WO2022143889A1 - 一种极片和锂离子电池 - Google Patents
一种极片和锂离子电池 Download PDFInfo
- Publication number
- WO2022143889A1 WO2022143889A1 PCT/CN2021/143038 CN2021143038W WO2022143889A1 WO 2022143889 A1 WO2022143889 A1 WO 2022143889A1 CN 2021143038 W CN2021143038 W CN 2021143038W WO 2022143889 A1 WO2022143889 A1 WO 2022143889A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- groove
- pole piece
- active layer
- current collector
- length
- Prior art date
Links
- 229910001416 lithium ion Inorganic materials 0.000 title claims abstract description 38
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 title claims abstract description 37
- 239000007773 negative electrode material Substances 0.000 claims description 21
- 238000005087 graphitization Methods 0.000 claims description 18
- 239000002245 particle Substances 0.000 claims description 17
- 230000014759 maintenance of location Effects 0.000 abstract description 9
- 239000000463 material Substances 0.000 description 10
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical group [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 9
- 239000011889 copper foil Substances 0.000 description 9
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 8
- 238000000576 coating method Methods 0.000 description 8
- 230000000052 comparative effect Effects 0.000 description 6
- 239000011248 coating agent Substances 0.000 description 5
- 238000002360 preparation method Methods 0.000 description 5
- 239000002033 PVDF binder Substances 0.000 description 4
- 229910002804 graphite Inorganic materials 0.000 description 4
- 239000010439 graphite Substances 0.000 description 4
- 229920002981 polyvinylidene fluoride Polymers 0.000 description 4
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 3
- 239000006258 conductive agent Substances 0.000 description 3
- 229910052744 lithium Inorganic materials 0.000 description 3
- YWJVFBOUPMWANA-UHFFFAOYSA-H [Li+].[V+5].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O Chemical compound [Li+].[V+5].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O YWJVFBOUPMWANA-UHFFFAOYSA-H 0.000 description 2
- DPXJVFZANSGRMM-UHFFFAOYSA-N acetic acid;2,3,4,5,6-pentahydroxyhexanal;sodium Chemical compound [Na].CC(O)=O.OCC(O)C(O)C(O)C(O)C=O DPXJVFZANSGRMM-UHFFFAOYSA-N 0.000 description 2
- 239000011230 binding agent Substances 0.000 description 2
- 239000006229 carbon black Substances 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 239000003792 electrolyte Substances 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 238000011056 performance test Methods 0.000 description 2
- 229920000058 polyacrylate Polymers 0.000 description 2
- -1 polytetrafluoroethylene Polymers 0.000 description 2
- 239000007774 positive electrode material Substances 0.000 description 2
- 239000002002 slurry Substances 0.000 description 2
- 229920003048 styrene butadiene rubber Polymers 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 239000002562 thickening agent Substances 0.000 description 2
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 description 1
- 239000004952 Polyamide Substances 0.000 description 1
- 229920002125 Sokalan® Polymers 0.000 description 1
- PFYQFCKUASLJLL-UHFFFAOYSA-N [Co].[Ni].[Li] Chemical compound [Co].[Ni].[Li] PFYQFCKUASLJLL-UHFFFAOYSA-N 0.000 description 1
- HFCVPDYCRZVZDF-UHFFFAOYSA-N [Li+].[Co+2].[Ni+2].[O-][Mn]([O-])(=O)=O Chemical compound [Li+].[Co+2].[Ni+2].[O-][Mn]([O-])(=O)=O HFCVPDYCRZVZDF-UHFFFAOYSA-N 0.000 description 1
- 239000011149 active material Substances 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical group [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- 229910021383 artificial graphite Inorganic materials 0.000 description 1
- 239000002041 carbon nanotube Substances 0.000 description 1
- 229910021393 carbon nanotube Inorganic materials 0.000 description 1
- 239000001768 carboxy methyl cellulose Substances 0.000 description 1
- 229920003123 carboxymethyl cellulose sodium Polymers 0.000 description 1
- 229940063834 carboxymethylcellulose sodium Drugs 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 238000005056 compaction Methods 0.000 description 1
- 229920001577 copolymer Polymers 0.000 description 1
- QHGJSLXSVXVKHZ-UHFFFAOYSA-N dilithium;dioxido(dioxo)manganese Chemical compound [Li+].[Li+].[O-][Mn]([O-])(=O)=O QHGJSLXSVXVKHZ-UHFFFAOYSA-N 0.000 description 1
- 210000005069 ears Anatomy 0.000 description 1
- 239000011888 foil Substances 0.000 description 1
- 229910021389 graphene Inorganic materials 0.000 description 1
- 229910000625 lithium cobalt oxide Inorganic materials 0.000 description 1
- GELKBWJHTRAYNV-UHFFFAOYSA-K lithium iron phosphate Chemical compound [Li+].[Fe+2].[O-]P([O-])([O-])=O GELKBWJHTRAYNV-UHFFFAOYSA-K 0.000 description 1
