WO2022168936A1 - Method for producing imide structure-containing acrylic resin - Google Patents

Method for producing imide structure-containing acrylic resin Download PDF

Info

Publication number
WO2022168936A1
WO2022168936A1 PCT/JP2022/004412 JP2022004412W WO2022168936A1 WO 2022168936 A1 WO2022168936 A1 WO 2022168936A1 JP 2022004412 W JP2022004412 W JP 2022004412W WO 2022168936 A1 WO2022168936 A1 WO 2022168936A1
Authority
WO
WIPO (PCT)
Prior art keywords
acrylic resin
meth
imide structure
containing acrylic
producing
Prior art date
Application number
PCT/JP2022/004412
Other languages
French (fr)
Japanese (ja)
Inventor
利留 西河
健一郎 島田
恵介 羽田野
Original Assignee
株式会社カネカ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社カネカ filed Critical 株式会社カネカ
Priority to JP2022579616A priority Critical patent/JPWO2022168936A1/ja
Publication of WO2022168936A1 publication Critical patent/WO2022168936A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F8/00Chemical modification by after-treatment
    • C08F8/30Introducing nitrogen atoms or nitrogen-containing groups
    • C08F8/32Introducing nitrogen atoms or nitrogen-containing groups by reaction with amines

Definitions

  • the present invention relates to a method for producing an imide structure-containing acrylic resin.
  • Acrylic resin is an excellent polymer that is used in large quantities in various industrial fields because it has excellent transparency, color tone, appearance, weather resistance, gloss and workability.
  • polarizer protective films for liquid crystal display devices used in mobile phones, smartphones, TVs and displays exterior materials for electrical appliances such as automobile interior and exterior materials, and interior and exterior materials for building materials such as building floor materials. in use.
  • it is also expected to be used as an insulating substrate material for printed circuits and antenna substrates for high frequency bands.
  • Patent Document 1 proposes an imide structure-containing acrylic resin having an aromatic group on the nitrogen of the imide structure, and discloses that it has high heat resistance and low retardation properties.
  • Patent Document 1 when an aromatic amine compound is used as an imidizing agent, the production method described in Patent Document 1 may not be able to imidize the desired imide structure-containing acrylic resin efficiently. There is also room for improvement in terms of yield.
  • An object of the present invention is to provide a method for efficiently producing an imide structure-containing acrylic resin when imidating a (meth)acrylic polymer with an aromatic amine compound.
  • one aspect of the present invention relates to the following.
  • a method for producing an imide structure-containing acrylic resin having a structure represented by the following formula (1) comprising a raw material composition containing a (meth)acrylic polymer, an imidizing agent, and an imidization accelerator
  • the imidization agent contains an aromatic amine compound
  • the imidization accelerator contains at least one selected from the group consisting of ammonia, primary amines and secondary amines.
  • R 1 and R 2 are each independently a hydrogen atom or an alkyl group having 1 to 8 carbon atoms, and R 3 is an aromatic hydrocarbon group or a heteroaromatic group.
  • the imidization accelerator is at least one selected from the group consisting of ammonia, methylamine, ethylamine, diethylamine, dimethylamine, N-methylethylamine, N-methylpropylamine, N-methylbutylamine, pyrrolidine and piperidine;
  • the (meth)acrylic polymer has a methacrylic acid alkyl ester unit content of 50% by weight or more relative to the total amount of the (meth)acrylic polymer, (X) or (XI ), the method for producing an imide structure-containing acrylic resin according to
  • the method for producing an imide structure-containing acrylic resin of the present embodiment includes a step of heating a raw material composition containing a (meth)acrylic polymer, an imidizing agent, and an imidization accelerator.
  • the (meth)acrylic polymer is mainly a polymer obtained by polymerizing acrylic acid, methacrylic acid and derivatives thereof, unless the effects of the present invention are impaired. There are no particular restrictions, and known (meth)acrylic polymers can be used. For example, it can be produced by polymerizing a monomer composition containing (meth)acrylic acid ester as a main component.
  • (Meth)acrylates include (meth)acrylates such as methyl (meth)acrylate, ethyl (meth)acrylate, n-propyl (meth)acrylate, n-butyl (meth)acrylate, and isobutyl (meth)acrylate. ) Alkyl acrylates, aryl (meth)acrylates having 6 to 12 carbon atoms such as phenyl (meth)acrylate, benzyl (meth)acrylate, and cyclohexyl (meth)acrylate, and alkylaryl (meth)acrylates , (meth)acrylic acid alicyclic alkyl esters, and the like. These may be used alone or in combination of two or more.
  • the (meth)acrylic polymer preferably contains a methacrylic acid alkyl ester unit.
  • the (meth)acrylic polymer preferably contains a (meth)acrylic acid alkyl ester unit having an alkyl group having 1 to 8 carbon atoms, especially , (meth)methyl acrylate units, ethyl (meth)acrylate units, n-propyl (meth)acrylate units, and n-butyl (meth)acrylate units are more preferable, and methyl (meth)acrylate units are particularly preferable. .
  • the content of (meth)acrylic acid alkyl ester units in the (meth)acrylic polymer is not particularly limited, but from the viewpoint of heat resistance, it is preferably 50% by weight or more, more preferably 75% by weight or more, and 90% by weight. The above are particularly preferred.
  • a (meth)acrylic polymer having a ring structure in the main chain may be used.
  • ring structures include lactone ring structures, maleic anhydride structures, glutaric anhydride structures, maleimide structures, and glutarimide structures represented by the following formula (1).
  • R 1 and R 2 each independently represent a hydrogen atom or an alkyl group having 1 to 8 carbon atoms
  • R 3 represents a hydrogen atom, an alkyl group having 1 to 18 carbon atoms, or 3 to 12 cycloalkyl groups.
  • (meth)acrylic polymers having a lactone ring structure examples include those described in JP-A-2004-168882 and JP-A-2006-171464, and (meth)acrylic polymers having a maleimide structure.
  • Examples of the polymer include (meth)acrylic polymers having N-substituted maleimide units as shown in JP-A-2007-31537, and glutaric anhydride structure-containing (meth)acrylic polymers are particularly Examples include those described in JP-A-2004-70296, JP-A-2004-307834, JP-A-2008-74918, and International Publication No. 2007/26659.
  • the glass transition temperature (Tg) of the (meth)acrylic polymer having a ring structure in the main chain is not particularly limited, but is preferably 110° C. or higher, more preferably 115° C. or higher. 120° C. or higher is particularly preferred. If it is below this range, the heat resistance of the molded product will be poor, so that the change in physical properties at high temperatures will be large, and the range of application may be narrowed.
  • the content of the ring structure in the (meth)acrylic resin having a ring structure in the main chain is not particularly limited, but considering the balance between heat resistance and physical properties, it is not particularly limited as long as it is 2% by weight or more. Weight % or more is more preferable.
  • the upper limit is not particularly limited as long as molding is possible, and can be appropriately selected in balance with physical properties, but is preferably 70% by weight or less, more preferably 50% by weight or less, and particularly preferably 30% by weight or less.
  • aromatic monomers such as styrene and methylstyrene
  • nitrile monomers such as acrylonitrile and methacrylonitrile
  • maleimide N-methylmaleimide, N-phenylmaleimide, and N-cyclohexylmaleimide
  • maleimide-based monomers such as
  • the structure of the (meth)acrylic polymer is not particularly limited, and may be a linear (linear) polymer, block polymer, core-shell polymer, branched polymer, ladder polymer, crosslinked polymer, or the like. good.
  • a block polymer it may be AB type, ABC type, ABA type, or any other type of block polymer.
  • core-shell polymers the polymer may consist of only one core layer and one shell layer, or each may consist of multiple layers.
  • the imidating agent is not particularly limited as long as it is an aromatic amine compound capable of forming the glutarimide unit represented by the general formula (1).
  • the aromatic amine compound represents an organic compound in which hydrogen in an aromatic ring is replaced with an amino group, and the aromatic ring may be a heteroaromatic ring containing atoms other than carbon.
  • Specific examples include aniline, toluidine, anisidine, xylidine, trimethylaniline, trichloroaniline, aminopyridine, aminobiphenyl, aminonaphthalene, aminoanthracene, and aminotetracene. These may be used alone or in combination of two or more.
  • the number of atoms constituting the aromatic ring of the aromatic amine compound is preferably 5 to 18, more preferably 5 to 10, because the reaction efficiency is good and the physical properties of the obtained imide structure-containing acrylic resin are good.
  • aniline, toluidine, anisidine, xylidine, aminopyridine, and aminobiphenyl are preferred because of their good reactivity with (meth)acrylic polymers and the heat resistance of the resulting imide structure-containing acrylic resins.
  • aminonaphthalene are preferred, and one or more selected from aniline, toluidine, anisidine and xylidine are more preferred, and aniline is particularly preferred because of its excellent balance between cost and physical properties.
  • the ratio of glutarimide units in the obtained imide structure-containing acrylic resin can be adjusted by adjusting the addition ratio of the imidization agent.
  • the physical properties of the obtained imide structure-containing acrylic resin and the optical properties of an optical film formed by molding a resin composition containing the imide structure-containing acrylic resin can be adjusted. be able to.
  • the content of the imidizing agent in the raw material composition described above can be appropriately adjusted according to the properties required. If it is above, it can be appropriately adjusted according to the required properties, and 4 parts by weight or more is more preferable. If it is less than 1 part by weight, the heat resistance of the obtained resin composition containing the imide structure-containing acrylic resin may be lowered.
  • the upper limit can be appropriately selected depending on moldability and physical properties, but is preferably 100 parts by weight or less, more preferably 80 parts by weight or less, and even more preferably 70 parts by weight or less for ease of handling.
  • the imidization accelerator in the present embodiment contains at least one selected from the group consisting of ammonia, primary amines and secondary amines, and has a pKa of 6 or more, especially Not restricted.
  • the primary amine preferably has a structure represented by the following formula (2).
  • R4NH2 ( 2 ) (In formula (2), R 4 is an alkyl group having 1 to 8 carbon atoms, a cycloalkyl group having 3 to 10 carbon atoms or an arylalkyl group having 6 to 18 carbon atoms.)
  • linear or branched alkylamines such as methylamine, ethylamine, n-propylamine, isopropylamine, n-butylamine, n-hexylamine; cyclopropylamine, cyclobutylamine, cyclopentylamine, cyclohexylamine and the like.
  • the secondary amine preferably has a structure represented by the following formula (3).
  • HN(R5)( R6 ) ( 3 ) (In formula (3), R 5 and R 6 are each independently an alkyl group having 1 to 8 carbon atoms, a cycloalkyl group having 3 to 10 carbon atoms, or an arylalkyl group having 6 to 18 carbon atoms. R5 and R6 may form a ring structure.)
  • linear or branched dialkylamines such as dimethylamine, diethylamine, N-methylethylamine, N-methylpropylamine, N-methylbutylamine and diisopropylamine; alicyclic amines such as pyrrolidine, piperidine and morpholine; , dicyclohexylamine, dibenzylamine and the like.
  • ammonia methylamine, ethylamine, diethylamine, dimethylamine, N-methylethylamine, N-methylpropylamine, N-methylbutylamine, pyrrolidine and piperidine are preferable.
  • ammonia and primary amines are imidization accelerators as described above, they themselves may react with the (meth)acrylic polymer to form an imide structure. Therefore, secondary amines such as diethylamine, dimethylamine, N-methylethylamine, N-methylpropylamine, N-methylbutylamine, pyrrolidine and piperidine are secondary amines from the viewpoint of obtaining the desired imide structure-containing acrylic resin with little side reaction. are more preferred, and N-methylpropylamine, diethylamine and dimethylamine are particularly preferred.
  • the pKa of the imidization accelerator is not particularly limited as long as it is 6 or more, but is preferably 8 or more, more preferably 9 or more, and particularly preferably 10 or more, because the effect of promoting imidization is high.
  • the upper limit is not particularly limited, for example, 14 or less is preferable, and 13 or less is more preferable.
  • the content of the imidization accelerator in the raw material composition described above can be appropriately adjusted according to the properties required. parts by weight or more, and more preferably 3 parts by weight or more. If the amount is less than 1 part by weight, the effect of promoting imidization is small, and an imide structure-containing acrylic resin having a desired imidization rate may not be obtained.
  • the upper limit can be appropriately selected depending on the moldability and physical properties, but from the viewpoint of ease of handling and prevention of deterioration of the mechanical properties of the molded product due to residual imidization accelerator, 80 parts by weight or less is recommended. It is preferably 60 parts by weight or less, more preferably 40 parts by weight or less.
  • the content of the imidization accelerator in the raw material composition described above is preferably 0.1 mol to 10 mol per 1 mol of the imidization agent.
  • the lower limit is preferably 0.5 mol or more, particularly preferably 0.8 mol or more.
  • the upper limit is preferably 10 mol or less, more preferably 5 mol or less, and particularly preferably 3 mol or less.
  • the imide structure-containing acrylic resin in the present embodiment contains a structure represented by the following general formula (1).
  • R 1 and R 2 are each independently a hydrogen atom or an alkyl group having 1 to 8 carbon atoms, and R 3 is an aromatic hydrocarbon group or a heteroaromatic group.
  • R 1 and R 2 are each independently a hydrogen atom or an alkyl group having 1 to 8 carbon atoms.
  • alkyl groups having 1 to 8 carbon atoms include methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, t-butyl group, n-hexyl group, n-octyl group, 2-ethylhexyl group and the like.
  • a hydrogen atom or an alkyl group having 1 to 4 carbon atoms is preferable because of their excellent heat resistance.
  • R3 is an aromatic hydrocarbon group or a heteroaromatic group.
  • the number of atoms constituting the aromatic ring is preferably 5-18, more preferably 5-10.
  • Specific examples include phenyl group, tolyl group, anisyl group, xylyl group, trimethylphenyl group, trichlorophenyl group, pyridyl group, biphenyl group, naphthyl group and anthryl group.
  • phenyl group, tolyl group, anisyl group, xylyl group, pyridyl group, biphenyl group and naphthyl group are preferable, and phenyl group, tolyl group, anisyl group and xylyl group are more preferable because of their excellent heat resistance.
  • the imide structure-containing acrylic resin may contain two or more types in the structure represented by the formula (1).
  • the weight average molecular weight of the imide structure-containing acrylic resin is not particularly limited, it is preferably 1 ⁇ 10 4 to 5 ⁇ 10 5 , more preferably 5 ⁇ 10 4 to 3 ⁇ 10 5 . . If it is within the above range, there will be no deterioration in moldability and insufficient mechanical strength during film processing.
  • the glass transition temperature of the imide structure-containing acrylic resin is not particularly limited. ° C. or higher is particularly preferred. If it is less than this range, the heat resistance of a molded article or film will be poor, and the change in physical properties at high temperatures will be large, narrowing the range of application.
  • the glass transition temperature is measured, for example, using 10 mg of resin, using a differential scanning calorimeter (DSC, Shimadzu Corporation DSC-50 type), under a nitrogen atmosphere, at a heating rate of 20° C./min. It can be determined by the point method.
  • the imidization rate of the imide structure-containing acrylic resin can be appropriately adjusted according to the required properties, and is not particularly limited. is preferably 10% or more, more preferably 15% or more, and particularly preferably 20% or more. Moreover, from the viewpoint of preventing deterioration of handling properties due to an increase in viscosity, the upper limit is preferably 80% or less, more preferably 75% or less, and particularly preferably 70% or less. Within the above range, a resin composition having an excellent balance between heat resistance and viscosity can be obtained.
  • the imidization rate of the imide structure-containing acrylic resin can be obtained by the method described later.
  • the imidization rate of the imide structure-containing acrylic resin can be determined by measuring the IR spectrum using a Fourier transform infrared spectrophotometer (FI/IR-4100 manufactured by JASCO).
  • the imidization rate is determined from the intensity ratio between the absorption derived from the ester carbonyl group near 1720 cm ⁇ 1 and the absorption derived from the imide carbonyl group near 1680 cm ⁇ 1 .
  • the imidization rate is the proportion of the imidecarbonyl groups in the total of the estercarbonyl groups and the imidecarbonyl groups.
  • the acid value of the imide structure-containing acrylic resin represents the content of carboxylic acid units and acid anhydride units in the imide structure-containing acrylic resin.
  • the acid value can be calculated, for example, by the titration method described in WO 2005/054311.
  • the acid value of the imide structure-containing acrylic resin in this embodiment is preferably 0.10 to 1.00 mmol/g. If the acid value is within the above range, it is possible to obtain an imide structure-containing acrylic resin having an excellent balance of heat resistance, mechanical properties, and moldability.
  • the content of carboxylic acid is preferably 0.25 mmol/g or less, more preferably 0.20 mmol/g or less, from the viewpoint of molding processability.
  • the method for measuring the amount of carboxylic acid can be calculated by using an acid value (DMSO acid value) in which the solvent in the titration method described in WO 2005/054311 is changed from methanol to dimethylsulfoxide.
  • the formula (carboxylic acid amount) 2 ⁇ (acid value) - (DMSO acid value) It can be calculated by In the titration using methanol, the acid anhydride is counted as 1 molecule, whereas in the titration using dimethylsulfoxide, the acid anhydride is counted as 2 molecules, so the above formula can be applied.
  • the acrylic acid ester unit contained in the imide structure-containing acrylic resin in the present embodiment is preferably less than 1% by weight, more preferably less than 0.5% by weight, and 0.5% by weight. Less than 3% by weight is particularly preferred.
  • the lower limit is not particularly limited, the smaller the better, and the more preferably not contained.
  • the imide structure-containing acrylic resin in the present embodiment preferably has an orientation birefringence value of ⁇ 0.5 ⁇ 10 ⁇ 3 to 0.5 ⁇ 10 ⁇ 3 , and ⁇ 0.25 ⁇ 10 ⁇ 3 . 3 to 0.25 ⁇ 10 ⁇ 3 is more preferable.
  • orientation birefringence is within the above range, stable optical characteristics can be obtained without birefringence occurring during molding even when the environment changes.
  • Orientation birefringence means birefringence that occurs when the thermoplastic resin is stretched 100% at a temperature 5°C higher than the glass transition temperature of the thermoplastic resin.
  • nx and ny are the X axis when the direction in which the in-plane refractive index is maximized is the X axis, the direction perpendicular to the X axis is the Y axis, and the thickness direction of the film is the Z axis. represents the refractive index in the direction and the Y-axis direction.
  • Re represents the in-plane retardation
  • d represents the thickness of the film.
  • the photoelastic coefficient of the imide structure-containing acrylic resin is preferably 20 ⁇ 10 ⁇ 12 m 2 /N or less, more preferably 10 ⁇ 10 ⁇ 12 m 2 /N or less, and 5 ⁇ 10 ⁇ 12 It is more preferably m 2 /N or less.
  • the photoelastic coefficient means that when an isotropic solid is subjected to external force to cause stress ( ⁇ F), it temporarily exhibits optical anisotropy and exhibits birefringence ( ⁇ n).
  • the photoelastic coefficient is a value measured by the Senarmont method at a wavelength of 515 nm at 23°C and 50% RH.
  • the method for producing an imide structure-containing acrylic resin of the present embodiment heats a raw material composition containing a (meth)acrylic polymer, an imidizing agent, and an imidization accelerator. A step (imidization step) is included. Thus, an imide structure-containing acrylic resin can be produced.
  • the treatment method in the imidization step is not particularly limited, and any conventionally known method can be used.
  • the above (meth)acrylic polymer can be imidized to obtain an imide structure-containing acrylic resin by a method of reacting while heating and melting using an extruder, a batch reaction tank (pressure vessel), or the like.
  • the extruder to be used is not particularly limited, and various types of extrusion can be used.
  • machine can be used. Specifically, for example, a single-screw extruder, a twin-screw extruder, a multi-screw extruder, or the like can be used.
  • a twin-screw extruder can facilitate mixing of the imidizing agent and the imidization accelerator with the (meth)acrylic polymer.
  • twin-screw extruder examples include non-intermeshing co-rotating, intermeshing co-rotating, non-intermeshing counter-rotating, intermeshing counter-rotating, and the like. Among them, it is preferable to use an intermeshing co-rotating type. Since the intermeshing co-rotating twin-screw extruder can rotate at high speed, it can further promote the mixing of the imidizing agent and the imidization accelerator with the (meth)acrylic polymer.
  • the method of mixing the (meth)acrylic polymer, the imidization agent, and the imidization accelerator is not particularly limited. They may be combined and mixed, or the imidizing agent and the imidization accelerator may be separately mixed. In that case, the imidization agent may be mixed first, or the imidization accelerator may be mixed first.
  • extruders exemplified above may be used alone, or may be used by connecting a plurality of them in series.
  • a tandem-type reaction extruder described in JP-A-2008-273140 can be used.
  • a (meth)acrylic polymer as a raw material resin is charged from the raw material charging port of the extruder, the resin is melted, and the cylinder is filled, and then added.
  • the imidization reaction can proceed in the extruder.
  • reaction zone temperature in the extruder of 180°C to 320°C, more preferably 220°C to 300°C.
  • the temperature of the reaction zone is less than 180°C, the imidization reaction hardly progresses and the heat resistance tends to decrease.
  • the reaction zone temperature exceeds 320° C., the decomposition of the resin becomes significant, and the flex resistance of the resulting film formed from the imide structure-containing acrylic resin tends to decrease.
  • the reaction zone in the extruder refers to a region between the injection position of the imidizing agent and the resin discharge port (die portion) in the cylinder of the extruder.
  • the reaction time in the reaction zone of the extruder is greater than 10 seconds, more preferably greater than 30 seconds. If the reaction time is 10 seconds or less, imidization may hardly progress.
  • the resin pressure in the extruder is preferably within the range of 0.1 MPa to 50 MPa, more preferably within the range of 1 MPa to 30 MPa. If the pressure is less than 0.1 MPa, the imidizing agent has low solubility, and the progress of the reaction tends to be suppressed. On the other hand, if the pressure exceeds 50 MPa, the limit of mechanical pressure resistance of an ordinary extruder is exceeded, and a special device is required, which is not preferable from the viewpoint of cost.
  • a vent hole capable of reducing the pressure to below atmospheric pressure in order to remove unreacted imidizing agents, imidization accelerators and by-products.
  • unreacted imidization agents and imidization accelerators, or by-products such as methanol and tertiary amines, and monomers can be removed.
  • the extruder for example, a horizontal twin-screw reactor such as Vivolac manufactured by Sumitomo Heavy Industries, Ltd., a vertical twin-screw stirring vessel such as Superblend, etc.
  • a reaction apparatus for high viscosity can also be suitably used.
  • the structure of the batch-type reaction tank (pressure vessel) is not particularly limited.
  • the (meth)acrylic polymer can be melted by heating and stirred, and it is sufficient if it has a structure that allows the addition of the imidizing agent and the imidization accelerator. preferably has a good structure.
  • a batch-type reaction tank pressure vessel
  • a batch type reaction tank (pressure vessel) having such a structure for example, Maxblend, a stirring tank manufactured by Sumitomo Heavy Industries, Ltd., and the like can be given.
  • imidization method examples include known methods such as those described in JP-A-2008-273140 and JP-A-2008-274187.
  • the method for producing an imide structure-containing acrylic resin according to the present embodiment can include a step of treating with an esterifying agent in addition to the imidization step. Through this esterification step, the acid value of the imide structure-containing acrylic resin obtained in the imidization step can be adjusted within a desired range.
  • Esterifying agents include, for example, dimethyl carbonate, 2,2-dimethoxypropane, dimethylsulfoxide, triethylorthoformate, trimethylorthoacetate, trimethylorthoformate, diphenylcarbonate, dimethylsulfate, methyltoluenesulfonate, and methyltrifluoromethylsulfonate.
  • dimethyl carbonate and trimethyl orthoacetate are preferred from the viewpoint of cost and reactivity, and dimethyl carbonate is preferred from the
  • the amount of the esterifying agent is preferably 0 to 12 parts by weight, more preferably 0 to 8 parts by weight, per 100 parts by weight of the (meth)acrylic polymer.
  • the acid value can be adjusted to an appropriate range.
  • the amount is out of the above range, unreacted esterifying agent may remain in the resin, which may cause foaming or odor generation when the resin is used for molding.
  • a catalyst can also be used in combination.
  • the type of catalyst is not particularly limited, examples thereof include aliphatic tertiary amines such as trimethylamine, triethylamine and tributylamine. Among these, triethylamine is preferred from the viewpoint of cost, reactivity, and the like.
  • the imide structure-containing acrylic resin that has undergone the imidization process and the esterification process contains unreacted imidization agents, imidization accelerators, esterification agents, volatile components produced by-products of the reaction, decomposed resins, and the like. Therefore, it is possible to install a vent hole that can reduce the pressure to below the atmospheric pressure.
  • a filter at the end of the extruder for the purpose of reducing foreign matter in the imide structure-containing acrylic resin. It is preferable to install a gear pump in front of the filter in order to pressurize the imide structure-containing acrylic resin.
  • a type of filter it is preferable to use a stainless steel leaf disk filter capable of removing foreign matter from the molten polymer, and it is preferable to use a fiber type, powder type, or a combination of these filter elements as the filter element. .
  • the imide structure-containing acrylic resin in the present embodiment may optionally contain commonly used antioxidants, heat stabilizers, light stabilizers, ultraviolet absorbers, and radical scavengers. and weather stabilizers such as catalysts, plasticizers, lubricants, antistatic agents, coloring agents, anti-shrinking agents, antibacterial/deodorizing agents, etc. alone or in combination of two or more, as long as the object of the present invention is not impaired. may be added to form an imide structure-containing acrylic resin composition. These additives can also be added during molding of the imide structure-containing acrylic resin.
  • the imide structure-containing acrylic resin composition in this embodiment preferably contains an ultraviolet absorber.
  • the imide structure-containing acrylic resin composition of the present embodiment has good compatibility with ultraviolet absorbers, and can be used in a wider range of applications.
  • ultraviolet absorbers include triazine-based compounds, benzotriazole-based compounds, benzophenone-based compounds, cyanoacrylate-based compounds, benzoxazine-based compounds, and oxadiazole-based compounds.
  • triazine-based compounds are preferred from the viewpoint of ultraviolet absorption performance relative to the amount added. Any commercially available triazine-based compound can be used.
  • the ultraviolet absorber has a maximum absorption wavelength of 300 nm or more and 370 nm or less.
  • the imide structure-containing acrylic resin composition containing such an ultraviolet absorber When the imide structure-containing acrylic resin composition containing such an ultraviolet absorber is exposed to ultraviolet rays, it efficiently suppresses deterioration caused by ultraviolet A light (wavelength of 320 nm or more and 400 nm or less). Therefore, the amount of the ultraviolet absorber to be added may be relatively small, and bleed-out due to an increase in the amount of the ultraviolet absorber is unlikely to occur.
  • the ultraviolet absorber has a 1% weight loss temperature of 350°C or higher in a nitrogen atmosphere.
  • a triazine-based compound is preferable from the viewpoint of high heat resistance and a large molar extinction coefficient.
  • the amount to be added can be suppressed, and contamination of molds (rolls, etc.) during processing can also be suppressed.
  • the UV absorber uses a triazine-based compound, as described in JP-A-2014-95926, the thermal stability can be enhanced without adding a general thermal stabilizer.
  • UV absorbers using such triazine compounds include Tinuvin1577, Tinuvin460, Tinuvin477, Tinuvin479 (all manufactured by BASF) and LA-F70 (made by ADEKA).
  • the amount of the ultraviolet absorber to be added is 0.1 parts by weight or more with respect to 100 parts by weight of the imide structure-containing acrylic resin. It is preferably 0 parts by weight or less, more preferably 0.4 parts by weight or more and 2.0 parts by weight or less.
  • the UV absorber is less than 0.1 parts by weight, a sufficient effect may not be obtained in applications that require UV absorption, and if it is more than 2.0 parts by weight, bleeding out occurs during film formation. etc. may occur.
  • the imide structure-containing acrylic resin composition described above may contain a crosslinked elastic body in order to improve the mechanical strength of the imide structure-containing acrylic resin. good.
  • the crosslinked elastic body can be produced by known polymerization methods such as suspension polymerization, dispersion polymerization, emulsion polymerization, solution polymerization and bulk polymerization. In particular, it is preferable to use a polymerization method such as suspension polymerization, dispersion polymerization, or emulsion polymerization to produce a crosslinked elastic body having a core-shell structure as described below.
  • a core-shell type elastic body having a core layer made of a rubbery polymer and a shell layer made of a glassy polymer (hard polymer) is preferable.
  • the core layer made of a rubbery polymer may have one or more layers made of a glassy polymer as the innermost layer or an intermediate layer.
  • the glass transition temperature Tg of the rubber-like polymer constituting the core layer is preferably 20°C or less, more preferably -60 to 20°C, and still more preferably -60 to 10°C. If the Tg of the rubber-like polymer constituting the core layer exceeds 20° C., the mechanical strength of the imide structure-containing acrylic resin may not be sufficiently improved.
  • the Tg of the glassy polymer (hard polymer) constituting the shell layer is preferably 50°C or higher, more preferably 50 to 140°C, even more preferably 60 to 130°C. If the Tg of the glassy polymer constituting the shell layer is lower than 50°C, the heat resistance of the imide structure-containing acrylic resin may be lowered.
  • the glass transition temperatures of the "rubber-like polymer” and “glass-like polymer” are the values described in the Polymer Handbook [Polymer Hand Book (J. Brandrup, Interscience 1989)]. (For example, polymethyl methacrylate is 105° C. and polybutyl acrylate is ⁇ 54° C.).
  • the content of the core layer in the core-shell type elastic body is preferably 30-95% by weight, more preferably 50-90% by weight.
  • the proportion of the glassy polymer layer in the core layer is 0-60% by weight, preferably 0-45% by weight, more preferably 10-40% by weight, relative to the total weight of the core layer (100% by weight).
  • the content of the shell layer in the core-shell type elastic body is preferably 5 to 70% by weight, more preferably 10 to 50% by weight.
  • the above-mentioned core-shell type elastic body may contain any appropriate other component within a range that does not impair the effects of the present invention.
  • Any appropriate polymerizable monomer may be used as the polymerizable monomer that forms the rubber-like polymer that constitutes the core layer.
  • the polymerizable monomer forming the rubber-like polymer preferably contains an alkyl (meth)acrylate.
  • the alkyl (meth)acrylate preferably contains 50% by weight or more, more preferably 50 to 99.9% by weight, and 60 to 99.9% by weight. More preferably, it is contained in an amount of 99.9% by weight.
  • alkyl (meth)acrylates examples include ethyl (meth)acrylate, propyl (meth)acrylate, butyl (meth)acrylate, cyclohexyl (meth)acrylate, 2-ethylhexyl (meth)acrylate, isononyl (meth)acrylate, lauroyl Alkyl (meth)acrylates having 2 to 20 carbon atoms in the alkyl group, such as (meth)acrylates and stearyl (meth)acrylates, can be mentioned.
  • These alkyl groups may have alicyclic or aromatic cyclic substituents, branched structures, or functional groups.
  • butyl (meth)acrylate, 2-ethylhexyl (meth)acrylate, isononyl (meth)acrylate, benzyl (meth)acrylate, phenoxyethyl (meth)acrylate, cyclohexyl (meth)acrylate and the like are preferred.
  • - Ethylhexyl acrylate and isononyl acrylate are more preferred. These may be used alone or in combination of two or more.
  • the polymerizable monomer forming the rubber-like polymer preferably contains a polyfunctional monomer having two or more polymerizable functional groups in the molecule.
  • the polyfunctional monomer having two or more polymerizable functional groups in the molecule is preferably contained in an amount of 0.01 to 20% by weight, preferably 0.1 to 20% by weight. %, more preferably 0.1 to 10% by weight, and particularly preferably 0.2 to 5% by weight.
  • polyfunctional monomers having two or more polymerizable functional groups in the molecule include aromatic divinyl monomers such as divinylbenzene, ethylene glycol di(meth)acrylate, butylene glycol di(meth)acrylate, and hexanediol.
  • Alkane polyol poly(meth)acrylates such as di(meth)acrylate, oligoethylene glycol di(meth)acrylate, trimethylolpropane di(meth)acrylate, trimethylolpropane tri(meth)acrylate, urethane di(meth)acrylate, Epoxy di(meth)acrylate, triallyl isocyanurate and the like can be mentioned.
  • polyfunctional monomers having different reactive polymerizable functional groups include allyl (meth)acrylate, diallyl maleate, diallyl fumarate, and diallyl itaconate.
  • allyl (meth)acrylate diallyl maleate
  • diallyl fumarate diallyl fumaconate
  • diallyl itaconate ethylene glycol dimethacrylate, butylene glycol diacrylate and allyl methacrylate are preferred. These may be used alone or in combination of two or more.
  • the polymerizable monomers forming the rubber-like polymer include other polymerizable monomers copolymerizable with the above alkyl (meth)acrylates and polyfunctional monomers having two or more polymerizable functional groups in the molecule. But it's okay.
  • Other polymerizable monomers are preferably contained in an amount of 0 to 49.9% by weight, more preferably 0 to 39.9% by weight, in the polymerizable monomers forming the rubber-like polymer.
  • Examples of the other polymerizable monomers include styrene, vinyl toluene, aromatic vinyls such as ⁇ -methylstyrene, aromatic vinylidenes, vinyl cyanides such as acrylonitrile and methacrylonitrile, vinylidene cyanide, methyl methacrylate, and urethane acrylate. , urethane methacrylate, and the like.
  • Other polymerizable monomers may be monomers having functional groups such as epoxy groups, carboxyl groups, hydroxyl groups, amino groups, and the like.
  • examples of monomers having an epoxy group include glycidyl methacrylate, and examples of monomers having a carboxyl group include methacrylic acid, acrylic acid, maleic acid, and itaconic acid.
  • examples of hydroxyl group-containing monomers include 2-hydroxyethyl methacrylate and 2-hydroxyethyl acrylate.
  • examples of amino group-containing monomers include diethylaminoethyl methacrylate and diethylaminoethyl acrylate. These may be used alone or in combination of two or more.
  • a small amount of a chain transfer agent may be used in combination with the polymerizable monomer that forms the rubber-like polymer.
  • chain transfer agents can be used, and examples include alkylmercaptans such as octylmercaptan, dodecylmercaptan and t-dodecylmercaptan, and thioglycolic acid derivatives.
  • Any appropriate polymerizable monomer may be used as the polymerizable monomer that forms the glassy polymer that constitutes the shell layer and the glassy polymer layer in the core layer.
  • the polymerizable monomer forming the glassy polymer preferably contains at least one monomer selected from alkyl (meth)acrylates and aromatic vinyl monomers.
  • at least one selected from alkyl (meth)acrylates and aromatic vinyl monomers preferably contains 50 to 100% by weight, preferably 60 to 100% by weight. % is more preferable.
  • the above alkyl (meth)acrylate preferably has an alkyl group with 1 to 8 carbon atoms. Moreover, these alkyl groups may have an alicyclic or aromatic cyclic substituent, a branched structure, or a functional group.
  • alkyl (meth)acrylates include methyl (meth)acrylate, ethyl (meth)acrylate, benzyl (meth)acrylate, cyclohexyl (meth)acrylate, butyl (meth)acrylate, 2-ethylhexyl (meth)acrylate, and the like. are mentioned. Among these, methyl methacrylate is particularly preferred. These may be used alone or in combination of two or more.
  • aromatic vinyl monomer examples include styrene, vinyltoluene, ⁇ -methylstyrene, etc. Among these, styrene is preferred. These may be used alone or in combination of two or more.
  • the polymerizable monomer forming the glassy polymer may contain a polyfunctional monomer having two or more polymerizable functional groups in the molecule.
  • the polyfunctional monomer having two or more polymerizable functional groups in the molecule preferably contains 0 to 10% by weight, and 0 to 8% by weight. It is more preferably contained by weight %, more preferably 0 to 5% by weight.
  • polyfunctional monomer having two or more polymerizable functional groups in the molecule are the same as those described above.
  • the polymerizable monomer forming the glassy polymer contains other polymerizable monomers copolymerizable with the alkyl (meth)acrylate and the polyfunctional monomer having two or more polymerizable functional groups in the molecule. It's okay to be Other polymerizable monomers are preferably contained in an amount of 0 to 50% by weight, more preferably 0 to 40% by weight, in the polymerizable monomer (100% by weight) forming the glassy polymer.
  • Examples of the other polymerizable monomers include vinyl cyanides such as acrylonitrile and methacrylonitrile, vinylidene cyanide, alkyl (meth)acrylates other than those mentioned above, urethane acrylates, and urethane methacrylates. Moreover, it may have functional groups such as epoxy group, carboxyl group, hydroxyl group, amino group, and the like. Examples of monomers having an epoxy group include glycidyl methacrylate. Examples of monomers having a carboxyl group include methacrylic acid, acrylic acid, maleic acid, and itaconic acid.
  • Examples of monomers include 2-hydroxy methacrylate and 2-hydroxy acrylate, and examples of monomers having an amino group include diethylaminoethyl methacrylate and diethylaminoethyl acrylate. These may be used alone or in combination of two or more.
  • Any appropriate method capable of producing core-shell type particles can be adopted as the method for producing the core-shell type elastic body in the present embodiment.
  • a polymerizable monomer forming a rubber-like polymer constituting the core layer is suspended or emulsion-polymerized to produce a suspension or emulsified dispersion containing rubber-like polymer particles, and then the suspension is prepared.
  • a core-shell type having a multi-layer structure in which a polymerizable monomer that forms a glassy polymer constituting a shell layer is added to an emulsified dispersion and radically polymerized to coat the surface of the rubbery polymer particles with the glassy polymer.
  • a method of obtaining an elastic body is mentioned.
  • the polymerizable monomer forming the rubber-like polymer and the polymerizable monomer forming the glass-like polymer may be polymerized in one step or polymerized in two or more steps by changing the composition ratio. good too.
  • a preferable structure of the core-shell type elastic body includes, for example, (a) a soft rubbery core layer and a hard glassy shell layer, the core layer being a (meth)acrylic crosslinked elastic polymer layer. (b) the rubber-like core layer has a multi-layered structure with one or more glass-like layers inside, and further has a glass-like shell layer outside the core layer. .
  • Various physical properties of the imide structure-containing acrylic resin can be arbitrarily controlled by appropriately selecting the monomer species for each layer.
  • a more preferable structure of the core-shell type elastic body include, for example, (A) the shell layer of the core-shell type elastic body containing 3% by weight or more of alkyl acrylate, more preferably 10% by weight or more, and still more preferably 15% by weight; (B) The shell layer of the core-shell type elastic body consists of two or more layers with different alkyl acrylate contents, and the total amount of alkyl acrylate is 10% by weight or more, more preferably is a non-crosslinked methacrylic resin containing 15% by weight or more; (D) The core-shell type elastic body having a multi-layer structure in which a rubber-like polymer layer is formed by polymerizing a mixture of alkyl acrylate, polyfunctional monomer, alkyl mercaptan, and optionally other monomers in the presence of a polymer layer.
  • a peracid persulfuric acid, superphosphate, etc.
  • thermal decomposition initiator examples include those having a multi-layered structure in which a polymerized rubber-like polymer layer is formed.
  • a preferable core-shell type elastic body may have only one structural design element, or two or more design elements may be used in combination.
  • the core-shell type elastic body can be easily dispersed well in the imide structure-containing acrylic resin of the present embodiment, and when a film is formed, there are few defects due to non-dispersion or aggregation. It is excellent in strength, toughness, heat resistance, transparency, and appearance, and whitening due to temperature change and stress is suppressed, making it possible to obtain a high-quality film.
  • polymerization initiators include potassium persulfate, ammonium persulfate, persulfates such as ammonium persulfate, superphosphates such as sodium perphosphate, organic azo compounds such as 2,2-azobisisobutyronitrile, Hydroperoxide compounds such as cumene hydroperoxide, t-butyl hydroperoxide, and 1,1-dimethyl-2-hydroxyethyl hydroperoxide; peresters such as t-butyl isopropyloxycarbonate and t-butyl peroxybutyrate; and organic peroxide compounds such as benzoyl peroxide, dibutyl peroxide and lauryl peroxide.
  • thermal decomposition type polymerization initiators may be used as thermal decomposition type polymerization initiators, and are used as redox type polymerization initiators in the presence of a catalyst such as ferrous sulfate and a water-soluble reducing agent such as ascorbic acid or sodium formaldehyde sulfoxylate. It may be appropriately selected according to the composition of the monomers to be polymerized, layer structure, polymerization temperature conditions, and the like.
  • the core-shell type elastic body in the present embodiment is produced by emulsion polymerization, it can be produced by ordinary emulsion polymerization using a known emulsifier.
  • Known emulsifiers include, for example, anionic sodium alkylsulfonate, sodium alkylbenzenesulfonate, sodium dioctylsulfosuccinate, sodium laurylsulfate, fatty acid sodium, and phosphate salts such as sodium polyoxyethylene lauryl ether phosphate.
  • surfactants nonionic surfactants such as reaction products of alkylphenols, fatty alcohols with propylene oxide and ethylene oxide. These surfactants may be used alone or in combination of two or more.
  • cationic surfactants such as alkylamine salts may be used.
  • a phosphate ester salt alkali metal or alkaline earth metal
  • the polymer portion is coagulated by adding an electrolyte or an organic solvent as a coagulant to the latex.
  • the polymer portion is dried by performing operations such as separation of the aqueous phase, and a core-shell type elastic body in the form of lumps or powder is obtained.
  • known substances such as water-soluble electrolytes and organic solvents can be used.
  • Magnesium salts such as magnesium, and calcium salts such as calcium acetate and calcium chloride are preferably used.
  • the imide structure-containing acrylic resin composition in the present embodiment contains a core-shell type elastic body
  • the imide structure-containing acrylic resin may contain 1 to 40 parts by weight of the core-shell type elastic body. It is preferably 2 to 35 parts by weight, and still more preferably 3 to 25 parts by weight. If the content of the core-shell type elastic material is less than 1 part by weight, the mechanical strength of the imide structure-containing acrylic resin is not sufficiently improved, and if it exceeds 40 parts by weight, the heat resistance of the imide structure-containing acrylic resin is reduced. may decrease.
  • the particle size of the soft core layer is preferably 1 to 500 nm, more preferably 10 to 400 nm, even more preferably 50 to 300 nm. ⁇ 300 nm is particularly preferred. If the particle size of the core layer of the core-shell type elastic body is less than 1 nm, the mechanical strength of the imide structure-containing acrylic resin is not sufficiently improved. and transparency may be impaired.
  • the particle size of the core layer of the core-shell type elastic material was determined by examining a film obtained by molding a compound obtained by blending the core-shell crosslinked elastic material and Sumipex EX at a weight ratio of 50:50. 1200EX), an acceleration voltage of 80 kV, and a RuO 4 stained ultra-thin section method, 100 rubber particle images are randomly selected from the obtained photograph, and the average value of the particle diameters can be obtained.
  • (viii) Film containing imide structure-containing acrylic resin composition The imide structure-containing acrylic resin composition described above can be made into a film containing the imide structure-containing acrylic resin composition by, for example, a known molding method. .
  • the haze value of the film containing the imide structure-containing acrylic resin composition is preferably 2.0% or less, more preferably 1.0% or less.
  • the transmittance is preferably 85% or higher, more preferably 90% or higher. It is preferable that both the haze value and the transmittance are within the above ranges, because the range of applications that can be used is widened.
  • the optical anisotropy is not particularly limited, it may be preferable that not only the optical anisotropy in the in-plane direction (longitudinal direction, width direction) but also the optical anisotropy in the thickness direction is small. In other words, it may be preferable that both the in-plane retardation and the thickness direction retardation are small. More specifically, the in-plane retardation at a wavelength of 590 nm is preferably 10 nm or less, more preferably 5 nm or less, and particularly preferably 1 nm or less. Further, the thickness direction retardation is preferably 40 nm or less, more preferably 15 nm or less, and even more preferably 3 nm or less.
  • the in-plane retardation (Re) and the thickness direction retardation (Rth) can be calculated by the following formulas.
  • Re (nx ⁇ ny) ⁇ d
  • Rth
  • nx, ny, and nz are respectively the direction in which the in-plane refractive index is maximized as the X axis, the direction perpendicular to the X axis as the Y axis, and the thickness direction of the film as the Z axis. represents the index of refraction in the axial direction.
  • d is the thickness of the film
  • a film obtained from the imide structure-containing acrylic resin composition of the present embodiment has a small amount of foreign matter.
  • the number of foreign matters is preferably 50/m 2 or less, more preferably 40/m 2 or less, and particularly preferably 30/m 2 or less.
  • the above-mentioned foreign matter is the number of foreign matter obtained by cutting out 1 m 2 minutes from the stretched film, counting the number of foreign matter of 20 ⁇ m or more by observation with a microscope or the like, and totaling the number of foreign matter.
  • the film containing the imide structure-containing acrylic resin composition in this embodiment can be used as a substrate for electronic materials.
  • the imaging field such as cameras, VTRs, and projector shooting lenses, viewfinders, filters, prisms, and Fresnel lenses
  • the lens field such as optical disc pickup lenses such as CD players, DVD players, and MD players
  • Optical recording field for optical discs such as MD players, LCD light guide plates, polarizer protective films, retardation films and other liquid crystal display films, information equipment fields such as surface protective films, optical fibers, optical switches, optical connectors, etc.
  • Optical communication field vehicle field such as automobile headlights, tail lamp lenses, inner lenses, instrument covers, sunroofs, etc.
  • medical device field such as eyeglasses, contact lenses, internal vision lenses, medical supplies that require sterilization, road translucency It can also be suitably used in the field of construction and building materials such as plates, lenses for double glazing, lighting windows and carports, lenses for lighting and lighting covers, sizing for building materials, microwave oven cooking containers (tableware), and the like.
  • the film in this embodiment is excellent in optical properties such as optical homogeneity and transparency. Therefore, by utilizing these optical properties, it can be particularly suitably used for known optical applications such as an optical isotropic film, a polarizer protective film, a transparent conductive film and the like around a liquid crystal display device.
  • the film in this embodiment can be used as a polarizing plate by being attached to a polarizer. That is, the film in this embodiment can be used as a polarizer protective film for a polarizing plate.
  • the polarizer is not particularly limited, and any conventionally known polarizer can be used. Specifically, for example, a polarizer obtained by adding iodine to stretched polyvinyl alcohol can be used.
  • the film of the present embodiment can be produced by a solution casting method or a spin coating method in which the imide structure-containing acrylic resin of the present embodiment is dissolved in a soluble solvent and then molded.
  • a melt extrusion method that does not use a solvent. According to the melt extrusion method, it is possible to reduce the production cost and the load on the global environment and working environment due to the solvent.
  • a method for producing a film by molding the imide structure-containing acrylic resin according to the present embodiment by a melt extrusion method will be described in detail below.
  • a film obtained by melt extrusion is referred to as a "melt extruded film" to distinguish it from films obtained by other methods such as solution casting.
  • the imide structure-containing acrylic resin in the present embodiment is formed into a film by melt extrusion, first, the imide structure-containing acrylic resin in the present embodiment is supplied to an extruder, and the imide structure-containing acrylic resin is heated. Let it melt.
  • the imide structure-containing acrylic resin is preferably pre-dried before being supplied to the extruder. By performing such preliminary drying, foaming of the resin extruded from the extruder can be prevented.
  • the method of pre-drying is not particularly limited, for example, the raw material (that is, the imide structure-containing acrylic resin in the present embodiment is made into pellets or the like, and is dried using a hot air dryer, a vacuum dryer, or the like. be able to.
  • the imide structure-containing acrylic resin heated and melted in the extruder is fed to the T-die through a gear pump or filter.
  • a gear pump it is possible to improve the uniformity of the extrusion amount of the resin and reduce the thickness unevenness in the longitudinal direction of the film.
  • a filter foreign substances in the imide structure-containing acrylic resin can be removed, and a film having an excellent appearance without defects can be obtained.
  • the imide structure-containing acrylic resin supplied to the T-die is extruded from the T-die as a sheet of molten resin. Then, the sheet-like molten resin is sandwiched between two cooling rolls and cooled to form a film. Of the two cooling rolls sandwiching the sheet-shaped molten resin, one is a rigid metal roll with a smooth surface, and the other is equipped with an elastically deformable metal outer cylinder with a smooth surface. Flexible rolls are preferred.
  • cooling roll is used in the sense of including “touch roll” and “cooling roll”.
  • the surfaces of both cooling rolls are metal.
  • the outer surface of the cooling roll may be scratched or the cooling roll itself may be damaged.
  • the sheet-shaped molten resin is sandwiched between the two cooling rolls and cooled to obtain a relatively thick film.
  • the original film is preferably uniaxially stretched or biaxially stretched to produce a film having a predetermined thickness.
  • the sheet-like molten resin is sandwiched between the two cooling rolls and cooled to temporarily obtain a raw film with a thickness of 150 ⁇ m. Thereafter, the raw film is stretched by vertical and horizontal biaxial stretching to produce a film having a thickness of 40 ⁇ m.
  • the imide structure-containing acrylic resin in the present embodiment is once formed into an unstretched raw film, and then uniaxially stretched or biaxially stretched. Thereby, a stretched film can be produced.
  • the film before being stretched after the imide structure-containing acrylic resin in this embodiment is formed into a film is referred to as the "original film”.
  • the raw film When stretching the raw film, the raw film may be stretched continuously immediately after the raw film is formed, or after the raw film is formed, it is temporarily stored or moved and the raw film is stretched. Stretching of the anti-film may be carried out.
  • the raw film when stretching the raw film immediately after forming it into a raw film, in the film manufacturing process, if the state of the raw film is very short (in some cases, momentary), it will be stretched. It does not need to be in a perfect film state as long as it maintains a sufficient degree of film shape. Moreover, the raw film does not have to have performance as a finished film.
  • the method for stretching the original film is not particularly limited, and any conventionally known stretching method may be used. Specifically, for example, lateral stretching using a tenter, longitudinal stretching using rolls, and sequential biaxial stretching in which these are sequentially combined can be used.
  • the thickness of the original film in the width direction can be maintained with high accuracy, and the thickness accuracy of the stretched film will not be lowered or unevenness in thickness will not occur. Also, the original film does not stick to the roll or loosen due to its own weight.
  • the preheating temperature of the raw film is too high, there is a tendency for the raw film to stick to the roll or loosen under its own weight.
  • the difference between the preheating temperature and the stretching temperature of the raw film is small, it tends to be difficult to maintain the thickness accuracy of the raw film before stretching, the thickness unevenness increases, and the thickness accuracy decreases. be.
  • the stretching temperature when stretching the raw film is not particularly limited, and may be changed according to the mechanical strength, surface properties, thickness accuracy, etc. required for the stretched film to be produced.
  • the temperature range is from (Tg-30 ° C.) to (Tg + 30 ° C.). Is preferably (Tg-20 ° C.) ⁇ (Tg + 30 ° C.) temperature range is more preferable, (Tg) ⁇ (Tg + 30 ° C.) temperature range is more preferable, (Tg + 10 ° C.) ⁇ (Tg + 30 ° C.) ) is more preferable.
  • the stretching temperature for biaxial stretching of the optical film is preferably in the temperature range of Tg ⁇ 30° C. or more and Tg+30° C. or less, where Tg is the glass transition temperature of the imide structure-containing acrylic resin composition.
  • the stretching temperature is within the above temperature range, the thickness unevenness of the resulting stretched film can be reduced, and the mechanical properties of elongation, tear propagation strength, and MIT flex resistance can be improved. In addition, it is possible to prevent the occurrence of troubles such as the film sticking to the roll.
  • the stretching temperature is higher than the above temperature range, the thickness unevenness of the resulting stretched film tends to increase, or mechanical properties such as elongation, tear propagation strength, and resistance to rubbing fatigue cannot be sufficiently improved. There is Furthermore, there is a tendency for troubles such as the film sticking to the roll to easily occur.
  • the stretching ratio is not particularly limited, either, and may be determined according to the mechanical strength, surface properties, thickness accuracy, etc. of the stretched film to be produced. Although it depends on the stretching temperature, the stretching ratio is generally preferably selected in the range of 1.1 times to 3 times, more preferably in the range of 1.3 times to 2.5 times. More preferably, it is selected in the range of 1.5 times to 2.3 times.
  • the draw ratio is within the above range, mechanical properties such as film elongation, tear propagation strength, and resistance to rubbing fatigue can be greatly improved. Therefore, it is possible to produce a stretched film having a thickness unevenness of 5 ⁇ m or less and an internal haze of 1.0% or less.
  • the imide structure-containing acrylic resin in the present embodiment contains a crosslinked elastic body, the mechanical strength of the film is excellent, so any of an unstretched film, a uniaxially stretched film, and a biaxially stretched film can be suitably used. .
  • Antenna substrate containing imide structure-containing acrylic resin composition The antenna substrate containing the imide structure-containing acrylic resin composition in the present embodiment is formed by film-forming the imide structure-containing acrylic resin composition. can be used.
  • the antenna substrate in this embodiment can be used for vehicle window glass, building window glass, display parts of industrial machinery, electronic devices in houses, and so on. It can be used for displays of display devices and the like.
  • the dielectric loss tangent Df value is preferably 0.010 or less, more preferably 0.007 or less. Df values in this range result in low losses.
  • the dielectric constant Dk value is preferably 3.2 or less, more preferably 3.0 or less.
  • the antenna part formed of a conductor is also pulled by the expansion and contraction of the base material, and the dimensions of the antenna change. Since the dimensions of the antenna are uniquely determined by the length of the wavelength of the resonant frequency, it is not preferable for the dimensions of the antenna to change due to temperature rise, etc. Therefore, the coefficient of linear expansion is preferably 100 ppm or less, and 80 ppm or less. is particularly preferred.
  • the obtained imide structure-containing acrylic resin was measured using 1 H-NMR BRUKER Avance III (400 MHz). It was calculated by weight conversion from the molar ratio of the target ring structure portion and other portions. Specifically, in the case of N-phenylglutarimide in which R 3 in the above general formula (1) is phenyl, the methylene group CH 2 and the methyl group CH 3 of the main chain lead to a concentration of around 0.5 to 2.5 ppm.
  • the thickness of the optical film was measured using a Digimatic indicator (manufactured by Mitutoyo Corporation).
  • the in-plane retardation ⁇ nd and the thickness direction retardation Rth were measured using a phase difference measuring device KOBRA-WR manufactured by Oji Scientific Instruments Co., Ltd.
  • the measurement wavelength was 590 nm.
  • Total light transmittance and haze value The total light transmittance and haze value (Haze) of the resin composition (molded article) or film were measured by the method described in JIS K7105 using NDH-300A manufactured by Nippon Denshoku Industries Co., Ltd.
  • Light transmittance at 380 nm The light transmittance of the optical film at a wavelength of 380 nm was measured using an ultraviolet-visible spectrophotometer (Jasco: V-560).
  • the dielectric constant Dk and dielectric loss tangent Df were measured using a network analyzer N5224B (manufactured by Keysight Technologies), cavity resonator, and cavity resonator perturbation method analysis software CP-MA (manufactured by Kanto Denshi Applied Development Co., Ltd.). A film to be measured was cut into a size of 2 mm ⁇ 100 mm, and the measurement was performed after conditioning the humidity for 24 hours under the environment of 23° C./50% RH. Measurements were made at 3 GHz.
  • CTE Coefficient of linear expansion
  • the linear expansion coefficient was measured by a thermomechanical analyzer manufactured by SII Nano Technoguchi Co., Ltd., trade name: TMA/SS6100, after raising the temperature from 10°C to 100°C at a rate of 10°C/min, and then increasing the temperature to 10°C at a rate of 40°C/min. and then heated at a rate of 10°C/min to estimate the value of 50 to 100°C at the second heating. Measurement conditions are shown below. Sample shape: width 3 mm, length 10 mm Load: 1g Atmosphere: Under air atmosphere
  • Weather resistance was measured using a xenon weather-o-meter under the conditions of irradiation energy of 63 W/m 2 , temperature of 40°C (black panel temperature: 63°C), and rain for 300 hours. It was measured. A change in YI of 1 or more or a change in total light transmittance of 1% or more was evaluated as x.
  • MIT bending resistance test A strip having a width of 15 mm was cut from the film and used as a test piece. Using this test piece, MIT soft fatigue tester model D manufactured by Toyo Seiki Co., Ltd., the test load is 1.96 N, the speed is 175 times / minute, the curvature radius R of the bending clamp is 0.38 mm, and the bending angle is Measured at 135° left and right. This was done in the MD direction and the TD direction, respectively, and the arithmetic mean value was taken as the number of MIT reciprocating bendings.
  • Example 1 A 40 mm ⁇ fully intermeshing co-rotating twin-screw extruder reactor was used to prepare the resin.
  • a co-meshing twin-screw extruder with a diameter of 40 mm and an L/D (ratio of extruder length L to diameter D) of 90 is used, and a constant weight feeder (Kubota CE-T-2E ) was used to feed the raw material resin into the raw material supply port of the extruder. Further, the pressure reduction degree of the vent in the extruder was set to -0.10 MPa.
  • the resin (strand) discharged from the extruder was cooled in a cooling water bath and then cut into pellets by a pelletizer.
  • a resin pressure gauge was provided at the exit of the extruder in order to confirm the pressure inside the extruder or ascertain the extrusion fluctuation.
  • Polymethyl methacrylate resin (Mw: 100,000) is used as the raw material (meth)acrylic polymer, aniline (manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.) is used as the imidization agent, and diethylamine (Fujifilm) is used as the imidization accelerator. Film (manufactured by Wako Pure Chemical Industries, Ltd.) was used to produce an imide structure-containing acrylic resin.
  • the extruder maximum temperature is 280 ° C.
  • screw rotation speed is 100 rpm
  • polymethyl methacrylate resin is 10 kg / h
  • aniline is added to 100 parts of polymethyl methacrylate resin 8.0 parts
  • diethylamine The number of parts to be added was 6.3 parts per 100 parts of the polymethyl methacrylate resin.
  • the imidization agent and the imidization accelerator were mixed in advance, and the mixture of aniline and diethylamine was added to the extruder using a liquid addition pump.
  • the resulting imide structure-containing acrylic resin had an imidization rate of 27.2%, an acid value of 0.77 mmol/g, a Tg of 134° C., and a yield of 81%.
  • this pellet-shaped imide structure-containing acrylic resin After drying this pellet-shaped imide structure-containing acrylic resin at 100° C. for 8 hours, it was extruded at 240° C. using a 40 mm ⁇ single-screw extruder and a 400 mm-wide T-die, and a sheet-shaped molten resin was obtained by cooling rolls. to obtain a film with a width of 300 mm and a thickness of 150 ⁇ m. This film was uniaxially stretched at a draw ratio of 2 times at a temperature 5° C. higher than Tg to prepare a uniaxially stretched film.
  • Example 2 to 9 Comparative Examples 1 to 6 were carried out in the same manner as in Example 1, except that the type and number of parts of the imidization agent and the type and number of parts of the imidization accelerator were changed according to Table 1. Table 1 shows the results.

