WO2022143919A1 - 转向参数检测方法及装置、计算机设备及可读存储介质 - Google Patents

转向参数检测方法及装置、计算机设备及可读存储介质 Download PDF

Info

Publication number
WO2022143919A1
WO2022143919A1 PCT/CN2021/143174 CN2021143174W WO2022143919A1 WO 2022143919 A1 WO2022143919 A1 WO 2022143919A1 CN 2021143174 W CN2021143174 W CN 2021143174W WO 2022143919 A1 WO2022143919 A1 WO 2022143919A1
Authority
WO
WIPO (PCT)
Prior art keywords
steering wheel
agricultural machinery
steering
machinery equipment
angle
Prior art date
Application number
PCT/CN2021/143174
Other languages
English (en)
French (fr)
Inventor
吴泽龙
Original Assignee
广州极飞科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广州极飞科技股份有限公司 filed Critical 广州极飞科技股份有限公司
Publication of WO2022143919A1 publication Critical patent/WO2022143919A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M17/00Testing of vehicles
    • G01M17/007Wheeled or endless-tracked vehicles
    • G01M17/06Steering behaviour; Rolling behaviour

Definitions

  • the embodiments of the present application relate to the field of computer technologies, and in particular, to a steering parameter detection method and apparatus, a computer device, and a readable storage medium.
  • methods for obtaining steering parameters can be roughly divided into two types.
  • One is to query the product introduction materials of agricultural machinery equipment to obtain the steering parameters of agricultural machinery equipment.
  • the other is to manually measure the steering parameters of agricultural machinery and equipment.
  • the efficiency of manual measurement is low, and it is not conducive to the unmanned development of automatic driving of agricultural machinery equipment.
  • Embodiments of the present application provide a steering parameter detection method and device, a computer device, and a readable storage medium, so as to realize the purpose of automatically detecting steering parameters of agricultural machinery equipment and improving the accuracy of steering parameters.
  • an embodiment of the present application provides a steering parameter detection method, including:
  • the agricultural machinery equipment is controlled to perform a detection action corresponding to the steering parameter to be detected, and the value of the steering parameter to be detected is determined according to the parameters collected during the action.
  • the steering parameter to be detected includes a maximum steering wheel angle.
  • the controlling the agricultural machinery equipment to perform a detection action corresponding to the steering parameter to be detected, and determining the value of the steering parameter to be detected according to the parameters collected during the action includes: controlling the steering wheel of the agricultural machinery equipment to reset ; after the steering wheel is reset to the preset reset position, control the steering wheel to turn to the maximum angle in the steering direction corresponding to the preset reset position, and obtain the steering wheel from the preset reset position to the The rotation angle at the maximum angle; the value of the maximum rotation angle of the steering wheel is determined according to the rotation angle when the steering wheel is rotated from the preset reset position to the maximum angle.
  • the steering parameter to be detected includes a minimum turning radius.
  • the controlling the agricultural machinery equipment to perform a detection action corresponding to the steering parameter to be detected, and determining the value of the steering parameter to be detected according to the parameters collected during the action includes: when the agricultural machinery equipment is in a motion state , control the steering wheel of the agricultural machinery equipment to turn to the maximum angle in one direction; collect multiple motion trajectory positions of the agricultural machinery equipment during the steering wheel rotation process; according to the respective corresponding curvature radii of the multiple motion track positions, determine multiple current turning radii of the agricultural machinery equipment during the steering wheel rotation process; if the multiple current turning radii satisfy the preset turning radius convergence condition, the value of the minimum turning radius is determined according to the multiple current turning radii.
  • the method further includes: acquiring a set number of current turning radii that are located at the bottom in chronological order among the plurality of current turning radii; The standard deviation of the current turning radii of the set number located at the end in time sequence; determine whether the standard deviation is less than a preset standard deviation threshold; if the standard deviation is less than the preset standard deviation threshold, determine the Multiple current turning radii satisfy the preset turning radius convergence condition; if the standard deviation is greater than or equal to the preset standard deviation threshold, it is determined that the multiple current turning radii do not meet the preset turning radius Radius Convergence Condition.
  • the determining the value of the minimum turning radius according to the multiple current turning radii includes: The average value of the current turning radii of the set number of the last positions in the order is determined as the value of the minimum turning radius.
  • the resetting of the steering wheel for controlling the agricultural machinery equipment includes: When the agricultural machinery equipment is in a non-moving state, the steering wheel of the agricultural machinery equipment is controlled to rotate in one direction to the maximum angle.
  • a seventh possible implementation manner after the steering wheel is reset to a preset reset position, the steering wheel direction is controlled to correspond to the preset reset position The steering direction of the steering wheel is turned to the maximum angle, and obtaining the rotation angle when the steering wheel is turned from the preset reset position to the maximum angle, including: after the steering wheel is turned to the maximum angle in one direction, controlling the steering wheel The steering wheel is turned to the maximum angle in another direction, and the turning angle when the steering wheel is turned from the maximum angle in one direction to the maximum angle in another direction is obtained.
  • the steering wheel is determined according to the rotation angle when the steering wheel is rotated from the preset reset position to the maximum angle
  • the value of the maximum rotation angle includes: dividing the value of the rotation angle when the steering wheel is rotated from the maximum angle in one direction to the maximum angle in another direction by 2 to obtain the value of the maximum rotation angle of the steering wheel.
  • the resetting of the steering wheel for controlling the agricultural machinery equipment includes: When the agricultural machinery equipment is in a motion state, the steering wheel for controlling the agricultural machinery equipment is turned to a middle position.
  • the steering wheel direction is controlled to correspond to the preset reset position turn the steering direction of the steering wheel to the maximum angle, and obtain the steering angle when the steering wheel is turned from the preset reset position to the maximum angle, including: after the steering wheel is turned to the intermediate position, controlling the steering wheel to move to a The direction is turned to the maximum angle, and the turning angle when the steering wheel is turned from the neutral position to the maximum angle is obtained.
  • the determination of the The value of the maximum rotation angle of the steering wheel includes: determining the value of the rotation angle when the steering wheel is turned from the intermediate position to the maximum angle as the value of the maximum rotation angle of the steering wheel.
  • an embodiment of the present application also provides a steering parameter detection device, including:
  • a parameter determination module configured to determine the steering parameters to be detected of the agricultural machinery equipment according to the current steering parameter information of the agricultural machinery equipment
  • the numerical value determination module is used to control the agricultural machinery equipment to perform a detection action corresponding to the steering parameter to be detected, and to determine the numerical value of the steering parameter to be detected according to the parameters collected during the action.
  • an embodiment of the present application further provides a computer device, including a memory, a processor, and a computer program stored in the memory and running on the processor, the processor implementing the program as described in the present application when the processor executes the program.
  • a computer device including a memory, a processor, and a computer program stored in the memory and running on the processor, the processor implementing the program as described in the present application when the processor executes the program.
  • the embodiments of the present application further provide a computer-readable storage medium on which a computer program is stored, and when the computer program is executed by a processor, implements the steering parameter detection method described in the embodiments of the present application.
  • the technical solutions of the embodiments of the present application determine the steering parameters of the agricultural machinery equipment to be detected according to the current steering parameter information of the agricultural machinery equipment, and then control the agricultural machinery equipment to perform detection actions corresponding to the steering parameters to be detected.
  • Parameters or position parameters determine the value of the steering parameter to be detected, and the steering parameters of the agricultural machinery can be automatically detected by controlling the agricultural machinery equipment to perform detection actions corresponding to the steering parameters to be detected in real time, and the determined steering parameters are closer to reality.
  • the steering parameters of the agricultural machinery equipment with sufficient accuracy can be obtained without manual measurement, realizing automatic detection of the steering parameters of the agricultural machinery equipment, and improving the accuracy of the steering parameters.
  • FIG. 1 is a flowchart of a steering parameter detection method provided in Embodiment 1 of the present application.
  • FIG. 2 is a flowchart of a steering parameter detection method provided in Embodiment 2 of the present application.
  • FIG. 3 is a flowchart of a steering parameter detection method provided in Embodiment 3 of the present application.
  • FIG. 4 is a schematic structural diagram of a steering parameter detection device according to Embodiment 4 of the present application.
  • FIG. 5 is a schematic structural diagram of a computer device according to Embodiment 5 of the present application.
  • FIG. 1 is a flowchart of a steering parameter detection method provided in Embodiment 1 of the present application.
  • the embodiments of the present application can be applied to the situation of determining the steering parameters of agricultural machinery equipment, and the method can be performed by the steering parameter detection device provided in the embodiments of the present application, which can be implemented in software and/or hardware, and can generally be integrated in in computer equipment.
  • the computer equipment can be a controller inside the agricultural machinery equipment, or it can be a server, cloud platform, computer, mobile phone, tablet, etc. with communication, computing and storage functions.
  • Agricultural machinery equipment includes but is not limited to combine harvesters, land leveling machinery, rice transplanters, seeders, etc.
  • the method of the embodiment of the present application specifically includes the following steps.
  • Step 101 Determine steering parameters to be detected of the agricultural machinery equipment according to the current steering parameter information of the agricultural machinery equipment.
  • the steering parameters of agricultural machinery equipment include, but are not limited to, the maximum steering wheel angle, the minimum turning radius, and the like.
  • the current steering parameter information is the numerical information of the steering parameters of the agricultural machinery equipment at the current moment, including the numerical values of various steering parameters of the agricultural machinery equipment.
  • the steering parameter to be detected is a steering parameter whose numerical status is indeterminate, and the value needs to be determined through detection.
  • determining the to-be-detected steering parameters of the agricultural machinery equipment according to the current steering parameter information of the agricultural machinery equipment includes: according to the current steering parameter information of the agricultural machinery equipment, determining that the numerical state of the various steering parameters of the agricultural machinery equipment is: Uncertain steering parameters; determine the steering parameters whose numerical state is indeterminate as the steering parameters to be detected of the agricultural machinery equipment.
  • Step 102 Control the agricultural machinery equipment to perform a detection action corresponding to the steering parameter to be detected, and determine the value of the steering parameter to be detected according to the parameters collected during the action.
  • the parameters collected during the action mentioned in step 102 include rotation angle parameters and/or position parameters.
  • a corresponding detection action is set for each steering parameter to be detected in advance.
  • the steering parameters to be detected of the agricultural machinery equipment include the maximum steering wheel angle; the control of the agricultural machinery equipment to perform a detection action corresponding to the steering parameters to be detected, according to the parameters collected during the action, to determine the The value of the steering parameter to be detected includes: controlling the steering wheel of the agricultural machinery equipment to reset; after the steering wheel is reset to the preset reset position, controlling the steering wheel to turn to the maximum angle in the steering direction corresponding to the preset reset position, and obtain the rotation angle when the steering wheel is turned from the preset reset position to the maximum angle; according to the rotation angle when the steering wheel is turned from the preset reset position to the maximum angle, determine the numerical value of the maximum steering wheel angle of the agricultural machinery equipment .
  • controlling the agricultural machinery equipment to perform a detection action corresponding to the steering parameter to be detected includes: controlling the steering wheel of the agricultural machinery equipment to reset; after the steering wheel is reset to a preset reset position, controlling the steering wheel to correspond to the preset reset position the steering direction to the maximum angle.
  • the turning angle parameter collected during the action is the turning angle when the steering wheel is turned from the preset reset position to the maximum angle.
  • the steering wheel of the agricultural machinery equipment is controlled to be reset. After the steering wheel is reset to the preset reset position, the steering wheel is controlled to turn to the maximum angle in the steering direction corresponding to the preset reset position, and the turning angle when the steering wheel is turned from the preset reset position to the maximum angle is obtained. Determine the value of the maximum steering wheel angle of the agricultural machinery equipment according to the rotation angle when the steering wheel is turned from the preset reset position to the maximum angle.
  • the steering parameters to be detected of the agricultural machinery equipment include a minimum turning radius; the control of the agricultural machinery equipment to perform a detection action corresponding to the steering parameters to be detected, according to the parameters collected during the action, to determine the
  • the value of the steering parameter to be detected includes: when the agricultural machinery equipment is in motion, controlling the steering wheel of the agricultural machinery equipment to rotate to a maximum angle in one direction; collecting multiple motion track positions of the agricultural machinery equipment during the steering wheel rotation process; The discrete point curvature calculation rule is used to calculate the respective curvature radii of the multiple motion track positions; according to the respective curvature radii of the multiple motion track positions, determine the multiple current turning radii of the agricultural machinery equipment during the steering wheel rotation process; if the If a plurality of current turning radii satisfy a preset turning radius convergence condition, the value of the minimum turning radius is determined according to the plurality of current turning radii.
  • controlling the agricultural machinery equipment to perform a detection action corresponding to the steering parameter to be detected includes: when the agricultural machinery equipment is in a motion state, controlling the steering wheel of the agricultural machinery equipment to turn to a maximum angle in one direction.
  • the position parameters collected during the action process are the multiple motion track positions of the agricultural machinery equipment during the steering wheel rotation process.
  • the steering wheel of the agricultural machinery is controlled to turn to the maximum angle in one direction.
  • the respective curvature radii corresponding to the multiple motion track positions multiple current turning radii of the agricultural machinery equipment during the steering wheel rotation process are determined. Determine whether multiple current turning radii satisfy preset turning radius convergence conditions. If the multiple current turning radii satisfy the preset turning radius convergence conditions, the value of the minimum turning radius of the agricultural machinery equipment is determined according to the multiple current turning radii.
