WO2021153695A1 - Retardation film manufacturing method - Google Patents

Retardation film manufacturing method Download PDF

Info

Publication number
WO2021153695A1
WO2021153695A1 PCT/JP2021/003102 JP2021003102W WO2021153695A1 WO 2021153695 A1 WO2021153695 A1 WO 2021153695A1 JP 2021003102 W JP2021003102 W JP 2021003102W WO 2021153695 A1 WO2021153695 A1 WO 2021153695A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
resin film
solvent
retardation
resin
Prior art date
Application number
PCT/JP2021/003102
Other languages
French (fr)
Japanese (ja)
Inventor
恭輔 井上
Original Assignee
日本ゼオン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本ゼオン株式会社 filed Critical 日本ゼオン株式会社
Priority to JP2021574125A priority Critical patent/JPWO2021153695A1/ja
Priority to CN202180007539.8A priority patent/CN114868053A/en
Priority to KR1020227023254A priority patent/KR20220127818A/en
Publication of WO2021153695A1 publication Critical patent/WO2021153695A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3083Birefringent or phase retarding elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C55/00Shaping by stretching, e.g. drawing through a die; Apparatus therefor
    • B29C55/02Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/02Macromolecular compounds containing only carbon atoms in the main chain of the macromolecule, e.g. polyxylylenes
    • C08G61/04Macromolecular compounds containing only carbon atoms in the main chain of the macromolecule, e.g. polyxylylenes only aliphatic carbon atoms
    • C08G61/06Macromolecular compounds containing only carbon atoms in the main chain of the macromolecule, e.g. polyxylylenes only aliphatic carbon atoms prepared by ring-opening of carbocyclic compounds
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements

Definitions

  • the present invention relates to a method for producing a retardation film.
  • Patent Documents 1 and 2 Conventionally, a technique for manufacturing a retardation film has been proposed (see, for example, Patent Documents 1 and 2).
  • the retardation film has retardation in at least one of the in-plane direction and the thickness direction.
  • a method for obtaining such a retardation film a method of heating a resin film to a glass transition temperature of Tg or higher of the resin and stretching the film is known (see, for example, Patent Document 1).
  • a device or equipment for heating the resin film is required, and there is a problem that the manufacturing equipment becomes large. There is also a problem that energy consumption is large.
  • An object of the present invention is to provide a method for manufacturing a retardation film that can simplify the manufacturing equipment.
  • the present inventor has made diligent studies to solve the above problems. As a result, the present inventor can develop the retardation in at least one of the in-plane direction and the thickness direction without heating the resin film by stretching the resin film in contact with the solvent. As a result, they have found that the above problems can be solved, and have completed the present invention. That is, the present invention includes the following.
  • a method for producing a retardation film A method for producing a retardation film, which comprises a step of bringing a resin film into contact with a solvent and stretching the film.
  • FIG. 1 is a side view schematically showing an apparatus that can be used in step 1 of the method for manufacturing a retardation film according to the first embodiment.
  • FIG. 2 is a plan view schematically showing a roll stretching machine that can be used in the method for producing a retardation film of Comparative Example 1.
  • the birefringence in the in-plane direction of the film is a value represented by "(nx-ny)”, and is therefore represented by "Re / d”, unless otherwise specified.
  • the birefringence in the thickness direction of the film is a value represented by "[ ⁇ (nx + ny) / 2 ⁇ -nz]" unless otherwise specified, and is therefore represented by "Rth / d".
  • the NZ coefficient of the film is a value represented by "(nx-nz) / (nx-ny)", and is therefore represented by "0.5 + Rth / Re", unless otherwise specified.
  • nx represents the refractive index in the direction perpendicular to the thickness direction of the film (in-plane direction) and in the direction in which the maximum refractive index is given.
  • ny represents the refractive index in the in-plane direction of the film and orthogonal to the nx direction.
  • nz represents the refractive index in the thickness direction of the film.
  • d represents the thickness of the film.
  • the measurement wavelength is 590 nm unless otherwise specified.
  • a material having a positive intrinsic birefringence means a material in which the refractive index in the stretching direction is larger than the refractive index in the direction perpendicular to it, unless otherwise specified.
  • a material having a negative intrinsic birefringence means a material in which the refractive index in the stretching direction is smaller than the refractive index in the direction perpendicular to the refractive index, unless otherwise specified.
  • the value of the intrinsic birefringence can be calculated from the permittivity distribution.
  • the diagonal direction of a long film indicates an in-plane direction of the film, which is neither parallel nor perpendicular to the width direction of the film, unless otherwise specified.
  • the "long" film means a film having a length of 5 times or more, preferably 10 times or more, and specifically a roll.
  • the longitudinal direction of the long film is usually parallel to the film transport direction in the production line.
  • the MD direction (machine direction) is the transport direction of the film in the production line, and is usually parallel to the longitudinal direction of the long film.
  • the TD direction (transverse direction) is a direction parallel to the film surface, a direction perpendicular to the MD direction, and usually parallel to the width direction of a long film.
  • the method for producing a retardation film of the present invention includes a step of bringing a resin film into contact with a solvent and stretching the film.
  • the method for producing a retardation film of the present invention includes a step of bringing a resin film, which is a material of the retardation film, into contact with a solvent and stretching the film. Can be expressed.
  • a resin film which is a material of the retardation film
  • the present invention since an apparatus for heating the resin film is not required, it is possible to provide a method for producing a retardation film that can simplify the production equipment.
  • FIG. 1 is a side view schematically showing an apparatus that can be used in the method for producing a retardation film according to the first embodiment.
  • a long resin film is prepared, and the roll 111 of the resin film is obtained by winding the masking film on the roll while adhering the masking film to the resin film.
  • the masking film 12 is peeled off from the film 11 unwound from the roll 111 of the resin film, and the long resin film 15 is conveyed in the direction indicated by A1.
  • the masking film 12 is wound around the roll 112 while being pressed by the nip rolls 101A and 101B arranged at positions sandwiching the film 11 from the thickness direction.
  • the resin film 15 is stretched while being brought into contact with the resin film 15 through a bathtub 102 filled with a solvent.
  • the resin film 15 is moved in the film transport direction due to the difference in peripheral speed between the nip rolls 101A and 101B arranged on the upstream side in the film transport direction and the nip rolls 104A and 104B arranged on the downstream side in the film transport direction.
  • Stretch. By stretching the resin film 15 while contacting it with a solvent, it is possible to develop retardation in at least one of the in-plane direction and the thickness direction of the film without heating the resin film. Therefore, the stretched film 10 thus obtained can be used as it is as a retardation film.
  • the stretched film 10 thus obtained is wound while adhering the masking film 13 unwound from the roll 113. As a result, the roll 110 of the stretched film is obtained.
  • the stretched film 10 and the masking film 13 are bonded while being pressed by nip rolls 104A and 104B arranged at positions sandwiching the film from the thickness direction.
  • the method for producing a retardation film of the present embodiment includes a step of bringing a resin film into contact with a solvent and stretching the film.
  • the process may be referred to as "process 1".
  • Step 1 is a step of bringing the resin film into contact with a solvent and stretching it. By bringing the resin film into contact with a solvent and stretching it, retardation can be developed in the resin film.
  • the mechanism by which such an effect is obtained is presumed as follows. However, the technical scope of the present invention is not limited by the following mechanism.
  • the solvent penetrates into the resin film. Due to the action of the infiltrated solvent, micro-Brownian motion occurs in the molecules of the polymer in the film, and the molecules of the polymer in the film are oriented.
  • the surface area of the resin film is large on the front surface and the back surface, which are the main surfaces. Therefore, as for the infiltration rate of the solvent, the infiltration rate in the thickness direction through the front surface or the back surface is high.
  • the orientation of the molecules of the polymer can proceed so that the molecules of the polymer are oriented in the thickness direction.
  • the resin film in which the molecules are oriented in the thickness direction is stretched, the molecules in the film are oriented in the stretching direction, and the degree of orientation is increased. As the degree of molecular orientation increases in this way, the birefringence of the film changes, which in turn increases the retardation.
  • Step 1 can be performed by the device 100 shown in FIG.
  • the device 100 includes upstream nip rolls 101A and 101B arranged on the upstream side in the film transport direction, downstream nip rolls 104A and 104B arranged on the downstream side in the film transport direction, and a bathtub for bringing the resin film 15 into contact with a solvent. 102 is provided.
  • Step 1 includes a step 1A of bringing the resin film into contact with a solvent and a step 1B of stretching the resin film.
  • This embodiment is an embodiment in which step 1A is performed while step 1B is performed. That is, the resin film is brought into contact with the solvent in the area of the path of the resin film in which tension is applied to the resin film due to stretching.
  • the method for producing a retardation film of the present invention is not limited to this.
  • the production method of the present invention includes a mode in which a part of the step 1B overlaps with the step 1A, for example, a mode in which the step 1B for stretching the resin film is started from the middle of the step 1A in which the resin film is brought into contact with the solvent.
  • the production method of the present invention also includes an embodiment in which the step 1A of bringing the resin film into contact with the solvent is performed, and then the step 1B of stretching the resin film is performed with the resin adhered and / or impregnated with the solvent.
  • Step 1A is a step of bringing the resin film into contact with the solvent.
  • Examples of the contact method between the resin film and the solvent include a spray method of spraying the solvent on the resin film; a coating method of applying the solvent to the resin film; and a dipping method of immersing the resin film in the solvent.
  • the dipping method is preferable from the viewpoint that retardation in the thickness direction can be easily expressed even when the resin film has a large thickness, and continuous contact can be easily performed.
  • FIG. 1 shows a dipping method.
  • the resin film is a film that is a material for producing a retardation film, and may be made of a resin.
  • the resin constituting the resin film contains a polymer.
  • the resin constituting the resin film is preferably a resin having a positive natural birefringence value.
  • a resin having a positive intrinsic birefringence value means a resin in which the refractive index in the stretching direction is larger than the refractive index in the direction perpendicular to the refractive index, unless otherwise specified.
  • the value of the intrinsic birefringence can be calculated from the permittivity distribution.
  • a resin containing a polymer having crystallinity is preferable.
  • Crystallinity polymer refers to a polymer having a melting point Tm (ie, the melting point can be observed with a differential scanning calorimetry (DSC)).
  • a polymer having crystallization may be referred to as a "crystalline polymer”.
  • a resin containing a crystalline polymer may be referred to as a "crystalline resin”. This crystalline resin is preferably a thermoplastic resin.
  • the resin film is preferably a film made of a resin having a positive natural birefringence value, and more preferably the resin is a resin containing a crystalline polymer.
  • the crystalline polymer preferably contains an alicyclic structure.
  • the polymer containing an alicyclic structure represents a polymer containing an alicyclic structure in the molecule.
  • the polymer containing such an alicyclic structure can be, for example, a polymer obtained by a polymerization reaction using a cyclic olefin as a monomer or a hydride thereof.
  • Examples of the alicyclic structure include a cycloalkane structure and a cycloalkene structure. Among these, a cycloalkane structure is preferable because it is easy to obtain a retardation film having excellent properties such as thermal stability.
  • the number of carbon atoms contained in one alicyclic structure is preferably 4 or more, more preferably 5 or more, preferably 30 or less, more preferably 20 or less, and particularly preferably 15 or less. be. When the number of carbon atoms contained in one alicyclic structure is within the above range, mechanical strength, heat resistance, and moldability are highly balanced.
  • the ratio of the structural units containing the alicyclic structure to all the structural units is preferably 30% by weight or more, more preferably 50% by weight or more, and particularly preferably 70. Weight% or more. Heat resistance can be improved by increasing the proportion of structural units containing an alicyclic structure as described above.
  • the ratio of structural units containing an alicyclic structure to all structural units may be 100% by weight or less.
  • the remainder other than the structural unit containing the alicyclic structure is not particularly limited and may be appropriately selected depending on the purpose of use.
  • Examples of the crystalline polymer containing an alicyclic structure include the following polymers ( ⁇ ) to ( ⁇ ). Among these, the polymer ( ⁇ ) is preferable because it is easy to obtain a retardation film having excellent heat resistance.
  • Polymer ( ⁇ ) An addition polymer of a cyclic olefin monomer having crystallinity.
  • Polymer ( ⁇ ) A hydride of the polymer ( ⁇ ) that has crystallinity.
  • the crystalline polymer containing an alicyclic structure includes a ring-opening polymer of dicyclopentadiene having crystallinity and a hydride of the ring-opening polymer of dicyclopentadiene. It is more preferable that it is present and has crystallinity. Of these, a hydride of a ring-opening polymer of dicyclopentadiene, which has crystallinity, is particularly preferable.
  • the ratio of the structural unit derived from dicyclopentadiene to all the structural units is usually 50% by weight or more, preferably 70% by weight or more, more preferably 90% by weight or more. More preferably, it refers to a polymer of 100% by weight.
  • the hydride of the ring-opening polymer of dicyclopentadiene preferably has a high proportion of racemic diad.
  • the proportion of the repeating unit racemic diad in the hydride of the ring-opening polymer of dicyclopentadiene is preferably 51% or more, more preferably 70% or more, and particularly preferably 85% or more.
  • a high proportion of racemic diads indicates a high degree of syndiotactic stereoregularity. Therefore, the higher the proportion of racemic diad, the higher the melting point of the hydride of the ring-opening polymer of dicyclopentadiene tends to be.
  • the proportion of racemo diads can be determined based on the 13 C-NMR spectral analysis described in Examples below.
  • polymer ( ⁇ ) to the polymer ( ⁇ ) a polymer obtained by the production method disclosed in International Publication No. 2018/062067 can be used.
  • the melting point Tm of the crystalline polymer is preferably 200 ° C. or higher, more preferably 230 ° C. or higher, and preferably 290 ° C. or lower.
  • the crystalline polymer has a glass transition temperature Tg.
  • the specific glass transition temperature Tg of the crystalline polymer is not particularly limited, but is usually 80 ° C. or higher and usually 170 ° C. or lower.
  • the glass transition temperature of the crystalline polymer is preferably 85 ° C. or higher, more preferably 90 ° C. or higher, preferably 150 ° C. or lower, and more preferably 130 ° C. or lower.
  • the glass transition temperature Tg and melting point Tm of the polymer can be measured by the following methods. First, the polymer is melted by heating, and the melted polymer is rapidly cooled with dry ice. Subsequently, using this polymer as a test piece, the glass transition temperature Tg and melting point Tm of the polymer were measured at a heating rate of 10 ° C./min (heating mode) using a differential scanning calorimeter (DSC). Can be measured.
  • the weight average molecular weight (Mw) of the crystalline polymer is preferably 1,000 or more, more preferably 2,000 or more, preferably 1,000,000 or less, and more preferably 500,000 or less.
  • a crystalline polymer having such a weight average molecular weight has an excellent balance between molding processability and heat resistance.
  • the molecular weight distribution (Mw / Mn) of the crystalline polymer is preferably 1.0 or more, more preferably 1.5 or more, preferably 4.0 or less, and more preferably 3.5 or less.
  • Mn represents a number average molecular weight.
  • a crystalline polymer having such a molecular weight distribution is excellent in molding processability.
  • the weight average molecular weight (Mw) and molecular weight distribution (Mw / Mn) of the polymer can be measured as polystyrene-equivalent values by gel permeation chromatography (GPC) using tetrahydrofuran as a developing solvent.
  • one type may be used alone, or two or more types may be used in combination at an arbitrary ratio.
  • the proportion of the crystalline polymer in the crystalline resin is preferably 50% by weight or more, more preferably 70% by weight or more, and particularly preferably 90% by weight or more.
  • the ratio of the crystalline polymer is not more than the lower limit of the above range, the birefringence expression and heat resistance of the retardation film can be enhanced.
  • the upper limit of the proportion of the crystalline polymer can be 100% by weight or less.
  • the crystalline resin may contain any component in addition to the crystalline polymer.
  • Optional components include, for example, antioxidants such as phenolic antioxidants, phosphorus antioxidants, sulfur antioxidants; light stabilizers such as hindered amine light stabilizers; petroleum waxes, Fishertroph waxes, etc. Waxes such as polyalkylene wax; sorbitol compounds, metal salts of organic phosphoric acid, metal salts of organic carboxylic acids, nucleating agents such as kaolin and talc; diaminostilben derivatives, coumarin derivatives, azole derivatives (eg, benzoxazole derivatives, etc.
  • Fluorescent whitening agents such as benzotriazole derivatives, benzoimidazole derivatives, and benzothiazole derivatives), carbazole derivatives, pyridine derivatives, naphthalic acid derivatives, and imidazolone derivatives; benzophenone-based ultraviolet absorbers, salicylic acid-based ultraviolet absorbers, benzotriazole-based UV absorbers such as UV absorbers; Inorganic fillers such as talc, silica, calcium carbonate, glass fibers; Colorants; Flame retardants; Flame retardant aids; Antistatic agents; Plastics; Near infrared absorbers; Lubricants; Fillers ; And any polymer other than the crystalline polymer, such as a soft polymer; and the like.
  • the arbitrary component one kind may be used alone, or two or more kinds may be used in combination at an arbitrary ratio.
  • the crystallinity of the crystalline polymer contained in the resin film before the step 1 is preferably small.
  • the specific crystallinity is preferably less than 10%, more preferably less than 5%, and particularly preferably less than 3%. If the crystallinity of the crystalline polymer contained in the resin film before contact with the solvent is low, many molecules of the crystalline polymer can be oriented in the thickness direction by contact with the solvent. The substrate can be adjusted.
  • the in-plane retardation Re of the resin film before performing step 1 is preferably 20 nm or less, more preferably 10 nm or less, and particularly preferably 0.
  • the retardation Rth in the thickness direction of the resin film is preferably 20 nm or less, more preferably 10 nm or less, and particularly preferably 0.
  • the resin film before contact with the solvent preferably has a small solvent content, and more preferably does not contain the solvent.
  • the ratio of the solvent contained in the resin film to 100% by weight of the resin film (solvent content) is preferably 1% or less, more preferably 0.5% or less, and particularly preferably 0.1% or less, which is ideal.
  • the target is 0.0%. Since the amount of the solvent contained in the resin film before the contact with the solvent is small, many polymer molecules can be oriented in the thickness direction by the contact with the solvent, so that the retardation can be adjusted in a wide range. It will be possible.
  • the solvent content of the resin film can be measured by the density.
  • the thickness of the resin film is preferably set according to the thickness of the retardation film to be manufactured. Usually, contact with a solvent increases the thickness of the film. On the other hand, by stretching, the thickness of the film becomes smaller. Therefore, the thickness of the resin film may be set in consideration of the change in the thickness in the step 1 of contacting and stretching with the solvent.
  • the retardation film can be continuously produced by the roll-to-roll method, so that the productivity of the retardation film can be effectively increased.
  • resin molding methods such as injection molding method, extrusion molding method, press molding method, inflation molding method, blow molding method, calendar molding method, casting molding method, and compression molding method can be used. preferable. Among these, the extrusion molding method is preferable because the thickness can be easily controlled.
  • the production conditions are preferably as follows.
  • the cylinder temperature (molten resin temperature) is preferably Tm or more, more preferably "Tm + 20 ° C.” or more, preferably “Tm + 100 ° C.” or less, and more preferably "Tm + 50 ° C.” or less.
  • the cooling body that the molten resin extruded into a film comes into contact with first is not particularly limited, but a cast roll is usually used.
  • the cast roll temperature is preferably "Tg-50 ° C.” or higher, preferably "Tg + 70 ° C.” or lower, and more preferably "Tg + 40 ° C.” or lower.
  • the cooling roll temperature is preferably "Tg-70 ° C.” or higher, more preferably “Tg-50 ° C.” or higher, preferably “Tg + 60 ° C.” or lower, and more preferably “Tg + 30 ° C.” or lower.
  • Tm represents the melting point of the crystalline polymer
  • Tg represents the glass transition temperature of the crystalline polymer.
  • a film roll is provided in step 1 by winding a masking film on a long resin film and winding it on a roll.
  • Known masking films for example, FF1025 and "FF1035" manufactured by Tredegar; "SAT116T”, “SAT2038T-JSL” and “SAT4538T-JSL” manufactured by Sun A. Kaken Co., Ltd .; "NBO” manufactured by Fujimori Kogyo Co., Ltd.
  • solvent in step 1A, as the solvent to be brought into contact with the resin film, a solvent that can penetrate into the resin film without dissolving the polymer contained in the resin film can be used.
  • a solvent include hydrocarbon solvents such as toluene, limonene, and decalin; carbon disulfide;
  • hydrocarbon solvents such as toluene, limonene, and decalin
  • carbon disulfide When the resin film is made of a resin containing a crystalline polymer, a hydrocarbon-based solvent is preferable as the solvent from the viewpoint that the crystalline polymer can be penetrated into the resin film without being dissolved.
  • the solvent may be one type or two or more types.
  • the temperature of the solvent in contact with the resin film is arbitrary as long as the solvent can maintain the liquid state, and therefore can be set in the range above the melting point of the solvent and below the boiling point.
  • the temperature of the solvent is set to room temperature (for example, 15 ° C. or higher and lower than 40 ° C., more preferably 18 ° C. or higher and lower than 35 ° C., further preferably 23 ° C. or higher and lower than 30 ° C.), or adjusted to a temperature range close to room temperature. Even in this case, good stretching can be performed.
  • the temperature can be adjusted to a temperature higher than room temperature if necessary. However, even in that case, good stretching can be performed with simpler equipment as compared with the case where the temperature around the film conveyed at the time of stretching is heated in an oven in a general stretching device.
  • the time for contacting the resin film with the solvent is not particularly specified, but is preferably 1 second or longer, more preferably 3 seconds or longer, particularly preferably 5 seconds or longer, preferably 180 seconds or shorter, and more preferably 120 seconds. Hereinafter, it is particularly preferably 60 seconds or less.
  • the contact time is equal to or greater than the lower limit of the above range, the molecules contained in the resin film can be effectively oriented.
  • the degree of molecular orientation tends not to change significantly even if the contact time is lengthened. Therefore, when the contact time is not more than the upper limit value of the above range, the productivity can be improved without impairing the quality of the retardation film.
  • Step 1B is a step of stretching the resin film.
  • the resin film is stretched by using a stretching machine that vertically stretches the resin film by the difference in peripheral speeds of a plurality of sets of rolls.
  • the upstream nip rolls 101A and 101B and the downstream nip rolls 104A and 104B are rotationally driven by a driving means (not shown) so that the resin film 15 can be conveyed in the conveying direction A1.
  • the peripheral speeds of the nip rolls 104A and 104B on the downstream side are set faster than the peripheral speeds of the nip rolls 101A and 101B on the upstream side.
  • the draw ratio of the resin film in step 1 is preferably 1.05 or more, more preferably 1.1 or more, preferably 5.00 or less, and more preferably 3.00 or less.
  • the draw ratio is equal to or higher than the lower limit of the above range, the retardation can be effectively expressed in the resin film.
  • the productivity can be improved without impairing the quality of the retardation film obtained by the present invention.
  • the retardation can be expressed without heating the resin film at the time of stretching, so that heating of the resin film at the time of stretching is not necessary, but at the time of stretching.
  • the resin film may be heated.
  • the resin film before stretching may be preheat-treated.
  • the stretching temperature is preferably Tg + 2 ° C. or higher, more preferably Tg + 2 ° C. or higher, particularly preferably Tg + 5 ° C. or higher, preferably Tg + 40 ° C. or lower, more preferably Tg + 35 ° C. or lower.
  • Tg refers to the glass transition temperature of the polymer contained in the resin film 15.
  • the stretched film 10 obtained after performing step 1 can be used as it is as a retardation film, but a film obtained by performing a further step (for example, a further stretching step) may be used as a retardation film.
  • the method for producing a retardation film of the present invention may include any step described below.
  • the method for producing a retardation film of the present invention may include a step of removing the solvent from the resin film after the resin film and the solvent are brought into contact with each other.
  • Examples of the method for removing the solvent from the resin film include drying and wiping.
  • the solvent When the solvent is removed from the resin film after contact with the solvent by drying, there is no limitation on the method, and it can be performed by using a heating device such as an oven, for example.
  • the solvent can be removed by transporting the resin film after contact with the solvent into the heating device for a predetermined time.
  • the heating for removing the solvent can be performed at a relatively low temperature, unlike the heating when heating is performed at the time of stretching in a general stretching device, and can be performed without strict temperature control. Moreover, it can be completed in a relatively short time. Further, by appropriately selecting the type of solvent, it is possible to achieve drying by simply transporting the solvent at room temperature without performing a heating operation.
  • the film When removing the solvent by drying, the film may be tensioned. Drying in such a state is preferable because the uniformity of the optical properties of the film after being brought into contact with the solvent can be effectively increased.
  • the magnitude of tension applied to the resin film and the direction of tension can be set in consideration of the material of the resin film and the like.
  • the resin film When tension is applied to the resin film, for example, the resin film may be held by an appropriate holder, and the resin film may be pulled by the holder to apply tension.
  • the holder may be one that can continuously hold the entire length of the side of the resin film, or one that can hold the resin film intermittently at intervals. For example, the sides of the resin film may be intermittently held by holders arranged at predetermined intervals.
  • the method for producing a retardation film of the present invention may include a step of further stretching the film obtained after performing step 1.
  • the stretching conditions such as the stretching direction, the stretching device, and the stretching ratio in the step are not particularly limited, and can be set in consideration of the intended use of the retardation film.
  • the method for producing a retardation film of the present invention may include a step of cutting out the long retardation film into a desired shape.
  • the value of the in-plane retardation Re of the retardation film can be set according to the application.
  • the value of the in-plane retardation Re of the retardation film is preferably 10 nm or more, more preferably 30 nm or more, preferably 1000 nm or less, and more preferably 800 nm or less.
  • the specific value of the in-plane retardation Re of the retardation film may be, for example, preferably 100 nm or more, more preferably 110 nm or more, particularly preferably 120 nm or more, and preferably 180 nm or less, more preferably 170 nm or less. Particularly preferably, it can be 160 nm or less.
  • the retardation film can function as a quarter wave plate.
  • the specific value of the in-plane retardation Re of the retardation film can be, for example, preferably 230 nm or more, more preferably 250 nm or more, particularly preferably 255 nm or more, and preferably 320 nm or less, more preferably 300 nm. Below, it can be particularly preferably 295 nm or less. In this case, the retardation film can function as a 1/2 wavelength plate.
  • the value of the retardation Rth in the thickness direction of the retardation film can be set according to the application of the retardation film.
  • the retardation Rth in the specific thickness direction of the retardation film is preferably ⁇ 500 nm or more, more preferably ⁇ 400 nm or more, preferably 300 nm or less, and more preferably 150 nm or less.
  • the NZ coefficient of the retardation film is preferably -10 or more, more preferably -8 or more, preferably 10 or less, and more preferably 8 or less.
  • the NZ coefficient of the retardation film can be arbitrarily set according to the use of the retardation film.
  • the NZ coefficient of the retardation film can be calculated from the in-plane retardation Re of the film and the retardation Rth in the thickness direction.
  • the in-plane retardation Re and the thickness direction retardation Rth of the film can be measured using a phase difference meter (for example, "AXoScan OPMF-1" manufactured by AXOMETRICS).
  • the retardation film usually has large birefringence in at least one of the in-plane direction and the thickness direction.
  • the retardation film is usually, 1.0 ⁇ 10 -3 or more in-plane direction of the birefringent Re / d, and, 1.0 ⁇ 10 -3 or more absolute value in the thickness direction of the birefringent It has at least one of
  • the birefringence Re / d of the retardation film in the in-plane direction is usually 1.0 ⁇ 10 -3 or more, preferably 3.0 ⁇ 10 -3 or more, and particularly preferably 5.0 ⁇ 10 -3. That is all. There is no upper limit, for example, it may be 2.0 ⁇ 10 -2 or less, 1.5 ⁇ 10 -2 or less, or 1.0 ⁇ 10 -2 or less.
  • of the birefringence in the thickness direction of the retardation film is 1.0 ⁇ 10 -3 or more
  • the birefringence Re / d in the in-plane direction of the retardation film is in the above range. May be outside.
  • of birefringence in the thickness direction of the retardation film is usually 1.0 ⁇ 10 -3 or more, preferably 3.0 ⁇ 10 -3 or more, and particularly preferably 5.0 ⁇ 10 It is -3 or more. There is no upper limit, for example, it may be 2.0 ⁇ 10 -2 or less, 1.5 ⁇ 10 -2 or less, or 1.0 ⁇ 10 -2 or less. However, when the birefringence Re / d in the in-plane direction of the retardation film is 1.0 ⁇ 10 -3 or more, the absolute value
  • the haze of the retardation film is usually less than 1.0%, preferably less than 0.8%, more preferably less than 0.5%, ideally 0.0%.
  • the haze of the film can be measured using a haze meter (for example, "NDH5000" manufactured by Nippon Denshoku Industries Co., Ltd.).
  • the specific total light transmittance of the retardation film is preferably 80% or more, more preferably 85% or more, and particularly preferably 88% or more.
  • the total light transmittance of the retardation film can be measured in the wavelength range of 400 nm to 700 nm using an ultraviolet-visible spectrometer.
  • the thickness d of the retardation film can be appropriately set according to the application of the retardation film.
  • the specific thickness d of the retardation film is preferably 5 ⁇ m or more, more preferably 10 ⁇ m or more, particularly preferably 15 ⁇ m or more, preferably 200 ⁇ m or less, more preferably 100 ⁇ m or less, and particularly preferably 50 ⁇ m or less.
  • the thickness d of the retardation film is not less than the lower limit of the above range, the handleability can be improved and the strength can be increased. Further, when the thickness d of the retardation film is not more than the upper limit value, it is easy to wind up the long retardation film.
  • the crystallinity of the crystalline polymer is not particularly limited, but is usually higher than a certain level.
  • the specific range of crystallinity is preferably 10% or more, more preferably 15% or more, and particularly preferably 30% or more.
  • the crystallinity of the crystalline polymer can be measured by X-ray diffraction.
  • the method for producing a retardation film of the present invention includes a step of bringing a resin film into contact with a solvent and stretching it, the retardation film produced by the production method may contain a solvent.
  • the retardation film produced by a production method including a step of contacting with a solvent may contain a solvent.
  • the ratio of the solvent contained in the retardation film to 100% by weight of the retardation film is preferably 10% by weight or less, more preferably 5% by weight or less, and particularly preferably 0.1% by weight or less. Yes, it can exceed 0% by weight.
  • the retardation film produced by the production method of the present invention the resin film is brought into contact with a solvent and stretched to develop retardation in at least one of the in-plane direction and the thickness direction. Therefore, the retardation film obtained by the production method of the present invention can be used as a 1/2 wave plate, a 1/4 wave plate, or the like depending on its retardation value.
  • a circularly polarizing plate using the retardation film produced by the production method of the present invention as either one or both of a 1/2 wave plate and a 1/4 wave plate can be used in a display device.
  • the glass transition temperature Tg and the melting point Tm of the polymer were measured as follows. First, the polymer was melted by heating, and the melted polymer was rapidly cooled with dry ice. Subsequently, using this polymer as a test piece, the glass transition temperature Tg and melting point Tm of the polymer were measured at a heating rate of 10 ° C./min (heating mode) using a differential scanning calorimeter (DSC). It was measured.
  • the ratio of racemic diads in the polymer was measured as follows. Orthodichlorobenzene -d 4 as solvent, at 200 ° C., by applying the inverse-gated decoupling method, was 13 C-NMR measurement of the polymer. In the results of this 13 C-NMR measurement, a signal of 43.35 ppm derived from meso-diad and a signal of 43.43 ppm derived from racemic diad were used with the peak of 127.5 ppm of orthodichlorobenzene-d 4 as a reference shift. Was identified. Based on the intensity ratios of these signals, the proportion of racemic diads in the polymer was determined.
  • the thickness of the film was measured using a contact type thickness gauge (Code No. 543-390 manufactured by Mitutoyo Co., Ltd.).
  • the in-plane retardation Re of the film, the retardation Rth in the thickness direction, and the NZ coefficient were measured by Axo Scan OPMF-1 manufactured by AXOMETRICS. At this time, the measurement was performed at a wavelength of 590 nm. In addition, the NZ coefficient was calculated from the obtained in-plane retardation Re and the thickness direction retardation Rth.
  • 0.014 parts of the tetrachlorotungsten phenylimide (tetrahydrofuran) complex was dissolved in 0.70 parts of toluene to prepare a solution.
  • To this solution was added 0.061 part of a 19% concentration diethylaluminum ethoxide / n-hexane solution and stirred for 10 minutes to prepare a catalytic solution.
  • This catalyst solution was added to a pressure resistant reactor to initiate a ring-opening polymerization reaction. Then, the reaction was carried out for 4 hours while maintaining 53 ° C. to obtain a solution of a ring-opening polymer of dicyclopentadiene.
  • the number average molecular weight (Mn) and weight average molecular weight (Mw) of the obtained ring-opening polymer of dicyclopentadiene are 8,750 and 28,100, respectively, and the molecular weight distribution (Mw / Mn) obtained from these is Was 3.21.
  • the hydride contained in the reaction solution and the solution were separated using a centrifuge and dried under reduced pressure at 60 ° C. for 24 hours to obtain a hydride of a crystalline ring-opening polymer of dicyclopentadiene 28. I got 5 copies.
  • the hydrogenation rate of this hydride was 99% or more, the glass transition temperature Tg was 93 ° C., the melting point (Tm) was 262 ° C., and the ratio of racemo diad was 89%.
  • a mixture of a hydride of a ring-opening polymer of dicyclopentadiene and an antioxidant was formed into a strand shape by hot melt extrusion molding, and then shredded with a strand cutter to obtain a pellet-shaped crystalline resin.
  • This crystalline resin is a resin having a positive natural birefringence value.
  • Example 1 (1-1) Production of Resin Film
  • the pellet-shaped crystalline resin produced in Production Example 1 is molded using a heat-melt extrusion film molding machine equipped with a T-die, and a resin film having a width of about 600 mm is formed at a predetermined speed.
  • a roll of the resin film was obtained by the method of winding the resin film on the roll.
  • the line speed was adjusted so that the thickness of the resin film was 50 ⁇ m.
  • FF1025 manufactured by Tredegar Co., Ltd.
  • Step 1 was performed by the following method using the apparatus shown in FIG.
  • the film 11 was pulled out from the roll 111 of the resin film obtained in (1-1), the masking film 12 was continuously peeled off, and the resin film 15 was conveyed.
  • the resin film 15 was brought into contact with a solvent and stretched (step 1). Specifically, the resin film 15 was immersed in toluene by passing the resin film 15 through a bathtub 102 filled with toluene as a solvent.
  • the time for the resin film to be conveyed in the solvent was 5 seconds.
  • the room temperature at this time was 25 ° C., and therefore the temperature of toluene in the bathtub 102 was also 25 ° C.
  • the resin film 15 was stretched by providing a difference between the peripheral speeds Ps1 of the nip rolls 101A and 101B on the upstream side and the peripheral speeds Ps2 of the nip rolls 104A and 104B on the downstream side. Specifically, by setting the peripheral speed ratio (Ps2 / Ps1) of the two sets of nip rolls to 1.1, the film was stretched in the transport direction at a draw ratio of 1.1 times.
  • the stretched film 10 obtained after performing step 1 was wound while being protected by a new masking film (“FF1025” manufactured by Tredegar) to obtain a roll 110 of the stretched film.
  • FF1025 new masking film
  • Example 2 In Example 1 (1-2), the peripheral speed ratio (Ps2 / Ps1) of the two sets of nip rolls was set to 1.2, except that the film was stretched in the transport direction at a draw ratio of 1.2 times. The same operation as in (1-2) of Example 1 was carried out to obtain a roll of stretched film.
  • Re Re was 265 nm
  • Rth was -295 nm
  • the NZ coefficient was ⁇ 0.61
  • the thickness was 56 ⁇ m.
  • Example 3 In Example 1 (1-2), except that the film was stretched at a draw ratio of 1.5 times in the transport direction by setting the peripheral speed ratio (Ps2 / Ps1) of the two sets of nip rolls to 1.5. The same operation as in (1-2) of Example 1 was carried out to obtain a roll of stretched film.
  • Re Re was 650 nm
  • Rth was 65 nm
  • NZ coefficient was 0.6
  • the thickness was 47 ⁇ m.
  • Example 4 (4-1) Production of Resin Film In Example 1 (1-1), except that the line speed was adjusted and molding was performed so that the thickness of the resin film was 21 ⁇ m. The same operation as in 1-1) was carried out to obtain a roll of the resin film.
  • Example 5 In Example 1 (1-2), the contact between the resin film and the solvent is the same as in Example 1 except that the contact between the resin film and the solvent is performed by the following coating method instead of the method of passing the resin film through a bathtub filled with the solvent. The operation was carried out to obtain a roll of stretched film.
  • Re Re was 62 nm
  • Rth was ⁇ 62 nm
  • the NZ coefficient was ⁇ 0.5
  • the thickness was 51 ⁇ m.
  • a coating device (reverse gravure method) was used instead of the bathtub 102, and toluene was coated on one surface of the resin film by the coating device.
  • the coating amount of the solvent was 30 g / m 2 (the coating amount immediately after coating).
  • the roll stretching machine 1 shown in FIG. 2 will be described.
  • the roll stretching machine 1 is a device for stretching the film 3 unwound from the film roll 2 in the longitudinal direction thereof.
  • the roll stretching machine 1 includes an upstream roll 6A and a downstream roll 6B as nip rolls capable of transporting the film 3 in the longitudinal direction in order from the upstream in the transport direction.
  • the peripheral speed PsB of the downstream roll 6B is set to be faster than the peripheral speed PsA of the upstream roll 6A.
  • the resin film (corresponding to the film 3 in FIG. 2) was stretched using the roll stretching machine 1 as follows.
  • the film 3 was unwound from the film roll 2, and the film 3 was continuously supplied to the roll stretching machine 1.
  • the roll stretching machine 1 conveyed the film 3 in the order of the upstream roll 6A and the downstream roll 6B.
  • the ratio (PsB / PsA) of the peripheral speed PsB of the downstream side roll 6B to the peripheral speed PsA of the upstream side roll 6A to 1.5
  • the film 3 is conveyed at a draw ratio of 1.5 times. Stretched in the direction (ie, longitudinal). Both ends of the stretched film in the width direction were trimmed with a trimming device (not shown) to obtain a long stretched film 4.
  • This stretched film was wound while being protected by a new masking film (“FF1025” manufactured by Tredegar) to obtain a roll 5 of the stretched film.
  • FF1025 new masking film manufactured by Tredegar
  • the resin constituting the resin film used in Examples and Comparative Examples, the thickness of the resin film, the contact conditions with the solvent (solvent type, contact method, contact time), draw ratio and physical property values of the stretched film (Re, Rth, NZ coefficient, thickness) are shown in Table 1.
  • Table 1 shows the heating conditions (oven temperature) when the resin film is stretched.
  • crystalline COP means a crystalline alicyclic structure-containing polymer.
  • immersion means that the contact between the resin film and the solvent was performed by the method of immersing the resin film in the solvent, and “coating” means that the contact between the resin film and the solvent was performed. It means that the method was performed by applying a solvent to the resin film.
  • the "stretched film” means a resin film after stretching.
  • the stretching direction of the resin film may be an oblique direction or a film width direction. Further, the stretching direction may be two or more directions, and in this case, the stretching in two or more directions may be performed simultaneously or sequentially.