- DVATZODUVBMYHN-UHFFFAOYSA-K lithium;iron(2+);manganese(2+);phosphate Chemical compound [Li+].[Mn+2].[Fe+2].[O-]P([O-])([O-])=O DVATZODUVBMYHN-UHFFFAOYSA-K 0.000 description 1
- BFZPBUKRYWOWDV-UHFFFAOYSA-N lithium;oxido(oxo)cobalt Chemical compound [Li+].[O-][Co]=O BFZPBUKRYWOWDV-UHFFFAOYSA-N 0.000 description 1
- 229910052748 manganese Inorganic materials 0.000 description 1
- 239000011572 manganese Substances 0.000 description 1
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 229910021382 natural graphite Inorganic materials 0.000 description 1
- 229920003229 poly(methyl methacrylate) Polymers 0.000 description 1
- 239000004584 polyacrylic acid Substances 0.000 description 1
- 229920002647 polyamide Polymers 0.000 description 1
- 239000004926 polymethyl methacrylate Substances 0.000 description 1
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 1
- 239000004810 polytetrafluoroethylene Substances 0.000 description 1
- 229920001289 polyvinyl ether Polymers 0.000 description 1
- 229920000036 polyvinylpyrrolidone Polymers 0.000 description 1
- 239000001267 polyvinylpyrrolidone Substances 0.000 description 1
- 235000013855 polyvinylpyrrolidone Nutrition 0.000 description 1
- HWOJXMOIIGWGJY-UHFFFAOYSA-N prop-2-enenitrile hydrofluoride Chemical compound F.C(#N)C=C HWOJXMOIIGWGJY-UHFFFAOYSA-N 0.000 description 1
- 235000019812 sodium carboxymethyl cellulose Nutrition 0.000 description 1
- 229920001027 sodium carboxymethylcellulose Polymers 0.000 description 1
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 239000010937 tungsten Substances 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/362—Composites
- H01M4/366—Composites as layered products
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
- H01M10/0525—Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/04—Processes of manufacture in general
- H01M4/0402—Methods of deposition of the material
- H01M4/0404—Methods of deposition of the material by coating on electrode collectors
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
- H01M4/133—Electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/64—Carriers or collectors
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/64—Carriers or collectors
- H01M4/66—Selection of materials
- H01M4/661—Metal or alloys, e.g. alloy coatings
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/64—Carriers or collectors
- H01M4/70—Carriers or collectors characterised by shape or form
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/50—Current conducting connections for cells or batteries
- H01M50/531—Electrode connections inside a battery casing
- H01M50/533—Electrode connections inside a battery casing characterised by the shape of the leads or tabs
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/50—Current conducting connections for cells or batteries
- H01M50/531—Electrode connections inside a battery casing
- H01M50/534—Electrode connections inside a battery casing characterised by the material of the leads or tabs
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/50—Current conducting connections for cells or batteries
- H01M50/531—Electrode connections inside a battery casing
- H01M50/536—Electrode connections inside a battery casing characterised by the method of fixing the leads to the electrodes, e.g. by welding
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/058—Construction or manufacture
- H01M10/0585—Construction or manufacture of accumulators having only flat construction elements, i.e. flat positive electrodes, flat negative electrodes and flat separators
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M2004/021—Physical characteristics, e.g. porosity, surface area
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M2004/026—Electrodes composed of, or comprising, active material characterised by the polarity
- H01M2004/027—Negative electrodes
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Definitions
- the invention relates to a pole piece and a lithium ion battery, and relates to the technical field of lithium ion batteries.
- the invention provides a pole piece for improving the cycle performance of a lithium ion battery under the condition of high rate charging.
- a first aspect of the present invention provides a pole piece, comprising a current collector and a first active layer and a second active layer sequentially stacked on the surface of the current collector;
- the first active layer is provided with a first groove
- the second active layer is provided with a second groove
- the vertical projection of the second groove on the current collector covers the first groove A vertical projection of a groove on the current collector
- a tab is disposed at the first groove and is electrically connected to the current collector.