  • the process of determining the maximum turning angle and the minimum turning radius of the steering wheel is decoupled. That is to say, the determination process of the maximum turning angle and the minimum turning radius of the steering wheel can be carried out simultaneously or separately.
  • the embodiment of the present application provides a steering parameter detection method, by determining the steering parameters of the agricultural machinery equipment to be detected according to the current steering parameter information of the agricultural machinery equipment, and then controlling the agricultural machinery equipment to perform detection actions corresponding to the steering parameters to be detected.
  • the parameters collected in the process determine the value of the steering parameters to be detected.
  • FIG. 2 is a flowchart of a method for detecting steering parameters for determining steering parameters according to Embodiment 2 of the present application.
  • the embodiments of the present application may be combined with each optional solution in one or more of the foregoing embodiments. That is to say, the embodiments of the present application can be arbitrarily combined with any one or any of other embodiments according to actual conditions.
  • the method of the embodiment of the present application specifically includes the following steps.
  • Step 201 according to the current steering parameter information of the agricultural machinery equipment, determine that the steering parameter to be detected of the agricultural machinery equipment is the maximum steering wheel angle.
  • Step 202 controlling the steering wheel of the agricultural machinery equipment to reset.
  • the maximum steering wheel angle is the maximum steering angle to the right (or left) of the steering wheel. In order to ensure that the maximum rotation angle of the steering wheel of the agricultural machinery equipment can be effectively determined, the steering wheel of the agricultural machinery equipment is controlled to be reset.
  • the resetting of the steering wheel for controlling the agricultural machinery equipment includes: when the agricultural machinery equipment is in a non-moving state, controlling the steering wheel of the agricultural machinery equipment to rotate to a maximum angle in one direction. Specifically, the steering wheel that controls the agricultural machinery equipment is turned to the right (or left) to the maximum angle. In this way, the steering wheel of the agricultural machinery can be reset when the agricultural machinery does not move.
  • the resetting of the steering wheel for controlling the agricultural machinery equipment includes: when the agricultural machinery equipment is in a motion state, controlling the steering wheel of the agricultural machinery equipment to turn to a middle position.
  • the steering wheel that controls the agricultural machinery equipment is turned to the middle position, that is, the agricultural machinery equipment can maintain a straight line state. In this way, the steering wheel of the agricultural machinery can be reset when the agricultural machinery is in motion.
  • Step 203 after the steering wheel is reset to the preset reset position, control the steering wheel to turn to the maximum angle in the steering direction corresponding to the preset reset position, and obtain the steering wheel from the preset reset position to turn to the maximum angle. Rotation angle at maximum angle.
  • the preset reset position may be a maximum angle in one direction or a middle position.
  • the steering wheel is controlled to turn to a maximum angle in a steering direction corresponding to the preset reset position, and the steering wheel is obtained.
  • the turning angle when turning from the preset reset position to the maximum angle includes: after the steering wheel is turned to the maximum angle in one direction, controlling the steering wheel to turn the steering wheel to the maximum angle in another direction, and obtaining the rotation angle of the steering wheel from one direction to the maximum angle. The rotation angle when the direction maximum angle turns to the other direction maximum angle.
  • the steering wheel of the agricultural machinery equipment is controlled to rotate to the maximum angle in one direction, the steering wheel is reset, and the angle position of the steering wheel at the maximum angle in one direction is recorded as 0.
  • the preset reset position is the maximum angle in one direction.
  • the steering direction corresponding to the preset reset position is the other direction. Then control the steering wheel to turn to the maximum angle in another direction, and record the steering angle when the steering wheel turns from the corner position to the maximum angle in the other direction through the angle sensor, so as to obtain the steering wheel from the maximum angle in one direction to the maximum angle in the other direction. corner of time.
  • control the steering wheel after the steering wheel is reset to a preset reset position, control the steering wheel to turn to a maximum angle in a steering direction corresponding to the preset reset position, and obtain the The turning angle when the steering wheel is turned from the preset reset position to the maximum angle, including: after the steering wheel is turned to the intermediate position, controlling the steering wheel to turn to the maximum angle in one direction, and obtaining the rotation angle of the steering wheel from the The rotation angle when the intermediate position is turned to the maximum angle.
  • the steering wheel of the agricultural machinery equipment is controlled to be rotated to the middle position, the steering wheel is reset, and the angular position of the steering wheel in the middle position is recorded as 0.
  • the default reset position is the neutral position.
  • the steering direction corresponding to the preset reset position is one direction (right or left). Then control the steering wheel to turn to the maximum angle in one direction, and record the turning angle when the steering wheel turns from the corner position to the maximum angle in one direction through the angle sensor, so as to obtain the turning angle when the steering wheel turns from the middle position to the maximum angle.
  • Step 204 Determine the value of the maximum steering wheel angle of the agricultural machinery equipment according to the rotation angle of the steering wheel when the steering wheel is rotated from the preset reset position to the maximum angle.
  • the rotation angle when the steering wheel is rotated from the preset reset position to the maximum angle is the rotation angle when the steering wheel is rotated from the maximum angle in one direction to the maximum angle in another direction.
  • determining the numerical value of the maximum steering wheel angle of the agricultural machinery equipment according to the rotation angle of the steering wheel from the preset reset position to the maximum angle includes: turning the steering wheel from the maximum angle in one direction to the maximum angle.
  • the value of the rotation angle at the maximum angle in the other direction is divided by 2, as the value of the maximum rotation angle of the steering wheel of the agricultural machinery equipment.
  • the rotation angle when the steering wheel is rotated from the preset reset position to the maximum angle is the rotation angle when the steering wheel is rotated from the intermediate position to the maximum angle.
  • the determining the value of the maximum steering wheel angle of the agricultural machinery equipment according to the rotation angle of the steering wheel from the preset reset position to the maximum angle includes: turning the steering wheel from the intermediate position to the maximum angle. The value of the rotation angle at the maximum angle is determined as the value of the maximum rotation angle of the steering wheel of the agricultural machinery equipment.
  • the method further includes: outputting the maximum steering wheel rotation angle of the agricultural machinery equipment for subsequent relevant links.
  • Subsequent related links include but are not limited to the identification of other parameters of agricultural machinery and equipment, or the construction of agricultural machinery and equipment dynamics and kinematics models.
  • the embodiment of the present application provides a steering parameter detection method, which is to control the steering wheel of agricultural machinery equipment to reset, and then control the steering wheel to turn to the maximum angle in the steering direction corresponding to the preset reset position after the steering wheel is reset to a preset reset position, And obtain the rotation angle when the steering wheel is turned from the preset reset position to the maximum angle, and finally determine the value of the maximum steering wheel angle of the agricultural machinery equipment according to the rotation angle of the steering wheel when the steering wheel is turned from the preset reset position to the maximum angle.
  • the value of the rotation angle is automatically detected, and the determined maximum steering wheel angle is closer to reality, so that the maximum steering wheel angle of agricultural machinery equipment with sufficient accuracy can be obtained without manual measurement. Accuracy of maximum corners.
  • FIG. 3 is a flowchart of a steering parameter detection method provided in Embodiment 3 of the present application.
  • the embodiments of the present application may be combined with each optional solution in one or more of the foregoing embodiments. That is to say, the embodiments of the present application can be arbitrarily combined with any one or any of other embodiments according to actual conditions.
  • the method of the embodiment of the present application specifically includes the following steps.
  • Step 301 according to the current steering parameter information of the agricultural machinery equipment, determine that the steering parameter to be detected of the agricultural machinery equipment is the minimum turning radius.
  • Step 302 when the agricultural machinery equipment is in a motion state, control the steering wheel of the agricultural machinery equipment to rotate to a maximum angle in one direction.
  • Step 303 Collect multiple motion track positions of the agricultural machinery equipment during the steering wheel rotation process.
  • collecting multiple motion trajectories of the agricultural machinery equipment during the steering wheel rotation process includes: sampling and obtaining multiple motion trajectories of the agricultural machinery equipment during the steering wheel rotation process through a positioning device of the agricultural machinery equipment according to a set sampling period.
  • Location can be latitude and longitude coordinates.
  • Positioning devices include but are not limited to carrier phase differential (Real-time kinematic, RTK) systems, machine vision systems, and the like.
  • Step 304 Calculate the radius of curvature of each of the motion track positions according to the discrete point curvature calculation rule. That is, according to the discrete point curvature calculation rule, the respective corresponding curvature radii of the plurality of motion track positions are calculated.
  • the discrete point curvature calculation rule is a rule for calculating the curvature of discrete points. Since the collected multiple motion track positions are a set of discrete points, the respective corresponding curvature radii of the multiple motion track positions can be calculated according to the discrete point curvature calculation rule.
  • the method before calculating the respective corresponding curvature radii of the plurality of motion track positions according to the discrete point curvature calculation rule, the method further includes: according to a preset smoothing filter, quantifying the multiplicity of the agricultural machinery equipment during the steering wheel rotation process. The motion trajectory position is smoothed and filtered. In this way, the calculation results of the curvature radii corresponding to the plurality of motion track positions can be made more stable.
  • Step 305 Determine a plurality of current turning radii of the agricultural machinery equipment during the steering wheel rotation process according to the radius of curvature of each of the motion track positions. That is, a plurality of current turning radii of the agricultural machinery equipment during the steering wheel rotation process are determined according to the respective radii of curvature corresponding to the plurality of motion track positions.
  • determining a plurality of current turning radii of the agricultural machinery equipment in the process of turning the steering wheel according to the respective radii of curvature corresponding to the plurality of motion trajectory positions includes: determining the radius of curvature of each motion trajectory position as A current turning radius of agricultural machinery equipment during steering wheel rotation.
  • 100 motion trajectory positions of the agricultural machinery equipment during the steering wheel rotation process are collected.
  • the curvature radius of each motion track position is determined as a current turning radius of the agricultural machinery equipment during the steering wheel rotation process, and 100 current turning radiuses of the agricultural machinery equipment during the steering wheel rotation process are determined.
  • determining a plurality of current turning radii of the agricultural machinery equipment in the process of turning the steering wheel according to the respective curvature radii of the plurality of motion trajectories including: arranging a plurality of motion trajectories in chronological order The radii of curvature of the positions are grouped to obtain at least one radius of curvature grouping, and each of the radii of curvature groups includes the radii of curvature of at least two consecutive motion track positions; respectively calculate the radii of curvature of the plurality of radii of curvature included in each of the radii of curvature groups. Average value; each average value is determined as a current turning radius of the agricultural machinery equipment during the steering wheel rotation.
  • 100 motion trajectory positions of the agricultural machinery equipment during the steering wheel rotation process are collected.
  • the 100 motion track positions arranged in time order are grouped, and 10 consecutive motion track positions are grouped together.
  • Each mean value is determined as a current turning radius of the agricultural machinery equipment during the steering wheel rotation process, and 10 current turning radiuses of the agricultural machinery equipment during the steering wheel rotation process are determined.
  • Step 306 Determine whether the multiple current turning radii meet the preset turning radius convergence conditions: if the multiple current turning radii meet the preset turning radius convergence conditions, perform step 307; if the multiple current turning radii meet the preset turning radius convergence conditions; If the radius does not meet the preset turning radius convergence condition, return to step 303 .
  • the preset turning radius convergence condition is a condition for determining whether the turning radius of the agricultural machinery equipment has gradually converged to the minimum turning radius and will no longer change. Due to the large fluctuations in the start-up phase of agricultural machinery equipment, in the actual application process, the turning radius of agricultural machinery equipment will gradually converge to the minimum value.
  • the agricultural machinery equipment can be determined according to the multiple current turning radii. Minimum turning radius.
  • the multiple current turning radii do not meet the preset turning radius convergence conditions, it indicates that the turning radius of the agricultural machinery equipment has not converged to the minimum turning radius, and is still changing, then return to execute the collection of the agricultural machinery equipment during the steering wheel rotation process. For the operation of multiple motion track positions, continue to collect motion track positions and calculate the turning radius.
  • the determining whether the multiple current turning radii satisfies a preset turning radius convergence condition includes: acquiring a set number of current turning radii that are located at the end in time sequence among the multiple current turning radii. ; Calculate the standard deviation of the current turning radius of the set number at the bottom in time sequence; determine whether the standard deviation is less than the preset standard deviation threshold; if the standard deviation is less than the preset standard deviation threshold , then it is determined that the multiple current turning radii meet the preset turning radius convergence conditions; if the standard deviation is greater than or equal to the preset standard deviation threshold, it is determined that the multiple current turning radii do not meet the preset turning radius Turning radius convergence condition.
  • the set number mentioned above is 2 or more.
  • Two or more current turning radii located at the bottom in time sequence among the plurality of current turning radii are acquired, that is, the latest two or more current turning radii are acquired.
  • Calculate the standard deviation of 2 or more current turning radii located at the bottom in chronological order. Determines whether the standard deviation is less than a preset standard deviation threshold. If the standard deviation is less than the preset standard deviation threshold, it is determined that the multiple current turning radii satisfy the preset turning radius convergence condition. If the standard deviation is greater than or equal to a preset standard deviation threshold, it is determined that the multiple current turning radii do not meet the preset turning radius convergence condition.
  • Step 307 Determine the value of the minimum turning radius of the agricultural machinery equipment according to the values of the plurality of current turning radii.
  • determining the numerical value of the minimum turning radius of the agricultural machinery equipment according to the numerical values of the plurality of current turning radii comprising: taking the average value of the current turning radii of the set number at the bottom in the chronological order. Determined as the minimum turning radius of the agricultural machinery equipment.