Abstract

A retardation film manufacturing method comprises a step for making a resin film contact with a solvent to stretch the film. Said making the resin film contact with the solvent is preferably by immersing the resin film in the solvent. The resin film is preferably in a mode such as to be made from a resin having a positive intrinsic birefringence value.

Description

位相差フィルムの製造方法Manufacturing method of retardation film
 本発明は、位相差フィルムの製造方法に関する。 The present invention relates to a method for producing a retardation film.
 従来から、位相差フィルムの製造技術が提案されている(たとえば特許文献1~2を参照)。 Conventionally, a technique for manufacturing a retardation film has been proposed (see, for example, Patent Documents 1 and 2).
国際公開第2017/065222号(対応公報:米国特許出願公開第2020/292742号明細書)International Publication No. 2017/065222 (Corresponding Gazette: US Patent Application Publication No. 2020/292742) 特開2016-212171号公報Japanese Unexamined Patent Publication No. 2016-212171
 位相差フィルムは、面内方向及び厚み方向のうち少なくとも一方にレターデーションを有する。このような位相差フィルムを得る方法としては、樹脂製のフィルムを、前記樹脂のガラス転移温度Tg以上に加熱して延伸する方法が知られている(例えば、特許文献1を参照)。しかしながら、このような方法を採る場合、樹脂製のフィルムを加熱するための装置または設備が必要であり、製造設備が大型化するという問題があった。また、消費エネルギーが大きいという問題もあった。 The retardation film has retardation in at least one of the in-plane direction and the thickness direction. As a method for obtaining such a retardation film, a method of heating a resin film to a glass transition temperature of Tg or higher of the resin and stretching the film is known (see, for example, Patent Document 1). However, when such a method is adopted, a device or equipment for heating the resin film is required, and there is a problem that the manufacturing equipment becomes large. There is also a problem that energy consumption is large.
 本発明は、製造設備を簡素化可能な位相差フィルムの製造方法を提供することを目的とする。 An object of the present invention is to provide a method for manufacturing a retardation film that can simplify the manufacturing equipment.
 本発明者は、前記の課題を解決するべく鋭意検討を行った。その結果、本発明者は、樹脂フィルムを溶剤に接触させて延伸することにより、樹脂フィルムを加熱しなくても、面内方向および厚み方向のうち少なくとも一方にレターデーションを発現させることができ、その結果、上記課題を解決できるという知見を見出し、本発明を完成させた。
 すなわち、本発明は、下記のものを含む。
The present inventor has made diligent studies to solve the above problems. As a result, the present inventor can develop the retardation in at least one of the in-plane direction and the thickness direction without heating the resin film by stretching the resin film in contact with the solvent. As a result, they have found that the above problems can be solved, and have completed the present invention.
That is, the present invention includes the following.
 〔1〕 位相差フィルムを製造する方法であって、
 樹脂フィルムを溶剤に接触させて延伸する工程を含む、位相差フィルムの製造方法。
 〔2〕 前記樹脂フィルムと前記溶剤との接触を、前記樹脂フィルムを前記溶剤に浸漬することにより行う、〔1〕に記載の位相差フィルムの製造方法。
 〔3〕前記樹脂フィルムは、固有複屈折値が正の樹脂からなる、〔1〕または〔2〕に記載の位相差フィルムの製造方法。
 〔4〕 前記樹脂フィルムは、結晶性を有する重合体を含む樹脂からなる、〔1〕~〔3〕のいずれか1項に記載の位相差フィルムの製造方法。
 〔5〕 前記結晶性を有する重合体が、ジシクロペンタジエンの開環重合体の水素化物である、〔4〕に記載の位相差フィルムの製造方法。
 〔6〕 前記溶剤が、炭化水素系の溶剤である、〔1〕~〔5〕のいずれか1項に記載の位相差フィルムの製造方法。
 〔7〕 前記延伸する工程を、前記樹脂フィルムを加熱せずに行う、〔1〕~〔6〕のいずれか1項に記載の位相差フィルムの製造方法。
[1] A method for producing a retardation film.
A method for producing a retardation film, which comprises a step of bringing a resin film into contact with a solvent and stretching the film.
[2] The method for producing a retardation film according to [1], wherein the resin film and the solvent are brought into contact with each other by immersing the resin film in the solvent.
[3] The method for producing a retardation film according to [1] or [2], wherein the resin film is made of a resin having a positive natural birefringence value.
[4] The method for producing a retardation film according to any one of [1] to [3], wherein the resin film is made of a resin containing a polymer having crystallinity.
[5] The method for producing a retardation film according to [4], wherein the crystalline polymer is a hydride of a ring-opening polymer of dicyclopentadiene.
[6] The method for producing a retardation film according to any one of [1] to [5], wherein the solvent is a hydrocarbon solvent.
[7] The method for producing a retardation film according to any one of [1] to [6], wherein the stretching step is performed without heating the resin film.
 本発明によれば、製造設備を簡素化可能な位相差フィルムの製造方法を提供できる。 According to the present invention, it is possible to provide a method for manufacturing a retardation film that can simplify the manufacturing equipment.
図1は、実施形態1の位相差フィルムの製造方法の工程1において用いうる装置を模式的に示す側面図である。FIG. 1 is a side view schematically showing an apparatus that can be used in step 1 of the method for manufacturing a retardation film according to the first embodiment. 図2は、比較例1の位相差フィルムの製造方法において用いうるロール延伸機を模式的に示す平面図である。FIG. 2 is a plan view schematically showing a roll stretching machine that can be used in the method for producing a retardation film of Comparative Example 1.
 以下、本発明について実施形態及び例示物を示して詳細に説明する。ただし、本発明は以下に示す実施形態及び例示物に限定されるものではなく、本発明の請求の範囲及びその均等の範囲を逸脱しない範囲において任意に変更して実施しうる。 Hereinafter, the present invention will be described in detail by showing embodiments and examples. However, the present invention is not limited to the embodiments and examples shown below, and can be arbitrarily modified and implemented without departing from the scope of claims of the present invention and the equivalent scope thereof.
 以下の説明において、フィルムの面内レターデーションReは、別に断らない限り、「Re=(nx-ny)×d」で表される値である。また、フィルムの面内方向の複屈折は、別に断らない限り、「(nx-ny)」で表される値であり、よって「Re/d」で表される。さらに、フィルムの厚み方向のレターデーションRthは、別に断らない限り、「Rth=[{(nx+ny)/2}-nz]×d」で表される値である。また、フィルムの厚み方向の複屈折は、別に断らない限り、「[{(nx+ny)/2}-nz]」で表される値であり、よって「Rth/d」で表される。さらに、フィルムのNZ係数は、別に断らない限り、「(nx-nz)/(nx-ny)」で表される値であり、よって「0.5+Rth/Re」で表される。nxは、フィルムの厚み方向に垂直な方向(面内方向)であって最大の屈折率を与える方向の屈折率を表す。nyは、フィルムの前記面内方向であってnxの方向に直交する方向の屈折率を表す。nzは、フィルムの厚み方向の屈折率を表す。dは、フィルムの厚みを表す。測定波長は、別に断らない限り、590nmである。 In the following description, the in-plane retardation Re of the film is a value represented by "Re = (nx-ny) x d" unless otherwise specified. Further, the birefringence in the in-plane direction of the film is a value represented by "(nx-ny)", and is therefore represented by "Re / d", unless otherwise specified. Further, the retardation Rth in the thickness direction of the film is a value represented by “Rth = [{(nx + ny) / 2} -nz] × d” unless otherwise specified. Further, the birefringence in the thickness direction of the film is a value represented by "[{(nx + ny) / 2} -nz]" unless otherwise specified, and is therefore represented by "Rth / d". Further, the NZ coefficient of the film is a value represented by "(nx-nz) / (nx-ny)", and is therefore represented by "0.5 + Rth / Re", unless otherwise specified. nx represents the refractive index in the direction perpendicular to the thickness direction of the film (in-plane direction) and in the direction in which the maximum refractive index is given. ny represents the refractive index in the in-plane direction of the film and orthogonal to the nx direction. nz represents the refractive index in the thickness direction of the film. d represents the thickness of the film. The measurement wavelength is 590 nm unless otherwise specified.
 以下の説明において、固有複屈折が正の材料とは、別に断らない限り、延伸方向の屈折率がそれに垂直な方向の屈折率よりも大きくなる材料を意味する。また、固有複屈折が負の材料とは、別に断らない限り、延伸方向の屈折率がそれに垂直な方向の屈折率よりも小さくなる材料を意味する。固有複屈折の値は誘電率分布から計算することができる。 In the following description, a material having a positive intrinsic birefringence means a material in which the refractive index in the stretching direction is larger than the refractive index in the direction perpendicular to it, unless otherwise specified. Further, a material having a negative intrinsic birefringence means a material in which the refractive index in the stretching direction is smaller than the refractive index in the direction perpendicular to the refractive index, unless otherwise specified. The value of the intrinsic birefringence can be calculated from the permittivity distribution.
 以下の説明において、長尺のフィルムの斜め方向とは、別に断らない限り、そのフィルムの面内方向であって、そのフィルムの幅方向に平行でもなく垂直でもない方向を示す。 In the following description, the diagonal direction of a long film indicates an in-plane direction of the film, which is neither parallel nor perpendicular to the width direction of the film, unless otherwise specified.
 以下の説明において、「長尺」のフィルムとは、幅に対して、5倍以上の長さを有するフィルムをいい、好ましくは10倍若しくはそれ以上の長さを有し、具体的にはロール状に巻き取られて保管又は運搬される程度の長さを有するフィルムをいう。長さの上限に特段の制限は無いが、通常、幅に対して10万倍以下である。 In the following description, the "long" film means a film having a length of 5 times or more, preferably 10 times or more, and specifically a roll. A film that has a length that allows it to be rolled up and stored or transported. There is no particular limitation on the upper limit of the length, but it is usually 100,000 times or less with respect to the width.
 以下の説明において、長尺のフィルムの長手方向は、通常は製造ラインにおけるフィルム搬送方向と平行である。また、MD方向(mashine direction)は、製造ラインにおけるフィルムの搬送方向であり、通常は長尺のフィルムの長手方向と平行である。さらに、TD方向(transverse direction)は、フィルム面に平行な方向であって、前記MD方向に垂直な方向であり、通常は長尺のフィルムの幅方向と平行である。 In the following description, the longitudinal direction of the long film is usually parallel to the film transport direction in the production line. Further, the MD direction (machine direction) is the transport direction of the film in the production line, and is usually parallel to the longitudinal direction of the long film. Further, the TD direction (transverse direction) is a direction parallel to the film surface, a direction perpendicular to the MD direction, and usually parallel to the width direction of a long film.
 以下の説明において、要素の方向が「平行」、「垂直」及び「直交」とは、別に断らない限り、本発明の効果を損ねない範囲内、例えば±5°の範囲内での誤差を含んでいてもよい。 In the following description, the directions of elements "parallel", "vertical" and "orthogonal" include errors within a range that does not impair the effect of the present invention, for example, within a range of ± 5 °, unless otherwise specified. You may be.
 [本発明の位相差フィルムの製造方法の概要]
 本発明の位相差フィルムの製造方法は、樹脂フィルムを溶剤に接触させて延伸する工程を含む。
[Overview of the method for producing a retardation film of the present invention]
The method for producing a retardation film of the present invention includes a step of bringing a resin film into contact with a solvent and stretching the film.
 本発明の位相差フィルムの製造方法では、位相差フィルムの材料となる樹脂フィルムを溶剤に接触させて延伸する工程を含み、当該工程を含むことにより、樹脂フィルムを加熱しなくても、レターデーションを発現させることができる。その結果、本発明によれば、樹脂フィルムを加熱する装置は不要であるので、製造設備を簡素化可能な位相差フィルムの製造方法を提供できる。 The method for producing a retardation film of the present invention includes a step of bringing a resin film, which is a material of the retardation film, into contact with a solvent and stretching the film. Can be expressed. As a result, according to the present invention, since an apparatus for heating the resin film is not required, it is possible to provide a method for producing a retardation film that can simplify the production equipment.
 [実施形態1]
 以下、本発明の実施形態1に係る位相差フィルムの製造方法を、図1を参照しつつ具体的に説明する。図1は、実施形態1の位相差フィルムの製造方法において用いうる装置を模式的に示す側面図である。
[Embodiment 1]
Hereinafter, the method for producing a retardation film according to the first embodiment of the present invention will be specifically described with reference to FIG. FIG. 1 is a side view schematically showing an apparatus that can be used in the method for producing a retardation film according to the first embodiment.
 [本実施形態の位相差フィルムの製造方法の概要]
 本実施形態においては、長尺の樹脂フィルムを用意し、当該樹脂フィルムにマスキングフィルムを貼りあわせながらロールに巻き取ることにより、樹脂フィルムのロール111を得る。次に、図1に示すように、樹脂フィルムのロール111から繰り出したフィルム11からマスキングフィルム12を剥離し、長尺の樹脂フィルム15をA1で示す方向に搬送する。マスキングフィルム12は、フィルム11を厚み方向から挟む位置に配置されたニップロール101A,101Bで押圧しながらロール112に巻き取られる。
[Overview of the method for producing a retardation film of the present embodiment]
In the present embodiment, a long resin film is prepared, and the roll 111 of the resin film is obtained by winding the masking film on the roll while adhering the masking film to the resin film. Next, as shown in FIG. 1, the masking film 12 is peeled off from the film 11 unwound from the roll 111 of the resin film, and the long resin film 15 is conveyed in the direction indicated by A1. The masking film 12 is wound around the roll 112 while being pressed by the nip rolls 101A and 101B arranged at positions sandwiching the film 11 from the thickness direction.
 次に、樹脂フィルム15を、溶剤で満たされた浴槽102に通して接触させながら、樹脂フィルム15を延伸する。本実施形態では、フィルム搬送方向における上流側に配置されるニップロール101A,101Bと、フィルム搬送方向における下流側に配置されるニップロール104A,104Bとの周速差により、樹脂フィルム15をフィルム搬送方向に延伸する。樹脂フィルム15を溶剤と接触させながら延伸することで、樹脂フィルムを加熱しなくても、フィルムの面内方向および厚み方向の少なくとも一方にレターデーションを発現させることができる。よって、このようにして得られた延伸フィルム10は、そのまま位相差フィルムとして用いうる。 Next, the resin film 15 is stretched while being brought into contact with the resin film 15 through a bathtub 102 filled with a solvent. In the present embodiment, the resin film 15 is moved in the film transport direction due to the difference in peripheral speed between the nip rolls 101A and 101B arranged on the upstream side in the film transport direction and the nip rolls 104A and 104B arranged on the downstream side in the film transport direction. Stretch. By stretching the resin film 15 while contacting it with a solvent, it is possible to develop retardation in at least one of the in-plane direction and the thickness direction of the film without heating the resin film. Therefore, the stretched film 10 thus obtained can be used as it is as a retardation film.
 このようにして得られた延伸フィルム10は、ロール113から繰り出したマスキングフィルム13を貼りあわせながら巻き取られる。これにより、延伸フィルムのロール110が得られる。延伸フィルム10とマスキングフィルム13との貼合は、フィルムを厚み方向から挟む位置に配置されたニップロール104A,104Bで押圧しながら行う。 The stretched film 10 thus obtained is wound while adhering the masking film 13 unwound from the roll 113. As a result, the roll 110 of the stretched film is obtained. The stretched film 10 and the masking film 13 are bonded while being pressed by nip rolls 104A and 104B arranged at positions sandwiching the film from the thickness direction.
 本実施形態の位相差フィルムの製造方法は、樹脂フィルムを溶剤に接触させて延伸する工程を含む。以下の説明においては、当該工程を「工程1」と呼ぶことがある。 The method for producing a retardation film of the present embodiment includes a step of bringing a resin film into contact with a solvent and stretching the film. In the following description, the process may be referred to as "process 1".
 [工程1]
 工程1は、樹脂フィルムを溶剤に接触させて延伸する工程である。樹脂フィルムを溶剤に接触させて延伸することにより、樹脂フィルムにおいて、レターデーションが発現しうる。このような効果が得られるメカニズムは以下のように推測される。ただし、本発明の技術的範囲は、下記の仕組みによって制限されるものではない。
[Step 1]
Step 1 is a step of bringing the resin film into contact with a solvent and stretching it. By bringing the resin film into contact with a solvent and stretching it, retardation can be developed in the resin film. The mechanism by which such an effect is obtained is presumed as follows. However, the technical scope of the present invention is not limited by the following mechanism.
 樹脂フィルムを、溶剤と接触させると、その溶剤が樹脂フィルム中に浸入する。浸入した溶剤の作用により、フィルム中の重合体の分子にミクロブラウン運動が生じ、フィルム中の重合体の分子が配向する。ここで、樹脂フィルムの表面積は、主表面であるオモテ面及びウラ面が大きい。よって、溶剤の浸入速度は、前記のオモテ面又はウラ面を通った厚み方向への浸入速度が、大きい。そうすると、前記の重合体の分子の配向は、当該重合体の分子が厚み方向に配向するように進行しうる。
 そして、分子が厚み方向に配向した状態の樹脂フィルムを延伸すると、当該フィルム中の分子の延伸方向への配向が進行して、配向の程度が大きくなる。このように分子の配向の程度が大きくなると、フィルムの複屈折が変化し、ひいてはレターデーションが大きくなる。
When the resin film is brought into contact with a solvent, the solvent penetrates into the resin film. Due to the action of the infiltrated solvent, micro-Brownian motion occurs in the molecules of the polymer in the film, and the molecules of the polymer in the film are oriented. Here, the surface area of the resin film is large on the front surface and the back surface, which are the main surfaces. Therefore, as for the infiltration rate of the solvent, the infiltration rate in the thickness direction through the front surface or the back surface is high. Then, the orientation of the molecules of the polymer can proceed so that the molecules of the polymer are oriented in the thickness direction.
When the resin film in which the molecules are oriented in the thickness direction is stretched, the molecules in the film are oriented in the stretching direction, and the degree of orientation is increased. As the degree of molecular orientation increases in this way, the birefringence of the film changes, which in turn increases the retardation.
 工程1は図1に示す装置100により行いうる。装置100は、フィルム搬送方向における上流側に配置される上流側ニップロール101A及び101B、フィルム搬送方向における下流側に配置される下流側ニップロール104A及び104B、ならびに、樹脂フィルム15と溶剤とを接触させる浴槽102を備える。 Step 1 can be performed by the device 100 shown in FIG. The device 100 includes upstream nip rolls 101A and 101B arranged on the upstream side in the film transport direction, downstream nip rolls 104A and 104B arranged on the downstream side in the film transport direction, and a bathtub for bringing the resin film 15 into contact with a solvent. 102 is provided.
 工程1は、樹脂フィルムを溶剤に接触させる工程1Aと、樹脂フィルムを延伸する工程1Bと、を含む。本実施形態は、工程1Bを行う間に工程1Aを行う態様である。即ち、樹脂フィルムの経路のうち、延伸により樹脂フィルムに張力が負荷されている区域内で、樹脂フィルムを溶剤に接触させている。しかしながら、本発明の位相差フィルムの製造方法は、これに限定されない。本発明の製造方法は、工程1Bの一部が工程1Aと重なっている態様、例えば、樹脂フィルムを溶剤に接触させる工程1Aの途中から、樹脂フィルムを延伸する工程1Bを開始する態様を含む。また、本発明の製造方法は、樹脂フィルムを溶剤と接触させる工程1Aを行った後、樹脂フィルムに溶剤が付着及び/又は含浸した状態で、樹脂フィルムを延伸する工程1Bを行う態様も含む。 Step 1 includes a step 1A of bringing the resin film into contact with a solvent and a step 1B of stretching the resin film. This embodiment is an embodiment in which step 1A is performed while step 1B is performed. That is, the resin film is brought into contact with the solvent in the area of the path of the resin film in which tension is applied to the resin film due to stretching. However, the method for producing a retardation film of the present invention is not limited to this. The production method of the present invention includes a mode in which a part of the step 1B overlaps with the step 1A, for example, a mode in which the step 1B for stretching the resin film is started from the middle of the step 1A in which the resin film is brought into contact with the solvent. The production method of the present invention also includes an embodiment in which the step 1A of bringing the resin film into contact with the solvent is performed, and then the step 1B of stretching the resin film is performed with the resin adhered and / or impregnated with the solvent.
 [工程1A]
 工程1Aは、樹脂フィルムを溶剤に接触させる工程である。
[Step 1A]
Step 1A is a step of bringing the resin film into contact with the solvent.
 樹脂フィルムと溶剤との接触方法としては、例えば、樹脂フィルムに溶剤をスプレーするスプレー法;樹脂フィルムに溶剤を塗布する塗布法;樹脂フィルムを溶剤に浸漬する浸漬法;などが挙げられる。これらの方法のうち、樹脂フィルムの厚みが大きい場合でも、厚み方向のレターデーションを発現させやすいという観点、および連続的な接触を容易に行えるという観点から、浸漬法が好ましい。図1においては、浸漬法を示している。 Examples of the contact method between the resin film and the solvent include a spray method of spraying the solvent on the resin film; a coating method of applying the solvent to the resin film; and a dipping method of immersing the resin film in the solvent. Of these methods, the dipping method is preferable from the viewpoint that retardation in the thickness direction can be easily expressed even when the resin film has a large thickness, and continuous contact can be easily performed. FIG. 1 shows a dipping method.
 [樹脂フィルム]
 樹脂フィルムは、位相差フィルムを製造する材料となるフィルムであり、樹脂により構成されうる。樹脂フィルムを構成する樹脂は重合体を含む。
[Resin film]
The resin film is a film that is a material for producing a retardation film, and may be made of a resin. The resin constituting the resin film contains a polymer.
 樹脂フィルムを構成する樹脂は、固有複屈折値が正の樹脂であることが好ましい。固有複屈折値が正の樹脂とは、別に断らない限り、延伸方向の屈折率がそれに垂直な方向の屈折率よりも大きくなる樹脂を意味する。固有複屈折の値は誘電率分布から計算することができる。 The resin constituting the resin film is preferably a resin having a positive natural birefringence value. A resin having a positive intrinsic birefringence value means a resin in which the refractive index in the stretching direction is larger than the refractive index in the direction perpendicular to the refractive index, unless otherwise specified. The value of the intrinsic birefringence can be calculated from the permittivity distribution.
 また、樹脂フィルムを構成する樹脂としては、結晶性を有する重合体を含む樹脂が好ましい。「結晶性を有する重合体」とは、融点Tmを有する(すなわち、示差走査熱量計(DSC)で融点を観測することができる)重合体を表す。以下の説明において、結晶性を有する重合体を、「結晶性重合体」ということがある。また、結晶性重合体を含む樹脂を「結晶性樹脂」ということがある。この結晶性樹脂は、好ましくは熱可塑性樹脂である。 Further, as the resin constituting the resin film, a resin containing a polymer having crystallinity is preferable. "Crystallinity polymer" refers to a polymer having a melting point Tm (ie, the melting point can be observed with a differential scanning calorimetry (DSC)). In the following description, a polymer having crystallization may be referred to as a "crystalline polymer". Further, a resin containing a crystalline polymer may be referred to as a "crystalline resin". This crystalline resin is preferably a thermoplastic resin.
 本発明において、好ましくは、樹脂フィルムは固有複屈折値が正の樹脂からなるフィルムであり、より好ましくは当該樹脂が結晶性重合体を含む樹脂である。 In the present invention, the resin film is preferably a film made of a resin having a positive natural birefringence value, and more preferably the resin is a resin containing a crystalline polymer.
 [結晶性重合体]
 結晶性重合体は、脂環式構造を含有することが好ましい。脂環式構造を含有する結晶性重合体を用いることにより、得られる位相差フィルムの機械特性、耐熱性、透明性、低吸湿性、寸法安定性及び軽量性を良好にできる。脂環式構造を含有する重合体とは、分子内に脂環式構造を含有する重合体を表す。このような脂環式構造を含有する重合体は、例えば、環状オレフィンを単量体として用いた重合反応によって得られうる重合体又はその水素化物でありうる。
[Crystalline polymer]
The crystalline polymer preferably contains an alicyclic structure. By using a crystalline polymer containing an alicyclic structure, the mechanical properties, heat resistance, transparency, low hygroscopicity, dimensional stability and light weight of the obtained retardation film can be improved. The polymer containing an alicyclic structure represents a polymer containing an alicyclic structure in the molecule. The polymer containing such an alicyclic structure can be, for example, a polymer obtained by a polymerization reaction using a cyclic olefin as a monomer or a hydride thereof.