- the length of the second groove is greater than the length of the first groove.
- the width of the second groove is the same as the width of the current collector.
- the difference between the length of the second groove and the length of the first groove is less than or equal to 500 mm.
- the pole piece is a negative electrode piece, and the average particle size of the negative electrode active material in the second active layer is 10-18 ⁇ m, and the graphitization degree is 86-94%.
- the average particle size and graphitization degree of the negative electrode active material in the first active layer are greater than the average particle size and graphitization degree of the negative electrode active material in the second active layer.
- the area of the vertical projection of the first groove on the current collector is larger than the area of the upper tab connection area of the current collector.
- the width of the first groove is 1-2 times the width of the tab connecting region.
- the length of the first groove is 1-2 times the length of the tab connecting region.
- a second aspect of the present invention provides a lithium ion battery, comprising any of the above-mentioned pole pieces.
- the present invention provides a pole piece. By reducing the thickness of the active layer around the pole tab, the charging risk at the connection position of the pole tab is effectively improved, and the cycle retention rate of the lithium ion battery is improved under the condition of maintaining high-rate charging. .
- the lithium ion battery provided by the present invention has better cycle performance under the condition of high rate charging.
- 1a is a front view of a pole piece provided by an embodiment of the present invention.
- FIG. 1b is a top view of a pole piece provided by an embodiment of the present invention.
- 1c is a left side view of a pole piece provided by an embodiment of the present invention.
- FIG. 2a is a front view of a pole piece provided by another embodiment of the present invention.
- FIG. 2b is a top view of a pole piece provided by another embodiment of the present invention.
- FIG. 3 is a top view of a pole piece provided by still another embodiment of the present invention.
- a first aspect of the present invention provides a pole piece, comprising a current collector and a first active layer and a second active layer sequentially stacked on the surface of the current collector;
- the first active layer is provided with a first groove
- the second active layer is provided with a second groove
- the vertical projection of the second groove on the current collector covers the first groove A vertical projection of a groove on the current collector
- a tab is disposed at the first groove and is electrically connected to the current collector.
- the sides of the first active layer and the second active layer are provided with grooves, and the grooves communicate with the upper surface of the second active layer and the upper surface of the current collector, so that the tabs can be arranged in the grooves. It is electrically connected to the current collector exposed at the groove, and the pole piece provided by the application mainly reduces the thickness of the active layer around the tab to improve the charging risk at the connection position of the tab.
- FIG. 1a is an implementation of the present invention.
- the middle position of the side surface of the first active layer 2 is provided with a No.
- the second active layer 3 is provided with a second groove
- the tab 4 is arranged at the first groove and is electrically connected to the current collector 1 (the vertical projection of the tab on the current collector 1 is the same as the first groove).
- the vertical projection of a groove on the current collector 1 overlaps), the vertical projection of the second groove on the current collector covers the vertical projection of the first groove on the current collector, so that the thickness of the active layer in the area around the tab Below the thickness of the active layer away from the tab area, the length of the pole piece is the same as the definition of the length of the pole piece in the art, that is, the longest side of the pole piece is the length of the pole piece, the shortest side is the height of the pole piece, and the intermediate The side of the longest side and the shortest side is the width of the pole piece, that is, the longer side in Figure 1a is the length of the pole piece, the shorter side is the height of the pole piece, and the shorter side in Figure 1b is the width of the pole piece, and the length is the length of the pole piece.
- the value of the side is the length of the pole piece
- the value of the high side is the thickness of the pole piece
- the value of the wide side is the width of the pole piece
- the length and width of the first groove and the second groove and the pole piece are same as the thickness direction.
- the second active layer is provided with a second groove
- blank coating needs to be performed on the position of the second groove, but the existing coating
- the equipment and coating process cannot directly realize this coating method. Therefore, in order to improve the preparation efficiency of the second active layer, the width of the second groove can be increased to make it the same as the width of the current collector.
- Some coating equipment performs jump coating to obtain a second active layer provided with a second groove.
- FIG. 2a is a front view of a pole piece provided by another embodiment of the present invention
- FIG. 2b is a top view of a pole piece provided by another embodiment of the present invention
- the pole piece includes a current collector 1 and is arranged in sequence On the first active layer 2 and the second active layer 3 on the surface of the current collector 1, a first groove is provided in the middle of the side surface of the first active layer 1, and the first groove is connected to the tabs in the corresponding area on the current collector 1 4.