  • the The average value of the current turning radius of the set number is determined as the value of the minimum turning radius of the agricultural machinery equipment.
  • the standard deviation of the set number of current turning radii located at the bottom in time sequence is smaller than the preset standard deviation threshold, that is, when it is determined that the multiple current turning radii satisfy the preset turning radius convergence condition
  • the The average value of the current turning radii of the set number located at the bottom in time sequence is the value of the minimum turning radius of the agricultural machinery equipment.
  • the set number mentioned above is 2 or more.
  • the method further includes: outputting the minimum turning radius of the agricultural machinery equipment for subsequent relevant links.
  • Subsequent related links include but are not limited to the identification of other parameters of agricultural machinery and equipment, or the construction of agricultural machinery and equipment dynamics and kinematics models.
  • other parameters of the agricultural machinery equipment may include the maximum front wheel turning angle and the front and rear wheel distances of the agricultural machinery equipment. According to the minimum turning radius of the agricultural machinery equipment, the maximum front wheel turning angle and the distance between the front and rear wheels of the agricultural machinery equipment can be calculated.
  • the minimum turning radius of agricultural machinery equipment is denoted as R.
  • the steering wheel of the agricultural machinery equipment is controlled to rotate to the maximum angle in one direction, and multiple motion track positions of the agricultural machinery equipment during the rotation of the steering wheel are collected.
  • v The maximum front wheel rotation angle of agricultural machinery equipment
  • The distance between the front and rear wheels of agricultural machinery equipment
  • the embodiment of the present application provides a steering parameter detection method, by controlling the steering wheel of the agricultural machinery to rotate to a maximum angle in one direction when the agricultural machinery is in motion, and to collect multiple motion track positions of the agricultural machinery during the rotation of the steering wheel, Then, according to the curvature radii corresponding to the positions of the multiple motion trajectories, determine multiple current turning radii of the agricultural machinery equipment during the steering wheel rotation process.
  • the value of the radius is used to determine the value of the minimum turning radius of agricultural machinery equipment, and the value of the minimum turning radius of agricultural machinery equipment can be automatically detected in real time.
  • the minimum turning radius of agricultural machinery equipment realizes automatic detection of the minimum turning radius of agricultural machinery and equipment, and improves the accuracy of the minimum turning radius.
  • FIG. 4 is a schematic structural diagram of a steering parameter detection device according to Embodiment 4 of the present application. As shown in FIG. 4 , the apparatus includes: a parameter determination module 401 and a value determination module 402 .
  • the parameter determination module 401 is configured to, according to the current steering parameter information of the agricultural machinery equipment, determine the steering parameters to be detected of the agricultural machinery equipment.
  • the value determination module 402 is configured to control the agricultural machinery equipment to perform a detection action corresponding to the steering parameter to be detected, and to determine the value of the steering parameter to be detected according to the parameters collected during the action.
  • the embodiment of the present application provides a steering parameter detection device, which determines the steering parameters of the agricultural machinery equipment to be detected according to the current steering parameter information of the agricultural machinery equipment, and then controls the agricultural machinery equipment to perform detection actions corresponding to the steering parameters to be detected.
  • the parameters collected in the process determine the value of the steering parameters to be detected.
  • the steering parameters to be detected of the agricultural machinery equipment include the maximum steering wheel angle.
  • the value determination module 402 may include: a steering wheel resetting unit for controlling the steering wheel of the agricultural machinery equipment to reset; a steering wheel steering unit for controlling the steering wheel to return to the preset reset position after the steering wheel is reset to the The steering direction corresponding to the preset reset position is turned to the maximum angle, and the rotation angle when the steering wheel is turned from the preset reset position to the maximum angle is obtained; The rotation angle when the reset position is turned to the maximum angle is to determine the value of the maximum rotation angle of the steering wheel of the agricultural machinery equipment.
  • the steering parameters to be detected of the agricultural machinery equipment include a minimum turning radius.
  • the numerical value determination module 402 may include: a steering wheel steering control unit for controlling the steering wheel of the agricultural machinery equipment to turn to a maximum angle in one direction when the agricultural machinery equipment is in motion; a plurality of motion track positions of the agricultural machinery equipment during the steering wheel rotation process; a curvature radius calculation unit for calculating the respective curvature radii of the multiple motion track positions according to the discrete point curvature calculation rule; a turning radius determination unit for Determine a plurality of current turning radii of the agricultural machinery equipment during the steering wheel rotation process according to the respective radii of curvature corresponding to the plurality of motion track positions; a convergence condition determining unit is configured to determine whether the plurality of current turning radii satisfy a preset
  • the minimum turning radius determination unit is configured to determine the minimum turning radius of the agricultural machinery equipment according to the plurality of current turning radii if the multiple current turning radii satisfy the preset
  • the steering wheel reset unit may include: a first reset subunit for controlling the steering wheel of the agricultural machinery to rotate to a maximum angle in one direction when the agricultural machinery is in a non-moving state.
  • the steering wheel steering unit may include: a first steering subunit, configured to control the steering wheel to turn to the maximum angle in another direction after the steering wheel is turned to the maximum angle in one direction, and Obtain the turning angle when the steering wheel turns from the maximum angle in one direction to the maximum angle in another direction.
  • the unit for determining the maximum steering wheel angle may include: a first determination subunit for dividing the value of the rotation angle when the steering wheel is rotated from the maximum angle in one direction to the maximum angle in another direction by 2, As the maximum turning angle of the steering wheel of the agricultural machinery equipment.
  • the steering wheel reset unit may include: a second reset subunit, configured to control the steering wheel of the agricultural machinery equipment to turn to a neutral position when the agricultural machinery equipment is in a motion state.
  • the steering wheel steering unit may include: a second steering subunit, configured to control the steering wheel to turn to a maximum angle in one direction after the steering wheel is turned to the intermediate position, and obtain all The turning angle when the steering wheel is turned from the neutral position to the maximum angle.
  • the maximum steering wheel angle determination unit may include: a second determination subunit, configured to determine the value of the rotation angle when the steering wheel is turned from the intermediate position to the maximum angle as the value of the rotation angle of the agricultural machinery equipment. The value of the maximum steering wheel angle.
  • the numerical value determination module 402 may further include: an operation return unit, configured to return to execute the collection of the agricultural machinery equipment at the Operation of multiple motion trajectory positions during steering wheel rotation.
  • the convergence condition determination unit may include: a turning radius obtaining subunit, configured to obtain a set number of current turning radii that are located at the end in time sequence among the plurality of current turning radii; standard a difference calculation subunit, used to calculate the standard deviation of the current turning radius of the set number located at the end in time sequence; a standard deviation determination subunit, used to determine whether the standard deviation is less than a preset standard deviation threshold; The first condition determination subunit is configured to determine that the plurality of current turning radii satisfy the preset turning radius convergence condition if the standard deviation is less than the preset standard deviation threshold; the second condition determination subunit is configured to use If the standard deviation is greater than or equal to the preset standard deviation threshold, it is determined that the multiple current turning radii do not meet the preset turning radius convergence condition.
  • the minimum turning radius determination unit may include: a minimum turning radius determination subunit, configured to determine the average value of the set number of current turning radii located at the bottom in time sequence as the agricultural machinery The numerical value of the minimum turning radius of the device.
  • the above steering parameter detection device can execute the steering parameter detection method provided by any embodiment of the present application, and has functional modules and beneficial effects corresponding to executing the steering parameter detection method.
  • FIG. 5 is a schematic structural diagram of a computer device according to Embodiment 5 of the present application.
  • Figure 5 shows a block diagram of an exemplary computer device 12 suitable for use in implementing embodiments of the present application.
  • the computer device 12 shown in FIG. 5 is only an example, and should not impose any limitations on the functions and scope of use of the embodiments of the present application.
  • computer device 12 takes the form of a general-purpose computer device.
  • Components of computer device 12 may include, but are not limited to, one or more processors 16 , memory 28 , and bus 18 connecting various system components including memory 28 and processor 16 .
  • Processor 16 includes, but is not limited to, an AI processor.
  • Bus 18 represents one or more of several types of bus structures, including a memory bus or memory controller, a peripheral bus, a graphics acceleration port, a processor, or a local bus using any of a variety of bus structures.
  • these architectures include, but are not limited to, Industry Standard Architecture (ISA) bus, Micro Channel Architecture (MAC) bus, Enhanced ISA bus, Video Electronics Standards Association (VESA) local bus, and Peripheral Component Interconnect ( PCI) bus.
  • Computer device 12 typically includes a variety of computer system readable media. These media can be any available media that can be accessed by computer device 12, including both volatile and nonvolatile media, removable and non-removable media.
  • Memory 28 may include computer system readable media in the form of volatile memory, such as random access memory (RAM) 30 and/or cache memory 32 .
  • Computer device 12 may further include other removable/non-removable, volatile/non-volatile computer system storage media.
  • storage system 34 may be used to read and write to non-removable, non-volatile magnetic media (not shown in FIG. 5, commonly referred to as a "hard disk drive”).
  • a disk drive may be provided for reading and writing to removable non-volatile magnetic disks (eg "floppy disks"), as well as removable non-volatile optical disks (eg CD-ROM, DVD-ROM) or other optical media) to read and write optical drives.
  • each drive may be connected to bus 18 through one or more data media interfaces.
  • Memory 28 may include at least one program product having a set (eg, at least one) of program modules configured to perform the functions of various embodiments of the present application.
  • a program/utility 40 having a set (at least one) of program modules 42, which may be stored, for example, in memory 28, such program modules 42 including, but not limited to, an operating system, one or more application programs, other program modules, and program data , each or some combination of these examples may include an implementation of a network environment.
  • Program modules 42 generally perform the functions and/or methods of the embodiments described herein.
  • Computer device 12 may also communicate with one or more external devices 14 (eg, keyboard, pointing device, display 24, etc.), may also communicate with one or more devices that enable a user to interact with computer device 12, and/or communicate with Any device (eg, network card, modem, etc.) that enables the computer device 12 to communicate with one or more other computing devices. Such communication may take place through input/output (I/O) interface 22 . Also, the computer device 12 may communicate with one or more networks (eg, a local area network (LAN), a wide area network (WAN), and/or a public network such as the Internet) through a network adapter 20 . As shown, network adapter 20 communicates with other modules of computer device 12 via bus 18 . It should be understood that, although not shown in FIG. 5, other hardware and/or software modules may be used in conjunction with computer device 12, including but not limited to: microcode, device drivers, redundant processing units, external disk drive arrays, RAID systems, tapes drives and data backup storage systems.
  • the processor 16 of the computer device 12 executes various functional applications and data processing by running the programs stored in the memory 28, for example, implementing the steering parameter detection method provided by the embodiments of the present application.
  • the method may specifically include: determining the steering parameters of the agricultural machinery equipment to be detected according to the current steering parameter information of the agricultural machinery equipment; controlling the agricultural machinery equipment to perform a detection action corresponding to the steering parameters to be detected, , determine the value of the steering parameter to be detected.
  • Embodiment 6 of the present application provides a computer-readable storage medium on which a computer program is stored, and when the computer program is executed by a processor, implements the steering parameter detection methods provided by all the inventive embodiments of the present application.
  • the method may specifically include: determining steering parameters of the agricultural machinery equipment to be detected according to current steering parameter information of the agricultural machinery equipment; controlling the agricultural machinery equipment to perform a detection action corresponding to the steering parameters to be detected, , determine the value of the steering parameter to be detected.
  • the computer-readable medium may be a computer-readable signal medium or a computer-readable storage medium.
  • the computer-readable storage medium may be, for example, but not limited to, an electrical, magnetic, optical, electromagnetic, infrared, or semiconductor system, apparatus or device, or a combination of any of the above. More specific examples (a non-exhaustive list) of computer readable storage media include: electrical connections having one or more wires, portable computer disks, hard disks, random access memory (RAM), read only memory (ROM), Erasable Programmable Read Only Memory (EPROM or Flash), fiber optics, portable compact disk read only memory (CD-ROM), optical storage devices, magnetic storage devices, or any suitable combination of the foregoing.
  • a computer-readable storage medium can be any tangible medium that contains or stores a program that can be used by or in conjunction with an instruction execution system, apparatus, or device.
  • a computer-readable signal medium may include a propagated data signal in baseband or as part of a carrier wave, with computer-readable program code embodied thereon. Such propagated data signals may take a variety of forms, including but not limited to electromagnetic signals, optical signals, or any suitable combination of the foregoing.
  • a computer-readable signal medium can also be any computer-readable medium other than a computer-readable storage medium that can transmit, propagate, or transport the program for use by or in connection with the instruction execution system, apparatus, or device .
  • Program code embodied on a computer readable medium may be transmitted using any suitable medium, including but not limited to wireless, wireline, optical fiber cable, RF, etc., or any suitable combination of the foregoing.
  • Computer program code for carrying out the operations of the present application may be written in one or more programming languages, including object-oriented programming languages, such as Java, Smalltalk, C++, and conventional A procedural programming language, such as the "C" language or similar programming language.
  • the program code may execute entirely on the user's computer, partly on the user's computer, as a stand-alone software package, partly on the user's computer and partly on a remote computer, or entirely on the remote computer or server.
  • the remote computer may be connected to the user's computer through any kind of network, including a local area network (LAN) or a wide area network (WAN), or may be connected to an external computer (eg, through the Internet using an Internet service provider) connect).
  • LAN local area network
  • WAN wide area network
  • Internet service provider an external computer

