のアルキル基、R6は、炭素数1~18のアルキル基、炭素数3~12のシクロアルキル基または炭素数6~10のアリール基を示す)
で表わされる繰返し単位を有する(メタ)アクリル系樹脂、
(2) (メタ)アクリル系樹脂が式(I)で表わされる繰返し単位5~85重量%および式(II)で表わされる繰返し単位15~95重量%を有する前記(1)に記載の(メタ)アクリル系樹脂、
(3) ガラス転移温度が120℃以上である前記(1)または(2)に記載の(メタ)アクリル系樹脂、
(4)応力光学係数(Cr)の絶対値が0.3×10-9Pa-1以下である前記(1)~(3)のいずれかに記載の(メタ)アクリル系樹脂、
(5) 前記式(II)で表わされる繰返し単位を有する(メタ)アクリル樹脂をイミド化剤でイミド化させる前記(1)~(4)のいずれかに記載の(メタ)アクリル系樹脂の製造方法、
(6) 前記(1)~(4)のいずれかに記載の(メタ)アクリル系樹脂を含有してなる光学フィルム、
(7) 波長590nmにおける面内位相差Reが20nm以下であり、厚さ方向位相差Rthの絶対値が20nm以下である前記(6)に記載の光学フィルム、
(8) 波長590nmの光に対する光弾性係数の絶対値が10×10-12Pa-1以下である前記(6)または(7)に記載の光学フィルム、
(9) 60~100℃における線膨張係数が80×10-6-1以下である前記(6)~(8)のいずれかに記載の光学フィルム、
(10) 二軸延伸フィルムである前記(6)~(9)のいずれかに記載の光学フィルム、
(11) 前記(6)~(10)のいずれかに記載の光学フィルムの少なくとも一方表面に透明導電層が形成されてなる透明導電性フィルム、
(12) 前記(6)~(10)のいずれかに記載の光学フィルムを有する画像表示装置、および
(13) 前記(11)に記載の透明導電性フィルムを有する画像表示装置
に関する。
(Wherein R 4 and R 5 are each independently a hydrogen atom or an alkyl group having 1 to 8 carbon atoms, R 6 is an alkyl group having 1 to 18 carbon atoms or a cycloalkyl group having 3 to 12 carbon atoms) Or an aryl group having 6 to 10 carbon atoms)
A (meth) acrylic resin having a repeating unit represented by:
(2) The (meth) acrylic resin according to (1), wherein the (meth) acrylic resin has 5 to 85% by weight of repeating units represented by the formula (I) and 15 to 95% by weight of repeating units represented by the formula (II). ) Acrylic resin,
(3) The (meth) acrylic resin according to (1) or (2), wherein the glass transition temperature is 120 ° C. or higher.
(4) The (meth) acrylic resin according to any one of (1) to (3), wherein the absolute value of the stress optical coefficient (Cr) is 0.3 × 10 −9 Pa −1 or less,
(5) The production of the (meth) acrylic resin according to any one of (1) to (4) above, wherein the (meth) acrylic resin having the repeating unit represented by the formula (II) is imidized with an imidizing agent. Method,
(6) An optical film comprising the (meth) acrylic resin according to any one of (1) to (4),
(7) The optical film according to (6), wherein the in-plane retardation Re at a wavelength of 590 nm is 20 nm or less, and the absolute value of the thickness direction retardation Rth is 20 nm or less,
(8) The optical film according to (6) or (7), wherein the absolute value of the photoelastic coefficient with respect to light having a wavelength of 590 nm is 10 × 10 −12 Pa −1 or less,
(9) The optical film according to any one of (6) to (8), wherein the linear expansion coefficient at 60 to 100 ° C. is 80 × 10 −6 K −1 or less,
(10) The optical film according to any one of (6) to (9), which is a biaxially stretched film,
(11) A transparent conductive film in which a transparent conductive layer is formed on at least one surface of the optical film according to any one of (6) to (10),
(12) The present invention relates to an image display device having the optical film described in any one of (6) to (10), and (13) an image display device including the transparent conductive film described in (11).
 なお、本明細書において、「(メタ)アクリ」は、「アクリ」または「メタクリ」を意味する。 In this specification, “(meth) acryl” means “acryl” or “methacryl”.
 本発明によれば、耐熱性に優れ、複屈折が小さく、表面硬度が高く、光弾性係数が小さい光学フィルムの原料などとして好適に使用することができる(メタ)アクリル系樹脂、当該(メタ)アクリル系樹脂が用いられた光学フィルム、当該(メタ)アクリル系樹脂が用いられ、ITO層などの透明導電層が形成された透明導電性フィルムおよび前記光学フィルムが搭載された画像表示装置が提供される。 According to the present invention, a (meth) acrylic resin that can be suitably used as a raw material for an optical film having excellent heat resistance, low birefringence, high surface hardness, and low photoelastic coefficient, and the like (meth) An optical film using an acrylic resin, a transparent conductive film using the (meth) acrylic resin and having a transparent conductive layer such as an ITO layer formed thereon, and an image display device on which the optical film is mounted are provided. The
 本発明の(メタ)アクリル系樹脂は、前記したように、式(I): As described above, the (meth) acrylic resin of the present invention has the formula (I):
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
(式中、R1およびR2は、それぞれ独立して、水素原子または炭素数1~8のアルキル基、R3は、環構造を示す)
で表わされる繰返し単位および式(II):
(Wherein R 1 and R 2 are each independently a hydrogen atom or an alkyl group having 1 to 8 carbon atoms, and R 3 represents a ring structure)
Repeating units represented by the formula (II):
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
(式中、R4およびR5は、それぞれ独立して、水素原子または炭素数1~8のアルキル基、R6は、炭素数1~18のアルキル基、炭素数3~12のシクロアルキル基または炭素数6~10のアリール基を示す)
で表わされる繰返し単位を有する。
(Wherein R 4 and R 5 are each independently a hydrogen atom or an alkyl group having 1 to 8 carbon atoms, R 6 is an alkyl group having 1 to 18 carbon atoms or a cycloalkyl group having 3 to 12 carbon atoms) Or an aryl group having 6 to 10 carbon atoms)
It has a repeating unit represented by
 式(I)で表わされる繰返し単位において、R1およびR2は、それぞれ独立して、水素原子または炭素数1~8のアルキル基である。炭素数1~8のアルキル基としては、例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、tert-ブチル基、n-ペンチル基、イソペンチル基、n-ヘキシル基、イソへキシル基、n-ヘプチル基、イソヘプチル基、n-オクチル基、2-エチルヘキシル基などが挙げられるが、本発明は、かかる例示のみに限定されるものではない。R1およびR2のなかでは、耐熱性に優れ、複屈折が小さい光学フィルムを得る観点から、水素原子または炭素数1~4のアルキル基が好ましい。 In the repeating unit represented by the formula (I), R 1 and R 2 are each independently a hydrogen atom or an alkyl group having 1 to 8 carbon atoms. Examples of the alkyl group having 1 to 8 carbon atoms include methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, tert-butyl group, n-pentyl group, isopentyl group, n- Examples include a hexyl group, an isohexyl group, an n-heptyl group, an isoheptyl group, an n-octyl group, and a 2-ethylhexyl group, but the present invention is not limited to such examples. Among R 1 and R 2 , a hydrogen atom or an alkyl group having 1 to 4 carbon atoms is preferable from the viewpoint of obtaining an optical film having excellent heat resistance and low birefringence.
 式(I)で表わされる繰返し単位において、R3は、環構造を示す。環構造としては、例えば、炭素数3~12のシクロアルキル基、炭素数6~10のアリール基などが挙げられる。炭素数3~12のシクロアルキル基としては、例えば、シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基などが挙げられるが、本発明は、かかる例示のみに限定されるものではない。これらのシクロアルキル基のなかでは、耐熱性に優れ、複屈折が小さい光学フィルムを得る観点から、炭素数が3~6のシクロアルキル基が好ましく、シクロヘキシル基がより好ましい。炭素数6~10のアリール基としては、フェニル基、ベンジル基、o-トリル基、m-トリル基、p-トリル基、2,3-キシリル基、2,4-キシリル基、2,5-キシリル基、2,6-キシリル基、3,4-キシリル基、3,5-キシリル基、1-ナフチル基、2-ナフチル基、ビナフチル基、アントリル基などが挙げられるが、本発明は、かかる例示のみに限定されるものではない。これらのアリール基のなかでは、耐熱性に優れ、複屈折が小さい光学フィルムを得る観点から、フェニル基およびトリル基が好ましい。また、R3のなかでは、耐熱性に優れ、複屈折が小さい光学フィルムを得る観点から、炭素数が3~6のシクロアルキル基、フェニル基およびトリル基が好ましく、シクロヘキシル基およびフェニル基がより好ましい。 In the repeating unit represented by the formula (I), R 3 represents a ring structure. Examples of the ring structure include a cycloalkyl group having 3 to 12 carbon atoms and an aryl group having 6 to 10 carbon atoms. Examples of the cycloalkyl group having 3 to 12 carbon atoms include a cyclopropyl group, a cyclobutyl group, a cyclopentyl group, a cyclohexyl group, and the like, but the present invention is not limited to such examples. Among these cycloalkyl groups, a cycloalkyl group having 3 to 6 carbon atoms is preferable and a cyclohexyl group is more preferable from the viewpoint of obtaining an optical film having excellent heat resistance and low birefringence. Examples of the aryl group having 6 to 10 carbon atoms include phenyl, benzyl, o-tolyl, m-tolyl, p-tolyl, 2,3-xylyl, 2,4-xylyl, 2,5- Examples include xylyl group, 2,6-xylyl group, 3,4-xylyl group, 3,5-xylyl group, 1-naphthyl group, 2-naphthyl group, binaphthyl group, anthryl group, and the like. It is not limited to illustration only. Among these aryl groups, a phenyl group and a tolyl group are preferable from the viewpoint of obtaining an optical film having excellent heat resistance and low birefringence. Among R 3 , a cycloalkyl group having 3 to 6 carbon atoms, a phenyl group, and a tolyl group are preferable, and a cyclohexyl group and a phenyl group are more preferable from the viewpoint of obtaining an optical film having excellent heat resistance and low birefringence. preferable.
 式(I)で表わされる繰返し単位において、耐熱性に優れ、複屈折が小さい光学フィルムを得る観点から、R1およびR2が、それぞれ独立して、水素原子または炭素数1~4のアルキル基、好ましくは水素原子またはメチル基であり、R3がシクロヘキシル基またはフェニル基、好ましくはフェニル基であることが望ましい。 In the repeating unit represented by the formula (I), from the viewpoint of obtaining an optical film having excellent heat resistance and low birefringence, R 1 and R 2 are each independently a hydrogen atom or an alkyl group having 1 to 4 carbon atoms. , Preferably a hydrogen atom or a methyl group, and it is desirable that R 3 is a cyclohexyl group or a phenyl group, preferably a phenyl group.
 なお、(メタ)アクリル系樹脂は、式(I)で表わされる繰返し単位を2種類以上含んでいてもよい。 The (meth) acrylic resin may contain two or more types of repeating units represented by the formula (I).
 式(II)で表わされる繰返し単位において、R4およびR5は、それぞれ独立して、水素原子または炭素数1~8のアルキル基である。炭素数1~8のアルキル基としては、例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、tert-ブチル基、n-ペンチル基、イソペンチル基、n-ヘキシル基、イソへキシル基、n-ヘプチル基、イソヘプチル基、n-オクチル基、2-エチルヘキシル基などが挙げられるが、本発明は、かかる例示のみに限定されるものではない。これらのアルキル基のなかでは、耐熱性に優れ、複屈折が小さく、表面硬度が高く、光弾性係数が小さい光学フィルムを得る観点から、炭素数1~4のアルキル基が好ましい。 In the repeating unit represented by the formula (II), R 4 and R 5 are each independently a hydrogen atom or an alkyl group having 1 to 8 carbon atoms. Examples of the alkyl group having 1 to 8 carbon atoms include methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, tert-butyl group, n-pentyl group, isopentyl group, n- Examples include a hexyl group, an isohexyl group, an n-heptyl group, an isoheptyl group, an n-octyl group, and a 2-ethylhexyl group, but the present invention is not limited to such examples. Among these alkyl groups, an alkyl group having 1 to 4 carbon atoms is preferable from the viewpoint of obtaining an optical film having excellent heat resistance, low birefringence, high surface hardness, and low photoelastic coefficient.
 式(II)で表わされる繰返し単位において、R6は、炭素数1~18のアルキル基、炭素数3~12のシクロアルキル基または炭素数6~10のアリール基である。炭素数1~18のアルキル基としては、例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、tert-ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、デシル基、ドデシル基、テトラデシル基、ペンタデシル基、ヘキサデシル基、ヘプタデシル基、オクタデシル基などが挙げられるが、本発明は、かかる例示のみに限定されるものではない。炭素数3~12のシクロアルキル基としては、例えば、シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基などが挙げられるが、本発明は、かかる例示のみに限定されるものではない。炭素数6~10のアリール基としては、フェニル基、ベンジル基、o-トリル基、m-トリル基、p-トリル基、2,3-キシリル基、2,4-キシリル基、2,5-キシリル基、2,6-キシリル基、3,4-キシリル基、3,5-キシリル基、1-ナフチル基、2-ナフチル基、ビナフチル基、アントリル基などが挙げられるが、本発明は、かかる例示のみに限定されるものではない。これらのなかでは、耐熱性に優れ、複屈折が小さく、表面硬度が高く、光弾性係数が小さい光学フィルムを得る観点から、炭素数1~18のアルキル基が好ましく、炭素数1~8のアルキル基がより好ましく、炭素数1~4のアルキル基がさらに好ましく、メチル基、エチル基およびn-ブチル基がさらに一層好ましい。 In the repeating unit represented by the formula (II), R 6 is an alkyl group having 1 to 18 carbon atoms, a cycloalkyl group having 3 to 12 carbon atoms, or an aryl group having 6 to 10 carbon atoms. Examples of the alkyl group having 1 to 18 carbon atoms include methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, tert-butyl group, pentyl group, hexyl group, heptyl group, octyl group. Group, decyl group, dodecyl group, tetradecyl group, pentadecyl group, hexadecyl group, heptadecyl group, octadecyl group and the like can be mentioned, but the present invention is not limited to such examples. Examples of the cycloalkyl group having 3 to 12 carbon atoms include a cyclopropyl group, a cyclobutyl group, a cyclopentyl group, a cyclohexyl group, and the like, but the present invention is not limited to such examples. Examples of the aryl group having 6 to 10 carbon atoms include phenyl, benzyl, o-tolyl, m-tolyl, p-tolyl, 2,3-xylyl, 2,4-xylyl, 2,5- Examples include xylyl group, 2,6-xylyl group, 3,4-xylyl group, 3,5-xylyl group, 1-naphthyl group, 2-naphthyl group, binaphthyl group, anthryl group, and the like. It is not limited to illustration only. Among these, from the viewpoint of obtaining an optical film having excellent heat resistance, low birefringence, high surface hardness, and low photoelastic coefficient, an alkyl group having 1 to 18 carbon atoms is preferable, and an alkyl group having 1 to 8 carbon atoms is preferable. Group is more preferable, an alkyl group having 1 to 4 carbon atoms is more preferable, and a methyl group, an ethyl group, and an n-butyl group are still more preferable.
 式(II)で表わされる繰返し単位において、耐熱性に優れ、複屈折が小さく、表面硬度が高く、光弾性係数が小さい光学フィルムを得る観点から、R4およびR5は、それぞれ独立して、水素原子または炭素数1~8のアルキル基、好ましくは水素原子または炭素数1~4のアルキル基、より好ましくは水素原子またはメチル基であり、R6は、炭素数1~18のアルキル基、炭素数3~12のシクロアルキル基または炭素数6~10のアリール基、好ましくは炭素数1~18のアルキル基、より好ましくは炭素数1~8のアルキル基、さらに好ましくは炭素数1~4のアルキル基、さらに一層好ましくはメチル基、エチル基およびn-ブチル基である。 In the repeating unit represented by the formula (II), R 4 and R 5 are each independently from the viewpoint of obtaining an optical film having excellent heat resistance, low birefringence, high surface hardness, and low photoelastic coefficient. A hydrogen atom or an alkyl group having 1 to 8 carbon atoms, preferably a hydrogen atom or an alkyl group having 1 to 4 carbon atoms, more preferably a hydrogen atom or a methyl group, and R 6 is an alkyl group having 1 to 18 carbon atoms, A cycloalkyl group having 3 to 12 carbon atoms or an aryl group having 6 to 10 carbon atoms, preferably an alkyl group having 1 to 18 carbon atoms, more preferably an alkyl group having 1 to 8 carbon atoms, and further preferably 1 to 4 carbon atoms. And more preferably a methyl group, an ethyl group and an n-butyl group.
 なお、(メタ)アクリル系樹脂は、式(II)で表わされる繰返し単位を2種類以上含んでいてもよい。 The (meth) acrylic resin may contain two or more types of repeating units represented by the formula (II).
 (メタ)アクリル系樹脂における式(I)で表わされる繰返し単位の含有率は、(メタ)アクリル系樹脂の耐熱性および透明性を向上させるとともに、複屈折が小さい光学フィルムを得る観点から、好ましくは5重量%以上、より好ましくは10重量%以上、さらに好ましくは15重量%以上であり、フィルムへの成形性を向上させ、機械的強度を高めるとともに、複屈折が小さい光学フィルムを得る観点から、好ましくは85重量%以下、より好ましくは80重量%以下、さらに好ましくは75重量%以下である。 The content of the repeating unit represented by the formula (I) in the (meth) acrylic resin is preferably from the viewpoint of improving the heat resistance and transparency of the (meth) acrylic resin and obtaining an optical film having a small birefringence. Is 5% by weight or more, more preferably 10% by weight or more, and further preferably 15% by weight or more, from the viewpoint of obtaining an optical film with improved moldability to a film, increased mechanical strength, and low birefringence. , Preferably 85% by weight or less, more preferably 80% by weight or less, still more preferably 75% by weight or less.
 また、(メタ)アクリル系樹脂における式(II)で表わされる繰返し単位の含有率は、フィルムへの成形性を向上させ、機械的強度を高めるとともに、複屈折が小さい光学フィルムを得る観点から、好ましくは15重量%以上、より好ましくは20重量%以上、さらに好ましくは25重量%以上であり、(メタ)アクリル系樹脂の耐熱性および透明性を向上させるとともに、複屈折が小さい光学フィルムを得る観点から、好ましくは95重量%以下、より好ましくは90重量%以下、さらに好ましくは85重量%以下である。 In addition, the content of the repeating unit represented by the formula (II) in the (meth) acrylic resin is improved from the viewpoint of improving the moldability to the film, increasing the mechanical strength, and obtaining an optical film having a small birefringence. Preferably it is 15% by weight or more, more preferably 20% by weight or more, and further preferably 25% by weight or more, and an optical film having improved birefringence and improved heat resistance and transparency of the (meth) acrylic resin is obtained. From the viewpoint, it is preferably 95% by weight or less, more preferably 90% by weight or less, and still more preferably 85% by weight or less.
 なお、(メタ)アクリル系樹脂には、本発明の目的が阻害されない範囲内で、例えば、スチレン単位などの式(I)で表わされる繰返し単位および式(II)で表わされる繰返し単位以外の繰返し単位が含まれていてもよい。例えば、式(I)で表わされる繰返し単位および式(II)で表わされる繰返し単位以外の繰返し単位がスチレン単位である場合、全ての繰返し単位におけるスチレン単位の含有率は、好ましくは10重量%以下、より好ましくは5重量%以下、さらに好ましくは2重量%以下、さらに一層好ましくは1重量%以下である。 In addition, the (meth) acrylic resin includes, for example, repeating units other than the repeating unit represented by the formula (I) and the repeating unit represented by the formula (II), such as a styrene unit, within the range in which the object of the present invention is not hindered. Units may be included. For example, when the repeating unit represented by the formula (I) and the repeating unit other than the repeating unit represented by the formula (II) are styrene units, the content of styrene units in all the repeating units is preferably 10% by weight or less. More preferably, it is 5% by weight or less, more preferably 2% by weight or less, and still more preferably 1% by weight or less.
 (メタ)アクリル系樹脂の重量平均分子量は、フィルムの機械的強度を高める観点から、好ましくは10000以上、より好ましくは30000以上であり、フィルムへの成形性を向上させる観点から、好ましくは500000以下、より好ましくは300000以下である。 The weight average molecular weight of the (meth) acrylic resin is preferably 10,000 or more, more preferably 30000 or more from the viewpoint of increasing the mechanical strength of the film, and preferably 500,000 or less from the viewpoint of improving the moldability to the film. More preferably, it is 300,000 or less.
 なお、本明細書において、(メタ)アクリル系樹脂の重量平均分子量は、ゲル浸透クロマトグラフィー(GPC)により、以下の条件で求めたときの値である。 In the present specification, the weight average molecular weight of the (meth) acrylic resin is a value obtained by gel permeation chromatography (GPC) under the following conditions.
・システム:(株)東ソー製、商品名:GPCシステムHLC-8220
・展開溶媒:テトラヒドロフラン〔和光純薬工業(株)製、特級〕
・溶媒流量:0.6mL/min
・標準試料:TSK標準ポリスチレン〔(株)東ソー製、商品名:PS-オリゴマーキット〕
・測定側カラム構成:ガードカラム〔(株)東ソー製、商品名:TSK-GEL super HZM-M 6.0×150を2本直列接続、(株)東ソー製、商品名:TSK-GEL super HZ-Lを1本使用
・リファレンス側カラムの構成:リファレンスカラム〔(株)東ソー製、商品名:TSK-GEL SuperH-RC 6.0×150、2本直列接続〕
・カラム温度:40℃
・ System: Made by Tosoh Corporation, trade name: GPC system HLC-8220
・ Developing solvent: Tetrahydrofuran [Wako Pure Chemical Industries, Ltd., special grade]
・ Solvent flow rate: 0.6 mL / min
Standard sample: TSK standard polystyrene [manufactured by Tosoh Corporation, trade name: PS-oligomer kit]
Measurement side column configuration: guard column [manufactured by Tosoh Corporation, trade name: TSK-GEL super HZM-M 6.0 × 150 in series, two manufactured by Tosoh Corporation, trade name: TSK-GEL super HZ -L is used ・ Reference column configuration: Reference column [Tosoh Corporation, trade name: TSK-GEL SuperH-RC 6.0 × 150, 2 in series]
-Column temperature: 40 ° C
 (メタ)アクリル系樹脂のガラス転移温度は、フィルムの耐熱性を向上させる観点から、好ましくは120℃以上、より好ましくは130℃以上、さらに好ましくは140℃以上、さらに一層好ましくは150℃以上である。また、(メタ)アクリル系樹脂のガラス転移温度は、フィルムへの成形加工性を向上させる観点から、好ましくは250℃以下、より好ましくは230℃以下、さらに好ましくは210℃以下、さらに一層好ましくは200℃以下である。 From the viewpoint of improving the heat resistance of the film, the glass transition temperature of the (meth) acrylic resin is preferably 120 ° C. or higher, more preferably 130 ° C. or higher, further preferably 140 ° C. or higher, and even more preferably 150 ° C. or higher. is there. The glass transition temperature of the (meth) acrylic resin is preferably 250 ° C. or less, more preferably 230 ° C. or less, further preferably 210 ° C. or less, and still more preferably, from the viewpoint of improving the molding processability to a film. It is 200 degrees C or less.
 なお、本明細書において、(メタ)アクリル系樹脂のガラス転移温度は、JIS K7121の規定に準拠して求めたときの値である。さらに詳しくは、示差走査熱量計〔(株)リガク製、商品名:Thermo plus EVO DSC-8230〕を用い、また参照としてα-アルミナを用い、窒素ガス雰囲気中で(メタ)アクリル系樹脂約10mgを室温から200℃まで昇温速度20℃/minで昇温し、得られたDSC曲線から始点法によって求めたときの温度である。 In the present specification, the glass transition temperature of the (meth) acrylic resin is a value obtained in accordance with JIS K7121. More specifically, a differential scanning calorimeter [trade name: Thermo plus EVO DSC-8230 manufactured by Rigaku Corporation] was used, and α-alumina was used as a reference, and about 10 mg of (meth) acrylic resin in a nitrogen gas atmosphere. Is a temperature obtained by raising the temperature from room temperature to 200 ° C. at a rate of temperature rise of 20 ° C./min and obtaining the starting point method from the obtained DSC curve.
 また、(メタ)アクリル系樹脂の酸価は、フィルム化などの成形加工性を向上させる観点から、好ましくは1.4mmol/g以下、より好ましくは0.8mmol/g以下、さらに好ましくは0.5mmol/g以下、さらに一層好ましくは0.3mmol/g以下である。(メタ)アクリル系樹脂の酸価は、以下の実施例に記載の方法に基づいて測定したときの値である。 In addition, the acid value of the (meth) acrylic resin is preferably 1.4 mmol / g or less, more preferably 0.8 mmol / g or less, and still more preferably 0.8, from the viewpoint of improving molding processability such as film formation. 5 mmol / g or less, still more preferably 0.3 mmol / g or less. The acid value of the (meth) acrylic resin is a value when measured based on the method described in the following examples.
 (メタ)アクリル系樹脂の応力光学係数(Cr)の絶対値は、当該樹脂からなる光学フィルム、例えば、延伸フィルムの屈折率の異方性を抑制し、複屈折を小さくする観点から、好ましくは0.3×10-9Pa-1以下、より好ましくは0.2×10-9Pa-1以下、さらに好ましくは0.1×10-9Pa-1以下である。(メタ)アクリル系樹脂の応力光学係数(Cr)は、以下の実施例に記載の方法に基づいて測定したときの値である。 The absolute value of the stress optical coefficient (Cr) of the (meth) acrylic resin is preferably from the viewpoint of suppressing the birefringence by suppressing the anisotropy of the refractive index of the optical film made of the resin, for example, a stretched film. It is 0.3 × 10 −9 Pa −1 or less, more preferably 0.2 × 10 −9 Pa −1 or less, and further preferably 0.1 × 10 −9 Pa −1 or less. The stress optical coefficient (Cr) of the (meth) acrylic resin is a value when measured based on the method described in the following examples.
 なお、(メタ)アクリル系樹脂の応力光学係数(Cr)の絶対値を0.3×10-9Pa-1以下に制御することにより、二軸延伸後における光学フィルムの厚さ方向位相差Rthの絶対値を20nm以下とすることができる。 In addition, by controlling the absolute value of the stress optical coefficient (Cr) of the (meth) acrylic resin to 0.3 × 10 −9 Pa −1 or less, the thickness direction retardation Rth of the optical film after biaxial stretching. Can be 20 nm or less.
 (メタ)アクリル系樹脂は、例えば、式(II)で表わされる繰返し単位を有する(メタ)アクリル樹脂をイミド化剤でイミド化させることによって得ることができる。式(II)で表わされる繰返し単位を有する(メタ)アクリル樹脂〔以下、単に「(メタ)アクリル樹脂」という〕は、例えば、式(III): The (meth) acrylic resin can be obtained, for example, by imidizing a (meth) acrylic resin having a repeating unit represented by the formula (II) with an imidizing agent. The (meth) acrylic resin (hereinafter simply referred to as “(meth) acrylic resin”) having a repeating unit represented by the formula (II) is, for example, the formula (III):
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
(式中、R4、R5およびR6は前記と同じ)
で表わされるモノマーを重合させることによって得ることができる。式(III)で表わされるモノマーには、本発明の目的が阻害されない範囲内で他のモノマーが含まれていてもよい。例えば、当該他のモノマーとして(メタ)アクリル酸を使用する場合、式(III)で表わされるモノマーに(メタ)アクリル酸を45重量%以下、好ましくは40重量%以下の含有率で含有させることができる。
(Wherein R 4 , R 5 and R 6 are the same as above)
It can obtain by polymerizing the monomer represented by. The monomer represented by the formula (III) may contain other monomers as long as the object of the present invention is not inhibited. For example, when (meth) acrylic acid is used as the other monomer, (meth) acrylic acid is contained in the monomer represented by formula (III) at a content of 45% by weight or less, preferably 40% by weight or less. Can do.
 式(III)で表わされるモノマーとしては、アルキル基の炭素数が1~18のアルキル(メタ)アクリレート、シクロアルキル基の炭素数が3~12のシクロアルキル(メタ)アクリレートおよびアリール基の炭素数が6~10のアリール(メタ)アクリレートが挙げられる。これらの(メタ)アクリレートは、それぞれ単独で用いてもよく、2種類以上を併用してもよい。 Examples of the monomer represented by the formula (III) include alkyl (meth) acrylates having 1 to 18 carbon atoms in the alkyl group, cycloalkyl (meth) acrylates having 3 to 12 carbon atoms in the cycloalkyl group, and carbon numbers in the aryl group. 6 to 10 aryl (meth) acrylates. These (meth) acrylates may be used alone or in combination of two or more.
 アルキル基の炭素数が1~18のアルキル(メタ)アクリレートとしては、例えば、メチル(メタ)アクリレート、エチル(メタ)アクリレート、n-プロピル(メタ)アクリレート、イソプロピル(メタ)アクリレート、n-ブチル(メタ)アクリレート、イソブチル(メタ)アクリレート、tert-ブチル(メタ)アクリレート、ペンチル(メタ)アクリレート、ヘキシル(メタ)アクリレート、ヘプチル(メタ)アクリレート、オクチル(メタ)アクリレート、デシル(メタ)アクリレート、ドデシル(メタ)アクリレート、テトラデシル(メタ)アクリレート、ペンタデシル(メタ)アクリレート、ヘキサデシル(メタ)アクリレート、ヘプタデシル(メタ)アクリレート、オクタデシル(メタ)アクリレートなどが挙げられるが、本発明は、かかる例示のみに限定されるものではない。シクロアルキル基の炭素数が3~12のシクロアルキル(メタ)アクリレートとしては、例えば、シクロプロピル(メタ)アクリレート、シクロブチル(メタ)アクリレート、シクロペンチル(メタ)アクリレート、シクロヘキシル(メタ)アクリレートなどが挙げられるが、本発明は、かかる例示のみに限定されるものではない。アリール基の炭素数が6~10のアリール(メタ)アクリレートとしては、例えば、フェニル(メタ)アクリレート、ベンジル(メタ)アクリレート、o-トリル(メタ)アクリレート、m-トリル(メタ)アクリレート、p-トリル(メタ)アクリレート、2,3-キシリル(メタ)アクリレート、2,4-キシリル(メタ)アクリレート、2,5-キシリル(メタ)アクリレート、2,6-キシリル(メタ)アクリレート、3,4-キシリル(メタ)アクリレート、3,5-キシリル(メタ)アクリレート、1-ナフチル(メタ)アクリレート、2-ナフチル(メタ)アクリレート、ビナフチル(メタ)アクリレート、アントリル(メタ)アクリレートなどが挙げられるが、本発明は、かかる例示のみに限定されるものではない。これらの(メタ)アクリレートは、それぞれ単独で用いてもよく、2種類以上を併用してもよい。 Examples of the alkyl (meth) acrylate having an alkyl group having 1 to 18 carbon atoms include methyl (meth) acrylate, ethyl (meth) acrylate, n-propyl (meth) acrylate, isopropyl (meth) acrylate, n-butyl ( (Meth) acrylate, isobutyl (meth) acrylate, tert-butyl (meth) acrylate, pentyl (meth) acrylate, hexyl (meth) acrylate, heptyl (meth) acrylate, octyl (meth) acrylate, decyl (meth) acrylate, dodecyl ( Examples include meth) acrylate, tetradecyl (meth) acrylate, pentadecyl (meth) acrylate, hexadecyl (meth) acrylate, heptadecyl (meth) acrylate, and octadecyl (meth) acrylate. The present invention is not limited only to those exemplified. Examples of the cycloalkyl (meth) acrylate having 3 to 12 carbon atoms in the cycloalkyl group include cyclopropyl (meth) acrylate, cyclobutyl (meth) acrylate, cyclopentyl (meth) acrylate, cyclohexyl (meth) acrylate, and the like. However, the present invention is not limited to such examples. Examples of the aryl (meth) acrylate having 6 to 10 carbon atoms in the aryl group include phenyl (meth) acrylate, benzyl (meth) acrylate, o-tolyl (meth) acrylate, m-tolyl (meth) acrylate, p- Tolyl (meth) acrylate, 2,3-xylyl (meth) acrylate, 2,4-xylyl (meth) acrylate, 2,5-xylyl (meth) acrylate, 2,6-xylyl (meth) acrylate, 3,4- Examples include xylyl (meth) acrylate, 3,5-xylyl (meth) acrylate, 1-naphthyl (meth) acrylate, 2-naphthyl (meth) acrylate, binaphthyl (meth) acrylate, anthryl (meth) acrylate, etc. The invention is not limited to such examples. These (meth) acrylates may be used alone or in combination of two or more.
 式(III)で表わされるモノマーを重合させる方法としては、例えば、塊状重合法、溶液重合法、乳化重合法、懸濁重合法などが挙げられるが、本発明は、かかる例示のみに限定されるものではない。 Examples of the method for polymerizing the monomer represented by the formula (III) include a bulk polymerization method, a solution polymerization method, an emulsion polymerization method, a suspension polymerization method, and the like, but the present invention is limited only to such examples. It is not a thing.
 (メタ)アクリル樹脂をイミド化剤でイミド化させる方法としては、例えば、公知のイミド化する方法などを挙げることができる。(メタ)アクリル樹脂をイミド化剤でイミド化させる具体的な方法としては、例えば、
(1)(メタ)アクリル樹脂を溶解させることができ、イミド化に対して不活性な溶媒に当該(メタ)アクリル樹脂を溶解させ、得られた(メタ)アクリル樹脂溶液にイミド化剤を添加し、(メタ)アクリル樹脂とイミド化剤とを反応させることにより、(メタ)アクリル樹脂をイミド化剤でイミド化させる方法(バッチ式反応法)、
(2)押出機などを用いて溶融状態の(メタ)アクリル樹脂にイミド化剤を添加し、(メタ)アクリル樹脂とイミド化剤とを反応させることにより、(メタ)アクリル樹脂をイミド化させる方法(溶融混練法)
などが挙げられるが、本発明は、かかる例示のみに限定されるものではない。
Examples of the method of imidizing the (meth) acrylic resin with an imidizing agent include a known imidizing method. As a specific method for imidizing a (meth) acrylic resin with an imidizing agent, for example,
(1) A (meth) acrylic resin can be dissolved, the (meth) acrylic resin is dissolved in a solvent inert to imidization, and an imidizing agent is added to the obtained (meth) acrylic resin solution And by reacting the (meth) acrylic resin with an imidizing agent, the (meth) acrylic resin is imidized with an imidizing agent (batch reaction method),
(2) An imidizing agent is added to a molten (meth) acrylic resin using an extruder or the like, and the (meth) acrylic resin and the imidizing agent are reacted to imidize the (meth) acrylic resin. Method (melt kneading method)
However, the present invention is not limited to such examples.
 前記バッチ式反応法には、バッチ式反応槽(圧力容器)を用いることができる。バッチ式反応槽(圧力容器)は、(メタ)アクリル樹脂を溶媒に溶解させた溶液を加熱し、撹拌することができ、イミド化剤を添加することができる構造を有することが好ましく、イミド化反応の進行に伴って前記溶液の粘度が高くなることがあるので、撹拌効率に優れていることがより好ましい。前記バッチ式反応槽(圧力容器)としては、例えば、住友重機械工業(株)製、マックスブレンド(登録商標)撹拌槽などが挙げられるが、本発明は、かかる例示のみに限定されるものではない。 In the batch reaction method, a batch reaction tank (pressure vessel) can be used. The batch-type reaction vessel (pressure vessel) preferably has a structure in which a solution in which a (meth) acrylic resin is dissolved in a solvent can be heated and stirred, and an imidizing agent can be added. Since the viscosity of the solution may increase as the reaction proceeds, it is more preferable that the stirring efficiency is excellent. Examples of the batch-type reaction vessel (pressure vessel) include a Max blend (registered trademark) agitation vessel manufactured by Sumitomo Heavy Industries, Ltd., but the present invention is not limited to such examples. Absent.
 前記バッチ式反応法において、イミド化に対して不活性な溶媒としては、例えば、メタノール、エタノール、n-プロパノール、イソプロパノール、n-ブタノール、イソブタノールなどの脂肪族アルコール;ベンゼン、トルエン、キシレン、クロロベンゼン、クロロトルエンなどの芳香族系化合物;エーテル系化合物などが挙げられるが、本発明は、かかる例示のみに限定されるものではない。これらの溶媒は、それぞれ単独で用いてもよく、2種類以上を併用してもよい。これらの溶媒のなかでは、トルエン、およびトルエンとメタノールとの混合溶媒が好ましい。 In the batch reaction method, examples of the solvent inert to imidization include aliphatic alcohols such as methanol, ethanol, n-propanol, isopropanol, n-butanol, and isobutanol; benzene, toluene, xylene, and chlorobenzene. And aromatic compounds such as chlorotoluene; ether compounds and the like, but the present invention is not limited to such examples. These solvents may be used alone or in combination of two or more. Among these solvents, toluene and a mixed solvent of toluene and methanol are preferable.
 前記バッチ式反応法において、(メタ)アクリル樹脂とイミド化剤とを反応させる際の反応温度は、(メタ)アクリル樹脂をイミド化剤で効率よくイミド化させるとともに、過剰な熱履歴による(メタ)アクリル樹脂の分解、着色などを抑制する観点から、好ましくは160~400℃、より好ましくは180~350℃、さらに好ましくは200~300℃である。 In the batch reaction method, the reaction temperature for reacting the (meth) acrylic resin with the imidizing agent is such that the (meth) acrylic resin is efficiently imidized with the imidizing agent and (meth) acrylic due to an excessive thermal history ( ) From the viewpoint of suppressing the decomposition and coloring of the acrylic resin, it is preferably 160 to 400 ° C, more preferably 180 to 350 ° C, still more preferably 200 to 300 ° C.