 脂環式構造としては、例えば、シクロアルカン構造及びシクロアルケン構造が挙げられる。これらの中でも、熱安定性などの特性に優れる位相差フィルムが得られ易いことから、シクロアルカン構造が好ましい。1つの脂環式構造に含まれる炭素原子の数は、好ましくは4個以上、より好ましくは5個以上であり、好ましくは30個以下、より好ましくは20個以下、特に好ましくは15個以下である。1つの脂環式構造に含まれる炭素原子の数が上記範囲内にあることで、機械的強度、耐熱性、及び成形性が高度にバランスされる。 Examples of the alicyclic structure include a cycloalkane structure and a cycloalkene structure. Among these, a cycloalkane structure is preferable because it is easy to obtain a retardation film having excellent properties such as thermal stability. The number of carbon atoms contained in one alicyclic structure is preferably 4 or more, more preferably 5 or more, preferably 30 or less, more preferably 20 or less, and particularly preferably 15 or less. be. When the number of carbon atoms contained in one alicyclic structure is within the above range, mechanical strength, heat resistance, and moldability are highly balanced.
 脂環式構造を含有する結晶性重合体において、全ての構造単位に対する脂環式構造を含有する構造単位の割合は、好ましくは30重量%以上、より好ましくは50重量%以上、特に好ましくは70重量%以上である。脂環式構造を含有する構造単位の割合を前記のように多くすることにより、耐熱性を高めることができる。全ての構造単位に対する脂環式構造を含有する構造単位の割合は、100重量%以下としうる。また、脂環式構造を含有する結晶性重合体において、脂環式構造を含有する構造単位以外の残部は、格別な限定はなく、使用目的に応じて適宜選択しうる。 In the crystalline polymer containing an alicyclic structure, the ratio of the structural units containing the alicyclic structure to all the structural units is preferably 30% by weight or more, more preferably 50% by weight or more, and particularly preferably 70. Weight% or more. Heat resistance can be improved by increasing the proportion of structural units containing an alicyclic structure as described above. The ratio of structural units containing an alicyclic structure to all structural units may be 100% by weight or less. Further, in the crystalline polymer containing an alicyclic structure, the remainder other than the structural unit containing the alicyclic structure is not particularly limited and may be appropriately selected depending on the purpose of use.
 脂環式構造を含有する結晶性重合体としては、例えば、下記の重合体(α)~重合体(δ)が挙げられる。これらの中でも、耐熱性に優れる位相差フィルムが得られ易いことから、重合体(β)が好ましい。
 重合体(α):環状オレフィン単量体の開環重合体であって、結晶性を有するもの。
 重合体(β):重合体(α)の水素化物であって、結晶性を有するもの。
 重合体(γ):環状オレフィン単量体の付加重合体であって、結晶性を有するもの。
 重合体(δ):重合体(γ)の水素化物であって、結晶性を有するもの。
Examples of the crystalline polymer containing an alicyclic structure include the following polymers (α) to (δ). Among these, the polymer (β) is preferable because it is easy to obtain a retardation film having excellent heat resistance.
Polymer (α): A ring-opening polymer of a cyclic olefin monomer having crystallinity.
Polymer (β): A hydride of the polymer (α) having crystallinity.
Polymer (γ): An addition polymer of a cyclic olefin monomer having crystallinity.
Polymer (δ): A hydride of the polymer (γ) that has crystallinity.
 具体的には、脂環式構造を含有する結晶性重合体としては、ジシクロペンタジエンの開環重合体であって結晶性を有するもの、及び、ジシクロペンタジエンの開環重合体の水素化物であって結晶性を有するものがより好ましい。中でも、ジシクロペンタジエンの開環重合体の水素化物であって結晶性を有するものが特に好ましい。ここで、ジシクロペンタジエンの開環重合体とは、全構造単位に対するジシクロペンタジエン由来の構造単位の割合が、通常50重量%以上、好ましくは70重量%以上、より好ましくは90重量%以上、さらに好ましくは100重量%の重合体をいう。 Specifically, the crystalline polymer containing an alicyclic structure includes a ring-opening polymer of dicyclopentadiene having crystallinity and a hydride of the ring-opening polymer of dicyclopentadiene. It is more preferable that it is present and has crystallinity. Of these, a hydride of a ring-opening polymer of dicyclopentadiene, which has crystallinity, is particularly preferable. Here, in the ring-opening polymer of dicyclopentadiene, the ratio of the structural unit derived from dicyclopentadiene to all the structural units is usually 50% by weight or more, preferably 70% by weight or more, more preferably 90% by weight or more. More preferably, it refers to a polymer of 100% by weight.
 ジシクロペンタジエンの開環重合体の水素化物は、ラセモ・ダイアッドの割合が高いことが好ましい。具体的には、ジシクロペンタジエンの開環重合体の水素化物における繰り返し単位のラセモ・ダイアッドの割合は、好ましくは51%以上、より好ましくは70%以上、特に好ましくは85%以上である。ラセモ・ダイアッドの割合が高いことは、シンジオタクチック立体規則性が高いことを表す。よって、ラセモ・ダイアッドの割合が高いほど、ジシクロペンタジエンの開環重合体の水素化物の融点が高い傾向がある。
 ラセモ・ダイアッドの割合は、後述する実施例に記載の13C-NMRスペクトル分析に基づいて決定できる。
The hydride of the ring-opening polymer of dicyclopentadiene preferably has a high proportion of racemic diad. Specifically, the proportion of the repeating unit racemic diad in the hydride of the ring-opening polymer of dicyclopentadiene is preferably 51% or more, more preferably 70% or more, and particularly preferably 85% or more. A high proportion of racemic diads indicates a high degree of syndiotactic stereoregularity. Therefore, the higher the proportion of racemic diad, the higher the melting point of the hydride of the ring-opening polymer of dicyclopentadiene tends to be.
The proportion of racemo diads can be determined based on the 13 C-NMR spectral analysis described in Examples below.
 上記重合体(α)~重合体(δ)としては、国際公開第2018/062067号に開示されている製造方法により得られる重合体を用いうる。 As the polymer (α) to the polymer (δ), a polymer obtained by the production method disclosed in International Publication No. 2018/062067 can be used.
 結晶性重合体の融点Tmは、好ましくは200℃以上、より好ましくは230℃以上であり、好ましくは290℃以下である。このような融点Tmを有する結晶性重合体を用いることによって、成形性と耐熱性とのバランスに更に優れた位相差フィルムを得ることができる。 The melting point Tm of the crystalline polymer is preferably 200 ° C. or higher, more preferably 230 ° C. or higher, and preferably 290 ° C. or lower. By using a crystalline polymer having such a melting point Tm, it is possible to obtain a retardation film having a better balance between moldability and heat resistance.
 通常、結晶性重合体は、ガラス転移温度Tgを有する。結晶性重合体の具体的なガラス転移温度Tgは、特に限定されないが、通常は80℃以上、通常170℃以下である。結晶性重合体のガラス転移温度は、好ましくは85℃以上、より好ましくは90℃以上であり、好ましくは150℃以下、より好ましくは130℃以下である。 Normally, the crystalline polymer has a glass transition temperature Tg. The specific glass transition temperature Tg of the crystalline polymer is not particularly limited, but is usually 80 ° C. or higher and usually 170 ° C. or lower. The glass transition temperature of the crystalline polymer is preferably 85 ° C. or higher, more preferably 90 ° C. or higher, preferably 150 ° C. or lower, and more preferably 130 ° C. or lower.
 重合体のガラス転移温度Tg及び融点Tmは、以下の方法によって測定できる。まず、重合体を、加熱によって融解させ、融解した重合体をドライアイスで急冷する。続いて、この重合体を試験体として用いて、示差走査熱量計(DSC)を用いて、10℃/分の昇温速度(昇温モード)で、重合体のガラス転移温度Tg及び融点Tmを測定しうる。 The glass transition temperature Tg and melting point Tm of the polymer can be measured by the following methods. First, the polymer is melted by heating, and the melted polymer is rapidly cooled with dry ice. Subsequently, using this polymer as a test piece, the glass transition temperature Tg and melting point Tm of the polymer were measured at a heating rate of 10 ° C./min (heating mode) using a differential scanning calorimeter (DSC). Can be measured.
 結晶性重合体の重量平均分子量(Mw)は、好ましくは1,000以上、より好ましくは2,000以上であり、好ましくは1,000,000以下、より好ましくは500,000以下である。このような重量平均分子量を有する結晶性重合体は、成形加工性と耐熱性とのバランスに優れる。 The weight average molecular weight (Mw) of the crystalline polymer is preferably 1,000 or more, more preferably 2,000 or more, preferably 1,000,000 or less, and more preferably 500,000 or less. A crystalline polymer having such a weight average molecular weight has an excellent balance between molding processability and heat resistance.
 結晶性重合体の分子量分布(Mw/Mn)は、好ましくは1.0以上、より好ましくは1.5以上であり、好ましくは4.0以下、より好ましくは3.5以下である。ここで、Mnは数平均分子量を表す。このような分子量分布を有する結晶性重合体は、成形加工性に優れる。 The molecular weight distribution (Mw / Mn) of the crystalline polymer is preferably 1.0 or more, more preferably 1.5 or more, preferably 4.0 or less, and more preferably 3.5 or less. Here, Mn represents a number average molecular weight. A crystalline polymer having such a molecular weight distribution is excellent in molding processability.
 重合体の重量平均分子量(Mw)及び分子量分布(Mw/Mn)は、テトラヒドロフランを展開溶剤とするゲル・パーミエーション・クロマトグラフィー(GPC)により、ポリスチレン換算値として測定しうる。 The weight average molecular weight (Mw) and molecular weight distribution (Mw / Mn) of the polymer can be measured as polystyrene-equivalent values by gel permeation chromatography (GPC) using tetrahydrofuran as a developing solvent.
 結晶性重合体は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。 As the crystalline polymer, one type may be used alone, or two or more types may be used in combination at an arbitrary ratio.
 結晶性樹脂における結晶性重合体の割合は、好ましくは50重量%以上、より好ましくは70重量%以上、特に好ましくは90重量%以上である。結晶性重合体の割合が前記範囲の下限値以上である場合、位相差フィルムの複屈折の発現性及び耐熱性を高めることができる。結晶性重合体の割合の上限は、100重量%以下でありうる。 The proportion of the crystalline polymer in the crystalline resin is preferably 50% by weight or more, more preferably 70% by weight or more, and particularly preferably 90% by weight or more. When the ratio of the crystalline polymer is not more than the lower limit of the above range, the birefringence expression and heat resistance of the retardation film can be enhanced. The upper limit of the proportion of the crystalline polymer can be 100% by weight or less.
 結晶性樹脂は、結晶性重合体に加えて、任意の成分を含みうる。任意の成分としては、例えば、フェノール系酸化防止剤、リン系酸化防止剤、イオウ系酸化防止剤等の酸化防止剤;ヒンダードアミン系光安定剤等の光安定剤;石油系ワックス、フィッシャートロプシュワックス、ポリアルキレンワックス等のワックス;ソルビトール系化合物、有機リン酸の金属塩、有機カルボン酸の金属塩、カオリン及びタルク等の核剤;ジアミノスチルベン誘導体、クマリン誘導体、アゾール系誘導体(例えば、ベンゾオキサゾール誘導体、ベンゾトリアゾール誘導体、ベンゾイミダゾール誘導体、及びベンゾチアソール誘導体)、カルバゾール誘導体、ピリジン誘導体、ナフタル酸誘導体、及びイミダゾロン誘導体等の蛍光増白剤;ベンゾフェノン系紫外線吸収剤、サリチル酸系紫外線吸収剤、ベンゾトリアゾール系紫外線吸収剤等の紫外線吸収剤;タルク、シリカ、炭酸カルシウム、ガラス繊維等の無機充填材;着色剤;難燃剤;難燃助剤;帯電防止剤;可塑剤;近赤外線吸収剤;滑剤;フィラー;及び、軟質重合体等の、結晶性重合体以外の任意の重合体;などが挙げられる。任意の成分は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。 The crystalline resin may contain any component in addition to the crystalline polymer. Optional components include, for example, antioxidants such as phenolic antioxidants, phosphorus antioxidants, sulfur antioxidants; light stabilizers such as hindered amine light stabilizers; petroleum waxes, Fishertroph waxes, etc. Waxes such as polyalkylene wax; sorbitol compounds, metal salts of organic phosphoric acid, metal salts of organic carboxylic acids, nucleating agents such as kaolin and talc; diaminostilben derivatives, coumarin derivatives, azole derivatives (eg, benzoxazole derivatives, etc. Fluorescent whitening agents such as benzotriazole derivatives, benzoimidazole derivatives, and benzothiazole derivatives), carbazole derivatives, pyridine derivatives, naphthalic acid derivatives, and imidazolone derivatives; benzophenone-based ultraviolet absorbers, salicylic acid-based ultraviolet absorbers, benzotriazole-based UV absorbers such as UV absorbers; Inorganic fillers such as talc, silica, calcium carbonate, glass fibers; Colorants; Flame retardants; Flame retardant aids; Antistatic agents; Plastics; Near infrared absorbers; Lubricants; Fillers ; And any polymer other than the crystalline polymer, such as a soft polymer; and the like. As the arbitrary component, one kind may be used alone, or two or more kinds may be used in combination at an arbitrary ratio.
 樹脂フィルムに含まれる樹脂が結晶性樹脂である場合、工程1を行う前の樹脂フィルムに含まれる結晶性重合体の結晶化度は、小さいことが好ましい。具体的な結晶化度は、好ましくは10%未満、より好ましくは5%未満、特に好ましくは3%未満である。溶剤と接触させる前の樹脂フィルムに含まれる結晶性重合体の結晶化度が低いと、溶剤との接触によって多くの結晶性重合体の分子を厚み方向に配向させられるので、広い範囲でのレターデーションの調整が可能となる。 When the resin contained in the resin film is a crystalline resin, the crystallinity of the crystalline polymer contained in the resin film before the step 1 is preferably small. The specific crystallinity is preferably less than 10%, more preferably less than 5%, and particularly preferably less than 3%. If the crystallinity of the crystalline polymer contained in the resin film before contact with the solvent is low, many molecules of the crystalline polymer can be oriented in the thickness direction by contact with the solvent. The substrate can be adjusted.
 工程1を行う前の樹脂フィルムの面内方向のレターデーションReは、好ましくは20nm以下、より好ましくは10nm以下であり、特に好ましくは0である。樹脂フィルムの厚み方向のレターデーションRthは、好ましくは20nm以下、より好ましくは10nm以下であり、特に好ましくは0である。工程1を行う前の樹脂フィルムのReおよびRthが、それぞれ上記範囲であることにより、工程1を行った後の樹脂フィルムにおいて、レターデーション調整しやすくなる。 The in-plane retardation Re of the resin film before performing step 1 is preferably 20 nm or less, more preferably 10 nm or less, and particularly preferably 0. The retardation Rth in the thickness direction of the resin film is preferably 20 nm or less, more preferably 10 nm or less, and particularly preferably 0. When the Re and Rth of the resin film before the step 1 are in the above ranges, the retardation can be easily adjusted in the resin film after the step 1.
 溶剤と接触させる前の樹脂フィルムは、溶剤の含有量が小さいことが好ましく、溶剤を含まないことがより好ましい。樹脂フィルムの重量100%に対する当該樹脂フィルムに含まれる溶剤の比率(溶剤含有率)は、好ましくは1%以下、より好ましくは0.5%以下、特に好ましくは0.1%以下であり、理想的には0.0%である。溶剤と接触させる前の樹脂フィルムに含まれる溶剤の量が少ないことにより、溶剤との接触によって多くの重合体の分子を厚み方向に配向させることができるので、広い範囲でのレターデーションの調整が可能となる。樹脂フィルムの溶剤含有率は、密度によって測定しうる。 The resin film before contact with the solvent preferably has a small solvent content, and more preferably does not contain the solvent. The ratio of the solvent contained in the resin film to 100% by weight of the resin film (solvent content) is preferably 1% or less, more preferably 0.5% or less, and particularly preferably 0.1% or less, which is ideal. The target is 0.0%. Since the amount of the solvent contained in the resin film before the contact with the solvent is small, many polymer molecules can be oriented in the thickness direction by the contact with the solvent, so that the retardation can be adjusted in a wide range. It will be possible. The solvent content of the resin film can be measured by the density.
 樹脂フィルムの厚みは、製造しようとする位相差フィルムの厚みに応じて設定することが好ましい。通常、溶剤と接触させることにより、フィルムの厚みは大きくなる。他方、延伸を行うことにより、フィルムの厚みは小さくなる。したがって、溶剤との接触及び延伸を行う工程1における厚みの変化を考慮して、樹脂フィルムの厚みを設定してもよい。 The thickness of the resin film is preferably set according to the thickness of the retardation film to be manufactured. Usually, contact with a solvent increases the thickness of the film. On the other hand, by stretching, the thickness of the film becomes smaller. Therefore, the thickness of the resin film may be set in consideration of the change in the thickness in the step 1 of contacting and stretching with the solvent.
 樹脂フィルムとしては長尺の樹脂フィルムを用いることが好ましい。これにより、ロール・トゥ・ロール法による位相差フィルムの連続的な製造が可能となるので、位相差フィルムの生産性を効果的に高めることができる。 It is preferable to use a long resin film as the resin film. As a result, the retardation film can be continuously produced by the roll-to-roll method, so that the productivity of the retardation film can be effectively increased.
 樹脂フィルムを製造する方法に制限は無い。溶剤を含まない樹脂フィルムが得られることから、射出成形法、押出成形法、プレス成形法、インフレーション成形法、ブロー成形法、カレンダー成形法、注型成形法、圧縮成形法等の樹脂成型法が好ましい。これらの中でも、厚みの制御が容易であることから、押出成形法が好ましい。 There are no restrictions on the method of manufacturing the resin film. Since a resin film containing no solvent can be obtained, resin molding methods such as injection molding method, extrusion molding method, press molding method, inflation molding method, blow molding method, calendar molding method, casting molding method, and compression molding method can be used. preferable. Among these, the extrusion molding method is preferable because the thickness can be easily controlled.
 例えば、結晶性重合体を含む樹脂からなる樹脂フィルムを、押出成形法により製造する場合、その製造条件は、好ましくは下記の通りである。シリンダー温度(溶融樹脂温度)は、好ましくはTm以上、より好ましくは「Tm+20℃」以上であり、好ましくは「Tm+100℃」以下、より好ましくは「Tm+50℃」以下である。また、フィルム状に押し出された溶融樹脂が最初に接触する冷却体は特に限定されないが、通常はキャストロールを用いる。このキャストロール温度は、好ましくは「Tg-50℃」以上であり、好ましくは「Tg+70℃」以下、より好ましくは「Tg+40℃」以下である。さらに、冷却ロール温度は、好ましくは「Tg-70℃」以上、より好ましくは「Tg-50℃」以上であり、好ましくは「Tg+60℃」以下、より好ましくは「Tg+30℃」以下である。このような条件で樹脂フィルムを製造する場合、厚み1μm~1mmの原反フィルムを容易に製造できる。ここで、「Tm」は、結晶性重合体の融点を表し、「Tg」は結晶性重合体のガラス転移温度を表す。 For example, when a resin film made of a resin containing a crystalline polymer is produced by an extrusion molding method, the production conditions are preferably as follows. The cylinder temperature (molten resin temperature) is preferably Tm or more, more preferably "Tm + 20 ° C." or more, preferably "Tm + 100 ° C." or less, and more preferably "Tm + 50 ° C." or less. Further, the cooling body that the molten resin extruded into a film comes into contact with first is not particularly limited, but a cast roll is usually used. The cast roll temperature is preferably "Tg-50 ° C." or higher, preferably "Tg + 70 ° C." or lower, and more preferably "Tg + 40 ° C." or lower. Further, the cooling roll temperature is preferably "Tg-70 ° C." or higher, more preferably "Tg-50 ° C." or higher, preferably "Tg + 60 ° C." or lower, and more preferably "Tg + 30 ° C." or lower. When a resin film is produced under such conditions, a raw film having a thickness of 1 μm to 1 mm can be easily produced. Here, "Tm" represents the melting point of the crystalline polymer, and "Tg" represents the glass transition temperature of the crystalline polymer.
 本実施形態では、長尺の樹脂フィルムにマスキングフィルムを貼りあわせながらロールに巻き取ることにより、フィルムロールとしたものを工程1に供する。マスキングフィルムとしては、既知のもの(例えば、トレデガー社製のFF1025、「FF1035」;サンエー化研社製の「SAT116T」、「SAT2038T-JSL」及び「SAT4538T-JSL」;藤森工業社製の「NBO-0424」、「TFB-K001」、「TFB-K0421」及び「TFB-K202」;日立化成社製の「DT-2200-25」及び「K-6040」;寺岡製作所社製の「6010#75」、「6010#100」、「6011#75」及び「6093#75」)を用いうる。 In the present embodiment, a film roll is provided in step 1 by winding a masking film on a long resin film and winding it on a roll. Known masking films (for example, FF1025 and "FF1035" manufactured by Tredegar; "SAT116T", "SAT2038T-JSL" and "SAT4538T-JSL" manufactured by Sun A. Kaken Co., Ltd .; "NBO" manufactured by Fujimori Kogyo Co., Ltd. -0424 "," TFB-K001 "," TFB-K0421 "and" TFB-K202 ";" DT-2200-25 "and" K-6040 "manufactured by Hitachi Kasei Co., Ltd .;" 6010 # 75 "manufactured by Teraoka Seisakusho Co., Ltd. , "6010 # 100", "6011 # 75" and "6093 # 75").
 [溶剤]
 工程1Aにおいて、樹脂フィルムに接触させる溶剤としては、樹脂フィルムに含まれる重合体を溶解させずに当該樹脂フィルム中に浸入できる溶剤を用いうる。このような溶剤としては、例えば、トルエン、リモネン、デカリン等の炭化水素溶剤;二硫化炭素;が挙げられる。樹脂フィルムが結晶性重合体を含む樹脂からなる場合、結晶性重合体を溶解させずに樹脂フィルム中に浸入できるという観点から、溶剤としては、炭化水素系の溶剤が好ましい。溶剤は、1種類でもよく、2種類以上でもよい。
[solvent]
In step 1A, as the solvent to be brought into contact with the resin film, a solvent that can penetrate into the resin film without dissolving the polymer contained in the resin film can be used. Examples of such a solvent include hydrocarbon solvents such as toluene, limonene, and decalin; carbon disulfide; When the resin film is made of a resin containing a crystalline polymer, a hydrocarbon-based solvent is preferable as the solvent from the viewpoint that the crystalline polymer can be penetrated into the resin film without being dissolved. The solvent may be one type or two or more types.
 樹脂フィルムに接触させる溶剤の温度は、溶剤が液体状態を維持できる範囲で任意であり、よって、溶剤の融点以上沸点以下の範囲に設定しうる。本願では特に、溶剤の温度を室温(例えば15℃以上40℃未満、より好ましくは18℃以上35℃未満、さらに好ましくは23℃以上30℃未満)とした場合、または室温に近い温度範囲に調節した場合であっても、良好な延伸を行うことができる。溶剤を加温する場合必要に応じて室温より高い温度に調温しうる。但しその場合でも、一般的な延伸装置において延伸時に搬送されるフィルム周囲の温度をオーブンで加温する場合に比べると、より簡素な設備で良好な延伸を行うことができる。 The temperature of the solvent in contact with the resin film is arbitrary as long as the solvent can maintain the liquid state, and therefore can be set in the range above the melting point of the solvent and below the boiling point. In the present application, in particular, when the temperature of the solvent is set to room temperature (for example, 15 ° C. or higher and lower than 40 ° C., more preferably 18 ° C. or higher and lower than 35 ° C., further preferably 23 ° C. or higher and lower than 30 ° C.), or adjusted to a temperature range close to room temperature. Even in this case, good stretching can be performed. When heating the solvent, the temperature can be adjusted to a temperature higher than room temperature if necessary. However, even in that case, good stretching can be performed with simpler equipment as compared with the case where the temperature around the film conveyed at the time of stretching is heated in an oven in a general stretching device.
 樹脂フィルムと溶剤とを接触させる時間は、特に指定はないが、好ましくは1秒以上、より好ましくは3秒以上、特に好ましくは5秒以上であり、好ましくは180秒以下、より好ましくは120秒以下、特に好ましくは60秒以下である。接触時間が前記範囲の下限値以上であることにより、樹脂フィルムに含まれる分子を効果的に配向させうる。他方、接触時間を長くしても分子の配向の程度は大きく変わらない傾向がある。よって、接触時間が前記範囲の上限値以下であることにより、位相差フィルムの品質を損なわずに生産性を高めることができる。 The time for contacting the resin film with the solvent is not particularly specified, but is preferably 1 second or longer, more preferably 3 seconds or longer, particularly preferably 5 seconds or longer, preferably 180 seconds or shorter, and more preferably 120 seconds. Hereinafter, it is particularly preferably 60 seconds or less. When the contact time is equal to or greater than the lower limit of the above range, the molecules contained in the resin film can be effectively oriented. On the other hand, the degree of molecular orientation tends not to change significantly even if the contact time is lengthened. Therefore, when the contact time is not more than the upper limit value of the above range, the productivity can be improved without impairing the quality of the retardation film.
 [工程1B]
 工程1Bは、樹脂フィルムを延伸する工程である。
[Step 1B]
Step 1B is a step of stretching the resin film.