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Guiding Agricultural Machines (AREA)
  • Steering Control In Accordance With Driving Conditions (AREA)

Abstract

一种转向参数检测方法及装置、计算机设备及可读存储介质。其中,方法包括:根据农机设备的当前转向参数信息,确定农机设备的待检测转向参数(101);控制农机设备执行与待检测转向参数对应的检测动作,根据在动作过程中采集的参数,确定待检测转向参数的数值(102)。通过实时控制农机设备执行与待检测转向参数对应的检测动作,对农机设备的转向参数进行自动化检测,所确定的转向参数更接近实际,从而无需人工下地测量就可获得精度足够的农机设备的转向参数,实现了自动化地检测农机设备的转向参数,提高了转向参数的精确性。

Description

转向参数检测方法及装置、计算机设备及可读存储介质 技术领域
本申请实施例涉及计算机技术领域,尤其涉及一种转向参数检测方法及装置、计算机设备及可读存储介质。
发明背景
在农机设备的自动驾驶过程中,往往需要用到农机设备的转向系统中的一些转向参数,例如方向盘最大转角、最小转弯半径等。
相关技术中,获取转向参数的方法大致可以分为两种。一种是查询农机设备的产品介绍资料,以获得农机设备的转向参数。但是,对于旧的农机设备或者维修过的农机设备而言,通过查询资料获得的转向参数与实际的转向参数存在偏差。另一种是人工测量农机设备的转向参数。但是,人工测量的效率低下,且不利于农机设备自动驾驶的无人化发展。
发明内容
本申请实施例提供一种转向参数检测方法及装置、计算机设备及可读存储介质,以实现自动化地检测农机设备的转向参数,提高转向参数的精确性的目的。
第一方面,本申请实施例提供了一种转向参数检测方法,包括:
根据农机设备的当前转向参数信息,确定所述农机设备的待检测转向参数;
控制所述农机设备执行与所述待检测转向参数对应的检测动作,根据在动作过程中采集的参数,确定所述待检测转向参数的数值。
结合第一方面,在第一种可能的实施方式中,所述待检测转向参数包括方向盘最大转角。所述控制所述农机设备执行与所述待检测转向参数对应的检测动作,根据在动作过程中采集的参数,确定所述待检测转向参数的数值,包括:控制所述农机设备的方向盘进行复位;在所述方向盘复位至预设复位位置后,控制所述方向盘向与所述预设复位位置对应的转向方向转至最大角度,并获取所述方向盘从所述预设复位位置转至所述最大角度时的转角;根据所述方向盘从所述预设复位位置转至所述最大角度时的转角,确定所述方向盘最大转角的数值。
结合第一方面或者第一方面的第一种可能的实施方式,在第二种可能的实施方式中,所述待检测转向参数包括最小转弯半径。所述控制所述农机设备执行与所述待检测转向参数对应的检测动作,根据在动作过程中采集的参数,确定所述待检测转向参数的数值,包括:在所述农机设备处于运动状态时,控制所述农机设备的方向盘向一个方向转至最大角度;采集所述农机设备在方向盘转动过程中的多个运动轨迹位置;根据离散点曲率计算规则,计算所述多个运动轨迹位置各自对应的曲率半径;根据所述多个运动轨迹位置各自对应的曲率半径,确定所述农机设备在方向盘转动过程中的多个当前转弯半径;若所述多个当前转弯半径满足预设的转弯半径收敛条件,则根据所述多个当前转弯半径,确定所述最小转弯半径的数值。
结合第一方面的第二种可能的实施方式,在第三种可能的实施方式中,所述控制所述农机设备执行与所述待检测转向参数对应的检测动作,根据在动作过程中采集的参数,确定所述待检测转向参数的数值,还包括:若所述多个当前转弯半径未满足所述预设的转弯 半径收敛条件,则返回执行所述采集所述农机设备在方向盘转动过程中的多个运动轨迹位置的操作。
结合第一方面的第二种可能的实施方式或第三种可能的实施方式,在第四种可能的实施方式中,在所述根据所述多个运动轨迹位置各自对应的曲率半径,确定所述农机设备在方向盘转动过程中的多个当前转弯半径之后,该方法还包括:获取所述多个当前转弯半径中的按照时间顺序位于末位的设定数量的当前转弯半径;计算所述按照时间顺序位于末位的设定数量的当前转弯半径的标准差;确定所述标准差是否小于预设的标准差阈值;若所述标准差小于所述预设的标准差阈值,则确定所述多个当前转弯半径满足所述预设的转弯半径收敛条件;若所述标准差大于或等于所述预设的标准差阈值,则确定所述多个当前转弯半径未满足所述预设的转弯半径收敛条件。
结合第一方面的第四种可能的实施方式,在第五种可能的实施方式中,所述根据所述多个当前转弯半径,确定所述最小转弯半径的数值,包括:将所述按照时间顺序位于末位的设定数量的当前转弯半径的均值确定为所述最小转弯半径的数值。
结合第一方面的第一种至第五种可能的实施方式中的任一种可能的实施方式,在第六种可能的实施方式中,所述控制所述农机设备的方向盘进行复位,包括:在所述农机设备处于非运动状态时,控制所述农机设备的方向盘向一个方向转至所述最大角度。
结合第一方面的第六种可能的实施方式,在第七种可能的实施方式中,所述在所述方向盘复位至预设复位位置后,控制所述方向盘向与所述预设复位位置对应的转向方向转至最大角度,并获取所述方向盘从所述预设复位位置转至所述最大角度时的转角,包括:在所述方向盘向一个方向转至所述最大角度后,控制所述方向盘向另一个方向转至所述最大角度,并获取所述方向盘从一个方向最大角度转至另一个方向最大角度时的转角。
结合第一方面的第七种可能的实施方式,在第八种可能的实施方式中,所述根据所述方向盘从所述预设复位位置转至所述最大角度时的转角,确定所述方向盘最大转角的数值,包括:将所述方向盘从一个方向最大角度转至另一个方向最大角度时的转角的数值除以2,得到所述方向盘最大转角的数值。
结合第一方面的第一种至第五种可能的实施方式中的任一种可能的实施方式,在第九种可能的实施方式中,所述控制所述农机设备的方向盘进行复位,包括:在所述农机设备处于运动状态时,控制所述农机设备的方向盘转至中间位置。
结合第一方面的第九种可能的实施方式,在第十种可能的实施方式中,所述在所述方向盘复位至预设复位位置后,控制所述方向盘向与所述预设复位位置对应的转向方向转至最大角度,并获取所述方向盘从所述预设复位位置转至所述最大角度时的转角,包括:在所述方向盘转至所述中间位置后,控制所述方向盘向一个方向转至所述最大角度,并获取所述方向盘从所述中间位置转至所述最大角度时的转角。
结合第一方面的第十种可能的实施方式,在第十一种可能的实施方式中,所述根据所述方向盘从所述预设复位位置转至所述最大角度时的转角,确定所述方向盘最大转角的数值,包括:将所述方向盘从所述中间位置转至所述最大角度时的转角的数值确定为所述方向盘最大转角的数值。
第二方面,本申请实施例还提供了一种转向参数检测装置,包括:
参数确定模块,用于根据农机设备的当前转向参数信息,确定所述农机设备的待检测转向参数;
数值确定模块,用于控制所述农机设备执行与所述待检测转向参数对应的检测动作,根据在动作过程中采集的参数,确定所述待检测转向参数的数值。
第三方面,本申请实施例还提供了一种计算机设备,包括存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,所述处理器执行所述程序时实现如本申请实施例所述的转向参数检测方法。
第四方面,本申请实施例还提供了一种计算机可读存储介质,其上存储有计算机程序,该计算机程序被处理器执行时实现如本申请实施例所述的转向参数检测方法。
本申请实施例的技术方案,通过根据农机设备的当前转向参数信息,确定农机设备的待检测转向参数,然后控制农机设备执行与待检测转向参数对应的检测动作,根据在动作过程中采集的转角参数或位置参数,确定待检测转向参数的数值,可以通过实时控制农机设备执行与待检测转向参数对应的检测动作,对农机设备的转向参数进行自动化检测,所确定的转向参数更接近实际,从而无需人工下地测量就可获得精度足够的农机设备的转向参数,实现了自动化地检测农机设备的转向参数,提高了转向参数的精确性。
附图简要说明
图1为本申请实施例一提供的一种转向参数检测方法的流程图。
图2为本申请实施例二提供的一种转向参数检测方法的流程图。
图3为本申请实施例三提供的一种转向参数检测方法的流程图。
图4为本申请实施例四提供的一种转向参数检测装置的结构示意图。
图5为本申请实施例五提供的一种计算机设备的结构示意图。
实施本发明的方式
下面结合附图和实施例对本申请作进一步的详细说明。可以理解的是,此处所描述的具体实施例仅仅用于解释本申请,而非对本申请的限定。
另外还需要说明的是,为了便于描述,附图中仅示出了与本申请相关的部分而非全部内容。在更加详细地讨论示例性实施例之前应当提到的是,一些示例性实施例被描述成作为流程图描绘的处理或方法。虽然流程图将各项操作(或步骤)描述成顺序的处理,但是其中的许多操作可以被并行地、并发地或者同时实施。此外,各项操作的顺序可以被重新安排。当其操作完成时所述处理可以被终止,但是还可以具有未包括在附图中的附加步骤。所述处理可以对应于方法、函数、规程、子例程、子程序等等。
实施例一
图1为本申请实施例一提供的一种转向参数检测方法的流程图。本申请实施例可适用于确定农机设备的转向参数的情况,该方法可以由本申请实施例提供的转向参数检测装置来执行,该装置可采用软件和/或硬件的方式实现,并一般可集成在计算机设备中。例如,计算机设备可以是农机设备内部的控制器,也可以是具有通信、计算和存储功能的服务器、云平台、计算机、手机、平板等。农机设备包括但不限于联合收割机、平整土地机械、插秧机、播种机等。