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

Provided is a method for producing an imide structure-containing acrylic resin having a structure represented by formula (1), said method comprising a step for heating a starting composition containing a (meth)acrylic polymer, an imidizing agent and an imidization accelerator, wherein: the imidizing agent contains an aromatic amine compound; the imidization accelerator contains at least one selected from the group consisting of ammonia, a primary amine and a secondary amine; and the pKa of the imidization accelerator is 6 or more. In formula (1): R1 and R2 independently represent hydrogen or an alkyl group having 1-8 carbon atoms; and R3 represents an aromatic hydrocarbon group or a heterocyclic aromatic group.

Description

イミド構造含有アクリル系樹脂の製造方法Method for producing imide structure-containing acrylic resin
 本発明は、イミド構造含有アクリル系樹脂の製造方法に関する。 The present invention relates to a method for producing an imide structure-containing acrylic resin.
 アクリル系樹脂は、優れた透明性、色調、外観、耐候性、光沢および加工性を有するため、産業上さまざまな分野で多量に使用されている優れたポリマーである。例えば携帯電話やスマートフォン、TVやディスプレイなどに使用される液晶表示装置の偏光子保護フィルムや、自動車内外装材などの電化製品の外装材、建築床材などの建材用内外装材など各種用途に使用されている。近年、その優れた光学特性を生かしつつ、高周波帯域用のプリント回路やアンテナ用基板の絶縁基板材料としても期待されており、使用用途の広がりにより、さらなる耐熱性の付与が求められている。  Acrylic resin is an excellent polymer that is used in large quantities in various industrial fields because it has excellent transparency, color tone, appearance, weather resistance, gloss and workability. For example, polarizer protective films for liquid crystal display devices used in mobile phones, smartphones, TVs and displays, exterior materials for electrical appliances such as automobile interior and exterior materials, and interior and exterior materials for building materials such as building floor materials. in use. In recent years, while taking advantage of its excellent optical properties, it is also expected to be used as an insulating substrate material for printed circuits and antenna substrates for high frequency bands.
 例えば、特許文献1には、イミド構造の窒素上に芳香族基を有するイミド構造含有アクリル系樹脂が提案されており、高い耐熱性と低位相差の特性を有することが開示されている。 For example, Patent Document 1 proposes an imide structure-containing acrylic resin having an aromatic group on the nitrogen of the imide structure, and discloses that it has high heat resistance and low retardation properties.
特開2016-65148号公報JP 2016-65148 A
 しかしながら、芳香族アミン化合物をイミド化剤として用いる場合、特許文献1に記載の製造方法では所望のイミド構造含有アクリル系樹脂を効率よくイミド化できない場合があることを本発明者は見出した。また、収率についても改善の余地があった。 However, the present inventors have found that when an aromatic amine compound is used as an imidizing agent, the production method described in Patent Document 1 may not be able to imidize the desired imide structure-containing acrylic resin efficiently. There is also room for improvement in terms of yield.
 本発明は、(メタ)アクリル系重合体を芳香族アミン化合物でイミド化する際に効率良くイミド構造含有アクリル系樹脂を製造する方法を提供することを目的とする。 An object of the present invention is to provide a method for efficiently producing an imide structure-containing acrylic resin when imidating a (meth)acrylic polymer with an aromatic amine compound.
 本発明者らが鋭意検討を重ねた結果、(メタ)アクリル系重合体を、芳香族アミン化合物をイミド化剤として用いてイミド化させる際に、イミド化促進剤としてアンモニア、第1級アミン、および第2級アミンよりなる群から選択される少なくとも1種を含有させ、前記イミド化促進剤のpKaが6以上であることで、イミド化反応が効率良く進行することを見出した。即ち、本発明の一態様は以下に関する。 As a result of extensive studies by the present inventors, when imidizing a (meth)acrylic polymer using an aromatic amine compound as an imidizing agent, ammonia, primary amine, and a secondary amine, and the imidization accelerator has a pKa of 6 or more, whereby the imidization reaction proceeds efficiently. That is, one aspect of the present invention relates to the following.
 (I)下記式(1)で表される構造を有するイミド構造含有アクリル系樹脂の製造方法であって、(メタ)アクリル系重合体とイミド化剤とイミド化促進剤を含有する原料組成物を加熱する工程を含み、前記イミド化剤が芳香族アミン化合物を含有し、前記イミド化促進剤がアンモニア、第1級アミンおよび第2級アミンよりなる群から選択される少なくとも1種を含有し、前記イミド化促進剤のpKaが6以上である、イミド構造含有アクリル系樹脂の製造方法。 (I) A method for producing an imide structure-containing acrylic resin having a structure represented by the following formula (1), comprising a raw material composition containing a (meth)acrylic polymer, an imidizing agent, and an imidization accelerator The imidization agent contains an aromatic amine compound, and the imidization accelerator contains at least one selected from the group consisting of ammonia, primary amines and secondary amines. and a method for producing an imide structure-containing acrylic resin, wherein the pKa of the imidization accelerator is 6 or more.
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
(式(1)中、R及びRはそれぞれ独立に、水素原子または炭素数1~8のアルキル基であり、Rは芳香族炭化水素基または複素芳香族基である。) (In formula (1), R 1 and R 2 are each independently a hydrogen atom or an alkyl group having 1 to 8 carbon atoms, and R 3 is an aromatic hydrocarbon group or a heteroaromatic group.)
 (II)前記第1級アミンが、下記式(2)で表される構造を有する、(I)に記載のイミド構造含有アクリル系樹脂の製造方法。
 RNH  (2)
(式(2)中、Rは炭素数1~8のアルキル基、炭素数3~10のシクロアルキル基または炭素数6~18のアリールアルキル基である。)
(II) The method for producing an imide structure-containing acrylic resin according to (I), wherein the primary amine has a structure represented by the following formula (2).
R4NH2 ( 2 )
(In formula (2), R 4 is an alkyl group having 1 to 8 carbon atoms, a cycloalkyl group having 3 to 10 carbon atoms or an arylalkyl group having 6 to 18 carbon atoms.)
 (III)前記第2級アミンが、下記式(3)で表される構造を有する、(I)に記載のイミド構造含有アクリル系樹脂の製造方法。
 HN(R)(R)  (3)
(式(3)中、R及びRはそれぞれ独立に、炭素数1~8のアルキル基、炭素数3~10のシクロアルキル基または炭素数6~18のアリールアルキル基である。また、RとRで環構造を形成していてもよい。)
(III) The method for producing an imide structure-containing acrylic resin according to (I), wherein the secondary amine has a structure represented by the following formula (3).
HN(R5)( R6 ) ( 3 )
(In formula (3), R 5 and R 6 are each independently an alkyl group having 1 to 8 carbon atoms, a cycloalkyl group having 3 to 10 carbon atoms, or an arylalkyl group having 6 to 18 carbon atoms. R5 and R6 may form a ring structure.)
 (IV)前記イミド化促進剤のpKaが8以上である、(I)~(III)のいずれかに記載のイミド構造含有アクリル系樹脂の製造方法。 (IV) The method for producing an imide structure-containing acrylic resin according to any one of (I) to (III), wherein the imidization accelerator has a pKa of 8 or more.
 (V)前記イミド化促進剤がアンモニア、メチルアミン、エチルアミン、ジエチルアミン、ジメチルアミン、N-メチルエチルアミン、N-メチルプロピルアミン、N-メチルブチルアミン、ピロリジンおよびピペリジンからなる群より選択される少なくとも1種を含む、(I)~(IV)のいずれかに記載のイミド構造含有アクリル系樹脂の製造方法。 (V) the imidization accelerator is at least one selected from the group consisting of ammonia, methylamine, ethylamine, diethylamine, dimethylamine, N-methylethylamine, N-methylpropylamine, N-methylbutylamine, pyrrolidine and piperidine; A method for producing an imide structure-containing acrylic resin according to any one of (I) to (IV).
 (VI)前記イミド化剤が、アニリン、トルイジン、アニシジン、アミノピリジン、アミノビフェニルおよびアミノナフタレンからなる群より選択される少なくとも1種を含む、(I)~(V)のいずれかに記載のイミド構造含有アクリル系樹脂の製造方法。 (VI) The imide according to any one of (I) to (V), wherein the imidizing agent contains at least one selected from the group consisting of aniline, toluidine, anisidine, aminopyridine, aminobiphenyl and aminonaphthalene. A method for producing a structure-containing acrylic resin.
 (VII)前記原料組成物は、前記イミド化促進剤の含有量が、前記(メタ)アクリル系重合体100重量部に対して1~80重量部である、(I)~(VI)のいずれかに記載のイミド構造含有アクリル系樹脂の製造方法。 (VII) Any one of (I) to (VI), wherein the content of the imidization accelerator in the raw material composition is 1 to 80 parts by weight with respect to 100 parts by weight of the (meth)acrylic polymer. A method for producing an imide structure-containing acrylic resin according to 1.
 (VIII)前記原料組成物は、前記イミド化促進剤の含有量が、前記イミド化剤1モルに対して0.1モル~10モルである、(I)~(VII)のいずれかに記載のイミド構造含有アクリル系樹脂の製造方法。 (VIII) The raw material composition according to any one of (I) to (VII), wherein the content of the imidization accelerator is 0.1 mol to 10 mol per 1 mol of the imidizing agent. A method for producing an imide structure-containing acrylic resin.
 (IX)前記原料組成物は、前記イミド化剤の含有量が、前記(メタ)アクリル系重合体100重量部に対して1~100重量部である、(I)~(VIII)のいずれかに記載のイミド構造含有アクリル系樹脂の製造方法。 (IX) Any one of (I) to (VIII), wherein the content of the imidizing agent in the raw material composition is 1 to 100 parts by weight with respect to 100 parts by weight of the (meth)acrylic polymer. The method for producing the imide structure-containing acrylic resin according to 1.
 (X)前記(メタ)アクリル系重合体が、メタクリル酸アルキルエステル単位を含む、請求項(I)~(IX)のいずれかに記載のイミド構造含有アクリル系樹脂の製造方法。 (X) The method for producing an imide structure-containing acrylic resin according to any one of claims (I) to (IX), wherein the (meth)acrylic polymer contains a methacrylic acid alkyl ester unit.
 (XI)前記メタクリル酸アルキルエステル単位が炭素数1~8のアルキル基を有する、(X)に記載のイミド構造含有アクリル系樹脂の製造方法。 (XI) The method for producing an imide structure-containing acrylic resin according to (X), wherein the methacrylic acid alkyl ester unit has an alkyl group having 1 to 8 carbon atoms.
 (XII)前記(メタ)アクリル系重合体は、前記メタクリル酸アルキルエステル単位の含有量が、前記(メタ)アクリル系重合体の全量に対して50重量%以上である、(X)または(XI)に記載のイミド構造含有アクリル系樹脂の製造方法。 (XII) The (meth)acrylic polymer has a methacrylic acid alkyl ester unit content of 50% by weight or more relative to the total amount of the (meth)acrylic polymer, (X) or (XI ), the method for producing an imide structure-containing acrylic resin according to
 (XIII)前記イミド化促進剤と前記イミド化剤の混合物を前記(メタ)アクリル系重合体と混合する工程を含む、(I)~(XII)のいずれかに記載のイミド構造含有アクリル系樹脂の製造方法。 (XIII) The imide structure-containing acrylic resin according to any one of (I) to (XII), including a step of mixing a mixture of the imidization accelerator and the imidization agent with the (meth)acrylic polymer. manufacturing method.
 (XIV)前記(メタ)アクリル系重合体と前記イミド化剤と前記イミド化促進剤を含有する原料組成物を加熱する工程の温度が180℃~320℃である、(I)~(XIII)のいずれかに記載のイミド構造含有アクリル系樹脂の製造方法。 (XIV) (I) to (XIII), wherein the temperature in the step of heating the raw material composition containing the (meth)acrylic polymer, the imidization agent and the imidization accelerator is 180° C. to 320° C. A method for producing an imide structure-containing acrylic resin according to any one of 1.
 (XV)前記(メタ)アクリル系重合体と前記イミド化剤と前記イミド化促進剤を含有する原料組成物を加熱する工程の圧力が0.1MPa~50MPaである、(I)~(XIV)のいずれかに記載のイミド構造含有アクリル系樹脂の製造方法。 (XV) (I) to (XIV), wherein the pressure in the step of heating the raw material composition containing the (meth)acrylic polymer, the imidization agent and the imidization accelerator is 0.1 MPa to 50 MPa. A method for producing an imide structure-containing acrylic resin according to any one of 1.
 本発明によれば、(メタ)アクリル系重合体を芳香族アミン化合物でイミド化する際に効率良くイミド構造含有アクリル系樹脂を製造する方法を提供することができる。 According to the present invention, it is possible to provide a method for efficiently producing an imide structure-containing acrylic resin when imidating a (meth)acrylic polymer with an aromatic amine compound.
 以下、本発明の実施形態について説明する。 Embodiments of the present invention will be described below.
 本実施形態のイミド構造含有アクリル系樹脂の製造方法は、(メタ)アクリル系重合体と、イミド化剤と、イミド化促進剤を含有する原料組成物を加熱する工程を含む。 The method for producing an imide structure-containing acrylic resin of the present embodiment includes a step of heating a raw material composition containing a (meth)acrylic polymer, an imidizing agent, and an imidization accelerator.
 (i)(メタ)アクリル系重合体
 (メタ)アクリル系重合体は、主に、アクリル酸、メタクリル酸及びこれらの誘導体を重合して得られる重合体であり、本発明の効果を損なわない限り特には限定されず、公知の(メタ)アクリル系重合体を用いることができる。例えば、(メタ)アクリル酸エステルを主成分として含有する単量体組成物を重合することにより製造することができる。
(i) (Meth)acrylic polymer The (meth)acrylic polymer is mainly a polymer obtained by polymerizing acrylic acid, methacrylic acid and derivatives thereof, unless the effects of the present invention are impaired. There are no particular restrictions, and known (meth)acrylic polymers can be used. For example, it can be produced by polymerizing a monomer composition containing (meth)acrylic acid ester as a main component.
 (メタ)アクリル酸エステルとしては、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸n-プロピル、(メタ)アクリル酸nーブチル、(メタ)アクリル酸イソブチルなどの(メタ)アクリル酸アルキルエステルや、(メタ)アクリル酸フェニル、(メタ)アクリル酸ベンジル、(メタ)アクリル酸シクロヘキシルなどの炭素数が6~12の(メタ)アクリル酸アリール、(メタ)アクリル酸アルキルアリール、(メタ)アクリル酸脂環式アルキルエステルなどがあげられる。これらは、1種のみ用いてもよいし、2種以上を併用してもよい。 (Meth)acrylates include (meth)acrylates such as methyl (meth)acrylate, ethyl (meth)acrylate, n-propyl (meth)acrylate, n-butyl (meth)acrylate, and isobutyl (meth)acrylate. ) Alkyl acrylates, aryl (meth)acrylates having 6 to 12 carbon atoms such as phenyl (meth)acrylate, benzyl (meth)acrylate, and cyclohexyl (meth)acrylate, and alkylaryl (meth)acrylates , (meth)acrylic acid alicyclic alkyl esters, and the like. These may be used alone or in combination of two or more.
 得られるイミド構造含有アクリル系樹脂の耐熱性が向上する観点から、(メタ)アクリル系重合体が、メタクリル酸アルキルエステル単位を含むことが好ましい。 From the viewpoint of improving the heat resistance of the obtained imide structure-containing acrylic resin, the (meth)acrylic polymer preferably contains a methacrylic acid alkyl ester unit.
 また、効率よくイミド構造含有アクリル系重合体を製造できることから、(メタ)アクリル系重合体が、炭素数1~8のアルキル基を有する(メタ)アクリル酸アルキルエステル単位を含むことが好ましく、中でも、(メタ)アクリル酸メチル単位、(メタ)アクリル酸エチル単位、(メタ)アクリル酸n-プロピル単位、(メタ)アクリル酸n-ブチル単位がより好ましく、(メタ)アクリル酸メチル単位が特に好ましい。 Further, since an imide structure-containing acrylic polymer can be produced efficiently, the (meth)acrylic polymer preferably contains a (meth)acrylic acid alkyl ester unit having an alkyl group having 1 to 8 carbon atoms, especially , (meth)methyl acrylate units, ethyl (meth)acrylate units, n-propyl (meth)acrylate units, and n-butyl (meth)acrylate units are more preferable, and methyl (meth)acrylate units are particularly preferable. .
 (メタ)アクリル系重合体における(メタ)アクリル酸アルキルエステル単位の含有量に特に制限はないが、耐熱性の観点から、50重量%以上が好ましく、75重量%以上がより好ましく、90重量%以上が特に好ましい。 The content of (meth)acrylic acid alkyl ester units in the (meth)acrylic polymer is not particularly limited, but from the viewpoint of heat resistance, it is preferably 50% by weight or more, more preferably 75% by weight or more, and 90% by weight. The above are particularly preferred.
 得られるイミド構造含有アクリル系樹脂の耐熱性をさらに向上させる観点から、主鎖に環構造を有する(メタ)アクリル系重合体を用いても良い。環構造としては、例えば、ラクトン環構造、無水マレイン酸構造、無水グルタル酸構造、マレイミド構造、下記式(1)で表されるグルタルイミド構造などが挙げられる。 From the viewpoint of further improving the heat resistance of the obtained imide structure-containing acrylic resin, a (meth)acrylic polymer having a ring structure in the main chain may be used. Examples of ring structures include lactone ring structures, maleic anhydride structures, glutaric anhydride structures, maleimide structures, and glutarimide structures represented by the following formula (1).
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
(前記式(1)において、R及びRはそれぞれ独立に、水素原子または炭素数1~8のアルキル基を示し、Rは水素原子、炭素数1~18のアルキル基、または炭素数3~12のシクロアルキル基である。) (In formula (1) above, R 1 and R 2 each independently represent a hydrogen atom or an alkyl group having 1 to 8 carbon atoms, and R 3 represents a hydrogen atom, an alkyl group having 1 to 18 carbon atoms, or 3 to 12 cycloalkyl groups.)
 (メタ)アクリル系重合体の主鎖に環構造を導入する方法としては、公知の方法が挙げられる。ラクトン環構造を有する(メタ)アクリル系重合体としては特開2004-168882号公報、特開2006-171464号公報などの各公報に記載のものが挙げられ、マレイミド構造を有する(メタ)アクリル系重合体としては特開2007-31537号公報に示されるようなN-置換マレイミド単位を有する(メタ)アクリル系重合体が例示され、グルタル酸無水物構造含有(メタ)アクリル系重合体としては特開2004-70296号公報、特開2004-307834号公報、特開2008-74918号公報、国際公開第2007/26659号等に記載のものが例示される。 As a method for introducing a ring structure into the main chain of the (meth)acrylic polymer, a known method can be mentioned. Examples of (meth)acrylic polymers having a lactone ring structure include those described in JP-A-2004-168882 and JP-A-2006-171464, and (meth)acrylic polymers having a maleimide structure. Examples of the polymer include (meth)acrylic polymers having N-substituted maleimide units as shown in JP-A-2007-31537, and glutaric anhydride structure-containing (meth)acrylic polymers are particularly Examples include those described in JP-A-2004-70296, JP-A-2004-307834, JP-A-2008-74918, and International Publication No. 2007/26659.
 主鎖に環構造を有する(メタ)アクリル系重合体のガラス転移温度(Tg)は特に限定されるものではないが、110℃以上であることが好ましく、115℃以上であることがより好ましく、120℃以上であることが特に好ましい。この範囲を下回ると、成形体にした場合の耐熱性が劣るため、高温時の物性変化が大きくなり、適用範囲が狭くなる場合がある。 The glass transition temperature (Tg) of the (meth)acrylic polymer having a ring structure in the main chain is not particularly limited, but is preferably 110° C. or higher, more preferably 115° C. or higher. 120° C. or higher is particularly preferred. If it is below this range, the heat resistance of the molded product will be poor, so that the change in physical properties at high temperatures will be large, and the range of application may be narrowed.
 主鎖に環構造を有する(メタ)アクリル系樹脂中の環構造の含有量は特に制限されないが、耐熱性、物性のバランスを考えると2重量%以上であれば特に制限されないが、2.5重量%以上がさらに好ましい。上限は、成形が可能であれば特に制限されず、物性とのバランスで適宜選択することができるが、70重量%以下が好ましく、50重量%以下がさらに好ましく、30重量%以下が特に好ましい。 The content of the ring structure in the (meth)acrylic resin having a ring structure in the main chain is not particularly limited, but considering the balance between heat resistance and physical properties, it is not particularly limited as long as it is 2% by weight or more. Weight % or more is more preferable. The upper limit is not particularly limited as long as molding is possible, and can be appropriately selected in balance with physical properties, but is preferably 70% by weight or less, more preferably 50% by weight or less, and particularly preferably 30% by weight or less.
 また、上記したモノマー以外にも、スチレン、メチルスチレン等の芳香族単量体、アクリロニトリルやメタクリロニトリル等のニトリル系単量体、マレイミド、N-メチルマレイミド、N-フェニルマレイミド、N-シクロヘキシルマレイミド等のマレイミド系単量体を含むことも可能である。 In addition to the above monomers, aromatic monomers such as styrene and methylstyrene, nitrile monomers such as acrylonitrile and methacrylonitrile, maleimide, N-methylmaleimide, N-phenylmaleimide, and N-cyclohexylmaleimide It is also possible to include maleimide-based monomers such as
 上記、(メタ)アクリル系重合体の構造は、特に限定されるものではなく、リニアー(線状)ポリマー、ブロックポリマー、コアシェルポリマー、分岐ポリマー、ラダーポリマー、および架橋ポリマー等のいずれであってもよい。ブロックポリマーの場合、A-B型、A-B-C型、A-B-A型、およびこれら以外のタイプのブロックポリマーのいずれであってもよい。コアシェルポリマーの場合、ただ一層のコアおよびただ一層のシェルのみからなるものであってもよいし、それぞれが多層からなるものであってもよい。 The structure of the (meth)acrylic polymer is not particularly limited, and may be a linear (linear) polymer, block polymer, core-shell polymer, branched polymer, ladder polymer, crosslinked polymer, or the like. good. In the case of a block polymer, it may be AB type, ABC type, ABA type, or any other type of block polymer. In the case of core-shell polymers, the polymer may consist of only one core layer and one shell layer, or each may consist of multiple layers.
 (ii)イミド化剤
 イミド化剤は、上記一般式(1)で表されるグルタルイミド単位を生成できる、芳香族アミン化合物であれば特に制限されない。ここで芳香族アミン化合物とは、芳香環の水素をアミノ基で置き換えた有機化合物を表し、芳香環は炭素以外の原子を含む複素芳香環であってもよい。具体的には、例えば、アニリン、トルイジン、アニシジン、キシリジン、トリメチルアニリン、トリクロロアニリン、アミノピリジン、アミノビフェニル、アミノナフタレン、アミノアントラセン、アミノテトラセン等を挙げることができる。これらは、1種のみ用いてもよいし、2種以上を併用してもよい。
(ii) Imidizing agent The imidating agent is not particularly limited as long as it is an aromatic amine compound capable of forming the glutarimide unit represented by the general formula (1). Here, the aromatic amine compound represents an organic compound in which hydrogen in an aromatic ring is replaced with an amino group, and the aromatic ring may be a heteroaromatic ring containing atoms other than carbon. Specific examples include aniline, toluidine, anisidine, xylidine, trimethylaniline, trichloroaniline, aminopyridine, aminobiphenyl, aminonaphthalene, aminoanthracene, and aminotetracene. These may be used alone or in combination of two or more.
 反応効率が良好であり、得られるイミド構造含有アクリル系樹脂の物性が良好であることから芳香族アミン化合物の芳香環を構成する原子数は5~18が好ましく、5~10がさらに好ましい。 The number of atoms constituting the aromatic ring of the aromatic amine compound is preferably 5 to 18, more preferably 5 to 10, because the reaction efficiency is good and the physical properties of the obtained imide structure-containing acrylic resin are good.
 上記例示したイミド化剤のうち、(メタ)アクリル系重合体との反応性や得られるイミド構造含有アクリル系樹脂の耐熱性が良いことから、アニリン、トルイジン、アニシジン、キシリジン、アミノピリジン、アミノビフェニルおよびアミノナフタレンから選択される1種以上が好ましく、アニリン、トルイジン、アニシジンおよびキシリジンから選択される1種以上がより好ましく、コスト、物性のバランスが優れていることからアニリンが特に好ましい。 Among the imidizing agents exemplified above, aniline, toluidine, anisidine, xylidine, aminopyridine, and aminobiphenyl are preferred because of their good reactivity with (meth)acrylic polymers and the heat resistance of the resulting imide structure-containing acrylic resins. and aminonaphthalene are preferred, and one or more selected from aniline, toluidine, anisidine and xylidine are more preferred, and aniline is particularly preferred because of its excellent balance between cost and physical properties.
 このイミド化の工程において、上記イミド化剤の添加割合を調整することにより、得られるイミド構造含有アクリル系樹脂におけるグルタルイミド単位の割合を調整することができる。 In this imidization step, the ratio of glutarimide units in the obtained imide structure-containing acrylic resin can be adjusted by adjusting the addition ratio of the imidization agent.
 また、イミド化の程度を調整することにより、得られるイミド構造含有アクリル系樹脂の物性や、イミド構造含有アクリル系樹脂を含む樹脂組成物を成形してなる光学用フィルムの光学特性等を調整することができる。 In addition, by adjusting the degree of imidization, the physical properties of the obtained imide structure-containing acrylic resin and the optical properties of an optical film formed by molding a resin composition containing the imide structure-containing acrylic resin can be adjusted. be able to.
 前述した原料組成物中のイミド化剤の含有量は、要求される特性に応じて適宜調整することが可能であるが、例えば、(メタ)アクリル系重合体100重量部に対して1重量部以上であれば、要求される特性に応じて適宜調整することが可能であり、4重量部以上がさらに好ましい。1重量部未満であると、得られるイミド構造含有アクリル系樹脂を含む樹脂組成物の耐熱性が低下する場合がある。上限は、成形性及び物性との関係で適宜選択することが可能であるが、ハンドリングの容易さから100重量部以下が好ましく、80重量部以下がより好ましく、70重量部以下がさらに好ましい。 The content of the imidizing agent in the raw material composition described above can be appropriately adjusted according to the properties required. If it is above, it can be appropriately adjusted according to the required properties, and 4 parts by weight or more is more preferable. If it is less than 1 part by weight, the heat resistance of the obtained resin composition containing the imide structure-containing acrylic resin may be lowered. The upper limit can be appropriately selected depending on moldability and physical properties, but is preferably 100 parts by weight or less, more preferably 80 parts by weight or less, and even more preferably 70 parts by weight or less for ease of handling.
 (iii)イミド化促進剤
 本実施形態におけるイミド化促進剤は、アンモニア、第1級アミンおよび第2級アミンよりなる群から選択される少なくとも1種を含有し、pKaが6以上であれば特に制限されない。
(iii) imidization accelerator The imidization accelerator in the present embodiment contains at least one selected from the group consisting of ammonia, primary amines and secondary amines, and has a pKa of 6 or more, especially Not restricted.
 前記第1級アミンは、下記式(2)で表される構造を有することが好ましい。
 RNH  (2)
(式(2)中、Rは炭素数1~8のアルキル基、炭素数3~10のシクロアルキル基または炭素数6~18のアリールアルキル基である。)
The primary amine preferably has a structure represented by the following formula (2).
R4NH2 ( 2 )
(In formula (2), R 4 is an alkyl group having 1 to 8 carbon atoms, a cycloalkyl group having 3 to 10 carbon atoms or an arylalkyl group having 6 to 18 carbon atoms.)
 具体的にはメチルアミン、エチルアミン、n-プロピルアミン、イソプロピルアミン、n-ブチルアミン、n-ヘキシルアミンなどの直鎖または分岐のアルキルアミン;シクロプロピルアミン、シクロブチルアミン、シクロペンチルアミン、シクロヘキシルアミンなどのシクロアルキルアミン;ベンジルアミンやフェネチルアミンなどのアリールアルキルアミンが挙げられる。 Specifically, linear or branched alkylamines such as methylamine, ethylamine, n-propylamine, isopropylamine, n-butylamine, n-hexylamine; cyclopropylamine, cyclobutylamine, cyclopentylamine, cyclohexylamine and the like. Alkylamines; arylalkylamines such as benzylamine and phenethylamine.
 また、前記第2級アミンは、下記式(3)で表される構造を有することが好ましい。
 HN(R)(R)  (3)
(式(3)中、R及びRはそれぞれ独立に、炭素数1~8のアルキル基、炭素数3~10のシクロアルキル基または炭素数6~18のアリールアルキル基である。また、RとRで環構造を形成していてもよい。)
Moreover, the secondary amine preferably has a structure represented by the following formula (3).
HN(R5)( R6 ) ( 3 )
(In formula (3), R 5 and R 6 are each independently an alkyl group having 1 to 8 carbon atoms, a cycloalkyl group having 3 to 10 carbon atoms, or an arylalkyl group having 6 to 18 carbon atoms. R5 and R6 may form a ring structure.)
 具体的にはジメチルアミン、ジエチルアミン、N-メチルエチルアミン、N-メチルプロピルアミン、N-メチルブチルアミン、ジイソプロピルアミンなどの直鎖または分岐のジアルキルアミン;ピロリジン、ピぺリジン、モルホリンなどの脂環式アミン、ジシクロヘキシルアミン、ジベンジルアミンなどが挙げられる。 Specifically, linear or branched dialkylamines such as dimethylamine, diethylamine, N-methylethylamine, N-methylpropylamine, N-methylbutylamine and diisopropylamine; alicyclic amines such as pyrrolidine, piperidine and morpholine; , dicyclohexylamine, dibenzylamine and the like.
 前述したイミド化促進剤としては、アンモニア、メチルアミン、エチルアミン、ジエチルアミン、ジメチルアミン、N-メチルエチルアミン、N-メチルプロピルアミン、N-メチルブチルアミン、ピロリジンおよびピペリジンが好ましい。 As the imidization accelerator mentioned above, ammonia, methylamine, ethylamine, diethylamine, dimethylamine, N-methylethylamine, N-methylpropylamine, N-methylbutylamine, pyrrolidine and piperidine are preferable.