 本実施形態の製造方法において、樹脂フィルムの延伸は、複数組のロールの周速差により縦延伸を行う延伸機を用いて行う。上流側のニップロール101A,101B及び下流側のニップロール104A,104Bは、図示しない駆動手段によって回転駆動され、搬送方向A1に樹脂フィルム15を搬送しうるようになっている。本実施形態において、上流側のニップロール101A,101Bの周速よりも、下流側のニップロール104A,104Bの周速の方が速く設定されている。このため、上流側ニップロール101A,101Bと下流側ニップロール104A,104Bとの間には周速差があり、この周速差によって樹脂フィルム15が搬送方向(進行方向)に連続的に延伸されうるようになっている。また、前記の周速差を調整することにより、樹脂フィルム15の延伸倍率を調整しうるようになっている。 In the manufacturing method of the present embodiment, the resin film is stretched by using a stretching machine that vertically stretches the resin film by the difference in peripheral speeds of a plurality of sets of rolls. The upstream nip rolls 101A and 101B and the downstream nip rolls 104A and 104B are rotationally driven by a driving means (not shown) so that the resin film 15 can be conveyed in the conveying direction A1. In the present embodiment, the peripheral speeds of the nip rolls 104A and 104B on the downstream side are set faster than the peripheral speeds of the nip rolls 101A and 101B on the upstream side. Therefore, there is a peripheral speed difference between the upstream nip rolls 101A and 101B and the downstream nip rolls 104A and 104B, and the resin film 15 can be continuously stretched in the transport direction (traveling direction) due to this peripheral speed difference. It has become. Further, the draw ratio of the resin film 15 can be adjusted by adjusting the peripheral speed difference.
 本実施形態の製造方法では、樹脂フィルムを溶剤と接触させて延伸するので、低い延伸倍率で延伸を行っても、レターデーションを容易に発現させることが可能である。工程1における樹脂フィルムの延伸倍率は、好ましくは1.05以上、より好ましくは1.1以上であり、好ましくは5.00以下であり、より好ましくは3.00以下である。延伸倍率が、前記範囲の下限値以上であることにより、樹脂フィルムにおいて、レターデーションを有効に発現させうる。延伸倍率が前記範囲の上限値以下であることにより、本発明により得られる位相差フィルムの品質を損なわずに生産性を高めることができる。 In the production method of the present embodiment, since the resin film is stretched by contacting it with a solvent, it is possible to easily develop the retardation even if the resin film is stretched at a low stretching ratio. The draw ratio of the resin film in step 1 is preferably 1.05 or more, more preferably 1.1 or more, preferably 5.00 or less, and more preferably 3.00 or less. When the draw ratio is equal to or higher than the lower limit of the above range, the retardation can be effectively expressed in the resin film. When the draw ratio is not more than the upper limit of the above range, the productivity can be improved without impairing the quality of the retardation film obtained by the present invention.
 本実施形態の製造方法によれば、延伸する際に樹脂フィルムを加熱しなくても、レターデーションを発現させることができるので、延伸する際の樹脂フィルムの加熱は必要ではないが、延伸する際に樹脂フィルムの加熱を行ってもよい。この場合、延伸前の樹脂フィルムに予熱処理を行ってもよい。延伸する際に樹脂フィルムを加熱する場合、延伸温度は、好ましくはTg℃以上、より好ましくはTg+2℃以上、特に好ましくはTg+5℃以上であり、好ましくはTg+40℃以下、より好ましくはTg+35℃以下、特に好ましくはTg+30℃以下である。ここで、Tgとは、樹脂フィルム15に含まれる重合体のガラス転移温度を言う。 According to the production method of the present embodiment, the retardation can be expressed without heating the resin film at the time of stretching, so that heating of the resin film at the time of stretching is not necessary, but at the time of stretching. The resin film may be heated. In this case, the resin film before stretching may be preheat-treated. When the resin film is heated during stretching, the stretching temperature is preferably Tg + 2 ° C. or higher, more preferably Tg + 2 ° C. or higher, particularly preferably Tg + 5 ° C. or higher, preferably Tg + 40 ° C. or lower, more preferably Tg + 35 ° C. or lower. Particularly preferably, it is Tg + 30 ° C. or lower. Here, Tg refers to the glass transition temperature of the polymer contained in the resin film 15.
 工程1を行った後に得られる延伸フィルム10は、そのまま位相差フィルムとして用いうるが、更なる工程(例えば、さらなる延伸工程等)を行って得られるフィルムを位相差フィルムとしてもよい。 The stretched film 10 obtained after performing step 1 can be used as it is as a retardation film, but a film obtained by performing a further step (for example, a further stretching step) may be used as a retardation film.
 [本実施形態の効果]
 本実施形態の位相差フィルムの製造方法においては、樹脂フィルムを溶剤に接触させて延伸することにより、樹脂フィルムを加熱しなくても、面内方向および厚み方向のうち少なくとも一方にレターデーションを発現させることができる。その結果、本実施形態によれば、樹脂フィルムを加熱するためのオーブン等の加熱装置が不要であるので、位相差フィルムの製造設備を簡素化することができる。また、本実施形態によれば、樹脂フィルムと溶剤との接触および樹脂フィルムの延伸を同時に行うので、位相差フィルムの生産効率を高めることができる。
[Effect of this embodiment]
In the method for producing a retardation film of the present embodiment, by contacting the resin film with a solvent and stretching the film, retardation is expressed in at least one of the in-plane direction and the thickness direction without heating the resin film. Can be made to. As a result, according to the present embodiment, since a heating device such as an oven for heating the resin film is not required, the production equipment for the retardation film can be simplified. Further, according to the present embodiment, since the contact between the resin film and the solvent and the stretching of the resin film are performed at the same time, the production efficiency of the retardation film can be improved.
 [任意工程]
 本発明の位相差フィルムの製造方法は、以下に説明する任意の工程を含んでいてもよい。
[Arbitrary process]
The method for producing a retardation film of the present invention may include any step described below.
 本発明の位相差フィルムの製造方法は、樹脂フィルムと溶剤とを接触させた後の樹脂フィルムから、溶剤を除去する工程を含みうる。樹脂フィルムから溶剤を除去する方法としては、例えば、乾燥、ふき取り等が挙げられる。 The method for producing a retardation film of the present invention may include a step of removing the solvent from the resin film after the resin film and the solvent are brought into contact with each other. Examples of the method for removing the solvent from the resin film include drying and wiping.
 溶剤と接触させた後の樹脂フィルムから、乾燥により溶剤を除去する場合、その方法には制限は無く、例えば、オーブンなどの加熱装置を用いて行いうる。具体的には、溶剤と接触させた後の樹脂フィルムを、加熱装置内に所定時間搬送させることにより、溶剤を除去しうる。溶剤を除去するための加熱は、一般的な延伸装置において延伸時に加熱を行う場合の加熱とは異なり、比較的低い温度で行うことができ、厳密な温度制御を伴わずに行うことができ、且つ比較的短時間で完遂することができる。また、溶剤の種類を適切に選択することにより、特に加熱の操作を行わず単に室温で搬送することによって乾燥を達成することも可能である。 When the solvent is removed from the resin film after contact with the solvent by drying, there is no limitation on the method, and it can be performed by using a heating device such as an oven, for example. Specifically, the solvent can be removed by transporting the resin film after contact with the solvent into the heating device for a predetermined time. The heating for removing the solvent can be performed at a relatively low temperature, unlike the heating when heating is performed at the time of stretching in a general stretching device, and can be performed without strict temperature control. Moreover, it can be completed in a relatively short time. Further, by appropriately selecting the type of solvent, it is possible to achieve drying by simply transporting the solvent at room temperature without performing a heating operation.
 乾燥により溶剤の除去を行う際には、フィルムに張力が与えられた状態で行ってもよい。このような状態で乾燥を行うことにより、溶剤と接触させた後のフィルムの光学特性の均一性を効果的に高くできるので好ましい。樹脂フィルムに与えられる張力の大きさ、張力の方向は、樹脂フィルムの材質等を考慮して設定しうる。また樹脂フィルムに張力を与える場合、例えば、適切な保持具によって樹脂フィルムを保持し、この保持具によって樹脂フィルムを引っ張って張力を与えてもよい。保持具は、樹脂フィルムの辺の全長を連続的に保持しうるものでもよく、間隔を空けて間欠的に保持しうるものでもよい。例えば、所定の間隔で配列された保持具によって樹脂フィルムの辺を間欠的に保持してもよい。 When removing the solvent by drying, the film may be tensioned. Drying in such a state is preferable because the uniformity of the optical properties of the film after being brought into contact with the solvent can be effectively increased. The magnitude of tension applied to the resin film and the direction of tension can be set in consideration of the material of the resin film and the like. When tension is applied to the resin film, for example, the resin film may be held by an appropriate holder, and the resin film may be pulled by the holder to apply tension. The holder may be one that can continuously hold the entire length of the side of the resin film, or one that can hold the resin film intermittently at intervals. For example, the sides of the resin film may be intermittently held by holders arranged at predetermined intervals.
 本発明の位相差フィルムの製造方法は、工程1を行った後に得られるフィルムをさらに延伸する工程を含みうる。当該工程における延伸方向、延伸装置及び延伸倍率等の延伸条件は、特に限定されず、目的物である位相差フィルムの用途等を考慮して設定しうる。 The method for producing a retardation film of the present invention may include a step of further stretching the film obtained after performing step 1. The stretching conditions such as the stretching direction, the stretching device, and the stretching ratio in the step are not particularly limited, and can be set in consideration of the intended use of the retardation film.
 また、長尺の位相差フィルムを製造する場合、本発明の位相差フィルムの製造方法は、長尺の位相差フィルムを所望の形状に切り出す工程を含みうる。 Further, when producing a long retardation film, the method for producing a retardation film of the present invention may include a step of cutting out the long retardation film into a desired shape.
 [位相差フィルム]
 次に、本発明の位相差フィルムの製造方法により得られる位相差フィルムについて説明する。
[Phase difference film]
Next, the retardation film obtained by the method for producing a retardation film of the present invention will be described.
 [位相差フィルムのレターデーション]
 位相差フィルムの面内レターデーションReの値は、その用途に応じて設定しうる。位相差フィルムの、面内レターデーションReの値は、好ましくは10nm以上、より好ましくは30nm以上であり、好ましくは1000nm以下、より好ましくは800nm以下である。
[The retardation of retardation film]
The value of the in-plane retardation Re of the retardation film can be set according to the application. The value of the in-plane retardation Re of the retardation film is preferably 10 nm or more, more preferably 30 nm or more, preferably 1000 nm or less, and more preferably 800 nm or less.
 位相差フィルムの、具体的な面内レターデーションReの値は、例えば、好ましくは100nm以上、より好ましくは110nm以上、特に好ましくは120nm以上でありえ、また、好ましくは180nm以下、より好ましく170nm以下、特に好ましくは160nm以下でありえる。この場合、位相差フィルムは、1/4波長板として機能できる。 The specific value of the in-plane retardation Re of the retardation film may be, for example, preferably 100 nm or more, more preferably 110 nm or more, particularly preferably 120 nm or more, and preferably 180 nm or less, more preferably 170 nm or less. Particularly preferably, it can be 160 nm or less. In this case, the retardation film can function as a quarter wave plate.
 さらに、位相差フィルムの具体的な面内レターデーションReの値は、例えば、好ましくは230nm以上、より好ましくは250nm以上、特に好ましくは255nm以上でありえ、また、好ましくは320nm以下、より好ましくは300nm以下、特に好ましくは295nm以下でありえる。この場合、位相差フィルムは、1/2波長板として機能できる。 Further, the specific value of the in-plane retardation Re of the retardation film can be, for example, preferably 230 nm or more, more preferably 250 nm or more, particularly preferably 255 nm or more, and preferably 320 nm or less, more preferably 300 nm. Below, it can be particularly preferably 295 nm or less. In this case, the retardation film can function as a 1/2 wavelength plate.
 位相差フィルムの厚み方向のレターデーションRthの値は、位相差フィルムの用途に応じて設定しうる。位相差フィルムの具体的な厚み方向のレターデーションRthは、好ましくは-500nm以上、より好ましくは-400nm以上であり、好ましくは300nm以下、より好ましくは150nm以下である。 The value of the retardation Rth in the thickness direction of the retardation film can be set according to the application of the retardation film. The retardation Rth in the specific thickness direction of the retardation film is preferably −500 nm or more, more preferably −400 nm or more, preferably 300 nm or less, and more preferably 150 nm or less.
 [位相差フィルムのNZ係数]
 位相差フィルムのNZ係数は、好ましくは-10以上、より好ましくは-8以上であり、好ましくは10以下、より好ましくは8以下である。NZ係数の範囲が上記範囲内である位相差フィルムは、表示装置に設けた場合に、その表示装置の視野角、コントラスト、画質等の表示品質の改善が可能である。位相差フィルムのNZ係数は、位相差フィルムの用途に応じて任意に設定しうる。
[NZ coefficient of retardation film]
The NZ coefficient of the retardation film is preferably -10 or more, more preferably -8 or more, preferably 10 or less, and more preferably 8 or less. When a retardation film having an NZ coefficient range within the above range is provided in a display device, it is possible to improve display quality such as viewing angle, contrast, and image quality of the display device. The NZ coefficient of the retardation film can be arbitrarily set according to the use of the retardation film.
 位相差フィルムのNZ係数は、そのフィルムの面内レターデーションRe及び厚み方向のレターデーションRthから計算により求めうる。フィルムの面内レターデーションRe及び厚み方向のレターデーションRthは、位相差計(例えば、AXOMETRICS社製「AxoScan OPMF-1」)を用いて測定しうる。 The NZ coefficient of the retardation film can be calculated from the in-plane retardation Re of the film and the retardation Rth in the thickness direction. The in-plane retardation Re and the thickness direction retardation Rth of the film can be measured using a phase difference meter (for example, "AXoScan OPMF-1" manufactured by AXOMETRICS).
 [位相差フィルムの複屈折]
 位相差フィルムは、通常、面内方向及び厚み方向のうち少なくとも一方の方向に大きな複屈折を有する。具体的には、位相差フィルムは、通常、1.0×10-3以上の面内方向の複屈折Re/d、及び、1.0×10-3以上の厚み方向の複屈折の絶対値|Rth/d|の少なくとも一方を有する。
[Birerefringence of retardation film]
The retardation film usually has large birefringence in at least one of the in-plane direction and the thickness direction. Specifically, the retardation film is usually, 1.0 × 10 -3 or more in-plane direction of the birefringent Re / d, and, 1.0 × 10 -3 or more absolute value in the thickness direction of the birefringent It has at least one of | Rth / d |.
 詳細には、位相差フィルムの面内方向の複屈折Re/dは、通常1.0×10-3以上、好ましくは3.0×10-3以上、特に好ましくは5.0×10-3以上である。上限に制限はなく、例えば、2.0×10-2以下、1.5×10-2以下、又は1.0×10-2以下でありうる。ただし、位相差フィルムの厚み方向の複屈折の絶対値|Rth/d|が1.0×10-3以上である場合には、位相差フィルムの面内方向の複屈折Re/dは前記範囲の外にあってよい。 Specifically, the birefringence Re / d of the retardation film in the in-plane direction is usually 1.0 × 10 -3 or more, preferably 3.0 × 10 -3 or more, and particularly preferably 5.0 × 10 -3. That is all. There is no upper limit, for example, it may be 2.0 × 10 -2 or less, 1.5 × 10 -2 or less, or 1.0 × 10 -2 or less. However, when the absolute value | Rth / d | of the birefringence in the thickness direction of the retardation film is 1.0 × 10 -3 or more, the birefringence Re / d in the in-plane direction of the retardation film is in the above range. May be outside.
 また、位相差フィルムの厚み方向の複屈折の絶対値|Rth/d|は、通常1.0×10-3以上、好ましくは3.0×10-3以上、特に好ましくは5.0×10-3以上である。上限に制限はなく、例えば、2.0×10-2以下、1.5×10-2以下、又は1.0×10-2以下でありうる。ただし、位相差フィルムの面内方向の複屈折Re/dが1.0×10-3以上である場合には、位相差フィルムの厚み方向の複屈折の絶対値|Rth/d|は前記範囲の外にあってよい。 The absolute value | Rth / d | of birefringence in the thickness direction of the retardation film is usually 1.0 × 10 -3 or more, preferably 3.0 × 10 -3 or more, and particularly preferably 5.0 × 10 It is -3 or more. There is no upper limit, for example, it may be 2.0 × 10 -2 or less, 1.5 × 10 -2 or less, or 1.0 × 10 -2 or less. However, when the birefringence Re / d in the in-plane direction of the retardation film is 1.0 × 10 -3 or more, the absolute value | Rth / d | of the birefringence in the thickness direction of the retardation film is in the above range. May be outside.
 [位相差フィルムの他の特性]
 位相差フィルムのヘイズは、通常1.0%未満、好ましくは0.8%未満、より好ましくは0.5%未満であり、理想的には0.0%である。このようにヘイズが小さい位相差フィルムは、表示装置に設けた場合に、その表示装置に表示される画像の鮮明性を高くできる。フィルムのヘイズは、ヘイズメーター(例えば、日本電色工業社製「NDH5000」)を用いて測定しうる。
[Other characteristics of retardation film]
The haze of the retardation film is usually less than 1.0%, preferably less than 0.8%, more preferably less than 0.5%, ideally 0.0%. When the retardation film having a small haze is provided on the display device, the sharpness of the image displayed on the display device can be improved. The haze of the film can be measured using a haze meter (for example, "NDH5000" manufactured by Nippon Denshoku Industries Co., Ltd.).
 位相差フィルムは、光学フィルムであるので、高い透明性を有することが好ましい。位相差フィルムの具体的な全光線透過率は、好ましくは80%以上、より好ましくは85%以上、特に好ましくは88%以上である。位相差フィルムの全光線透過率は、紫外・可視分光計を用いて、波長400nm~700nmの範囲で測定しうる。 Since the retardation film is an optical film, it is preferable to have high transparency. The specific total light transmittance of the retardation film is preferably 80% or more, more preferably 85% or more, and particularly preferably 88% or more. The total light transmittance of the retardation film can be measured in the wavelength range of 400 nm to 700 nm using an ultraviolet-visible spectrometer.
 位相差フィルムの厚みdは、位相差フィルムの用途に応じて適切に設定できる。位相差フィルムの具体的な厚みdは、好ましくは5μm以上、より好ましくは10μm以上、特に好ましくは15μm以上であり、好ましくは200μm以下、より好ましくは100μm以下で、特に好ましくは50μm以下である。位相差フィルムの厚みdが前記範囲の下限値以上である場合、ハンドリング性を良好にしたり、強度を高くしたりできる。また、位相差フィルムの厚みdが上限値以下である場合、長尺の位相差フィルムの巻取りが容易である。 The thickness d of the retardation film can be appropriately set according to the application of the retardation film. The specific thickness d of the retardation film is preferably 5 μm or more, more preferably 10 μm or more, particularly preferably 15 μm or more, preferably 200 μm or less, more preferably 100 μm or less, and particularly preferably 50 μm or less. When the thickness d of the retardation film is not less than the lower limit of the above range, the handleability can be improved and the strength can be increased. Further, when the thickness d of the retardation film is not more than the upper limit value, it is easy to wind up the long retardation film.
 結晶性重合体を含む樹脂フィルムを用いて製造された位相差フィルムにおいて、結晶性重合体の結晶化度は、特段の制限はないが、通常は、ある程度以上高い。具体的な結晶化度の範囲は、好ましくは10%以上、より好ましくは15%以上、特に好ましくは30%以上である。
 結晶性重合体の結晶化度は、X線回折法によって測定しうる。
In a retardation film produced by using a resin film containing a crystalline polymer, the crystallinity of the crystalline polymer is not particularly limited, but is usually higher than a certain level. The specific range of crystallinity is preferably 10% or more, more preferably 15% or more, and particularly preferably 30% or more.
The crystallinity of the crystalline polymer can be measured by X-ray diffraction.
 [位相差フィルムに含まれる溶剤]
 本発明の位相差フィルムの製造方法は、樹脂フィルムを溶剤に接触させて延伸する工程を含むので、当該製造方法により製造される位相差フィルムは、溶剤を含みうる。
[Solvent contained in retardation film]
Since the method for producing a retardation film of the present invention includes a step of bringing a resin film into contact with a solvent and stretching it, the retardation film produced by the production method may contain a solvent.
 溶剤と接触させる際に、樹脂フィルム中に取り込まれた溶剤の全部または一部は、フィルムを構成する樹脂に含まれる重合体の内部に入り込みうる。したがって、溶剤の沸点以上で乾燥を行ったとしても、容易には溶剤を完全に除去することは難しい。よって、溶剤と接触させる工程を含む製造方法で製造した位相差フィルムは、溶剤を含みうる。 Upon contact with the solvent, all or part of the solvent incorporated into the resin film can enter the inside of the polymer contained in the resin constituting the film. Therefore, it is difficult to completely remove the solvent even if the solvent is dried above the boiling point. Therefore, the retardation film produced by a production method including a step of contacting with a solvent may contain a solvent.
 位相差フィルムの重量100%に対する当該位相差フィルムに含まれる溶剤の比率(溶剤含有率)は、好ましくは10重量%以下、より好ましくは5重量%以下、特に好ましくは0.1重量%以下であり、0重量%超えでありうる。 The ratio of the solvent contained in the retardation film to 100% by weight of the retardation film (solvent content) is preferably 10% by weight or less, more preferably 5% by weight or less, and particularly preferably 0.1% by weight or less. Yes, it can exceed 0% by weight.
 [位相差フィルムの用途]
 本発明の製造方法で製造した位相差フィルムは、樹脂フィルムを溶剤に接触させて延伸することにより、面内方向および厚み方向のうち少なくとも一方にレターデーションが発現している。したがって、本発明の製造方法により得られる位相差フィルムは、そのレターデーション値によって、1/2波長板または1/4波長板等として用いうる。本発明の製造方法により製造した位相差フィルムを、1/2波長板及び1/4波長板のうちのいずれか一方または両方として用いた円偏光板は、表示装置に用いうる。
[Use of retardation film]
In the retardation film produced by the production method of the present invention, the resin film is brought into contact with a solvent and stretched to develop retardation in at least one of the in-plane direction and the thickness direction. Therefore, the retardation film obtained by the production method of the present invention can be used as a 1/2 wave plate, a 1/4 wave plate, or the like depending on its retardation value. A circularly polarizing plate using the retardation film produced by the production method of the present invention as either one or both of a 1/2 wave plate and a 1/4 wave plate can be used in a display device.
 以下、実施例を示して本発明について具体的に説明する。ただし、本発明は以下に示す実施例に限定されるものではなく、本発明の請求の範囲及びその均等の範囲を逸脱しない範囲において任意に変更して実施しうる。 Hereinafter, the present invention will be specifically described with reference to examples. However, the present invention is not limited to the examples shown below, and can be arbitrarily modified and implemented without departing from the scope of claims of the present invention and the equivalent scope thereof.
 以下の説明において、量を表す「%」及び「部」は、別に断らない限り、重量基準である。また、以下に説明する操作は、別に断らない限り、常温及び常圧の条件において行った。さらに、以下の説明において、レターデーション及び複屈折の測定波長は、別に断らない限り、590nmであった。 In the following explanation, "%" and "part" indicating the amount are based on weight unless otherwise specified. The operations described below were performed under normal temperature and pressure conditions unless otherwise specified. Further, in the following description, the measurement wavelengths of retardation and birefringence were 590 nm unless otherwise specified.
 [評価方法]
 (重合体の重量平均分子量Mw及び数平均分子量Mnの測定方法)
 重合体の重量平均分子量Mw及び数平均分子量Mnは、ゲル・パーミエーション・クロマトグラフィー(GPC)システム(東ソー社製「HLC-8320」)を用いて、ポリスチレン換算値として測定した。測定の際、カラムとしてはHタイプカラム(東ソー社製)を用い、溶剤としてはテトラヒドロフランを用いた。また、測定時の温度は、40℃であった。
[Evaluation method]
(Method for measuring weight average molecular weight Mw and number average molecular weight Mn of polymer)
The weight average molecular weight Mw and the number average molecular weight Mn of the polymer were measured as polystyrene-equivalent values using a gel permeation chromatography (GPC) system (“HLC-8320” manufactured by Tosoh Corporation). At the time of measurement, an H type column (manufactured by Tosoh Corporation) was used as the column, and tetrahydrofuran was used as the solvent. The temperature at the time of measurement was 40 ° C.
 (重合体の水素化率の測定方法)
 重合体の水素化率は、オルトジクロロベンゼン-dを溶剤として、145℃で、H-NMR測定により測定した。
(Measuring method of hydrogenation rate of polymer)
Hydrogenation rate of the polymer, o-dichlorobenzene -d 4 as solvent, at 145 ° C., as measured by 1 H-NMR measurement.
 (ガラス転移温度Tg及び融点Tmの測定方法)
 重合体のガラス転移温度Tg及び融点Tmの測定は、以下のようにして行った。まず、重合体を、加熱によって融解させ、融解した重合体をドライアイスで急冷した。続いて、この重合体を試験体として用いて、示差走査熱量計(DSC)を用いて、10℃/分の昇温速度(昇温モード)で、重合体のガラス転移温度Tg及び融点Tmを測定した。
(Measuring method of glass transition temperature Tg and melting point Tm)