如图1所示,本申请实施例的方法具体包括如下步骤。
步骤101、根据农机设备的当前转向参数信息,确定所述农机设备的待检测转向参数。
农机设备的转向参数包括但不限于方向盘最大转角、最小转弯半径等。当前转向参数信息是当前时刻下农机设备的转向参数的数值信息,包含农机设备的各项转向参数的数值。待检测转向参数是数值状态为不确定的转向参数,需要通过检测确定数值。
可选地,根据农机设备的当前转向参数信息,确定所述农机设备的待检测转向参数, 包括:根据农机设备的当前转向参数信息,确定所述农机设备的各项转向参数中的数值状态为不确定的转向参数;将所述数值状态为不确定的转向参数,确定为所述农机设备的待检测转向参数。
步骤102、控制所述农机设备执行与所述待检测转向参数对应的检测动作,根据在动作过程中采集的参数,确定所述待检测转向参数的数值。
示例性地,步骤102中提及的在动作过程中采集的参数,包括转角参数和/或位置参数。
可选地,预先针对每一项待检测转向参数设置对应的检测动作。
可选地,所述农机设备的待检测转向参数包括方向盘最大转角;所述控制所述农机设备执行与所述待检测转向参数对应的检测动作,根据在动作过程中采集的参数,确定所述待检测转向参数的数值,包括:控制农机设备的方向盘进行复位;在所述方向盘复位至预设复位位置后,控制所述方向盘向与所述预设复位位置对应的转向方向转至最大角度,并获取所述方向盘从所述预设复位位置转至最大角度时的转角;根据所述方向盘从所述预设复位位置转至最大角度时的转角,确定所述农机设备的方向盘最大转角的数值。
具体地,控制所述农机设备执行与所述待检测转向参数对应的检测动作,包括:控制农机设备的方向盘进行复位;在方向盘复位至预设复位位置后,控制方向盘向与预设复位位置对应的转向方向转至最大角度。在动作过程中采集的转角参数为方向盘从预设复位位置转至最大角度时的转角。
如果根据农机设备的当前转向参数信息,确定农机设备的待检测转向参数包括方向盘最大转角,则控制农机设备的方向盘进行复位。在方向盘复位至预设复位位置后,控制方向盘向与预设复位位置对应的转向方向转至最大角度,并获取方向盘从所述预设复位位置转至最大角度时的转角。根据方向盘从预设复位位置转至最大角度时的转角,确定农机设备的方向盘最大转角的数值。
可选地,所述农机设备的待检测转向参数包括最小转弯半径;所述控制所述农机设备执行与所述待检测转向参数对应的检测动作,根据在动作过程中采集的参数,确定所述待检测转向参数的数值,包括:在农机设备处于运动状态时,控制所述农机设备的方向盘向一个方向转至最大角度;采集所述农机设备在方向盘转动过程中的多个运动轨迹位置;根据离散点曲率计算规则,计算多个运动轨迹位置各自对应的曲率半径;根据多个运动轨迹位置各自对应的曲率半径,确定所述农机设备在方向盘转动过程中的多个当前转弯半径;若所述多个当前转弯半径满足预设的转弯半径收敛条件,则根据所述多个当前转弯半径,确定所述最小转弯半径的数值。
具体地,控制所述农机设备执行与所述待检测转向参数对应的检测动作,包括:在农机设备处于运动状态时,控制农机设备的方向盘向一个方向转至最大角度。在动作过程中采集的位置参数为农机设备在方向盘转动过程中的多个运动轨迹位置。
如果根据农机设备的当前转向参数信息,确定农机设备的待检测转向参数包括最小转弯半径,则在农机设备处于运动状态时,控制农机设备的方向盘向一个方向转至最大角度。采集农机设备在方向盘转动过程中的多个运动轨迹位置;根据离散点曲率计算规则,计算多个运动轨迹位置各自对应的曲率半径。根据多个运动轨迹位置各自对应的曲率半径,确定农机设备在方向盘转动过程中的多个当前转弯半径。确定多个当前转弯半径是否满足预设的转弯半径收敛条件。若多个当前转弯半径满足预设的转弯半径收敛条件,则根据多个当前转弯半径,确定农机设备的最小转弯半径的数值。
本实施例中,方向盘最大转角与最小转弯半径的确定过程是解耦的。也就是说,方向盘最大转角与最小转弯半径的确定过程可以同时进行,也可以分开进行。
本申请实施例提供了一种转向参数检测方法,通过根据农机设备的当前转向参数信 息,确定农机设备的待检测转向参数,然后控制农机设备执行与待检测转向参数对应的检测动作,根据在动作过程中采集的参数,确定待检测转向参数的数值,可以通过实时控制农机设备执行与待检测转向参数对应的检测动作,对农机设备的转向参数进行自动化检测,所确定的转向参数更接近实际,从而无需人工下地测量就可获得精度足够的农机设备的转向参数,实现了自动化地检测农机设备的转向参数,提高了转向参数的精确性。
实施例二
图2为本申请实施例二提供的一种转向参数确定转向参数检测方法的流程图。本申请实施例可以与上述一个或者多个实施例中各个可选方案结合。也就是说,本申请实施例能够根据实际情况和其他任一个或任几个实施例任意组合。
如图2所示,本申请实施例的方法具体包括如下步骤。
步骤201,根据农机设备的当前转向参数信息,确定农机设备的待检测转向参数为方向盘最大转角。
步骤202,控制农机设备的方向盘进行复位。
方向盘最大转角是方向盘向右(或左)的最大转向角度。为了确保能够有效地确定农机设备的方向盘最大转角,控制农机设备的方向盘进行复位。
在一个具体实例中,可选地,所述控制农机设备的方向盘进行复位,包括:在农机设备处于非运动状态时,控制农机设备的方向盘向一个方向转至最大角度。具体地,控制农机设备的方向盘向右(或左)转至最大角度。由此,可以在农机设备没有产生运动的情况下,对农机设备的方向盘进行复位。
在另一个具体实例中,可选地,所述控制农机设备的方向盘进行复位,包括:在农机设备处于运动状态时,控制所述农机设备的方向盘转至中间位置。在农机设备处于运动状态时,控制农机设备的方向盘转至中间位置,即使得农机设备可以维持行驶直线状态。由此,可以在农机设备产生运动的情况下,对农机设备的方向盘进行复位。
步骤203,在所述方向盘复位至预设复位位置后,控制所述方向盘向与所述预设复位位置对应的转向方向转至最大角度,并获取所述方向盘从所述预设复位位置转至最大角度时的转角。
可选地,预设复位位置可以为一个方向最大角度或者中间位置。
在一个具体实例中,可选地,所述在所述方向盘复位至预设复位位置后,控制所述方向盘向与所述预设复位位置对应的转向方向转至最大角度,并获取所述方向盘从所述预设复位位置转至最大角度时的转角,包括:在所述方向盘向一个方向转至最大角度后,控制所述方向盘向另一个方向转至最大角度,并获取所述方向盘从一个方向最大角度转至另一个方向最大角度时的转角。
具体地,在农机设备处于非运动状态时,通过控制农机设备的方向盘向一个方向转至最大角度,对方向盘进行复位,将方向盘处于一个方向最大角度的转角位置记为0。预设复位位置为一个方向最大角度。与预设复位位置对应的转向方向为另一个方向。然后控制方向盘向另一个方向转至最大角度,并通过角度传感器记录方向盘从该转角位置转至另一个方向最大角度时的转角,从而获取所述方向盘从一个方向最大角度转至另一个方向最大角度时的转角。
在另一个具体实例中,可选地,所述在所述方向盘复位至预设复位位置后,控制所述方向盘向与所述预设复位位置对应的转向方向转至最大角度,并获取所述方向盘从所述预设复位位置转至最大角度时的转角,包括:在所述方向盘转至所述中间位置后,控制所述方向盘向一个方向转至最大角度,并获取所述方向盘从所述中间位置转至最大角度时的转角。
具体地,在农机设备处于运动状态时,通过控制所述农机设备的方向盘转至中间位置,对方向盘进行复位,将方向盘处于中间位置的转角位置记为0。预设复位位置为中间位置。与预设复位位置对应的转向方向为一个方向(右或左)。然后控制方向盘向一个方向转至最大角度,并通过角度传感器记录方向盘从该转角位置转至一个方向最大角度时的转角,从而获取所述方向盘从所述中间位置转至最大角度时的转角。
步骤204,根据所述方向盘从所述预设复位位置转至最大角度时的转角,确定所述农机设备的方向盘最大转角的数值。
在一个具体实例中,所述方向盘从所述预设复位位置转至最大角度时的转角为所述方向盘从一个方向最大角度转至另一个方向最大角度时的转角。可选地,所述根据所述方向盘从所述预设复位位置转至最大角度时的转角,确定所述农机设备的方向盘最大转角的数值,包括:将所述方向盘从一个方向最大角度转至另一个方向最大角度时的转角的数值除以2,作为所述农机设备的方向盘最大转角的数值。
在另一个具体实例中,所述方向盘从所述预设复位位置转至最大角度时的转角为所述方向盘从所述中间位置转至最大角度时的转角。可选地,所述根据所述方向盘从所述预设复位位置转至最大角度时的转角,确定所述农机设备的方向盘最大转角的数值,包括:将所述方向盘从所述中间位置转至最大角度时的转角的数值确定为所述农机设备的方向盘最大转角的数值。
可选地,在确定所述农机设备的方向盘最大转角的数值之后,还包括:输出所述农机设备的方向盘最大转角,用于后续相关环节。后续相关环节包括但不限于农机设备的其它参数的辨识,或者农机设备动力学以及运动学模型的构建等。
本申请实施例提供了一种转向参数检测方法,通过控制农机设备的方向盘进行复位,然后在方向盘复位至预设复位位置后,控制方向盘向与预设复位位置对应的转向方向转至最大角度,并获取方向盘从预设复位位置转至最大角度时的转角,最后根据方向盘从预设复位位置转至最大角度时的转角,确定农机设备的方向盘最大转角的数值,可以实时对农机设备的方向盘最大转角的数值进行自动化检测,所确定的方向盘最大转角更接近实际,从而无需人工下地测量就可获得精度足够的农机设备的方向盘最大转角,实现了自动化地检测农机设备的方向盘最大转角,提高了方向盘最大转角的精确性。