 また、アンモニアや第1級アミンは、前述したイミド化促進剤ではあるものの、それ自体が(メタ)アクリル系重合体と反応しイミド構造を形成する場合がある。そのため副反応が少なく、所望のイミド構造含有アクリル系樹脂を得られる観点から、第2級アミンであるジエチルアミン、ジメチルアミン、N-メチルエチルアミン、N-メチルプロピルアミン、N-メチルブチルアミン、ピロリジンおよびピペリジンがより好ましく、N-メチルプロピルアミン、ジエチルアミンおよびジメチルアミンが特に好ましい。 In addition, although ammonia and primary amines are imidization accelerators as described above, they themselves may react with the (meth)acrylic polymer to form an imide structure. Therefore, secondary amines such as diethylamine, dimethylamine, N-methylethylamine, N-methylpropylamine, N-methylbutylamine, pyrrolidine and piperidine are secondary amines from the viewpoint of obtaining the desired imide structure-containing acrylic resin with little side reaction. are more preferred, and N-methylpropylamine, diethylamine and dimethylamine are particularly preferred.
 前記イミド化促進剤のpKaは6以上であれば特に限定されないが、イミド化を促進する効果が高いことから、8以上が好ましく、9以上がより好ましく、10以上が特に好ましい。上限は特に限定されることはないが、例えば14以下が好ましく、13以下がより好ましい。ここでpKaとは、次式で定義される値である。
 pKa=-log10Ka
なお、AH→A+Hの反応における酸解離定数(Ka)は、Ka=[A][H]/[AH]で求められる値である。
The pKa of the imidization accelerator is not particularly limited as long as it is 6 or more, but is preferably 8 or more, more preferably 9 or more, and particularly preferably 10 or more, because the effect of promoting imidization is high. Although the upper limit is not particularly limited, for example, 14 or less is preferable, and 13 or less is more preferable. Here, pKa is a value defined by the following formula.
pKa = -log10 Ka
The acid dissociation constant (Ka) in the reaction AH→A +H + is a value obtained by Ka=[A ][H + ]/[AH].
 前述した原料組成物中のイミド化促進剤の含有量は、要求される特性に応じて適宜調整することが可能であるが、例えば、(メタ)アクリル系重合体100重量部に対して1重量部以上であればよく、3重量部以上がさらに好ましい。1重量部未満であると、イミド化を促進する効果が小さく所望のイミド化率を有するイミド構造含有アクリル系樹脂を得られない場合がある。上限は、成形性及び物性との関係で適宜選択することが可能であるが、ハンドリングの容易さやイミド化促進剤の残留による成形体の機械的特性の悪化を防止する観点から80重量部以下が好ましく、60重量部以下がさらに好ましく、40重量部以下が特に好ましい。 The content of the imidization accelerator in the raw material composition described above can be appropriately adjusted according to the properties required. parts by weight or more, and more preferably 3 parts by weight or more. If the amount is less than 1 part by weight, the effect of promoting imidization is small, and an imide structure-containing acrylic resin having a desired imidization rate may not be obtained. The upper limit can be appropriately selected depending on the moldability and physical properties, but from the viewpoint of ease of handling and prevention of deterioration of the mechanical properties of the molded product due to residual imidization accelerator, 80 parts by weight or less is recommended. It is preferably 60 parts by weight or less, more preferably 40 parts by weight or less.
 前述した原料組成物中のイミド化促進剤の含有量は、イミド化剤1モルに対して0.1モル~10モルであることが好ましい。効率よいイミド化の促進やイミド構造含有アクリル系樹脂の収率向上の観点から下限は0.5モル以上が好ましく、0.8モル以上が特に好ましい。また、上限は10モル以下が好ましく、5モル以下がより好ましく、3モル以下が特に好ましい。 The content of the imidization accelerator in the raw material composition described above is preferably 0.1 mol to 10 mol per 1 mol of the imidization agent. From the viewpoint of promoting efficient imidization and improving the yield of the imide structure-containing acrylic resin, the lower limit is preferably 0.5 mol or more, particularly preferably 0.8 mol or more. Moreover, the upper limit is preferably 10 mol or less, more preferably 5 mol or less, and particularly preferably 3 mol or less.
 (iv)イミド構造含有アクリル系樹脂
 本実施形態におけるイミド構造含有アクリル系樹脂は、下記一般式(1)で表される構造を含有する。
(iv) Imide Structure-Containing Acrylic Resin The imide structure-containing acrylic resin in the present embodiment contains a structure represented by the following general formula (1).
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
(式(1)中、R及びRはそれぞれ独立に、水素原子または炭素数1~8のアルキル基であり、Rは芳香族炭化水素基または複素芳香族基である。) (In formula (1), R 1 and R 2 are each independently a hydrogen atom or an alkyl group having 1 to 8 carbon atoms, and R 3 is an aromatic hydrocarbon group or a heteroaromatic group.)
 前記式(1)で表される構造において、RおよびRは、それぞれ独立して、水素原子または炭素数1~8のアルキル基である。炭素数1~8のアルキル基としては、例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、t-ブチル基、n-ヘキシル基、n-オクチル基、2-エチルヘキシル基などが挙げられる。中でも、耐熱性に優れていることから、水素原子または炭素数1~4のアルキル基が好ましい。 In the structure represented by formula (1), R 1 and R 2 are each independently a hydrogen atom or an alkyl group having 1 to 8 carbon atoms. Examples of alkyl groups having 1 to 8 carbon atoms include methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, t-butyl group, n-hexyl group, n-octyl group, 2-ethylhexyl group and the like. Among them, a hydrogen atom or an alkyl group having 1 to 4 carbon atoms is preferable because of their excellent heat resistance.
 前記式(1)で表される構造において、Rは芳香族炭化水素基または複素芳香族基である。芳香環を構成する原子数は5~18が好ましく、5~10がさらに好ましい。具体的に例えば、フェニル基、トリル基、アニシル基、キシリル基、トリメチルフェニル基、トリクロロフェニル基、ピリジル基、ビフェニル基、ナフチル基、アントリル基等を挙げることができる。中でも、耐熱性に優れていることから、フェニル基、トリル基、アニシル基、キシリル基、ピリジル基、ビフェニル基およびナフチル基が好ましく、フェニル基、トリル基、アニシル基およびキシリル基がより好ましい。 In the structure represented by formula ( 1 ) above, R3 is an aromatic hydrocarbon group or a heteroaromatic group. The number of atoms constituting the aromatic ring is preferably 5-18, more preferably 5-10. Specific examples include phenyl group, tolyl group, anisyl group, xylyl group, trimethylphenyl group, trichlorophenyl group, pyridyl group, biphenyl group, naphthyl group and anthryl group. Among them, phenyl group, tolyl group, anisyl group, xylyl group, pyridyl group, biphenyl group and naphthyl group are preferable, and phenyl group, tolyl group, anisyl group and xylyl group are more preferable because of their excellent heat resistance.
 なお、イミド構造含有アクリル系樹脂は、前記式(1)で表される構造において、2種類以上を含んでいてもよい。 It should be noted that the imide structure-containing acrylic resin may contain two or more types in the structure represented by the formula (1).
 イミド構造含有アクリル系樹脂の重量平均分子量は特に限定されるものではないが、1×10~5×10であることが好ましく、5×10~3×10であることがさらに好ましい。上記範囲内であれば、成形加工性が低下したり、フィルム加工時の機械的強度が不足したりすることがない。 Although the weight average molecular weight of the imide structure-containing acrylic resin is not particularly limited, it is preferably 1×10 4 to 5×10 5 , more preferably 5×10 4 to 3×10 5 . . If it is within the above range, there will be no deterioration in moldability and insufficient mechanical strength during film processing.
 イミド構造含有アクリル系樹脂のガラス転移温度は特に限定されるものではないが、120℃以上であることが好ましく、125℃以上であることがより好ましく、130℃以上であることがさらに好ましく、135℃以上であることが特に好ましい。この範囲を下回ると、成形体やフィルムにした場合の耐熱性が劣るため、高温時の物性変化が大きくなり、適用範囲が狭くなる。ガラス転移温度は、例えば、樹脂10mgを用いて、示差走査熱量計(DSC、株式会社島津製作所製DSC-50型)を用いて、窒素雰囲気下、昇温速度20℃/minで測定し、中点法により決定することができる。 The glass transition temperature of the imide structure-containing acrylic resin is not particularly limited. ° C. or higher is particularly preferred. If it is less than this range, the heat resistance of a molded article or film will be poor, and the change in physical properties at high temperatures will be large, narrowing the range of application. The glass transition temperature is measured, for example, using 10 mg of resin, using a differential scanning calorimeter (DSC, Shimadzu Corporation DSC-50 type), under a nitrogen atmosphere, at a heating rate of 20° C./min. It can be determined by the point method.
 イミド構造含有アクリル系樹脂のイミド化率は、要求される特性に応じて適宜調整することが可能であり、特に限定されるものではないが、耐熱性が高くなることから、イミド化率の下限は10%以上であることが好ましく、15%以上であることがより好ましく、20%以上であることが特に好ましい。また、粘度の上昇によるハンドリング性悪化を防止する観点から、上限は80%以下であることが好ましく、75%以下であることがより好ましく、70%以下であることが特に好ましい。上記範囲内であれば、耐熱性と粘度のバランスに優れた樹脂組成物が得られる。なお、イミド構造含有アクリル系樹脂のイミド化率は後述の方法で求めることができる。 The imidization rate of the imide structure-containing acrylic resin can be appropriately adjusted according to the required properties, and is not particularly limited. is preferably 10% or more, more preferably 15% or more, and particularly preferably 20% or more. Moreover, from the viewpoint of preventing deterioration of handling properties due to an increase in viscosity, the upper limit is preferably 80% or less, more preferably 75% or less, and particularly preferably 70% or less. Within the above range, a resin composition having an excellent balance between heat resistance and viscosity can be obtained. The imidization rate of the imide structure-containing acrylic resin can be obtained by the method described later.
 イミド構造含有アクリル系樹脂のイミド化率はフーリエ変換赤外分光光度計(JASCO社製FI/IR-4100)を用いてIRスペクトルを測定することによって求めることができる。1720cm-1付近のエステルカルボニル基に由来する吸収と、1680cm-1に付近のイミドカルボニル基に由来する吸収との強度比からイミド化率を決定する。ここで、イミド化率は、エステルカルボニル基とイミドカルボニル基の合計においてイミドカルボニル基が占める割合である。 The imidization rate of the imide structure-containing acrylic resin can be determined by measuring the IR spectrum using a Fourier transform infrared spectrophotometer (FI/IR-4100 manufactured by JASCO). The imidization rate is determined from the intensity ratio between the absorption derived from the ester carbonyl group near 1720 cm −1 and the absorption derived from the imide carbonyl group near 1680 cm −1 . Here, the imidization rate is the proportion of the imidecarbonyl groups in the total of the estercarbonyl groups and the imidecarbonyl groups.
 イミド構造含有アクリル系樹脂の酸価は、イミド構造含有アクリル系樹脂中でのカルボン酸単位および酸無水物単位の含有量を表す。酸価は、例えば国際公開第2005/054311号に記載の滴定法などにより算出することが可能である。本実施形態におけるイミド構造含有アクリル系樹脂の酸価は0.10~1.00mmol/gであることが好ましい。酸価が上記範囲内であれば、耐熱性、機械物性、成形加工性のバランスに優れたイミド構造含有アクリル系樹脂を得ることができる。 The acid value of the imide structure-containing acrylic resin represents the content of carboxylic acid units and acid anhydride units in the imide structure-containing acrylic resin. The acid value can be calculated, for example, by the titration method described in WO 2005/054311. The acid value of the imide structure-containing acrylic resin in this embodiment is preferably 0.10 to 1.00 mmol/g. If the acid value is within the above range, it is possible to obtain an imide structure-containing acrylic resin having an excellent balance of heat resistance, mechanical properties, and moldability.
 特に酸成分の中でもカルボン酸の含有量は成形加工性の点から、0.25mmol/g以下が好ましく、さらには0.20mmol/g以下が好ましい。 In particular, among the acid components, the content of carboxylic acid is preferably 0.25 mmol/g or less, more preferably 0.20 mmol/g or less, from the viewpoint of molding processability.
 カルボン酸量の測定方法は、国際公開第2005/054311号に記載の滴定法の溶媒をメタノールからジメチルスルホキシドに変えた酸価(DMSO酸価)を用いることにより算出できる。具体的には、式
 (カルボン酸量)=2×(酸価)-(DMSO酸価)
により算出できる。メタノールを用いた滴定では酸無水物を1分子としてカウントするのに対して、ジメチルスルホキシドを用いた滴定では酸無水物を2分子としてカウントするため、上記式が適用できる。
The method for measuring the amount of carboxylic acid can be calculated by using an acid value (DMSO acid value) in which the solvent in the titration method described in WO 2005/054311 is changed from methanol to dimethylsulfoxide. Specifically, the formula (carboxylic acid amount) = 2 × (acid value) - (DMSO acid value)
It can be calculated by In the titration using methanol, the acid anhydride is counted as 1 molecule, whereas in the titration using dimethylsulfoxide, the acid anhydride is counted as 2 molecules, so the above formula can be applied.
 本実施形態におけるイミド構造含有アクリル系樹脂に含まれるアクリル酸エステル単位は熱安定性の観点から、1重量%未満であることが好ましく、0.5重量%未満であることがさらに好ましく、0.3重量%未満であることが特に好ましい。下限は特に限定されず、少なければ少ない方が好ましく、含有されていないことがより好ましい。 From the viewpoint of thermal stability, the acrylic acid ester unit contained in the imide structure-containing acrylic resin in the present embodiment is preferably less than 1% by weight, more preferably less than 0.5% by weight, and 0.5% by weight. Less than 3% by weight is particularly preferred. The lower limit is not particularly limited, the smaller the better, and the more preferably not contained.
 また、本実施形態におけるイミド構造含有アクリル系樹脂は、配向複屈折の値が、-0.5×10-3~0.5×10-3であることが好ましく、-0.25×10-3~0.25×10-3であることがより好ましい。 Further, the imide structure-containing acrylic resin in the present embodiment preferably has an orientation birefringence value of −0.5×10 −3 to 0.5×10 −3 , and −0.25×10 −3 . 3 to 0.25×10 −3 is more preferable.
 配向複屈折が上記範囲内であれば、環境の変化に対しても、成形加工時に複屈折が生じることなく、安定した光学的特性を得ることができる。 If the orientation birefringence is within the above range, stable optical characteristics can be obtained without birefringence occurring during molding even when the environment changes.
 なお、本明細書において、特に断りのない限り、「配向複屈折」とは、熱可塑性樹脂のガラス転移温度より5℃高い温度で、100%延伸した場合に発現する複屈折が意図される。配向複屈折(△n)は、式
 △n=nx-ny=Re/d
で定義され、位相差計により測定することができる。上記式中において、nxおよびnyは、それぞれ、面内屈折率が最大となる方向をX軸、X軸に垂直な方向をY軸とし、フィルムの厚さ方向をZ軸とした場合のX軸方向およびY軸方向の屈折率を表す。また、Reは、面内位相差、dはフィルムの厚さを表す。
In this specification, unless otherwise specified, the term "orientation birefringence" means birefringence that occurs when the thermoplastic resin is stretched 100% at a temperature 5°C higher than the glass transition temperature of the thermoplastic resin. Orientation birefringence (Δn) is defined by the formula Δn = nx-ny = Re/d
and can be measured by a phase-contrast meter. In the above formula, nx and ny are the X axis when the direction in which the in-plane refractive index is maximized is the X axis, the direction perpendicular to the X axis is the Y axis, and the thickness direction of the film is the Z axis. represents the refractive index in the direction and the Y-axis direction. Re represents the in-plane retardation, and d represents the thickness of the film.
 イミド構造含有アクリル系樹脂の光弾性係数は、20×10-12/N以下であることが好ましく、10×10-12/N以下であることがより好ましく、5×10-12/N以下であることが更に好ましい。 The photoelastic coefficient of the imide structure-containing acrylic resin is preferably 20×10 −12 m 2 /N or less, more preferably 10×10 −12 m 2 /N or less, and 5×10 −12 It is more preferably m 2 /N or less.
 光弾性係数の絶対値が20×10-12/Nより大きい場合は、光漏れが起きやすくなり、特に高温高湿度環境下において、その傾向が著しくなる。 If the absolute value of the photoelastic coefficient is larger than 20×10 −12 m 2 /N, light leakage is likely to occur, and this tendency becomes significant especially in a high-temperature and high-humidity environment.
 光弾性係数とは、等方性の固体に外力を加えて応力(ΔF)を起こさせると、一時的に光学異方性を呈し、複屈折(Δn)を示すようになるが、その応力と複屈折の比を光弾性係数(c)と呼び、式
 c=Δn/ΔF
で示される。
The photoelastic coefficient means that when an isotropic solid is subjected to external force to cause stress (ΔF), it temporarily exhibits optical anisotropy and exhibits birefringence (Δn). The ratio of birefringence is called the photoelastic coefficient (c) and is given by the formula c = Δn/ΔF
is indicated by
 本実施形態において、光弾性係数はセナルモン法により、波長515nmにて、23℃、50%RHにおいて測定した値である。 In this embodiment, the photoelastic coefficient is a value measured by the Senarmont method at a wavelength of 515 nm at 23°C and 50% RH.
 (v)イミド構造含有アクリル系樹脂の製造方法
 本実施形態のイミド構造含有アクリル系樹脂の製造方法は(メタ)アクリル系重合体とイミド化剤とイミド化促進剤を含む原料組成物を加熱する工程(イミド化工程)を含む。これによりイミド構造含有アクリル系樹脂を製造できる。
(v) Method for producing an imide structure-containing acrylic resin The method for producing an imide structure-containing acrylic resin of the present embodiment heats a raw material composition containing a (meth)acrylic polymer, an imidizing agent, and an imidization accelerator. A step (imidization step) is included. Thus, an imide structure-containing acrylic resin can be produced.
 イミド化工程における処理方法は、特に限定されず、従来公知のあらゆる方法を用いることができる。例えば、押出機や、バッチ式反応槽(圧力容器)等を用い加熱溶融しながら反応させる方法により、上記(メタ)アクリル系重合体をイミド化し、イミド構造含有アクリル系樹脂とすることができる。 The treatment method in the imidization step is not particularly limited, and any conventionally known method can be used. For example, the above (meth)acrylic polymer can be imidized to obtain an imide structure-containing acrylic resin by a method of reacting while heating and melting using an extruder, a batch reaction tank (pressure vessel), or the like.
 押出機を用いて加熱溶融し、(メタ)アクリル系重合体、イミド化剤、およびイミド化促進剤を含む原料組成物を処理する場合、用いる押出機は特に限定されるものではなく、各種押出機を用いることができる。具体的には、例えば、単軸押出機、二軸押出機または多軸押出機等を用いることができる。 When heat-melting using an extruder to process a raw material composition containing a (meth)acrylic polymer, an imidizing agent, and an imidization accelerator, the extruder to be used is not particularly limited, and various types of extrusion can be used. machine can be used. Specifically, for example, a single-screw extruder, a twin-screw extruder, a multi-screw extruder, or the like can be used.
 中でも、二軸押出機を用いることが好ましい。二軸押出機によれば、(メタ)アクリル系重合体に対するイミド化剤およびイミド化促進剤の混合を促進することができる。 Among them, it is preferable to use a twin-screw extruder. A twin-screw extruder can facilitate mixing of the imidizing agent and the imidization accelerator with the (meth)acrylic polymer.
 二軸押出機としては、非噛合い型同方向回転式、噛合い型同方向回転式、非噛合い型異方向回転式、および噛合い型異方向回転式等を挙げることができる。中でも、噛合い型同方向回転式を用いることが好ましい。噛合い型同方向回転式の二軸押出機は、高速回転可能であるため、(メタ)アクリル系重合体に対するイミド化剤およびイミド化促進剤の混合を、より一層促進することができる。 Examples of the twin-screw extruder include non-intermeshing co-rotating, intermeshing co-rotating, non-intermeshing counter-rotating, intermeshing counter-rotating, and the like. Among them, it is preferable to use an intermeshing co-rotating type. Since the intermeshing co-rotating twin-screw extruder can rotate at high speed, it can further promote the mixing of the imidizing agent and the imidization accelerator with the (meth)acrylic polymer.
 (メタ)アクリル系重合体、イミド化剤、およびイミド化促進剤の混合方法は特に限定されないが、事前にイミド化剤とイミド化促進剤を混合しておき、その後、(メタ)アクリル系重合体と混合しても良いし、イミド化剤とイミド化促進剤とを別々に混合しても良い。その場合、イミド化剤から混合しても良いし、イミド化促進剤から混合しても良い。 The method of mixing the (meth)acrylic polymer, the imidization agent, and the imidization accelerator is not particularly limited. They may be combined and mixed, or the imidizing agent and the imidization accelerator may be separately mixed. In that case, the imidization agent may be mixed first, or the imidization accelerator may be mixed first.
 上記例示した押出機は単独で用いてもよいし、複数を直列につないで用いてもよい。例えば、特開2008-273140号公報に記載のタンデム型反応押出機を用いることができる。 The extruders exemplified above may be used alone, or may be used by connecting a plurality of them in series. For example, a tandem-type reaction extruder described in JP-A-2008-273140 can be used.
 押出機中でイミド化を行う場合は、例えば、原料樹脂である(メタ)アクリル系重合体を押出機の原料投入部から投入し、該樹脂を溶融させ、シリンダ内を充満させた後、添加ポンプを用いてイミド化剤およびイミド化促進剤の混合物を押出機中に注入することにより、押出機中でイミド化反応を進行させることができる。 When imidization is performed in an extruder, for example, a (meth)acrylic polymer as a raw material resin is charged from the raw material charging port of the extruder, the resin is melted, and the cylinder is filled, and then added. By injecting a mixture of the imidizing agent and the imidization accelerator into the extruder using a pump, the imidization reaction can proceed in the extruder.
 この場合、押出機中での反応ゾーンの温度(樹脂温度)を180℃~320℃としてイミド化を行うことが好ましく、さらに220~300℃としてイミド化を行うことがより好ましい。反応ゾーンの温度(樹脂温度)が180℃未満では、イミド化反応がほとんど進行せず、耐熱性が低下する傾向にある。反応ゾーン温度が320℃を超えると、樹脂の分解が著しくなることから、得られるイミド構造含有アクリル系樹脂から形成しうるフィルムの耐屈曲性が低下する傾向がある。ここで、押出機中での反応ゾーンとは、押出機のシリンダにおいて、イミド化剤の注入位置から樹脂吐出口(ダイス部)までの間の領域をいう。 In this case, imidization is preferably carried out at a reaction zone temperature (resin temperature) in the extruder of 180°C to 320°C, more preferably 220°C to 300°C. When the temperature of the reaction zone (resin temperature) is less than 180°C, the imidization reaction hardly progresses and the heat resistance tends to decrease. If the reaction zone temperature exceeds 320° C., the decomposition of the resin becomes significant, and the flex resistance of the resulting film formed from the imide structure-containing acrylic resin tends to decrease. Here, the reaction zone in the extruder refers to a region between the injection position of the imidizing agent and the resin discharge port (die portion) in the cylinder of the extruder.
 押出機の反応ゾーン内での反応時間を長くすることにより、イミド化をより進行させることができる。押出機の反応ゾーン内の反応時間は10秒より長くするのが好ましく、さらには30秒より長くするのがより好ましい。10秒以下の反応時間ではイミド化がほとんど進行しない可能性がある。 By lengthening the reaction time in the reaction zone of the extruder, imidization can be further advanced. Preferably, the reaction time in the reaction zone of the extruder is greater than 10 seconds, more preferably greater than 30 seconds. If the reaction time is 10 seconds or less, imidization may hardly progress.
 押出機での樹脂圧力は、0.1MPa~50MPaの範囲内とすることが好ましく、さらには1MPa~30MPaの範囲内が好ましい。0.1MPa未満ではイミド化剤の溶解性が低く、反応の進行が抑えられる傾向がある。また、50MPa以上では通常の押出機の機械耐圧の限界を越えてしまい、特殊な装置が必要となりコストの観点から好ましくない。 The resin pressure in the extruder is preferably within the range of 0.1 MPa to 50 MPa, more preferably within the range of 1 MPa to 30 MPa. If the pressure is less than 0.1 MPa, the imidizing agent has low solubility, and the progress of the reaction tends to be suppressed. On the other hand, if the pressure exceeds 50 MPa, the limit of mechanical pressure resistance of an ordinary extruder is exceeded, and a special device is required, which is not preferable from the viewpoint of cost.
 また、押出機を使用する場合は、未反応のイミド化剤、イミド化促進剤及び副生成物を除去するために、大気圧以下に減圧可能なベント孔を装着することが好ましい。このような構成によれば、未反応のイミド化剤およびイミド化促進剤、もしくはメタノールや3級アミン等の副生成物やモノマー類を除去することができる。 In addition, when using an extruder, it is preferable to install a vent hole capable of reducing the pressure to below atmospheric pressure in order to remove unreacted imidizing agents, imidization accelerators and by-products. According to such a configuration, unreacted imidization agents and imidization accelerators, or by-products such as methanol and tertiary amines, and monomers can be removed.
 また、上記イミド構造含有アクリル系樹脂の製造には、押出機に代えて、例えば住友重機械株式会社製のバイボラックのような横型二軸反応装置やスーパーブレンドのような竪型二軸攪拌槽などの高粘度対応の反応装置も好適に用いることができる。 In the production of the imide structure-containing acrylic resin, instead of the extruder, for example, a horizontal twin-screw reactor such as Vivolac manufactured by Sumitomo Heavy Industries, Ltd., a vertical twin-screw stirring vessel such as Superblend, etc. A reaction apparatus for high viscosity can also be suitably used.
 上記イミド構造含有アクリル系樹脂を、バッチ式反応槽(圧力容器)を用いて製造する場合、そのバッチ式反応槽(圧力容器)の構造は特に限定されるものでない。 When the imide structure-containing acrylic resin is produced using a batch-type reaction tank (pressure vessel), the structure of the batch-type reaction tank (pressure vessel) is not particularly limited.
 具体的には、(メタ)アクリル系重合体を加熱により溶融させ、攪拌することができ、イミド化剤とイミド化促進剤を添加することができる構造を有していればよいが、攪拌効率が良好な構造を有するものであることが好ましい。 Specifically, the (meth)acrylic polymer can be melted by heating and stirred, and it is sufficient if it has a structure that allows the addition of the imidizing agent and the imidization accelerator. preferably has a good structure.
 このようなバッチ式反応槽(圧力容器)によれば、反応の進行により樹脂粘度が上昇し、撹拌が不十分となることを防止することができる。このような構造を有するバッチ式反応槽(圧力容器)としては、例えば、住友重機械株式会社製の攪拌槽マックスブレンド等を挙げることができる。 According to such a batch-type reaction tank (pressure vessel), it is possible to prevent the resin viscosity from increasing due to the progress of the reaction and insufficient stirring. As a batch type reaction tank (pressure vessel) having such a structure, for example, Maxblend, a stirring tank manufactured by Sumitomo Heavy Industries, Ltd., and the like can be given.
 イミド化方法の具体例としては、例えば、特開2008-273140号公報、特開2008-274187号公報に記載の方法など公知の方法をあげることができる。 Specific examples of the imidization method include known methods such as those described in JP-A-2008-273140 and JP-A-2008-274187.
 (エステル化工程)
 本実施形態のイミド構造含有アクリル系樹脂の製造方法では、上記イミド化工程に加え、エステル化剤で処理する工程を含むことができる。このエステル化工程によって、イミド化工程で得られたイミド構造含有アクリル系樹脂の酸価を所望の範囲内に調整することができる。エステル化剤としては、例えば、ジメチルカーボネート、2,2-ジメトキシプロパン、ジメチルスルホキシド、トリエチルオルトホルメート、トリメチルオルトアセテート、トリメチルオルトホルメート、ジフェニルカーボネート、ジメチルサルフェート、メチルトルエンスルホネート、メチルトリフルオロメチルスルホネート、メチルアセテート、メタノール、エタノール、メチルイソシアネート、p-クロロフェニルイソシアネート、ジメチルカルボジイミド、ジメチル-t-ブチルシリルクロライド、イソプロペニルアセテート、ジメチルウレア、テトラメチルアンモニウムハイドロオキサイド、ジメチルジエトキシシラン、テトラ-n-ブトキシシラン、ジメチル(トリメチルシラン)フォスファイト、トリメチルフォスファイト、トリメチルフォスフェート、トリクレジルフォスフェート、ジアゾメタン、エチレンオキサイド、プロピレンオキサイド、シクロヘキセンオキサイド、2-エチルヘキシルグリシジルエーテル、フェニルグリシジルエーテル、ベンジルグリシジルエーテルなどが挙げられる。これらの中でも、コスト、反応性などの観点から、ジメチルカーボネートおよびトリメチルオルトアセテートが好ましく、コストの観点からジメチルカーボネートが好ましい。
(Esterification step)
The method for producing an imide structure-containing acrylic resin according to the present embodiment can include a step of treating with an esterifying agent in addition to the imidization step. Through this esterification step, the acid value of the imide structure-containing acrylic resin obtained in the imidization step can be adjusted within a desired range. Esterifying agents include, for example, dimethyl carbonate, 2,2-dimethoxypropane, dimethylsulfoxide, triethylorthoformate, trimethylorthoacetate, trimethylorthoformate, diphenylcarbonate, dimethylsulfate, methyltoluenesulfonate, and methyltrifluoromethylsulfonate. , methyl acetate, methanol, ethanol, methyl isocyanate, p-chlorophenyl isocyanate, dimethylcarbodiimide, dimethyl-t-butylsilyl chloride, isopropenyl acetate, dimethyl urea, tetramethylammonium hydroxide, dimethyldiethoxysilane, tetra-n-butoxy Silane, dimethyl (trimethylsilane) phosphite, trimethyl phosphite, trimethyl phosphate, tricresyl phosphate, diazomethane, ethylene oxide, propylene oxide, cyclohexene oxide, 2-ethylhexyl glycidyl ether, phenyl glycidyl ether, benzyl glycidyl ether, etc. mentioned. Among these, dimethyl carbonate and trimethyl orthoacetate are preferred from the viewpoint of cost and reactivity, and dimethyl carbonate is preferred from the viewpoint of cost.