- the second active layer 2 is provided with a second groove, and the width of the second groove is the same as that of the current collector 1 , that is, the second groove divides the second active layer into two independent parts left and right.
- the length of the second groove is greater than the length of the first groove, and through the study of the length of the first groove and the second groove, it is found that with the second groove The length of the groove is continuously increased, and the cycle performance of the lithium ion battery will gradually improve.
- the difference between the length of the second groove and the length of the first groove is less than or equal to 500mm .
- the length and width of the first groove are specifically determined according to the pole lug, and those skilled in the art can determine the length and width of the first groove according to the actual pole piece design and needs.
- the average particle size of the negative electrode active material in the second active layer is 10-18 ⁇ m, and the graphitization degree is 86-94%.
- the average particle size and graphitization degree of the negative electrode active material in the first active layer are greater than the average particle size and graphitization degree of the negative electrode active material in the second active layer, for example, when the average particle size and graphitization degree of the negative electrode active material in the second active layer When the diameter is 10-18 ⁇ m and the graphitization degree is 86-94%, the average particle size of the negative electrode active material in the first active layer is 12-30 ⁇ m, and the graphitization degree is 90-98%.
- the first negative electrode active layer slurry in the preparation process of the negative electrode piece, can be prepared by combining the negative electrode active material with the binder, the conductive agent and the thickener, and then coated on the surface of the current collector, Obtain the first active layer; then prepare the second negative electrode active layer slurry, and coat the second negative electrode active material on the surface of the first active layer away from the current collector.
- the negative active material may include at least one of artificial graphite, natural graphite, and modified graphite
- the binder may include polyvinylidene fluoride (PVDF), vinylidene fluoride-hexafluoropropylene copolymer, polyamide, polyvinylidene fluoride Acrylonitrile, polyacrylate, polyacrylic acid, polyacrylate, polyvinylpyrrolidone, polyvinyl ether, polymethylmethacrylate, polytetrafluoroethylene, polyhexafluoropropylene and styrene-butadiene rubber (SBR) at least one
- the conductive agent may include at least one of conductive carbon black, carbon nanotubes,
- the pole piece provided by the present invention is also suitable for the positive pole piece, and the specific preparation method can refer to the negative pole piece.
- the difference lies in the material.
- the current collector can be aluminum foil
- the positive electrode active material includes lithium cobaltate, lithium manganate, lithium nickelate , at least one of nickel-cobalt lithium manganate, lithium iron phosphate, lithium manganese iron phosphate, lithium vanadium phosphate, lithium vanadium phosphate, lithium-rich manganese-based materials, and lithium nickel-cobalt aluminate.
- the area of the vertical projection of the first groove on the current collector may be larger than the area of the tab connection area on the current collector.
- the tab connection area on the current collector refers to the vertical projection area of the tab on the current collector.
- FIG. 3 is a top view of a pole piece provided by yet another embodiment of the present invention. As shown in FIG. 3 , the first groove The area of the vertical projection on the current collector is larger than the area of the tab connection area on the current collector.
- the width of the first groove is 1-2 times the width of the tab connecting region.
- the length of the first groove is 1-2 times the length of the tab connecting region.
- the present invention provides a pole piece. By reducing the thickness of the active layer around the tab, the charging risk at the connection position of the tab is effectively improved, and the cycle retention of the lithium ion battery is improved under the condition of maintaining high-rate charging. Rate.
- a second aspect of the present invention provides a lithium ion battery, comprising any one of the above-mentioned pole pieces.
- the present invention provides a lithium ion battery, which can be prepared by those skilled in the art based on the pole piece provided by the present invention and in combination with the prior art.
- the lithium ion battery provided by the invention has better cycle performance under the condition of high rate charging.
- FIG 2a The front view of the pole piece provided by this embodiment is shown in Figure 2a, the top view is shown in Figure 3, and the left side view is shown in Figure 1c, wherein:
- the current collector is copper foil with a width of 81mm;
- the width of the first groove is 25mm and the length is 10mm;
- the width of the second groove is 81 mm and the length is 30 mm.