实施例三
图3为本申请实施例三提供的一种转向参数检测方法的流程图。本申请实施例可以与上述一个或者多个实施例中各个可选方案结合。也就是说,本申请实施例能够根据实际情况和其他任一个或任几个实施例任意组合。
如图3所示,本申请实施例的方法具体包括如下步骤。
步骤301,根据农机设备的当前转向参数信息,确定农机设备的待检测转向参数为最小转弯半径。
步骤302,在农机设备处于运动状态时,控制所述农机设备的方向盘向一个方向转至最大角度。
可选地,如果农机设备尚未运动,则启动农机设备进行运动,在农机设备处于运动状态时,控制所述农机设备的方向盘向一个方向(右或左)转至最大角度。
步骤303,采集所述农机设备在方向盘转动过程中的多个运动轨迹位置。
可选地,采集所述农机设备在方向盘转动过程中的多个运动轨迹位置,包括:通过农机设备的定位装置,按照设定的采样周期采样获得农机设备在方向盘转动过程中的多个运动轨迹位置。运动轨迹位置可以为经纬度坐标。定位装置包括但不限于载波相位差分(Real-time kinematic,RTK)系统、机器视觉系统等。
步骤304,根据离散点曲率计算规则,计算各所述运动轨迹位置的曲率半径。即,根据离散点曲率计算规则,计算所述多个运动轨迹位置各自对应的曲率半径。
离散点曲率计算规则是用于计算离散点的曲率的规则。由于所采集的多个运动轨迹位置是一组离散点,因此可以根据离散点曲率计算规则,计算多个运动轨迹位置各自对应的曲率半径。
可选地,在根据离散点曲率计算规则,计算所述多个运动轨迹位置各自对应的曲率半径之前,还包括:根据预设的平滑滤波器,对所述农机设备在方向盘转动过程中的多个运动轨迹位置进行平滑滤波。由此,可以使得所述多个运动轨迹位置各自对应的曲率半径计算结果更加稳定。
步骤305,根据各所述运动轨迹位置的曲率半径,确定所述农机设备在方向盘转动过程中的多个当前转弯半径。即,根据所述多个运动轨迹位置各自对应的曲率半径,确定所述农机设备在方向盘转动过程中的多个当前转弯半径。
在一个具体实例中,根据所述多个运动轨迹位置各自对应的曲率半径,确定所述农机设备在方向盘转动过程中的多个当前转弯半径,包括:将每一个运动轨迹位置的曲率半径确定为农机设备在方向盘转动过程中的一个当前转弯半径。
示例性地,采集农机设备在方向盘转动过程中的100个运动轨迹位置。将每一个运动轨迹位置的曲率半径确定为农机设备在方向盘转动过程中的一个当前转弯半径,确定农机设备在方向盘转动过程中的100个当前转弯半径。
在另一个具体实例中,根据所述多个运动轨迹位置各自对应的曲率半径,确定所述农机设备在方向盘转动过程中的多个当前转弯半径,包括:对按照时间顺序排列的多个运动轨迹位置的曲率半径进行分组,得到至少一个曲率半径分组,各所述曲率半径分组中包括至少两个连续的运动轨迹位置的曲率半径;分别计算各所述曲率半径分组所包含的多个曲率半径的均值;将每一个均值确定为农机设备在方向盘转动过程中的一个当前转弯半径。
示例性地,采集农机设备在方向盘转动过程中的100个运动轨迹位置。对按照时间顺序排列的100个运动轨迹位置进行分组,10个连续的运动轨迹位置为一组。分别计算各曲率半径分组所包含的多个曲率半径的均值。将每一个均值确定为农机设备在方向盘转动过程中的一个当前转弯半径,确定农机设备在方向盘转动过程中的10个当前转弯半径。
步骤306,确定所述多个当前转弯半径是否满足预设的转弯半径收敛条件:若所述多个当前转弯半径满足预设的转弯半径收敛条件,则执行步骤307;若所述多个当前转弯半径未满足预设的转弯半径收敛条件,则返回执行步骤303。
预设的转弯半径收敛条件是用于确定农机设备的转弯半径是否已经逐步收敛到最小转弯半径,不再变化的条件。由于农机设备启动阶段波动较大,因此在实际应用过程中,农机设备的转弯半径会逐步收敛到最小值。
如果所述多个当前转弯半径满足预设的转弯半径收敛条件,表明农机设备的转弯半径已经逐步收敛到最小转弯半径,不再变化,则可以根据所述多个当前转弯半径确定所农机设备的最小转弯半径。
如果所述多个当前转弯半径不满足预设的转弯半径收敛条件,表明农机设备的转弯半径还没有收敛到最小转弯半径,还在变化,则返回执行采集所述农机设备在方向盘转动过程中的多个运动轨迹位置的操作,继续采集运动轨迹位置和计算转弯半径。
可选地,所述确定所述多个当前转弯半径是否满足预设的转弯半径收敛条件,包括:获取所述多个当前转弯半径中的按照时间顺序位于末位的设定数量的当前转弯半径;计算所述按照时间顺序位于末位的设定数量的当前转弯半径的标准差;确定所述标准差是否小于预设的标准差阈值;若所述标准差小于所述预设的标准差阈值,则确定所述多个当前转 弯半径满足预设的转弯半径收敛条件;若所述标准差大于或等于所述预设的标准差阈值,则确定所述多个当前转弯半径不满足预设的转弯半径收敛条件。
在一个具体实例中,上述提及的设定数量为2个或者2个以上。获取所述多个当前转弯半径中的按照时间顺序位于末位的2个或者2个以上当前转弯半径,即获取最新的2个或者2个以上当前转弯半径。计算按照时间顺序位于末位的2个或者2个以上当前转弯半径的标准差。确定标准差是否小于预设的标准差阈值。若标准差小于预设的标准差阈值,则确定所述多个当前转弯半径满足预设的转弯半径收敛条件。若标准差大于或等于预设的标准差阈值,则确定所述多个当前转弯半径不满足预设的转弯半径收敛条件。
步骤307,根据所述多个当前转弯半径的数值,确定所述农机设备的最小转弯半径的数值。
可选地,所述根据所述多个当前转弯半径的数值,确定所述农机设备的最小转弯半径的数值,包括:将所述按照时间顺序位于末位的设定数量的当前转弯半径的均值确定为所述农机设备的最小转弯半径。
具体地,在根据所述按照时间顺序位于末位的设定数量的当前转弯半径,确定所述多个当前转弯半径满足预设的转弯半径收敛条件之后,将所述按照时间顺序位于末位的设定数量的当前转弯半径的均值确定为所述农机设备的最小转弯半径的数值。在确定所述按照时间顺序位于末位的设定数量的当前转弯半径的标准差小于预设的标准差阈值时,即确定所述多个当前转弯半径满足预设的转弯半径收敛条件时,所述按照时间顺序位于末位的设定数量的当前转弯半径的均值即为所述农机设备的最小转弯半径的数值。
在一个具体实例中,上述提及的设定数量为2个或者2个以上。在确定按照时间顺序位于末位的2个或者2个以上当前转弯半径的标准差小于预设的标准差阈值时,即确定所述多个当前转弯半径满足预设的转弯半径收敛条件时,按照时间顺序位于末位的2个或者2个以上当前转弯半径的均值即为所述农机设备的最小转弯半径的数值。
可选地,在确定所述农机设备的最小转弯半径之后,还包括:输出所述农机设备的最小转弯半径,用于后续相关环节。后续相关环节包括但不限于农机设备的其它参数的辨识,或者农机设备动力学以及运动学模型的构建等。
在一个具体实例中,农机设备的其它参数可以包括农机设备的最大前轮转角和前后轮距离。根据所述农机设备的最小转弯半径,可以计算所述农机设备的最大前轮转角和前后轮距离。
具体地,将农机设备的最小转弯半径记为R。在农机设备处于运动状态时,控制农机设备的方向盘向一个方向转至最大角度,采集农机设备在方向盘转动过程中的多个运动轨迹位置。通过速度计算的差分方法,计算最后1个或连续多个运动轨迹位置的速度的平均值,记为v。农机设备的最大前轮转角为v/R。将农机设备的最大前轮转角记为θ。农机设备的前后轮距离为R*tanθ。
本申请实施例提供了一种转向参数检测方法,通过在农机设备处于运动状态时,控制农机设备的方向盘向一个方向转至最大角度,采集农机设备在方向盘转动过程中的多个运动轨迹位置,然后根据多个运动轨迹位置各自对应的曲率半径,确定农机设备在方向盘转动过程中的多个当前转弯半径,在确定多个当前转弯半径满足预设的转弯半径收敛条件时,根据多个当前转弯半径的数值,确定农机设备的最小转弯半径的数值,可以实时对农机设备的最小转弯半径的数值进行自动化检测,所确定的最小转弯半径更接近实际,从而无需人工下地测量就可获得精度足够的农机设备的最小转弯半径,实现了自动化地检测农机设备的最小转弯半径,提高了最小转弯半径的精确性。
实施例四
图4为本申请实施例四提供的一种转向参数检测装置的结构示意图。如图4所示,所述装置包括:参数确定模块401和数值确定模块402。
参数确定模块401用于,根据农机设备的当前转向参数信息,确定所述农机设备的待检测转向参数。数值确定模块402用于,控制所述农机设备执行与所述待检测转向参数对应的检测动作,根据在动作过程中采集的参数,确定所述待检测转向参数的数值。
本申请实施例提供了一种转向参数检测装置,通过根据农机设备的当前转向参数信息,确定农机设备的待检测转向参数,然后控制农机设备执行与待检测转向参数对应的检测动作,根据在动作过程中采集的参数,确定待检测转向参数的数值,可以通过实时控制农机设备执行与待检测转向参数对应的检测动作,对农机设备的转向参数进行自动化检测,所确定的转向参数更接近实际,从而无需人工下地测量就可获得精度足够的农机设备的转向参数,实现了自动化地检测农机设备的转向参数,提高了转向参数的精确性。
在上述各实施例的基础上,所述农机设备的待检测转向参数包括方向盘最大转角。对应地,数值确定模块402可以包括:方向盘复位单元,用于控制农机设备的方向盘进行复位;方向盘转向单元,用于在所述方向盘复位至预设复位位置后,控制所述方向盘向与所述预设复位位置对应的转向方向转至最大角度,并获取所述方向盘从所述预设复位位置转至最大角度时的转角;方向盘最大转角确定单元,用于根据所述方向盘从所述预设复位位置转至最大角度时的转角,确定所述农机设备的方向盘最大转角的数值。