 このエステル化工程において、エステル化剤は(メタ)アクリル系重合体100重量部に対して0~12重量部であることが好ましく、0~8重量部であることがより好ましい。 In this esterification step, the amount of the esterifying agent is preferably 0 to 12 parts by weight, more preferably 0 to 8 parts by weight, per 100 parts by weight of the (meth)acrylic polymer.
 エステル化剤が上記範囲内であれば酸価を適切な範囲に調整できる。一方上記範囲を外れると未反応のエステル化剤が樹脂中に残存する可能性があり、当該樹脂を使って成型を行った際、発泡や臭気発生の原因となることがある。 If the esterifying agent is within the above range, the acid value can be adjusted to an appropriate range. On the other hand, if the amount is out of the above range, unreacted esterifying agent may remain in the resin, which may cause foaming or odor generation when the resin is used for molding.
 上記エステル化剤に加え、触媒を併用することもできる。触媒の種類は特に限定されるものではないが、例えば、トリメチルアミン、トリエチルアミン、トリブチルアミン等の脂肪族3級アミンが挙げられる。これらの中でもコスト、反応性などの観点からトリエチルアミンが好ましい。 In addition to the above esterification agent, a catalyst can also be used in combination. Although the type of catalyst is not particularly limited, examples thereof include aliphatic tertiary amines such as trimethylamine, triethylamine and tributylamine. Among these, triethylamine is preferred from the viewpoint of cost, reactivity, and the like.
 このエステル化工程では、エステル化剤によって処理することなく、加熱処理等のみを行うこともできる。加熱処理(押出機内での溶融樹脂の混練/分散)のみを行った場合、イミド化工程にて副生した、イミド構造含有アクリル系樹脂中のカルボン酸同士の脱水反応および/またはカルボン酸とアルキルエステル基の脱アルコール反応、等によりカルボン酸の一部または全部を酸無水物基とすることができる。このとき、前述の触媒を使用することも可能である。 In this esterification step, only heat treatment or the like can be performed without treatment with an esterification agent. When only heat treatment (kneading/dispersion of molten resin in an extruder) is performed, dehydration reaction between carboxylic acids and/or carboxylic acid and alkyl A part or all of the carboxylic acid can be converted to an acid anhydride group by a dealcoholization reaction of an ester group or the like. At this time, it is also possible to use the aforementioned catalysts.
 エステル化剤によって処理する場合であっても、加熱処理による酸無水物基の生成を進行させることも可能である。 Even in the case of treatment with an esterifying agent, it is possible to promote the formation of acid anhydride groups by heat treatment.
 (脱揮工程、フィルトレーション工程)
 イミド化工程およびエステル化工程を経たイミド構造含有アクリル系樹脂中には、未反応のイミド化剤、イミド化促進剤、エステル化剤、反応により副生した揮発成分および樹脂分解物等を含んでいるため、大気圧以下に減圧可能なベント孔を装着することが可能である。
(devolatilization process, filtration process)
The imide structure-containing acrylic resin that has undergone the imidization process and the esterification process contains unreacted imidization agents, imidization accelerators, esterification agents, volatile components produced by-products of the reaction, decomposed resins, and the like. Therefore, it is possible to install a vent hole that can reduce the pressure to below the atmospheric pressure.
 また、イミド構造含有アクリル系樹脂中の異物低減を目的として、押出機の最後にフィルターを設置することも可能である。フィルターの前にはイミド構造含有アクリル系樹脂を昇圧するためにギアポンプを設置した方が好ましい。フィルターの種類としては、溶融ポリマーからの異物除去が可能なステンレス鋼製のリーフディスクフィルターを使用するのが好ましく、フィルターエレメントとしてはファイバータイプ、パウダータイプ、あるいはそれらの複合タイプを使用するのが好ましい。 In addition, it is possible to install a filter at the end of the extruder for the purpose of reducing foreign matter in the imide structure-containing acrylic resin. It is preferable to install a gear pump in front of the filter in order to pressurize the imide structure-containing acrylic resin. As for the type of filter, it is preferable to use a stainless steel leaf disk filter capable of removing foreign matter from the molten polymer, and it is preferable to use a fiber type, powder type, or a combination of these filter elements as the filter element. .
 (vi)イミド構造含有アクリル系樹脂組成物
 本実施形態におけるイミド構造含有アクリル系樹脂には、必要に応じ、一般に用いられる酸化防止剤、熱安定剤、光安定剤、紫外線吸収剤、ラジカル捕捉剤などの耐候性安定剤や、触媒、可塑剤、滑剤、帯電防止剤、着色剤、収縮防止剤、抗菌・脱臭剤等を単独または2種以上組み合わせて、本発明の目的を損なわれない範囲で添加し、イミド構造含有アクリル系樹脂組成物としてもよい。また、これらの添加剤は、イミド構造含有アクリル系樹脂を成形加工する際に添加することも可能である。
(vi) Imide Structure-Containing Acrylic Resin Composition The imide structure-containing acrylic resin in the present embodiment may optionally contain commonly used antioxidants, heat stabilizers, light stabilizers, ultraviolet absorbers, and radical scavengers. and weather stabilizers such as catalysts, plasticizers, lubricants, antistatic agents, coloring agents, anti-shrinking agents, antibacterial/deodorizing agents, etc. alone or in combination of two or more, as long as the object of the present invention is not impaired. may be added to form an imide structure-containing acrylic resin composition. These additives can also be added during molding of the imide structure-containing acrylic resin.
 本実施形態におけるイミド構造含有アクリル系樹脂組成物は、紫外線吸収剤を含むことが好ましい。本実施形態におけるイミド構造含有アクリル系樹脂組成物は紫外線吸収剤との相溶性もよく、用途幅を広げることができる。紫外線吸収剤については、例えば、トリアジン系化合物、ベンゾトリアゾール系化合物、ベンゾフェノン系化合物、シアノアクリレート系化合物、ベンゾオキサジン系化合物およびオキサジアゾール系化合物等が挙げられる。これらの中でも添加量に対する紫外線吸収性能の観点でトリアジン系化合物が好ましい。トリアジン系化合物としては、市販の任意のものが使用できる。 The imide structure-containing acrylic resin composition in this embodiment preferably contains an ultraviolet absorber. The imide structure-containing acrylic resin composition of the present embodiment has good compatibility with ultraviolet absorbers, and can be used in a wider range of applications. Examples of ultraviolet absorbers include triazine-based compounds, benzotriazole-based compounds, benzophenone-based compounds, cyanoacrylate-based compounds, benzoxazine-based compounds, and oxadiazole-based compounds. Among these, triazine-based compounds are preferred from the viewpoint of ultraviolet absorption performance relative to the amount added. Any commercially available triazine-based compound can be used.
 紫外線吸収剤は、波長300nm以上370nm以下の最大吸収波長を有する。このような紫外線吸収剤を含むイミド構造含有アクリル系樹脂組成物は、紫外線に曝された場合、紫外線A波(波長320nm以上400nm以下)の光による劣化を効率的に抑制する。そのため、紫外線吸収剤の添加量が比較的少量でよく、紫外線吸収剤の増量に起因するブリードアウトは起き難い。 The ultraviolet absorber has a maximum absorption wavelength of 300 nm or more and 370 nm or less. When the imide structure-containing acrylic resin composition containing such an ultraviolet absorber is exposed to ultraviolet rays, it efficiently suppresses deterioration caused by ultraviolet A light (wavelength of 320 nm or more and 400 nm or less). Therefore, the amount of the ultraviolet absorber to be added may be relatively small, and bleed-out due to an increase in the amount of the ultraviolet absorber is unlikely to occur.
 また、紫外線吸収剤は、窒素雰囲気下において、1%重量減少温度が350℃以上である。耐熱性が高く、モル吸光係数が大きいという観点で、トリアジン系化合物が好ましい。トリアジン系化合物が用いられると、添加量が抑えられ、加工における金型(ロール等)汚染も抑えられる。また、トリアジン系化合物を使用した紫外線吸収剤であれば、特開2014-95926号公報に記載のように、一般的な熱安定剤の添加をしなくても、熱安定性を高められる。 In addition, the ultraviolet absorber has a 1% weight loss temperature of 350°C or higher in a nitrogen atmosphere. A triazine-based compound is preferable from the viewpoint of high heat resistance and a large molar extinction coefficient. When a triazine-based compound is used, the amount to be added can be suppressed, and contamination of molds (rolls, etc.) during processing can also be suppressed. Further, if the UV absorber uses a triazine-based compound, as described in JP-A-2014-95926, the thermal stability can be enhanced without adding a general thermal stabilizer.
 そして、このようなトリアジン系化合物を使用した紫外線吸収剤の一例としては、Tinuvin1577、Tinuvin460、Tinuvin477、Tinuvin479(いずれもBASF製)およびLA-F70(ADEKA製)などが挙げられる。 Examples of UV absorbers using such triazine compounds include Tinuvin1577, Tinuvin460, Tinuvin477, Tinuvin479 (all manufactured by BASF) and LA-F70 (made by ADEKA).
 本実施形態におけるイミド構造含有アクリル系樹脂組成物が紫外線吸収剤を含有する場合の添加量は、イミド構造含有アクリル系樹脂100重量部に対して紫外線吸収剤が0.1重量部以上、5.0重量部以下であることが好ましく、0.4重量部以上、2.0重量部以下であることがさらに好ましい。 When the imide structure-containing acrylic resin composition in the present embodiment contains an ultraviolet absorber, the amount of the ultraviolet absorber to be added is 0.1 parts by weight or more with respect to 100 parts by weight of the imide structure-containing acrylic resin. It is preferably 0 parts by weight or less, more preferably 0.4 parts by weight or more and 2.0 parts by weight or less.
 紫外線吸収剤が0.1重量部未満であると、紫外線吸収性が必要な用途で十分な効果が得られない場合があり、2.0重量部よりも多いと、フィルム製膜時にブリードアウトする等が発生する場合がある。 If the UV absorber is less than 0.1 parts by weight, a sufficient effect may not be obtained in applications that require UV absorption, and if it is more than 2.0 parts by weight, bleeding out occurs during film formation. etc. may occur.
 (vii)イミド構造含有アクリル系樹脂組成物に含まれるその他の成分
 前述のイミド構造含有アクリル系樹脂組成物は、イミド構造含有アクリル系樹脂の機械的強度を向上させるために架橋弾性体を含んでもよい。架橋弾性体は、公知の懸濁重合、分散重合、乳化重合、溶液重合、塊状重合等の重合方法によって製造できる。特に以下に記載するようなコアシェル型構造を有する架橋弾性体を製造するには、懸濁重合、分散重合、乳化重合等の重合方法を用いることが好ましい。
(vii) Other components contained in the imide structure-containing acrylic resin composition The imide structure-containing acrylic resin composition described above may contain a crosslinked elastic body in order to improve the mechanical strength of the imide structure-containing acrylic resin. good. The crosslinked elastic body can be produced by known polymerization methods such as suspension polymerization, dispersion polymerization, emulsion polymerization, solution polymerization and bulk polymerization. In particular, it is preferable to use a polymerization method such as suspension polymerization, dispersion polymerization, or emulsion polymerization to produce a crosslinked elastic body having a core-shell structure as described below.
 架橋弾性体としては、ゴム状重合体からなるコア層とガラス状重合体(硬質重合体)からなるシェル層とを有するコアシェル型弾性体が好ましい。さらにゴム状重合体からなるコア層は、最内層あるいは中間層としてガラス状重合体からなる層を一層以上有していても良い。 As the crosslinked elastic body, a core-shell type elastic body having a core layer made of a rubbery polymer and a shell layer made of a glassy polymer (hard polymer) is preferable. Furthermore, the core layer made of a rubbery polymer may have one or more layers made of a glassy polymer as the innermost layer or an intermediate layer.
 コア層を構成するゴム状重合体のガラス転移温度Tgは20℃以下が好ましく、-60~20℃がより好ましく、-60~10℃がさらに好ましい。コア層を構成するゴム状重合体のTgが20℃を超えると、イミド構造含有アクリル系樹脂の機械的強度の向上が十分ではないおそれがある。シェル層を構成するガラス状重合体(硬質重合体)のTgは、50℃以上が好ましく、50~140℃がより好ましく、60~130℃がさらに好ましい。シェル層を構成するガラス状重合体のTgが50℃より低いと、イミド構造含有アクリル系樹脂の耐熱性が低下するおそれがある。 The glass transition temperature Tg of the rubber-like polymer constituting the core layer is preferably 20°C or less, more preferably -60 to 20°C, and still more preferably -60 to 10°C. If the Tg of the rubber-like polymer constituting the core layer exceeds 20° C., the mechanical strength of the imide structure-containing acrylic resin may not be sufficiently improved. The Tg of the glassy polymer (hard polymer) constituting the shell layer is preferably 50°C or higher, more preferably 50 to 140°C, even more preferably 60 to 130°C. If the Tg of the glassy polymer constituting the shell layer is lower than 50°C, the heat resistance of the imide structure-containing acrylic resin may be lowered.
 本明細書において、「ゴム状重合体」および「ガラス状重合体」の重合体のガラス転移温度は、ポリマーハンドブック[Polymer Hand Book(J.Brandrup,Interscience1989)]に記載されている値を使用してFoxの式を用いて算出した値を用いることとする(例えば、ポリメチルメタクリレートは105℃であり、ポリブチルアクリレートは-54℃である)。 As used herein, the glass transition temperatures of the "rubber-like polymer" and "glass-like polymer" are the values described in the Polymer Handbook [Polymer Hand Book (J. Brandrup, Interscience 1989)]. (For example, polymethyl methacrylate is 105° C. and polybutyl acrylate is −54° C.).
 上記コアシェル型弾性体におけるコア層の含有割合は、好ましくは30~95重量%、より好ましくは50~90重量%である。コア層におけるガラス状重合体層の割合は、コア層の総量(100重量%)に対して0~60重量%、好ましくは0~45重量%、より好ましくは10~40重量%である。上記コアシェル型弾性体中におけるシェル層の含有割合は、好ましくは5~70重量%、より好ましくは10~50重量%である。 The content of the core layer in the core-shell type elastic body is preferably 30-95% by weight, more preferably 50-90% by weight. The proportion of the glassy polymer layer in the core layer is 0-60% by weight, preferably 0-45% by weight, more preferably 10-40% by weight, relative to the total weight of the core layer (100% by weight). The content of the shell layer in the core-shell type elastic body is preferably 5 to 70% by weight, more preferably 10 to 50% by weight.
 上記コアシェル型弾性体には、本発明の効果を損なわない範囲で、任意の適切なその他の成分を含んでいても良い。 The above-mentioned core-shell type elastic body may contain any appropriate other component within a range that does not impair the effects of the present invention.
 上記コア層を構成するゴム状重合体を形成する重合性モノマーとしては、任意の適切な重合性モノマーを使用してもよい。 Any appropriate polymerizable monomer may be used as the polymerizable monomer that forms the rubber-like polymer that constitutes the core layer.
 上記ゴム状重合体を形成する重合性モノマーは、アルキル(メタ)アクリレートを含むことが好ましい。上記ゴム状重合体を形成する重合性モノマー(100重量%)中、アルキル(メタ)アクリレートは50重量%以上含まれることが好ましく、50~99.9重量%含まれることがより好ましく、60~99.9重量%含まれることがさらに好ましい。 The polymerizable monomer forming the rubber-like polymer preferably contains an alkyl (meth)acrylate. In the polymerizable monomer (100% by weight) forming the rubber-like polymer, the alkyl (meth)acrylate preferably contains 50% by weight or more, more preferably 50 to 99.9% by weight, and 60 to 99.9% by weight. More preferably, it is contained in an amount of 99.9% by weight.
 上記アルキル(メタ)アクリレートとしては、例えば、エチル(メタ)アクリレート、プロピル(メタ)アクリレート、ブチル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、イソノニル(メタ)アクリレート、ラウロイル(メタ)アクリレート、ステアリル(メタ)アクリレート等、アルキル基の炭素数が2~20のアルキル(メタ)アクリレートを挙げることができる。これらのアルキル基は、脂環式あるいは芳香族の環状置換基、分岐構造、あるいは官能基を有していても良い。これらの中でも、ブチル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、イソノニル(メタ)アクリレート、ベンジル(メタ)アクリレート、フェノキシエチル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート等が好ましく、ブチルアクリレート、2-エチルヘキシルアクリレートおよびイソノニルアクリレートがより好ましい。これらは1種のみ用いても良いし、2種以上を併用しても良い。 Examples of the alkyl (meth)acrylates include ethyl (meth)acrylate, propyl (meth)acrylate, butyl (meth)acrylate, cyclohexyl (meth)acrylate, 2-ethylhexyl (meth)acrylate, isononyl (meth)acrylate, lauroyl Alkyl (meth)acrylates having 2 to 20 carbon atoms in the alkyl group, such as (meth)acrylates and stearyl (meth)acrylates, can be mentioned. These alkyl groups may have alicyclic or aromatic cyclic substituents, branched structures, or functional groups. Among these, butyl (meth)acrylate, 2-ethylhexyl (meth)acrylate, isononyl (meth)acrylate, benzyl (meth)acrylate, phenoxyethyl (meth)acrylate, cyclohexyl (meth)acrylate and the like are preferred. - Ethylhexyl acrylate and isononyl acrylate are more preferred. These may be used alone or in combination of two or more.
 上記ゴム状重合体を形成する重合性モノマーは、分子内に2個以上の重合性官能基を有する多官能性モノマーを含むことが好ましい。上記ゴム状重合体を形成する重合性モノマー中、分子内に2個以上の重合性官能基を有する多官能性モノマーは0.01~20重量%含まれることが好ましく、0.1~20重量%含まれることがより好ましく、0.1~10重量%含まれることがさらに好ましく、0.2~5重量%含まれることが特に好ましい。 The polymerizable monomer forming the rubber-like polymer preferably contains a polyfunctional monomer having two or more polymerizable functional groups in the molecule. Among the polymerizable monomers forming the rubber-like polymer, the polyfunctional monomer having two or more polymerizable functional groups in the molecule is preferably contained in an amount of 0.01 to 20% by weight, preferably 0.1 to 20% by weight. %, more preferably 0.1 to 10% by weight, and particularly preferably 0.2 to 5% by weight.
 上記分子内に2個以上の重合性官能基を有する多官能性モノマーとしては、例えば、ジビニルベンゼン等の芳香族ジビニルモノマー、エチレングリコールジ(メタ)アクリレート、ブチレングリコールジ(メタ)アクリレート、ヘキサンジオールジ(メタ)アクリレート、オリゴエチレングリコールジ(メタ)アクリレート、トリメチロールプロパンジ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート等のアルカンポリオールポリ(メタ)アクリレート等や、ウレタンジ(メタ)アクリレート、エポキシジ(メタ)アクリレート、トリアリルイソシアヌレート等を挙げることができる。また、異なる反応性の重合性官能基を有する多官能性モノマーとして、例えば、アリル(メタ)アクリレート、ジアリルマレエート、ジアリルフマレート、ジアリルイタコネート等を挙げることができる。これらの中でも、エチレングリコールジメタクリレート、ブチレングリコールジアクリレートおよびアリルメタクリレートが好ましい。これらは1種のみ用いても良いし、2種以上を併用しても良い。 Examples of polyfunctional monomers having two or more polymerizable functional groups in the molecule include aromatic divinyl monomers such as divinylbenzene, ethylene glycol di(meth)acrylate, butylene glycol di(meth)acrylate, and hexanediol. Alkane polyol poly(meth)acrylates such as di(meth)acrylate, oligoethylene glycol di(meth)acrylate, trimethylolpropane di(meth)acrylate, trimethylolpropane tri(meth)acrylate, urethane di(meth)acrylate, Epoxy di(meth)acrylate, triallyl isocyanurate and the like can be mentioned. Examples of polyfunctional monomers having different reactive polymerizable functional groups include allyl (meth)acrylate, diallyl maleate, diallyl fumarate, and diallyl itaconate. Among these, ethylene glycol dimethacrylate, butylene glycol diacrylate and allyl methacrylate are preferred. These may be used alone or in combination of two or more.
 上記ゴム状重合体を形成する重合性モノマーには、上記アルキル(メタ)アクリレートおよび分子内に2個以上の重合性官能基を有する多官能性モノマーと共重合可能な他の重合性モノマーを含んでも良い。上記ゴム状重合体を形成する重合性モノマー中、他の重合性モノマーは0~49.9重量%含まれることが好ましく、0~39.9重量%含まれることがより好ましい。 The polymerizable monomers forming the rubber-like polymer include other polymerizable monomers copolymerizable with the above alkyl (meth)acrylates and polyfunctional monomers having two or more polymerizable functional groups in the molecule. But it's okay. Other polymerizable monomers are preferably contained in an amount of 0 to 49.9% by weight, more preferably 0 to 39.9% by weight, in the polymerizable monomers forming the rubber-like polymer.
 上記他の重合性モノマーとしては、例えば、スチレン、ビニルトルエン、α-メチルスチレン等の芳香族ビニル、芳香族ビニリデン、アクリロニトリル、メタクリロニトリル等のシアン化ビニル、シアン化ビニリデン、メチルメタクリレート、ウレタンアクリレート、ウレタンメタクリレート等を挙げることができる。また、他の重合性モノマーとしては、エポキシ基、カルボキシル基、水酸基、アミノ基等の官能基を有するモノマーでもよい。具体的には、エポキシ基を有するモノマーとして、例えば、グリシジルメタクリレート等を挙げることができ、カルボキシル基を有するモノマーとして、例えば、メタクリル酸、アクリル酸、マレイン酸、イタコン酸等を挙げることができ、水酸基を有するモノマーとして、例えば、2-ヒドロキシエチルメタクリレート、2-ヒドロキシエチルアクリレート等を挙げることができ、アミノ基を有するモノマーとして、例えば、ジエチルアミノエチルメタクリレート、ジエチルアミノエチルアクリレート等を挙げることができる。これらは1種のみ用いても良いし、2種以上を併用しても良い。 Examples of the other polymerizable monomers include styrene, vinyl toluene, aromatic vinyls such as α-methylstyrene, aromatic vinylidenes, vinyl cyanides such as acrylonitrile and methacrylonitrile, vinylidene cyanide, methyl methacrylate, and urethane acrylate. , urethane methacrylate, and the like. Other polymerizable monomers may be monomers having functional groups such as epoxy groups, carboxyl groups, hydroxyl groups, amino groups, and the like. Specifically, examples of monomers having an epoxy group include glycidyl methacrylate, and examples of monomers having a carboxyl group include methacrylic acid, acrylic acid, maleic acid, and itaconic acid. Examples of hydroxyl group-containing monomers include 2-hydroxyethyl methacrylate and 2-hydroxyethyl acrylate. Examples of amino group-containing monomers include diethylaminoethyl methacrylate and diethylaminoethyl acrylate. These may be used alone or in combination of two or more.
 また、上記ゴム状重合体を形成する重合性モノマーは、連鎖移動剤を少量併用しても良い。このような連鎖移動剤としては、広く公知のものが使用可能であるが、オクチルメルカプタン、ドデシルメルカプタン、t-ドデシルメルカプタン等のアルキルメルカプタン、チオグリコール酸誘導体などが例示できる。 In addition, a small amount of a chain transfer agent may be used in combination with the polymerizable monomer that forms the rubber-like polymer. Widely known chain transfer agents can be used, and examples include alkylmercaptans such as octylmercaptan, dodecylmercaptan and t-dodecylmercaptan, and thioglycolic acid derivatives.
 上記シェル層および、コア層中のガラス状重合体層を構成するガラス状重合体を形成する重合性モノマーとしては、任意の適切な重合性モノマーを使用してもよい。 Any appropriate polymerizable monomer may be used as the polymerizable monomer that forms the glassy polymer that constitutes the shell layer and the glassy polymer layer in the core layer.
 上記ガラス状重合体を形成する重合性モノマーとしては、アルキル(メタ)アクリレートおよび芳香族ビニルモノマーから選ばれる少なくとも1種のモノマーを含むことが好ましい。上記ガラス状重合体を形成する重合性モノマー(100重量%)中、アルキル(メタ)アクリレートおよび芳香族ビニルモノマーから選ばれる少なくとも1種が50~100重量%含まれることが好ましく、60~100重量%含まれることがより好ましい。 The polymerizable monomer forming the glassy polymer preferably contains at least one monomer selected from alkyl (meth)acrylates and aromatic vinyl monomers. In the polymerizable monomer (100% by weight) forming the glassy polymer, at least one selected from alkyl (meth)acrylates and aromatic vinyl monomers preferably contains 50 to 100% by weight, preferably 60 to 100% by weight. % is more preferable.
 上記アルキル(メタ)アクリレートとしては、アルキル基の炭素数が1~8のものが好ましい。また、これらのアルキル基は、脂環式あるいは芳香族の環状置換基、分岐構造、あるいは官能基を有していても良い。このようなアルキル(メタ)アクリレートとしては、例えば、メチル(メタ)アクリレート、エチル(メタ)アクリレート、ベンジル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、ブチル(メタ)アクリレート、2エチルヘキシル(メタ)アクリレート等が挙げられる。これらの中では特にメチルメタクリレートが好ましい。これらは1種のみ用いても良いし、2種以上を併用しても良い。 The above alkyl (meth)acrylate preferably has an alkyl group with 1 to 8 carbon atoms. Moreover, these alkyl groups may have an alicyclic or aromatic cyclic substituent, a branched structure, or a functional group. Examples of such alkyl (meth)acrylates include methyl (meth)acrylate, ethyl (meth)acrylate, benzyl (meth)acrylate, cyclohexyl (meth)acrylate, butyl (meth)acrylate, 2-ethylhexyl (meth)acrylate, and the like. are mentioned. Among these, methyl methacrylate is particularly preferred. These may be used alone or in combination of two or more.
 上記芳香族ビニルモノマーとしては、例えば、スチレン、ビニルトルエン、α-メチルスチレン等を挙げることができ、これらのなかでも、スチレンが好ましい。これらは1種のみ用いても良いし、2種以上を併用しても良い。 Examples of the aromatic vinyl monomer include styrene, vinyltoluene, α-methylstyrene, etc. Among these, styrene is preferred. These may be used alone or in combination of two or more.
 上記ガラス状重合体を形成する重合性モノマーは、分子内に2個以上の重合性官能基を有する多官能性モノマーを含んでいても良い。上記ガラス状重合体を形成する重合性モノマー(100重量%)中、分子内に2個以上の重合性官能基を有する多官能性モノマーは0~10重量%含まれることが好ましく、0~8重量%含まれることがより好ましく、0~5重量%含まれることがさらに好ましい。 The polymerizable monomer forming the glassy polymer may contain a polyfunctional monomer having two or more polymerizable functional groups in the molecule. In the polymerizable monomer (100% by weight) forming the glassy polymer, the polyfunctional monomer having two or more polymerizable functional groups in the molecule preferably contains 0 to 10% by weight, and 0 to 8% by weight. It is more preferably contained by weight %, more preferably 0 to 5% by weight.
 上記分子内に2個以上の重合性官能基を有する多官能性モノマーの具体例としては、前述したものと同様のものを挙げることができる。 Specific examples of the polyfunctional monomer having two or more polymerizable functional groups in the molecule are the same as those described above.
 上記ガラス状重合体を形成する重合性モノマーは、上記アルキル(メタ)アクリレートおよび分子内に2個以上の重合性官能基を有する多官能性モノマーと共重合可能な他の重合性モノマーを含んでいても良い。上記ガラス状重合体を形成する重合性モノマー(100重量%)中、他の重合性モノマーは0~50重量%含まれることが好ましく、0~40重量%含まれることがより好ましい。 The polymerizable monomer forming the glassy polymer contains other polymerizable monomers copolymerizable with the alkyl (meth)acrylate and the polyfunctional monomer having two or more polymerizable functional groups in the molecule. It's okay to be Other polymerizable monomers are preferably contained in an amount of 0 to 50% by weight, more preferably 0 to 40% by weight, in the polymerizable monomer (100% by weight) forming the glassy polymer.
 上記他の重合性モノマーとしては、例えば、アクリロニトリル、メタクリロニトリル等のシアン化ビニル、シアン化ビニリデン、前述したもの以外のアルキル(メタ)アクリレート、ウレタンアクリレート、ウレタンメタクリレート等を挙げることができる。また、エポキシ基、カルボキシル基、水酸基、アミノ基等の官能基を有するものでもよい。エポキシ基を有するモノマーとしては、例えば、グリシジルメタクリレート等を挙げることができ、カルボキシル基を有するモノマーとしては、例えば、メタクリル酸、アクリル酸、マレイン酸、イタコン酸等を挙げることができ、水酸基を有するモノマーとしては、例えば、2-ヒドロキシメタクリレート、2-ヒドロキシアクリレート等を挙げることができ、アミノ基を有するモノマーとしては、例えば、ジエチルアミノエチルメタクリレート、ジエチルアミノエチルアクリレート等を挙げることができる。これらは1種のみ用いても良いし、2種以上を併用しても良い。 Examples of the other polymerizable monomers include vinyl cyanides such as acrylonitrile and methacrylonitrile, vinylidene cyanide, alkyl (meth)acrylates other than those mentioned above, urethane acrylates, and urethane methacrylates. Moreover, it may have functional groups such as epoxy group, carboxyl group, hydroxyl group, amino group, and the like. Examples of monomers having an epoxy group include glycidyl methacrylate. Examples of monomers having a carboxyl group include methacrylic acid, acrylic acid, maleic acid, and itaconic acid. Examples of monomers include 2-hydroxy methacrylate and 2-hydroxy acrylate, and examples of monomers having an amino group include diethylaminoethyl methacrylate and diethylaminoethyl acrylate. These may be used alone or in combination of two or more.
 更に、上記ガラス状重合体を形成する重合性モノマーは、ゴム状重合体層に使用するものと同様の、公知の連鎖移動剤を少量併用する事も好ましい。 Furthermore, it is also preferable to use a small amount of a known chain transfer agent similar to that used for the rubber-like polymer layer in combination with the polymerizable monomer that forms the glassy polymer.
 本実施形態におけるコアシェル型弾性体の製造方法としては、コアシェル型の粒子を製造し得る任意の適切な方法を採用することができる。 Any appropriate method capable of producing core-shell type particles can be adopted as the method for producing the core-shell type elastic body in the present embodiment.