- the first active layer and the second active layer include 97 parts by mass of lithium cobalt oxide, 1.5 parts by mass of PVDF and 1.5 parts by mass of carbon black conductive agent 1.5% according to mass percentage;
- both the first active layer and the second active layer include 97 parts by mass of graphite, 0.7 parts by mass of carbon black, 1.3 parts by mass of styrene-butadiene rubber and 1 part by mass of carboxymethyl cellulose sodium, wherein the average particle size of the negative electrode active material in the first active layer is 18 ⁇ m, and the graphitization degree is 96%; the average particle size of the negative electrode active material in the second active layer is 15 ⁇ m, and the graphitization degree is 92%.
- FIG 2a The front view of the pole piece provided by this embodiment is shown in Figure 2a, the top view is shown in Figure 3, and the left side view is shown in Figure 1c, wherein:
- the current collector is copper foil with a width of 81mm;
- the width of the first groove is 25mm and the length is 10mm;
- the width of the second groove is 81 mm and the length is 40 mm.
- the materials of the first active layer and the second active layer are the same as those in Example 1.
- FIG 2a The front view of the pole piece provided by this embodiment is shown in Figure 2a, the top view is shown in Figure 3, and the left side view is shown in Figure 1c, wherein:
- the current collector is copper foil with a width of 81mm;
- the width of the first groove is 25mm and the length is 10mm;
- the width of the second groove is 81 mm and the length is 50 mm.
- the materials of the first active layer and the second active layer are the same as those in Example 1.
- FIG 2a The front view of the pole piece provided by this embodiment is shown in Figure 2a, the top view is shown in Figure 3, and the left side view is shown in Figure 1c, wherein:
- the current collector is copper foil with a width of 81mm;
- the width of the first groove is 25mm and the length is 10mm;
- the width of the second groove is 81mm and the length is 60mm;
- the materials of the first active layer and the second active layer are the same as those in Example 1.
- FIG 2a The front view of the pole piece provided by this embodiment is shown in Figure 2a, the top view is shown in Figure 3, and the left side view is shown in Figure 1c, wherein:
- the current collector is copper foil with a width of 81mm;
- the width of the first groove is 25mm and the length is 10mm;
- the width of the second groove is 81mm and the length is 70mm;
- the materials of the first active layer and the second active layer are the same as those in Example 1.
- FIG 2a The front view of the pole piece provided by this embodiment is shown in Figure 2a, the top view is shown in Figure 3, and the left side view is shown in Figure 1c, wherein:
- the current collector is copper foil with a width of 81mm;
- the width of the first groove is 25mm and the length is 10mm;
- the width of the second groove is 81mm and the length is 30mm;
- the materials of the first active layer and the second active layer can refer to Example 1.
- the difference is that the average particle size of the negative active material in the second active layer is 15 ⁇ m, and the graphitization degree was 94%.
- FIG 2a The front view of the pole piece provided by this embodiment is shown in Figure 2a, the top view is shown in Figure 3, and the left side view is shown in Figure 1c, wherein:
- the current collector is copper foil with a width of 81mm;
- the width of the first groove is 25mm and the length is 10mm;
- the width of the second groove is 81mm and the length is 30mm;
- the materials of the first active layer and the second active layer can refer to Example 1.
- the difference is that the average particle size of the negative active material in the second active layer is 15 ⁇ m, and the graphitization degree is 90%.
- FIG 2a The front view of the pole piece provided by this embodiment is shown in Figure 2a, the top view is shown in Figure 3, and the left side view is shown in Figure 1c, wherein:
- the current collector is copper foil with a width of 81mm;
- the width of the first groove is 25mm and the length is 10mm;
- the width of the second groove is 81mm and the length is 30mm;
- the materials of the first active layer and the second active layer can refer to Example 1.
- the difference is that the average particle size of the negative active material in the second active layer is 10 ⁇ m, and the graphitization degree is 90%.
- the pole piece provided by this comparative example includes a current collector, a first active layer and a second active layer, and a groove is provided in the middle of the sides of the first active layer and the second active layer, wherein,
- the current collector is copper foil with a width of 81mm;
- the grooves are 25mm wide and 10mm long.
- the materials of the first active layer and the second active layer are the same as those in Example 1.
- the positive electrode sheet and the negative electrode sheet provided by the embodiments of the present invention 1-8 and comparative example 1 are matched with a separator and an electrolyte to prepare a lithium ion battery, and the cycle capacity retention rate of the lithium ion battery is tested.
- the positive active material was purchased from Xiamen Xia Tungsten New Energy Materials Co., Ltd.