在上述各实施例的基础上,所述农机设备的待检测转向参数包括最小转弯半径。对应地,数值确定模块402可以包括:方向盘转向控制单元,用于在农机设备处于运动状态时,控制所述农机设备的方向盘向一个方向转至最大角度;运动轨迹位置采集单元,用于采集所述农机设备在方向盘转动过程中的多个运动轨迹位置;曲率半径计算单元,用于根据离散点曲率计算规则,计算所述多个运动轨迹位置各自对应的曲率半径;转弯半径确定单元,用于根据所述多个运动轨迹位置各自对应的曲率半径,确定所述农机设备在方向盘转动过程中的多个当前转弯半径;收敛条件确定单元,用于确定所述多个当前转弯半径是否满足预设的转弯半径收敛条件;最小转弯半径确定单元,用于若所述多个当前转弯半径满足预设的转弯半径收敛条件,则根据所述多个当前转弯半径,确定所述农机设备的最小转弯半径的数值。
在上述各实施例的基础上,方向盘复位单元可以包括:第一复位子单元,用于在农机设备处于非运动状态时,控制农机设备的方向盘向一个方向转至最大角度。
在上述各实施例的基础上,方向盘转向单元可以包括:第一转向子单元,用于在所述方向盘向一个方向转至最大角度后,控制所述方向盘向另一个方向转至最大角度,并获取所述方向盘从一个方向最大角度转至另一个方向最大角度时的转角。
在上述各实施例的基础上,方向盘最大转角确定单元可以包括:第一确定子单元,用于将所述方向盘从一个方向最大角度转至另一个方向最大角度时的转角的数值除以2,作为所述农机设备的方向盘最大转角。
在上述各实施例的基础上,方向盘复位单元可以包括:第二复位子单元,用于在农机设备处于运动状态时,控制所述农机设备的方向盘转至中间位置。
在上述各实施例的基础上,方向盘转向单元可以包括:第二转向子单元,用于在所述方向盘转至所述中间位置后,控制所述方向盘向一个方向转至最大角度,并获取所述方向盘从所述中间位置转至最大角度时的转角。
在上述各实施例的基础上,方向盘最大转角确定单元可以包括:第二确定子单元,用于将所述方向盘从所述中间位置转至最大角度时的转角的数值确定为所述农机设备的方向盘最大转角的数值。
在上述各实施例的基础上,数值确定模块402还可以包括:操作返回单元,用于若所述多个当前转弯半径未满足预设的转弯半径收敛条件,则返回执行采集所述农机设备在方向盘转动过程中的多个运动轨迹位置的操作。
在上述各实施例的基础上,收敛条件确定单元可以包括:转弯半径获取子单元,用于获取所述多个当前转弯半径中的按照时间顺序位于末位的设定数量的当前转弯半径;标准差计算子单元,用于计算所述按照时间顺序位于末位的设定数量的当前转弯半径的标准差;标准差确定子单元,用于确定所述标准差是否小于预设的标准差阈值;第一条件确定子单元,用于若所述标准差小于所述预设的标准差阈值,则确定所述多个当前转弯半径满足预设的转弯半径收敛条件;第二条件确定子单元,用于若所述标准差大于或等于所述预设的标准差阈值,则确定所述多个当前转弯半径不满足预设的转弯半径收敛条件。
在上述各实施例的基础上,最小转弯半径确定单元可以包括:最小转弯半径确定子单元,用于将所述按照时间顺序位于末位的设定数量的当前转弯半径的均值确定为所述农机设备的最小转弯半径的数值。
上述转向参数检测装置可执行本申请任意实施例所提供的转向参数检测方法,具备执行转向参数检测方法相应的功能模块和有益效果。
实施例五
图5为本申请实施例五提供的一种计算机设备的结构示意图。图5示出了适于用来实现本申请实施方式的示例性计算机设备12的框图。图5显示的计算机设备12仅仅是一个示例,不应对本申请实施例的功能和使用范围带来任何限制。
如图5所示,计算机设备12以通用计算机设备的形式表现。计算机设备12的组件可以包括但不限于:一个或者多个处理器16,存储器28,连接不同系统组件(包括存储器28和处理器16)的总线18。处理器16包括但不限于AI处理器。
总线18表示几类总线结构中的一种或多种,包括存储器总线或者存储器控制器,外围总线,图形加速端口,处理器或者使用多种总线结构中的任意总线结构的局域总线。举例来说,这些体系结构包括但不限于工业标准体系结构(ISA)总线,微通道体系结构(MAC)总线,增强型ISA总线、视频电子标准协会(VESA)局域总线以及外围组件互连(PCI)总线。
计算机设备12典型地包括多种计算机系统可读介质。这些介质可以是任何能够被计算机设备12访问的可用介质,包括易失性和非易失性介质,可移动的和不可移动的介质。
存储器28可以包括易失性存储器形式的计算机系统可读介质,例如随机存取存储器(RAM)30和/或高速缓存存储器32。计算机设备12可以进一步包括其它可移动/不可移动的、易失性/非易失性计算机系统存储介质。仅作为举例,存储系统34可以用于读写不可移动的、非易失性磁介质(图5未显示,通常称为“硬盘驱动器”)。尽管图5中未示出,可以提供用于对可移动非易失性磁盘(例如“软盘”)读写的磁盘驱动器,以及对可移动非易失性光盘(例如CD-ROM,DVD-ROM或者其它光介质)读写的光盘驱动器。在这些情况下,每个驱动器可以通过一个或者多个数据介质接口与总线18相连。存储器28可以包括至少一个程序产品,该程序产品具有一组(例如至少一个)程序模块,这些程序模块被配置以执行本申请各实施例的功能。
具有一组(至少一个)程序模块42的程序/实用工具40,可以存储在例如存储器28中,这样的程序模块42包括但不限于操作系统、一个或者多个应用程序、其它程序模块以及程序数据,这些示例中的每一个或某种组合中可能包括网络环境的实现。程序模块42通常执行本申请所描述的实施例中的功能和/或方法。
计算机设备12也可以与一个或多个外部设备14(例如键盘、指向设备、显示器24等) 通信,还可与一个或者多个使得用户能与该计算机设备12交互的设备通信,和/或与使得该计算机设备12能与一个或多个其它计算设备进行通信的任何设备(例如网卡,调制解调器等等)通信。这种通信可以通过输入/输出(I/O)接口22进行。并且,计算机设备12还可以通过网络适配器20与一个或者多个网络(例如局域网(LAN),广域网(WAN)和/或公共网络,例如因特网)通信。如图所示,网络适配器20通过总线18与计算机设备12的其它模块通信。应当明白,尽管图5中未示出,可以结合计算机设备12使用其它硬件和/或软件模块,包括但不限于:微代码、设备驱动器、冗余处理单元、外部磁盘驱动阵列、RAID系统、磁带驱动器以及数据备份存储系统等。
计算机设备12的处理器16通过运行存储在存储器28中的程序,从而执行各种功能应用以及数据处理,例如实现本申请实施例所提供的转向参数检测方法。该方法具体可以包括:根据农机设备的当前转向参数信息,确定所述农机设备的待检测转向参数;控制所述农机设备执行与所述待检测转向参数对应的检测动作,根据在动作过程中采集的参数,确定所述待检测转向参数的数值。
实施例六
本申请实施例六提供了一种计算机可读存储介质,其上存储有计算机程序,该计算机程序被处理器执行时实现如本申请所有发明实施例提供的转向参数检测方法。该方法具体可以包括:根据农机设备的当前转向参数信息,确定所述农机设备的待检测转向参数;控制所述农机设备执行与所述待检测转向参数对应的检测动作,根据在动作过程中采集的参数,确定所述待检测转向参数的数值。
可以采用一个或多个计算机可读的介质的任意组合。计算机可读介质可以是计算机可读信号介质或者计算机可读存储介质。计算机可读存储介质例如可以是但不限于电、磁、光、电磁、红外线、或半导体的系统、装置或器件,或者任意以上的组合。计算机可读存储介质的更具体的例子(非穷举的列表)包括:具有一个或多个导线的电连接、便携式计算机磁盘、硬盘、随机存取存储器(RAM)、只读存储器(ROM)、可擦式可编程只读存储器(EPROM或闪存)、光纤、便携式紧凑磁盘只读存储器(CD-ROM)、光存储器件、磁存储器件、或者上述的任意合适的组合。在本文件中,计算机可读存储介质可以是任何包含或存储程序的有形介质,该程序可以被指令执行系统、装置或者器件使用或者与其结合使用。
计算机可读的信号介质可以包括在基带中或者作为载波一部分传播的数据信号,其中承载了计算机可读的程序代码。这种传播的数据信号可以采用多种形式,包括但不限于电磁信号、光信号或上述的任意合适的组合。计算机可读的信号介质还可以是计算机可读存储介质以外的任何计算机可读介质,该计算机可读介质可以发送、传播或者传输用于由指令执行系统、装置或者器件使用或者与其结合使用的程序。
计算机可读介质上包含的程序代码可以用任何适当的介质传输,包括但不限于无线、电线、光缆、RF等等,或者上述的任意合适的组合。
可以以一种或多种程序设计语言或其组合来编写用于执行本申请操作的计算机程序代码,所述程序设计语言包括面向对象的程序设计语言,诸如Java、Smalltalk、C++,还包括常规的过程式程序设计语言,诸如“C”语言或类似的程序设计语言。程序代码可以完全地在用户计算机上执行、部分地在用户计算机上执行、作为一个独立的软件包执行、部分在用户计算机上部分在远程计算机上执行、或者完全在远程计算机或服务器上执行。在涉及远程计算机的情形中,远程计算机可以通过任意种类的网络,包括局域网(LAN)或广域网(WAN),连接到用户计算机,或者,可以连接到外部计算机(例如利用因特网服务提供商来通过因特网连接)。
注意,上述仅为本申请的较佳实施例及所运用技术原理。本领域技术人员会理解,本申请不限于这里所述的特定实施例,对本领域技术人员来说能够进行各种明显的变化、重新调整和替代而不会脱离本申请的保护范围。因此,虽然通过以上实施例对本申请进行了较为详细的说明,但是本申请不仅仅限于以上实施例,在不脱离本申请构思的情况下,还可以包括更多其他等效实施例,而本申请的范围由所附的权利要求范围决定。