 前記溶融混練法では、押出機を用いることができる。押出機としては、例えば、単軸押出機、二軸押出機、多軸押出機などが挙げられるが、本発明は、かかる例示のみに限定されるものではない。これらの押出機のなかでは、(メタ)アクリル樹脂とイミド化剤とを効率よく混合することができることから、二軸押出機が好ましい。二軸押出機としては、例えば、非噛合い型同方向回転式二軸押出機、噛合い型同方向回転式二軸押出機、非噛合い型異方向回転式二軸押出機、噛合い型異方向回転式二軸押出機などが挙げられるが、本発明は、かかる例示のみに限定されるものではない。これらの押出機は、それぞれ単独で用いてもよく、2機以上を直列に接続してもよい。二軸押出機のなかでは、噛合い型同方向回転式二軸押出機は、高速回転が可能であり、(メタ)アクリル樹脂とイミド化剤とを効率よく混合することができるので好ましい。 In the melt kneading method, an extruder can be used. Examples of the extruder include a single-screw extruder, a twin-screw extruder, and a multi-screw extruder, but the present invention is not limited to such examples. Among these extruders, a (meth) acrylic resin and an imidizing agent can be efficiently mixed, and therefore a twin screw extruder is preferable. Examples of the twin screw extruder include, for example, a non-meshing type co-rotating twin screw extruder, a meshing type co-rotating twin screw extruder, a non-meshing different direction rotating twin screw extruder, and a meshing type. Although a different direction rotation type twin screw extruder etc. are mentioned, this invention is not limited only to this illustration. These extruders may be used singly or two or more may be connected in series. Among the twin screw extruders, the meshing type co-rotating twin screw extruder is preferable because it can rotate at high speed and can efficiently mix the (meth) acrylic resin and the imidizing agent.
 前記溶融混練法において、(メタ)アクリル樹脂のイミド化は、例えば、(メタ)アクリル樹脂を押出機の原料投入部から投入し、当該(メタ)アクリル樹脂を溶融させ、シリンダ内に充満させた後、イミド化剤を添加ポンプで押出機中に注入することにより、行なうことができる。 In the melt-kneading method, imidation of the (meth) acrylic resin is performed by, for example, charging the (meth) acrylic resin from the raw material charging unit of the extruder, melting the (meth) acrylic resin, and filling the cylinder. Thereafter, the imidizing agent can be injected into the extruder with an addition pump.
 前記溶融混練法において、押出機中の反応ゾーンの温度(樹脂温度)は、(メタ)アクリル樹脂のイミド化反応を効率よく進行させるとともに、耐薬品性および耐熱性を向上させる観点から、好ましくは180℃以上、より好ましくは220℃以上であり、(メタ)アクリル樹脂の分解を抑制し、光学フィルムの耐折り曲げ性を向上させる観点から、好ましくは380℃以下、より好ましくは350℃以下、さらに好ましくは300℃以下である。なお、前記押出機中の反応ゾーンは、押出機のシリンダにおいて、イミド化剤の注入位置から樹脂吐出口(ダイス部)までの間の領域を意味する。 In the melt-kneading method, the temperature of the reaction zone (resin temperature) in the extruder is preferably from the viewpoint of efficiently progressing the imidization reaction of the (meth) acrylic resin and improving chemical resistance and heat resistance. 180 ° C. or higher, more preferably 220 ° C. or higher, from the viewpoint of suppressing the decomposition of the (meth) acrylic resin and improving the bending resistance of the optical film, preferably 380 ° C. or lower, more preferably 350 ° C. or lower, Preferably it is 300 degrees C or less. In addition, the reaction zone in the said extruder means the area | region from the injection position of an imidizing agent to the resin discharge port (die part) in the cylinder of an extruder.
 前記溶融混練法においては、押出機中の反応ゾーンにおける(メタ)アクリル樹脂とイミド化剤との反応時間を長くすることにより、(メタ)アクリル樹脂のイミド化を促進させることができる。押出機中の反応ゾーン内における(メタ)アクリル樹脂のイミド化に要する時間は、(メタ)アクリル樹脂のイミド化を十分に行なう観点から、好ましくは10秒間以上、より好ましくは30秒間以上である。押出機内における(メタ)アクリル樹脂の圧力は、イミド化剤の溶解性を向上させる観点から、好ましくは大気圧以上、より好ましくは1MPa以上であり、押出機の耐圧性を考慮して、好ましくは50MPa以下、より好ましくは30MPa以下である。 In the melt-kneading method, the imidization of the (meth) acrylic resin can be promoted by lengthening the reaction time between the (meth) acrylic resin and the imidizing agent in the reaction zone in the extruder. The time required for imidation of the (meth) acrylic resin in the reaction zone in the extruder is preferably 10 seconds or longer, more preferably 30 seconds or longer from the viewpoint of sufficiently imidizing the (meth) acrylic resin. . From the viewpoint of improving the solubility of the imidizing agent, the pressure of the (meth) acrylic resin in the extruder is preferably not less than atmospheric pressure, more preferably not less than 1 MPa, preferably considering the pressure resistance of the extruder. 50 MPa or less, more preferably 30 MPa or less.
 なお、押出機には、未反応のイミド化剤や副生物を除去するために、大気圧以下に減圧させることができるベントを押出機に設けることが好ましい。ベントの数は、1つだけであってもよく、複数であってもよい。 In addition, it is preferable to provide the extruder with a vent that can be depressurized to atmospheric pressure or less in order to remove unreacted imidizing agent and by-products in the extruder. The number of vents may be only one or plural.
 前記溶融混練法によって(メタ)アクリル樹脂をイミド化させる際には、押出機の代わりに、例えば、横型二軸反応装置〔住友重機械工業(株)製、商品名:バイボラック〕、竪型同心二軸攪拌槽〔住友重機械工業(株)製、商品名:スーパーブレンド〕などの高粘度に対応することができる反応装置を用いることができる。 When the (meth) acrylic resin is imidized by the melt-kneading method, instead of an extruder, for example, a horizontal biaxial reactor (manufactured by Sumitomo Heavy Industries, Ltd., trade name: Vivolak), vertical concentricity A reaction apparatus capable of dealing with high viscosity such as a biaxial stirring tank (manufactured by Sumitomo Heavy Industries, Ltd., trade name: Super Blend) can be used.
 イミド化剤としては、例えば、シクロヘキシルアミンなどの炭素数3~12のシクロアルキル基を有するシクロアルキルアミン、アニリン、ベンジルアミン、トルイジン、トリクロロアニリンなどの炭素数6~10のアリール基を有するアリールアミンなどが挙げられるが、本発明は、かかる例示のみに限定されるものではない。これらのイミド化剤は、それぞれ単独で用いてもよく、2種類以上を併用してもよい。イミド化剤のなかでは、耐熱性に優れ、複屈折が小さい光学フィルムを得る観点から、シクロヘキシルアミン、アニリンおよびトルイジンが好ましく、アニリンがより好ましい。 Examples of the imidizing agent include arylamines having 6 to 10 carbon atoms such as cycloalkylamine having 3 to 12 carbon atoms such as cyclohexylamine, aniline, benzylamine, toluidine, and trichloroaniline. However, the present invention is not limited to such examples. These imidizing agents may be used alone or in combination of two or more. Among the imidizing agents, cyclohexylamine, aniline and toluidine are preferable, and aniline is more preferable from the viewpoint of obtaining an optical film having excellent heat resistance and low birefringence.
 イミド化剤の量は、得られる(メタ)アクリル系樹脂における式(I)で表わされる繰返し単位の含有率および式(II)で表わされる繰返し単位の含有率によって異なるので一概には決定することができないことから、(メタ)アクリル系樹脂に式(I)で表わされる繰返し単位および式(II)で表わされる繰返し単位が所定の含有率で含有されるように調整することが好ましい。換言すれば、(メタ)アクリル系樹脂に式(I)で表わされる繰返し単位および式(II)で表わされる繰返し単位の含有率は、イミド化剤の量を調節することによって容易に調整することができる。 Since the amount of the imidizing agent varies depending on the content of the repeating unit represented by the formula (I) and the content of the repeating unit represented by the formula (II) in the (meth) acrylic resin to be obtained, it should be decided unconditionally. Therefore, it is preferable to adjust the (meth) acrylic resin so that the repeating unit represented by the formula (I) and the repeating unit represented by the formula (II) are contained at a predetermined content. In other words, the content of the repeating unit represented by the formula (I) and the repeating unit represented by the formula (II) in the (meth) acrylic resin can be easily adjusted by adjusting the amount of the imidizing agent. Can do.
 以上のようにして(メタ)アクリル樹脂をイミド化剤でイミド化させることにより、式(I)で表わされる繰返し単位および式(II)で表わされる繰返し単位を有する(メタ)アクリル系樹脂を得ることができる。 By imidizing the (meth) acrylic resin with an imidizing agent as described above, a (meth) acrylic resin having a repeating unit represented by the formula (I) and a repeating unit represented by the formula (II) is obtained. be able to.
 なお、(メタ)アクリル樹脂をイミド化剤でイミド化させた際には、カルボキシル基または酸無水物基が副生することがある。また、イミド化させる際の条件によっては、(メタ)アクリル系樹脂にカルボキシル基または酸無水物基が多く残存することがある。カルボキシル基または酸無水物基が(メタ)アクリル系樹脂に残存している場合、当該(メタ)アクリル系樹脂の粘度が上昇することから、例えば、フィルム化などを行なう際の成形加工性が低下するおそれがある。また、湿熱条件下では、酸無水物基の加水分解が進行し、樹脂およびフィルムの耐久性が低下するおそれがある。 In addition, when a (meth) acrylic resin is imidized with an imidizing agent, a carboxyl group or an acid anhydride group may be by-produced. Moreover, depending on the conditions at the time of imidation, many carboxyl groups or acid anhydride groups may remain in the (meth) acrylic resin. When carboxyl groups or acid anhydride groups remain in the (meth) acrylic resin, the viscosity of the (meth) acrylic resin increases, so that, for example, molding processability during filming is reduced. There is a risk. Moreover, under wet heat conditions, hydrolysis of the acid anhydride group proceeds, and the durability of the resin and film may be reduced.
 したがって、(メタ)アクリル系樹脂に含まれているカルボキシル基および酸無水物基をエステルに変換することが好ましい。(メタ)アクリル系樹脂に含まれているカルボキシル基および酸無水物基をエステルに変換させる方法としては、例えば、米国特許第4727117号明細書に記載のエステルに変換させる方法などが挙げられるが、本発明は、かかる例示のみに限定されるものではない。 Therefore, it is preferable to convert the carboxyl group and acid anhydride group contained in the (meth) acrylic resin into an ester. Examples of the method for converting a carboxyl group and an acid anhydride group contained in the (meth) acrylic resin into an ester include a method for converting to an ester described in US Pat. No. 4,727,117, The present invention is not limited to such examples.
 (メタ)アクリル系樹脂をエステル化剤でエステル化させる具体的な方法としては、前記(メタ)アクリル樹脂をイミド化剤でイミド化させる方法と同様に、例えば、
(1)(メタ)アクリル系樹脂を溶解させることができ、エステル化に対して不活性な溶媒に当該(メタ)アクリル系樹脂を溶解させ、得られた(メタ)アクリル系樹脂溶液にエステル化剤を添加し、(メタ)アクリル系樹脂とエステル化剤とを反応させることにより、(メタ)アクリル系樹脂をエステル化剤でエステル化させる方法(バッチ式反応法)、
(2)押出機などを用いて溶融状態の(メタ)アクリル系樹脂にエステル化剤を添加し、(メタ)アクリル系樹脂とエステル化剤とを反応させることにより、(メタ)アクリル系樹脂をエステル化させる方法(溶融混練法)
などが挙げられるが、本発明は、かかる例示のみに限定されるものではない。
As a specific method of esterifying the (meth) acrylic resin with an esterifying agent, for example, in the same manner as the method of imidizing the (meth) acrylic resin with an imidizing agent,
(1) The (meth) acrylic resin can be dissolved, the (meth) acrylic resin is dissolved in a solvent inert to esterification, and the resulting (meth) acrylic resin solution is esterified. By adding an agent and reacting the (meth) acrylic resin with the esterifying agent to esterify the (meth) acrylic resin with the esterifying agent (batch reaction method),
(2) An esterifying agent is added to the molten (meth) acrylic resin using an extruder or the like, and the (meth) acrylic resin and the esterifying agent are reacted to thereby change the (meth) acrylic resin. Esterification method (melt kneading method)
However, the present invention is not limited to such examples.
 エステル化剤としては、例えば、炭酸ジメチル、2,2-ジメトキシプロパン、ジメチルスルホキシド、トリエチルオルトホルメート、トリメチルオルトアセテート、トリメチルオルトホルメート、ジフェニルカーボネート、ジメチルサルフェート、メチルトルエンスルホネート、メチルトリフルオロメチルスルホネート、メチルアセテート、メタノール、エタノール、メチルイソシアネート、p-クロロフェニルイソシアネート、ジメチルカルボジイミド、ジメチル-tert-ブチルシリルクロライド、イソプロペニルアセテート、ジメチルウレア、テトラメチルアンモニウムハイドロオキサイド、ジメチルジエトキシシラン、テトラ-N-ブトキシシラン、ジメチル(トリメチルシラン)フォスファイト、トリメチルフォスファイト、トリメチルフォスフェート、トリクレジルフォスフェート、ジアゾメタン、エチレンオキサイド、プロピレンオキサイド、シクロヘキセンオキサイド、2-エチルヘキシルグリシジルエーテル、フェニルグリシジルエーテル、ベンジルグリシジルエーテルなどが挙げられるが、本発明は、かかる例示のみに限定されるものではない。これらのエステル化剤は、それぞれ単独で用いてもよく、2種類以上を併用してもよい。エステル化剤のなかでは、コストを低減させ、(メタ)アクリル系樹脂に着色などの悪影響が及ぼされないようにする観点から、炭酸ジメチルが好ましい。 Examples of the esterifying agent include dimethyl carbonate, 2,2-dimethoxypropane, dimethyl sulfoxide, triethyl orthoformate, trimethyl orthoacetate, trimethyl orthoformate, diphenyl carbonate, dimethyl sulfate, methyl toluene sulfonate, methyl trifluoromethyl sulfonate. , Methyl acetate, methanol, ethanol, methyl isocyanate, p-chlorophenyl isocyanate, dimethylcarbodiimide, dimethyl-tert-butylsilyl chloride, isopropenyl acetate, dimethylurea, tetramethylammonium hydroxide, dimethyldiethoxysilane, tetra-N-butoxy Silane, dimethyl (trimethylsilane) phosphite, trimethyl phosphite Examples include trimethyl phosphate, tricresyl phosphate, diazomethane, ethylene oxide, propylene oxide, cyclohexene oxide, 2-ethylhexyl glycidyl ether, phenyl glycidyl ether, and benzyl glycidyl ether, but the present invention is limited to such examples only. It is not something. These esterifying agents may be used alone or in combination of two or more. Among the esterifying agents, dimethyl carbonate is preferable from the viewpoint of reducing costs and preventing adverse effects such as coloring on the (meth) acrylic resin.
 (メタ)アクリル系樹脂100重量部あたりのエステル化剤の量は、通常、好ましくは0~32重量部、より好ましくは0~16重量部である。 The amount of the esterifying agent per 100 parts by weight of the (meth) acrylic resin is usually preferably 0 to 32 parts by weight, more preferably 0 to 16 parts by weight.
 なお、エステル化剤は、触媒と併用することができる。前記触媒としては、例えば、トリメチルアミン、トリエチルアミン、トリブチルアミンなどの脂肪族3級アミン、ジアザビシクロウンデセン、ジアザビシクロノネンなどの塩基触媒などが挙げられるが、本発明は、かかる例示のみに限定されるものではない。これらの触媒は、それぞれ単独で用いてもよく、2種類以上を併用してもよい。これらの触媒のなかでは、コストを低減させ、メタ)アクリル系樹脂に着色などの悪影響が及ぼされないようにする観点から、ジアザビシクロウンデセンが好ましい。前記触媒の量は、特に限定されないが、通常、(メタ)アクリル系樹脂100重量部あたり、好ましくは0~10重量部、より好ましくは0~5重量部、さらに好ましくは0~2重量部である。 The esterifying agent can be used in combination with a catalyst. Examples of the catalyst include aliphatic tertiary amines such as trimethylamine, triethylamine, and tributylamine, and base catalysts such as diazabicycloundecene and diazabicyclononene, but the present invention is limited only to such examples. Is not to be done. These catalysts may be used alone or in combination of two or more. Among these catalysts, diazabicycloundecene is preferable from the viewpoint of reducing costs and preventing adverse effects such as coloring on the meth) acrylic resin. The amount of the catalyst is not particularly limited, but is usually preferably 0 to 10 parts by weight, more preferably 0 to 5 parts by weight, and still more preferably 0 to 2 parts by weight per 100 parts by weight of the (meth) acrylic resin. is there.
 一般に、ポリメチルメタクリレート(PMMA)などの(メタ)アクリル系樹脂を1級アミンでイミド化させることによってグルタルイミド樹脂が得られるが、当該(メタ)アクリル系樹脂のイミド化の際には無水グルタル酸構造を経由することが知られている。 In general, a glutarimide resin is obtained by imidizing a (meth) acrylic resin such as polymethylmethacrylate (PMMA) with a primary amine. It is known to go through an acid structure.
 グルタルイミド構造の含有量が多い(メタ)アクリル系樹脂を製造するためには、無水グルタル酸構造を効率よく(メタ)アクリル系樹脂に生成させることが重要である。(メタ)アクリル系樹脂の無水グルタル酸化の反応促進には、高温かつ減圧条件が効果的であり、押出機を用いて(メタ)アクリル系樹脂の無水グルタル酸化を行なうことが知られている。 In order to produce a (meth) acrylic resin having a high content of glutarimide structure, it is important to efficiently produce a glutaric anhydride structure in the (meth) acrylic resin. High temperature and reduced pressure conditions are effective for promoting the reaction of anhydrous glutar oxidation of (meth) acrylic resins, and it is known to perform anhydrous glutaroxidation of (meth) acrylic resins using an extruder.
 本発明においては、まず、押出機などを用いて(メタ)アクリル系樹脂から無水グルタル酸樹脂を調製し、必要により生成した無水グルタル酸樹脂を単離した後、得られた無水グルタル酸樹脂をイミド化させた場合には、グルタルイミド構造を効率よく(メタ)アクリルに生成させることができる。この方法は、例えば、メチルアミンなどのアルキルアミンと比べて塩基性が小さいアニリンなどをイミド化剤として用いたときに有効な方法である。 In the present invention, first, a glutaric anhydride resin is prepared from a (meth) acrylic resin using an extruder or the like, and the glutaric anhydride resin produced as necessary is isolated. When imidized, a glutarimide structure can be efficiently generated in (meth) acryl. This method is effective when, for example, aniline having a smaller basicity than an alkylamine such as methylamine is used as an imidizing agent.
 (メタ)アクリル系樹脂から無水グルタル酸樹脂を調製する際には、無水グルタル酸構造への環化反応を促進させる観点から、触媒を用いることができる。 When preparing a glutaric anhydride resin from a (meth) acrylic resin, a catalyst can be used from the viewpoint of promoting a cyclization reaction to a glutaric anhydride structure.
 無水グルタル酸構造への環化反応を促進させる触媒として、酸、塩基およびそれらの塩からなる群より選ばれた少なくとも1種を用いることができる。酸、塩基およびそれらの塩の種類は、特に限定されない。当該触媒は、(メタ)アクリル系樹脂に着色などの悪影響が及ぼされず、当該(メタ)アクリル系樹脂の透明性が低下しない範囲内で使用することが好ましい。 As a catalyst for promoting the cyclization reaction to a glutaric anhydride structure, at least one selected from the group consisting of acids, bases and salts thereof can be used. Kinds of acids, bases and salts thereof are not particularly limited. The catalyst is preferably used within the range where the (meth) acrylic resin is not adversely affected such as coloring and the transparency of the (meth) acrylic resin is not lowered.
 酸としては、例えば、塩酸、硫酸、p-トルエンスルホン酸、リン酸、亜リン酸、フェニルホスホン酸、リン酸メチルなどが挙げられるが、本発明は、かかる例示のみに限定されるものではない。塩基としては、例えば、金属水酸化物、アミン類、イミン類、アルカリ金属誘導体、アルコキシド類、水酸化アンモニウム塩などが挙げられるが、本発明は、かかる例示のみに限定されるものではない。酸および塩基の塩としては、例えば、酢酸金属塩、ステアリン酸金属塩、炭酸金属塩などが挙げられるが、本発明は、かかる例示のみに限定されるものではない。これらの触媒のなかでは、少量で優れた反応促進効果を示すことから、アルカリ金属を有する化合物が好ましい。アルカリ金属を有する化合物としては、例えば、水酸化リチウム、水酸化ナトリウム、水酸化カリウムなどのアルカリ金属水酸化物、ナトリウムメトキシド、ナトリウムエトキシド、ナトリウムフェノキシド、カリウムメトキシド、カリウムエトキシド、カリウムフェノキシドなどのアルカリ金属アルコキシド化合物、酢酸リチウム、酢酸ナトリウム、酢酸カリウム、ステアリン酸ナトリウムなどの有機カルボン酸アルカリ金属塩などが挙げられるが、本発明は、かかる例示のみに限定されるものではない。これらのアルカリ金属を有する化合物のなかでは、水酸化ナトリウム、ナトリウムメトキシド、酢酸リチウムおよび酢酸ナトリウムが好ましく、ナトリウムメトキシドおよび酢酸リチウムがより好ましい。 Examples of the acid include hydrochloric acid, sulfuric acid, p-toluenesulfonic acid, phosphoric acid, phosphorous acid, phenylphosphonic acid, methyl phosphate, and the like, but the present invention is not limited to such examples. . Examples of the base include metal hydroxides, amines, imines, alkali metal derivatives, alkoxides, ammonium hydroxide salts, and the like, but the present invention is not limited to such examples. Examples of the acid and base salts include metal acetates, metal stearates, metal carbonates, etc., but the present invention is not limited to such examples. Among these catalysts, a compound having an alkali metal is preferable because an excellent reaction promoting effect is exhibited even in a small amount. Examples of the compound having an alkali metal include alkali metal hydroxides such as lithium hydroxide, sodium hydroxide and potassium hydroxide, sodium methoxide, sodium ethoxide, sodium phenoxide, potassium methoxide, potassium ethoxide and potassium phenoxide. Examples of the alkali metal alkoxide compound such as lithium acetate, sodium acetate, potassium acetate, and sodium stearate include organic carboxylic acid alkali metal salts, but the present invention is not limited to such examples. Among these compounds having an alkali metal, sodium hydroxide, sodium methoxide, lithium acetate and sodium acetate are preferable, and sodium methoxide and lithium acetate are more preferable.
 前記触媒の量は、特に限定されないが、通常、(メタ)アクリル系樹脂100重量部あたり、0.01~1重量部程度であることが好ましい。 The amount of the catalyst is not particularly limited, but it is usually preferably about 0.01 to 1 part by weight per 100 parts by weight of the (meth) acrylic resin.
 なお、(メタ)アクリル系樹脂には、本発明の目的が阻害されない範囲内で、他の熱可塑性樹脂が含まれていてもよい。他の熱可塑性樹脂としては、例えば、ポリエチレン、ポリプロピレン、エチレン-プロピレン共重合体、ポリ(4-メチル-1-ペンテン)などのオレフィン系ポリマー;塩化ビニル、塩素化ビニル樹脂などのハロゲン含有ポリマー;ポリメチルメタクレートなどの(メタ)アクリル系ポリマー;ポリスチレン、スチレン-メタクリル酸メチル共重合体、スチレン-アクリロニトリル共重合体、アクリロニトリル-ブタジエン-スチレンブロック共重合体などのスチレン系ポリマー;ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレートなどのポリエステル;ポリ乳酸、ポリブチレンサクシネートなどの生分解性ポリエステル;ナイロン6、ナイロン66、ナイロン610などのポリアミド;ポリアセタール;ポリカーボネート;ポリフェニレンオキシド;ポリフェニレンスルフィド;ポリエーテルエーテルケトン;ポリエーテルニトリル;ポリサルホン;ポリエーテルサルホン;ポリオキシベンジレン;ポリアミドイミド;ポリブタジエン系ゴム、アクリル系ゴムなどのゴムなどが挙げられるが、本発明は、かかる例示のみに限定されるものではない。 The (meth) acrylic resin may contain other thermoplastic resins as long as the object of the present invention is not impaired. Other thermoplastic resins include, for example, olefinic polymers such as polyethylene, polypropylene, ethylene-propylene copolymer, poly (4-methyl-1-pentene); halogen-containing polymers such as vinyl chloride and chlorinated vinyl resins; (Meth) acrylic polymers such as polymethyl methacrylate; styrene polymers such as polystyrene, styrene-methyl methacrylate copolymer, styrene-acrylonitrile copolymer, acrylonitrile-butadiene-styrene block copolymer; polyethylene terephthalate, poly Polyesters such as butylene terephthalate and polyethylene naphthalate; biodegradable polyesters such as polylactic acid and polybutylene succinate; polyamides such as nylon 6, nylon 66, nylon 610; polyaceter Polycarbonate, polyphenylene oxide, polyphenylene sulfide, polyether ether ketone, polyether nitrile, polysulfone, polyether sulfone, polyoxybenzylene, polyamideimide, and rubbers such as polybutadiene rubber and acrylic rubber. The invention is not limited to such examples.
 また、(メタ)アクリル系樹脂には、本発明の目的が阻害されない範囲内で、例えば、ヒンダードフェノール系酸化防止剤、リン系酸化防止剤、イオウ系酸化防止剤などの酸化防止剤;耐光安定化剤、耐候安定化剤、熱安定化剤などの安定化剤;ガラス繊維、炭素繊維などの補強材;近赤外線吸収剤;トリス(ジブロモプロピル)ホスフェート、トリアリルホスフェート、酸化アンチモンなどの難燃化剤;アニオン系界面活性剤、カチオン系界面活性剤、ノニオン界面活性剤などの帯電防止剤;無機顔料、有機顔料、染料などの着色剤;有機充填材、無機充填材などの充填材;樹脂改質剤;可塑剤;滑剤などが含まれていてもよい。 In addition, the (meth) acrylic resin includes, for example, antioxidants such as hindered phenol antioxidants, phosphorus antioxidants, sulfur antioxidants, and the like within the range in which the object of the present invention is not hindered; Stabilizers such as stabilizers, weathering stabilizers and heat stabilizers; reinforcing materials such as glass fibers and carbon fibers; near infrared absorbers; difficulties such as tris (dibromopropyl) phosphate, triallyl phosphate and antimony oxide An antistatic agent such as an anionic surfactant, a cationic surfactant, or a nonionic surfactant; a colorant such as an inorganic pigment, an organic pigment, or a dye; a filler such as an organic filler or an inorganic filler; Resin modifiers; plasticizers; lubricants and the like may be included.
 本発明の光学フィルムは、(メタ)アクリル系樹脂を用い、例えば、Tダイ法、インフレーション法などの溶融押出成形法、キャスト成形法、プレス成形法などによって製造することができる。光学フィルムを溶融押出法によって製造する場合、例えば、単軸押出機、二軸押出機などを用いることができる。 The optical film of the present invention can be manufactured using a (meth) acrylic resin by, for example, a melt extrusion molding method such as a T-die method or an inflation method, a cast molding method, a press molding method, or the like. When the optical film is produced by a melt extrusion method, for example, a single screw extruder, a twin screw extruder, or the like can be used.
 以上のようにして本発明の光学フィルムが得られるが、本発明の光学フィルムは、機械的強度を高める観点から、一軸延伸または二軸延伸されていることが好ましく、二軸延伸されていることがより好ましい。本発明の光学フィルムを二軸延伸させる方法としては、例えば、逐次二軸延伸法、同時二軸延伸法などが挙げられるが、本発明は、かかる例示のみに限定されるものではない。 As described above, the optical film of the present invention can be obtained. From the viewpoint of increasing the mechanical strength, the optical film of the present invention is preferably uniaxially stretched or biaxially stretched, and biaxially stretched. Is more preferable. Examples of the method for biaxially stretching the optical film of the present invention include a sequential biaxial stretching method and a simultaneous biaxial stretching method. However, the present invention is not limited to such examples.
 本発明の光学フィルムを延伸させる際の延伸温度は、光学フィルムに破断を発生させずに当該光学フィルムを延伸させるとともに、十分に分子配向させる観点から、好ましくは(メタ)アクリル系樹脂のガラス転移温度よりも20℃低い温度から当該ガラス転移温度よりも50℃高い温度までの温度範囲、より好ましくは(メタ)アクリル系樹脂のガラス転移温度よりも10℃低い温度から当該ガラス転移温度よりも30℃高い温度までの温度範囲である。 The stretching temperature when stretching the optical film of the present invention is preferably a glass transition of a (meth) acrylic resin from the viewpoint of stretching the optical film without causing breakage of the optical film and sufficiently aligning the molecules. A temperature range from a temperature 20 ° C. lower than the temperature to a temperature 50 ° C. higher than the glass transition temperature, more preferably a temperature 10 ° C. lower than the glass transition temperature of the (meth) acrylic resin to 30 higher than the glass transition temperature. It is a temperature range up to a high temperature.
 光学フィルムの延伸倍率は、縦方向および当該縦方向に直交する横方向のいずれの方向においても、機械的強度を高める観点から、それぞれ、1.5~3倍程度であることが好ましく、1.5~2.5倍程度であることがより好ましい。 The stretching ratio of the optical film is preferably about 1.5 to 3 times from the viewpoint of increasing the mechanical strength in both the longitudinal direction and the transverse direction perpendicular to the longitudinal direction. More preferably, it is about 5 to 2.5 times.
 延伸された光学フィルムの寸法変化率は、例えば、ITOフィルムなどの二次加工が施されたフィルムの耐久性を向上させる観点から、好ましくは1.0%以下、より好ましくは0.7%以下、さらに好ましくは0.5%以下、さらに一層好ましくは0.2%以下である。 The dimensional change rate of the stretched optical film is preferably 1.0% or less, more preferably 0.7% or less, from the viewpoint of improving the durability of a film subjected to secondary processing such as an ITO film. More preferably, it is 0.5% or less, and still more preferably 0.2% or less.
 本発明の光学フィルムの厚さは、その用途などによって異なるので一概には決定することができない。例えば、本発明の光学フィルムを液晶表示装置、有機EL表示装置などの画像表示装置に用いられる保護フィルム、反射防止フィルム、偏光フィルムなどの用途に用いる場合には、当該光学フィルムの厚さは、好ましくは1~250μm、より好ましくは10~100μm、さらに好ましくは20~80μmである。また、例えば、本発明の光学フィルムをITO蒸着フィルム、銀ナノワイヤーフィルム、メタルメッシュフィルムなどに用いられる透明導電性フィルムなどの用途に用いる場合には、当該光学フィルムの厚さは、好ましくは20~400μm、より好ましくは30~350μm、さらに好ましくは40~300μmである。 The thickness of the optical film of the present invention cannot be determined unconditionally because it varies depending on its use. For example, when the optical film of the present invention is used for a liquid crystal display device, a protective film used for an image display device such as an organic EL display device, an antireflection film, a polarizing film, the thickness of the optical film is The thickness is preferably 1 to 250 μm, more preferably 10 to 100 μm, still more preferably 20 to 80 μm. In addition, for example, when the optical film of the present invention is used for a transparent conductive film used for an ITO vapor-deposited film, a silver nanowire film, a metal mesh film, or the like, the thickness of the optical film is preferably 20 It is ˜400 μm, more preferably 30 to 350 μm, still more preferably 40 to 300 μm.
 なお、本明細書において、光学フィルムの厚さは、例えば、デジマチックマイクロメーター〔(株)ミツトヨ製〕を用いて測定したときの厚さである。 In addition, in this specification, the thickness of an optical film is a thickness when it measures using a Digimatic micrometer [product made from Mitutoyo Corporation], for example.
 本発明の光学フィルムの面内位相差Reは、光学フィルムの屈折率の異方性を抑制し、複屈折を小さくする観点から、好ましくは20nm以下、より好ましくは10nm以下、さらに好ましくは5nm以下、さらに一層好ましくは3nm以下である。また、本発明の光学フィルムの厚さ方向位相差Rthの絶対値は、面内位相差Reと同様に、光学フィルムの屈折率の異方性を抑制し、複屈折を小さくする観点から、好ましくは20nm以下、より好ましくは10nm以下、さらに好ましくは5nm以下、さらに一層好ましくは3nm以下である。 The in-plane retardation Re of the optical film of the present invention is preferably 20 nm or less, more preferably 10 nm or less, and further preferably 5 nm or less, from the viewpoint of suppressing the refractive index anisotropy of the optical film and reducing the birefringence. Still more preferably, it is 3 nm or less. Further, the absolute value of the thickness direction retardation Rth of the optical film of the present invention is preferably from the viewpoint of suppressing the anisotropy of the refractive index of the optical film and reducing the birefringence similarly to the in-plane retardation Re. Is 20 nm or less, more preferably 10 nm or less, still more preferably 5 nm or less, and even more preferably 3 nm or less.
 本明細書において、波長590nmの光に対する光学フィルムの面内位相差Reおよび厚さ方向位相差Rthは、位相差フィルム・光学材料検査装置〔大塚電子(株)製、品番:RETS-100〕を用い、入射角40°の条件で測定したときの値である。 In this specification, the in-plane retardation Re and the thickness direction retardation Rth of the optical film with respect to light having a wavelength of 590 nm are calculated using the retardation film / optical material inspection apparatus [manufactured by Otsuka Electronics Co., Ltd., product number: RETS-100]. It is a value when used and measured under the condition of an incident angle of 40 °.
 光学フィルムの面内位相差Reは、式:
   〔面内位相差Re〕=(nx-ny)×d
〔式中、nxは波長590nmの光に対する遅相軸方向(光学フィルムの面内において最大の屈折率を示す方向)の屈折率、nyは進相軸方向(光学フィルムの面内におけるnxと垂直な方向)の屈折率、nyはフィルムの面内における進相軸方向の屈折率、dは光学フィルムの厚さ(nm)を示す〕
に基づいて求められる。
The in-plane retardation Re of the optical film is expressed by the formula:
[In-plane retardation Re] = (nx−ny) × d
[Where nx is the refractive index in the slow axis direction (the direction showing the maximum refractive index in the plane of the optical film) for light having a wavelength of 590 nm, and ny is the fast axis direction (perpendicular to nx in the plane of the optical film) The refractive index in the azimuth direction), ny is the refractive index in the fast axis direction in the plane of the film, and d is the thickness (nm) of the optical film.
Based on.
 また、厚さ方向位相差Rthは、式:
   〔厚さ方向位相差Rth〕={(nx+ny)/2-nz}×d
〔式中、nxは波長590nmの光に対する遅相軸方向の屈折率、nyは進相軸方向の屈折率、nzはフィルムの厚さ方向の屈折率、dはフィルムの厚さ(nm)〕
に基づいて求められる。
Further, the thickness direction retardation Rth is expressed by the formula:
[Thickness direction retardation Rth] = {(nx + ny) / 2−nz} × d
[Where nx is the refractive index in the slow axis direction for light of wavelength 590 nm, ny is the refractive index in the fast axis direction, nz is the refractive index in the film thickness direction, and d is the film thickness (nm)].
Based on.
 本発明の光学フィルムの波長590nmの光に対する光弾性係数の絶対値は、光漏れ、特に高温高湿度の環境下における光漏れを抑制する観点から、好ましくは10×10-12Pa-1以下、より好ましくは6×10-12Pa-1以下である。 The absolute value of the photoelastic coefficient with respect to light having a wavelength of 590 nm of the optical film of the present invention is preferably 10 × 10 −12 Pa −1 or less from the viewpoint of suppressing light leakage, particularly light leakage in a high-temperature and high-humidity environment. More preferably, it is 6 × 10 −12 Pa −1 or less.
 本明細書において、波長590nmの光に対する光学フィルムの光弾性係数は、光学フィルムの延伸方向を長辺として20mm×50mmに切り出してサンプルを作製し、このサンプルをエリプソメーター〔日本分光(株)製、品番:M-150〕の光弾性計測ユニットに装着し、延伸方向と平行に5~25Nの応力荷重を印加しながら複屈折を3点で計測し、波長590nmの光を用い、応力に対する複屈折の傾きを光弾性係数として求めたときの値である。 In this specification, the photoelastic coefficient of the optical film with respect to light with a wavelength of 590 nm is cut into 20 mm × 50 mm with the stretching direction of the optical film as the long side, and a sample is prepared. This sample is an ellipsometer [manufactured by JASCO Corporation , Product number: M-150], and birefringence is measured at three points while applying a stress load of 5 to 25 N parallel to the stretching direction. It is a value when the inclination of refraction is obtained as a photoelastic coefficient.