 例えば、コア層を構成するゴム状重合体を形成する重合性モノマーを懸濁または乳化重合させて、ゴム状重合体粒子を含む懸濁または乳化分散液を製造し、続いて、該懸濁液または乳化分散液にシェル層を構成するガラス状重合体を形成する重合性モノマーを加えてラジカル重合させ、ゴム状重合体粒子の表面をガラス状重合体が被覆してなる多層構造を有するコアシェル型弾性体を得る方法が挙げられる。ここで、ゴム状重合体を形成する重合性モノマー、および、ガラス状重合体を形成する重合性モノマーは、一段で重合しても良いし、組成比を変更して2段以上で重合してもよい。 For example, a polymerizable monomer forming a rubber-like polymer constituting the core layer is suspended or emulsion-polymerized to produce a suspension or emulsified dispersion containing rubber-like polymer particles, and then the suspension is prepared. Alternatively, a core-shell type having a multi-layer structure in which a polymerizable monomer that forms a glassy polymer constituting a shell layer is added to an emulsified dispersion and radically polymerized to coat the surface of the rubbery polymer particles with the glassy polymer. A method of obtaining an elastic body is mentioned. Here, the polymerizable monomer forming the rubber-like polymer and the polymerizable monomer forming the glass-like polymer may be polymerized in one step or polymerized in two or more steps by changing the composition ratio. good too.
 上記コアシェル型弾性体の好ましい構造としては、例えば、(a)軟質でゴム状のコア層および、硬質でガラス状のシェル層を有し、上記コア層が(メタ)アクリル系架橋弾性重合体層を有するもの、(b)上記ゴム状のコア層が、その内部にガラス状の層を一層以上有する多層構造を有し、更にコア層の外側にガラス状のシェル層を有するものなどが挙げられる。各層のモノマー種を適宜選択することによって、イミド構造含有アクリル系樹脂の諸物性を任意に制御することができる。 A preferable structure of the core-shell type elastic body includes, for example, (a) a soft rubbery core layer and a hard glassy shell layer, the core layer being a (meth)acrylic crosslinked elastic polymer layer. (b) the rubber-like core layer has a multi-layered structure with one or more glass-like layers inside, and further has a glass-like shell layer outside the core layer. . Various physical properties of the imide structure-containing acrylic resin can be arbitrarily controlled by appropriately selecting the monomer species for each layer.
 コアシェル型弾性体の更に好ましい構造の具体例としては、例えば、(A)上記コアシェル型弾性体のシェル層がアルキルアクリレートを3重量%以上、より好ましくは10重量%以上、更に好ましくは15重量%以上含む非架橋のメタクリル樹脂であるもの、(B)上記コアシェル型弾性体のシェル層がアルキルアクリレートの含有量の異なる2段以上の多層からなり、トータルでアルキルアクリレートを10重量%以上、より好ましくは15重量%以上含む非架橋のメタクリル樹脂であるもの、(C)上記コアシェル型弾性体のコア層が、アルキルメタクリレート、多官能性モノマー、アルキルメルカプタン、適宜その他のモノマーの混合物を重合したガラス状重合体層の存在下に、アルキルアクリレート、多官能性モノマー、アルキルメルカプタン、適宜その他のモノマーの混合物を重合したゴム状重合体層を形成した多層構造を有するもの、(D)上記コアシェル型弾性体のコア層が、有機過酸化物をレドックス型重合開始剤として使用して重合したガラス状重合体層の存在下に、過酸(過硫酸、過リン酸塩等)を熱分解型開始剤として使用して重合したゴム状重合体層を形成した多層構造を有するもの、等が例示される。このような好ましいコアシェル型弾性体の構造上の設計要素は、一つだけを有しても良いし、二つ以上の複数の設計要素を併用しても良い。このような構造を有することにより、本実施形態におけるイミド構造含有アクリル系樹脂中でコアシェル型弾性体が良好に分散しやすくなり、フィルムを形成した際に未分散や凝集による欠陥が少なく、また、強度、靭性、耐熱性、透明性、外観に優れ、さらに温度変化や応力による白化が抑制され、品質の優れたフィルムを得ることが出来る。 Specific examples of a more preferable structure of the core-shell type elastic body include, for example, (A) the shell layer of the core-shell type elastic body containing 3% by weight or more of alkyl acrylate, more preferably 10% by weight or more, and still more preferably 15% by weight; (B) The shell layer of the core-shell type elastic body consists of two or more layers with different alkyl acrylate contents, and the total amount of alkyl acrylate is 10% by weight or more, more preferably is a non-crosslinked methacrylic resin containing 15% by weight or more; (D) The core-shell type elastic body having a multi-layer structure in which a rubber-like polymer layer is formed by polymerizing a mixture of alkyl acrylate, polyfunctional monomer, alkyl mercaptan, and optionally other monomers in the presence of a polymer layer. In the presence of a glassy polymer layer in which the core layer is polymerized using an organic peroxide as a redox polymerization initiator, a peracid (persulfuric acid, superphosphate, etc.) is used as a thermal decomposition initiator. Examples include those having a multi-layered structure in which a polymerized rubber-like polymer layer is formed. Such a preferable core-shell type elastic body may have only one structural design element, or two or more design elements may be used in combination. By having such a structure, the core-shell type elastic body can be easily dispersed well in the imide structure-containing acrylic resin of the present embodiment, and when a film is formed, there are few defects due to non-dispersion or aggregation. It is excellent in strength, toughness, heat resistance, transparency, and appearance, and whitening due to temperature change and stress is suppressed, making it possible to obtain a high-quality film.
 本実施形態におけるコアシェル型弾性体を乳化重合、懸濁重合等により製造する場合には、公知の重合開始剤を用いることができる。特に好ましい重合開始剤としては、過硫酸カリウム、過硫酸アンモニウム、過硫酸アンモニウム等の過硫酸塩、過リン酸ナトリウム等の過リン酸塩、2,2-アゾビスイソブチロニトリル等の有機アゾ化合物、クメンハイドロパーオキサイド、t-ブチルハイドロパーオキサイド、1,1-ジメチル-2-ヒドロキシエチルハイドロパーオキサイド等のハイドロパーオキサイド化合物、t-ブチルイソプロピルオキシカーボネート、t-ブチルパーオキシブチレート等のパーエステル類、ベンゾイルパーオキサイド、ジブチルパーオキサイド、ラウリルパーオキサイド等の有機パーオキサイド化合物などが挙げられる。これらは熱分解型重合開始剤として使用してもよく、硫酸第一鉄などの触媒及びアスコルビン酸、ソジウムホルムアルデヒドスルホキシレート等の水溶性還元剤の存在下にレドックス型重合開始剤として使用しても良く、重合するべき単量体の組成、層構造、重合温度条件等に応じて適宜選定すれば良い。 When the core-shell type elastic body in this embodiment is produced by emulsion polymerization, suspension polymerization, or the like, a known polymerization initiator can be used. Particularly preferred polymerization initiators include potassium persulfate, ammonium persulfate, persulfates such as ammonium persulfate, superphosphates such as sodium perphosphate, organic azo compounds such as 2,2-azobisisobutyronitrile, Hydroperoxide compounds such as cumene hydroperoxide, t-butyl hydroperoxide, and 1,1-dimethyl-2-hydroxyethyl hydroperoxide; peresters such as t-butyl isopropyloxycarbonate and t-butyl peroxybutyrate; and organic peroxide compounds such as benzoyl peroxide, dibutyl peroxide and lauryl peroxide. These may be used as thermal decomposition type polymerization initiators, and are used as redox type polymerization initiators in the presence of a catalyst such as ferrous sulfate and a water-soluble reducing agent such as ascorbic acid or sodium formaldehyde sulfoxylate. It may be appropriately selected according to the composition of the monomers to be polymerized, layer structure, polymerization temperature conditions, and the like.
 本実施形態におけるコアシェル型弾性体を乳化重合により製造する場合には、公知の乳化剤を用いて通常の乳化重合により製造することができる。公知の乳化剤としては、例えばアルキルスルフォン酸ナトリウム、アルキルベンゼンスルフォン酸ナトリウム、ジオクチルスルフォコハク酸ナトリウム、ラウリル硫酸ナトリウム、脂肪酸ナトリウム、ポリオキシエチレンラウリルエーテルリン酸ナトリウムなどのリン酸エステル塩等の陰イオン性界面活性剤や、アルキルフェノール類、脂肪族アルコール類とプロピレンオキサイド、エチレンオキサイドとの反応生成物等の非イオン性界面活性剤等が示される。これらの界面活性剤は単独で用いてもよく、2種以上併用してもよい。更に要すれば、アルキルアミン塩等の陽イオン性界面活性剤を使用してもよい。このうち、得られたコアシェル型弾性体の熱安定性を向上させる観点から、特にはポリオキシエチレンラウリルエーテルリン酸ナトリウムなどのリン酸エステル塩(アルカリ金属、又はアルカリ土類金属)を用いて重合することが好ましい。乳化重合により得られるコアシェル型弾性体ラテックスは、噴霧乾燥、あるいは一般的に知られるように、ラテックスに凝固剤として電解質あるいは有機溶剤等を添加することでポリマー分を凝固し、適宜加熱・洗浄・水相の分離等の操作を実施してポリマー分の乾燥を行ない、塊状あるいは粉末状のコアシェル型弾性体が得られる。凝固剤としては、水溶性電解質や有機溶剤等、公知のものが使用できるが、得られた共重合体の成形時の熱安定性を向上させる観点や生産性の面からは、塩化マグネシウムあるいは硫酸マグネシウム等のマグネシウム塩や、酢酸カルシウムや塩化カルシウム等のカルシウム塩を用いることが好ましい。 When the core-shell type elastic body in the present embodiment is produced by emulsion polymerization, it can be produced by ordinary emulsion polymerization using a known emulsifier. Known emulsifiers include, for example, anionic sodium alkylsulfonate, sodium alkylbenzenesulfonate, sodium dioctylsulfosuccinate, sodium laurylsulfate, fatty acid sodium, and phosphate salts such as sodium polyoxyethylene lauryl ether phosphate. Examples include surfactants, nonionic surfactants such as reaction products of alkylphenols, fatty alcohols with propylene oxide and ethylene oxide. These surfactants may be used alone or in combination of two or more. In addition, if desired, cationic surfactants such as alkylamine salts may be used. Among these, from the viewpoint of improving the thermal stability of the obtained core-shell type elastic body, in particular, a phosphate ester salt (alkali metal or alkaline earth metal) such as polyoxyethylene lauryl ether sodium phosphate is used for polymerization. preferably. Core-shell type elastic latex obtained by emulsion polymerization is spray-dried, or as is generally known, the polymer portion is coagulated by adding an electrolyte or an organic solvent as a coagulant to the latex. The polymer portion is dried by performing operations such as separation of the aqueous phase, and a core-shell type elastic body in the form of lumps or powder is obtained. As the coagulant, known substances such as water-soluble electrolytes and organic solvents can be used. Magnesium salts such as magnesium, and calcium salts such as calcium acetate and calcium chloride are preferably used.
 本実施形態におけるイミド構造含有アクリル系樹脂組成物が、コアシェル型弾性体を含む場合は、イミド構造含有アクリル系樹脂(100重量部)に対してコアシェル型弾性体を1~40重量部含むことが好ましく、より好ましくは2~35重量部、さらに好ましくは3~25重量部である。コアシェル型弾性体の含有量が1重量部未満であると、イミド構造含有アクリル系樹脂の機械的強度の向上が十分ではなく、40重量部を超えると、イミド構造含有アクリル系樹脂の耐熱性が低下するおそれがある。 When the imide structure-containing acrylic resin composition in the present embodiment contains a core-shell type elastic body, the imide structure-containing acrylic resin (100 parts by weight) may contain 1 to 40 parts by weight of the core-shell type elastic body. It is preferably 2 to 35 parts by weight, and still more preferably 3 to 25 parts by weight. If the content of the core-shell type elastic material is less than 1 part by weight, the mechanical strength of the imide structure-containing acrylic resin is not sufficiently improved, and if it exceeds 40 parts by weight, the heat resistance of the imide structure-containing acrylic resin is reduced. may decrease.
 上記コアシェル型弾性体の好ましい粒子径としては、軟質のコア層の粒子径が1~500nmであることが好ましく、10~400nmであることがより好ましく、50~300nmであることがさらに好ましく、70~300nmであることが特に好ましい。上記コアシェル型弾性体のコア層の粒子径が1nm未満であると、イミド構造含有アクリル系樹脂の機械的強度の向上が十分ではなく、500nmよりも大きいと、イミド構造含有アクリル系樹脂の耐熱性や透明性が損なわれるおそれがある。 As for the preferred particle size of the core-shell type elastic material, the particle size of the soft core layer is preferably 1 to 500 nm, more preferably 10 to 400 nm, even more preferably 50 to 300 nm. ~300 nm is particularly preferred. If the particle size of the core layer of the core-shell type elastic body is less than 1 nm, the mechanical strength of the imide structure-containing acrylic resin is not sufficiently improved. and transparency may be impaired.
 コアシェル型弾性体のコア層の粒子径は、コアシェル架橋弾性体とスミペックスEXとを50:50の重量比でブレンドしたコンパウンドを成形し得られたフィルムを、透過型電子顕微鏡(日本電子製 JEM-1200EX)にて、加速電圧80kV、RuO染色超薄切片法で撮影し、得られた写真からゴム粒子画像を無作為に100個選択し、それらの粒子径の平均値を求めることができる。 The particle size of the core layer of the core-shell type elastic material was determined by examining a film obtained by molding a compound obtained by blending the core-shell crosslinked elastic material and Sumipex EX at a weight ratio of 50:50. 1200EX), an acceleration voltage of 80 kV, and a RuO 4 stained ultra-thin section method, 100 rubber particle images are randomly selected from the obtained photograph, and the average value of the particle diameters can be obtained.
 (viii)イミド構造含有アクリル系樹脂組成物を含有するフィルム
 前記したイミド構造含有アクリル系樹脂組成物は、例えば公知の成形方法でイミド構造含有アクリル系樹脂組成物を含有するフィルムとすることができる。
(viii) Film containing imide structure-containing acrylic resin composition The imide structure-containing acrylic resin composition described above can be made into a film containing the imide structure-containing acrylic resin composition by, for example, a known molding method. .
 イミド構造含有アクリル系樹脂組成物を含有するフィルムのヘイズ値が2.0%以下であることが好ましく、1.0%以下であることがさらに好ましい。透過率は85%以上であることが好ましく、90%以上がより好ましい。ヘイズ値、透過率ともに上記の範囲内にあると、使用できる用途幅が広がるために好ましい。 The haze value of the film containing the imide structure-containing acrylic resin composition is preferably 2.0% or less, more preferably 1.0% or less. The transmittance is preferably 85% or higher, more preferably 90% or higher. It is preferable that both the haze value and the transmittance are within the above ranges, because the range of applications that can be used is widened.
 光学異方性については特に制限されないが、面内方向(長さ方向、幅方向)の光学異方性だけでなく、厚み方向の光学異方性についても小さいことが好ましい場合がある。換言すれば、面内位相差および厚み方向位相差がともに小さいことが好ましい場合がある。より具体的には、波長590nmでの面内位相差が10nm以下であることが好ましく、5nm以下であることがより好ましく、1nm以下であることが特に好ましい。また、厚さ方向位相差が40nm以下であることが好ましく、15nm以下であることがより好ましく、3nm以下であることがさらに好ましい。 Although the optical anisotropy is not particularly limited, it may be preferable that not only the optical anisotropy in the in-plane direction (longitudinal direction, width direction) but also the optical anisotropy in the thickness direction is small. In other words, it may be preferable that both the in-plane retardation and the thickness direction retardation are small. More specifically, the in-plane retardation at a wavelength of 590 nm is preferably 10 nm or less, more preferably 5 nm or less, and particularly preferably 1 nm or less. Further, the thickness direction retardation is preferably 40 nm or less, more preferably 15 nm or less, and even more preferably 3 nm or less.
 なお、面内位相差(Re)および厚み方向位相差(Rth)は、それぞれ、以下の式により算出することができる。
 Re=(nx-ny)×d Rth=|(nx+ny)/2-nz|×d
上記式中において、nx、ny、およびnzは、それぞれ、面内屈折率が最大となる方向をX軸、X軸に垂直な方向をY軸、フィルムの厚さ方向をZ軸とし、それぞれの軸方向の屈折率を表す。また、dはフィルムの厚さ、||は絶対値を表す。
The in-plane retardation (Re) and the thickness direction retardation (Rth) can be calculated by the following formulas.
Re=(nx−ny)×d Rth=|(nx+ny)/2−nz|×d
In the above formula, nx, ny, and nz are respectively the direction in which the in-plane refractive index is maximized as the X axis, the direction perpendicular to the X axis as the Y axis, and the thickness direction of the film as the Z axis. represents the index of refraction in the axial direction. Also, d is the thickness of the film, and || is an absolute value.
 本実施形態におけるイミド構造含有アクリル系樹脂組成物から得られるフィルムは、異物量が少ない。異物は、50個/m以下であることが好ましく、40個/mであることがさらに好ましく、30個/m以下であることが特に好ましい。上記の異物は、得られた延伸後のフィルムから1m分を切り出し、20μm以上の異物数をマイクロスコープ観察などでカウントし、合計した異物数である。 A film obtained from the imide structure-containing acrylic resin composition of the present embodiment has a small amount of foreign matter. The number of foreign matters is preferably 50/m 2 or less, more preferably 40/m 2 or less, and particularly preferably 30/m 2 or less. The above-mentioned foreign matter is the number of foreign matter obtained by cutting out 1 m 2 minutes from the stretched film, counting the number of foreign matter of 20 μm or more by observation with a microscope or the like, and totaling the number of foreign matter.
 本実施形態におけるイミド構造含有アクリル系樹脂組成物を含有するフィルムは、電子材料の基板に使用することができる。アンテナ用基板、フレキシブルディスプレイ用基板、フォルダブルディスプレイ用基板、ローラブルディスプレイ用基板、タッチパネル用基板、透明ディスプレイ用基板、空間ディスプレイ用基板、ホログラム用基板、サイネージ用基板、ヘッドアップディスプレイ周辺部材(視点調整フィルム、画像調整フィルム、画像投影スクリーン、再帰反射フィルム、レンズシート、ダストカバー)、輝度向上フィルム、カバーガラス代替フィルム、ガラス基板代替フィルム、反射フィルム、反射防止フィルム、防眩フィルム、電子デバイス用両面・片面テープや粘着フィルムの基材、AR Glassの光導波路、調光デバイス用基板、遮光デバイス用基板、高周波回路基板フィルム、透明フレキシブルプリント基板、電池セパレーター用フィルム、スマートフォンのバックカバー、離型フィルムまたはX線検査装置のディテクター基板など種々の用途に使用することができる。 The film containing the imide structure-containing acrylic resin composition in this embodiment can be used as a substrate for electronic materials. Antenna substrates, flexible display substrates, foldable display substrates, rollable display substrates, touch panel substrates, transparent display substrates, spatial display substrates, hologram substrates, signage substrates, head-up display peripheral materials (viewpoints) adjustment film, image adjustment film, image projection screen, retroreflective film, lens sheet, dust cover), brightness enhancement film, cover glass substitute film, glass substrate substitute film, reflective film, antireflection film, antiglare film, for electronic devices Double-sided/single-sided tape and adhesive film substrates, AR Glass optical waveguides, substrates for dimming devices, substrates for light-shielding devices, high-frequency circuit substrate films, transparent flexible printed substrates, battery separator films, smartphone back covers, mold release It can be used for various applications such as film or detector substrates for X-ray inspection equipment.
 また、カメラやVTR、プロジェクター用の撮影レンズやファインダー、フィルター、プリズム、フレネルレンズなどの映像分野、CDプレイヤーやDVDプレイヤー、MDプレイヤーなどの光ディスク用ピックアップレンズなどのレンズ分野、CDプレイヤーやDVDプレイヤー、MDプレイヤーなどの光ディスク用の光記録分野、液晶用導光板、偏光子保護フィルムや位相差フィルムなどの液晶ディスプレイ用フィルム、表面保護フィルムなどの情報機器分野、光ファイバ、光スイッチ、光コネクターなどの光通信分野、自動車ヘッドライトやテールランプレンズ、インナーレンズ、計器カバー、サンルーフなどの車両分野、眼鏡やコンタクトレンズ、内視境用レンズ、滅菌処理の必要な医療用品などの医療機器分野、道路透光板、ペアガラス用レンズ、採光窓やカーポート、照明用レンズや照明カバー、建材用サイジングなどの建築・建材分野、電子レンジ調理容器(食器)等にも好適に用いることができる。 In addition, the imaging field such as cameras, VTRs, and projector shooting lenses, viewfinders, filters, prisms, and Fresnel lenses; the lens field, such as optical disc pickup lenses such as CD players, DVD players, and MD players; Optical recording field for optical discs such as MD players, LCD light guide plates, polarizer protective films, retardation films and other liquid crystal display films, information equipment fields such as surface protective films, optical fibers, optical switches, optical connectors, etc. Optical communication field, vehicle field such as automobile headlights, tail lamp lenses, inner lenses, instrument covers, sunroofs, etc., medical device field such as eyeglasses, contact lenses, internal vision lenses, medical supplies that require sterilization, road translucency It can also be suitably used in the field of construction and building materials such as plates, lenses for double glazing, lighting windows and carports, lenses for lighting and lighting covers, sizing for building materials, microwave oven cooking containers (tableware), and the like.
 本実施形態におけるフィルムは、前述したように、光学的均質性、透明性等の光学特性に優れている。そのため、これらの光学特性を利用して、光学的等方フィルム、偏光子保護フィルム、透明導電フィルム等の液晶表示装置周辺等の公知の光学的用途に特に好適に用いることができる。 As described above, the film in this embodiment is excellent in optical properties such as optical homogeneity and transparency. Therefore, by utilizing these optical properties, it can be particularly suitably used for known optical applications such as an optical isotropic film, a polarizer protective film, a transparent conductive film and the like around a liquid crystal display device.
 また、本実施形態におけるフィルムは、偏光子に貼り合わせて、偏光板として用いることができる。すなわち、本実施形態におけるフィルムは、偏光板の偏光子保護フィルムとして用いることができる。上記偏光子は、特に限定されるものではなく、従来公知の任意の偏光子を用いることができる。具体的には、例えば、延伸されたポリビニルアルコールにヨウ素を含有させて得た偏光子等を挙げることができる。 In addition, the film in this embodiment can be used as a polarizing plate by being attached to a polarizer. That is, the film in this embodiment can be used as a polarizer protective film for a polarizing plate. The polarizer is not particularly limited, and any conventionally known polarizer can be used. Specifically, for example, a polarizer obtained by adding iodine to stretched polyvinyl alcohol can be used.
 (フィルムの製造方法)
 本実施形態におけるイミド構造含有アクリル系樹脂組成物を含有するフィルムの製造方法の一例について説明するが、本実施形態におけるフィルムの製造方法はこれに限定されない。つまり、本実施形態におけるフィルムの製造方法は本実施形態におけるイミド構造含有アクリル系樹脂を成形してフィルムを製造できる方法であれば、従来公知のあらゆる方法を用いることができる。
(Film manufacturing method)
An example of a method for producing a film containing the imide structure-containing acrylic resin composition in this embodiment will be described, but the method for producing a film in this embodiment is not limited to this. That is, any conventionally known method can be used as the method for producing the film in the present embodiment as long as it is a method capable of producing a film by molding the imide structure-containing acrylic resin in the present embodiment.
 具体的には、例えば、射出成形、溶融押出成形、インフレーション成形、ブロー成形、圧縮成形、等を挙げることが出来る。また、本実施形態におけるイミド構造含有アクリル系樹脂を溶解可能な溶剤に溶解させた後、成形させる溶液流延法やスピンコート法によって、本実施形態におけるフィルムを製造することが出来る。中でも溶剤を使用しない溶融押出法を用いることが好ましい。溶融押出法によれば、製造コストや溶剤による地球環境や作業環境への負荷を低減することができる。 Specific examples include injection molding, melt extrusion molding, inflation molding, blow molding, compression molding, and the like. Further, the film of the present embodiment can be produced by a solution casting method or a spin coating method in which the imide structure-containing acrylic resin of the present embodiment is dissolved in a soluble solvent and then molded. Among them, it is preferable to use a melt extrusion method that does not use a solvent. According to the melt extrusion method, it is possible to reduce the production cost and the load on the global environment and working environment due to the solvent.
 以下、本実施形態におけるフィルムの製造方法の一例として、本実施形態におけるイミド構造含有アクリル系樹脂を溶融押出法により成形してフィルムを製造する方法について詳細に説明する。なお、以下の説明では、溶融押出法で得られたフィルムを、溶液流延法等の他の方法で得られたフィルムと区別して、「溶融押出フィルム」と称する。 As an example of the method for producing a film according to the present embodiment, a method for producing a film by molding the imide structure-containing acrylic resin according to the present embodiment by a melt extrusion method will be described in detail below. In the following description, a film obtained by melt extrusion is referred to as a "melt extruded film" to distinguish it from films obtained by other methods such as solution casting.
 本実施形態におけるイミド構造含有アクリル系樹脂を溶融押出法によりフィルムに成形する場合、まず、本実施形態におけるイミド構造含有アクリル系樹脂を、押出機に供給し、該イミド構造含有アクリル系樹脂を加熱溶融させる。 When the imide structure-containing acrylic resin in the present embodiment is formed into a film by melt extrusion, first, the imide structure-containing acrylic resin in the present embodiment is supplied to an extruder, and the imide structure-containing acrylic resin is heated. Let it melt.
 イミド構造含有アクリル系樹脂は、押出機に供給する前に、予備乾燥することが好ましい。このような予備乾燥を行うことにより、押出機から押し出される樹脂の発泡を防ぐことができる。予備乾燥の方法は特に限定されるものではないが、例えば、原料(すなわち、本実施形態におけるイミド構造含有アクリル系樹脂をペレット等の形態にして、熱風乾燥機や真空乾燥機等を用いて行うことができる。 The imide structure-containing acrylic resin is preferably pre-dried before being supplied to the extruder. By performing such preliminary drying, foaming of the resin extruded from the extruder can be prevented. Although the method of pre-drying is not particularly limited, for example, the raw material (that is, the imide structure-containing acrylic resin in the present embodiment is made into pellets or the like, and is dried using a hot air dryer, a vacuum dryer, or the like. be able to.
 次に、押出機内で加熱溶融されたイミド構造含有アクリル系樹脂を、ギアポンプやフィルターを通して、Tダイに供給する。このとき、ギアポンプを用いれば、樹脂の押出量の均一性を向上させ、フィルム長手方向の厚みムラを低減させることができる。一方、フィルターを用いれば、イミド構造含有アクリル系樹脂中の異物を除去し、欠陥の無い外観に優れたフィルムを得ることができる。 Next, the imide structure-containing acrylic resin heated and melted in the extruder is fed to the T-die through a gear pump or filter. At this time, if a gear pump is used, it is possible to improve the uniformity of the extrusion amount of the resin and reduce the thickness unevenness in the longitudinal direction of the film. On the other hand, if a filter is used, foreign substances in the imide structure-containing acrylic resin can be removed, and a film having an excellent appearance without defects can be obtained.
 次に、Tダイに供給されたイミド構造含有アクリル系樹脂を、シート状の溶融樹脂として、Tダイから押し出す。そして、該シート状の溶融樹脂を2つの冷却ロールで挟み込んで冷却し、フィルムを製膜する。上記シート状の溶融樹脂を挟み込む2つの冷却ロールの内、一方は、表面が平滑な剛体性の金属ロールであり、もう一方は、表面が平滑な弾性変形可能な金属製弾性外筒を備えたフレキシブルロールであることが好ましい。 Next, the imide structure-containing acrylic resin supplied to the T-die is extruded from the T-die as a sheet of molten resin. Then, the sheet-like molten resin is sandwiched between two cooling rolls and cooled to form a film. Of the two cooling rolls sandwiching the sheet-shaped molten resin, one is a rigid metal roll with a smooth surface, and the other is equipped with an elastically deformable metal outer cylinder with a smooth surface. Flexible rolls are preferred.
 このような剛体性の金属ロールと金属製弾性外筒を備えたフレキシブルロールとで、上記シート状の溶融樹脂を挟み込んで冷却して製膜することにより、表面の微小な凹凸やダイライン等が矯正されて、表面が平滑で厚みムラが5μm以下であるフィルムを得ることができる。 By sandwiching and cooling the sheet-like molten resin between these rigid metal rolls and flexible rolls equipped with metal elastic outer cylinders, minute irregularities and die lines on the surface are corrected. Thus, a film having a smooth surface and thickness unevenness of 5 μm or less can be obtained.
 なお、本明細書において、「冷却ロール」とは、「タッチロール」および「冷却ロール」を包含する意味で用いられる。 In this specification, the term "cooling roll" is used in the sense of including "touch roll" and "cooling roll".
 上記剛体性の金属ロールとフレキシブルロールとを用いる場合であっても、何れの冷却ロールも表面が金属であるため、製膜するフィルムが薄いと、冷却ロールの面同士が接触して、冷却ロールの外面に傷が付いたり、冷却ロールそのものが破損したりすることがある。 Even when the rigid metal roll and the flexible roll are used, the surfaces of both cooling rolls are metal. The outer surface of the cooling roll may be scratched or the cooling roll itself may be damaged.
 そのため、上説したような2つの冷却ロールでシート状の溶融樹脂を挟み込んで製膜する場合、まず、該2つの冷却ロールで、シート状の溶融樹脂を挟み込んで冷却し、比較的厚みの厚い原反フィルムを一旦取得する。その後、該原反フィルムを、一軸延伸または二軸延伸して所定の厚みのフィルムを製造することが好ましい。 Therefore, when forming a film by sandwiching a sheet-shaped molten resin between two cooling rolls as described above, first, the sheet-shaped molten resin is sandwiched between the two cooling rolls and cooled to obtain a relatively thick film. Obtain the raw film once. After that, the original film is preferably uniaxially stretched or biaxially stretched to produce a film having a predetermined thickness.
 より具体的に説明すると、厚み40μmのフィルムを製造する場合、また、上記2つの冷却ロールで、シート状の溶融樹脂を挟み込んで冷却し、一旦、厚み150μmの原反フィルムを取得する。その後、該原反フィルムを縦横二軸延伸により延伸させ、厚み40μmのフィルムを製造すればよい。 More specifically, when manufacturing a film with a thickness of 40 μm, the sheet-like molten resin is sandwiched between the two cooling rolls and cooled to temporarily obtain a raw film with a thickness of 150 μm. Thereafter, the raw film is stretched by vertical and horizontal biaxial stretching to produce a film having a thickness of 40 μm.
 このように、本実施形態におけるフィルムが延伸フィルムである場合、本実施形態におけるイミド構造含有アクリル系樹脂を一旦、未延伸状態の原反フィルムに成形し、その後、一軸延伸または二軸延伸を行うことにより、延伸フィルムを製造することができる。 Thus, when the film in the present embodiment is a stretched film, the imide structure-containing acrylic resin in the present embodiment is once formed into an unstretched raw film, and then uniaxially stretched or biaxially stretched. Thereby, a stretched film can be produced.
 本実施形態における光学フィルムの長手方向(MD方向)および幅方向(TD方向)両方の耐屈曲性を向上させるためには、二軸延伸を行うことが好ましい。 In order to improve the flexibility in both the longitudinal direction (MD direction) and the width direction (TD direction) of the optical film in this embodiment, it is preferable to perform biaxial stretching.
 本明細書では、説明の便宜上、本実施形態におけるイミド構造含有アクリル系樹脂をフィルム状に成形した後、延伸を施す前のフィルム、すなわち未延伸状態のフィルムを「原反フィルム」と称する。 In the present specification, for convenience of explanation, the film before being stretched after the imide structure-containing acrylic resin in this embodiment is formed into a film is referred to as the "original film".
 原反フィルムを延伸する場合、原反フィルムを成形後、直ちに、該原反フィルムの延伸を連続的に行ってもよいし、原反フィルムを成形後、一旦、保管または移動させて、該原反フィルムの延伸を行ってもよい。 When stretching the raw film, the raw film may be stretched continuously immediately after the raw film is formed, or after the raw film is formed, it is temporarily stored or moved and the raw film is stretched. Stretching of the anti-film may be carried out.
 なお、原反フィルムに成形後、直ちに該原反フィルムを延伸する場合、フィルムの製造工程において、原反フィルムの状態が非常に短時間(場合によっては、瞬間)の場合、延伸されるのに充分な程度のフィルム状を維持していればく、完全なフィルムの状態である必要はない。また、上記原反フィルムは、完成品であるフィルムとしての性能を有していなくてもよい。 In addition, when stretching the raw film immediately after forming it into a raw film, in the film manufacturing process, if the state of the raw film is very short (in some cases, momentary), it will be stretched. It does not need to be in a perfect film state as long as it maintains a sufficient degree of film shape. Moreover, the raw film does not have to have performance as a finished film.
 (フィルムの延伸方法)
 原反フィルムを延伸する方法は、特に限定されるものではなく、従来公知の任意の延伸方法を用いればよい。具体的には、例えば、テンターを用いた横延伸、ロールを用いた縦延伸、及びこれらを逐次組み合わせた逐次二軸延伸等を用いることができる。
(Film stretching method)
The method for stretching the original film is not particularly limited, and any conventionally known stretching method may be used. Specifically, for example, lateral stretching using a tenter, longitudinal stretching using rolls, and sequential biaxial stretching in which these are sequentially combined can be used.
 また、縦と横とを同時に延伸する同時二軸延伸方法を用いたり、ロール縦延伸を行った後、テンターによる横延伸を行う方法を用いたりすることもできる。原反フィルムを延伸するとき、原反フィルムを一旦、延伸温度より0.5℃~5℃、好ましくは1℃~3℃高い温度まで予熱した後、延伸温度まで冷却して延伸することが好ましい。 It is also possible to use a simultaneous biaxial stretching method in which the film is stretched longitudinally and transversely at the same time, or a method in which roll longitudinal stretching is followed by lateral stretching using a tenter. When stretching the raw film, it is preferable to once preheat the raw film to a temperature higher than the stretching temperature by 0.5° C. to 5° C., preferably 1° C. to 3° C., and then cool to the stretching temperature and stretch. .
 上記範囲内で予熱することにより、原反フィルムの幅方向の厚みを精度よく保つことができ、また、延伸フィルムの厚み精度が低下したり、厚みムラが生じたりすることがない。また、原反フィルムがロールに貼り付いたり、自重で弛んだりすることがない。 By preheating within the above range, the thickness of the original film in the width direction can be maintained with high accuracy, and the thickness accuracy of the stretched film will not be lowered or unevenness in thickness will not occur. Also, the original film does not stick to the roll or loosen due to its own weight.
 一方、原反フィルムの予熱温度が高すぎると、原反フィルムがロールに貼り付いたり、自重で弛んだりするといった弊害が発生する傾向にある。また、原反フィルムの予熱温度と延伸温度との差が小さいと、延伸前の原反フィルムの厚み精度を維持しにくくなったり、厚みムラが大きくなったり、厚み精度が低下したりする傾向がある。 On the other hand, if the preheating temperature of the raw film is too high, there is a tendency for the raw film to stick to the roll or loosen under its own weight. In addition, if the difference between the preheating temperature and the stretching temperature of the raw film is small, it tends to be difficult to maintain the thickness accuracy of the raw film before stretching, the thickness unevenness increases, and the thickness accuracy decreases. be.
 なお、本実施形態におけるイミド構造含有アクリル系樹脂は、原反フィルムに成形後、延伸する際、ネッキング現象を利用して、厚み精度を改善することが困難である。したがって、本実施形態では、上記予熱温度の管理を行うことは、得られるフィルムの厚み精度を維持したり、改善したりするためには重要となる。 It should be noted that, with the imide structure-containing acrylic resin in the present embodiment, it is difficult to improve the thickness accuracy by utilizing the necking phenomenon when stretching the original film after molding. Therefore, in this embodiment, managing the preheating temperature is important for maintaining or improving the thickness accuracy of the obtained film.
 原反フィルムを延伸するときの延伸温度は、特に限定されるものではなく、製造する延伸フィルムに要求される機械的強度、表面性、および厚み精度等に応じて、変更すればよい。一般的には、DSC法によって求めた原反フィルム(イミド構造含有アクリル系樹脂組成物)のガラス転移温度をTgとした時に、(Tg-30℃)~(Tg+30℃)の温度範囲とすることが好ましく、(Tg-20℃)~(Tg+30℃)の温度範囲とすることがより好ましく、(Tg)~(Tg+30℃)の温度範囲とすることがさらに好ましく、(Tg+10℃)~(Tg+30℃)の温度範囲とすることがさらに好ましい。すなわち光学フィルムの二軸延伸の延伸温度は、イミド構造含有アクリル系樹脂組成物のガラス転移温度をTgとしたとき、Tg-30℃以上Tg+30℃以下の温度範囲であることが好ましい。 The stretching temperature when stretching the raw film is not particularly limited, and may be changed according to the mechanical strength, surface properties, thickness accuracy, etc. required for the stretched film to be produced. Generally, when the glass transition temperature of the raw film (imide structure-containing acrylic resin composition) obtained by the DSC method is Tg, the temperature range is from (Tg-30 ° C.) to (Tg + 30 ° C.). Is preferably (Tg-20 ° C.) ~ (Tg + 30 ° C.) temperature range is more preferable, (Tg) ~ (Tg + 30 ° C.) temperature range is more preferable, (Tg + 10 ° C.) ~ (Tg + 30 ° C.) ) is more preferable. That is, the stretching temperature for biaxial stretching of the optical film is preferably in the temperature range of Tg−30° C. or more and Tg+30° C. or less, where Tg is the glass transition temperature of the imide structure-containing acrylic resin composition.
 延伸温度が上記温度範囲内であれば、得られる延伸フィルムの厚みムラを低減し、さらに、伸び率、引裂伝播強度、およびMIT耐屈曲性の力学的性質を良好なものとすることができる。また、フィルムがロールに粘着するといったトラブルの発生を防止することができる。 If the stretching temperature is within the above temperature range, the thickness unevenness of the resulting stretched film can be reduced, and the mechanical properties of elongation, tear propagation strength, and MIT flex resistance can be improved. In addition, it is possible to prevent the occurrence of troubles such as the film sticking to the roll.
 一方、延伸温度が上記温度範囲よりも高くなると、得られる延伸フィルムの厚みムラが大きくなったり、伸び率、引裂伝播強度、および耐揉疲労等の力学的性質が十分に改善できなかったりする傾向がある。さらに、フィルムがロールに粘着するといったトラブルが発生しやすくなる傾向がある。 On the other hand, when the stretching temperature is higher than the above temperature range, the thickness unevenness of the resulting stretched film tends to increase, or mechanical properties such as elongation, tear propagation strength, and resistance to rubbing fatigue cannot be sufficiently improved. There is Furthermore, there is a tendency for troubles such as the film sticking to the roll to easily occur.
 また、延伸温度が上記温度範囲よりも低くなると、得られる延伸フィルムの内部ヘイズが大きくなったり、極端な場合には、フィルムが裂けたり、割れたりするといった工程上の問題が発生したりする傾向がある。 In addition, when the stretching temperature is lower than the above temperature range, the internal haze of the resulting stretched film tends to increase, and in extreme cases, process problems such as tearing and cracking of the film tend to occur. There is
 上記原反フィルムを延伸する場合、その延伸倍率もまた、特に限定されるものではなく、製造する延伸フィルムの機械的強度、表面性、および厚み精度等に応じて、決定すればよい。延伸温度にも依存するが、延伸倍率は、一般的には、1.1倍~3倍の範囲で選択することが好ましく、1.3倍~2.5倍の範囲で選択することがより好ましく、1.5倍~2.3倍の範囲で選択することがさらに好ましい。 When stretching the original film, the stretching ratio is not particularly limited, either, and may be determined according to the mechanical strength, surface properties, thickness accuracy, etc. of the stretched film to be produced. Although it depends on the stretching temperature, the stretching ratio is generally preferably selected in the range of 1.1 times to 3 times, more preferably in the range of 1.3 times to 2.5 times. More preferably, it is selected in the range of 1.5 times to 2.3 times.
 延伸倍率が上記範囲内であれば、フィルムの伸び率、引裂伝播強度、および耐揉疲労等の力学的性質を大幅に改善することができる。それゆえ、厚みムラが5μm以下であり、さらに、内部ヘイズが1.0%以下である延伸フィルムを製造することができる。 If the draw ratio is within the above range, mechanical properties such as film elongation, tear propagation strength, and resistance to rubbing fatigue can be greatly improved. Therefore, it is possible to produce a stretched film having a thickness unevenness of 5 μm or less and an internal haze of 1.0% or less.
 本実施形態におけるイミド構造含有アクリル系樹脂が架橋弾性体を含む場合には、フィルムの機械的強度に優れることから、未延伸フィルム、1軸延伸フィルム、2軸延伸フィルムのいずれでも好適に使用できる。 When the imide structure-containing acrylic resin in the present embodiment contains a crosslinked elastic body, the mechanical strength of the film is excellent, so any of an unstretched film, a uniaxially stretched film, and a biaxially stretched film can be suitably used. .
 (ix)イミド構造含有アクリル系樹脂組成物を含有するアンテナ用基板
 本実施形態におけるイミド構造含有アクリル系樹脂組成物を含有するアンテナ用基板は、前記のイミド構造含有アクリル系樹脂組成物をフィルム成形したものを用いることができる。
(ix) Antenna substrate containing imide structure-containing acrylic resin composition The antenna substrate containing the imide structure-containing acrylic resin composition in the present embodiment is formed by film-forming the imide structure-containing acrylic resin composition. can be used.
 誘電特性、耐熱性、耐候性、及び透明性に優れているため、本実施形態におけるアンテナ用基板は、車両の窓ガラス、建築物の窓ガラス、産業機械の表示部、住宅内の電子機器及び表示装置のディスプレイ等に使用することができる。 Since it has excellent dielectric properties, heat resistance, weather resistance, and transparency, the antenna substrate in this embodiment can be used for vehicle window glass, building window glass, display parts of industrial machinery, electronic devices in houses, and so on. It can be used for displays of display devices and the like.
 誘電特性としては、例えば3GHzの周波数で測定した場合、誘電正接Df値は、0.010以下であることが好ましく、0.007以下であることがさらに好ましい。Df値がこの範囲にあると、損失が低くなる。比誘電率Dk値は3.2以下であることが好ましく、3.0以下であることがさらに好ましい。 As for dielectric properties, for example, when measured at a frequency of 3 GHz, the dielectric loss tangent Df value is preferably 0.010 or less, more preferably 0.007 or less. Df values in this range result in low losses. The dielectric constant Dk value is preferably 3.2 or less, more preferably 3.0 or less.
 温度上昇により基材が膨張収縮すると、導体で形成されたアンテナ部分も基材の収縮膨張に引張られアンテナ寸法が変化する。アンテナ寸法は共振する周波数の波長の長さで一義的に決まるため、アンテナ寸法が温度の上昇等で変化することは好ましくない為、線膨張係数は100ppm以下であることが好ましく、80ppm以下であることが特に好ましい。 When the base material expands and contracts due to a rise in temperature, the antenna part formed of a conductor is also pulled by the expansion and contraction of the base material, and the dimensions of the antenna change. Since the dimensions of the antenna are uniquely determined by the length of the wavelength of the resonant frequency, it is not preferable for the dimensions of the antenna to change due to temperature rise, etc. Therefore, the coefficient of linear expansion is preferably 100 ppm or less, and 80 ppm or less. is particularly preferred.
 以下、実施例によって本発明を具体的に説明するが、本発明はこれら実施例によって限定されるものではない。なお、イミド構造アクリル系樹脂の評価方法は以下の通りである。以下で「部」および「%」は、特記ない限り、「重量部」および「重量%」を意味する。 The present invention will be specifically described below with reference to examples, but the present invention is not limited to these examples. In addition, the evaluation method of the imide structure acrylic resin is as follows. Hereinafter, "parts" and "%" mean "parts by weight" and "% by weight" unless otherwise specified.
 (ガラス転移温度)
 イミド構造含有アクリル系樹脂10mgを用いて、示差走査熱量計(DSC、株式会社SII製、DSC7020)を用いて、窒素雰囲気下、昇温速度20℃/minで測定し、中点法により決定した。
(Glass-transition temperature)
Using 10 mg of an imide structure-containing acrylic resin, measurement was performed using a differential scanning calorimeter (DSC, manufactured by SII Co., Ltd., DSC7020) in a nitrogen atmosphere at a heating rate of 20° C./min, and determined by the midpoint method. .
 (平均屈折率)
 株式会社アタゴ製アッベ屈折計3Tを用いて測定した。
(average refractive index)
It was measured using an Abbe refractometer 3T manufactured by Atago Co., Ltd.
 (環構造の含有量の算出)
 得られたイミド構造含有アクリル系樹脂をH-NMR BRUKER AvanceIII(400MHz)を用いて測定を行った。対象となる環構造部分とそれ以外の部分のモル比から重量換算を行い算出した。具体的には、上記一般式(1)のRがフェニルであるN-フェニルグルタルイミドのケースでは、主鎖のメチレン基CHとメチル基CH由来の0.5~2.5ppm付近のピーク面積A、N-フェニルグルタルイミドの芳香環のプロトン由来の6.8~7.2ppm付近のピーク面積Bと、7.3ppm~7.6ppm付近のピークの面積Cより、環構造の含有量(モル)を次式で求めた。求められたモル比を用いて重量換算を行い算出できる。
 環構造の含有量(モル)=(B+C)/A
(Calculation of content of ring structure)
The obtained imide structure-containing acrylic resin was measured using 1 H-NMR BRUKER Avance III (400 MHz). It was calculated by weight conversion from the molar ratio of the target ring structure portion and other portions. Specifically, in the case of N-phenylglutarimide in which R 3 in the above general formula (1) is phenyl, the methylene group CH 2 and the methyl group CH 3 of the main chain lead to a concentration of around 0.5 to 2.5 ppm. From the peak area A, the peak area B near 6.8 to 7.2 ppm derived from the protons of the aromatic ring of N-phenylglutarimide, and the peak area C near 7.3 ppm to 7.6 ppm, the content of the ring structure (mole) was obtained by the following formula. It can be calculated by performing weight conversion using the obtained molar ratio.
Content of ring structure (mol) = (B + C) / A
 (収率)
 収率は、投入したイミド化剤と式(1)で表される構造を有するイミド構造含有アクリル系樹脂のイミド環構造の含有量のモル比から次式により算出した。
 収率(モル%)=環構造の含有量(モル)/投入したイミド化剤(モル)×100
(yield)
The yield was calculated by the following formula from the molar ratio of the charged imidizing agent and the content of the imide ring structure in the imide structure-containing acrylic resin having the structure represented by formula (1).
Yield (mol%) = content of ring structure (mol) / imidizing agent introduced (mol) x 100
 (イミド化率)
 イミド構造含有アクリル系樹脂のイミド化率はフーリエ変換赤外分光光度計(JASCO社製FI/IR-4100)を用いてIRスペクトルを測定することによって求めた。1720cm-1付近のエステルカルボニル基に由来する吸収と、1680cm-1に付近のイミドカルボニル基に由来する吸収との強度比から次式によりイミド化率を決定した。ここで、イミド化率は、エステルカルボニル基とイミドカルボニル基の合計においてイミドカルボニル基が占める割合である。
 イミド化率(%)=イミドカルボニル基の吸収強度/(エステルカルボニル基の吸収強度+イミドカルボニル基の吸収強度)
(Imidation rate)
The imidization rate of the imide structure-containing acrylic resin was determined by measuring the IR spectrum using a Fourier transform infrared spectrophotometer (FI/IR-4100 manufactured by JASCO). The imidization rate was determined by the following equation from the intensity ratio between the absorption derived from the ester carbonyl group near 1720 cm -1 and the absorption derived from the imide carbonyl group near 1680 cm -1 . Here, the imidization rate is the proportion of the imidecarbonyl groups in the total of the estercarbonyl groups and the imidecarbonyl groups.
Imidation rate (%) = absorption intensity of imide carbonyl group / (absorption intensity of ester carbonyl group + absorption intensity of imide carbonyl group)
 (厚み測定)
 デジマティックインジケーター(株式会社ミツトヨ製)を用いて、光学フィルムの厚みを測定した。
(thickness measurement)
The thickness of the optical film was measured using a Digimatic indicator (manufactured by Mitutoyo Corporation).
 (光学特性)
 面内位相差Δndおよび厚み方向位相差Rthは、王子計測機器(株)製、位相差測定装置KOBRA-WRを用いて測定を行った。測定波長590nmで行った。
(optical properties)
The in-plane retardation Δnd and the thickness direction retardation Rth were measured using a phase difference measuring device KOBRA-WR manufactured by Oji Scientific Instruments Co., Ltd. The measurement wavelength was 590 nm.
 (全光線透過率、及びヘイズ値)
 樹脂組成物(成形体)又はフィルムの全光線透過率、及びヘイズ値(Haze)は、日本電色工業株式会社製 NDH-300Aを用い、JIS K7105の記載の方法にて測定した。
(Total light transmittance and haze value)
The total light transmittance and haze value (Haze) of the resin composition (molded article) or film were measured by the method described in JIS K7105 using NDH-300A manufactured by Nippon Denshoku Industries Co., Ltd.
 (380nmにおける光透過率)
 紫外可視分光光度計(日本分光:V-560)を用いて、光学フィルムの波長380nmにおける光透過率を測定した。
(Light transmittance at 380 nm)
The light transmittance of the optical film at a wavelength of 380 nm was measured using an ultraviolet-visible spectrophotometer (Jasco: V-560).
 (比誘電率Dk、誘電正接Df)
 比誘電率Dkと誘電正接Dfは、ネットワークアナライザN5224B(キーサイトテクノロジー社製)と空洞共振器、空洞共振器摂動法解析ソフトCP-MA(株式会社関東電子応用開発製)を用いて測定した。測定するフィルムを2mm×100mmに切り出し、23℃/50%RH環境下で24時間調湿後に測定を行った。測定は3GHzで行った。
(Relative permittivity Dk, dielectric loss tangent Df)
The dielectric constant Dk and dielectric loss tangent Df were measured using a network analyzer N5224B (manufactured by Keysight Technologies), cavity resonator, and cavity resonator perturbation method analysis software CP-MA (manufactured by Kanto Denshi Applied Development Co., Ltd.). A film to be measured was cut into a size of 2 mm×100 mm, and the measurement was performed after conditioning the humidity for 24 hours under the environment of 23° C./50% RH. Measurements were made at 3 GHz.
 (線膨張係数(CTE))
 線膨張係数は、SIIナノテクノ口ジ一社製熱機械的分析装置、商品名:TMA/SS6100により、10℃~100℃まで10℃/minで昇温させた後、10℃まで40℃/minで冷却し、さらに10℃/minで昇温させて、2回目の昇温時の、50~100℃の値を見積もった。測定条件を以下に示す。
 サンプル形状:幅3mm、長さ10mm
 荷重:1g
 雰囲気:空気雰囲気下
(Coefficient of linear expansion (CTE))
The linear expansion coefficient was measured by a thermomechanical analyzer manufactured by SII Nano Technoguchi Co., Ltd., trade name: TMA/SS6100, after raising the temperature from 10°C to 100°C at a rate of 10°C/min, and then increasing the temperature to 10°C at a rate of 40°C/min. and then heated at a rate of 10°C/min to estimate the value of 50 to 100°C at the second heating. Measurement conditions are shown below.
Sample shape: width 3 mm, length 10 mm
Load: 1g
Atmosphere: Under air atmosphere
 (耐候性)
 耐候性は、キセノンウエザオメーターを使用し、照射エネルギー63W/m、温度40℃(ブラックパネル温度:63℃)、降雨ありの条件で300時間後のYIおよび全光線透過率の変化量を測定した。YIの変化量が1以上もしくは全光線透過率の変化量が1%以上を×とした。
(Weatherability)
Weather resistance was measured using a xenon weather-o-meter under the conditions of irradiation energy of 63 W/m 2 , temperature of 40°C (black panel temperature: 63°C), and rain for 300 hours. It was measured. A change in YI of 1 or more or a change in total light transmittance of 1% or more was evaluated as x.
 (黄色度YIの測定)
 日本電色工業製ハンディ色差計NR-11Bを用いて、三刺激値X,Y,Zを測定し、この三刺激値からJIS-K7103に基づいて、黄色度YIを算出した。
(Measurement of yellowness YI)
The tristimulus values X, Y, and Z were measured using a handy color difference meter NR-11B manufactured by Nippon Denshoku Industries, and the yellowness YI was calculated from these tristimulus values based on JIS-K7103.
 (耐屈曲性(MIT耐屈曲試験))
 フィルムを幅15mmの短冊状にカットしこれを試験片とした。この試験片を、東洋精機(株)製のMIT耐柔疲労試験機型式Dを用いて、試験荷重1.96N、速度175回/分、折り曲げクランプの曲率半径Rは0.38mm、折り曲げ角度は左右へ135°で測定した。MD方向、TD方向についてそれぞれ行い、算術平均値をMIT往復折り曲げ回数とした。
(Bending resistance (MIT bending resistance test))
A strip having a width of 15 mm was cut from the film and used as a test piece. Using this test piece, MIT soft fatigue tester model D manufactured by Toyo Seiki Co., Ltd., the test load is 1.96 N, the speed is 175 times / minute, the curvature radius R of the bending clamp is 0.38 mm, and the bending angle is Measured at 135° left and right. This was done in the MD direction and the TD direction, respectively, and the arithmetic mean value was taken as the number of MIT reciprocating bendings.
 (実施例1)
 40mmΦ完全噛合型同方向回転二軸押出反応機を用いて樹脂を作製した。押出機に関しては直径40mm、L/D(押出機の長さLと直径Dの比)が90の同方向噛合型二軸押出機を使用し、定重量フィーダー(クボタ社製CE-T-2E)を用いて、押出機原料供給口に原料樹脂を投入した。又、押出機に於けるベントの減圧度は-0.10MPaとした。押出機から吐出された樹脂(ストランド)は、冷却水槽で冷却した後、ペレタイザーでカッティングしペレットとした。ここで、押出機の内部の圧力確認、又は押出変動を見極める為に、押出機出口に樹脂圧力計を設けた。
(Example 1)
A 40 mmΦ fully intermeshing co-rotating twin-screw extruder reactor was used to prepare the resin. Regarding the extruder, a co-meshing twin-screw extruder with a diameter of 40 mm and an L/D (ratio of extruder length L to diameter D) of 90 is used, and a constant weight feeder (Kubota CE-T-2E ) was used to feed the raw material resin into the raw material supply port of the extruder. Further, the pressure reduction degree of the vent in the extruder was set to -0.10 MPa. The resin (strand) discharged from the extruder was cooled in a cooling water bath and then cut into pellets by a pelletizer. Here, a resin pressure gauge was provided at the exit of the extruder in order to confirm the pressure inside the extruder or ascertain the extrusion fluctuation.
 原料の(メタ)アクリル系重合体としてポリメタクリル酸メチル樹脂(Mw:10万)を使用し、イミド化剤としてアニリン(富士フィルム和光純薬株式会社製)を、イミド化促進剤としてジエチルアミン(富士フィルム和光純薬株式会社製)を用いてイミド構造含有アクリル系樹脂を製造した。この際、押出機最高部温度を280℃、スクリュー回転数は100rpm、ポリメタクリル酸メチル樹脂は10kg/h、アニリンの添加部数はポリメタクリル酸メチル樹脂100部に対して8.0部、ジエチルアミンの添加部数はポリメタクリル酸メチル樹脂100部に対して6.3部とした。イミド化剤とイミド化促進剤は事前に混合させておき、アニリンとジエチルアミンの混合液を、液添ポンプを用いて押出機に添加した。得られたイミド構造含有アクリル系樹脂のイミド化率は27.2%、酸価は0.77mmol/g、Tgは134℃、収率は81%であった。 Polymethyl methacrylate resin (Mw: 100,000) is used as the raw material (meth)acrylic polymer, aniline (manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.) is used as the imidization agent, and diethylamine (Fujifilm) is used as the imidization accelerator. Film (manufactured by Wako Pure Chemical Industries, Ltd.) was used to produce an imide structure-containing acrylic resin. At this time, the extruder maximum temperature is 280 ° C., screw rotation speed is 100 rpm, polymethyl methacrylate resin is 10 kg / h, aniline is added to 100 parts of polymethyl methacrylate resin 8.0 parts, diethylamine The number of parts to be added was 6.3 parts per 100 parts of the polymethyl methacrylate resin. The imidization agent and the imidization accelerator were mixed in advance, and the mixture of aniline and diethylamine was added to the extruder using a liquid addition pump. The resulting imide structure-containing acrylic resin had an imidization rate of 27.2%, an acid value of 0.77 mmol/g, a Tg of 134° C., and a yield of 81%.
 このペレット状のイミド構造含有アクリル系樹脂を100℃で8時間乾燥後、40mmΦ単軸押出機と400mm幅のTダイとを用いて240℃で押し出して得られたシート状の溶融樹脂を冷却ロールで冷却して幅300mm、厚み150μmのフィルムを得た。このフィルムについて、延伸倍率2倍、Tgより5℃高い温度で一軸延伸を行い、一軸延伸フィルムを作製した。 After drying this pellet-shaped imide structure-containing acrylic resin at 100° C. for 8 hours, it was extruded at 240° C. using a 40 mmΦ single-screw extruder and a 400 mm-wide T-die, and a sheet-shaped molten resin was obtained by cooling rolls. to obtain a film with a width of 300 mm and a thickness of 150 μm. This film was uniaxially stretched at a draw ratio of 2 times at a temperature 5° C. higher than Tg to prepare a uniaxially stretched film.
 (実施例2~9、比較例1~6)
 実施例2~9、比較例1~6は表1に従って、イミド化剤の種類と添加部数やイミド化促進剤の種類と添加部数を変更した以外は、実施例1と同様に実施した。結果を表1に示す。
(Examples 2 to 9, Comparative Examples 1 to 6)
Examples 2 to 9 and Comparative Examples 1 to 6 were carried out in the same manner as in Example 1, except that the type and number of parts of the imidization agent and the type and number of parts of the imidization accelerator were changed according to Table 1. Table 1 shows the results.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 表1に示すように、芳香族アミン化合物を用いてイミド化する際に、pKaが6以上であるイミド化促進剤を添加することで効率よくイミド化が進行し、イミド構造含有アクリル系樹脂を良好な収率で得ることができることがわかる。比較例2、3では添加するイミド化促進剤が第3級アミンであるため、イミド化反応が効率よく進行せず、得られた樹脂のガラス転移温度が低いものとなっていることが確認された。実施例1~9で得られたイミド構造アクリル系樹脂のガラス転移温度は比較例1~5のものよりも高く、耐熱性を要求される用途に好適であることがわかる。比較例6では添加するイミド化剤がモノメチルアミンであるため、厚さ方向位相差および面内位相差が大きいものとなっていることが確認された。 As shown in Table 1, when imidating using an aromatic amine compound, imidization proceeds efficiently by adding an imidization accelerator having a pKa of 6 or more, and an imide structure-containing acrylic resin is produced. It can be seen that good yields can be obtained. In Comparative Examples 2 and 3, since the imidization accelerator added was a tertiary amine, the imidization reaction did not proceed efficiently, and it was confirmed that the resulting resin had a low glass transition temperature. rice field. The glass transition temperatures of the imide structure acrylic resins obtained in Examples 1-9 are higher than those of Comparative Examples 1-5, indicating that they are suitable for applications requiring heat resistance. In Comparative Example 6, since the imidizing agent added was monomethylamine, it was confirmed that the thickness direction retardation and the in-plane retardation were large.