Claims (15)

  1. 一种转向参数检测方法,包括:
    根据农机设备的当前转向参数信息,确定所述农机设备的待检测转向参数;
    控制所述农机设备执行与所述待检测转向参数对应的检测动作,根据在动作过程中采集的参数,确定所述待检测转向参数的数值。
  2. 根据权利要求1所述的方法,其中,所述待检测转向参数包括方向盘最大转角;
    所述控制所述农机设备执行与所述待检测转向参数对应的检测动作,根据在动作过程中采集的参数,确定所述待检测转向参数的数值,包括:
    控制所述农机设备的方向盘进行复位;
    在所述方向盘复位至预设复位位置后,控制所述方向盘向与所述预设复位位置对应的转向方向转至最大角度,并获取所述方向盘从所述预设复位位置转至所述最大角度时的转角;
    根据所述方向盘从所述预设复位位置转至所述最大角度时的转角,确定所述方向盘最大转角的数值。
  3. 根据权利要求1或2所述的方法,其中,所述待检测转向参数包括最小转弯半径;
    所述控制所述农机设备执行与所述待检测转向参数对应的检测动作,根据在动作过程中采集的参数,确定所述待检测转向参数的数值,包括:
    在所述农机设备处于运动状态时,控制所述农机设备的方向盘向一个方向转至最大角度;
    采集所述农机设备在方向盘转动过程中的多个运动轨迹位置;
    根据离散点曲率计算规则,计算所述多个运动轨迹位置各自对应的曲率半径;
    根据所述多个运动轨迹位置各自对应的曲率半径,确定所述农机设备在方向盘转动过程中的多个当前转弯半径;
    若所述多个当前转弯半径满足预设的转弯半径收敛条件,则根据所述多个当前转弯半径,确定所述最小转弯半径的数值。
  4. 根据权利要求3所述的方法,其中,所述控制所述农机设备执行与所述待检测转向参数对应的检测动作,根据在动作过程中采集的参数,确定所述待检测转向参数的数值,还包括:
    若所述多个当前转弯半径未满足所述预设的转弯半径收敛条件,则返回执行所述采集所述农机设备在方向盘转动过程中的多个运动轨迹位置的操作。
  5. 根据权利要求3或4所述的方法,其中,在所述根据所述多个运动轨迹位置各自对应的曲率半径,确定所述农机设备在方向盘转动过程中的多个当前转弯半径之后,还包括:
    获取所述多个当前转弯半径中的按照时间顺序位于末位的设定数量的当前转弯半径;
    计算所述按照时间顺序位于末位的设定数量的当前转弯半径的标准差;
    确定所述标准差是否小于预设的标准差阈值;
    若所述标准差小于所述预设的标准差阈值,则确定所述多个当前转弯半径满足所述预设的转弯半径收敛条件;
    若所述标准差大于或等于所述预设的标准差阈值,则确定所述多个当前转弯半径未满足所述预设的转弯半径收敛条件。
  6. 根据权利要求5所述的方法,其中,所述根据所述多个当前转弯半径,确定所述 最小转弯半径的数值,包括:
    将所述按照时间顺序位于末位的设定数量的当前转弯半径的均值确定为所述最小转弯半径的数值。
  7. 根据权利要求2至6任一项所述的方法,其中,所述控制所述农机设备的方向盘进行复位,包括:
    在所述农机设备处于非运动状态时,控制所述农机设备的方向盘向一个方向转至所述最大角度。
  8. 根据权利要求7所述的方法,其中,所述在所述方向盘复位至预设复位位置后,控制所述方向盘向与所述预设复位位置对应的转向方向转至最大角度,并获取所述方向盘从所述预设复位位置转至所述最大角度时的转角,包括:
    在所述方向盘向一个方向转至所述最大角度后,控制所述方向盘向另一个方向转至所述最大角度,并获取所述方向盘从一个方向最大角度转至另一个方向最大角度时的转角。
  9. 根据权利要求8所述的方法,其中,所述根据所述方向盘从所述预设复位位置转至所述最大角度时的转角,确定所述方向盘最大转角的数值,包括:
    将所述方向盘从一个方向最大角度转至另一个方向最大角度时的转角的数值除以2,得到所述方向盘最大转角的数值。
  10. 根据权利要求2至6任一项所述的方法,其中,所述控制所述农机设备的方向盘进行复位,包括:
    在所述农机设备处于运动状态时,控制所述农机设备的方向盘转至中间位置。
  11. 根据权利要求10所述的方法,其中,所述在所述方向盘复位至预设复位位置后,控制所述方向盘向与所述预设复位位置对应的转向方向转至最大角度,并获取所述方向盘从所述预设复位位置转至所述最大角度时的转角,包括:
    在所述方向盘转至所述中间位置后,控制所述方向盘向一个方向转至所述最大角度,并获取所述方向盘从所述中间位置转至所述最大角度时的转角。
  12. 根据权利要求11所述的方法,其中,所述根据所述方向盘从所述预设复位位置转至所述最大角度时的转角,确定所述方向盘最大转角的数值,包括:
    将所述方向盘从所述中间位置转至所述最大角度时的转角的数值确定为所述方向盘最大转角的数值。
  13. 一种转向参数检测转置,包括:
    参数确定模块,用于根据农机设备的当前转向参数信息,确定所述农机设备的待检测转向参数;
    数值确定模块,用于控制所述农机设备执行与所述待检测转向参数对应的检测动作,根据在动作过程中采集的参数,确定所述待检测转向参数的数值。
  14. 一种计算机设备,包括存储器、处理器及存储在存储器上并可在所述处理器上运行的计算机程序,所述处理器执行所述程序时实现如权利要求1至12中任一所述的转向参数检测方法。
  15. 一种计算机可读存储介质,其上存储有计算机程序,所述计算机程序被处理器执行时实现如权利要求1至12中任一所述的转向参数检测方法。
PCT/CN2021/143174 2020-12-31 2021-12-30 转向参数检测方法及装置、计算机设备及可读存储介质 WO2022143919A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011628442.2 2020-12-31
CN202011628442.2A CN112834249B (zh) 2020-12-31 2020-12-31 转向参数检测方法、装置、设备及存储介质

Publications (1)

Publication Number Publication Date
WO2022143919A1 true WO2022143919A1 (zh) 2022-07-07

Family

ID=75924644

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/143174 WO2022143919A1 (zh) 2020-12-31 2021-12-30 转向参数检测方法及装置、计算机设备及可读存储介质

Country Status (2)

Country Link
CN (1) CN112834249B (zh)
WO (1) WO2022143919A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117723065A (zh) * 2024-02-06 2024-03-19 农业农村部南京农业机械化研究所 一种农机的上线距离检测方法及装置

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112834249B (zh) * 2020-12-31 2023-12-05 广州极飞科技股份有限公司 转向参数检测方法、装置、设备及存储介质

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140082397A (ko) * 2012-12-24 2014-07-02 한국공항공사 자동차 주행 궤적의 곡률 계산 장치 및 곡률 보정 방법
CN108536138A (zh) * 2017-12-29 2018-09-14 哈尔滨航天恒星数据系统科技有限公司 农机自动驾驶系统的转向控制参数整定方法及系统
CN108657269A (zh) * 2018-04-04 2018-10-16 南京天辰礼达电子科技有限公司 一种农业机械方向盘电机驱动自动驾驶设备及方法
CN109522673A (zh) * 2018-11-30 2019-03-26 百度在线网络技术(北京)有限公司 一种测试方法、装置、设备和存储介质
CN110442927A (zh) * 2019-07-17 2019-11-12 中国第一汽车股份有限公司 一种转向盘转角确定方法、装置、设备及存储介质
CN112009567A (zh) * 2020-09-07 2020-12-01 上海联适导航技术有限公司 一种农机及其转向角度标定方法、转向控制方法
CN112834249A (zh) * 2020-12-31 2021-05-25 广州极飞科技股份有限公司 转向参数检测方法、装置、设备及存储介质

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4633709A (en) * 1984-08-07 1987-01-06 Nippondenso Co., Ltd. Vehicle turn angle detecting device
CN203798584U (zh) * 2014-04-18 2014-08-27 石家庄华燕交通科技有限公司 汽车转向轮最大转角检测装置
CN107702929A (zh) * 2017-08-14 2018-02-16 宝沃汽车(中国)有限公司 车辆最小转弯直径的检测方法、装置及车辆
CN107618619A (zh) * 2017-09-15 2018-01-23 广船国际有限公司 一种船舶tcs自动检测方法
JP6947487B2 (ja) * 2018-09-28 2021-10-13 先進モビリティ株式会社 自動運転システム
CN110864920B (zh) * 2019-11-30 2022-03-25 的卢技术有限公司 一种基于视觉的角度关系自动测定方法及其系统

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140082397A (ko) * 2012-12-24 2014-07-02 한국공항공사 자동차 주행 궤적의 곡률 계산 장치 및 곡률 보정 방법
CN108536138A (zh) * 2017-12-29 2018-09-14 哈尔滨航天恒星数据系统科技有限公司 农机自动驾驶系统的转向控制参数整定方法及系统
CN108657269A (zh) * 2018-04-04 2018-10-16 南京天辰礼达电子科技有限公司 一种农业机械方向盘电机驱动自动驾驶设备及方法
CN109522673A (zh) * 2018-11-30 2019-03-26 百度在线网络技术(北京)有限公司 一种测试方法、装置、设备和存储介质
CN110442927A (zh) * 2019-07-17 2019-11-12 中国第一汽车股份有限公司 一种转向盘转角确定方法、装置、设备及存储介质
CN112009567A (zh) * 2020-09-07 2020-12-01 上海联适导航技术有限公司 一种农机及其转向角度标定方法、转向控制方法
CN112834249A (zh) * 2020-12-31 2021-05-25 广州极飞科技股份有限公司 转向参数检测方法、装置、设备及存储介质

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117723065A (zh) * 2024-02-06 2024-03-19 农业农村部南京农业机械化研究所 一种农机的上线距离检测方法及装置

Also Published As

Publication number Publication date
CN112834249A (zh) 2021-05-25
CN112834249B (zh) 2023-12-05

Similar Documents

Publication Publication Date Title
WO2022143919A1 (zh) 转向参数检测方法及装置、计算机设备及可读存储介质
US11002840B2 (en) Multi-sensor calibration method, multi-sensor calibration device, computer device, medium and vehicle
JP6921341B2 (ja) 地面テクスチャ画像に基づくナビゲーション方法、装置、デバイス、および記憶媒体
JP6915009B2 (ja) センサーキャリブレーション方法と装置、コンピュータ機器、媒体及び車両
US10852139B2 (en) Positioning method, positioning device, and robot
CN111231950B (zh) 规划车辆变道路径的方法、装置、设备及可读存储介质
CN109444932B (zh) 一种车辆定位方法、装置、电子设备及存储介质
JP2020079781A (ja) 相対的位置姿勢の決定方法、装置、機器及び媒体
WO2019047639A1 (zh) 一种计算车辆轨迹的曲率的方法和装置
CN109870698B (zh) 一种超声波阵列障碍物检测结果处理方法及系统
CN111796521B (zh) 一种前视距离确定方法、装置、设备及存储介质
KR20220088387A (ko) 도로의 울퉁불퉁한 구역의 검측방법, 장치, 전자기기, 저장매체, 컴퓨터 프로그램 및 차량
WO2022170847A1 (zh) 一种基于激光和视觉融合的在线标定方法
CN111427061A (zh) 一种机器人建图方法、装置,机器人及存储介质
CN114475781B (zh) 一种车辆控制方法、装置、设备以及存储介质
CN112665506B (zh) 定位装置的安装偏差检测方法、装置、设备及存储介质
WO2022036981A1 (zh) 机器人及其地图构建方法和装置
CN110853098B (zh) 机器人定位方法、装置、设备及存储介质
US20230095552A1 (en) Map construction method, robot and medium
CN109333527B (zh) 一种与机器人的交互方法、装置、电子设备及存储介质
JP2020042029A (ja) 障害物速度の検出方法、障害物速度の検出装置、コンピュータ機器、記憶媒体及び車両
CN113091743B (zh) 机器人的室内定位方法及装置
CN115727871A (zh) 一种轨迹质量检测方法、装置、电子设备和存储介质
CN108416044A (zh) 场景缩略图的生成方法、装置、电子设备及存储介质
CN111857113B (zh) 可移动设备的定位方法及定位装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21914649

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21914649

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205 DATED 25/01/2024)