 本発明の光学フィルムの60~100℃の温度範囲における線膨張係数は、高温環境下における寸法変化を抑制する観点から、好ましくは80×10-6-1以下、より好ましくは70×10-6-1以下である。 The linear expansion coefficient in the temperature range of 60 to 100 ° C. of the optical film of the present invention is preferably 80 × 10 −6 K −1 or less, more preferably 70 × 10 from the viewpoint of suppressing dimensional change in a high temperature environment. 6 K -1 or less.
 本明細書において、光学フィルムの60~100℃における線膨張係数は、熱機械測定装置〔(株)島津製作所製、品番:TMA-60〕を用い、以下の測定条件にて60℃から100℃における傾きとして求めた。
〔測定条件〕
・試料の大きさ:5mm×20mm(延伸方向を長辺とする)
・試料の前処理:60℃で15時間の前処理を行なった後、室温まで冷却
・測定加重:5g
・昇温速度:5℃/min
In this specification, the linear expansion coefficient of the optical film at 60 to 100 ° C. is determined from 60 ° C. to 100 ° C. under the following measurement conditions using a thermomechanical measuring apparatus (manufactured by Shimadzu Corporation, product number: TMA-60). It was calculated as the slope at.
〔Measurement condition〕
・ Sample size: 5 mm × 20 mm (the long side is the stretching direction)
Sample pretreatment: After pretreatment at 60 ° C. for 15 hours, cooling to room temperature Measurement weight: 5 g
・ Raising rate: 5 ° C / min
 本発明の光学フィルムの吸水率は、例えば、ITOフィルムへの成形加工性を向上させる観点から、好ましくは3.0%以下、より好ましくは2.5%以下、さらに好ましくは2.0%以下である。光学フィルムの吸水率は、以下の実施例に記載の方法に基づいて測定したときの値である。 The water absorption of the optical film of the present invention is preferably 3.0% or less, more preferably 2.5% or less, and even more preferably 2.0% or less, from the viewpoint of improving the molding processability to an ITO film, for example. It is. The water absorption rate of the optical film is a value when measured based on the method described in the following examples.
 本発明の光学フィルムの表面には、必要により、コーティング層が形成されていてもよい。コーティング層としては、例えば、帯電防止層、粘着剤層、接着剤層、易接着層、防眩(ノングレア)層、光触媒層、防汚層、反射防止層、ハードコート層、紫外線遮蔽層、熱線遮蔽層、電磁波遮蔽層、ガスバリヤー層などが挙げられるが、本発明は、かかる例示のみに限定されるものではない。 A coating layer may be formed on the surface of the optical film of the present invention as necessary. Examples of the coating layer include an antistatic layer, an adhesive layer, an adhesive layer, an easy-adhesion layer, an antiglare layer (non-glare) layer, a photocatalyst layer, an antifouling layer, an antireflection layer, a hard coat layer, an ultraviolet shielding layer, and a heat ray. Although a shielding layer, an electromagnetic wave shielding layer, a gas barrier layer, etc. are mentioned, this invention is not limited only to this illustration.
 以上説明したように、本発明の光学フィルムは、式(I)で表わされる繰返し単位に基づく弱い正の複屈折を有し、式(II)で表わされる繰返し単位に基づく弱い負の複屈折を有するが、両者の複屈折が互いに打消しあうので、全体として低複屈折を有する。また、本発明の光学フィルムは、式(I)で表わされる繰返し単位を有するので、耐熱性に優れており、スチレンに代表される芳香族ビニル単量体に基づく繰返し単位を実質的に有しない場合には、式(II)で表わされる繰返し単位に基づく特徴である硬い表面硬度および低い光弾性係数を有するという優れた性質を有する。 As described above, the optical film of the present invention has a weak positive birefringence based on the repeating unit represented by the formula (I) and a weak negative birefringence based on the repeating unit represented by the formula (II). However, since the birefringence of the two cancels each other out, it has a low birefringence as a whole. Further, since the optical film of the present invention has a repeating unit represented by the formula (I), it has excellent heat resistance, and has substantially no repeating unit based on an aromatic vinyl monomer typified by styrene. In some cases, it has excellent properties of having a hard surface hardness and a low photoelastic coefficient, which are characteristics based on the repeating unit represented by the formula (II).
 本発明の光学フィルムは、例えば、光ディスクの保護フィルム、液晶表示装置などの画像表示装置の偏光板に用いられる偏光子保護フィルム、位相差フィルム、視野角補償フィルム、光拡散フィルム、反射フィルム、反射防止フィルム、防眩フィルム、輝度向上フィルム、タッチパネル用導電フィルム、拡散板、導光体、プリズムシートなどの用途に用いることが期待されるものである。したがって、本発明の光学フィルムは、例えば、液晶表示装置などの画像表示装置、静電容量式タッチパネルなどの用途に好適に使用することが期待される。 The optical film of the present invention is, for example, a protective film for an optical disc, a polarizer protective film used for a polarizing plate of an image display device such as a liquid crystal display device, a retardation film, a viewing angle compensation film, a light diffusion film, a reflective film, a reflective film. It is expected to be used for applications such as a prevention film, an antiglare film, a brightness enhancement film, a conductive film for a touch panel, a diffusion plate, a light guide, and a prism sheet. Therefore, the optical film of the present invention is expected to be suitably used for applications such as image display devices such as liquid crystal display devices and capacitive touch panels.
 また、本発明の光学フィルムの少なくとも一方表面に、例えば、透明導電層、光学調整層、透明ハードコート層、防眩層、反射防止層などが形成されていてもよい。 Further, for example, a transparent conductive layer, an optical adjustment layer, a transparent hard coat layer, an antiglare layer, an antireflection layer, and the like may be formed on at least one surface of the optical film of the present invention.
 本発明の光学フィルムの少なくとも一方表面に透明導電層が形成された光学フィルムは、透明導電性フィルムとして用いることができる。透明導電層としては、例えば、インジウム-スズ系酸化物(ITO)層などの赤外線を反射する性質を有する無機化合物層、銀、銅、ニッケル、タングステンなどの金属からなる金属メッシュ層などが挙げられるが、本発明は、かかる例示のみに限定されるものではない。 The optical film having a transparent conductive layer formed on at least one surface of the optical film of the present invention can be used as a transparent conductive film. Examples of the transparent conductive layer include an inorganic compound layer having a property of reflecting infrared rays, such as an indium-tin oxide (ITO) layer, and a metal mesh layer made of a metal such as silver, copper, nickel, and tungsten. However, the present invention is not limited to such examples.
 透明導電層が無機化合物層である場合、当該透明導電層の厚さは、導電性および光透過性を向上させる観点から、好ましくは0.001~10μm、より好ましくは0.005~1μm、さらに好ましくは0.01~0.5μmである。また、透明導電層が金属メッシュ層である場合、当該透明導電層の厚さは、導電性および光透過性を向上させる観点から、好ましくは0.1~30μm、より好ましくは0.1~10μm、さらに好ましくは1~5μmである。 When the transparent conductive layer is an inorganic compound layer, the thickness of the transparent conductive layer is preferably 0.001 to 10 μm, more preferably 0.005 to 1 μm, and more preferably from the viewpoint of improving conductivity and light transmittance. Preferably, it is 0.01 to 0.5 μm. When the transparent conductive layer is a metal mesh layer, the thickness of the transparent conductive layer is preferably from 0.1 to 30 μm, more preferably from 0.1 to 10 μm, from the viewpoint of improving conductivity and light transmittance. More preferably, it is 1 to 5 μm.
 前記光学調整層は、入射される光線の透過率または反射率を適宜調整するための層である。光学調整層は、例えば、特開2006-201450号公報などに記載されているように、屈折率が相対的に低い低屈折率層と屈折率が相対的に高い高屈折率層とを交互に積層させることによって形成させることができる。 The optical adjustment layer is a layer for appropriately adjusting the transmittance or reflectance of incident light. As described in, for example, Japanese Patent Application Laid-Open No. 2006-201450, the optical adjustment layer is formed by alternately arranging a low refractive index layer having a relatively low refractive index and a high refractive index layer having a relatively high refractive index. It can be formed by laminating.
 次に本発明を実施例に基づいてさらに詳細に説明するが、本発明はかかる実施例のみに限定されるものではない。 Next, the present invention will be described in more detail based on examples, but the present invention is not limited to such examples.
実施例1
(A)(メタ)アクリル系樹脂の調製
 2L容のオートクレーブにメチルメタクリレート〔住友化学(株)製、商品名:スミペックスEX、重量平均分子量:14万〕29.5重量部、アニリン27.3重量部およびトルエン33.2重量部を仕込んだ。このオートクレーブを240℃まで昇温させ、3時間撹拌を行なうことにより、反応溶液を得た。
Example 1
(A) Preparation of (meth) acrylic resin Methyl methacrylate (manufactured by Sumitomo Chemical Co., Ltd., trade name: Sumipex EX, weight average molecular weight: 140,000) 29.5 parts by weight, aniline 27.3 parts by weight in a 2 liter autoclave Parts and 33.2 parts by weight of toluene were charged. The autoclave was heated to 240 ° C. and stirred for 3 hours to obtain a reaction solution.
 次に、前記で得られた反応溶液をバレル温度260℃、回転数70rpm、減圧度13.3~400hPa(10~300mmHg)、リアベント数が1個、フォアベント数が2個のベントタイプスクリュー二軸押出し機(孔径:15mm、L/D:45)内に樹脂量換算で300g/hの処理速度で導入し、この押出し機内で脱揮を行ない、押出すことにより、透明な(メタ)アクリル系樹脂のペレットを得た。前記で得られた(メタ)アクリル系樹脂の重量平均分子量は、10万であった。 Next, the reaction solution obtained above was subjected to a vent type screw having a barrel temperature of 260 ° C., a rotation speed of 70 rpm, a degree of vacuum of 13.3 to 400 hPa (10 to 300 mmHg), a rear vent number of 1, and a forevent number of 2. Transparent (meth) acrylic is introduced into a shaft extruder (hole diameter: 15 mm, L / D: 45) at a processing rate of 300 g / h in terms of resin amount, devolatilized and extruded in this extruder. A resin pellet was obtained. The weight average molecular weight of the (meth) acrylic resin obtained above was 100,000.
 前記で得られた(メタ)アクリル系樹脂は、式(I)において、R1がメチル基であり、R2が水素原子であり、R3がフェニル基である繰返し単位および式(II)において、R4が水素原子であり、R5がメチル基であり、R6がメチル基である繰返し単位を有し、ガラス転移温度が142℃である(メタ)アクリル系樹脂であった。当該(メタ)アクリル系樹脂のイミド化率、式(II)で表わされる繰返し単位の含有率および応力光学係数(Cr)を以下の方法に基づいて調べた。その結果、当該(メタ)アクリル系樹脂のイミド化率は9.6%、式(II)で表わされる繰返し単位の含有率は82.1重量%、応力光学係数(Cr)は-0.01×10-9Pa-1であった。 The (meth) acrylic resin obtained above has a repeating unit in the formula (I) wherein R 1 is a methyl group, R 2 is a hydrogen atom, and R 3 is a phenyl group. , R 4 is a hydrogen atom, R 5 is a methyl group, R 6 is a (meth) acrylic resin having a repeating unit having a methyl group and having a glass transition temperature of 142 ° C. The imidation ratio of the (meth) acrylic resin, the content of repeating units represented by the formula (II), and the stress optical coefficient (Cr) were examined based on the following method. As a result, the imidization ratio of the (meth) acrylic resin was 9.6%, the content of the repeating unit represented by the formula (II) was 82.1% by weight, and the stress optical coefficient (Cr) was −0.01. × 10 -9 Pa -1
 なお、以下の実施例および比較例においても、(メタ)アクリル系樹脂のイミド化率、式(II)で表わされる繰返し単位の含有率および応力光学係数(Cr)を以下の方法に基づいて調べた。 In the following examples and comparative examples, the imidization rate of (meth) acrylic resin, the content of repeating units represented by formula (II), and the stress optical coefficient (Cr) were examined based on the following methods. It was.
〔イミド化率〕
 (メタ)アクリル系樹脂のイミド化率は、1803cm-1付近のカルボン酸無水物基に由来する吸収と、1720cm-1付近のエステルカルボニル基に由来する吸収と、1680cm-1付近のイミドカルボニル基に由来する吸収との強度比からイミド化率を決定した。ここで、イミド化率は、全カルボニル基においてイミドカルボニル基が占める割合である。
[Imidation rate]
(Meth) imidization ratio of acrylic resin, 1803Cm the absorption derived from a carboxylic acid anhydride group in the vicinity of -1, the absorption derived from the ester carbonyl group in the vicinity of 1720 cm -1, an imide carbonyl groups near 1680 cm -1 The imidization ratio was determined from the intensity ratio with the absorption derived from. Here, the imidization rate is a ratio of imide carbonyl groups in all carbonyl groups.
〔式(II)で表わされる繰返し単位の含有率〕
 (メタ)アクリル系樹脂において、式(II)で表わされる繰返し単位の含有率は、NMR測定装置(Varian社製、商品名:Unity Plus400)を用いて1H-NMRスペクトルを測定することによって求めた。
[Content of repeating unit represented by formula (II)]
In the (meth) acrylic resin, the content of the repeating unit represented by the formula (II) is determined by measuring a 1 H-NMR spectrum using an NMR measuring apparatus (trade name: Unity Plus 400, manufactured by Varian). It was.
 より具体的には、重アセトンに(メタ)アクリル系樹脂(重量:a)と、内標として1,1,2,2-テトラクロロエタン(分子量:167.85、重量:b)を溶解させ、内標(5.9ppm、2プロトン分)とエステルカルボニル基に隣接したR6のプロトンに由来するピークの面積比〔エステルカルボニル基に隣接したR6のプロトンに由来するピーク面積Aと内標プロトンに由来するピーク面積Bとの比(ピーク面積A/ピーク面積B)〕から式(II)で表わされる繰返し単位の含有率を算出した。 More specifically, (meth) acrylic resin (weight: a) and 1,1,2,2-tetrachloroethane (molecular weight: 167.85, weight: b) as an internal standard are dissolved in heavy acetone, Area ratio of peak derived from internal standard (5.9 ppm, 2 protons) and R 6 proton adjacent to ester carbonyl group [peak area A derived from R 6 proton adjacent to ester carbonyl group and internal standard proton From the ratio to the peak area B derived from (peak area A / peak area B)], the content of the repeating unit represented by the formula (II) was calculated.
 例えば、式(II)で表わされる繰返し単位のR4が水素原子であり、R5がメチル基であり、R6がメチル基である場合(繰返し単位の分子量は100.12)、式(II)で表わされる繰返し単位の含有率(重量%)は、式:
〔式(II)で表わされる繰返し単位の含有率(重量%)〕
=[(ピーク面積A/ピーク面積B)×(2/3)×(b/167.85)×(1/100.12)]×(100/a)
に基づいて求めることができる。
For example, when R 4 of the repeating unit represented by the formula (II) is a hydrogen atom, R 5 is a methyl group, and R 6 is a methyl group (the molecular weight of the repeating unit is 100.12), the formula (II The content (% by weight) of the repeating unit represented by
[Content of repeating unit represented by formula (II) (% by weight)]
= [(Peak area A / Peak area B) × (2/3) × (b / 167.85) × (1 / 100.12)] × (100 / a)
Can be determined based on
〔応力光学係数(Cr)〕
 (メタ)アクリル系樹脂の応力光学係数(Cr)は、未延伸フィルムを60mm×20mmの長方形に切り出し、1N/mm2以下の応力となるように重りを選択し、未延伸フィルムの下端に取り付けた。
[Stress optical coefficient (Cr)]
The stress optical coefficient (Cr) of the (meth) acrylic resin is obtained by cutting an unstretched film into a 60 mm × 20 mm rectangle, selecting a weight so that the stress is 1 N / mm 2 or less, and attaching it to the lower end of the unstretched film. It was.
 この未延伸フィルムを(メタ)アクリル系樹脂のガラス転移温度よりも3℃高い温度で定温乾燥機〔アズワン(株)製、品番:DOV-450A〕にチャック間距離40mmでセットし、当該温度で約30分間保持して延伸を行なった後、加熱を停止し、(メタ)アクリル系樹脂のガラス転移温度よりも40℃低い温度となるまで約1℃/minの冷却速度で冷却した。その後、得られた延伸フィルムを定温乾燥機から取り出し、延伸後のフィルムの長さ、厚さおよび重りの質量を測定し、延伸後のフィルムの面内位相差Reを測定した。 This unstretched film was set at a temperature of 3 ° C. higher than the glass transition temperature of the (meth) acrylic resin at a constant temperature dryer (manufactured by ASONE, product number: DOV-450A) with a distance between chucks of 40 mm. After stretching by holding for about 30 minutes, heating was stopped, and cooling was performed at a cooling rate of about 1 ° C./min until the temperature became 40 ° C. lower than the glass transition temperature of the (meth) acrylic resin. Then, the obtained stretched film was taken out from the constant temperature dryer, and the length, thickness and weight of the stretched film were measured, and the in-plane retardation Re of the stretched film was measured.
 さらに、応力が1N/mm2以下となるように4種類の質量の重りを用いて前記と同様にして延伸後のフィルムの長さ、厚さおよび重りの質量を測定し、延伸後のフィルムの面内位相差Reを測定した。 Further, the length, thickness and weight of the stretched film were measured in the same manner as described above using four kinds of weights so that the stress was 1 N / mm 2 or less, and the film was stretched. In-plane retardation Re was measured.
 以上の結果に基づき、高分子学会編「透明プラスチックの最前線(ポリマーフロンティア21シリーズ)」、(株)エヌ・ティー・エス、2006年10月、37-44頁に記載の測定方法に基づいて応力光学係数(Cr)を算出した。より具体的には、Δn(nx-ny)をy軸に、σをx軸にプロットし、最小二乗法で得られた直線の傾きを求め、その傾きの値を応力光学係数(Cr)とした。なお、nxはフィルムの面内における遅相軸方向(フィルム面内において最大の屈折率を示す方向)の屈折率、nyはフィルムの面内における進相軸方向(フィルム面内においてnxと垂直な方向)の屈折率、σは延伸に対する応力(N/m2)である。 Based on the above results, based on the measurement method described in Polymer Science Society, “Frontier of Transparent Plastics (Polymer Frontier 21 Series)”, NTS, October 2006, pp. 37-44. The stress optical coefficient (Cr) was calculated. More specifically, Δn (nx−ny) is plotted on the y-axis, σ is plotted on the x-axis, the slope of the straight line obtained by the least square method is obtained, and the value of the slope is expressed as the stress optical coefficient (Cr). did. Note that nx is the refractive index in the slow axis direction in the plane of the film (direction showing the maximum refractive index in the film plane), and ny is the fast axis direction in the plane of the film (perpendicular to nx in the film plane). (Direction) is a refractive index, σ, is a stress (N / m 2 ) on stretching.
(B)光学フィルムの製造
 前記で得られたペレットを単軸押出機(孔径:20mm、L/D:25)に入れ、Tダイ温度を270℃に調節し、コートハンガータイプTダイ(幅150mm)から溶融押出しを行ない、ロール温度140℃の冷却ロール上に吐出し、厚さ160μmの未延伸フィルムを作製した。
(B) Production of optical film The pellets obtained above were put into a single screw extruder (hole diameter: 20 mm, L / D: 25), the T die temperature was adjusted to 270 ° C, and the coat hanger type T die (width 150 mm) ) Was melt extruded and discharged onto a cooling roll having a roll temperature of 140 ° C. to produce an unstretched film having a thickness of 160 μm.
 次に、得られた未延伸フィルムを96mm×96mmに切り出し、逐次二軸延伸機〔(株)東洋精機製作所製、品番:X-6S〕を用い、157℃の温度にて240mm/minの延伸速度で縦方向(MD方向)および横方向(TD方向)の順にそれぞれ延伸倍率が2倍となるように逐次二軸延伸を行なった。 Next, the obtained unstretched film was cut into 96 mm × 96 mm and stretched at a temperature of 157 ° C. at 240 mm / min using a sequential biaxial stretching machine (manufactured by Toyo Seiki Seisakusho, product number: X-6S). Biaxial stretching was sequentially performed so that the stretching ratio was doubled in the order of the machine direction (MD direction) and the transverse direction (TD direction).
 前記で得られた延伸フィルムを速やかに試験装置から取り出して冷却することにより、厚さ40μmの光学フィルムを得た。 The stretched film obtained above was quickly taken out from the test apparatus and cooled to obtain an optical film having a thickness of 40 μm.
 前記で得られた光学フィルムの面内位相差、厚さ方向位相差、光弾性係数および線膨張係数を調べた。その結果を表1に示す。 The in-plane retardation, thickness direction retardation, photoelastic coefficient, and linear expansion coefficient of the optical film obtained above were examined. The results are shown in Table 1.
 また、前記で得られた光学フィルムの物性として、ヘイズ、全光線透過率、MIT耐折度試験回数、フィルムインパクト強度および鉛筆硬度を以下の方法に従って調べた。その結果を表1に示す。また、耐熱性の指標として(メタ)アクリル系樹脂のガラス転移温度を表1に記載した。 Further, as physical properties of the optical film obtained above, haze, total light transmittance, MIT folding resistance test number, film impact strength and pencil hardness were examined according to the following methods. The results are shown in Table 1. Further, Table 1 shows the glass transition temperature of the (meth) acrylic resin as an index of heat resistance.
(1)ヘイズおよび全光線透過率
 ヘイズおよび全光線透過率は、濁度計〔日本電色工業(株)製、品番:NDH 5000〕を用いて測定した。
(1) Haze and total light transmittance Haze and total light transmittance were measured using a turbidimeter [Nippon Denshoku Industries Co., Ltd., product number: NDH 5000].
(2)MIT耐折度試験回数
 MIT耐折度試験回数は、JIS P8115に準じて光学フィルムを縦15mm、長さ90mmに裁断し、得られた試験片を用いてMIT耐折度試験機〔テスター産業(株)製、品番:BE-201〕にて、温度23℃、相対湿度50%の雰囲気中で荷重200gを加えて測定した。
(2) MIT fold resistance test number The MIT fold resistance test number was determined by cutting an optical film into 15 mm length and 90 mm length according to JIS P8115, and using the obtained test piece, an MIT fold resistance test machine [ Measured by applying a load of 200 g in an atmosphere having a temperature of 23 ° C. and a relative humidity of 50% using a tester industry, product number: BE-201].
(3)フィルムインパクト強度
 フィルムインパクト強度は、フィルムインパクトテスター〔テスター産業(株)製、品番:BU-302〕を用い、温度23℃、相対湿度50%の雰囲気中でASTM D3420に準じて測定した。
(3) Film impact strength The film impact strength was measured in accordance with ASTM D3420 in an atmosphere at a temperature of 23 ° C. and a relative humidity of 50% using a film impact tester [Tester Sangyo Co., Ltd., product number: BU-302]. .
(4)鉛筆硬度
 JIS K5600-5-4(1999年)に準じ、鉛筆引っかき硬度試験機〔(株)安田精機製作所製〕を用い、荷重750gにて測定した。
(4) Pencil Hardness According to JIS K5600-5-4 (1999), a pencil scratch hardness tester (manufactured by Yasuda Seiki Seisakusho Co., Ltd.) was used and measured at a load of 750 g.
実施例2
(A)(メタ)アクリル系樹脂の調製
 実施例1において、オートクレーブの反応温度を245℃に変更したこと以外は、実施例1と同様にして(メタ)アクリル系樹脂を得た。得られた(メタ)アクリル系樹脂の重量平均分子量は10万であった。
Example 2
(A) Preparation of (meth) acrylic resin In Example 1, a (meth) acrylic resin was obtained in the same manner as in Example 1 except that the reaction temperature of the autoclave was changed to 245 ° C. The weight average molecular weight of the obtained (meth) acrylic resin was 100,000.
 前記で得られた(メタ)アクリル系樹脂は、式(I)において、R1がメチル基であり、R2が水素原子であり、R3がフェニル基である繰返し単位および式(II)において、R4が水素原子であり、R5がメチル基であり、R6がメチル基である繰返し単位を有し、ガラス転移温度が152℃である(メタ)アクリル系樹脂であった。当該(メタ)アクリル系樹脂のイミド化率、式(II)で表わされる繰返し単位の含有率および応力光学係数(Cr)を実施例1と同様にして調べた。その結果、当該(メタ)アクリル系樹脂のイミド化率は20.9%、式(II)で表わされる繰返し単位の含有率は60.4重量%、応力光学係数(Cr)は0.02×10-9Pa-1であった。 The (meth) acrylic resin obtained above has a repeating unit in the formula (I) wherein R 1 is a methyl group, R 2 is a hydrogen atom, and R 3 is a phenyl group. , R 4 is a hydrogen atom, R 5 is a methyl group, R 6 is a (meth) acrylic resin having a repeating unit having a methyl group and a glass transition temperature of 152 ° C. The imidization ratio of the (meth) acrylic resin, the content of repeating units represented by the formula (II), and the stress optical coefficient (Cr) were examined in the same manner as in Example 1. As a result, the imidation ratio of the (meth) acrylic resin was 20.9%, the content of the repeating unit represented by the formula (II) was 60.4% by weight, and the stress optical coefficient (Cr) was 0.02 × 10 −9 Pa −1 .
(B)光学フィルムの製造
 実施例1において、(メタ)アクリル系樹脂として前記で得られた(メタ)アクリル系樹脂を用い、Tダイ温度を280℃に、ロール温度を150℃に、延伸温度を167℃に変更したこと以外は、実施例1と同様にして厚さ40μmの光学フィルムを得た。
(B) Production of optical film In Example 1, the (meth) acrylic resin obtained above was used as the (meth) acrylic resin, the T-die temperature was 280 ° C, the roll temperature was 150 ° C, and the stretching temperature. An optical film having a thickness of 40 μm was obtained in the same manner as in Example 1 except that was changed to 167 ° C.
 前記で得られた光学フィルムの面内位相差、厚さ方向位相差、光弾性係数および線膨張係数を調べた。その結果を表1に示す。 The in-plane retardation, thickness direction retardation, photoelastic coefficient, and linear expansion coefficient of the optical film obtained above were examined. The results are shown in Table 1.
 また、前記で得られた光学フィルムの物性を実施例1と同様にして調べた。その結果を表1に示す。 The physical properties of the optical film obtained above were examined in the same manner as in Example 1. The results are shown in Table 1.
実施例3
(A)(メタ)アクリル系樹脂の調製
 実施例1において、オートクレーブの反応温度を247℃に、バレル温度を270℃に変更したこと以外は、実施例1と同様にして(メタ)アクリル系樹脂を得た。得られた(メタ)アクリル系樹脂の重量平均分子量は9万であった。
Example 3
(A) Preparation of (meth) acrylic resin (meth) acrylic resin in Example 1, except that the reaction temperature of the autoclave was changed to 247 ° C and the barrel temperature was changed to 270 ° C. Got. The obtained (meth) acrylic resin had a weight average molecular weight of 90,000.
 前記で得られた(メタ)アクリル系樹脂は、式(I)において、R1がメチル基であり、R2が水素原子であり、R3がフェニル基である繰返し単位および式(II)において、R4が水素原子であり、R5がメチル基であり、R6がメチル基である繰返し単位を有し、ガラス転移温度が160℃である(メタ)アクリル系樹脂であった。当該(メタ)アクリル系樹脂のイミド化率、式(II)で表わされる繰返し単位の含有率および応力光学係数(Cr)を実施例1と同様にして調べた。その結果、当該(メタ)アクリル系樹脂のイミド化率は23.9%、式(II)で表わされる繰返し単位の含有率は55.6重量%、応力光学係数(Cr)は0.04×10-9Pa-1であった。 The (meth) acrylic resin obtained above has a repeating unit in the formula (I) wherein R 1 is a methyl group, R 2 is a hydrogen atom, and R 3 is a phenyl group. , R 4 is a hydrogen atom, R 5 is a methyl group, R 6 is a (meth) acrylic resin having a repeating unit having a methyl group and a glass transition temperature of 160 ° C. The imidization ratio of the (meth) acrylic resin, the content of repeating units represented by the formula (II), and the stress optical coefficient (Cr) were examined in the same manner as in Example 1. As a result, the imidation ratio of the (meth) acrylic resin was 23.9%, the content of the repeating unit represented by the formula (II) was 55.6% by weight, and the stress optical coefficient (Cr) was 0.04 × 10 −9 Pa −1 .
(B)光学フィルムの製造
 実施例1において、(メタ)アクリル系樹脂として前記で得られた(メタ)アクリル系樹脂を用い、Tダイ温度を285℃に、ロール温度を155℃に、延伸温度を175℃に変更したこと以外は、実施例1と同様にして厚さ40μmの光学フィルムを得た。
(B) Production of optical film In Example 1, the (meth) acrylic resin obtained above was used as the (meth) acrylic resin, the T-die temperature was 285 ° C, the roll temperature was 155 ° C, and the stretching temperature. An optical film having a thickness of 40 μm was obtained in the same manner as in Example 1 except that was changed to 175 ° C.
 前記で得られた光学フィルムの面内位相差、厚さ方向位相差、光弾性係数および線膨張係数を調べた。その結果を表1に示す。 The in-plane retardation, thickness direction retardation, photoelastic coefficient, and linear expansion coefficient of the optical film obtained above were examined. The results are shown in Table 1.
 また、前記で得られた光学フィルムの物性を実施例1と同様にして調べた。その結果を表1に示す。 The physical properties of the optical film obtained above were examined in the same manner as in Example 1. The results are shown in Table 1.
実施例4
(A)(メタ)アクリル系樹脂の調製
 実施例1において、オートクレーブの反応温度を250℃に、バレル温度を270℃に変更したこと以外は、実施例1と同様にして(メタ)アクリル系樹脂を得た。得られた(メタ)アクリル系樹脂の重量平均分子量は9万であった。
Example 4
(A) Preparation of (meth) acrylic resin A (meth) acrylic resin was prepared in the same manner as in Example 1, except that the reaction temperature of the autoclave was changed to 250 ° C and the barrel temperature was changed to 270 ° C. Got. The obtained (meth) acrylic resin had a weight average molecular weight of 90,000.
 前記で得られた(メタ)アクリル系樹脂は、式(I)において、R1がメチル基であり、R2が水素原子であり、R3がフェニル基である繰返し単位および式(II)において、R4が水素原子であり、R5がメチル基であり、R6がメチル基である繰返し単位を有し、ガラス転移温度が167℃である(メタ)アクリル系樹脂であった。当該(メタ)アクリル系樹脂のイミド化率、式(II)で表わされる繰返し単位の含有率および応力光学係数(Cr)を実施例1と同様にして調べた。その結果、当該(メタ)アクリル系樹脂のイミド化率は30.9%、式(II)で表わされる繰返し単位の含有率は45.5重量%、応力光学係数(Cr)は0.05×10-9Pa-1であった。 The (meth) acrylic resin obtained above has a repeating unit in the formula (I) wherein R 1 is a methyl group, R 2 is a hydrogen atom, and R 3 is a phenyl group. , R 4 is a hydrogen atom, R 5 is a methyl group, R 6 is a (meth) acrylic resin having a repeating unit having a methyl group and a glass transition temperature of 167 ° C. The imidization ratio of the (meth) acrylic resin, the content of repeating units represented by the formula (II), and the stress optical coefficient (Cr) were examined in the same manner as in Example 1. As a result, the imidation ratio of the (meth) acrylic resin was 30.9%, the content of the repeating unit represented by the formula (II) was 45.5% by weight, and the stress optical coefficient (Cr) was 0.05 ×. 10 −9 Pa −1 .
(B)光学フィルムの製造
 実施例1において、(メタ)アクリル系樹脂として前記で得られた(メタ)アクリル系樹脂を用い、Tダイ温度を295℃に、ロール温度を165℃に、延伸温度を182℃に変更したこと以外は、実施例1と同様にして厚さ40μmの光学フィルムを得た。
(B) Production of optical film In Example 1, the (meth) acrylic resin obtained above was used as the (meth) acrylic resin, the T-die temperature was 295 ° C, the roll temperature was 165 ° C, and the stretching temperature An optical film having a thickness of 40 μm was obtained in the same manner as in Example 1 except that was changed to 182 ° C.
 前記で得られた光学フィルムの面内位相差、厚さ方向位相差、光弾性係数および線膨張係数を調べた。その結果を表1に示す。 The in-plane retardation, thickness direction retardation, photoelastic coefficient, and linear expansion coefficient of the optical film obtained above were examined. The results are shown in Table 1.
 また、前記で得られた光学フィルムの物性を実施例1と同様にして調べた。その結果を表1に示す。 The physical properties of the optical film obtained above were examined in the same manner as in Example 1. The results are shown in Table 1.
実施例5
(A)(メタ)アクリル系樹脂の調製
 実施例1で得られた(メタ)アクリル系樹脂100重量部に対して紫外線吸収剤として6,6’,6’’-(1,3,5-トリアジン-2,4,6-トリイル)トリス(3-ヘキシルオキシ-2-メチルフェノール)〔(株)ADEKA製、商品名:アデカスタブ(登録商標)LA-F70〕0.66重量部の割合で紫外線吸収剤を(メタ)アクリル系樹脂に添加し、二軸押出し機を用いて260℃で混練し、押出すことにより、透明な(メタ)アクリル系樹脂のペレットを得た。得られた(メタ)アクリル系樹脂の重量平均分子量は、10万であった。
Example 5
(A) Preparation of (meth) acrylic resin 6,6 ′, 6 ″-(1,3,5-) as an ultraviolet absorber with respect to 100 parts by weight of the (meth) acrylic resin obtained in Example 1 Triazine-2,4,6-triyl) tris (3-hexyloxy-2-methylphenol) [manufactured by ADEKA, trade name: ADK STAB (registered trademark) LA-F70], ultraviolet rays at a ratio of 0.66 parts by weight The absorbent was added to the (meth) acrylic resin, kneaded at 260 ° C. using a twin screw extruder, and extruded to obtain transparent (meth) acrylic resin pellets. The weight average molecular weight of the obtained (meth) acrylic resin was 100,000.
 前記で得られた(メタ)アクリル系樹脂は、式(I)において、R1がメチル基であり、R2が水素原子であり、R3がフェニル基である繰返し単位および式(II)において、R4が水素原子であり、R5がメチル基であり、R6がメチル基である繰返し単位を有し、ガラス転移温度が142℃である(メタ)アクリル系樹脂であった。当該(メタ)アクリル系樹脂のイミド化率、式(II)で表わされる繰返し単位の含有率および応力光学係数(Cr)を実施例1と同様にして調べた。その結果、当該(メタ)アクリル系樹脂のイミド化率は9.6%、式(II)で表わされる繰返し単位の含有率は82.1重量%、応力光学係数(Cr)は0.03×10-9Pa-1であった。 The (meth) acrylic resin obtained above has a repeating unit in the formula (I) wherein R 1 is a methyl group, R 2 is a hydrogen atom, and R 3 is a phenyl group. , R 4 is a hydrogen atom, R 5 is a methyl group, R 6 is a (meth) acrylic resin having a repeating unit having a methyl group and having a glass transition temperature of 142 ° C. The imidization ratio of the (meth) acrylic resin, the content of repeating units represented by the formula (II), and the stress optical coefficient (Cr) were examined in the same manner as in Example 1. As a result, the imidation ratio of the (meth) acrylic resin was 9.6%, the content of the repeating unit represented by the formula (II) was 82.1% by weight, and the stress optical coefficient (Cr) was 0.03 × 10 −9 Pa −1 .
(B)光学フィルムの製造
 実施例1において、(メタ)アクリル系樹脂として前記で得られた(メタ)アクリル系樹脂を用いたこと以外は、実施例1と同様にして厚さ40μmの光学フィルムを得た。
(B) Production of optical film In Example 1, an optical film having a thickness of 40 μm was used in the same manner as in Example 1 except that the (meth) acrylic resin obtained above was used as the (meth) acrylic resin. Got.
 前記で得られた光学フィルムの面内位相差、厚さ方向位相差、光弾性係数および線膨張係数を調べた。その結果を表1に示す。 The in-plane retardation, thickness direction retardation, photoelastic coefficient, and linear expansion coefficient of the optical film obtained above were examined. The results are shown in Table 1.
 また、前記で得られた光学フィルムの物性を実施例1と同様にして調べた。その結果を表1に示す。 The physical properties of the optical film obtained above were examined in the same manner as in Example 1. The results are shown in Table 1.
実施例6
(A)(メタ)アクリル系樹脂の調製
 攪拌装置、温度センサー、冷却管および窒素ガス導入管を備えた反応釜に、メタクリル酸メチル79.4重量部、メタクリル酸20.6重量部、重合溶媒としてトルエン65.2重量部とメタノール16.3重量部との混合溶媒、および酸化防止剤〔(株)ADEKA製、商品名:アデカスタブ2112〕0.05重量部、連鎖移動剤としてn-ドデシルメルカプタン0.2重量部を仕込み、反応釜内に窒素ガスを通じながら80℃まで昇温させた。昇温に伴う還流が始まった時点で、重合開始剤としてジメチル-2,2’-アゾビス(2-メチルプロピオネート)〔和光純薬工業(株)製、商品名:V-601〕0.10重量部を反応釜内に添加するとともに、ジメチル-2,2’-アゾビス(2-メチルプロピオネート)〔和光純薬工業(株)製、商品名:V-601〕0.20重量部を2時間かけて反応釜内に滴下しながら、約80~85℃の還流下で溶液重合を行ない、ジメチル-2,2’-アゾビス(2-メチルプロピオネート)の滴下終了後に、さらに4時間かけて熟成を行なった。得られた重合体溶液に含まれる(メタ)アクリル系樹脂におけるメタクリル酸に由来の繰返し単位の含有率は、21.2重量%であった。また、当該(メタ)アクリル系樹脂の重量平均分子量は、10万であった。