Claims (15)

  1.  下記式(1)で表される構造を有するイミド構造含有アクリル系樹脂の製造方法であって、
     (メタ)アクリル系重合体とイミド化剤とイミド化促進剤を含有する原料組成物を加熱する工程を含み、
     前記イミド化剤が芳香族アミン化合物を含有し、
     前記イミド化促進剤がアンモニア、第1級アミンおよび第2級アミンよりなる群から選択される少なくとも1種を含有し、前記イミド化促進剤のpKaが6以上である、イミド構造含有アクリル系樹脂の製造方法。
    Figure JPOXMLDOC01-appb-C000001
    (式(1)中、R及びRはそれぞれ独立に、水素原子または炭素数1~8のアルキル基であり、Rは芳香族炭化水素基または複素芳香族基である。)
    A method for producing an imide structure-containing acrylic resin having a structure represented by the following formula (1),
    (Meth) including a step of heating a raw material composition containing an acrylic polymer, an imidizing agent and an imidization accelerator,
    The imidizing agent contains an aromatic amine compound,
    The imidization accelerator contains at least one selected from the group consisting of ammonia, primary amines and secondary amines, and the imidization accelerator has a pKa of 6 or more. manufacturing method.
    Figure JPOXMLDOC01-appb-C000001
    (In formula (1), R 1 and R 2 are each independently a hydrogen atom or an alkyl group having 1 to 8 carbon atoms, and R 3 is an aromatic hydrocarbon group or a heteroaromatic group.)
  2.  前記第1級アミンが、下記式(2)で表される構造を有する、請求項1に記載のイミド構造含有アクリル系樹脂の製造方法。
     RNH  (2)
    (式(2)中、Rは炭素数1~8のアルキル基、炭素数3~10のシクロアルキル基または炭素数6~18のアリールアルキル基である。)
    The method for producing an imide structure-containing acrylic resin according to claim 1, wherein the primary amine has a structure represented by the following formula (2).
    R4NH2 ( 2 )
    (In formula (2), R 4 is an alkyl group having 1 to 8 carbon atoms, a cycloalkyl group having 3 to 10 carbon atoms or an arylalkyl group having 6 to 18 carbon atoms.)
  3.  前記第2級アミンが、下記式(3)で表される構造を有する、請求項1に記載のイミド構造含有アクリル系樹脂の製造方法。
     HN(R)(R)  (3)
    (式(3)中、R及びRはそれぞれ独立に、炭素数1~8のアルキル基、炭素数3~10のシクロアルキル基または炭素数6~18のアリールアルキル基である。また、RとRで環構造を形成していてもよい。)
    The method for producing an imide structure-containing acrylic resin according to claim 1, wherein the secondary amine has a structure represented by the following formula (3).
    HN(R5)( R6 ) ( 3 )
    (In formula (3), R 5 and R 6 are each independently an alkyl group having 1 to 8 carbon atoms, a cycloalkyl group having 3 to 10 carbon atoms, or an arylalkyl group having 6 to 18 carbon atoms. R5 and R6 may form a ring structure.)
  4.  前記イミド化促進剤のpKaが8以上である、請求項1~3のいずれか1項に記載のイミド構造含有アクリル系樹脂の製造方法。 The method for producing an imide structure-containing acrylic resin according to any one of claims 1 to 3, wherein the imidization accelerator has a pKa of 8 or more.
  5.  前記イミド化促進剤が、アンモニア、メチルアミン、エチルアミン、ジエチルアミン、ジメチルアミン、N-メチルエチルアミン、N-メチルプロピルアミン、N-メチルブチルアミン、ピロリジンおよびピペリジンからなる群より選択される少なくとも1種を含む、請求項1~4のいずれか1項に記載のイミド構造含有アクリル系樹脂の製造方法。 The imidization accelerator contains at least one selected from the group consisting of ammonia, methylamine, ethylamine, diethylamine, dimethylamine, N-methylethylamine, N-methylpropylamine, N-methylbutylamine, pyrrolidine and piperidine. The method for producing an imide structure-containing acrylic resin according to any one of claims 1 to 4.
  6.  前記イミド化剤が、アニリン、トルイジン、アニシジン、キシリジン、アミノピリジン、アミノビフェニルおよびアミノナフタレンからなる群より選択される少なくとも1種を含む、請求項1~5のいずれか1項に記載のイミド構造含有アクリル系樹脂の製造方法。 The imide structure according to any one of claims 1 to 5, wherein the imidizing agent comprises at least one selected from the group consisting of aniline, toluidine, anisidine, xylidine, aminopyridine, aminobiphenyl and aminonaphthalene. A method for producing a contained acrylic resin.
  7.  前記原料組成物は、前記イミド化促進剤の含有量が、前記(メタ)アクリル系重合体100重量部に対して1~80重量部である、請求項1~6のいずれか1項に記載のイミド構造含有アクリル系樹脂の製造方法。 The raw material composition according to any one of claims 1 to 6, wherein the content of the imidization accelerator is 1 to 80 parts by weight with respect to 100 parts by weight of the (meth)acrylic polymer. A method for producing an imide structure-containing acrylic resin.
  8.  前記原料組成物は、前記イミド化促進剤の含有量が、前記イミド化剤1モルに対して0.1モル~10モルである、請求項1~7のいずれか1項に記載のイミド構造含有アクリル系樹脂の製造方法。 The imide structure according to any one of claims 1 to 7, wherein the raw material composition has a content of the imidization accelerator of 0.1 mol to 10 mol per 1 mol of the imidization agent. A method for producing a contained acrylic resin.
  9.  前記原料組成物は、前記イミド化剤の含有量が、前記(メタ)アクリル系重合体100重量部に対して1~100重量部である、請求項1~8のいずれか1項に記載のイミド構造含有アクリル系樹脂の製造方法。 The raw material composition according to any one of claims 1 to 8, wherein the content of the imidizing agent is 1 to 100 parts by weight with respect to 100 parts by weight of the (meth)acrylic polymer. A method for producing an imide structure-containing acrylic resin.
  10.  前記(メタ)アクリル系重合体が、メタクリル酸アルキルエステル単位を含む、請求項1~9のいずれか1項に記載のイミド構造含有アクリル系樹脂の製造方法。 The method for producing an imide structure-containing acrylic resin according to any one of claims 1 to 9, wherein the (meth)acrylic polymer contains a methacrylic acid alkyl ester unit.
  11.  前記メタクリル酸アルキルエステル単位が炭素数1~8のアルキル基を有する、請求項10に記載のイミド構造含有アクリル系樹脂の製造方法。 The method for producing an imide structure-containing acrylic resin according to claim 10, wherein the methacrylic acid alkyl ester unit has an alkyl group having 1 to 8 carbon atoms.
  12.  前記(メタ)アクリル系重合体は、前記メタクリル酸アルキルエステル単位の含有量が、前記(メタ)アクリル系重合体の全量に対して50重量%以上である、請求項10または11に記載のイミド構造含有アクリル系樹脂の製造方法。 The imide according to claim 10 or 11, wherein the (meth)acrylic polymer has a content of the methacrylic acid alkyl ester unit of 50% by weight or more with respect to the total amount of the (meth)acrylic polymer. A method for producing a structure-containing acrylic resin.
  13.  前記イミド化促進剤と前記イミド化剤の混合物を前記(メタ)アクリル系重合体と混合する工程を含む、請求項1~12のいずれか1項に記載のイミド構造含有アクリル系樹脂の製造方法。 The method for producing an imide structure-containing acrylic resin according to any one of claims 1 to 12, comprising a step of mixing a mixture of the imidization accelerator and the imidization agent with the (meth)acrylic polymer. .
  14.  前記(メタ)アクリル系重合体と前記イミド化剤と前記イミド化促進剤を含有する原料組成物を加熱する工程の温度が180℃~320℃である、請求項1~13のいずれか1項に記載のイミド構造含有アクリル系樹脂の製造方法。 14. The temperature of the step of heating the raw material composition containing the (meth)acrylic polymer, the imidization agent and the imidization accelerator is 180° C. to 320° C., any one of claims 1 to 13. The method for producing the imide structure-containing acrylic resin according to 1.
  15.  前記(メタ)アクリル系重合体と前記イミド化剤と前記イミド化促進剤を含有する原料組成物を加熱する工程の圧力が0.1MPa~50MPaである、請求項1~14のいずれか1項に記載のイミド構造含有アクリル系樹脂の製造方法。 The pressure in the step of heating the raw material composition containing the (meth)acrylic polymer, the imidization agent and the imidization accelerator is 0.1 MPa to 50 MPa, any one of claims 1 to 14. The method for producing the imide structure-containing acrylic resin according to 1.
PCT/JP2022/004412 2021-02-05 2022-02-04 Method for producing imide structure-containing acrylic resin WO2022168936A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022579616A JPWO2022168936A1 (en) 2021-02-05 2022-02-04