- the negative active material was purchased from Shanghai Shanshan Technology Co., Ltd.
- the diaphragm was purchased from Dongguan Zhuo Gao Electronic Technology Co., Ltd.
- the electrolyte was purchased from Shenzhen Xinzhoubang Technology Co., Ltd. Ltd.
- the performance test method of lithium-ion battery is:
- the lithium ion batteries provided in Examples 1-8 and Comparative Example 1 were subjected to a 2C/0.7C charge-discharge cycle test at 25°C, and the cycle retention (%) was calculated after 500 cycles.
- the test results are shown in Table 1.
- Example 1 25°C cycle retention rate
- Example 2 85.5%
- Example 3 86.1%
- Example 4 87.2%
- Example 5 88.1%
- Example 6 83.9%
- Example 7 85.8%
- Example 8 86.7% Comparative Example 1 82.5%
- the lithium-ion batteries provided in Examples 1-8 all have good cycle capacity retention rates; according to the data provided in Examples 1-5, it can be seen that with the increase of the length of the second groove, the The cycle performance will be improved accordingly; according to the data provided in Examples 6-8, as the graphitization degree and average particle size of the active material in the second active layer decrease, the cycle retention rate of the lithium ion battery will increase.
- the lithium ion battery provided by the present invention has good cycle performance under the condition of high rate charging.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Composite Materials (AREA)
- Battery Electrode And Active Subsutance (AREA)
- Secondary Cells (AREA)
- Connection Of Batteries Or Terminals (AREA)
Abstract
Description
25℃循环保持率 | |
实施例1 | 84.8% |
实施例2 | 85.5% |
实施例3 | 86.1% |
实施例4 | 87.2% |
实施例5 | 88.1% |
实施例6 | 83.9% |
实施例7 | 85.8% |
实施例8 | 86.7% |
对比例1 | 82.5% |
Claims (10)
- 一种极片,其特征在于,包括集流体以及依次层叠设置在所述集流体表面的第一活性层和第二活性层;其中,所述第一活性层上设置有第一凹槽,所述第二活性层上设置有第二凹槽,所述第二凹槽在所述集流体上的竖直投影覆盖所述第一凹槽在所述集流体上的竖直投影;极耳设置于所述第一凹槽处并与所述集流体电连接。
- 根据权利要求1所述的极片,其特征在于,所述第二凹槽的长度大于所述第一凹槽的长度。
- 根据权利要求1或2所述的极片,其特征在于,所述第二凹槽的宽度与所述集流体的宽度相同。
- 根据权利要求1-3任一项所述的极片,其特征在于,所述第二凹槽的长度与所述第一凹槽长度的差值小于等于500mm。
- 根据权利要求1-4任一项所述的极片,其特征在于,所述极片为负极片,且所述第二活性层中负极活性物质的平均粒径为10-18μm,石墨化度为86-94%。
- 根据权利要求5所述的极片,其特征在于,所述第一活性层中负极活性物质的平均粒径和石墨化度大于第二活性层中负极活性物质的平均粒径和石墨化度。
- 根据权利要求1-6任一项所述的极片,其特征在于,所述第一凹槽在集流体上竖直投影的面积大于集流体上极耳连接区的面积。
- 根据权利要求7所述的极片,其特征在于,所述第一凹槽的宽度为所述极耳连接区宽度的1-2倍。
- 根据权利要求7所述的极片,其特征在于,所述第一凹槽的长度为所述极耳连接区长度的1-2倍。
- 一种锂离子电池,其特征在于,包括权利要求1-9任一项所述的极片。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP21914620.6A EP4160722A4 (en) | 2020-12-30 | 2021-12-30 | ELECTRODE SHEET AND LITHIUM-ION BATTERY |
JP2023500035A JP2023533259A (ja) | 2020-12-30 | 2021-12-30 | 電極シート及びリチウムイオン電池 |
KR1020237000395A KR20230019962A (ko) | 2020-12-30 | 2021-12-30 | 전극시트 및 리튬 이온 배터리 |