Example 6
(A) Preparation of (meth) acrylic resin In a reaction kettle equipped with a stirrer, temperature sensor, cooling pipe and nitrogen gas introduction pipe, 79.4 parts by weight of methyl methacrylate, 20.6 parts by weight of methacrylic acid, polymerization solvent As a mixed solvent of 65.2 parts by weight of toluene and 16.3 parts by weight of methanol, and 0.05 parts by weight of an antioxidant (manufactured by ADEKA, trade name: ADK STAB 2112), n-dodecyl mercaptan as a chain transfer agent 0.2 part by weight was charged, and the temperature was raised to 80 ° C. while passing nitrogen gas through the reaction kettle. At the time when the reflux accompanying the temperature rise starts, dimethyl-2,2′-azobis (2-methylpropionate) [manufactured by Wako Pure Chemical Industries, Ltd., trade name: V-601] is used as a polymerization initiator. 10 parts by weight is added to the reaction kettle, and dimethyl-2,2′-azobis (2-methylpropionate) [manufactured by Wako Pure Chemical Industries, Ltd., trade name: V-601] 0.20 part by weight Was added dropwise to the reaction kettle over 2 hours, and solution polymerization was performed under reflux at about 80 to 85 ° C., and after completion of the addition of dimethyl-2,2′-azobis (2-methylpropionate), an additional 4 Aged over time. The content of repeating units derived from methacrylic acid in the (meth) acrylic resin contained in the obtained polymer solution was 21.2% by weight. Moreover, the weight average molecular weight of the (meth) acrylic resin was 100,000.
 次に、前記で得られた重合体溶液100重量部とアニリン92.5重量部を均一に混合し、得られた混合物をバレル温度270℃、回転数70rpm、減圧度13.3~400hPa(10~300mmHg)、リアベント数が1個、フォアベント数が2個のベントタイプスクリュー二軸押出し機(孔径:15mm、L/D:45)内に樹脂量換算で300g/hの処理速度で導入し、この押出し機内で脱揮を行ない、押出すことにより、透明な(メタ)アクリル系樹脂のペレットを得た。得られた(メタ)アクリル系樹脂の重量平均分子量は、9万であった。 Next, 100 parts by weight of the polymer solution obtained above and 92.5 parts by weight of aniline were uniformly mixed, and the resulting mixture was subjected to a barrel temperature of 270 ° C., a rotation speed of 70 rpm, and a degree of vacuum of 13.3 to 400 hPa (10 To 300mmHg), introduced into a vent type screw twin screw extruder (hole diameter: 15mm, L / D: 45) with one rear vent and two fore vents at a processing rate of 300g / h in terms of resin amount. Then, devolatilization was performed in the extruder, and extrusion was performed to obtain transparent (meth) acrylic resin pellets. The obtained (meth) acrylic resin had a weight average molecular weight of 90,000.
 前記で得られた(メタ)アクリル系樹脂は、式(I)において、R1がメチル基であり、R2が水素原子であり、R3がフェニル基である繰返し単位および式(II)において、R4が水素原子であり、R5がメチル基であり、R6がメチル基である繰返し単位を有し、ガラス転移温度が154℃である(メタ)アクリル系樹脂であった。当該(メタ)アクリル系樹脂のイミド化率、式(II)で表わされる繰返し単位の含有率および応力光学係数(Cr)を実施例1と同様にして調べた。その結果、当該(メタ)アクリル系樹脂のイミド化率は23.1%、式(II)で表わされる繰返し単位の含有率は56.9重量%、応力光学係数(Cr)は0.04×10-9Pa-1であった。 The (meth) acrylic resin obtained above has a repeating unit in the formula (I) wherein R 1 is a methyl group, R 2 is a hydrogen atom, and R 3 is a phenyl group. , R 4 is a hydrogen atom, R 5 is a methyl group, R 6 is a methyl group, has a repeating unit, and has a glass transition temperature of 154 ° C. (meth) acrylic resin. The imidization ratio of the (meth) acrylic resin, the content of repeating units represented by the formula (II), and the stress optical coefficient (Cr) were examined in the same manner as in Example 1. As a result, the imidation ratio of the (meth) acrylic resin was 23.1%, the content of the repeating unit represented by the formula (II) was 56.9% by weight, and the stress optical coefficient (Cr) was 0.04 × 10 −9 Pa −1 .
(B)光学フィルムの製造
 実施例1において、(メタ)アクリル系樹脂として前記で得られた(メタ)アクリル系樹脂を用い、Tダイ温度を285℃に、ロール温度を150℃に、延伸温度を169℃に変更したこと以外は、実施例1と同様にして厚さ40μmの光学フィルムを得た。
(B) Production of optical film In Example 1, the (meth) acrylic resin obtained above was used as the (meth) acrylic resin, the T-die temperature was 285 ° C, the roll temperature was 150 ° C, and the stretching temperature. Was changed to 169 ° C., and an optical film having a thickness of 40 μm was obtained in the same manner as in Example 1.
 前記で得られた光学フィルムの面内位相差、厚さ方向位相差、光弾性係数および線膨張係数を調べた。その結果を表1に示す。 The in-plane retardation, thickness direction retardation, photoelastic coefficient, and linear expansion coefficient of the optical film obtained above were examined. The results are shown in Table 1.
 また、前記で得られた光学フィルムの物性を実施例1と同様にして調べた。その結果を表1に示す。 The physical properties of the optical film obtained above were examined in the same manner as in Example 1. The results are shown in Table 1.
実施例7
(A)(メタ)アクリル系樹脂の調製
 実施例6で得られた重合体溶液をバレル温度260℃、回転数70rpm、減圧度13.3~400hPa(10~300mmHg)、リアベント数が1個、フォアベント数が2個のベントタイプスクリュー二軸押出し機(孔径:15mm、L/D:45)内に樹脂量換算で300g/hの処理速度で導入し、この押出し機内で脱揮を行ない、押出すことにより、透明な(メタ)アクリル系樹脂のペレットを得た。得られた(メタ)アクリル系樹脂の重量平均分子量は10万であり、ガラス転移温度は136℃であった。
Example 7
(A) Preparation of (meth) acrylic resin The polymer solution obtained in Example 6 was subjected to a barrel temperature of 260 ° C., a rotation speed of 70 rpm, a degree of vacuum of 13.3 to 400 hPa (10 to 300 mmHg), and a rear vent number of 1. Introduced into a vent type screw twin screw extruder (hole diameter: 15 mm, L / D: 45) with a fore vent number of 2 at a processing speed of 300 g / h in terms of resin amount, and devolatilized in this extruder. By extrusion, transparent (meth) acrylic resin pellets were obtained. The obtained (meth) acrylic resin had a weight average molecular weight of 100,000 and a glass transition temperature of 136 ° C.
 前記で得られたペレットをバレル温度270℃、回転数300rpm、減圧度13.3~400hPa(10~300mmHg)、ベント数が1個のベントタイプスクリュー二軸押出し機(孔径:15mm、L/D:45)内に樹脂量換算で300g/hの処理速度でホッパーから導入し、ホッパーの後よりアニリンを液添ポンプにて277g/hの投入速度で注入し、押出すことにより、透明な(メタ)アクリル系樹脂のペレットを得た。得られた(メタ)アクリル系樹脂の重量平均分子量は、9万であった。 The pellet obtained above is a vent type screw twin screw extruder (hole diameter: 15 mm, L / D) having a barrel temperature of 270 ° C., a rotation speed of 300 rpm, a degree of vacuum of 13.3 to 400 hPa (10 to 300 mmHg), and a single vent. : 45) was introduced from the hopper at a processing rate of 300 g / h in terms of resin amount, and aniline was injected from the hopper at a feeding rate of 277 g / h from the hopper, and extruded to give a transparent ( A pellet of (meth) acrylic resin was obtained. The obtained (meth) acrylic resin had a weight average molecular weight of 90,000.
 前記で得られた(メタ)アクリル系樹脂は、式(I)において、R1がメチル基であり、R2が水素原子であり、R3がフェニル基である繰返し単位および式(II)において、R4が水素原子であり、R5がメチル基であり、R6がメチル基である繰返し単位を有し、ガラス転移温度が148℃である(メタ)アクリル系樹脂であった。当該(メタ)アクリル系樹脂のイミド化率、式(II)で表わされる繰返し単位の含有率および応力光学係数(Cr)を実施例1と同様にして調べた。その結果、当該(メタ)アクリル系樹脂のイミド化率は16.8%、式(II)で表わされる繰返し単位の含有率は67.4重量%、応力光学係数(Cr)は0.01×10-9Pa-1であった。 The (meth) acrylic resin obtained above has a repeating unit in the formula (I) wherein R 1 is a methyl group, R 2 is a hydrogen atom, and R 3 is a phenyl group. , R 4 is a hydrogen atom, R 5 is a methyl group, R 6 is a (meth) acrylic resin having a repeating unit having a methyl group and a glass transition temperature of 148 ° C. The imidization ratio of the (meth) acrylic resin, the content of repeating units represented by the formula (II), and the stress optical coefficient (Cr) were examined in the same manner as in Example 1. As a result, the imidation ratio of the (meth) acrylic resin was 16.8%, the content of the repeating unit represented by the formula (II) was 67.4% by weight, and the stress optical coefficient (Cr) was 0.01 × 10 −9 Pa −1 .
(B)光学フィルムの製造
 実施例1において、(メタ)アクリル系樹脂として前記で得られた(メタ)アクリル系樹脂を用い、Tダイ温度を275℃に、ロール温度を145℃に、延伸温度を163℃に変更したこと以外は、実施例1と同様にして厚さ40μmの光学フィルムを得た。
(B) Production of optical film In Example 1, the (meth) acrylic resin obtained above was used as the (meth) acrylic resin, the T-die temperature was 275 ° C, the roll temperature was 145 ° C, and the stretching temperature. An optical film having a thickness of 40 μm was obtained in the same manner as in Example 1 except that was changed to 163 ° C.
 前記で得られた光学フィルムの面内位相差、厚さ方向位相差、光弾性係数および線膨張係数を調べた。その結果を表1に示す。 The in-plane retardation, thickness direction retardation, photoelastic coefficient, and linear expansion coefficient of the optical film obtained above were examined. The results are shown in Table 1.
 また、前記で得られた光学フィルムの物性を実施例1と同様にして調べた。その結果を表1に示す。 The physical properties of the optical film obtained above were examined in the same manner as in Example 1. The results are shown in Table 1.
比較例1
(A)(メタ)アクリル系樹脂の調製
 2L容のオートクレーブにメチルメタクリレート-スチレン共重合体〔新日鉄住金化学(株)製、商品名:エスチレンMS600、重量平均分子量:13万〕16重量部、40%メチルアミン-メタノール溶液3重量部およびトルエン24重量部を仕込んだ。このオートクレーブを230℃まで昇温させ、2時間撹拌を行なった。
Comparative Example 1
(A) Preparation of (meth) acrylic resin Methyl methacrylate-styrene copolymer (manufactured by Nippon Steel & Sumikin Chemical Co., Ltd., trade name: Estyrene MS600, weight average molecular weight: 130,000) 16 parts by weight in a 2 L autoclave 3 parts by weight of a% methylamine-methanol solution and 24 parts by weight of toluene were charged. The autoclave was heated to 230 ° C. and stirred for 2 hours.
(B)光学フィルムの製造
 前記で得られた反応溶液をバレル温度260℃、回転数70rpm、減圧度13.3~400hPa(10~300mmHg)、リアベント数が1個、フォアベント数が2個のベントタイプスクリュー二軸押出し機(孔径:15mm、L/D:45)に樹脂量換算で300g/hの処理速度で導入し、この押出し機内で脱揮を行ない、押出すことにより、透明な樹脂のペレットを得た。得られたメチルメタクリレート-スチレン系イミド樹脂のガラス転移温度は143℃であり、重量平均分子量は9万であった。
(B) Production of optical film The reaction solution obtained above had a barrel temperature of 260 ° C., a rotation speed of 70 rpm, a degree of vacuum of 13.3 to 400 hPa (10 to 300 mmHg), a rear vent number of 1, and a forevent number of 2 Transparent resin by introducing into a vent type screw twin screw extruder (hole diameter: 15 mm, L / D: 45) at a processing rate of 300 g / h in terms of resin amount, devolatilizing and extruding in this extruder Pellets were obtained. The resulting methyl methacrylate-styrene imide resin had a glass transition temperature of 143 ° C. and a weight average molecular weight of 90,000.
 次に、前記で得られたメチルメタクリレート-スチレン系イミド樹脂のイミド化率および応力光学係数(Cr)を実施例1と同様にして測定した。その結果、当該メチルメタクリレート-スチレン系イミド樹脂のイミド化率は89.5%、応力光学係数(Cr)は-1.72×10-9Pa-1であった。 Next, the imidization ratio and stress optical coefficient (Cr) of the methyl methacrylate-styrene imide resin obtained above were measured in the same manner as in Example 1. As a result, the imidation ratio of the methyl methacrylate-styrene imide resin was 89.5%, and the stress optical coefficient (Cr) was −1.72 × 10 −9 Pa −1 .
 また、前記で得られたメチルメタクリレート-スチレン系イミド樹脂におけるスチレン含量を以下の方法に基づいて測定したところ、当該スチレン含量は、44.9重量%であった。 Further, when the styrene content in the methyl methacrylate-styrene imide resin obtained above was measured based on the following method, the styrene content was 44.9% by weight.
〔スチレン含量の測定方法〕
 樹脂のスチレン含量は、NMR測定装置〔Varian社製、商品名:Unity Plus400〕を用い、1H-NMRスペクトルを測定し、低磁場側の芳香環に由来する水素原子の面積と高磁場側の脂肪族に由来する水素原子の面積比に基づいて測定した。
[Method for measuring styrene content]
The styrene content of the resin was determined by measuring the 1 H-NMR spectrum using an NMR measurement apparatus (manufactured by Varian, trade name: Unity Plus 400), and measuring the area of hydrogen atoms derived from the aromatic ring on the low magnetic field side and the high magnetic field side. Measurement was based on the area ratio of aliphatic hydrogen atoms.
(B)光学フィルムの製造
 実施例1において、(メタ)アクリル系樹脂の代わりに前記で得られたメチルメタクリレート-スチレン系イミド樹脂を用い、延伸温度を158℃に変更したこと以外は、実施例1と同様にして厚さ40μmの光学フィルムを得た。
(B) Production of optical film In Example 1, except that the methyl methacrylate-styrene imide resin obtained above was used in place of the (meth) acrylic resin and the stretching temperature was changed to 158 ° C. In the same manner as in Example 1, an optical film having a thickness of 40 μm was obtained.
 前記で得られた光学フィルムの面内位相差、厚さ方向位相差、光弾性係数および線膨張係数を調べた。その結果を表1に示す。 The in-plane retardation, thickness direction retardation, photoelastic coefficient, and linear expansion coefficient of the optical film obtained above were examined. The results are shown in Table 1.
 また、前記で得られた光学フィルムの物性を実施例1と同様にして調べた。その結果を表1に示す。 The physical properties of the optical film obtained above were examined in the same manner as in Example 1. The results are shown in Table 1.
比較例2
(A)(メタ)アクリル系樹脂の調製
 比較例1において、メチルメタクリレート-スチレン共重合体をメチルメタクリレート-スチレン共重合体〔新日鉄住金化学(株)製、商品名:エスチレンMS700、重量平均分子量:13万〕に変更し、40%メチルアミン-メタノール溶液の量を3.5重量部に変更したこと以外は、比較例1と同様にしてメチルメタクリレート-スチレン系イミド樹脂を得た。得られたメチルメタクリレート-スチレン系イミド樹脂の重量平均分子量は9万であり、ガラス転移温度は152℃であった。また、当該メチルメタクリレート-スチレン系イミド樹脂のイミド化率は90.8%、応力光学係数(Cr)は0.09×10-9Pa-1であった。
Comparative Example 2
(A) Preparation of (meth) acrylic resin In Comparative Example 1, methyl methacrylate-styrene copolymer was changed to methyl methacrylate-styrene copolymer [manufactured by Nippon Steel & Sumikin Chemical Co., Ltd., trade name: Estyrene MS700, weight average molecular weight: 130,000] and a methyl methacrylate-styrene imide resin was obtained in the same manner as in Comparative Example 1 except that the amount of the 40% methylamine-methanol solution was changed to 3.5 parts by weight. The obtained methyl methacrylate-styrene imide resin had a weight average molecular weight of 90,000 and a glass transition temperature of 152 ° C. The methyl methacrylate-styrene imide resin had an imidation ratio of 90.8% and a stress optical coefficient (Cr) of 0.09 × 10 −9 Pa −1 .
 また、前記で得られたメチルメタクリレート-スチレン系イミド樹脂におけるスチレン含量を比較例1と同様にして測定したところ、当該スチレン含量は、34.4重量%であった。 Further, when the styrene content in the methyl methacrylate-styrene imide resin obtained above was measured in the same manner as in Comparative Example 1, the styrene content was 34.4% by weight.
(B)光学フィルムの製造
 比較例1において、メチルメタクリレート-スチレン系イミド樹脂として、前記で得られたメチルメタクリレート-スチレン系イミド樹脂を用い、Tダイ温度を280℃に、ロール温度を150℃に、延伸温度を167℃に変更したこと以外は、比較例1と同様にして厚さ40μmの光学フィルムを得た。
(B) Production of optical film In Comparative Example 1, the methyl methacrylate-styrene imide resin obtained above was used as the methyl methacrylate-styrene imide resin, the T-die temperature was 280 ° C, and the roll temperature was 150 ° C. An optical film having a thickness of 40 μm was obtained in the same manner as in Comparative Example 1 except that the stretching temperature was changed to 167 ° C.
 前記で得られた光学フィルムの面内位相差、厚さ方向位相差、光弾性係数および線膨張係数を調べた。その結果を表1に示す。 The in-plane retardation, thickness direction retardation, photoelastic coefficient, and linear expansion coefficient of the optical film obtained above were examined. The results are shown in Table 1.
 また、前記で得られた光学フィルムの物性を実施例1と同様にして調べた。その結果を表1に示す。 The physical properties of the optical film obtained above were examined in the same manner as in Example 1. The results are shown in Table 1.
比較例3
(A)(メタ)アクリル系樹脂の調製
 比較例1において、メチルメタクリレート-スチレン共重合体をメチルメタクリレート-スチレン共重合体〔新日鉄住金化学(株)製、商品名:エスチレンMS800、重量平均分子量:13万〕に変更し、40%メチルアミン-メタノール溶液の量を4重量部に変更したこと以外は、比較例1と同様にしてメチルメタクリレート-スチレン系イミド樹脂を得た。得られたメチルメタクリレート-スチレン系イミド樹脂の重量平均分子量は9万であり、ガラス転移温度は160℃であった。また、当該メチルメタクリレート-スチレン系イミド樹脂のイミド化率は92.6%、応力光学係数(Cr)は0.93×10-9Pa-1であった。
Comparative Example 3
(A) Preparation of (meth) acrylic resin In Comparative Example 1, methyl methacrylate-styrene copolymer was changed to methyl methacrylate-styrene copolymer [manufactured by Nippon Steel & Sumikin Chemical Co., Ltd., trade name: Estyrene MS800, weight average molecular weight: 130,000] and a methyl methacrylate-styrene imide resin was obtained in the same manner as in Comparative Example 1 except that the amount of the 40% methylamine-methanol solution was changed to 4 parts by weight. The resulting methyl methacrylate-styrene imide resin had a weight average molecular weight of 90,000 and a glass transition temperature of 160 ° C. The imidation ratio of the methyl methacrylate-styrene imide resin was 92.6%, and the stress optical coefficient (Cr) was 0.93 × 10 −9 Pa −1 .
 また、前記で得られたメチルメタクリレート-スチレン共重合体におけるスチレン含量を比較例1と同様にして測定したところ、当該スチレン含量は、23.5重量%であった。 Further, when the styrene content in the methyl methacrylate-styrene copolymer obtained above was measured in the same manner as in Comparative Example 1, the styrene content was 23.5% by weight.
(B)光学フィルムの製造
 比較例1において、メチルメタクリレート-スチレン系イミド樹脂として、前記で得られたメチルメタクリレート-スチレン系イミド樹脂を用い、Tダイ温度を285℃に、ロール温度を155℃に、延伸温度を175℃に変更したこと以外は、比較例1と同様にして厚さ40μmの光学フィルムを得た。
(B) Production of optical film In Comparative Example 1, the methyl methacrylate-styrene imide resin obtained above was used as the methyl methacrylate-styrene imide resin, the T die temperature was 285 ° C, and the roll temperature was 155 ° C. An optical film having a thickness of 40 μm was obtained in the same manner as in Comparative Example 1 except that the stretching temperature was changed to 175 ° C.
 前記で得られた光学フィルムの面内位相差、厚さ方向位相差、光弾性係数および線膨張係数を調べた。その結果を表1に示す。 The in-plane retardation, thickness direction retardation, photoelastic coefficient, and linear expansion coefficient of the optical film obtained above were examined. The results are shown in Table 1.
 また、前記で得られた光学フィルムの物性を実施例1と同様にして調べた。その結果を表1に示す。 The physical properties of the optical film obtained above were examined in the same manner as in Example 1. The results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
 表1に示された結果から、各実施例で得られた光学フィルムは、いずれも、良好な耐熱性、ヘイズ、全光線透過率、MIT耐折度およびインパクト強度を有し、面内位相差および厚さ方向位相差がいずれも小さいので低複屈折を有し、表面硬度(鉛筆硬度)が高く、光弾性係数の絶対値が小さいという優れた性質を有するものであることがわかる。 From the results shown in Table 1, each of the optical films obtained in each example has good heat resistance, haze, total light transmittance, MIT folding resistance and impact strength, and in-plane retardation. In addition, since the thickness direction retardation is small, it has low birefringence, high surface hardness (pencil hardness), and excellent properties such as a small absolute value of the photoelastic coefficient.
製造例1
 攪拌装置、温度センサー、冷却管および窒素ガス導入管を備えた反応釜に、メタクリル酸メチル79.4重量部、メタクリル酸20.6重量部、重合溶媒としてトルエン90.0重量部とメタノール22.5重量部との混合溶媒、および酸化防止剤〔(株)ADEKA製、商品名:アデカスタブ2112〕0.05重量部を仕込み、反応釜内に窒素ガスを通じながら73℃まで昇温させた。昇温に伴う還流が始まった時点で、重合開始剤としてジメチル-2,2’-アゾビス(2-メチルプロピオネート)〔和光純薬工業(株)製、商品名:V-601〕0.25重量部を反応釜内に添加するとともに、トルエン7.3重量部とメタノール1.8重量部との混合溶媒にジメチル-2,2’-アゾビス(2-メチルプロピオネート)〔和光純薬工業(株)製、商品名:V-601〕0.35重量部を溶解させた溶液を2時間かけて反応釜内に滴下しながら、約71~76℃の還流下で溶液重合を行ない、ジメチル-2,2’-アゾビス(2-メチルプロピオネート)の滴下終了後に、さらに4時間かけて熟成を行なった。
Production Example 1
In a reaction kettle equipped with a stirrer, a temperature sensor, a cooling pipe and a nitrogen gas introduction pipe, 79.4 parts by weight of methyl methacrylate, 20.6 parts by weight of methacrylic acid, 90.0 parts by weight of toluene as a polymerization solvent and 22. A mixed solvent with 5 parts by weight and 0.05 parts by weight of an antioxidant (manufactured by ADEKA, trade name: ADK STAB 2112) were charged, and the temperature was raised to 73 ° C. while passing nitrogen gas into the reaction kettle. At the time when the reflux accompanying the temperature rise starts, dimethyl-2,2′-azobis (2-methylpropionate) [manufactured by Wako Pure Chemical Industries, Ltd., trade name: V-601] is used as a polymerization initiator. 25 parts by weight was added to the reaction kettle, and dimethyl-2,2′-azobis (2-methylpropionate) [Wako Pure Chemical Industries, Ltd.] was added to a mixed solvent of 7.3 parts by weight of toluene and 1.8 parts by weight of methanol. (Trade name: V-601, manufactured by Kogyo Co., Ltd.) Solution polymerization was carried out under reflux at about 71 to 76 ° C. while adding 0.35 parts by weight of the solution dissolved in the reaction kettle over 2 hours. After completion of the dropwise addition of dimethyl-2,2′-azobis (2-methylpropionate), aging was carried out for an additional 4 hours.
 前記で得られた重合体溶液に含まれる(メタ)アクリル系樹脂におけるメタクリル酸に由来の繰返し単位の含有率は、20.6重量%であった。また、当該(メタ)アクリル系樹脂の重量平均分子量は、11万であった。 The content of repeating units derived from methacrylic acid in the (meth) acrylic resin contained in the polymer solution obtained above was 20.6% by weight. Moreover, the weight average molecular weight of the (meth) acrylic resin was 110,000.
 次に、環化縮合反応の触媒(環化触媒)であるナトリウムメトキシド0.1重量部をメタノール9.9重量部に溶解させた溶液を20分間かけて約65~70℃の温度で反応釜内の重合溶液に滴下し、均一な重合溶液とした。 Next, a solution obtained by dissolving 0.1 part by weight of sodium methoxide, which is a catalyst for the cyclization condensation reaction (cyclization catalyst), in 9.9 parts by weight of methanol is reacted at a temperature of about 65 to 70 ° C. over 20 minutes. It was dripped at the polymerization solution in a kettle, and it was set as the uniform polymerization solution.
 前記で得られた重合溶液をバレル温度290℃、回転数70rpm、減圧度13.3~400hPa(10~300mmHg)、リアベント数が1個、フォアベント数が2個のベントタイプスクリュー二軸押出し機(孔径:15mm、L/D:45)内に樹脂量換算で300g/hの処理速度で導入し、この二軸押出し機内で脱揮を行ない、軸内滞留時間0.9分間程度で押出すことにより、透明な(メタ)アクリル系樹脂のペレットを得た。 Vent type screw twin screw extruder having a barrel temperature of 290 ° C., a rotation speed of 70 rpm, a degree of vacuum of 13.3 to 400 hPa (10 to 300 mmHg), a rear vent number of 1, and a forevent number of 2 (Pore diameter: 15 mm, L / D: 45) is introduced at a processing rate of 300 g / h in terms of resin amount, devolatilized in this twin-screw extruder, and extruded with a residence time of about 0.9 minutes in the shaft. As a result, a transparent (meth) acrylic resin pellet was obtained.
 前記で得られた(メタ)アクリル系樹脂の重量平均分子量は10万であり、ガラス転移温度は131℃であった。また、前記で得られた(メタ)アクリル系樹脂の無水グルタル酸化率は、以下の方法に基づいて調べた。その結果、得られた(メタ)アクリル系樹脂の無水グルタル酸化率は17.5%であった。 The weight average molecular weight of the (meth) acrylic resin obtained above was 100,000, and the glass transition temperature was 131 ° C. Moreover, the anhydrous glutar oxidation rate of the (meth) acrylic resin obtained above was investigated based on the following method. As a result, the anhydrous (glutaric) oxidation rate of the obtained (meth) acrylic resin was 17.5%.
 なお、以下の実施例および比較例においても、(メタ)アクリル系樹脂の無水グルタル酸化率を以下の方法に基づいて調べた。 In addition, also in the following examples and comparative examples, the anhydrous glutar oxidation rate of the (meth) acrylic resin was examined based on the following method.
〔無水グルタル酸化率〕
 (メタ)アクリル系樹脂の無水グルタル酸化率は、1803cm-1付近のカルボン酸無水物基に由来する吸収と、1720cm-1付近のエステルカルボニル基に由来する吸収と、1680cm-1付近のイミドカルボニル基に由来する吸収との強度比から無水グルタル酸化率を決定した。ここで、無水グルタル酸化率は、全カルボニル基においてカルボン酸無水物基が占める割合である。
[Anhydrous glutar oxidation rate]
(Meth) glutaric anhydride oxidation rate of the acrylic resin, the absorption derived from a carboxylic acid anhydride group in the vicinity of 1803cm -1, and the absorption derived from the ester carbonyl group in the vicinity of 1720 cm -1, imide carbonyl near 1680 cm -1 The anhydrous glutar oxidation rate was determined from the intensity ratio with the absorption derived from the group. Here, the anhydrous glutar oxidation rate is the ratio of carboxylic anhydride groups in all carbonyl groups.
実施例8
 製造例1で得られたペレットをバレル温度290℃、回転数300rpm、減圧度13.3~400hPa(10~300mmHg)、ベント数が1個のベントタイプスクリュー二軸押出し機(孔径:15mm、L/D:45)内に樹脂量換算で420g/hの処理速度でホッパーから導入し、ホッパーの後よりアニリンを液添ポンプにて101g/hの投入速度で注入し、軸内滞留時間2.1分間程度で押出すことにより、透明な(メタ)アクリル系樹脂のペレットを得た。
Example 8
The pellet obtained in Production Example 1 has a barrel temperature of 290 ° C., a rotation speed of 300 rpm, a degree of vacuum of 13.3 to 400 hPa (10 to 300 mmHg), a vent type screw twin screw extruder having a single vent (hole diameter: 15 mm, L / D: 45) is introduced from the hopper at a processing rate of 420 g / h in terms of resin amount, and aniline is injected from the hopper after the hopper at a charging rate of 101 g / h. By extruding in about 1 minute, transparent (meth) acrylic resin pellets were obtained.
 前記で得られた(メタ)アクリル系樹脂の重量平均分子量は、9万であった。当該(メタ)アクリル系樹脂は、式(I)において、R1がメチル基であり、R2が水素原子であり、R3がフェニル基である繰返し単位および式(II)において、R4が水素原子であり、R5がメチル基であり、R6がメチル基である繰返し単位を有し、ガラス転移温度が162℃である(メタ)アクリル系樹脂であった。 The weight average molecular weight of the (meth) acrylic resin obtained above was 90,000. The (meth) acrylic resin includes a repeating unit in which R 1 is a methyl group, R 2 is a hydrogen atom, and R 3 is a phenyl group in the formula (I) and in the formula (II), R 4 is It was a (meth) acrylic resin which has a repeating unit which is a hydrogen atom, R 5 is a methyl group, R 6 is a methyl group, and has a glass transition temperature of 162 ° C.
 前記で得られた(メタ)アクリル系樹脂のイミド化率は44.1%、式(II)で表わされる繰返し単位の含有率は37.3重量%、応力光学係数(Cr)は0.08×10-9Pa-1であった。また、当該(メタ)アクリル系樹脂における金属の含有量を以下の方法に基づいて調べた。その結果、得られた(メタ)アクリル系樹脂における金属の含有量は470ppmであった。 The imidation ratio of the (meth) acrylic resin obtained above was 44.1%, the content of the repeating unit represented by the formula (II) was 37.3% by weight, and the stress optical coefficient (Cr) was 0.08. × 10 -9 Pa -1 Moreover, content of the metal in the said (meth) acrylic-type resin was investigated based on the following method. As a result, the metal content in the obtained (meth) acrylic resin was 470 ppm.
 なお、以下の実施例および比較例においても、(メタ)アクリル系樹脂における金属の含有量を以下の方法に基づいて調べた。 In addition, also in the following examples and comparative examples, the metal content in the (meth) acrylic resin was examined based on the following method.
〔(メタ)アクリル系樹脂における金属の含有量〕
 (メタ)アクリル系樹脂における金属の含有量は、(メタ)アクリル系樹脂をマイクロ波試料前処理装置〔(株)マイルストーンゼネラル製、商品名:ETHOS One〕で灰化させ、得られた溶液を用いてICP発光分光分析装置〔(株)リガク製、商品名:CIROS-120〕にて金属原子の含有量を測定することによって求めた。
[Content of metal in (meth) acrylic resin]
The content of the metal in the (meth) acrylic resin was determined by ashing the (meth) acrylic resin with a microwave sample pretreatment device [trade name: ETHOS One, manufactured by Milestone General Co., Ltd.] Was obtained by measuring the content of metal atoms with an ICP emission spectroscopic analyzer [trade name: CIROS-120, manufactured by Rigaku Corporation].
製造例2
 攪拌装置、温度センサー、冷却管および窒素ガス導入管を備えた反応釜に、メタクリル酸メチル79.4重量部、メタクリル酸20.6重量部、重合溶媒としてトルエン90.0重量部とメタノール22.5重量部との混合溶媒、および酸化防止剤〔(株)ADEKA製、商品名:アデカスタブ2112〕0.05重量部を仕込み、反応釜内に窒素ガスを通じながら73℃まで昇温させた。昇温に伴う還流が始まった時点で、重合開始剤としてジメチル-2,2’-アゾビス(2-メチルプロピオネート)〔和光純薬工業(株)製、商品名:V-601〕0.25重量部を反応釜内に添加するとともに、トルエン7.3重量部とメタノール1.8重量部との混合溶媒にジメチル-2,2’-アゾビス(2-メチルプロピオネート)〔和光純薬工業(株)製、商品名:V-601〕0.35重量部を溶解させた溶液を2時間かけて反応釜内に滴下しながら、約71~76℃の還流下で溶液重合を行ない、ジメチル-2,2’-アゾビス(2-メチルプロピオネート)の滴下終了後に、さらに4時間かけて熟成を行なった。
Production Example 2
In a reaction kettle equipped with a stirrer, a temperature sensor, a cooling pipe and a nitrogen gas introduction pipe, 79.4 parts by weight of methyl methacrylate, 20.6 parts by weight of methacrylic acid, 90.0 parts by weight of toluene as a polymerization solvent and 22. A mixed solvent with 5 parts by weight and 0.05 parts by weight of an antioxidant (manufactured by ADEKA, trade name: ADK STAB 2112) were charged, and the temperature was raised to 73 ° C. while passing nitrogen gas into the reaction kettle. At the time when the reflux accompanying the temperature rise starts, dimethyl-2,2′-azobis (2-methylpropionate) [manufactured by Wako Pure Chemical Industries, Ltd., trade name: V-601] is used as a polymerization initiator. 25 parts by weight was added to the reaction kettle, and dimethyl-2,2′-azobis (2-methylpropionate) [Wako Pure Chemical Industries, Ltd.] was added to a mixed solvent of 7.3 parts by weight of toluene and 1.8 parts by weight of methanol. (Trade name: V-601, manufactured by Kogyo Co., Ltd.) Solution polymerization was carried out under reflux at about 71 to 76 ° C. while adding 0.35 parts by weight of the solution dissolved in the reaction kettle over 2 hours. After completion of the dropwise addition of dimethyl-2,2′-azobis (2-methylpropionate), aging was carried out for an additional 4 hours.
 前記で得られた重合体溶液に含まれる(メタ)アクリル系樹脂におけるメタクリル酸に由来の繰返し単位の含有率は、20.6重量%であった。また、当該(メタ)アクリル系樹脂の重量平均分子量は、11万であった。 The content of repeating units derived from methacrylic acid in the (meth) acrylic resin contained in the polymer solution obtained above was 20.6% by weight. Moreover, the weight average molecular weight of the (meth) acrylic resin was 110,000.
 次に、メタノール5.0重量部に環化縮合反応の触媒(環化触媒)であるナトリウムメトキシド0.05重量部を溶解させた溶液を20分間かけて、約65~70℃の温度で反応釜内の重合溶液に滴下し、均一な重合溶液とした。 Next, a solution in which 0.05 part by weight of sodium methoxide, which is a catalyst for the cyclization condensation reaction (cyclization catalyst), is dissolved in 5.0 parts by weight of methanol at a temperature of about 65 to 70 ° C. over 20 minutes. It was dripped at the polymerization solution in a reaction kettle, and it was set as the uniform polymerization solution.
 前記で得られた重合溶液をバレル温度280℃、回転数70rpm、減圧度13.3~400hPa(10~300mmHg)、リアベント数が1個、フォアベント数が2個のベントタイプスクリュー二軸押出し機(孔径:15mm、L/D:45)内に樹脂量換算で420g/hの処理速度で導入し、この二軸押出し機内で脱揮を行ない、軸内滞留時間3.2分間程度で押出すことにより、透明な(メタ)アクリル系樹脂のペレットを得た。 Vent type screw twin screw extruder having a barrel temperature of 280 ° C., a rotation speed of 70 rpm, a degree of vacuum of 13.3 to 400 hPa (10 to 300 mmHg), a rear vent number of 1, and a forevent number of 2 (Pore diameter: 15 mm, L / D: 45), introduced at a processing rate of 420 g / h in terms of resin amount, devolatilized in this twin-screw extruder, and extruded in a shaft residence time of about 3.2 minutes As a result, a transparent (meth) acrylic resin pellet was obtained.
 前記で得られた(メタ)アクリル系樹脂の重量平均分子量は9.7万であり、ガラス転移温度は131℃であった。また、当該(メタ)アクリル系樹脂の無水グルタル酸化率は16.3%であった。 The weight average molecular weight of the (meth) acrylic resin obtained above was 97,000, and the glass transition temperature was 131 ° C. Moreover, the anhydrous glutar oxidation rate of the (meth) acrylic resin was 16.3%.
実施例9
 製造例2で得られたペレットをバレル温度290℃、回転数300rpm、減圧度13.3~400hPa(10~300mmHg)、ベント数が1個のベントタイプスクリュー二軸押出し機(孔径:15mm、L/D:45)内に樹脂量換算で420g/hの処理速度でホッパーから導入し、ホッパーの後よりアニリンを液添ポンプにて101g/hの投入速度で注入し、軸内滞留時間5.2分間程度で押出すことにより、透明な(メタ)アクリル系樹脂のペレットを得た。
Example 9
The pellet obtained in Production Example 2 was a vent type screw twin screw extruder (hole diameter: 15 mm, L) with a barrel temperature of 290 ° C., a rotation speed of 300 rpm, a degree of vacuum of 13.3 to 400 hPa (10 to 300 mmHg), and a single vent. / D: 45) is introduced from the hopper at a processing rate of 420 g / h in terms of resin amount, and aniline is injected from the hopper after the hopper at a charging rate of 101 g / h. By extruding in about 2 minutes, transparent (meth) acrylic resin pellets were obtained.
 前記で得られた(メタ)アクリル系樹脂の重量平均分子量は、8.9万であった。当該(メタ)アクリル系樹脂は、式(I)において、R1がメチル基であり、R2が水素原子であり、R3がフェニル基である繰返し単位および式(II)において、R4が水素原子であり、R5がメチル基であり、R6がメチル基である繰返し単位を有し、ガラス転移温度が167℃である(メタ)アクリル系樹脂であった。 The weight average molecular weight of the (meth) acrylic resin obtained above was 89,000. The (meth) acrylic resin includes a repeating unit in which R 1 is a methyl group, R 2 is a hydrogen atom, and R 3 is a phenyl group in the formula (I) and in the formula (II), R 4 is It was a (meth) acrylic resin having a repeating unit that is a hydrogen atom, R 5 is a methyl group, R 6 is a methyl group, and has a glass transition temperature of 167 ° C.
 前記で得られた(メタ)アクリル系樹脂のイミド化率は47.2%、式(II)で表わされる繰返し単位の含有率は35.4重量%、応力光学係数(Cr)は0.11×10-9Pa-1であった。また、当該(メタ)アクリル系樹脂における金属の含有量は235ppmであった。 The imidation ratio of the (meth) acrylic resin obtained above was 47.2%, the content of the repeating unit represented by the formula (II) was 35.4% by weight, and the stress optical coefficient (Cr) was 0.11. × 10 -9 Pa -1 The metal content in the (meth) acrylic resin was 235 ppm.
製造例3
 攪拌装置、温度センサー、冷却管および窒素ガス導入管を備えた反応釜に、メタクリル酸メチル79.4重量部、メタクリル酸20.6重量部、重合溶媒としてトルエン90.0重量部とメタノール22.5重量部との混合溶媒、および酸化防止剤〔(株)ADEKA製、商品名:アデカスタブ2112〕0.05重量部を仕込み、反応釜内に窒素ガスを通じながら73℃まで昇温させた。昇温に伴う還流が始まった時点で、重合開始剤としてジメチル-2,2’-アゾビス(2-メチルプロピオネート)〔和光純薬工業(株)製、商品名:V-601〕0.25重量部を反応釜内に添加するとともに、トルエン7.3重量部とメタノール1.8重量部との混合溶媒にジメチル-2,2’-アゾビス(2-メチルプロピオネート)〔和光純薬工業(株)製、商品名:V-601〕0.35重量部を溶解させた溶液を2時間かけて反応釜内に滴下しながら、約71~76℃の還流下で溶液重合を行ない、ジメチル-2,2’-アゾビス(2-メチルプロピオネート)の滴下終了後に、さらに4時間かけて熟成を行なうことにより、重合体溶液を得た。
Production Example 3
In a reaction kettle equipped with a stirrer, a temperature sensor, a cooling pipe and a nitrogen gas introduction pipe, 79.4 parts by weight of methyl methacrylate, 20.6 parts by weight of methacrylic acid, 90.0 parts by weight of toluene as a polymerization solvent and 22. A mixed solvent with 5 parts by weight and 0.05 parts by weight of an antioxidant (manufactured by ADEKA, trade name: ADK STAB 2112) were charged, and the temperature was raised to 73 ° C. while passing nitrogen gas into the reaction kettle. At the time when the reflux accompanying the temperature rise starts, dimethyl-2,2′-azobis (2-methylpropionate) [manufactured by Wako Pure Chemical Industries, Ltd., trade name: V-601] is used as a polymerization initiator. 25 parts by weight was added to the reaction kettle, and dimethyl-2,2′-azobis (2-methylpropionate) [Wako Pure Chemical Industries, Ltd.] was added to a mixed solvent of 7.3 parts by weight of toluene and 1.8 parts by weight of methanol. (Trade name: V-601, manufactured by Kogyo Co., Ltd.) Solution polymerization was carried out under reflux at about 71 to 76 ° C. while adding 0.35 parts by weight of the solution dissolved in the reaction kettle over 2 hours. After completion of the dropwise addition of dimethyl-2,2′-azobis (2-methylpropionate), the mixture was further aged for 4 hours to obtain a polymer solution.
 前記で得られた重合体溶液に含まれる(メタ)アクリル系樹脂におけるメタクリル酸に由来の繰返し単位の含有率は、20.6重量%であった。また、当該(メタ)アクリル系樹脂の重量平均分子量は、11万であった。 The content of repeating units derived from methacrylic acid in the (meth) acrylic resin contained in the polymer solution obtained above was 20.6% by weight. Moreover, the weight average molecular weight of the (meth) acrylic resin was 110,000.
 次に、メタノール11.9重量部に環化縮合反応の触媒(環化触媒)である酢酸リチウム0.12重量部を溶解させた溶液を20分間かけて約65~70℃の温度で反応釜内の重合溶液に滴下し、均一な重合溶液とした。 Next, a reaction vessel in which 0.12 parts by weight of lithium acetate, which is a catalyst for cyclization condensation reaction (cyclization catalyst), was dissolved in 11.9 parts by weight of methanol at a temperature of about 65 to 70 ° C. over 20 minutes. The solution was dropped into the inner polymerization solution to obtain a uniform polymerization solution.
 前記で得られた重合溶液をバレル温度290℃、回転数70rpm、減圧度13.3~400hPa(10~300mmHg)、リアベント数が1個、フォアベント数が2個のベントタイプスクリュー二軸押出し機(孔径:15mm、L/D:45)内に樹脂量換算で300g/hの処理速度で導入し、この押出し機内で脱揮を行ない、軸内滞留時間3.0分間程度で押出すことにより、透明な(メタ)アクリル系樹脂のペレットを得た。 Vent type screw twin screw extruder having a barrel temperature of 290 ° C., a rotation speed of 70 rpm, a degree of vacuum of 13.3 to 400 hPa (10 to 300 mmHg), a rear vent number of 1, and a forevent number of 2 (Pore diameter: 15 mm, L / D: 45) Introduced at a processing rate of 300 g / h in terms of resin amount, devolatilized in this extruder, and extruded in a shaft residence time of about 3.0 minutes A transparent (meth) acrylic resin pellet was obtained.
 前記で得られた(メタ)アクリル系樹脂の重量平均分子量は10万であり、ガラス転移温度は130℃であった。また、当該(メタ)アクリル系樹脂の無水グルタル酸化率は15.9%であった。 The weight average molecular weight of the (meth) acrylic resin obtained above was 100,000, and the glass transition temperature was 130 ° C. Moreover, the anhydrous glutar oxidation rate of the (meth) acrylic resin was 15.9%.
実施例10
 製造例3で得られたペレットをバレル温度290℃、回転数300rpm、減圧度13.3~400hPa(10~300mmHg)、ベント数が1個のベントタイプスクリュー二軸押出し機(孔径:15mm、L/D:45)内に樹脂量換算で432g/hの処理速度でホッパーから導入し、ホッパーの後よりアニリンを液添ポンプにて104g/hの投入速度で注入し、軸内滞留時間5.2分間程度で押出すことにより、透明な(メタ)アクリル系樹脂のペレットを得た。
Example 10
The pellet obtained in Production Example 3 was a vent type screw twin screw extruder (hole diameter: 15 mm, L) with a barrel temperature of 290 ° C., a rotation speed of 300 rpm, a degree of vacuum of 13.3 to 400 hPa (10 to 300 mmHg), and a single vent. / D: 45) is introduced from the hopper at a treatment rate of 432 g / h in terms of resin amount, and aniline is injected from the hopper after the hopper at a feed rate of 104 g / h. By extruding in about 2 minutes, transparent (meth) acrylic resin pellets were obtained.
 前記で得られた(メタ)アクリル系樹脂の重量平均分子量は、9.2万であった。当該(メタ)アクリル系樹脂は、式(I)において、R1がメチル基であり、R2が水素原子であり、R3がフェニル基である繰返し単位および式(II)において、R4が水素原子であり、R5がメチル基であり、R6がメチル基である繰返し単位を有し、ガラス転移温度が161℃である(メタ)アクリル系樹脂であった。 The weight average molecular weight of the (meth) acrylic resin obtained above was 92,000. The (meth) acrylic resin includes a repeating unit in which R 1 is a methyl group, R 2 is a hydrogen atom, and R 3 is a phenyl group in the formula (I) and in the formula (II), R 4 is It was a (meth) acrylic resin having a repeating unit that is a hydrogen atom, R 5 is a methyl group, R 6 is a methyl group, and has a glass transition temperature of 161 ° C.
 前記で得られた(メタ)アクリル系樹脂のイミド化率は42.0%、式(II)で表わされる繰返し単位の含有率は38.5重量%、応力光学係数(Cr)は0.07×10-9Pa-1であった。また、当該(メタ)アクリル系樹脂における金属の含有量は135ppmであった。 The imidation ratio of the (meth) acrylic resin obtained above was 42.0%, the content of the repeating unit represented by the formula (II) was 38.5% by weight, and the stress optical coefficient (Cr) was 0.07. × 10 -9 Pa -1 The metal content in the (meth) acrylic resin was 135 ppm.
 実施例8~10で得られたペレットを用い、実施例1において、Tダイ温度、ロール温度および延伸温度を表2に示すように変更したこと以外は、実施例1と同様にして厚さ40μmの光学フィルムを得た。 Using the pellets obtained in Examples 8 to 10, in Example 1, except that the T die temperature, roll temperature, and stretching temperature were changed as shown in Table 2, the thickness was 40 μm. An optical film was obtained.
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000010
 次に、実施例8~10で得られた光学フィルムの面内位相差、厚さ方向位相差、光弾性係数および線膨張係数を調べた。その結果を表3に示す。また、これらの光学フィルムの物性を実施例1と同様にして調べた。その結果を表3に併記する。 Next, the in-plane retardation, thickness direction retardation, photoelastic coefficient, and linear expansion coefficient of the optical films obtained in Examples 8 to 10 were examined. The results are shown in Table 3. Further, the physical properties of these optical films were examined in the same manner as in Example 1. The results are also shown in Table 3.
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000011
 表3に示された結果から、各実施例で得られた光学フィルムは、いずれも、良好な耐熱性、ヘイズ、全光線透過率、MIT耐折度およびインパクト強度を有し、面内位相差および厚さ方向位相差がいずれも小さいので低複屈折を有し、表面硬度(鉛筆硬度)が高く、光弾性係数の絶対値が小さいという優れた性質を有するものであることがわかる。 From the results shown in Table 3, the optical films obtained in each Example all have good heat resistance, haze, total light transmittance, MIT folding resistance and impact strength, and in-plane retardation. In addition, since the thickness direction retardation is small, it has low birefringence, high surface hardness (pencil hardness), and excellent properties such as a small absolute value of the photoelastic coefficient.
製造例4
 攪拌装置、温度センサー、冷却管および窒素ガス導入管を備えた反応釜に、メタクリル酸メチル79.4重量部、メタクリル酸20.6重量部、重合溶媒としてトルエン90.0重量部とメタノール22.5重量部との混合溶媒、および酸化防止剤〔(株)ADEKA製、商品名:アデカスタブ2112〕0.05重量部を仕込み、反応釜内に窒素ガスを通じながら73℃まで昇温させた。昇温に伴う還流が始まった時点で、重合開始剤としてジメチル-2,2’-アゾビス(2-メチルプロピオネート)〔和光純薬工業(株)製、商品名:V-601〕0.25重量部を反応釜内に添加するとともに、トルエン7.3重量部とメタノール1.8重量部との混合溶媒にジメチル-2,2’-アゾビス(2-メチルプロピオネート)〔和光純薬工業(株)製、商品名:V-601〕0.35重量部を溶解させた溶液を2時間かけて反応釜内に滴下しながら、約71~76℃の還流下で溶液重合を行ない、ジメチル-2,2’-アゾビス(2-メチルプロピオネート)の滴下終了後に、さらに4時間かけて熟成を行なうことにより、重合体溶液を得た。
Production Example 4
In a reaction kettle equipped with a stirrer, a temperature sensor, a cooling pipe and a nitrogen gas introduction pipe, 79.4 parts by weight of methyl methacrylate, 20.6 parts by weight of methacrylic acid, 90.0 parts by weight of toluene as a polymerization solvent and 22. A mixed solvent with 5 parts by weight and 0.05 parts by weight of an antioxidant (manufactured by ADEKA, trade name: ADK STAB 2112) were charged, and the temperature was raised to 73 ° C. while passing nitrogen gas into the reaction kettle. At the time when the reflux accompanying the temperature rise starts, dimethyl-2,2′-azobis (2-methylpropionate) [manufactured by Wako Pure Chemical Industries, Ltd., trade name: V-601] is used as a polymerization initiator. 25 parts by weight was added to the reaction kettle, and dimethyl-2,2′-azobis (2-methylpropionate) [Wako Pure Chemical Industries, Ltd.] was added to a mixed solvent of 7.3 parts by weight of toluene and 1.8 parts by weight of methanol. (Trade name: V-601, manufactured by Kogyo Co., Ltd.) Solution polymerization was carried out under reflux at about 71 to 76 ° C. while adding 0.35 parts by weight of the solution dissolved in the reaction kettle over 2 hours. After completion of the dropwise addition of dimethyl-2,2′-azobis (2-methylpropionate), the mixture was further aged for 4 hours to obtain a polymer solution.
 前記で得られた重合体溶液に含まれる(メタ)アクリル系樹脂におけるメタクリル酸に由来の繰返し単位の含有率は、20.6重量%であった。また、当該(メタ)アクリル系樹脂の重量平均分子量は、11万であった。 The content of repeating units derived from methacrylic acid in the (meth) acrylic resin contained in the polymer solution obtained above was 20.6% by weight. Moreover, the weight average molecular weight of the (meth) acrylic resin was 110,000.
 次に、メタノール9.9重量部に環化縮合反応の触媒(環化触媒)であるナトリウムメトキシド0.1重量部を溶解させた溶液を20分間かけて約65~70℃の温度で反応釜内の重合溶液に滴下し、均一な重合溶液とした。 Next, a solution in which 0.1 part by weight of sodium methoxide as a catalyst for the cyclization condensation reaction (cyclization catalyst) is dissolved in 9.9 parts by weight of methanol is reacted at a temperature of about 65 to 70 ° C. over 20 minutes. It was dripped at the polymerization solution in a kettle, and it was set as the uniform polymerization solution.
 前記で得られた重合溶液をバレル温度290℃、回転数238rpm、減圧度13.3~400hPa(10~300mmHg)、リアベント数が1個、フォアベント数が2個のベントタイプスクリュー二軸押出し機(孔径:15mm、L/D:45)内に樹脂量換算で300g/hの処理速度で導入し、この押出し機内で脱揮を行ない、軸内滞留時間0.9分間程度で押出すことにより、透明な(メタ)アクリル系樹脂のペレットを得た。 Vent type screw twin screw extruder having a barrel temperature of 290 ° C., a rotational speed of 238 rpm, a degree of vacuum of 13.3 to 400 hPa (10 to 300 mmHg), a rear vent number of 1, and a forevent number of 2 (Pore diameter: 15 mm, L / D: 45) Introduced at a processing rate of 300 g / h in terms of resin amount, devolatilized in this extruder, and extruded with an in-shaft residence time of about 0.9 minutes. A transparent (meth) acrylic resin pellet was obtained.
 前記で得られた(メタ)アクリル系樹脂の重量平均分子量は10万であり、ガラス転移温度は131℃であった。 The weight average molecular weight of the (meth) acrylic resin obtained above was 100,000, and the glass transition temperature was 131 ° C.
 次に、前記で得られたペレットをバレル温度290℃、回転数300rpm、減圧度13.3~400hPa(10~300mmHg)、ベント数が1個のベントタイプスクリュー二軸押出し機(孔径:15mm、L/D:45)内に樹脂量換算で420g/hの処理速度でホッパーから導入し、ホッパーの後よりアニリンを液添ポンプにて162g/hの投入速度で注入し、軸内滞留時間5.6分間程度で押出すことにより、透明な(メタ)アクリル系樹脂のペレットを得た。前記で得られた(メタ)アクリル系樹脂の重量平均分子量は、9.4万であった。 Next, the pellet obtained above was a barrel type screw twin screw extruder (hole diameter: 15 mm, bore temperature: 290 ° C., rotation speed: 300 rpm, degree of vacuum: 13.3 to 400 hPa (10 to 300 mmHg), one vent number) L / D: 45) is introduced from the hopper at a processing rate of 420 g / h in terms of resin amount, and aniline is injected from the hopper after the hopper at a charging rate of 162 g / h. By extruding in about 6 minutes, transparent (meth) acrylic resin pellets were obtained. The weight average molecular weight of the (meth) acrylic resin obtained above was 94,000.
 前記で得られた(メタ)アクリル系樹脂は、式(I)において、R1がメチル基であり、R2が水素原子であり、R3がフェニル基である繰返し単位および式(II)において、R4が水素原子であり、R5がメチル基であり、R6がメチル基である繰返し単位を有し、ガラス転移温度が161℃である(メタ)アクリル系樹脂であった。 The (meth) acrylic resin obtained above has a repeating unit in the formula (I) wherein R 1 is a methyl group, R 2 is a hydrogen atom, and R 3 is a phenyl group. , R 4 is a hydrogen atom, R 5 is a methyl group, R 6 is a (meth) acrylic resin having a repeating unit having a methyl group and a glass transition temperature of 161 ° C.
 前記で得られた(メタ)アクリル樹脂のイミド化率は44.1%、式(II)で表わされる繰返し単位の含有率は37.3重量%、応力光学係数(Cr)は0.12×10-9Pa-1であった。また、当該(メタ)アクリル系樹脂の酸価は1.27mmol/gであった。 The imidation ratio of the (meth) acrylic resin obtained above was 44.1%, the content of the repeating unit represented by the formula (II) was 37.3% by weight, and the stress optical coefficient (Cr) was 0.12 × 10 −9 Pa −1 . The acid value of the (meth) acrylic resin was 1.27 mmol / g.
 なお、以下の製造例および実施例において、(メタ)アクリル系樹脂の酸価を以下の方法に基づいて調べた。 In the following production examples and examples, the acid value of the (meth) acrylic resin was examined based on the following method.
〔(メタ)アクリル系樹脂に残存する酸成分の量(酸価)の測定方法〕
 塩化メチレン24.94gに(メタ)アクリル系樹脂0.15gを溶解させ、得られた溶液にメタノール14.85gを添加し、3時間撹拌した。その後、この溶液に1重量%フェノールフタレインエタノール溶液2滴を添加し、撹拌しながら0.1N水酸化ナトリウム水溶液を添加し、室温で1時間撹拌を継続し、0.1N水酸化ナトリウム水溶液の量をAmlとした。この溶液に0.1N塩酸を滴下し、溶液の赤紫色が消失するまでの0.1N塩酸の滴下量(Bml)を測定した。
[Method for measuring the amount of acid component (acid value) remaining in (meth) acrylic resin]
In 24.94 g of methylene chloride, 0.15 g of (meth) acrylic resin was dissolved, and 14.85 g of methanol was added to the resulting solution, followed by stirring for 3 hours. Then, 2 drops of 1 wt% phenolphthalein ethanol solution was added to this solution, 0.1N sodium hydroxide aqueous solution was added with stirring, and stirring was continued for 1 hour at room temperature. The amount was Aml. 0.1N hydrochloric acid was added dropwise to this solution, and the amount of 0.1N hydrochloric acid added until the reddish purple color of the solution disappeared (Bml) was measured.
 次に、塩化メチレン24.94gとメタノール14.85gとの混合液に1重量%フェノールフタレインエタノール溶液2滴を添加し、撹拌しながら0.1N水酸化ナトリウム水溶液を添加し、室温で1時間撹拌を継続し、0.1N水酸化ナトリウム水溶液の量をCmlとした。この溶液に0.1N塩酸を滴下し、溶液の赤紫色が消失するまでに要した0.1N塩酸の滴下量(Dml)を測定した。 Next, 2 drops of a 1% by weight phenolphthalein ethanol solution are added to a mixed solution of 24.94 g of methylene chloride and 14.85 g of methanol, a 0.1N aqueous sodium hydroxide solution is added with stirring, and the mixture is stirred at room temperature for 1 hour. Stirring was continued and the amount of 0.1N sodium hydroxide aqueous solution was Cml. 0.1N hydrochloric acid was added dropwise to this solution, and the amount of 0.1N hydrochloric acid added (Dml) required until the reddish purple color of the solution disappeared was measured.
 (メタ)アクリル系樹脂に残存する酸成分の量(カルボキシル基および酸無水物基の合計量)(mmol/g)は、式:
〔(メタ)アクリル系樹脂に残存する酸成分の量(カルボキシル基および酸無水物基の合計量)(mmol/g)〕
=0.1×[(A-B)-(C-D)]/0.15
に基づいて求めた。
The amount of the acid component remaining in the (meth) acrylic resin (total amount of carboxyl group and acid anhydride group) (mmol / g) is expressed by the formula:
[Amount of acid component remaining in (meth) acrylic resin (total amount of carboxyl group and acid anhydride group) (mmol / g)]
= 0.1 × [(AB)-(CD)] / 0.15
Based on.
実施例11
 製造例4で得られたペレットをバレル温度260℃、回転数300rpm、減圧度13.3~400hPa(10~300mmHg)、ベント数が1個のベントタイプスクリュー二軸押出し機(孔径:15mm、L/D:45)内に樹脂量換算で420g/hの処理速度でホッパーから導入し、ホッパーの後より原料樹脂に対して炭酸ジメチル(DBC)16.0重量部とジアザビシクロウンデセン(DBU)2.0重量部との混合液を液添ポンプにて注入し、軸内滞留時間5.2分間程度で押出すことにより、透明な(メタ)アクリル系樹脂のペレットを得た。
Example 11
The pellet obtained in Production Example 4 has a barrel temperature of 260 ° C., a rotation speed of 300 rpm, a degree of vacuum of 13.3 to 400 hPa (10 to 300 mmHg), a vent type screw twin screw extruder having a single vent (hole diameter: 15 mm, L / D: 45) is introduced from the hopper at a processing rate of 420 g / h in terms of resin amount, and 16.0 parts by weight of dimethyl carbonate (DBC) and diazabicycloundecene (DBU) with respect to the raw material resin after the hopper. ) A mixed liquid of 2.0 parts by weight was injected with a liquid pump, and extruded with an in-shaft residence time of about 5.2 minutes to obtain transparent (meth) acrylic resin pellets.
 前記で得られた(メタ)アクリル系樹脂の重量平均分子量は、8万であった。当該(メタ)アクリル系樹脂は、式(I)において、R1がメチル基であり、R2が水素原子であり、R3がフェニル基である繰返し単位および式(II)において、R4が水素原子であり、R5がメチル基であり、R6がメチル基である繰返し単位を有し、ガラス転移温度が148℃である(メタ)アクリル系樹脂であった。 The (meth) acrylic resin obtained above had a weight average molecular weight of 80,000. The (meth) acrylic resin includes a repeating unit in which R 1 is a methyl group, R 2 is a hydrogen atom, and R 3 is a phenyl group in the formula (I) and in the formula (II), R 4 is It was a (meth) acrylic resin having a hydrogen atom, a repeating unit in which R 5 is a methyl group, R 6 is a methyl group, and a glass transition temperature of 148 ° C.
 前記で得られた(メタ)アクリル樹脂のイミド化率は47.9%、式(II)で表わされる繰返し単位の含有率は59.1重量%、応力光学係数(Cr)は-0.18×10-9Pa-1であった。また、当該(メタ)アクリル系樹脂の酸価は0.13mmol/gであった。 The imidation ratio of the (meth) acrylic resin obtained above was 47.9%, the content of the repeating unit represented by the formula (II) was 59.1% by weight, and the stress optical coefficient (Cr) was −0.18. × 10 -9 Pa -1 Moreover, the acid value of the (meth) acrylic resin was 0.13 mmol / g.
 次に、前記で得られたペレットを単軸押出機(孔径:20mm、L/D:25)に入れ、Tダイ温度を275℃に調節し、コートハンガータイプTダイ(幅150mm)から溶融押出しを行ない、ロール温度145℃の冷却ロール上に吐出し、厚さ160μmの未延伸フィルムを作製した。 Next, the pellet obtained above is put into a single screw extruder (hole diameter: 20 mm, L / D: 25), the T die temperature is adjusted to 275 ° C., and melt extrusion is performed from a coat hanger type T die (width 150 mm). And was discharged onto a cooling roll having a roll temperature of 145 ° C. to produce an unstretched film having a thickness of 160 μm.
 前記で得られた未延伸フィルムを96mm×96mmに切り出し、逐次二軸延伸機〔(株)東洋精機製作所製、品番:X-6S〕を用い、168℃の温度にて240mm/minの延伸速度で縦方向(MD方向)および横方向(TD方向)の順にそれぞれ延伸倍率が2倍となるように逐次二軸延伸を行なった。未延伸フィルムの二軸延伸を行なった後、得られた延伸フィルムを速やかに試験装置から取り出して冷却することにより、厚さ40μmの光学フィルムを得た。得られた光学フィルムの面内位相差および厚さ方向位相差は、それぞれ、4.5nmおよび-13.3nmであった。 The unstretched film obtained above was cut into 96 mm × 96 mm, and using a sequential biaxial stretching machine (manufactured by Toyo Seiki Seisakusho, product number: X-6S), a stretching speed of 240 mm / min at a temperature of 168 ° C. Then, biaxial stretching was sequentially performed so that the stretching ratio was doubled in the order of the machine direction (MD direction) and the transverse direction (TD direction). After biaxial stretching of the unstretched film, the obtained stretched film was quickly taken out from the test apparatus and cooled to obtain an optical film having a thickness of 40 μm. The in-plane retardation and thickness direction retardation of the obtained optical film were 4.5 nm and −13.3 nm, respectively.
 次に、未延伸フィルムの吸水率ならびに前記で得られた光学フィルムの厚さ方向位相差変化値および寸法変化率を調べた。その結果を表4に示す。 Next, the water absorption rate of the unstretched film, the thickness direction retardation change value and the dimensional change rate of the optical film obtained above were examined. The results are shown in Table 4.
 なお、吸水率および寸法変化率の測定方法は、以下のとおりである。以下の実施例および比較例でも、以下の方法に基づいて吸水率および寸法変化率を調べた。 In addition, the measuring method of a water absorption rate and a dimensional change rate is as follows. Also in the following examples and comparative examples, the water absorption rate and the dimensional change rate were examined based on the following method.
〔吸水率〕
 手動式加熱プレス機〔(株)井元製作所製、IMC-180C型〕を用い、250℃の温度で20MPaの圧力にて樹脂ペレットを2分間溶融プレス成形し、厚さが200μmの未延伸フィルムを作製した。得られた未延伸フィルムを80℃で24時間乾燥させた後、その質量(X)を測定した。
[Water absorption rate]
Using a manual heating press machine (IMC-180C, manufactured by Imoto Seisakusho Co., Ltd.), resin pellets were melt-pressed at a pressure of 20 MPa at a temperature of 250 ° C. for 2 minutes to form an unstretched film having a thickness of 200 μm. Produced. The obtained unstretched film was dried at 80 ° C. for 24 hours, and then its mass (X) was measured.
 次に、前記で得られた未延伸フィルムを85℃、相対湿度85%の恒温槽内で保管することによって吸水させ、250時間経過後に恒温槽から取り出し、吸水後の未延伸フィルムの質量(Y)を測定した。 Next, the unstretched film obtained above is absorbed in water by storing it in a thermostatic bath at 85 ° C. and a relative humidity of 85%, taken out from the thermostatic bath after 250 hours, and the mass of the unstretched film after water absorption (Y ) Was measured.
 前記未延伸フィルムの吸水率は、式:
〔吸水率(%)〕=[(Y-X)/X]×100
に基づいて求めた。
The water absorption of the unstretched film is expressed by the formula:
[Water absorption rate (%)] = [(Y−X) / X] × 100
Based on.
〔寸法変化率〕
 光学フィルムを裁断することにより、縦40mm、横40mmの正方形状のサンプル3枚を作製した。サンプルの四辺の長さ(La1、La2、La3、La4)をデジタルノギスで測定した。
[Dimensional change rate]
By cutting the optical film, three square samples having a length of 40 mm and a width of 40 mm were produced. The length of each side of the sample (La1, La2, La3, La4) was measured with a digital caliper.
 次に、前記サンプルを85℃、相対湿度85%の恒温槽内で保管し、250時間経過後に恒温槽から取り出し、サンプルの四片の長さ(Lb1、Lb2、Lb3、Lb4)を再度測定した。 Next, the sample was stored in a thermostat at 85 ° C. and a relative humidity of 85%, taken out of the thermostat after 250 hours, and the lengths of the four pieces of the sample (Lb1, Lb2, Lb3, Lb4) were measured again. .
 次に、サンプル3枚の各辺における寸法変化率を式:
〔寸法変化率(%)〕=|(Lb-La)/La|×100
(式中、Laは試験前における一辺の長さ、Lbは試験後における一片の長さを示す)
に基づいて求め、求められたサンプル3枚の各辺の寸法変化率の平均値を求め、その各辺の平均値の和を求めた後、その和を4で除することにより、光学フィルムの寸法変化率とした。
Next, the dimensional change rate at each side of the three samples is expressed by the formula:
[Dimensional change rate (%)] = | (Lb−La) / La | × 100
(In the formula, La represents the length of one side before the test, and Lb represents the length of one piece after the test)
After obtaining the average value of the dimensional change rate of each side of the three obtained samples, and obtaining the sum of the average value of each side, dividing the sum by 4 The dimensional change rate was used.
製造例5
 攪拌装置、温度センサー、冷却管および窒素ガス導入管を備えた反応釜に、メタクリル酸メチル79.4重量部、メタクリル酸20.6重量部、重合溶媒としてトルエン90.0重量部とメタノール22.5重量部との混合溶媒、および酸化防止剤〔(株)ADEKA製、商品名:アデカスタブ2112〕0.05重量部を仕込み、反応釜内に窒素ガスを通じながら73℃まで昇温させた。昇温に伴う還流が始まった時点で、重合開始剤としてジメチル-2,2’-アゾビス(2-メチルプロピオネート)〔和光純薬工業(株)製、商品名:V-601〕0.25重量部を反応釜内に添加するとともに、トルエン7.3重量部とメタノール1.8重量部との混合溶媒にジメチル-2,2’-アゾビス(2-メチルプロピオネート)〔和光純薬工業(株)製、商品名:V-601〕0.35重量部を溶解させた溶液を2時間かけて反応釜内に滴下しながら、約71~76℃の還流下で溶液重合を行ない、ジメチル-2,2’-アゾビス(2-メチルプロピオネート)の滴下終了後に、さらに4時間かけて熟成を行なった。
Production Example 5
In a reaction kettle equipped with a stirrer, a temperature sensor, a cooling pipe and a nitrogen gas introduction pipe, 79.4 parts by weight of methyl methacrylate, 20.6 parts by weight of methacrylic acid, 90.0 parts by weight of toluene as a polymerization solvent and 22. A mixed solvent with 5 parts by weight and 0.05 parts by weight of an antioxidant (manufactured by ADEKA, trade name: ADK STAB 2112) were charged, and the temperature was raised to 73 ° C. while passing nitrogen gas into the reaction kettle. At the time when the reflux accompanying the temperature rise starts, dimethyl-2,2′-azobis (2-methylpropionate) [manufactured by Wako Pure Chemical Industries, Ltd., trade name: V-601] is used as a polymerization initiator. 25 parts by weight was added to the reaction kettle, and dimethyl-2,2′-azobis (2-methylpropionate) [Wako Pure Chemical Industries, Ltd.] was added to a mixed solvent of 7.3 parts by weight of toluene and 1.8 parts by weight of methanol. (Trade name: V-601, manufactured by Kogyo Co., Ltd.) Solution polymerization was carried out under reflux at about 71 to 76 ° C. while adding 0.35 parts by weight of the solution dissolved in the reaction kettle over 2 hours. After completion of the dropwise addition of dimethyl-2,2′-azobis (2-methylpropionate), aging was carried out for an additional 4 hours.
 前記で得られた重合体溶液に含まれる(メタ)アクリル系樹脂におけるメタクリル酸に由来の繰返し単位の含有率は、20.6重量%であった。また、当該(メタ)アクリル系樹脂の重量平均分子量は、11万であった。 The content of repeating units derived from methacrylic acid in the (meth) acrylic resin contained in the polymer solution obtained above was 20.6% by weight. Moreover, the weight average molecular weight of the (meth) acrylic resin was 110,000.
 次に、メタノール9.9重量部に環化縮合反応の触媒(環化触媒)であるナトリウムメトキシド0.02重量部を溶解させた溶液を20分間かけて約65~70℃の温度で反応釜内の重合溶液に滴下し、均一な重合溶液とした。 Next, a solution obtained by dissolving 0.02 part by weight of sodium methoxide as a catalyst for cyclization condensation reaction (cyclization catalyst) in 9.9 parts by weight of methanol was reacted at a temperature of about 65 to 70 ° C. over 20 minutes. It was dripped at the polymerization solution in a kettle, and it was set as the uniform polymerization solution.
 前記で得られた重合溶液をバレル温度290℃、回転数238rpm、減圧度13.3~400hPa(10~300mmHg)、リアベント数が1個、フォアベント数が2個のベントタイプスクリュー二軸押出し機(孔径:15mm、L/D:45)内に樹脂量換算で480g/hの処理速度で導入し、この押出し機内で脱揮を行ない、軸内滞留時間3.7分間程度で押出すことにより、透明な(メタ)アクリル系樹脂のペレットを得た。 Vent type screw twin screw extruder having a barrel temperature of 290 ° C., a rotational speed of 238 rpm, a reduced pressure of 13.3 to 400 hPa (10 to 300 mmHg), a rear vent number of 1, and a forevent number of 2 (Pore diameter: 15 mm, L / D: 45) Introduced at a processing speed of 480 g / h in terms of resin amount, devolatilized in this extruder, and extruded with a shaft residence time of about 3.7 minutes A transparent (meth) acrylic resin pellet was obtained.
 前記で得られた(メタ)アクリル系樹脂の重量平均分子量は10.2万であり、ガラス転移温度は130℃であった。 The weight average molecular weight of the (meth) acrylic resin obtained above was 102,000, and the glass transition temperature was 130 ° C.
 次に、前記で得られたペレットをバレル温度290℃、回転数300rpm、減圧度13.3~400hPa(10~300mmHg)、ベント数が1個のベントタイプスクリュー二軸押出し機(孔径:15mm、L/D:45)内に樹脂量換算で432g/hの処理速度でホッパーから導入し、ホッパーの後よりアニリンを液添ポンプにて250g/hの投入速度で注入し、軸内滞留時間5.5分間程度で押出すことにより、透明な(メタ)アクリル系樹脂のペレットを得た。 Next, the pellet obtained above was a barrel type screw twin screw extruder (hole diameter: 15 mm, bore temperature: 290 ° C., rotation speed: 300 rpm, degree of vacuum: 13.3 to 400 hPa (10 to 300 mmHg), one vent number) L / D: 45) was introduced from the hopper at a treatment rate of 432 g / h in terms of resin amount, and aniline was injected from the hopper after the hopper at a feed rate of 250 g / h, and the residence time in the shaft was 5 By extruding in about 5 minutes, transparent (meth) acrylic resin pellets were obtained.
 前記で得られた(メタ)アクリル系樹脂の重量平均分子量は、9.7万であった。前記で得られた(メタ)アクリル系樹脂は、式(I)において、R1がメチル基であり、R2が水素原子であり、R3がフェニル基である繰返し単位および式(II)において、R4が水素原子であり、R5がメチル基であり、R6がメチル基である繰返し単位を有し、ガラス転移温度が171℃である(メタ)アクリル系樹脂であった。 The weight average molecular weight of the (meth) acrylic resin obtained above was 97,000. The (meth) acrylic resin obtained above has a repeating unit in the formula (I) wherein R 1 is a methyl group, R 2 is a hydrogen atom, and R 3 is a phenyl group. , R 4 is a hydrogen atom, R 5 is a methyl group, R 6 is a methyl group, and a (meth) acrylic resin having a glass transition temperature of 171 ° C.
 また、前記で得られた(メタ)アクリル樹脂のイミド化率は52.6%、式(II)で表わされる繰返し単位の含有率は29.5重量%、応力光学係数(Cr)は0.23×10-9Pa-1であった。また、当該(メタ)アクリル系樹脂の酸価は1.58mmol/gであった。 Moreover, the imidation ratio of the (meth) acrylic resin obtained above was 52.6%, the content of the repeating unit represented by the formula (II) was 29.5% by weight, and the stress optical coefficient (Cr) was 0.00. It was 23 × 10 −9 Pa −1 . The acid value of the (meth) acrylic resin was 1.58 mmol / g.
実施例12
 製造例5で得られたペレットをバレル温度260℃、回転数300rpm、減圧度13.3~400hPa(10~300mmHg)、ベント数が1個のベントタイプスクリュー二軸押出し機(孔径:15mm、L/D:45)内に樹脂量換算で420g/hの処理速度でホッパーから導入し、ホッパーの後より原料樹脂に対して炭酸ジメチル(DBC)16.0重量部とジアザビシクロウンデセン(DBU)2.0重量部との混合液を液添ポンプにて注入し、軸内滞留時間5.2分間程度で押出すことにより、透明な(メタ)アクリル系樹脂のペレットを得た。前記で得られた(メタ)アクリル系樹脂の重量平均分子量は、8.6万であった。
Example 12
The pellet obtained in Production Example 5 has a barrel temperature of 260 ° C., a rotation speed of 300 rpm, a degree of vacuum of 13.3 to 400 hPa (10 to 300 mmHg), a vent type screw twin screw extruder having a single vent (hole diameter: 15 mm, L / D: 45) is introduced from the hopper at a processing rate of 420 g / h in terms of resin amount, and 16.0 parts by weight of dimethyl carbonate (DBC) and diazabicycloundecene (DBU) with respect to the raw material resin after the hopper. ) A mixed liquid of 2.0 parts by weight was injected with a liquid pump, and extruded with an in-shaft residence time of about 5.2 minutes to obtain transparent (meth) acrylic resin pellets. The weight average molecular weight of the (meth) acrylic resin obtained above was 86,000.