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021017832 2021-02-05
JP2021-017832 2021-02-05

Publications (1)

Publication Number Publication Date
WO2022168936A1 true WO2022168936A1 (en) 2022-08-11

Family

ID=82741177

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/004412 WO2022168936A1 (en) 2021-02-05 2022-02-04 Method for producing imide structure-containing acrylic resin

Country Status (2)

Country Link
JP (1) JPWO2022168936A1 (en)
WO (1) WO2022168936A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6479202A (en) * 1987-09-22 1989-03-24 Denki Kagaku Kogyo Kk Preparation of transparent heat-resistant resin
JPH04283204A (en) * 1991-03-11 1992-10-08 Mitsubishi Rayon Co Ltd Methacrylamide polymer
JPH09100321A (en) * 1995-10-05 1997-04-15 Toray Ind Inc Production of imidated copolymer
JP2000351809A (en) * 1999-04-08 2000-12-19 Oki Electric Ind Co Ltd Polymeric material for optical communication, its synthesis, and optical waveguide using the material

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6479202A (en) * 1987-09-22 1989-03-24 Denki Kagaku Kogyo Kk Preparation of transparent heat-resistant resin
JPH04283204A (en) * 1991-03-11 1992-10-08 Mitsubishi Rayon Co Ltd Methacrylamide polymer
JPH09100321A (en) * 1995-10-05 1997-04-15 Toray Ind Inc Production of imidated copolymer
JP2000351809A (en) * 1999-04-08 2000-12-19 Oki Electric Ind Co Ltd Polymeric material for optical communication, its synthesis, and optical waveguide using the material

Also Published As

Publication number Publication date
JPWO2022168936A1 (en) 2022-08-11

Similar Documents

Publication Publication Date Title
KR102089115B1 (en) Non-birefringent resin material and film
US10597525B2 (en) Resin composition and film thereof
JP6871154B2 (en) Acrylic resin composition, its molded product and film
TWI637999B (en) Optical resin composition and film
CN108884292B (en) Resin composition, molded article thereof, and film
WO2015098775A1 (en) Optical resin composition and molded article
JP2010254742A (en) Optical film
JP6594207B2 (en) Optical resin composition and film
US10391694B2 (en) Method of producing film
JP6523176B2 (en) Resin material and film thereof
JP5574787B2 (en) Resin composition and production method thereof, molded product, film, optical film, polarizer protective film, polarizing plate
US20230295358A1 (en) Glutarimide resin
JP2022164227A (en) Transparent conductive film, and manufacturing method of transparent conductive film
WO2022168936A1 (en) Method for producing imide structure-containing acrylic resin
WO2022114194A1 (en) Glutarimide resin
CN116507649A (en) Glutarimide resin
JP2022030030A (en) Antenna base plate

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22749807

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2022579616

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22749807

Country of ref document: EP

Kind code of ref document: A1