US18/149,018 US20230143216A1 (en) | 2020-12-30 | 2022-12-30 | Electrode sheet and lithium-ion battery |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202011631163.1A CN112802992B (zh) | 2020-12-30 | 2020-12-30 | 一种极片和锂离子电池 |
CN202011631163.1 | 2020-12-30 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US18/149,018 Continuation US20230143216A1 (en) | 2020-12-30 | 2022-12-30 | Electrode sheet and lithium-ion battery |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022143889A1 true WO2022143889A1 (zh) | 2022-07-07 |
Family
ID=75808296
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2021/143038 WO2022143889A1 (zh) | 2020-12-30 | 2021-12-30 | 一种极片和锂离子电池 |
Country Status (6)
Country | Link |
---|---|
US (1) | US20230143216A1 (zh) |
EP (1) | EP4160722A4 (zh) |
JP (1) | JP2023533259A (zh) |
KR (1) | KR20230019962A (zh) |
CN (1) | CN112802992B (zh) |
WO (1) | WO2022143889A1 (zh) |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112750978B (zh) * | 2020-12-30 | 2022-03-15 | 珠海冠宇电池股份有限公司 | 极片及电池 |
CN112802992B (zh) * | 2020-12-30 | 2022-10-14 | 珠海冠宇电池股份有限公司 | 一种极片和锂离子电池 |
CN113948672A (zh) * | 2021-09-03 | 2022-01-18 | 惠州锂威新能源科技有限公司 | 一种正极片及包含该正极片的锂离子电池 |
CN114284469B (zh) * | 2022-01-29 | 2024-04-02 | 珠海冠宇电池股份有限公司 | 极片及其制备方法、电池和用电装置 |
WO2024057630A1 (ja) * | 2022-09-15 | 2024-03-21 | パナソニックエナジー株式会社 | 蓄電装置用電極板および蓄電装置 |
CN115566131A (zh) * | 2022-09-30 | 2023-01-03 | 惠州锂威新能源科技有限公司 | 一种电池极片及其制备方法 |
CN116888793A (zh) * | 2022-10-26 | 2023-10-13 | 宁德新能源科技有限公司 | 电化学装置及电子设备 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005135634A (ja) * | 2003-10-28 | 2005-05-26 | Toshiba Corp | 非水電解質二次電池 |
CN102386379A (zh) * | 2011-10-19 | 2012-03-21 | 广州市云通磁电有限公司 | 锂离子电池磷酸铁锂-钴酸锂复合正极极片的制造方法 |
CN202268433U (zh) * | 2011-10-19 | 2012-06-06 | 广州市云通磁电有限公司 | 一种锂离子电池磷酸铁锂-钴酸锂复合正极极片 |
CN111129502A (zh) * | 2018-10-31 | 2020-05-08 | 宁德时代新能源科技股份有限公司 | 一种负极极片以及二次电池 |
CN111816838A (zh) * | 2020-07-22 | 2020-10-23 | 珠海冠宇电池股份有限公司 | 锂离子电池正极片及其制备方法以及锂离子电池 |
CN112802992A (zh) * | 2020-12-30 | 2021-05-14 | 珠海冠宇电池股份有限公司 | 一种极片和锂离子电池 |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2017037981A1 (ja) * | 2015-08-31 | 2017-03-09 | パナソニックIpマネジメント株式会社 | 非水電解質二次電池 |
CN105742565B (zh) * | 2016-02-29 | 2019-03-05 | 宁德新能源科技有限公司 | 一种锂离子电池极片及其制备方法 |
WO2018053699A1 (zh) * | 2016-09-21 | 2018-03-29 | 宁德时代新能源科技股份有限公司 | 二次电池及其阴极极片 |
WO2018179885A1 (ja) * | 2017-03-31 | 2018-10-04 | パナソニックIpマネジメント株式会社 | 二次電池 |
KR20190064977A (ko) * | 2017-12-01 | 2019-06-11 | 주식회사 엘지화학 | 전극 조립체 및 이를 포함하는 배터리 |
CN110148777A (zh) * | 2019-06-10 | 2019-08-20 | 合肥众禾动力新能源科技有限公司 | 一种锂离子电池中间极耳卷芯 |
CN111628141B (zh) * | 2020-07-16 | 2021-05-25 | 珠海冠宇电池股份有限公司 | 一种掺硅负极极片及包括该负极极片的锂离子电池 |
CN111916668B (zh) * | 2020-07-27 | 2021-07-16 | 珠海冠宇电池股份有限公司 | 一种负极片及其制备方法和包含该负极片的锂离子电池 |
CN111969214B (zh) * | 2020-08-19 | 2022-07-15 | 珠海冠宇电池股份有限公司 | 一种异型结构的正极片及包括该正极片的锂离子电池 |
CN111952541B (zh) * | 2020-09-14 | 2022-05-06 | 珠海冠宇电池股份有限公司 | 一种正极片及制备方法、电池 |