The glass transition temperature Tg and the melting point Tm of the polymer were measured as follows. First, the polymer was melted by heating, and the melted polymer was rapidly cooled with dry ice. Subsequently, using this polymer as a test piece, the glass transition temperature Tg and melting point Tm of the polymer were measured at a heating rate of 10 ° C./min (heating mode) using a differential scanning calorimeter (DSC). It was measured.
 (重合体のラセモ・ダイアッドの割合の測定方法)
 重合体のラセモ・ダイアッドの割合の測定は以下のようにして行った。オルトジクロロベンゼン-dを溶剤として、200℃で、inverse-gated decoupling法を適用して、重合体の13C-NMR測定を行った。この13C-NMR測定の結果において、オルトジクロロベンゼン-dの127.5ppmのピークを基準シフトとして、メソ・ダイアッド由来の43.35ppmのシグナルと、ラセモ・ダイアッド由来の43.43ppmのシグナルとを同定した。これらのシグナルの強度比に基づいて、重合体のラセモ・ダイアッドの割合を求めた。
(Measuring method of the ratio of racemic diad of polymer)
The ratio of racemic diads in the polymer was measured as follows. Orthodichlorobenzene -d 4 as solvent, at 200 ° C., by applying the inverse-gated decoupling method, was 13 C-NMR measurement of the polymer. In the results of this 13 C-NMR measurement, a signal of 43.35 ppm derived from meso-diad and a signal of 43.43 ppm derived from racemic diad were used with the peak of 127.5 ppm of orthodichlorobenzene-d 4 as a reference shift. Was identified. Based on the intensity ratios of these signals, the proportion of racemic diads in the polymer was determined.
 (フィルムの厚みの測定方法)
 フィルムの厚みは、接触式厚さ計(MITUTOYO社製 Code No. 543-390)を用いて測定した。
(Method of measuring film thickness)
The thickness of the film was measured using a contact type thickness gauge (Code No. 543-390 manufactured by Mitutoyo Co., Ltd.).
 (レターデーション及びNZ係数の測定方法)
 フィルムの面内レタデーションRe、厚み方向のレタデーションRth、及びNZ係数は、AXOMETRICS社製、Axo Scan OPMF-1により測定した。この際、測定は、波長590nmで行った。また、得られた面内レターデーションRe及び厚み方向のレターデーションRthからNZ係数を算出した。
(Measurement method of retardation and NZ coefficient)
The in-plane retardation Re of the film, the retardation Rth in the thickness direction, and the NZ coefficient were measured by Axo Scan OPMF-1 manufactured by AXOMETRICS. At this time, the measurement was performed at a wavelength of 590 nm. In addition, the NZ coefficient was calculated from the obtained in-plane retardation Re and the thickness direction retardation Rth.
 [製造例1.ジシクロペンタジエンの開環重合体の水素化物を含む結晶性樹脂の製造]
 金属製の耐圧反応器を、充分に乾燥した後、窒素置換した。この金属製耐圧反応器に、シクロヘキサン154.5部、ジシクロペンタジエン(エンド体含有率99%以上)の濃度70%シクロヘキサン溶液42.8部(ジシクロペンタジエンの量として30部)、及び1-ヘキセン1.9部を加え、53℃に加温した。
[Manufacturing example 1. Production of crystalline resin containing hydride of ring-opening polymer of dicyclopentadiene]
The metal pressure resistant reactor was sufficiently dried and then replaced with nitrogen. In this metal pressure resistant reactor, 154.5 parts of cyclohexane, 42.8 parts of a 70% cyclohexane solution of dicyclopentadiene (endo content 99% or more) (30 parts as the amount of dicyclopentadiene), and 1- 1.9 parts of hexene was added and heated to 53 ° C.
 テトラクロロタングステンフェニルイミド(テトラヒドロフラン)錯体0.014部を0.70部のトルエンに溶解し、溶液を調製した。この溶液に、濃度19%のジエチルアルミニウムエトキシド/n-ヘキサン溶液0.061部を加えて10分間攪拌して、触媒溶液を調製した。この触媒溶液を耐圧反応器に加えて、開環重合反応を開始した。その後、53℃を保ちながら4時間反応させて、ジシクロペンタジエンの開環重合体の溶液を得た。得られたジシクロペンタジエンの開環重合体の数平均分子量(Mn)及び重量平均分子量(Mw)は、それぞれ、8,750および28,100であり、これらから求められる分子量分布(Mw/Mn)は3.21であった。 0.014 parts of the tetrachlorotungsten phenylimide (tetrahydrofuran) complex was dissolved in 0.70 parts of toluene to prepare a solution. To this solution was added 0.061 part of a 19% concentration diethylaluminum ethoxide / n-hexane solution and stirred for 10 minutes to prepare a catalytic solution. This catalyst solution was added to a pressure resistant reactor to initiate a ring-opening polymerization reaction. Then, the reaction was carried out for 4 hours while maintaining 53 ° C. to obtain a solution of a ring-opening polymer of dicyclopentadiene. The number average molecular weight (Mn) and weight average molecular weight (Mw) of the obtained ring-opening polymer of dicyclopentadiene are 8,750 and 28,100, respectively, and the molecular weight distribution (Mw / Mn) obtained from these is Was 3.21.
 得られたジシクロペンタジエンの開環重合体の溶液200部に、停止剤として1,2-エタンジオール0.037部を加えて、60℃に加温し、1時間撹拌して重合反応を停止させた。ここに、ハイドロタルサイト様化合物(協和化学工業社製「キョーワード(登録商標)2000」)を1部加えて、60℃に加温し、1時間撹拌した。その後、濾過助剤(昭和化学工業社製「ラヂオライト(登録商標)#1500」)を0.4部加え、PPプリーツカートリッジフィルター(ADVANTEC東洋社製「TCP-HX」)を用いて吸着剤と溶液を濾別した。 To 200 parts of the obtained solution of the ring-opening polymer of dicyclopentadiene, 0.037 parts of 1,2-ethanediol was added as a terminator, heated to 60 ° C., and stirred for 1 hour to stop the polymerization reaction. I let you. A part of a hydrotalcite-like compound (“Kyoward (registered trademark) 2000” manufactured by Kyowa Chemical Industry Co., Ltd.) was added thereto, and the mixture was heated to 60 ° C. and stirred for 1 hour. After that, 0.4 part of a filtration aid (Showa Chemical Industry Co., Ltd. "Radiolite (registered trademark) # 1500") was added, and a PP pleated cartridge filter (ADVANTEC Toyo Co., Ltd. "TCP-HX") was used as an adsorbent. The solution was filtered off.
 濾過後のジシクロペンタジエンの開環重合体の溶液200部(重合体量30部)に、シクロヘキサン100部を加え、クロロヒドリドカルボニルトリス(トリフェニルホスフィン)ルテニウム0.0043部を添加して、水素圧6MPa、180℃で4時間水素化反応を行なった。これにより、ジシクロペンタジエンの開環重合体の水素化物を含む反応液が得られた。この反応液は、水素化物が析出してスラリー溶液となっていた。 To 200 parts of the filtered dicyclopentadiene ring-opening polymer solution (30 parts of polymer amount), 100 parts of cyclohexane was added, 0.0043 parts of chlorohydride carbonyltris (triphenylphosphine) ruthenium was added, and hydrogen was added. The hydrogenation reaction was carried out at a pressure of 6 MPa and 180 ° C. for 4 hours. As a result, a reaction solution containing a hydride of a ring-opening polymer of dicyclopentadiene was obtained. In this reaction solution, hydrides were precipitated to form a slurry solution.
 前記の反応液に含まれる水素化物と溶液とを、遠心分離器を用いて分離し、60℃で24時間減圧乾燥して、結晶性を有するジシクロペンタジエンの開環重合体の水素化物28.5部を得た。この水素化物の水素化率は99%以上、ガラス転移温度Tgは93℃、融点(Tm)は262℃、ラセモ・ダイアッドの割合は89%であった。 The hydride contained in the reaction solution and the solution were separated using a centrifuge and dried under reduced pressure at 60 ° C. for 24 hours to obtain a hydride of a crystalline ring-opening polymer of dicyclopentadiene 28. I got 5 copies. The hydrogenation rate of this hydride was 99% or more, the glass transition temperature Tg was 93 ° C., the melting point (Tm) was 262 ° C., and the ratio of racemo diad was 89%.
 得られたジシクロペンタジエンの開環重合体の水素化物100部に、酸化防止剤(テトラキス〔メチレン-3-(3’,5’-ジ-t-ブチル-4’-ヒドロキシフェニル)プロピオネート〕メタン;BASFジャパン社製「イルガノックス(登録商標)1010」)1.1部を混合後、内径3mmΦのダイ穴を4つ備えた二軸押出し機(製品名「TEM-37B」、東芝機械社製)に投入した。ジシクロペンタジエンの開環重合体の水素化物及び酸化防止剤の混合物を、熱溶融押出し成形によりストランド状に成形した後、ストランドカッターにて細断して、ペレット形状の結晶性樹脂を得た。この結晶性樹脂は固有複屈折値が正の樹脂である。
 二軸押出し機の運転条件を、以下に記す。
 ・バレル設定温度=270~280℃
 ・ダイ設定温度=250℃
 ・スクリュー回転数=145rpm
100 parts of the hydride of the obtained ring-opening polymer of dicyclopentadiene is added with an antioxidant (tetrakis [methylene-3- (3', 5'-di-t-butyl-4'-hydroxyphenyl) propionate] methane. BASF Japan's "Irganox (registered trademark) 1010") After mixing 1.1 parts, a twin-screw extruder equipped with four die holes with an inner diameter of 3 mmΦ (product name "TEM-37B", manufactured by Toshiba Machine Co., Ltd.) ). A mixture of a hydride of a ring-opening polymer of dicyclopentadiene and an antioxidant was formed into a strand shape by hot melt extrusion molding, and then shredded with a strand cutter to obtain a pellet-shaped crystalline resin. This crystalline resin is a resin having a positive natural birefringence value.
The operating conditions of the twin-screw extruder are described below.
・ Barrel set temperature = 270 to 280 ° C
・ Die set temperature = 250 ℃
・ Screw rotation speed = 145 rpm
 [実施例1]
 (1-1)樹脂フィルムの製造
 製造例1で製造したペレット形状の結晶性樹脂を、Tダイを備える熱溶融押出しフィルム成形機を用いて成形し、約600mm幅の樹脂フィルムを、所定の速度でロールに巻き取る方法にて、樹脂フィルムのロールを得た。本例では、ライン速度を調整して、樹脂フィルムの厚みが50μmとなるように成形を行った。また、ロールに巻き取る際には、マスキングフィルム(トレデガー社製「FF1025」)で保護しながら巻き取った。樹脂フィルムについて、Re、Rth及びNZ係数を測定したところ、Reは1.7nm、Rthは1.9nm、NZ係数は1.6であった。
 フィルム成形機の運転条件を、以下に記す。
 ・バレル温度設定=280℃~300℃
 ・ダイ温度=270℃
 ・キャストロール温度=80℃
[Example 1]
(1-1) Production of Resin Film The pellet-shaped crystalline resin produced in Production Example 1 is molded using a heat-melt extrusion film molding machine equipped with a T-die, and a resin film having a width of about 600 mm is formed at a predetermined speed. A roll of the resin film was obtained by the method of winding the resin film on the roll. In this example, the line speed was adjusted so that the thickness of the resin film was 50 μm. When the film was wound on a roll, it was wound while being protected by a masking film (“FF1025” manufactured by Tredegar Co., Ltd.). When the Re, Rth and NZ coefficients of the resin film were measured, Re was 1.7 nm, Rth was 1.9 nm, and the NZ coefficient was 1.6.
The operating conditions of the film forming machine are described below.
-Barrel temperature setting = 280 ° C to 300 ° C
・ Die temperature = 270 ℃
・ Cast roll temperature = 80 ℃
 (1-2)工程1
 図1に示す装置を用いて、以下の方法により、工程1を行った。(1-1)で得た樹脂フィルムのロール111から、フィルム11を引き出し、連続的にマスキングフィルム12を剥離して樹脂フィルム15を搬送した。この樹脂フィルム15を、溶剤と接触させて延伸を行った(工程1)。具体的には、樹脂フィルム15を溶剤としてのトルエンで満たされた浴槽102に通すことにより、樹脂フィルム15をトルエンに浸漬した。樹脂フィルムが溶剤中を搬送される時間(溶剤接触時間)は5秒であった。このときの室温は25℃であり、従って浴槽102中のトルエンの温度も25℃であった。樹脂フィルム15の延伸は、上流側のニップロール101A,101Bの周速Ps1と、下流側のニップロール104A,104Bの周速Ps2との差を設けることにより行った。具体的には2組のニップロールの周速比(Ps2/Ps1)を1.1とすることにより、フィルムを搬送方向に延伸倍率1.1倍で延伸した。工程1を行った後に得られる延伸フィルム10を、新たなマスキングフィルム(トレデガー社製「FF1025」)で保護しながら巻き取り、延伸フィルムのロール110を得た。延伸フィルムについて、Re、Rth、NZ係数及び厚みを測定したところ、Reは56nm、Rthは-324nm、NZ係数は-5.29、厚みは57μmであった。
(1-2) Step 1
Step 1 was performed by the following method using the apparatus shown in FIG. The film 11 was pulled out from the roll 111 of the resin film obtained in (1-1), the masking film 12 was continuously peeled off, and the resin film 15 was conveyed. The resin film 15 was brought into contact with a solvent and stretched (step 1). Specifically, the resin film 15 was immersed in toluene by passing the resin film 15 through a bathtub 102 filled with toluene as a solvent. The time for the resin film to be conveyed in the solvent (solvent contact time) was 5 seconds. The room temperature at this time was 25 ° C., and therefore the temperature of toluene in the bathtub 102 was also 25 ° C. The resin film 15 was stretched by providing a difference between the peripheral speeds Ps1 of the nip rolls 101A and 101B on the upstream side and the peripheral speeds Ps2 of the nip rolls 104A and 104B on the downstream side. Specifically, by setting the peripheral speed ratio (Ps2 / Ps1) of the two sets of nip rolls to 1.1, the film was stretched in the transport direction at a draw ratio of 1.1 times. The stretched film 10 obtained after performing step 1 was wound while being protected by a new masking film (“FF1025” manufactured by Tredegar) to obtain a roll 110 of the stretched film. When the Re, Rth, NZ coefficient and thickness of the stretched film were measured, Re was 56 nm, Rth was 324 nm, the NZ coefficient was −5.29, and the thickness was 57 μm.
 [実施例2]
 実施例1の(1-2)において、2組のニップロールの周速比(Ps2/Ps1)を1.2とすることにより、フィルムを搬送方向に延伸倍率1.2倍で延伸したこと以外は、実施例1の(1-2)と同じ操作を行い、延伸フィルムのロールを得た。延伸フィルムについて、Re、Rth、NZ係数及び厚みを測定したところ、Reは265nm、Rthは-295nm、NZ係数は-0.61、厚みは56μmであった。
[Example 2]
In Example 1 (1-2), the peripheral speed ratio (Ps2 / Ps1) of the two sets of nip rolls was set to 1.2, except that the film was stretched in the transport direction at a draw ratio of 1.2 times. The same operation as in (1-2) of Example 1 was carried out to obtain a roll of stretched film. When the Re, Rth, NZ coefficient and thickness of the stretched film were measured, Re was 265 nm, Rth was -295 nm, the NZ coefficient was −0.61, and the thickness was 56 μm.
 [実施例3]
 実施例1の(1-2)において、2組のニップロールの周速比(Ps2/Ps1)を1.5とすることにより、フィルムを搬送方向に延伸倍率1.5倍で延伸したこと以外は、実施例1の(1-2)と同じ操作を行い、延伸フィルムのロールを得た。延伸フィルムについて、Re、Rth、NZ係数及び厚みを測定したところ、Reは650nm、Rthは65nm、NZ係数は0.6、厚みは47μmであった。
[Example 3]
In Example 1 (1-2), except that the film was stretched at a draw ratio of 1.5 times in the transport direction by setting the peripheral speed ratio (Ps2 / Ps1) of the two sets of nip rolls to 1.5. The same operation as in (1-2) of Example 1 was carried out to obtain a roll of stretched film. When the Re, Rth, NZ coefficient and thickness of the stretched film were measured, Re was 650 nm, Rth was 65 nm, the NZ coefficient was 0.6, and the thickness was 47 μm.
 [実施例4]
 (4-1)樹脂フィルムの製造
 実施例1の(1-1)において、ライン速度を調整して、樹脂フィルムの厚みが21μmとなるように成形を行ったこと以外は、実施例1の(1-1)と同じ操作を行い樹脂フィルムのロールを得た。
[Example 4]
(4-1) Production of Resin Film In Example 1 (1-1), except that the line speed was adjusted and molding was performed so that the thickness of the resin film was 21 μm. The same operation as in 1-1) was carried out to obtain a roll of the resin film.
 (4-2)工程1
 実施例1の(1-2)において、(1-1)で得た樹脂フィルムのロールに代えて、(4-1)で得た樹脂フィルムのロールを用いたこと、および、2組のニップロールの周速比(Ps2/Ps1)を1.5とすることにより、フィルムを搬送方向に延伸倍率1.5倍で延伸したこと以外は、実施例1の(1-2)と同じ操作を行い、延伸フィルムのロールを得た。延伸フィルムについて、Re、Rth、NZ係数及び厚みを測定したところ、Reは275nm、Rthは30nm、NZ係数は0.61、厚みは20μmであった。
(4-2) Step 1
In (1-2) of Example 1, the roll of the resin film obtained in (4-1) was used instead of the roll of the resin film obtained in (1-1), and two sets of nip rolls were used. By setting the peripheral speed ratio (Ps2 / Ps1) of the film to 1.5, the same operation as in (1-2) of Example 1 was performed except that the film was stretched in the transport direction at a stretching ratio of 1.5 times. , A roll of stretched film was obtained. When the Re, Rth, NZ coefficient and thickness of the stretched film were measured, Re was 275 nm, Rth was 30 nm, the NZ coefficient was 0.61, and the thickness was 20 μm.
 [実施例5]
 実施例1の(1-2)において、樹脂フィルムと溶剤との接触を、溶剤で満たされた浴槽に樹脂フィルムを通す方法に代えて、下記塗布法により行ったこと以外は実施例1と同じ操作を行い、延伸フィルムのロールを得た。延伸フィルムについて、Re、Rth、NZ係数及び厚みを測定したところ、Reは62nm、Rthは-62nm、NZ係数は-0.5、厚みは51μmであった。
[Example 5]
In Example 1 (1-2), the contact between the resin film and the solvent is the same as in Example 1 except that the contact between the resin film and the solvent is performed by the following coating method instead of the method of passing the resin film through a bathtub filled with the solvent. The operation was carried out to obtain a roll of stretched film. When the Re, Rth, NZ coefficient and thickness of the stretched film were measured, Re was 62 nm, Rth was −62 nm, the NZ coefficient was −0.5, and the thickness was 51 μm.
 (塗布法)
 浴槽102に代えて塗布装置(リバースグラビア方式)を用い、当該塗布装置により、樹脂フィルムの一方の面に、トルエンを塗布した。溶剤の塗布量は30g/m(塗布直後の塗布量)とした。
(Applying method)
A coating device (reverse gravure method) was used instead of the bathtub 102, and toluene was coated on one surface of the resin film by the coating device. The coating amount of the solvent was 30 g / m 2 (the coating amount immediately after coating).
 [比較例1]
 実施例1の(1-1)で得られたフィルムのロールからフィルムを引き出して、当該フィルムからマスキングフィルムを剥離して樹脂フィルムを搬送した。当該樹脂フィルムを110℃に加温されたオーブン内を、当該オーブン内で約1分間加温されるように通過させることにより、延伸温度110℃で自由縦一軸延伸を施した。この自由縦一軸延伸は、図2に示すロール延伸機を用いて下記の方法により行った。
[Comparative Example 1]
The film was pulled out from the roll of the film obtained in (1-1) of Example 1, the masking film was peeled from the film, and the resin film was conveyed. By passing the resin film through an oven heated to 110 ° C. so as to be heated in the oven for about 1 minute, free longitudinal uniaxial stretching was performed at a stretching temperature of 110 ° C. This free longitudinal uniaxial stretching was performed by the following method using the roll stretching machine shown in FIG.
 図2に示すロール延伸機1について説明する。ロール延伸機1は、図2に示すように、フィルムロール2から繰り出されるフィルム3を、その長手方向に延伸するための装置である。ロール延伸機1は、搬送方向の上流から順に、フィルム3を長手方向に搬送しうるニップロールとして上流側ロール6A及び下流側ロール6Bを備える。ここで、下流側ロール6Bの周速PsBは上流側ロール6Aの周速PsAよりも速く設定されている。 The roll stretching machine 1 shown in FIG. 2 will be described. As shown in FIG. 2, the roll stretching machine 1 is a device for stretching the film 3 unwound from the film roll 2 in the longitudinal direction thereof. The roll stretching machine 1 includes an upstream roll 6A and a downstream roll 6B as nip rolls capable of transporting the film 3 in the longitudinal direction in order from the upstream in the transport direction. Here, the peripheral speed PsB of the downstream roll 6B is set to be faster than the peripheral speed PsA of the upstream roll 6A.
 前記のロール延伸機1を用いた樹脂フィルム(図2におけるフィルム3に対応)の延伸は、以下のようにして行なった。
 フィルムロール2からフィルム3を繰り出し、そのフィルム3をロール延伸機1に連続的に供給した。ロール延伸機1は、フィルム3を、上流側ロール6A及び下流側ロール6Bの順に搬送した。この際、上流側ロール6Aの周速PsAに対する下流側ロール6Bの周速PsBの比(PsB/PsA)を1.5とすることにより、フィルム3を、延伸倍率1.5倍で、フィルム搬送方向(すなわち縦方向)に延伸した。延伸後のフィルムの幅方向の両端を、図示しないトリミング装置によりトリミングして、長尺の延伸フィルム4を得た。この延伸フィルムを、新たなマスキングフィルム(トレデガー社製「FF1025」)で保護しながら巻き取り、延伸フィルムのロール5を得た。得られた延伸フィルムについて、Re、Rth、NZ係数及び厚みを測定したところ、Reは75nm、Rthは38nm、NZ係数は1.01、厚みは40μmであった。
The resin film (corresponding to the film 3 in FIG. 2) was stretched using the roll stretching machine 1 as follows.
The film 3 was unwound from the film roll 2, and the film 3 was continuously supplied to the roll stretching machine 1. The roll stretching machine 1 conveyed the film 3 in the order of the upstream roll 6A and the downstream roll 6B. At this time, by setting the ratio (PsB / PsA) of the peripheral speed PsB of the downstream side roll 6B to the peripheral speed PsA of the upstream side roll 6A to 1.5, the film 3 is conveyed at a draw ratio of 1.5 times. Stretched in the direction (ie, longitudinal). Both ends of the stretched film in the width direction were trimmed with a trimming device (not shown) to obtain a long stretched film 4. This stretched film was wound while being protected by a new masking film (“FF1025” manufactured by Tredegar) to obtain a roll 5 of the stretched film. When the Re, Rth, NZ coefficient and thickness of the obtained stretched film were measured, Re was 75 nm, Rth was 38 nm, the NZ coefficient was 1.01, and the thickness was 40 μm.
 実施例および比較例で用いた樹脂フィルムを構成する樹脂、および樹脂フィルムの厚み、溶剤との接触の条件(溶剤の種類、接触方法、接触時間)、延伸倍率及び延伸フィルムの物性値(Re、Rth、NZ係数、厚み)を表1に示す。比較例については、樹脂フィルムの延伸の際の加熱条件(オーブン温度)を表1に示す。表1において、「結晶性COP」とは、結晶性の脂環式構造含有重合体を意味する。表1において、「浸漬」とは、樹脂フィルムと溶剤との接触を、樹脂フィルムを溶剤に浸漬する方法により行ったことを意味し、「塗布」とは、樹脂フィルムと溶剤との接触を、樹脂フィルムに溶剤を塗布する方法により行ったことを意味する。表1において、「延伸フィルム」とは、延伸後の樹脂フィルムを意味する。 The resin constituting the resin film used in Examples and Comparative Examples, the thickness of the resin film, the contact conditions with the solvent (solvent type, contact method, contact time), draw ratio and physical property values of the stretched film (Re, Rth, NZ coefficient, thickness) are shown in Table 1. For a comparative example, Table 1 shows the heating conditions (oven temperature) when the resin film is stretched. In Table 1, "crystalline COP" means a crystalline alicyclic structure-containing polymer. In Table 1, "immersion" means that the contact between the resin film and the solvent was performed by the method of immersing the resin film in the solvent, and "coating" means that the contact between the resin film and the solvent was performed. It means that the method was performed by applying a solvent to the resin film. In Table 1, the "stretched film" means a resin film after stretching.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1に示す結果から明らかなように、実施例の方法によれば、延伸の際に樹脂フィルムの加熱を行なっていないにもかかわらず、レターデーションを有するフィルムを得ることができるということが分かる。つまり、本発明の製造方法によれば、樹脂フィルムの加熱を行わなくてもレターデーションを発現することができるので、樹脂フィルムの加熱装置が不要であり、製造設備を簡素化できる。 As is clear from the results shown in Table 1, it can be seen that according to the method of the example, a film having retardation can be obtained even though the resin film is not heated during stretching. .. That is, according to the manufacturing method of the present invention, the retardation can be developed without heating the resin film, so that a heating device for the resin film is unnecessary and the manufacturing equipment can be simplified.
 [他の実施形態]
 (1)上記実施形態及び実施例では、樹脂フィルムを、搬送方向の上流側と下流側のニップロールの周速差によりフィルム搬送方向に自由縦一軸延伸する例を示したが、樹脂フィルムの延伸方法(装置、延伸方向など)はこれに限定されない。樹脂フィルムの延伸方向は斜め方向であってもよいし、フィルム幅方向であってもよい。また、延伸方向は二方向以上であってもよく、この場合、二方向以上の延伸は、同時に行ってもよいし、遂次行ってもよい。
[Other Embodiments]
(1) In the above-described embodiments and examples, an example in which the resin film is freely stretched uniaxially in the film transport direction due to the difference in peripheral speed between the nip rolls on the upstream side and the downstream side in the transport direction is shown. (Device, stretching direction, etc.) are not limited to this. The stretching direction of the resin film may be an oblique direction or a film width direction. Further, the stretching direction may be two or more directions, and in this case, the stretching in two or more directions may be performed simultaneously or sequentially.
 1…ロール延伸機
 2…樹脂フィルムのロール
 3…樹脂フィルム
 4…延伸フィルム
 5…延伸フィルムのロール
 6A…上流側ロール
 6B…下流側ロール
 10…延伸フィルム
 11…フィルム(樹脂フィルムにマスキングフィルムを貼合したフィルム)
 12,13…マスキングフィルム
 15…樹脂フィルム
 100…装置
 101A,101B…上流側のニップロール
 102…浴槽
 104A,104B…下流側のニップロール
 110…延伸フィルムのロール
 111…樹脂フィルムのロール
 112,113…マスキングフィルムのロール
1 ... Roll stretching machine 2 ... Resin film roll 3 ... Resin film 4 ... Stretched film 5 ... Stretched film roll 6A ... Upstream side roll 6B ... Downstream side roll 10 ... Stretched film 11 ... Film (masking film is attached to the resin film) Combined film)
12, 13 ... Masking film 15 ... Resin film 100 ... Equipment 101A, 101B ... Upstream nip roll 102 ... Bathtub 104A, 104B ... Downstream nip roll 110 ... Stretched film roll 111 ... Resin film roll 112, 113 ... Masking film Roll

Claims (7)

  1.  位相差フィルムを製造する方法であって、
     樹脂フィルムを溶剤に接触させて延伸する工程を含む、位相差フィルムの製造方法。
    It is a method of manufacturing a retardation film.
    A method for producing a retardation film, which comprises a step of bringing a resin film into contact with a solvent and stretching the film.
  2.  前記樹脂フィルムと前記溶剤との接触を、前記樹脂フィルムを前記溶剤に浸漬することにより行う、請求項1に記載の位相差フィルムの製造方法。 The method for producing a retardation film according to claim 1, wherein the resin film and the solvent are brought into contact with each other by immersing the resin film in the solvent.
  3.  前記樹脂フィルムは、固有複屈折値が正の樹脂からなる、請求項1または2に記載の位相差フィルムの製造方法。 The method for producing a retardation film according to claim 1 or 2, wherein the resin film is made of a resin having a positive natural birefringence value.
  4.  前記樹脂フィルムは、結晶性を有する重合体を含む樹脂からなる、請求項1~3のいずれか1項に記載の位相差フィルムの製造方法。 The method for producing a retardation film according to any one of claims 1 to 3, wherein the resin film is made of a resin containing a polymer having crystallinity.
  5.  前記結晶性を有する重合体が、ジシクロペンタジエンの開環重合体の水素化物である、請求項4に記載の位相差フィルムの製造方法。 The method for producing a retardation film according to claim 4, wherein the crystalline polymer is a hydride of a ring-opening polymer of dicyclopentadiene.
  6.  前記溶剤が、炭化水素系の溶剤である、請求項1~5のいずれか1項に記載の位相差フィルムの製造方法。 The method for producing a retardation film according to any one of claims 1 to 5, wherein the solvent is a hydrocarbon solvent.
  7.  前記延伸する工程を、前記樹脂フィルムを加熱せずに行う、請求項1~6のいずれか1項に記載の位相差フィルムの製造方法。 The method for producing a retardation film according to any one of claims 1 to 6, wherein the stretching step is performed without heating the resin film.
PCT/JP2021/003102 2020-01-30 2021-01-28 Retardation film manufacturing method WO2021153695A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2021574125A JPWO2021153695A1 (en) 2020-01-30 2021-01-28
CN202180007539.8A CN114868053A (en) 2020-01-30 2021-01-28 Method for producing retardation film
KR1020227023254A KR20220127818A (en) 2020-01-30 2021-01-28 Manufacturing method of retardation film

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-013823 2020-01-30
JP2020013823 2020-01-30

Publications (1)

Publication Number Publication Date
WO2021153695A1 true WO2021153695A1 (en) 2021-08-05

Family

ID=77079380

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/003102 WO2021153695A1 (en) 2020-01-30 2021-01-28 Retardation film manufacturing method

Country Status (5)

Country Link
JP (1) JPWO2021153695A1 (en)
KR (1) KR20220127818A (en)
CN (1) CN114868053A (en)
TW (1) TW202132087A (en)
WO (1) WO2021153695A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003139950A (en) * 2001-10-30 2003-05-14 Sekisui Chem Co Ltd Method for manufacturing optical retardation film
JP2010079239A (en) * 2008-08-28 2010-04-08 Fujifilm Corp Cellulose acylate film and method for producing the same, retardation film, polarizing plate, and liquid crystal display device
US20100296032A1 (en) * 2008-01-18 2010-11-25 Johnson Matthey Public Limited Company Optical film, preparation method of the same, and liquid crystal display comprising the same
JP2016014869A (en) * 2014-06-13 2016-01-28 コニカミノルタ株式会社 Manufacturing method of cyclic polyolefin film and cyclic polyolefin film
JP2016511839A (en) * 2013-01-24 2016-04-21 アクロン ポリマー システムズ,インコーポレイテッド Wide-field optical film with reverse wavelength dispersion
JP2019120879A (en) * 2018-01-10 2019-07-22 コニカミノルタ株式会社 Oriented film and method of producing the same
WO2021020023A1 (en) * 2019-07-31 2021-02-04 日本ゼオン株式会社 Phase contrast film and production method therefor

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005099097A (en) * 2003-09-22 2005-04-14 Fuji Photo Film Co Ltd Optical film and its manufacturing method, and polarizing plate using optical film
JP2016212171A (en) 2015-05-01 2016-12-15 日本ゼオン株式会社 Optical laminate, circularly polarizing plate and organic electroluminescence display device
KR20240042258A (en) 2015-10-15 2024-04-01 니폰 제온 가부시키가이샤 Phase difference film and production method for same
JP2017187731A (en) * 2016-03-30 2017-10-12 住友化学株式会社 Manufacturing methods for stretched film and polarizing film
CN111480100B (en) * 2017-12-28 2022-04-08 日本瑞翁株式会社 Laminate for polarizing plate, laminate film roll, and method for producing same

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003139950A (en) * 2001-10-30 2003-05-14 Sekisui Chem Co Ltd Method for manufacturing optical retardation film
US20100296032A1 (en) * 2008-01-18 2010-11-25 Johnson Matthey Public Limited Company Optical film, preparation method of the same, and liquid crystal display comprising the same
JP2010079239A (en) * 2008-08-28 2010-04-08 Fujifilm Corp Cellulose acylate film and method for producing the same, retardation film, polarizing plate, and liquid crystal display device
JP2016511839A (en) * 2013-01-24 2016-04-21 アクロン ポリマー システムズ,インコーポレイテッド Wide-field optical film with reverse wavelength dispersion
JP2016014869A (en) * 2014-06-13 2016-01-28 コニカミノルタ株式会社 Manufacturing method of cyclic polyolefin film and cyclic polyolefin film
JP2019120879A (en) * 2018-01-10 2019-07-22 コニカミノルタ株式会社 Oriented film and method of producing the same
WO2021020023A1 (en) * 2019-07-31 2021-02-04 日本ゼオン株式会社 Phase contrast film and production method therefor

Also Published As

Publication number Publication date
JPWO2021153695A1 (en) 2021-08-05
KR20220127818A (en) 2022-09-20
TW202132087A (en) 2021-09-01
CN114868053A (en) 2022-08-05

Similar Documents

Publication Publication Date Title
JP5413419B2 (en) A polarizer protective film comprising a biaxially oriented polyethylene terephthalate film
JPWO2020175217A1 (en) Resin film manufacturing method, retardation film and its manufacturing method
WO2021153695A1 (en) Retardation film manufacturing method
WO2021020023A1 (en) Phase contrast film and production method therefor
WO2021107108A1 (en) Phase contrast film and method for producing same
WO2022145174A1 (en) Optical film and manufacturing method therefor
WO2022145152A1 (en) Optical film and method for producing same
WO2021039934A1 (en) Phase contrast film and production method therefor
JP2021053888A (en) Manufacturing method for resin film, and resin film
WO2022163416A1 (en) Optical film, production method therefor, and polarizing film
JP2022103558A (en) Multilayer film and manufacturing method thereof, and optical film and manufacturing method thereof
JP2022103573A (en) Optical film, method for manufacturing the same, and method for manufacturing stretch film
CN114730039B (en) Retardation film and method for producing same
JP2022116871A (en) Optical film, and manufacturing method thereof
WO2022145238A1 (en) Birefringence film, method for manufacturing same, and method for manufacturing optical film
JP2022116820A (en) Manufacturing method of optical film
JP2022116889A (en) Manufacturing method of optical film
JP7103125B2 (en) Resin film manufacturing method
JP2022103719A (en) Optical film, method for producing the same and use thereof
JP2022104366A (en) Optical film and method for manufacturing the same
JP2024049134A (en) Method for manufacturing optical film
WO2022145171A1 (en) Multilayer film, optical film, and manufacturing method
JP2022116919A (en) Optical film, composite optical film, and manufacturing method
WO2022145172A1 (en) Multilayer film and production method therefor
WO2022209818A1 (en) Optical film and manufacturing method therefor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21748229

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021574125

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21748229

Country of ref document: EP

Kind code of ref document: A1