 前記で得られた(メタ)アクリル系樹脂は、式(I)において、R1がメチル基であり、R2が水素原子であり、R3がフェニル基である繰返し単位および式(II)において、R4が水素原子であり、R5がメチル基であり、R6がメチル基である繰返し単位を有し、ガラス転移温度が155℃である(メタ)アクリル系樹脂であった。 The (meth) acrylic resin obtained above has a repeating unit in the formula (I) wherein R 1 is a methyl group, R 2 is a hydrogen atom, and R 3 is a phenyl group. , R 4 is a hydrogen atom, R 5 is a methyl group, R 6 is a (meth) acrylic resin having a repeating unit having a methyl group and a glass transition temperature of 155 ° C.
 前記で得られた(メタ)アクリル樹脂のイミド化率は50.1%、式(II)で表わされる繰返し単位の含有率は44.2重量%、応力光学係数(Cr)は-0.05×10-9Pa-1であった。また、当該(メタ)アクリル系樹脂の酸価は0.77mmol/gであった。 The imidation ratio of the (meth) acrylic resin obtained above was 50.1%, the content of the repeating unit represented by the formula (II) was 44.2% by weight, and the stress optical coefficient (Cr) was −0.05. × 10 -9 Pa -1 Moreover, the acid value of the (meth) acrylic resin was 0.77 mmol / g.
 次に、前記で得られたペレットを単軸押出機(孔径:20mm、L/D:25)に入れ、Tダイ温度を280℃に調節し、コートハンガータイプTダイ(幅150mm)から溶融押出しを行ない、ロール温度150℃の冷却ロール上に吐出し、厚さ160μmの未延伸フィルムを作製した。 Next, the pellet obtained above is put into a single screw extruder (hole diameter: 20 mm, L / D: 25), the T die temperature is adjusted to 280 ° C., and melt extrusion is performed from a coat hanger type T die (width 150 mm). Then, the film was discharged onto a cooling roll having a roll temperature of 150 ° C. to produce an unstretched film having a thickness of 160 μm.
 次に、前記で得られた未延伸フィルムを96mm×96mmに切り出し、逐次二軸延伸機〔(株)東洋精機製作所製、品番:X-6S〕を用い、175℃の温度にて240mm/minの延伸速度で縦方向(MD方向)および横方向(TD方向)の順にそれぞれ延伸倍率が2倍となるように逐次二軸延伸を行なった。前記で得られた延伸フィルムを速やかに試験装置から取り出して冷却することにより、厚さ40μmの光学フィルムを得た。 Next, the unstretched film obtained above was cut into 96 mm × 96 mm, and was sequentially 240 mm / min at a temperature of 175 ° C. using a biaxial stretching machine (manufactured by Toyo Seiki Seisakusho, product number: X-6S). Biaxial stretching was performed sequentially so that the stretching ratio was doubled in the order of the machine direction (MD direction) and the transverse direction (TD direction) at the stretching speed of. The stretched film obtained above was quickly taken out from the test apparatus and cooled to obtain an optical film having a thickness of 40 μm.
 前記で得られた光学フィルムの面内位相差および厚さ方向位相差は、それぞれ、0.4nmおよび-2.7nmであった。 The in-plane retardation and the thickness direction retardation of the optical film obtained above were 0.4 nm and −2.7 nm, respectively.
 次に、未延伸フィルムの吸水率ならびに前記で得られた光学フィルムの厚さ方向位相差変化値および寸法変化率を調べた。その結果を表4に示す。 Next, the water absorption rate of the unstretched film, the thickness direction retardation change value and the dimensional change rate of the optical film obtained above were examined. The results are shown in Table 4.
製造例6
 攪拌装置、温度センサー、冷却管および窒素ガス導入管を備えた反応釜に、メタクリル酸メチル79.4重量部、メタクリル酸20.6重量部、重合溶媒としてトルエン90.0重量部とメタノール22.5重量部との混合溶媒、および酸化防止剤〔(株)ADEKA製、商品名:アデカスタブ2112〕0.05重量部を仕込み、反応釜内に窒素ガスを通じながら73℃まで昇温させた。昇温に伴う還流が始まった時点で、重合開始剤としてジメチル-2,2’-アゾビス(2-メチルプロピオネート)〔和光純薬工業(株)製、商品名:V-601〕0.25重量部を反応釜内に添加するとともに、トルエン7.3重量部とメタノール1.8重量部との混合溶媒にジメチル-2,2’-アゾビス(2-メチルプロピオネート)〔和光純薬工業(株)製、商品名:V-601〕0.35重量部を溶解させた溶液を2時間かけて反応釜内に滴下しながら、約71~76℃の還流下で溶液重合を行ない、ジメチル-2,2’-アゾビス(2-メチルプロピオネート)の滴下終了後に、さらに4時間かけて熟成を行なった。
Production Example 6
In a reaction kettle equipped with a stirrer, a temperature sensor, a cooling pipe and a nitrogen gas introduction pipe, 79.4 parts by weight of methyl methacrylate, 20.6 parts by weight of methacrylic acid, 90.0 parts by weight of toluene as a polymerization solvent and 22. A mixed solvent with 5 parts by weight and 0.05 parts by weight of an antioxidant (manufactured by ADEKA, trade name: ADK STAB 2112) were charged, and the temperature was raised to 73 ° C. while passing nitrogen gas into the reaction kettle. At the time when the reflux accompanying the temperature rise starts, dimethyl-2,2′-azobis (2-methylpropionate) [manufactured by Wako Pure Chemical Industries, Ltd., trade name: V-601] is used as a polymerization initiator. 25 parts by weight was added to the reaction kettle, and dimethyl-2,2′-azobis (2-methylpropionate) [Wako Pure Chemical Industries, Ltd.] was added to a mixed solvent of 7.3 parts by weight of toluene and 1.8 parts by weight of methanol. (Trade name: V-601, manufactured by Kogyo Co., Ltd.) Solution polymerization was carried out under reflux at about 71 to 76 ° C. while adding 0.35 parts by weight of the solution dissolved in the reaction kettle over 2 hours. After completion of the dropwise addition of dimethyl-2,2′-azobis (2-methylpropionate), aging was carried out for an additional 4 hours.
 前記で得られた重合体溶液に含まれる(メタ)アクリル系樹脂におけるメタクリル酸に由来の繰返し単位の含有率は、20.6重量%であった。また、当該(メタ)アクリル系樹脂の重量平均分子量は、11万であった。 The content of repeating units derived from methacrylic acid in the (meth) acrylic resin contained in the polymer solution obtained above was 20.6% by weight. Moreover, the weight average molecular weight of the (meth) acrylic resin was 110,000.
 次に、メタノール9.9重量部に環化縮合反応の触媒(環化触媒)であるナトリウムメトキシド0.05重量部を溶解させた溶液を20分間かけて約65~70℃の温度で反応釜内の重合溶液に滴下し、均一な重合溶液とした。 Next, a solution in which 0.05 part by weight of sodium methoxide as a catalyst for cyclization condensation reaction (cyclization catalyst) is dissolved in 9.9 parts by weight of methanol is reacted at a temperature of about 65 to 70 ° C. over 20 minutes. It was dripped at the polymerization solution in a kettle, and it was set as the uniform polymerization solution.
 次に、前記で得られた重合溶液をバレル温度280℃、回転数238rpm、減圧度13.3~400hPa(10~300mmHg)、リアベント数が1個、フォアベント数が2個のベントタイプスクリュー二軸押出し機(孔径:15mm、L/D:45)内に樹脂量換算で624g/hの処理速度で導入し、この押出し機内で脱揮を行ない、軸内滞留時間2.6分間程度で押出すことにより、透明な(メタ)アクリル系樹脂のペレットを得た。 Next, the polymerization solution obtained above was subjected to a vent type screw having a barrel temperature of 280 ° C., a rotation speed of 238 rpm, a degree of vacuum of 13.3 to 400 hPa (10 to 300 mmHg), a rear vent number of 1, and a forevent number of 2. It is introduced into a shaft extruder (hole diameter: 15 mm, L / D: 45) at a processing speed of 624 g / h in terms of resin amount, devolatilized in this extruder, and pushed in a shaft residence time of about 2.6 minutes. As a result, a transparent (meth) acrylic resin pellet was obtained.
 前記で得られた(メタ)アクリル系樹脂の重量平均分子量は9.8万であり、ガラス転移温度は130℃であった。 The weight average molecular weight of the (meth) acrylic resin obtained above was 98,000, and the glass transition temperature was 130 ° C.
 次に、前記で得られたペレットをバレル温度290℃、回転数300rpm、減圧度13.3~400hPa(10~300mmHg)、ベント数が1個のベントタイプスクリュー二軸押出し機(孔径:15mm、L/D:45)内に樹脂量換算で420g/hの処理速度でホッパーから導入し、ホッパーの後よりアニリンを液添ポンプにて202g/hの投入速度で注入し、軸内滞留時間5.5分間程度で押出すことにより、透明な(メタ)アクリル系樹脂のペレットを得た。 Next, the pellet obtained above was a barrel type screw twin screw extruder (hole diameter: 15 mm, bore temperature: 290 ° C., rotation speed: 300 rpm, degree of vacuum: 13.3 to 400 hPa (10 to 300 mmHg), one vent number) L / D: 45) was introduced from the hopper at a processing rate of 420 g / h in terms of resin amount, and aniline was injected from the hopper after the hopper at a charging rate of 202 g / h. By extruding in about 5 minutes, transparent (meth) acrylic resin pellets were obtained.
 前記で得られた(メタ)アクリル系樹脂の重量平均分子量は、9.2万であった。前記で得られた(メタ)アクリル系樹脂は、式(I)において、R1がメチル基であり、R2が水素原子であり、R3がフェニル基である繰返し単位および式(II)において、R4が水素原子であり、R5がメチル基であり、R6がメチル基である繰返し単位を有し、ガラス転移温度が178℃である(メタ)アクリル系樹脂であった。 The weight average molecular weight of the (meth) acrylic resin obtained above was 92,000. The (meth) acrylic resin obtained above has a repeating unit in the formula (I) wherein R 1 is a methyl group, R 2 is a hydrogen atom, and R 3 is a phenyl group. , R 4 is a hydrogen atom, R 5 is a methyl group, R 6 is a (meth) acrylic resin having a repeating unit having a methyl group and a glass transition temperature of 178 ° C.
 前記で得られた(メタ)アクリル樹脂のイミド化率は54.6%、式(II)で表わされる繰返し単位の含有率は26.2重量%、応力光学係数(Cr)は0.20×10-9Pa-1であった。また、当該(メタ)アクリル系樹脂の酸価は1.40mmol/gであった。 The imidation ratio of the (meth) acrylic resin obtained above was 54.6%, the content of the repeating unit represented by the formula (II) was 26.2% by weight, and the stress optical coefficient (Cr) was 0.20 × 10 −9 Pa −1 . Moreover, the acid value of the (meth) acrylic resin was 1.40 mmol / g.
実施例13
 製造例6で得られたペレットをバレル温度290℃、回転数300rpm、減圧度13.3~400hPa(10~300mmHg)、ベント数が1個のベントタイプスクリュー二軸押出し機(孔径:15mm、L/D:45)内に樹脂量換算で420g/hの処理速度でホッパーから導入し、ホッパーの後より原料樹脂に対して炭酸ジメチル(DBC)16.0重量部とジアザビシクロウンデセン(DBU)2.0重量部との混合液を液添ポンプにて注入し、軸内滞留時間5.2分間程度で押出すことにより、透明な(メタ)アクリル系樹脂のペレットを得た。
Example 13
The pellet obtained in Production Example 6 was a vent type screw twin screw extruder (hole diameter: 15 mm, L) with a barrel temperature of 290 ° C., a rotation speed of 300 rpm, a degree of vacuum of 13.3 to 400 hPa (10 to 300 mmHg), and a single vent. / D: 45) is introduced from the hopper at a processing rate of 420 g / h in terms of resin amount, and 16.0 parts by weight of dimethyl carbonate (DBC) and diazabicycloundecene (DBU) with respect to the raw material resin after the hopper. ) A mixed liquid of 2.0 parts by weight was injected with a liquid pump, and extruded with an in-shaft residence time of about 5.2 minutes to obtain transparent (meth) acrylic resin pellets.
 前記で得られた(メタ)アクリル系樹脂の重量平均分子量は、8.3万であった。前記で得られた(メタ)アクリル系樹脂は、式(I)において、R1がメチル基であり、R2が水素原子であり、R3がフェニル基である繰返し単位および式(II)において、R4が水素原子であり、R5がメチル基であり、R6がメチル基である繰返し単位を有し、ガラス転移温度が158℃である(メタ)アクリル系樹脂であった。 The weight average molecular weight of the (meth) acrylic resin obtained above was 83,000. The (meth) acrylic resin obtained above has a repeating unit in the formula (I) wherein R 1 is a methyl group, R 2 is a hydrogen atom, and R 3 is a phenyl group. , R 4 is a hydrogen atom, R 5 is a methyl group, R 6 is a (meth) acrylic resin having a repeating unit having a methyl group and a glass transition temperature of 158 ° C.
 前記で得られた(メタ)アクリル樹脂のイミド化率は52.2%、式(II)で表わされる繰返し単位の含有率は43.5重量%、応力光学係数(Cr)は-0.12×10-9Pa-1であった。また、当該(メタ)アクリル系樹脂の酸価は0.48mmol/gであった。 The imidation ratio of the (meth) acrylic resin obtained above was 52.2%, the content of the repeating unit represented by the formula (II) was 43.5% by weight, and the stress optical coefficient (Cr) was −0.12. × 10 -9 Pa -1 The acid value of the (meth) acrylic resin was 0.48 mmol / g.
 次に、前記で得られたペレットを単軸押出機(孔径:20mm、L/D:25)に入れ、Tダイ温度を285℃に調節し、コートハンガータイプTダイ(幅150mm)から溶融押出しを行ない、ロール温度155℃の冷却ロール上に吐出し、厚さ160μmの未延伸フィルムを作製した。 Next, the pellet obtained above is put into a single screw extruder (hole diameter: 20 mm, L / D: 25), the T die temperature is adjusted to 285 ° C., and melt extrusion is performed from a coat hanger type T die (width 150 mm). And was discharged onto a cooling roll having a roll temperature of 155 ° C. to produce an unstretched film having a thickness of 160 μm.
 次に、前記で得られた未延伸フィルムを96mm×96mmに切り出し、逐次二軸延伸機〔(株)東洋精機製作所製、品番:X-6S〕を用い、178℃の温度にて240mm/minの延伸速度で縦方向(MD方向)および横方向(TD方向)の順にそれぞれ延伸倍率が2倍となるように逐次二軸延伸を行なった。前記で得られた延伸フィルムを速やかに試験装置から取り出して冷却することにより、厚さ40μmの光学フィルムを得た。 Next, the unstretched film obtained above was cut out to 96 mm × 96 mm, and was successively 240 mm / min at a temperature of 178 ° C. using a biaxial stretching machine (manufactured by Toyo Seiki Seisakusho, product number: X-6S). Biaxial stretching was performed sequentially so that the stretching ratio was doubled in the order of the machine direction (MD direction) and the transverse direction (TD direction) at the stretching speed of. The stretched film obtained above was quickly taken out from the test apparatus and cooled to obtain an optical film having a thickness of 40 μm.
 前記で得られた光学フィルムの面内位相差および厚さ方向位相差は、それぞれ、2.1nmおよび-8.0nmであった。 The in-plane retardation and the thickness direction retardation of the optical film obtained above were 2.1 nm and −8.0 nm, respectively.
 次に、未延伸フィルムの吸水率ならびに前記で得られた光学フィルムの厚さ方向位相差変化値および寸法変化率を調べた。その結果を表4に示す。 Next, the water absorption rate of the unstretched film, the thickness direction retardation change value and the dimensional change rate of the optical film obtained above were examined. The results are shown in Table 4.
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000012
 表4に示された結果から、各実施例で得られた光学フィルムは、いずれも、未延伸フィルムの吸水率が低く、延伸フィルムの厚さ方向位相差変化値および寸法変化率が小さいという優れた性質を有するものであることがわかる。 From the results shown in Table 4, each of the optical films obtained in each Example is excellent in that the water absorption of the unstretched film is low and the thickness direction retardation change value and the dimensional change rate of the stretched film are small. It can be seen that these have the properties.
 実施例11~13で得られた光学フィルムの面内位相差、厚さ方向位相差、光弾性係数および線膨張係数を調べた。その結果を表5に示す。また、これらの光学フィルムの物性を実施例1と同様にして調べた。その結果を表5に併記する。 The in-plane retardation, thickness direction retardation, photoelastic coefficient, and linear expansion coefficient of the optical films obtained in Examples 11 to 13 were examined. The results are shown in Table 5. Further, the physical properties of these optical films were examined in the same manner as in Example 1. The results are also shown in Table 5.
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000013
 表5に示された結果から、各実施例で得られた光学フィルムは、いずれも、良好な耐熱性、ヘイズ、全光線透過率、MIT耐折度およびインパクト強度を有し、面内位相差および厚さ方向位相差がいずれも小さいので低複屈折を有し、表面硬度(鉛筆硬度)が高く、光弾性係数の絶対値が小さいという優れた性質を有するものであることがわかる。 From the results shown in Table 5, the optical films obtained in each example all have good heat resistance, haze, total light transmittance, MIT folding resistance and impact strength, and in-plane retardation. In addition, since the thickness direction retardation is small, it has low birefringence, high surface hardness (pencil hardness), and excellent properties such as a small absolute value of the photoelastic coefficient.
実施例14
 攪拌装置、温度センサー、冷却管および窒素ガス導入管を備えた反応釜に、メタクリル酸エチル70重量部、メタクリル酸30重量部、重合溶媒としてトルエン78.8重量部とメタノール33.8重量部との混合溶媒、および酸化防止剤〔(株)ADEKA製、商品名:アデカスタブ2112〕0.05重量部を仕込み、反応釜内に窒素ガスを通じながら73℃まで昇温させた。昇温に伴う還流が始まった時点で、重合開始剤としてジメチル-2,2’-アゾビス(2-メチルプロピオネート)〔和光純薬工業(株)製、商品名:V-601〕0.25重量部を反応釜内に添加するとともに、トルエン6.4重量部とメタノール2.7重量部との混合溶媒にジメチル-2,2’-アゾビス(2-メチルプロピオネート)〔和光純薬工業(株)製、商品名:V-601〕0.35重量部を溶解させた溶液を2時間かけて反応釜内に滴下しながら、約71~76℃の還流下で溶液重合を行ない、ジメチル-2,2’-アゾビス(2-メチルプロピオネート)の滴下終了後に、さらに4時間かけて熟成を行なった。
Example 14
In a reaction kettle equipped with a stirrer, temperature sensor, cooling pipe and nitrogen gas introduction pipe, 70 parts by weight of ethyl methacrylate, 30 parts by weight of methacrylic acid, 78.8 parts by weight of toluene as a polymerization solvent and 33.8 parts by weight of methanol A mixed solvent and an antioxidant (manufactured by ADEKA, trade name: ADK STAB 2112) were added in an amount of 0.05 part by weight, and the temperature was raised to 73 ° C. while passing nitrogen gas through the reaction kettle. At the time when the reflux accompanying the temperature rise starts, dimethyl-2,2′-azobis (2-methylpropionate) [manufactured by Wako Pure Chemical Industries, Ltd., trade name: V-601] is used as a polymerization initiator. 25 parts by weight was added to the reaction kettle, and dimethyl-2,2′-azobis (2-methylpropionate) [Wako Pure Chemical Industries, Ltd.] was added to a mixed solvent of 6.4 parts by weight of toluene and 2.7 parts by weight of methanol. (Trade name: V-601, manufactured by Kogyo Co., Ltd.) Solution polymerization was carried out under reflux at about 71 to 76 ° C. while adding 0.35 parts by weight of the solution dissolved in the reaction kettle over 2 hours. After completion of the dropwise addition of dimethyl-2,2′-azobis (2-methylpropionate), aging was carried out for an additional 4 hours.
 前記で得られた重合体溶液に含まれる(メタ)アクリル系樹脂におけるメタクリル酸に由来の繰返し単位の含有率は、30.2重量%であった。また、当該(メタ)アクリル系樹脂の重量平均分子量は、12.2万であった。 The content of repeating units derived from methacrylic acid in the (meth) acrylic resin contained in the polymer solution obtained above was 30.2% by weight. Moreover, the weight average molecular weight of the (meth) acrylic resin was 122,000.
 次に、メタノール9.9重量部に環化縮合反応の触媒(環化触媒)であるナトリウムメトキシド0.1重量部を溶解させた溶液を20分間かけて約65~70℃の温度で反応釜内の重合溶液に滴下し、均一な重合溶液とした。 Next, a solution in which 0.1 part by weight of sodium methoxide as a catalyst for the cyclization condensation reaction (cyclization catalyst) is dissolved in 9.9 parts by weight of methanol is reacted at a temperature of about 65 to 70 ° C. over 20 minutes. It was dripped at the polymerization solution in a kettle, and it was set as the uniform polymerization solution.
 前記で得られた重合溶液をバレル温度290℃、回転数160rpm、減圧度13.3~400hPa(10~300mmHg)、リアベント数が1個、フォアベント数が2個のベントタイプスクリュー二軸押出し機(孔径:15mm、L/D:45)内に樹脂量換算で420g/hの処理速度で導入し、この押出し機内で脱揮を行ない、軸内滞留時間3.6分間程度で押出すことにより、透明な(メタ)アクリル系樹脂のペレットを得た。 Vent type screw twin screw extruder having a barrel temperature of 290 ° C., a rotation speed of 160 rpm, a degree of vacuum of 13.3 to 400 hPa (10 to 300 mmHg), a rear vent number of 1, and a forevent number of 2 (Pore diameter: 15 mm, L / D: 45) Introduced at a processing rate of 420 g / h in terms of resin amount, devolatilized in this extruder, and extruded in a shaft residence time of about 3.6 minutes. A transparent (meth) acrylic resin pellet was obtained.
 前記で得られた(メタ)アクリル系樹脂の重量平均分子量は11.3万であり、ガラス転移温度は109℃であった。 The weight average molecular weight of the (meth) acrylic resin obtained above was 113,000, and the glass transition temperature was 109 ° C.
 次に、前記で得られたペレットをバレル温度290℃、回転数300rpm、減圧度13.3~400hPa(10~300mmHg)、ベント数が1個のベントタイプスクリュー二軸押出し機(孔径:15mm、L/D:45)内に樹脂量換算で420g/hの処理速度でホッパーから導入し、ホッパーの後よりアニリンを液添ポンプにて202g/hの投入速度で注入し、軸内滞留時間5.2分間程度で押出すことにより、透明な(メタ)アクリル系樹脂のペレットを得た。 Next, the pellet obtained in the above was a barrel type screw twin screw extruder (hole diameter: 15 mm, bore temperature: 290 ° C., rotation speed: 300 rpm, reduced pressure: 13.3 to 400 hPa (10 to 300 mmHg), single vent number) L / D: 45) was introduced from the hopper at a processing rate of 420 g / h in terms of resin amount, and aniline was injected from the hopper after the hopper at a charging rate of 202 g / h. By extruding in about 2 minutes, transparent (meth) acrylic resin pellets were obtained.
 前記で得られた(メタ)アクリル系樹脂の重量平均分子量は、10.1万であった。前記で得られた(メタ)アクリル系樹脂は、式(I)において、R1がメチル基であり、R2が水素原子であり、R3がフェニル基である繰返し単位および式(II)において、R4が水素原子であり、R5がメチル基であり、R6がエチル基である繰返し単位を有し、ガラス転移温度が168℃である(メタ)アクリル系樹脂であった。 The weight average molecular weight of the (meth) acrylic resin obtained above was 10.11,000. The (meth) acrylic resin obtained above has a repeating unit in the formula (I) wherein R 1 is a methyl group, R 2 is a hydrogen atom, and R 3 is a phenyl group. , R 4 is a hydrogen atom, R 5 is a methyl group, R 6 is a (meth) acrylic resin having a repeating unit of an ethyl group and a glass transition temperature of 168 ° C.
 前記で得られた(メタ)アクリル樹脂のイミド化率は54.6%、式(II)で表わされる繰返し単位の含有率は26.0重量%、応力光学係数(Cr)は0.02×10-9Pa-1であった。また、当該(メタ)アクリル系樹脂の酸価は0.88mmol/gであった。 The imidation ratio of the (meth) acrylic resin obtained above was 54.6%, the content of the repeating unit represented by the formula (II) was 26.0% by weight, and the stress optical coefficient (Cr) was 0.02 × 10 −9 Pa −1 . The acid value of the (meth) acrylic resin was 0.88 mmol / g.
 次に、前記で得られたペレットを単軸押出機(孔径:20mm、L/D:25)に入れ、Tダイ温度を290℃に調節し、コートハンガータイプTダイ(幅150mm)から溶融押出しを行ない、ロール温度163℃の冷却ロール上に吐出し、厚さ160μmの未延伸フィルムを作製した。 Next, the pellet obtained above is put into a single screw extruder (hole diameter: 20 mm, L / D: 25), the T die temperature is adjusted to 290 ° C., and melt extrusion is performed from a coat hanger type T die (width 150 mm). And was discharged onto a cooling roll having a roll temperature of 163 ° C. to produce an unstretched film having a thickness of 160 μm.
 次に、前記で得られた未延伸フィルムを96mm×96mmに切り出し、逐次二軸延伸機〔(株)東洋精機製作所製、品番:X-6S〕を用い、188℃の温度にて240mm/minの延伸速度で縦方向(MD方向)および横方向(TD方向)の順にそれぞれ延伸倍率が2倍となるように逐次二軸延伸を行なった。前記で得られた延伸フィルムを速やかに試験装置から取り出して冷却することにより、厚さ40μmの光学フィルムを得た。 Next, the unstretched film obtained above was cut out into 96 mm × 96 mm, and successively 240 mm / min at a temperature of 188 ° C. using a biaxial stretching machine (manufactured by Toyo Seiki Seisakusho, product number: X-6S). Biaxial stretching was performed sequentially so that the stretching ratio was doubled in the order of the machine direction (MD direction) and the transverse direction (TD direction) at the stretching speed of. The stretched film obtained above was quickly taken out from the test apparatus and cooled to obtain an optical film having a thickness of 40 μm.
 前記で得られた光学フィルムの面内位相差および厚さ方向位相差は、それぞれ、0.4nmおよび1.4nmであった。 The in-plane retardation and the thickness direction retardation of the optical film obtained above were 0.4 nm and 1.4 nm, respectively.
 次に、未延伸フィルムの吸水率ならびに前記で得られた光学フィルムの厚さ方向位相差変化値および寸法変化率を調べた。その結果を表6に示す。 Next, the water absorption rate of the unstretched film, the thickness direction retardation change value and the dimensional change rate of the optical film obtained above were examined. The results are shown in Table 6.
実施例15
 攪拌装置、温度センサー、冷却管および窒素ガス導入管を備えた反応釜に、メタクリル酸n-ブチル60重量部、メタクリル酸40重量部、重合溶媒としてトルエン67.5重量部とメタノール45重量部との混合溶媒、および酸化防止剤〔(株)ADEKA製、商品名:アデカスタブ2112〕0.05重量部を仕込み、反応釜内に窒素ガスを通じながら73℃まで昇温させた。昇温に伴う還流が始まった時点で、重合開始剤としてジメチル-2,2’-アゾビス(2-メチルプロピオネート)〔和光純薬工業(株)製、商品名:V-601〕0.25重量部を反応釜内に添加するとともに、トルエン5.5重量部とメタノール3.6重量部との混合溶媒にジメチル-2,2’-アゾビス(2-メチルプロピオネート)〔和光純薬工業(株)製、商品名:V-601〕0.35重量部を溶解させた溶液を2時間かけて反応釜内に滴下しながら、約71~76℃の還流下で溶液重合を行ない、ジメチル-2,2’-アゾビス(2-メチルプロピオネート)の滴下終了後に、さらに5時間かけて熟成を行なった。
Example 15
In a reaction kettle equipped with a stirrer, a temperature sensor, a cooling pipe and a nitrogen gas introduction pipe, 60 parts by weight of n-butyl methacrylate, 40 parts by weight of methacrylic acid, 67.5 parts by weight of toluene as a polymerization solvent and 45 parts by weight of methanol A mixed solvent and an antioxidant (manufactured by ADEKA, trade name: ADK STAB 2112) were added in an amount of 0.05 part by weight, and the temperature was raised to 73 ° C. while passing nitrogen gas through the reaction kettle. At the time when the reflux accompanying the temperature rise starts, dimethyl-2,2′-azobis (2-methylpropionate) [manufactured by Wako Pure Chemical Industries, Ltd., trade name: V-601] is used as a polymerization initiator. 25 parts by weight was added to the reaction kettle, and dimethyl-2,2′-azobis (2-methylpropionate) [Wako Pure Chemical Industries, Ltd.] was added to a mixed solvent of 5.5 parts by weight of toluene and 3.6 parts by weight of methanol. (Trade name: V-601, manufactured by Kogyo Co., Ltd.) Solution polymerization was carried out under reflux at about 71 to 76 ° C. while adding 0.35 parts by weight of the solution dissolved in the reaction kettle over 2 hours. After completion of the dropwise addition of dimethyl-2,2′-azobis (2-methylpropionate), aging was performed for another 5 hours.
 前記で得られた重合体溶液に含まれる(メタ)アクリル系樹脂におけるメタクリル酸に由来の繰返し単位の含有率は、40.1重量%であった。また、当該(メタ)アクリル系樹脂の重量平均分子量は、14.5万であった。 The content of repeating units derived from methacrylic acid in the (meth) acrylic resin contained in the polymer solution obtained above was 40.1% by weight. Moreover, the weight average molecular weight of the (meth) acrylic resin was 145,000.
 次に、メタノール9.9重量部に、環化縮合反応の触媒(環化触媒)であるナトリウムメトキシド0.1重量部を溶解させた溶液を20分間かけて約65~70℃の温度で反応釜内の重合溶液に滴下し、均一な重合溶液とした。 Next, a solution in which 0.1 part by weight of sodium methoxide as a catalyst for cyclization condensation reaction (cyclization catalyst) is dissolved in 9.9 parts by weight of methanol at a temperature of about 65 to 70 ° C. over 20 minutes. It was dripped at the polymerization solution in a reaction kettle, and it was set as the uniform polymerization solution.
 次に、前記で得られた重合溶液をバレル温度290℃、回転数70rpm、減圧度13.3~400hPa(10~300mmHg)、リアベント数が1個、フォアベント数が2個のベントタイプスクリュー二軸押出し機(孔径:15mm、L/D:45)内に樹脂量換算で420g/hの処理速度で導入し、この押出し機内で脱揮を行ない、軸内滞留時間3.6分間程度で押出すことにより、透明な(メタ)アクリル系樹脂のペレットを得た。 Next, the polymer solution obtained above was subjected to a vent type screw having a barrel temperature of 290 ° C., a rotation speed of 70 rpm, a degree of vacuum of 13.3 to 400 hPa (10 to 300 mmHg), a rear vent number of 1, and a forevent number of 2. It is introduced into a shaft extruder (hole diameter: 15 mm, L / D: 45) at a processing rate of 420 g / h in terms of resin amount, devolatilized in this extruder, and pushed in a shaft residence time of about 3.6 minutes. As a result, a transparent (meth) acrylic resin pellet was obtained.
 前記で得られた(メタ)アクリル系樹脂の重量平均分子量は12.8万であり、ガラス転移温度は98℃であった。 The weight average molecular weight of the (meth) acrylic resin obtained above was 1280, and the glass transition temperature was 98 ° C.
 次に、前記で得られたペレットをバレル温度290℃、回転数300rpm、減圧度13.3~400hPa(10~300mmHg)、ベント数が1個のベントタイプスクリュー二軸押出し機(孔径:15mm、L/D:45)内に樹脂量換算で456g/hの処理速度でホッパーから導入し、ホッパーの後よりアニリンを液添ポンプにて378g/hの投入速度で注入し、軸内滞留時間5.2分間程度で押出すことにより、透明な(メタ)アクリル系樹脂のペレットを得た。 Next, the pellet obtained above was a barrel type screw twin screw extruder (hole diameter: 15 mm, bore temperature: 290 ° C., rotation speed: 300 rpm, degree of vacuum: 13.3 to 400 hPa (10 to 300 mmHg), one vent number) L / D: 45) is introduced from the hopper at a processing rate of 456 g / h in terms of resin amount, and aniline is injected from the hopper after the hopper at a feed rate of 378 g / h, and the residence time in the shaft is 5 By extruding in about 2 minutes, transparent (meth) acrylic resin pellets were obtained.
 前記で得られた(メタ)アクリル系樹脂の重量平均分子量は、10.7万であった。前記で得られた(メタ)アクリル系樹脂は、式(I)において、R1がメチル基であり、R2が水素原子であり、R3がフェニル基である繰返し単位および式(II)において、R4が水素原子であり、R5がメチル基であり、R6がn-ブチル基である繰返し単位を有し、ガラス転移温度が162℃である(メタ)アクリル系樹脂であった。 The weight average molecular weight of the (meth) acrylic resin obtained above was 107,000. The (meth) acrylic resin obtained above has a repeating unit in the formula (I) wherein R 1 is a methyl group, R 2 is a hydrogen atom, and R 3 is a phenyl group. , R 4 is a hydrogen atom, R 5 is a methyl group, R 6 is a (meth) acrylic resin having a repeating unit of an n-butyl group and having a glass transition temperature of 162 ° C.
 前記で得られた(メタ)アクリル樹脂のイミド化率は61.8%、式(II)で表わされる繰返し単位の含有率は22.6重量%、応力光学係数(Cr)は0.09×10-9Pa-1であった。また、当該(メタ)アクリル系樹脂の酸価は0.92mmol/gであった。 The imidation ratio of the (meth) acrylic resin obtained above was 61.8%, the content of the repeating unit represented by the formula (II) was 22.6% by weight, and the stress optical coefficient (Cr) was 0.09 × 10 −9 Pa −1 . The acid value of the (meth) acrylic resin was 0.92 mmol / g.
 次に、前記で得られたペレットを単軸押出機(孔径:20mm、L/D:25)に入れ、Tダイ温度を285℃に調節し、コートハンガータイプTダイ(幅150mm)から溶融押出しを行ない、ロール温度155℃の冷却ロール上に吐出し、厚さ160μmの未延伸フィルムを作製した。 Next, the pellet obtained above is put into a single screw extruder (hole diameter: 20 mm, L / D: 25), the T die temperature is adjusted to 285 ° C., and melt extrusion is performed from a coat hanger type T die (width 150 mm). And was discharged onto a cooling roll having a roll temperature of 155 ° C. to produce an unstretched film having a thickness of 160 μm.
 次に、前記で得られた未延伸フィルムを96mm×96mmに切り出し、逐次二軸延伸機〔(株)東洋精機製作所製、品番:X-6S〕を用い、182℃の温度にて240mm/minの延伸速度で縦方向(MD方向)および横方向(TD方向)の順にそれぞれ延伸倍率が2倍となるように逐次二軸延伸を行なった。前記で得られた延伸フィルムを速やかに試験装置から取り出して冷却することにより、厚さ40μmの光学フィルムを得た。 Next, the unstretched film obtained above was cut out to 96 mm × 96 mm, and successively 240 mm / min at a temperature of 182 ° C. using a biaxial stretching machine (manufactured by Toyo Seiki Seisakusho, product number: X-6S). Biaxial stretching was performed sequentially so that the stretching ratio was doubled in the order of the machine direction (MD direction) and the transverse direction (TD direction) at the stretching speed of. The stretched film obtained above was quickly taken out from the test apparatus and cooled to obtain an optical film having a thickness of 40 μm.
 前記で得られた光学フィルムの面内位相差および厚さ方向位相差は、それぞれ、1.2nmおよび6.1nmであった。 The in-plane retardation and the thickness direction retardation of the optical film obtained above were 1.2 nm and 6.1 nm, respectively.
 次に、未延伸フィルムの吸水率ならびに前記で得られた光学フィルムの厚さ方向位相差変化値および寸法変化率を調べた。その結果を表6に示す。 Next, the water absorption rate of the unstretched film, the thickness direction retardation change value and the dimensional change rate of the optical film obtained above were examined. The results are shown in Table 6.
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000014
 表6に示された結果から、各実施例で得られた光学フィルムは、いずれも、未延伸フィルムの吸水率が低く、延伸フィルムの厚さ方向位相差変化値および寸法変化率が小さいという優れた性質を有するものであることがわかる。 From the results shown in Table 6, each of the optical films obtained in each Example is excellent in that the water absorption rate of the unstretched film is low and the thickness direction retardation change value and the dimensional change rate of the stretched film are small. It can be seen that these have the properties.
 実施例14および15で得られた光学フィルムの面内位相差、厚さ方向位相差、光弾性係数および線膨張係数を調べた。その結果を表7に示す。また、これらの光学フィルムの物性を実施例1と同様にして調べた。その結果を表7に併記する。 The in-plane retardation, thickness direction retardation, photoelastic coefficient, and linear expansion coefficient of the optical films obtained in Examples 14 and 15 were examined. The results are shown in Table 7. Further, the physical properties of these optical films were examined in the same manner as in Example 1. The results are also shown in Table 7.
Figure JPOXMLDOC01-appb-T000015
Figure JPOXMLDOC01-appb-T000015
 表7に示された結果から、各実施例で得られた光学フィルムは、いずれも、良好な耐熱性、ヘイズ、全光線透過率、MIT耐折度およびインパクト強度を有し、面内位相差および厚さ方向位相差がいずれも小さいので低複屈折を有し、表面硬度(鉛筆硬度)が高く、光弾性係数の絶対値が小さいという優れた性質を有するものであることがわかる。

 
From the results shown in Table 7, the optical films obtained in each example all have good heat resistance, haze, total light transmittance, MIT folding resistance and impact strength, and in-plane retardation. In addition, since the thickness direction retardation is small, it has low birefringence, high surface hardness (pencil hardness), and excellent properties such as a small absolute value of the photoelastic coefficient.

Claims (13)

  1.  式(I):
    Figure JPOXMLDOC01-appb-C000001
    (式中、R1およびR2は、それぞれ独立して、水素原子または炭素数1~8のアルキル基、R3は、環構造を示す)
    で表わされる繰返し単位および式(II):
    Figure JPOXMLDOC01-appb-C000002
    (式中、R4およびR5は、それぞれ独立して、水素原子または炭素数1~8のアルキル基、R6は、炭素数1~18のアルキル基、炭素数3~12のシクロアルキル基または炭素数6~10のアリール基を示す)
    で表わされる繰返し単位を有する(メタ)アクリル系樹脂。
    Formula (I):
    Figure JPOXMLDOC01-appb-C000001
    (Wherein R 1 and R 2 are each independently a hydrogen atom or an alkyl group having 1 to 8 carbon atoms, and R 3 represents a ring structure)
    Repeating units represented by the formula (II):
    Figure JPOXMLDOC01-appb-C000002
    (Wherein R 4 and R 5 are each independently a hydrogen atom or an alkyl group having 1 to 8 carbon atoms, R 6 is an alkyl group having 1 to 18 carbon atoms or a cycloalkyl group having 3 to 12 carbon atoms) Or an aryl group having 6 to 10 carbon atoms)
    A (meth) acrylic resin having a repeating unit represented by:
  2.  (メタ)アクリル系樹脂が式(I)で表わされる繰返し単位5~85重量%および式(II)で表わされる繰返し単位15~95重量%を有する請求項1に記載の(メタ)アクリル系樹脂。 The (meth) acrylic resin according to claim 1, wherein the (meth) acrylic resin has 5 to 85% by weight of repeating units represented by the formula (I) and 15 to 95% by weight of repeating units represented by the formula (II). .
  3.  ガラス転移温度が120℃以上である請求項1または2に記載の(メタ)アクリル系樹脂。 The (meth) acrylic resin according to claim 1 or 2, wherein the glass transition temperature is 120 ° C or higher.
  4.  応力光学係数(Cr)の絶対値が0.3×10-9Pa-1以下である請求項1~3のいずれかに記載の(メタ)アクリル系樹脂、 The (meth) acrylic resin according to any one of claims 1 to 3, wherein the absolute value of the stress optical coefficient (Cr) is 0.3 × 10 -9 Pa -1 or less.
  5.  式(II):
    Figure JPOXMLDOC01-appb-C000003
    (式中、R4およびR5は、それぞれ独立して、水素原子または炭素数1~8のアルキル基、R6は、炭素数1~18のアルキル基、炭素数3~12のシクロアルキル基または炭素数6~10のアリール基を示す)
    で表わされる繰返し単位を有する(メタ)アクリル樹脂をイミド化剤でイミド化させる請求項1~4のいずれかに記載の(メタ)アクリル系樹脂の製造方法。
    Formula (II):
    Figure JPOXMLDOC01-appb-C000003
    (Wherein R 4 and R 5 are each independently a hydrogen atom or an alkyl group having 1 to 8 carbon atoms, R 6 is an alkyl group having 1 to 18 carbon atoms or a cycloalkyl group having 3 to 12 carbon atoms) Or an aryl group having 6 to 10 carbon atoms)
    The method for producing a (meth) acrylic resin according to any one of claims 1 to 4, wherein a (meth) acrylic resin having a repeating unit represented by the formula is imidized with an imidizing agent.
  6.  請求項1~4のいずれかに記載の(メタ)アクリル系樹脂を含有してなる光学フィルム。 An optical film comprising the (meth) acrylic resin according to any one of claims 1 to 4.
  7.  波長590nmにおける面内位相差Reが20nm以下であり、厚さ方向位相差Rthの絶対値が20nm以下である請求項6に記載の光学フィルム。 The optical film according to claim 6, wherein the in-plane retardation Re at a wavelength of 590 nm is 20 nm or less, and the absolute value of the thickness direction retardation Rth is 20 nm or less.
  8.  波長590nmの光に対する光弾性係数の絶対値が10×10-12Pa-1以下である請求項6または7に記載の光学フィルム。 The optical film according to claim 6 or 7, wherein an absolute value of a photoelastic coefficient with respect to light having a wavelength of 590 nm is 10 x 10 -12 Pa -1 or less.
  9.  60~100℃における線膨張係数が80×10-6-1以下である請求項6~8のいずれかに記載の光学フィルム。 The optical film according to any one of claims 6 to 8, which has a coefficient of linear expansion at 60 to 100 ° C of 80 × 10 -6 K -1 or less.
  10.  二軸延伸フィルムである請求項5~8のいずれかに記載の光学フィルム。 The optical film according to any one of claims 5 to 8, which is a biaxially stretched film.
  11.  請求項6~10のいずれかに記載の光学フィルムの少なくとも一方表面に透明導電層が形成されてなる透明導電性フィルム。 A transparent conductive film in which a transparent conductive layer is formed on at least one surface of the optical film according to any one of claims 6 to 10.
  12.  請求項6~10のいずれかに記載の光学フィルムを有する画像表示装置。 An image display device comprising the optical film according to any one of claims 6 to 10.
  13.  請求項11に記載の透明導電性フィルムを有する画像表示装置。 An image display device comprising the transparent conductive film according to claim 11.
PCT/JP2014/072587 2013-08-30 2014-08-28 (meth)acrylic resin WO2015030118A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020157032532A KR102179714B1 (en) 2013-08-30 2014-08-28 (meth)acrylic resin
CN201480046869.8A CN105492473B (en) 2013-08-30 2014-08-28 (methyl) acrylic resin
JP2015534286A JP6253655B2 (en) 2013-08-30 2014-08-28 (Meth) acrylic resin

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013180617 2013-08-30
JP2013-180617 2013-08-30

Publications (1)

Publication Number Publication Date
WO2015030118A1 true WO2015030118A1 (en) 2015-03-05

Family

ID=52586666

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/072587 WO2015030118A1 (en) 2013-08-30 2014-08-28 (meth)acrylic resin

Country Status (4)

Country Link
JP (1) JP6253655B2 (en)
KR (1) KR102179714B1 (en)
CN (1) CN105492473B (en)
WO (1) WO2015030118A1 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2018124137A1 (en) * 2016-12-28 2019-10-31 日本ゼオン株式会社 Optical film and polarizing plate
US10921492B2 (en) 2018-01-09 2021-02-16 Corning Incorporated Coated articles with light-altering features and methods for the production thereof
JP2021050255A (en) * 2019-09-20 2021-04-01 株式会社日本触媒 Acrylic polymer and method for producing the same
JP2021192106A (en) * 2017-03-15 2021-12-16 株式会社カネカ Stretched film and manufacturing method for stretched film
WO2022145174A1 (en) * 2020-12-28 2022-07-07 日本ゼオン株式会社 Optical film and manufacturing method therefor
WO2023286955A1 (en) * 2021-07-14 2023-01-19 코오롱인더스트리 주식회사 Optical film having excellent sharpness, and display device comprising same
US11940593B2 (en) 2020-07-09 2024-03-26 Corning Incorporated Display articles with diffractive, antiglare surfaces and methods of making the same
US11971519B2 (en) 2021-07-08 2024-04-30 Corning Incorporated Display articles with antiglare surfaces and thin, durable antireflection coatings

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7129181B2 (en) * 2017-03-17 2022-09-01 旭化成株式会社 Parts for head-mounted displays
CN112778986A (en) * 2021-01-26 2021-05-11 西安通源正合石油工程有限公司 Low-permeability shale stable drilling fluid and preparation method thereof

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4246374A (en) * 1979-04-23 1981-01-20 Rohm And Haas Company Imidized acrylic polymers
JPS585306A (en) * 1981-06-25 1983-01-12 イ−・アイ・デユボン・ド・ネモア−ス・アンド・コンパニ− Manufacture of imidized acryl polymer
JPS624704A (en) * 1985-07-01 1987-01-10 Asahi Chem Ind Co Ltd Production of polymer having six-membered imide ring
JPH05222119A (en) * 1992-02-14 1993-08-31 Mitsubishi Rayon Co Ltd Polymer containing methacrylimide group
US5395898A (en) * 1991-12-21 1995-03-07 Basf Aktiengesellschaft N-aryl-substituted poly(meth)acrylimides
JPH0812722A (en) * 1994-06-28 1996-01-16 Ube Ind Ltd Production of heat-resistant resin
JPH09100321A (en) * 1995-10-05 1997-04-15 Toray Ind Inc Production of imidated copolymer
JP2006514154A (en) * 2003-03-17 2006-04-27 エルジー・ケム・リミテッド Production method of polyglutarimide using fluid in supercritical state
JP2006328329A (en) * 2005-05-30 2006-12-07 Kaneka Corp Base material for surface-protective film and surface-protective film
JP2011225699A (en) * 2010-04-19 2011-11-10 Kaneka Corp Modified acrylic resin using heterocyclic base catalyst, and method for production thereof
WO2012114718A1 (en) * 2011-02-21 2012-08-30 株式会社カネカ Acrylic resin film

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06102547A (en) 1992-09-18 1994-04-15 Hitachi Ltd Nonlinear optical material and element
KR100887486B1 (en) * 2003-12-02 2009-03-10 가부시키가이샤 가네카 Imide resin, and production method and use thereof
WO2005108438A1 (en) * 2004-05-10 2005-11-17 Kaneka Corporation Imide resin, method for producing same, and molded body using same
JP2009107180A (en) 2007-10-29 2009-05-21 Kaneka Corp Manufacturing method of optical film and optical film
JP2009265174A (en) 2008-04-22 2009-11-12 Nitto Denko Corp Method of manufacturing optical film, optical film, polarizing plate, liquid crystal panel and liquid crystal display device

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4246374A (en) * 1979-04-23 1981-01-20 Rohm And Haas Company Imidized acrylic polymers
JPS585306A (en) * 1981-06-25 1983-01-12 イ−・アイ・デユボン・ド・ネモア−ス・アンド・コンパニ− Manufacture of imidized acryl polymer
JPS624704A (en) * 1985-07-01 1987-01-10 Asahi Chem Ind Co Ltd Production of polymer having six-membered imide ring
US5395898A (en) * 1991-12-21 1995-03-07 Basf Aktiengesellschaft N-aryl-substituted poly(meth)acrylimides
JPH05222119A (en) * 1992-02-14 1993-08-31 Mitsubishi Rayon Co Ltd Polymer containing methacrylimide group
JPH0812722A (en) * 1994-06-28 1996-01-16 Ube Ind Ltd Production of heat-resistant resin
JPH09100321A (en) * 1995-10-05 1997-04-15 Toray Ind Inc Production of imidated copolymer
JP2006514154A (en) * 2003-03-17 2006-04-27 エルジー・ケム・リミテッド Production method of polyglutarimide using fluid in supercritical state
JP2006328329A (en) * 2005-05-30 2006-12-07 Kaneka Corp Base material for surface-protective film and surface-protective film
JP2011225699A (en) * 2010-04-19 2011-11-10 Kaneka Corp Modified acrylic resin using heterocyclic base catalyst, and method for production thereof
WO2012114718A1 (en) * 2011-02-21 2012-08-30 株式会社カネカ Acrylic resin film

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2018124137A1 (en) * 2016-12-28 2019-10-31 日本ゼオン株式会社 Optical film and polarizing plate
JP2021192106A (en) * 2017-03-15 2021-12-16 株式会社カネカ Stretched film and manufacturing method for stretched film
JP7169411B2 (en) 2017-03-15 2022-11-10 株式会社カネカ Stretched film and method for producing stretched film
US10921492B2 (en) 2018-01-09 2021-02-16 Corning Incorporated Coated articles with light-altering features and methods for the production thereof
JP2021050255A (en) * 2019-09-20 2021-04-01 株式会社日本触媒 Acrylic polymer and method for producing the same
JP7437900B2 (en) 2019-09-20 2024-02-26 株式会社日本触媒 Acrylic polymer and its manufacturing method
US11940593B2 (en) 2020-07-09 2024-03-26 Corning Incorporated Display articles with diffractive, antiglare surfaces and methods of making the same
WO2022145174A1 (en) * 2020-12-28 2022-07-07 日本ゼオン株式会社 Optical film and manufacturing method therefor
US11971519B2 (en) 2021-07-08 2024-04-30 Corning Incorporated Display articles with antiglare surfaces and thin, durable antireflection coatings
WO2023286955A1 (en) * 2021-07-14 2023-01-19 코오롱인더스트리 주식회사 Optical film having excellent sharpness, and display device comprising same

Also Published As

Publication number Publication date
KR20160049506A (en) 2016-05-09
CN105492473B (en) 2017-11-28
JPWO2015030118A1 (en) 2017-03-02
KR102179714B1 (en) 2021-03-25
CN105492473A (en) 2016-04-13
JP6253655B2 (en) 2017-12-27

Similar Documents

Publication Publication Date Title
JP6253655B2 (en) (Meth) acrylic resin
US9273208B2 (en) Acrylic resin film
JP5636165B2 (en) Optical film
JP2010284840A (en) Film attached with coating layer, polarizer protecting film and polarization plate using polarizer protecting film
WO2021235393A1 (en) Methacrylic copolymer for reverse wavelength dispersive retardation film, composition, film, method for manufacturing film, and laminate
KR20160038324A (en) Optical film comprising primer layer comprising polyester-resin, and polarizing plate using the same
JP4961164B2 (en) Imide resin and method for producing the same, optical resin composition using the same, and molded article
JP6570944B2 (en) Glutarimide resin and method for producing glutarimide resin
TWI644962B (en) Resin material, and film thereof
JP6310351B2 (en) Optical film
JP6591151B2 (en) Optical film
JP2010261025A (en) Resin composition and production method thereof, molding, film, optical film, polarizer protection film and polarizing plate
US20230295358A1 (en) Glutarimide resin
JP6404053B2 (en) Imide structure-containing (meth) acrylic resin
JP6110184B2 (en) Biaxially stretched film, polarizing plate, image display device, and method for producing biaxially stretched film
JP6557025B2 (en) Method for producing glutarimide resin
JP6486048B2 (en) Imide structure-containing (meth) acrylic resin
JP5400296B2 (en) Resin composition
JP5553580B2 (en) Resin composition, molded body, optical film, polarizer protective film, polarizing plate
JP6463060B2 (en) Method for producing imide structure-containing (meth) acrylic resin
JP6423081B2 (en) Method for producing glutarimide resin
JP2010248501A (en) Optical film
US20230295362A1 (en) Glutarimide resin
WO2022168936A1 (en) Method for producing imide structure-containing acrylic resin
JP4768981B2 (en) Heat-resistant imide resin or manufacturing method thereof

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480046869.8

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14840199

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015534286

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20157032532

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14840199

Country of ref document: EP

Kind code of ref document: A1