-
2020
- 2020-12-30 CN CN202011631163.1A patent/CN112802992B/zh active Active
-
2021
- 2021-12-30 JP JP2023500035A patent/JP2023533259A/ja active Pending
- 2021-12-30 KR KR1020237000395A patent/KR20230019962A/ko active Search and Examination
- 2021-12-30 WO PCT/CN2021/143038 patent/WO2022143889A1/zh unknown
- 2021-12-30 EP EP21914620.6A patent/EP4160722A4/en active Pending
-
2022
- 2022-12-30 US US18/149,018 patent/US20230143216A1/en active Pending
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005135634A (ja) * | 2003-10-28 | 2005-05-26 | Toshiba Corp | 非水電解質二次電池 |
CN102386379A (zh) * | 2011-10-19 | 2012-03-21 | 广州市云通磁电有限公司 | 锂离子电池磷酸铁锂-钴酸锂复合正极极片的制造方法 |
CN202268433U (zh) * | 2011-10-19 | 2012-06-06 | 广州市云通磁电有限公司 | 一种锂离子电池磷酸铁锂-钴酸锂复合正极极片 |
CN111129502A (zh) * | 2018-10-31 | 2020-05-08 | 宁德时代新能源科技股份有限公司 | 一种负极极片以及二次电池 |
CN111816838A (zh) * | 2020-07-22 | 2020-10-23 | 珠海冠宇电池股份有限公司 | 锂离子电池正极片及其制备方法以及锂离子电池 |
CN112802992A (zh) * | 2020-12-30 | 2021-05-14 | 珠海冠宇电池股份有限公司 | 一种极片和锂离子电池 |
Non-Patent Citations (1)
Title |
---|
See also references of EP4160722A4 |
Also Published As
Publication number | Publication date |
---|---|
CN112802992B (zh) | 2022-10-14 |
US20230143216A1 (en) | 2023-05-11 |
EP4160722A4 (en) | 2024-10-02 |
JP2023533259A (ja) | 2023-08-02 |
CN112802992A (zh) | 2021-05-14 |
KR20230019962A (ko) | 2023-02-09 |
EP4160722A1 (en) | 2023-04-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2022143889A1 (zh) | 一种极片和锂离子电池 | |
CN111916668B (zh) | 一种负极片及其制备方法和包含该负极片的锂离子电池 | |
CN112750976B (zh) | 锂电池电芯及锂离子电池 | |
WO2022143859A1 (zh) | 一种极片和锂离子电池 | |
CN111540880B (zh) | 一种负极片、制备方法及包含其的锂离子电池 | |
CN111969214A (zh) | 一种异型结构的正极片及包括该正极片的锂离子电池 | |
CN112820852B (zh) | 一种负极片和锂离子电池 | |
WO2022033065A1 (zh) | 负极片及二次电池 | |
CN111799470B (zh) | 正极极片及钠离子电池 | |
CN114583289B (zh) | 一种锂离子电池 | |
WO2024109530A1 (zh) | 负极极片及包含其的二次电池 | |
CN112420983A (zh) | 一种正极片和锂离子电池 | |
CN112420984A (zh) | 一种负极片和锂离子电池 | |
CN113054156B (zh) | 一种电极组件及其应用 | |
CN113140696B (zh) | 负极片、锂离子电池及负极片的制备方法 | |
CN114242932B (zh) | 一种锂离子电池 | |
CN114597335A (zh) | 一种负极片及包括该负极片的电池 | |
WO2023108963A1 (zh) | 一种锂离子电池 | |
JP2020145034A (ja) | 正極スラリーの製造方法、正極の製造方法及び全固体電池の製造方法、並びに、正極及び全固体電池 | |
CN105355847B (zh) | 一种电化学电池电极、含有该电极的电化学电池及其制备方法 | |
CN114050325A (zh) | 电芯及电化学装置 | |
CN116053412A (zh) | 一种锂离子电池负极片 | |
CN114976029A (zh) | 一种电芯及电池 | |
CN112018380A (zh) | 一种高性能倍率型锂离子电池及其制备方法 | |
CN112018376A (zh) | 一种正极材料及其制备方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21914620 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2023500035 Country of ref document: JP Kind code of ref document: A Ref document number: 20237000395 Country of ref document: KR Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 2021914620 Country of ref document: EP Effective date: 20230102 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |