WO2022143668A1 - 电池加热系统检测方法、装置、车辆及存储介质 - Google Patents

电池加热系统检测方法、装置、车辆及存储介质 Download PDF

Info

Publication number
WO2022143668A1
WO2022143668A1 PCT/CN2021/142087 CN2021142087W WO2022143668A1 WO 2022143668 A1 WO2022143668 A1 WO 2022143668A1 CN 2021142087 W CN2021142087 W CN 2021142087W WO 2022143668 A1 WO2022143668 A1 WO 2022143668A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery
heating
battery pack
heating system
temperature value
Prior art date
Application number
PCT/CN2021/142087
Other languages
English (en)
French (fr)
Inventor
黄兴伟
郑立奇
韩海滨
Original Assignee
广州橙行智动汽车科技有限公司
广州小鹏汽车科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广州橙行智动汽车科技有限公司, 广州小鹏汽车科技有限公司 filed Critical 广州橙行智动汽车科技有限公司
Publication of WO2022143668A1 publication Critical patent/WO2022143668A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/615Heating or keeping warm
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/62Heating or cooling; Temperature control specially adapted for specific applications
    • H01M10/625Vehicles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/63Control systems
    • H01M10/633Control systems characterised by algorithms, flow charts, software details or the like
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/63Control systems
    • H01M10/635Control systems based on ambient temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/657Means for temperature control structurally associated with the cells by electric or electromagnetic means
    • H01M10/6571Resistive heaters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present application relates to the technical field of vehicles, and in particular, to a battery heating system detection method, device, vehicle and storage medium.
  • the present application proposes a battery heating system detection method, device, vehicle and storage medium.
  • a battery heating system detection method By monitoring the temperature value of the heating medium of the battery heating system in real time to determine whether the battery heating system fails, the relevant staff can be replaced in time.
  • the failed battery heating system ensures the smooth heating of the battery pack by the battery heating system in a low temperature environment.
  • the application provides a battery heating system detection method, including:
  • the battery heating system According to the magnitude relationship between the first temperature value and the first preset threshold value, and the magnitude relationship between the second temperature value and the first preset threshold value, it is determined whether the battery heating system fails.
  • the method further includes:
  • the battery management system In the case that the battery management system is not in a fault state, it is detected whether the battery pack sends a heating request to the battery management system, and whether the battery pack is in a state after sending the heating request to the battery management system heating state;
  • the time period during which the battery pack has sent the heating request to the battery management system and is in a heating state is determined as a period during which the battery pack is in a heating state.
  • the method further includes:
  • the method further includes:
  • the first temperature value at the inlet of the heating medium of the battery heating system is obtained, including:
  • the charge parameter is greater than a third preset threshold, at a first moment during which the battery pack is in a heating state, obtain a first temperature value at the heating medium inlet of the battery heating system;
  • the method also includes:
  • the battery heating system is controlled to stop heating the battery pack with the electric energy of the battery pack.
  • the method further includes:
  • determining whether the battery heating system fails including:
  • the method also includes:
  • the application also provides a battery heating system detection device, including:
  • a first obtaining module configured to obtain a first temperature value at the inlet of the heating medium of the battery heating system at a first moment when the battery pack is in a heating state
  • a second obtaining module configured to obtain a second temperature value at the inlet of the heating medium of the battery heating system at a second time interval separated from the first time by a preset duration
  • a first determination module configured to determine whether the battery heating system is invalid.
  • the device further includes:
  • a third obtaining module configured to obtain a third temperature value of the battery cell with the lowest temperature in the battery pack when the battery pack is not in a heating state
  • a first detection module configured to detect whether the battery management system of the battery pack is in a fault state when the third temperature value is in a preset interval
  • a second detection module configured to detect whether the battery pack sends a heating request to the battery management system when the battery management system is not in a fault state, and the battery pack is sending a heating request to the battery management system Whether it is in the heating state after the heating request;
  • the second determining module is configured to determine the time period during which the battery pack has sent the heating request to the battery management system and is in a heating state as a period during which the battery pack is in a heating state.
  • the device further includes:
  • a third detection module configured to detect the ambient temperature where the battery pack is located
  • the third obtaining module includes:
  • the first obtaining sub-module is configured to obtain a third temperature value of the battery cell with the lowest temperature in the battery pack when the ambient temperature is not greater than the second preset threshold value and the battery pack is not in a heating state.
  • the device further includes:
  • a fourth obtaining module configured to obtain the charging parameter of the battery pack while the battery pack is in a heating state
  • the first obtaining module includes:
  • the second obtaining sub-module is configured to obtain the first time at the heating medium inlet of the battery heating system at the first moment when the battery pack is in the heating state when the charging parameter is greater than the third preset threshold. temperature value;
  • the device also includes:
  • a control module configured to control the battery heating system to stop heating the battery pack by using the electric energy of the battery pack when the charge parameter is not greater than the third preset threshold.
  • the device further includes:
  • the fifth obtaining module is used for monitoring the working state of each element of the battery heating system to obtain monitoring results
  • the first determining module includes:
  • a first determination submodule configured to determine the battery heating system when the second temperature value is not greater than the first preset threshold, or the monitoring result indicates that the battery heating system is in a failed state invalid
  • the second determination submodule is configured to, when the first temperature value and the second temperature value are respectively greater than the first preset threshold, and the monitoring result indicates that the battery heating system is in a normal state, determining that the battery heating system has not failed;
  • the device also includes:
  • the output module is used for outputting early warning information when it is determined that the battery heating system fails.
  • the present application also provides a computer-readable storage medium on which a computer program is stored, and when the program is executed by a processor, implements the steps in the method for detecting a battery heating system according to the first aspect of the present application.
  • the present application also provides a vehicle, including a memory, a processor, and a computer program stored on the memory and running on the processor, the processor implementing the method for detecting a battery heating system described in the first aspect of the present application when executed. A step of.
  • the present application also provides a computer program, comprising computer-readable code, which, when the computer-readable code is executed on a computing and processing device, causes the computing and processing device to execute the above-described method for detecting a battery heating system.
  • the first temperature value at the inlet of the heating medium of the battery heating system is obtained at the first moment when the battery pack is in the heating state, and at the second moment separated from the first moment by a preset time period , obtain the second temperature value at the heating medium inlet of the battery heating system.
  • the magnitude relationship between the first temperature value and the second temperature value and the first preset threshold value it is determined whether the battery heating system fails.
  • the method determines whether the battery heating system fails by monitoring the temperature value of the heating medium of the battery heating system in real time, so that the relevant staff can replace the failed battery heating system in time, so as to ensure the battery heating system to successfully heat the battery pack in a low temperature environment , so as to ensure the normal use of the battery pack.
  • FIG. 1 is a schematic diagram of an implementation scenario shown in an embodiment of the present application
  • FIG. 2 is a flowchart of a method for detecting a battery heating system according to an embodiment of the present application
  • FIG. 3 is a schematic process diagram of a method for detecting a battery heating system according to an embodiment of the present application
  • FIG. 4 is a structural block diagram of a battery heating system detection device provided by an embodiment of the present application.
  • FIG. 1 is a schematic diagram of an implementation scenario shown in an embodiment of the present application.
  • a battery system and a battery heating system are installed inside the vehicle, the battery system includes a battery pack, and the battery heating system contains a heating medium, and the heating medium is used to heat the battery pack.
  • the battery heating system When the vehicle runs in a low temperature environment, in order to avoid the safety problem of the battery pack due to low temperature, it is usually necessary to use the battery heating system to heat the heating medium first, and then heat the battery pack to a suitable temperature through the heating medium to start using.
  • the battery heating system of the present application takes the battery heating system inside a vehicle as an example to describe each embodiment.
  • the battery heating system may also be a battery heating system in any other device, which is not specifically limited in this embodiment.
  • FIG. 2 is a flowchart of a method for detecting a battery heating system according to an embodiment of the present application. 2, the battery heating system detection method of the present application may include the following steps:
  • Step S21 at the first moment when the battery pack is in the heating state, obtain a first temperature value at the heating medium inlet of the battery heating system.
  • the execution body may be a detection system inside the vehicle, and the detection system may be either a BMS (Battery Management System, battery management system, used to manage the battery system) system inside the vehicle, or a system independent of the vehicle.
  • BMS Battery Management System
  • the cloud control system this embodiment does not specifically limit the type of the execution body.
  • the detection system may collect the temperature at the inlet of the heating medium of the battery heating system according to a preset period. Specifically, the detection system first obtains the first temperature value at the inlet of the heating medium at a first moment when the battery pack is in a heating state.
  • Step S22 Obtain a second temperature value at the inlet of the heating medium of the battery heating system at a second moment that is separated from the first moment by a preset time period.
  • the time period between the first moment and the second moment is a cycle.
  • the detection system After obtaining the first temperature value, the detection system obtains the second temperature value at the inlet of the heating medium at a second moment during the battery pack is in the heating state.
  • Step S23 Determine whether the battery heating system fails according to the magnitude relationship between the first temperature value and the first preset threshold value, and the magnitude relationship between the second temperature value and the first preset threshold value.
  • the collected temperature value corresponds to a first preset threshold value
  • the first preset threshold value is an empirical value for determining whether the battery heating system fails
  • the first preset threshold value can be specifically set according to actual needs.
  • the first preset threshold is X
  • compare the second temperature value with X to obtain a comparison result and finally determine the battery according to the two sets of comparison results. Whether the heating system fails.
  • the detection system can take the temperature at the inlet of the heating medium collected at the moment of (t0+300s) as the first time.
  • the temperature value, the temperature at the inlet of the heating medium collected at the time of (t0+600s) is taken as the second temperature value, and then the battery heating is determined according to the relationship between the first temperature value and the second temperature value and the first preset threshold value. Whether the system fails.
  • the detection system can also collect the temperature at the inlet of the heating medium at the time of (t0+900s), and use the temperature at the inlet of the heating medium collected at the time of (t0+600s) as the first temperature value, and take the temperature at the inlet of the heating medium collected at the time of (t0+600s) as the first temperature value.
  • the temperature at the inlet of the heating medium collected at +900s) is used as the second temperature value, and then whether the battery heating system fails is determined according to the relationship between the first temperature value and the second temperature value and the first preset threshold.
  • the battery heating system detection method of the present embodiment at the first moment during which the battery pack is in the heating state, the first temperature value at the inlet of the heating medium of the battery heating system is obtained, and at the second time, which is separated from the first moment by a preset time, the first temperature value is obtained. At the moment, the second temperature value at the heating medium inlet of the battery heating system is obtained. Next, according to the magnitude relationship between the first temperature value and the second temperature value and the first preset threshold, it is determined whether the battery heating system fails.
  • the method determines whether the battery heating system fails by monitoring the temperature value of the heating medium of the battery heating system in real time, so that the relevant staff can replace the failed battery heating system in time, so as to ensure the battery heating system to successfully heat the battery pack in a low temperature environment , so as to ensure the normal use of the battery pack.
  • determining whether the battery heating system fails according to the relationship between the first temperature value and the second temperature value and the first preset threshold value may include:
  • the method also includes:
  • the battery heating system when the battery heating system fails, the battery heating system needs to be replaced, so that the battery heating system can successfully heat the battery pack.
  • the detection system can output early warning information to remind relevant staff to replace the failed battery heating system in time, so as to ensure the smooth heating of the battery pack by the battery heating system in a low temperature environment, thereby ensuring the normal use of the battery pack.
  • the temperature values of the heating medium collected for two consecutive times are both greater than the first preset threshold, it may be determined that the battery heating system is not invalid.
  • the detection system may also detect multiple states of the battery system, so as to improve the accuracy of the detection result.
  • the battery heating system detection method of the present application may further include:
  • the battery management system In the case that the battery management system is not in a fault state, it is detected whether the battery pack sends a heating request to the battery management system, and whether the battery pack is in a state after sending the heating request to the battery management system heating state;
  • the time period during which the battery pack has sent the heating request to the battery management system and is in a heating state is determined as a period during which the battery pack is in a heating state.
  • one cell can be understood as one battery cell, each cell has a corresponding temperature during heating, and the lowest cell temperature refers to the temperature in all cells The temperature corresponding to the cell with the lowest value.
  • the third temperature value is the lowest cell temperature of the battery pack, and the preset range is the normal use range of the battery temperature.
  • the detection system can first obtain the minimum cell temperature of the battery pack, and determine whether the minimum cell temperature is within the normal use range of the battery. If it is within the interval, stop the detection procedure, otherwise continue to judge whether the battery management system of the battery pack is in a fault state. If it is in a fault state, stop the detection procedure, otherwise continue to detect whether the battery pack sends a heating request to the battery management system, and whether the battery pack is in a heating state after sending a heating request to the battery management system, if the battery pack has sent a heating request to the battery management system. request, and the battery pack is in a heating state after sending a heating request to the battery management system, then start the detection program, and call the period in which the battery pack is in the heating state period after the detection program is started, otherwise stop the detection program.
  • the detection system sequentially judges the minimum cell temperature of the battery pack, the fault state of the battery management system, and the battery heating request state, which eliminates the failure of the heating medium caused by the performance of the battery heating system itself. Improve the accuracy of detection results.
  • the battery heating system detection method of the present application may further include:
  • obtaining the first temperature value at the heating medium inlet of the battery heating system including:
  • the charge parameter is greater than a third preset threshold, at a first moment during which the battery pack is in a heating state, obtain a first temperature value at the heating medium inlet of the battery heating system;
  • the battery heating system detection method of the present application may further include:
  • the battery heating system is controlled to stop heating the battery pack with the electric energy of the battery pack.
  • the amount of charge of the battery pack can be seen through the charge parameter of the battery pack. Since the battery heating system uses a part of the battery pack's power in the process of heating the heating medium, when the battery pack's charge is too low, it may cause the battery heating system even when the heating medium does not fail. The heating medium cannot be heated normally. Therefore, it is necessary to obtain the first temperature value and the second temperature value when the charging parameter of the battery pack is greater than the preset charging parameter (ie, the third preset threshold), that is, when the charging capacity of the battery pack is sufficient In order to realize the detection of the battery heating system.
  • the preset charging parameter ie, the third preset threshold
  • the detection system can output a prompt of insufficient power, and ask the user whether to continue to detect the validity of the heating medium. If the user chooses to stop the detection program, the detection system controls the battery heating system to stop using the battery pack. The electric energy heats the heating medium, and the effectiveness of the heating medium is no longer detected. If the user chooses to continue to perform the detection procedure, the detection system continues to detect the effectiveness of the heating medium.
  • the effectiveness of the heating medium of the battery heating system is detected when the battery pack is sufficiently charged, which can effectively improve the accuracy of the detection result.
  • the battery heating system detection method of the present application may further include the following steps:
  • the detection system automatically starts the detection procedure in a low temperature environment.
  • the detection system uses the following method to determine whether it is currently in a low temperature environment, and obtains the current ambient temperature of the battery pack. If the ambient temperature is not greater than the preset ambient temperature (ie, the second preset threshold), it means that the battery pack is currently in a low temperature environment.
  • the preset ambient temperature ie, the second preset threshold
  • the upper limit value of the preset interval may be used as the preset ambient temperature.
  • the preset interval is -10-6 degrees, 6 degrees may be used as the preset ambient temperature.
  • the detection system After determining that it is in a low temperature environment, the detection system obtains the third temperature value of the battery cell with the lowest temperature in the battery pack, and performs subsequent state determination steps.
  • the detection program can also run continuously. At this time, there is no need to set a preset ambient temperature, and the detection system can directly obtain the third temperature value of the battery cell with the lowest temperature in the battery pack to determine whether it falls within the normal temperature range of the battery. Use the interval, and make subsequent status judgments.
  • the battery heating system detection method of the present application can also be used in combination with other battery heating system detection methods to improve the accuracy of performance detection results.
  • the battery heating system detection method of the present application may further include the following steps:
  • determining whether the battery heating system fails according to the relationship between the first temperature value and the second temperature value and the first preset threshold value may include:
  • the battery heating system detection method of the present application may further include:
  • the working state of each element of the battery heating system can also be directly monitored, and the monitoring result of each element can be obtained. Then, the relationship between the monitoring result, the collected temperature value and the first preset threshold is comprehensively considered to determine whether the battery heating system fails.
  • the battery heating system fails.
  • both the first temperature value and the second temperature value are greater than the first preset threshold, and the monitoring result indicates that the battery heating system is in a normal state
  • the detection system can output an early warning message to remind relevant staff to replace the battery heating system in time, so as to ensure that the battery heating system can successfully heat the battery pack in a low temperature environment, thereby ensuring the normal use of the battery pack.
  • the detection method of the battery heating system is used in combination with other detection methods of the battery heating system, which can effectively improve the accuracy of the detection result.
  • FIG. 3 is a schematic process diagram of a method for detecting a battery heating system according to an embodiment of the present application.
  • the battery heating system detection method of the present application will be described in detail below with reference to FIG. 3 .
  • step 3 when the detection system determines that it is currently in a low temperature environment, it starts the detection program, first executes step 1, reads the minimum cell temperature of the battery pack, and then executes step 2 to determine whether the minimum cell temperature is within the normal use range, if If yes, stop the detection procedure, otherwise go to step 3 to check whether the battery management system of the battery pack is in a fault state. If the battery management system of the battery pack is in a fault state, stop the detection procedure, otherwise go to step 4 to check whether the battery pack sends a heating request to the battery management system, and whether the battery pack is in a heating state after sending a heating request to the battery management system.
  • step 5 If a heating request has been sent to the battery management system and it is in the heating state, go to step 5 to obtain the charge parameters of the battery pack.
  • the charge parameter indicates that the battery pack is sufficiently charged
  • step 6 is executed to determine whether the first temperature value T1 and the second temperature value T2 are both greater than the preset temperature value. If both the first temperature value T1 and the second temperature value T2 are greater than the preset temperature value by 10 degrees Celsius, it means that the battery heating system has not invalid.
  • step 7 determines whether the second temperature value T2 is greater than the preset temperature value. If the second temperature value T2 is not greater than the preset temperature value by 10 degrees Celsius, it means that the battery heating system fails, and an early warning prompt is output to remind relevant staff to replace the battery in time.
  • the heating system ensures the smooth heating of the battery pack by the battery heating system in a low temperature environment.
  • step6 and step7 may also be executed interchangeably, that is, step7 is executed first, and then step6 is executed, which is not specifically limited in this embodiment.
  • the battery heating system detection method of the present application monitors the temperature value of the heating medium of the battery heating system in real time to determine whether the battery heating system fails, so that the relevant staff can replace the battery heating system in time, so as to ensure that the battery heating system can protect the battery in a low temperature environment.
  • the smooth heating of the pack ensures the normal use of the battery pack.
  • FIG. 4 is a structural block diagram of a battery heating system detection device provided by an embodiment of the present application.
  • the apparatus 400 includes:
  • a first obtaining module 401 configured to obtain a first temperature value at the inlet of the heating medium of the battery heating system at a first moment when the battery pack is in a heating state
  • a second obtaining module 402 configured to obtain a second temperature value at the inlet of the heating medium of the battery heating system at a second time interval separated from the first time by a preset duration;
  • the first determination module 403 is configured to determine the battery heating system according to the magnitude relationship between the first temperature value and the first preset threshold value, and the magnitude relationship between the second temperature value and the first preset threshold value is invalid.
  • the apparatus 400 further includes:
  • a third obtaining module configured to obtain a third temperature value of the battery cell with the lowest temperature in the battery pack when the battery pack is not in a heating state
  • a first detection module configured to detect whether the battery management system of the battery pack is in a fault state when the third temperature value is in a preset interval
  • a second detection module configured to detect whether the battery pack sends a heating request to the battery management system when the battery management system is not in a fault state, and the battery pack is sending a heating request to the battery management system Whether it is in the heating state after the heating request;
  • the second determining module is configured to determine the time period during which the battery pack has sent the heating request to the battery management system and is in a heating state as a period during which the battery pack is in a heating state.
  • the apparatus 400 further includes:
  • a third detection module configured to detect the ambient temperature where the battery pack is located
  • the third obtaining module includes:
  • the first obtaining sub-module is configured to obtain a third temperature value of the battery cell with the lowest temperature in the battery pack when the ambient temperature is not greater than the second preset threshold value and the battery pack is not in a heating state.
  • the apparatus 400 further includes:
  • a fourth obtaining module configured to obtain the charging parameter of the battery pack while the battery pack is in a heating state
  • the first obtaining module 401 includes:
  • the second obtaining sub-module is configured to obtain the first time at the heating medium inlet of the battery heating system at the first moment when the battery pack is in the heating state when the charging parameter is greater than the third preset threshold. temperature value;
  • the apparatus 400 also includes:
  • a control module configured to control the battery heating system to stop heating the battery pack by using the electric energy of the battery pack when the charge parameter is not greater than the third preset threshold.
  • the apparatus 400 further includes:
  • the fifth obtaining module is used for monitoring the working state of each element of the battery heating system to obtain monitoring results
  • the first determining module 403 includes:
  • a first determination submodule configured to determine the battery heating system when the second temperature value is not greater than the first preset threshold, or the monitoring result indicates that the battery heating system is in a failed state invalid
  • the second determination submodule is configured to, when the first temperature value and the second temperature value are respectively greater than the first preset threshold, and the monitoring result indicates that the battery heating system is in a normal state, determining that the battery heating system has not failed;
  • the apparatus 400 also includes:
  • the output module is used for outputting early warning information when it is determined that the battery heating system fails.
  • the description since it is basically similar to the method embodiment, the description is relatively simple, and reference may be made to the partial description of the method embodiment for related parts.
  • the present application also provides a computer-readable storage medium on which a computer program is stored, and when the program is executed by a processor, implements the method for detecting a battery heating system described in any of the foregoing embodiments of the present application. A step of.
  • the computer-readable storage medium includes, but is not limited to, any type of disk (including floppy disk, hard disk, optical disk, CD-ROM, and magneto-optical disk), ROM (Read-Only Memory, read-only memory), RAM ( Random Access Memory), EPROM (Erasable Programmable Read-Only Memory, Erasable Programmable Read-Only Memory), EEPROM (Electrically Erasable Programmable Read-Only Memory, Electrically Erasable Programmable Read-Only Memory), Flash Memory, Magnetic card or light card. That is, a readable storage medium includes any medium that stores or transmits information in a form readable by a device (eg, a computer).
  • a device eg, a computer
  • An embodiment of the present application further provides a vehicle, including: a memory, a processor, and a computer program stored in the memory and running on the processor, the processor implementing the above-described embodiments of the present application when executed. Steps in a battery heating system detection method.
  • embodiments of the present application may be provided as a method, an apparatus, or a computer program product. Accordingly, the embodiments of the present application may take the form of an entirely hardware embodiment, an entirely software embodiment, or an embodiment combining software and hardware aspects. Furthermore, embodiments of the present application may take the form of a computer program product implemented on one or more computer-usable storage media (including but not limited to disk storage, CD-ROM, optical storage, etc.) having computer-usable program code embodied therein.
  • computer-usable storage media including but not limited to disk storage, CD-ROM, optical storage, etc.
  • the embodiments of the present application also provide a computer program, including computer-readable codes, which, when the computer-readable codes are executed on a computing and processing device, can cause the computing and processing device to execute the descriptions in any one of the embodiments of the present application. Any one of the battery heating system detection methods.
  • these computer program instructions may be provided to a processor of a general purpose computer, special purpose computer, embedded processor or other programmable data processing terminal equipment to produce a machine that enables the processing of the computer or other programmable data processing terminal equipment by a processor Execution of the instructions results in means for implementing the functions specified in the flow or flows of the flowcharts and/or the block or blocks of the block diagrams.
  • These computer program instructions may also be stored in a computer readable memory capable of directing a computer or other programmable data processing terminal equipment to operate in a particular manner, such that the instructions stored in the computer readable memory result in an article of manufacture comprising instruction means, the The instruction means implement the functions specified in the flow or flow of the flowcharts and/or the block or blocks of the block diagrams.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Automation & Control Theory (AREA)
  • Secondary Cells (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

一种电池加热系统检测方法、装置、车辆及存储介质。所述方法包括:在电池包处于加热状态期间的第一时刻,获得电池加热系统的加热介质入口处的第一温度值(S21);在与第一时刻相隔预设时长的第二时刻,获得电池加热系统的加热介质入口处的第二温度值(S22);根据第一温度值和第二温度值分别与第一预设阈值的大小关系,确定电池加热系统是否失效(S23)。该方法通过实时监控电池加热系统的加热介质的温度值以确定电池加热系统是否失效,可使相关工作人员及时更换失效的电池加热系统,从而保证电池加热系统在低温环境下对电池包的顺利加热。

Description

电池加热系统检测方法、装置、车辆及存储介质
本申请要求在2020年12月30日提交中国专利局、申请号为202011631481.8、发明名称为“电池加热系统检测方法、装置、车辆及存储介质”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及车辆技术领域,特别是涉及一种电池加热系统检测方法、装置、车辆及存储介质。
背景技术
动力锂离子电池作为移动能量载体,是新能源设备的核心部件,并不断地在改变人们智能化生活方式中发挥着举足轻重的作用。但受限于锂离子电池自身特性和技术发展,目前锂离子电池在低温环境下的自身性能表现还不能完全满足常规需求,低温异常使用甚至造成安全性问题,主要解决方式是将电池加热到合适温度下开始使用。例如,新能源汽车的锂离子电池在低温环境时,为避免使用时出现异常,通常需要先利用电池加热系统将加热介质加热,然后通过加热介质将电池加热到合适温度下开始使用。而在相关技术中,无法对电池的加热系统进行检测,因而无法保证低温环境下电池的正常使用。
发明内容
鉴于上述问题,本申请提出了一种电池加热系统检测方法、装置、车辆及存储介质,通过实时监控电池加热系统的加热介质的温度值以确定电池加热系统是否失效,可使相关工作人员及时更换失效的电池加热系统,从而保证电池加热系统在低温环境下对电池包的顺利加热。
本申请提供了一种电池加热系统检测方法,包括:
在电池包处于加热状态期间的第一时刻,获得所述电池加热系统的加 热介质入口处的第一温度值;
在与所述第一时刻相隔预设时长的第二时刻,获得所述电池加热系统的加热介质入口处的第二温度值;
根据所述第一温度值和第一预设阈值的大小关系,及所述第二温度值和所述第一预设阈值的大小关系,确定所述电池加热系统是否失效。
可选地,所述方法还包括:
在电池包未处于加热状态的情况下,获得所述电池包中温度最低的电池单体的第三温度值;
在所述第三温度值处于预设区间的情况下,检测所述电池包的电池管理系统是否处于故障状态;
在所述电池管理系统未处于故障状态的情况下,检测所述电池包是否向所述电池管理系统发送加热请求,以及所述电池包在向所述电池管理系统发送所述加热请求后是否处于加热状态;
将所述电池包已向所述电池管理系统发送所述加热请求,并处于加热状态的时间段,确定为所述电池包处于加热状态期间。
可选地,所述方法还包括:
检测所述电池包所处的环境温度;
在电池包未处于加热状态的情况下,获得所述电池包中温度最低的电池单体的第三温度值,包括:
在所述环境温度不大于第二预设阈值,且电池包未处于加热状态的情况下,获得所述电池包中温度最低的电池单体的第三温度值。
可选地,所述方法还包括:
在所述电池包处于加热状态期间,获得所述电池包的荷电参数;
在电池包处于加热状态期间的第一时刻,获得所述电池加热系统的加热介质入口处的第一温度值,包括:
在所述荷电参数大于第三预设阈值的情况下,在电池包处于加热状态期间的第一时刻,获得所述电池加热系统的加热介质入口处的第一温度值;
所述方法还包括:
在所述荷电参数不大于所述第三预设阈值的情况下,控制所述电池加热系统停止利用所述电池包的电能对所述电池包加热。
可选地,所述方法还包括:
对所述电池加热系统的各个元件的工作状态进行监测,获得监测结果;
根据所述第一温度值和所述第二温度值分别与第一预设阈值的大小关系,确定所述电池加热系统是否失效,包括:
在所述第二温度值不大于所述第一预设阈值,或,所述监测结果表示所述电池加热系统处于失效状态的情况下,确定所述电池加热系统失效;
在所述第一温度值和所述第二温度值分别大于所述第一预设阈值,且所述监测结果表示所述电池加热系统处于正常状态的情况下,确定所述电池加热系统未失效;
所述方法还包括:
在确定所述电池加热系统失效的情况下,输出预警信息。
本申请还提供了一种电池加热系统检测装置,包括:
第一获得模块,用于在电池包处于加热状态期间的第一时刻,获得所述电池加热系统的加热介质入口处的第一温度值;
第二获得模块,用于在与所述第一时刻相隔预设时长的第二时刻,获得所述电池加热系统的加热介质入口处的第二温度值;
第一确定模块,用于根据所述第一温度值和第一预设阈值的大小关系,及所述第二温度值和所述第一预设阈值的大小关系,确定所述电池加热系统是否失效。
可选地,所述装置还包括:
第三获得模块,用于在电池包未处于加热状态的情况下,获得所述电池包中温度最低的电池单体的第三温度值;
第一检测模块,用于在所述第三温度值处于预设区间的情况下,检测所述电池包的电池管理系统是否处于故障状态;
第二检测模块,用于在所述电池管理系统未处于故障状态的情况下,检测所述电池包是否向所述电池管理系统发送加热请求,以及所述电池包在向所述电池管理系统发送所述加热请求后是否处于加热状态;
第二确定模块,用于将所述电池包已向所述电池管理系统发送所述加热请求,并处于加热状态的时间段,确定为所述电池包处于加热状态期间。
可选地,所述装置还包括:
第三检测模块,用于检测所述电池包所处的环境温度;
所述第三获得模块包括:
第一获得子模块,用于在所述环境温度不大于第二预设阈值,且电池包未处于加热状态的情况下,获得所述电池包中温度最低的电池单体的第三温度值。
可选地,所述装置还包括:
第四获得模块,用于在所述电池包处于加热状态期间,获得所述电池包的荷电参数;
所述第一获得模块包括:
第二获得子模块,用于在所述荷电参数大于第三预设阈值的情况下,在电池包处于加热状态期间的第一时刻,获得所述电池加热系统的加热介质入口处的第一温度值;
所述装置还包括:
控制模块,用于在所述荷电参数不大于所述第三预设阈值的情况下,控制所述电池加热系统停止利用所述电池包的电能对所述电池包加热。
可选地,所述装置还包括:
第五获得模块,用于对所述电池加热系统的各个元件的工作状态进行监测,获得监测结果;
所述第一确定模块包括:
第一确定子模块,用于在所述第二温度值不大于所述第一预设阈值,或,所述监测结果表示所述电池加热系统处于失效状态的情况下,确定所 述电池加热系统失效;
第二确定子模块,用于在所述第一温度值和所述第二温度值分别大于所述第一预设阈值,且所述监测结果表示所述电池加热系统处于正常状态的情况下,确定所述电池加热系统未失效;
所述装置还包括:
输出模块,用于在确定所述电池加热系统失效的情况下,输出预警信息。
本申请还提供了一种计算机可读存储介质,其上存储有计算机程序,该程序被处理器执行时实现如本申请第一方面所述的电池加热系统检测方法中的步骤。
本申请还提供了一种车辆,包括存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,所述处理器执行时实现本申请第一方面所述的电池加热系统检测方法的步骤。
本申请还提供了一种计算机程序,包括计算机可读代码,当所述计算机可读代码在计算处理设备上运行时,导致所述计算处理设备执行上述所述的电池加热系统检测方法。
上述说明仅是本发明技术方案的概述,为了能够更清楚了解本发明的技术手段,而可依照说明书的内容予以实施,并且为了让本发明的上述和其它目的、特征和优点能够更明显易懂,以下特举本发明的具体实施方式。
本申请具有以下优点:
通过本申请的电池加热系统检测方法,在电池包处于加热状态期间的第一时刻,获得电池加热系统的加热介质入口处的第一温度值,在与第一时刻相隔预设时长的第二时刻,获得电池加热系统的加热介质入口处的第二温度值。接着,根据第一温度值和第二温度值分别与第一预设阈值的大小关系,确定电池加热系统是否失效。该方法通过实时监控电池加热系统的加热介质的温度值以确定电池加热系统是否失效,可使相关工作人员及 时更换失效的电池加热系统,从而保证电池加热系统在低温环境下对电池包的顺利加热,进而保证电池包的正常使用。
附图说明
为了更清楚地说明本申请的技术方案,下面将对本申请的描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1是本申请一实施例示出的一种实施场景示意图;
图2是本申请一实施例示出的一种电池加热系统检测方法的流程图;
图3是本申请一实施例示出的一种电池加热系统检测方法的过程示意图;
图4是本申请一实施例提供的一种电池加热系统检测装置的结构框图。
具体实施方式
为使本申请的上述目的、特征和优点能够更加明显易懂,下面结合附图和具体实施方式对本申请作进一步详细的说明。显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
图1是本申请一实施例示出的一种实施场景示意图。在图1中,车辆内部安装有电池系统和电池加热系统,电池系统中包括电池包,电池加热系统内含加热介质,加热介质用于对电池包进行加热。当车辆在低温环境中运行时,为避免电池包因低温造成安全性问题,通常需要先利用电池加热系统将加热介质加热,然后通过加热介质将电池包加热到合适温度下开始使用。为便于对本申请的电池加热系统检测方法进行详细说明,在此特别说明,本申请的电池加热系统以车辆内部的电池加热系统为例对各个实施例进行陈述。当然,电池加热系统还可以是其它任意设备内的电池加热 系统,本实施例对此不作具体限制。
图2是本申请一实施例示出的一种电池加热系统检测方法的流程图。参照图2,本申请的电池加热系统检测方法可以包括如下步骤:
步骤S21:在电池包处于加热状态期间的第一时刻,获得所述电池加热系统的加热介质入口处的第一温度值。
在本实施例中,执行主体可以是车辆内部的检测系统,该检测系统既可以是车辆内部的BMS(Battery Management System,电池管理系统,用于管理电池系统)系统,也可以是独立于车辆的云端控制系统,本实施例对执行主体的类型不作具体限制。
在步骤S21中,检测系统可以按照预先设定的周期对电池加热系统的加热介质入口处的温度进行采集。具体地,检测系统首先在电池包处于加热状态期间的第一时刻,获得加热介质入口处的第一温度值。
步骤S22:在与所述第一时刻相隔预设时长的第二时刻,获得所述电池加热系统的加热介质入口处的第二温度值。
在本实施例中,第一时刻与第二时刻之间的时间段为一个周期。检测系统在获得第一温度值之后,接着,在电池包处于加热状态期间的第二时刻,获得加热介质入口处的第二温度值。
步骤S23:根据所述第一温度值和第一预设阈值的大小关系,及所述第二温度值和所述第一预设阈值的大小关系,确定所述电池加热系统是否失效。
在本实施例中,采集的温度值对应有一个第一预设阈值,第一预设阈值为判定电池加热系统是否失效的经验值,第一预设阈值具体可根据实际需求设置,本实施例对此不作具体限制。示例地,当第一预设阈值为X时,将第一温度值与X进行对比,得到对比结果,将第二温度值与X进行对比,得到对比结果,最后根据两组对比结果,确定电池加热系统是否失效。
示例地,假设检测系统中设定的加热介质入口处的温度采集周期为300s,第一时刻为t0,检测系统可以将在(t0+300s)时刻采集得到的加热 介质入口处的温度作为第一温度值,将在(t0+600s)时刻采集得到的加热介质入口处的温度作为第二温度值,然后根据第一温度值和第二温度值各自与第一预设阈值的大小关系确定电池加热系统是否失效。
再示例地,检测系统还可以采集(t0+900s)时刻的加热介质入口处的温度,将在(t0+600s)时刻采集得到的加热介质入口处的温度作为第一温度值,将在(t0+900s)时刻采集得到的加热介质入口处的温度作为第二温度值,然后根据第一温度值和第二温度值各自与第一预设阈值的大小关系确定电池加热系统是否失效。
通过本实施例的电池加热系统检测方法,在电池包处于加热状态期间的第一时刻,获得电池加热系统的加热介质入口处的第一温度值,在与第一时刻相隔预设时长的第二时刻,获得电池加热系统的加热介质入口处的第二温度值。接着,根据第一温度值和第二温度值各自与第一预设阈值的大小关系,确定电池加热系统是否失效。该方法通过实时监控电池加热系统的加热介质的温度值以确定电池加热系统是否失效,可使相关工作人员及时更换失效的电池加热系统,从而保证电池加热系统在低温环境下对电池包的顺利加热,进而保证电池包的正常使用。
结合以上实施例,在一种实施方式中,根据所述第一温度值和所述第二温度值分别与第一预设阈值的大小关系,确定所述电池加热系统是否失效,可以包括:
在所述第二温度值不大于所述第一预设阈值的情况下,确定所述电池加热系统失效;
在所述第一温度值和所述第二温度值分别大于所述第一预设阈值的情况下确定所述电池加热系统未失效;
所述方法还包括:
在确定所述电池加热系统失效的情况下,输出预警信息。
在本实施例中,当电池加热系统失效时,需要更换电池加热系统,使得电池加热系统可以实现对电池包的顺利加热。
在本实施例中,在任意时刻采集到的电池加热系统的加热介质的温度 值不大于第一预设阈值时,表示电池加热系统已无法实现顺利加热,可确定电池加热系统失效,此时,检测系统可输出预警提示信息,以提醒相关工作人员及时更换失效的电池加热系统,从而保证电池加热系统在低温环境下对电池包的顺利加热,进而保证电池包的正常使用。在连续两次采集到的加热介质的温度值均大于第一预设阈值时,可确定电池加热系统未失效。
结合以上实施例,在一种实施方式中,在获得第一温度值之前,检测系统还可以对电池系统的多个状态进行检测,以提高检测结果的准确性。具体地,本申请的电池加热系统检测方法还可以包括:
在电池包未处于加热状态的情况下,获得所述电池包中温度最低的电池单体的第三温度值;
在所述第三温度值处于预设区间的情况下,检测所述电池包的电池管理系统是否处于故障状态;
在所述电池管理系统未处于故障状态的情况下,检测所述电池包是否向所述电池管理系统发送加热请求,以及所述电池包在向所述电池管理系统发送所述加热请求后是否处于加热状态;
将所述电池包已向所述电池管理系统发送所述加热请求,并处于加热状态的时间段,确定为所述电池包处于加热状态期间。
在本实施例中,电池包中设置有多个电芯,一个电芯可以理解为一个电池单体,在加热时每一个电芯对应有一个温度,最低单体温度是指所有电芯中温度值最低的电芯所对应的温度。第三温度值为电池包的最低单体温度,预设区间为电池温度的正常使用区间。
当电池包未处于加热状态时,检测系统可以首先获得电池包的最低单体温度,判断最低单体温度是否在电池的正常使用区间内。如果在区间内,停止检测程序,否则继续判断电池包的电池管理系统是否处于故障状态。如果处于故障状态,停止检测程序,否则继续检测电池包是否向电池管理系统发送加热请求,以及电池包在向电池管理系统发送加热请求后是否处于加热状态,如果电池包已向电池管理系统发送加热请求,以及电池 包在向电池管理系统发送加热请求后处于加热状态,那么启动检测程序,将检测程序启动后电池包所处的期间称为加热状态期间,否则停止检测程序。
在本实施例中,检测系统依次对电池包的最低单体温度、电池管理系统的故障状态以及电池加热请求状态进行判断,排除了电池加热系统自身性能原因外所导致的加热介质失效的问题,提升了检测结果准确度。
结合以上实施例,在一种实施方式中,除了对电池包的最低单体温度、电池管理系统的故障状态以及电池加热请求状态进行判断外,在启动检测程序后,还可以对电池包的荷电状态进行判断。具体地,本申请的电池加热系统检测方法还可以包括:
在所述电池包处于加热状态期间,获得所述电池包的荷电参数;
相应地,在电池包处于加热状态期间的第一时刻,获得所述电池加热系统的加热介质入口处的第一温度值,包括:
在所述荷电参数大于第三预设阈值的情况下,在电池包处于加热状态期间的第一时刻,获得所述电池加热系统的加热介质入口处的第一温度值;
本申请的电池加热系统检测方法还可以包括:
在所述荷电参数不大于所述第三预设阈值的情况下,控制所述电池加热系统停止利用所述电池包的电能对所述电池包加热。
在本实施例中,通过电池包的荷电参数可以看出电池包的荷电量的多少。由于电池加热系统在对加热介质进行加热的过程中,会使用到一部分电池包的电量,因此,当电池包的荷电量过低时,可能导致电池加热系统即使是在加热介质未失效的情况下也无法对加热介质正常加热。因此,需要在电池包的荷电参数在大于预设荷电参数(即第三预设阈值)的情况下,即电池包的荷电量充足的情况下,获得第一温度值和第二温度值以实现对电池加热系统的检测。
当荷电参数不大于预设荷电参数时,检测系统可以输出电量不足的提示,询问用户是否继续检测加热介质的有效性,如果用户选择停止检测程 序,检测系统控制电池加热系统停止利用电池包的电能对加热介质进行加热,并不再检测加热介质的有效性。如果用户选择继续执行检测程序,检测系统继续检测加热介质的有效性。
在本实施例中,在电池包的荷电量充足的情况下对电池加热系统的加热介质的有效性进行检测,可有效提升检测结果的准确性。
结合以上实施例,在一种实施方式中,本申请的电池加热系统检测方法还可以包括如下步骤:
检测所述电池包所处的环境温度;
在电池包未处于加热状态的情况下,获得所述电池包中温度最低的电池单体的第三温度值,包括:
在所述环境温度不大于第二预设阈值,且电池包未处于加热状态的情况下,获得所述电池包中温度最低的电池单体的第三温度值。
在本实施例中,检测系统自动在低温环境下启动检测程序。检测系统采用如下方式确定当前是否处于低温环境,获得电池包当前所处的环境温度,如果环境温度不大于预设环境温度(即第二预设阈值),表示当前处于低温环境。
在具体实施时,可以将预设区间的上限值作为预设环境温度。例如,预设区间为-10-6度时,可以将6度作为预设环境温度。
在确定处于低温环境后,检测系统获得电池包中温度最低的电池单体的第三温度值,并进行后续的状态判断步骤,具体可参照前文所述,本实施例在此不作赘述。
在本实施例中,检测程序也可以持续运行,此时无需设置预设环境温度,检测系统可直接获取电池包中温度最低的电池单体的第三温度值以判断是否落在电池温度的正常使用区间内,并进行后续状态判断。
结合以上实施例,在一种实施方式中,本申请的电池加热系统检测方法还可以和其它的电池加热系统的检测方法结合使用,以提升性能检测结果的准确性。具体地,本申请的电池加热系统检测方法还可以包括如下步骤:
对所述电池加热系统的各个元件的工作状态进行监测,获得监测结果;
相应地,根据所述第一温度值和所述第二温度值分别与第一预设阈值的大小关系,确定所述电池加热系统是否失效,可以包括:
在所述第二温度值不大于所述第一预设阈值,或,所述监测结果表示所述电池加热系统处于失效状态的情况下,确定所述电池加热系统失效;
在所述第一温度值和所述第二温度值分别大于所述第一预设阈值,且所述监测结果表示所述电池加热系统处于正常状态的情况下,确定所述电池加热系统未失效。
在此基础上,本申请的电池加热系统检测方法还可以包括:
在确定所述电池加热系统失效的情况下,输出预警信息。
在本实施例中,还可以直接对电池加热系统的各个元件的工作状态进行监测,获得各个元件的监测结果。然后,将监测结果、采集到的温度值和第一预设阈值的关系进行综合考虑,以确定电池加热系统是否失效。
具体地,在第二温度值不大于第一预设阈值,或,监测结果表示电池加热系统处于失效状态的情况下,确定电池加热系统失效。在第一温度值和第二温度值均大于第一预设阈值,且监测结果表示电池加热系统处于正常状态的情况下,确定电池加热系统未失效。即只有当第一温度值和第二温度值分别大于第一预设阈值,且电池加热系统处于正常状态这两个条件同时满足时,才确定电池加热系统未失效,一旦其中任意一个条件不满足,可确定电池加热系统失效。
在确定电池加热系统失效后,检测系统可输出预警提示信息,以提醒相关工作人员及时更换电池加热系统,从而保证电池加热系统在低温环境下对电池包的顺利加热,进而保证电池包的正常使用。
在本实施例中,将电池加热系统检测方法和其它的电池加热系统的检测方法结合使用,可有效提升检测结果的准确性。
图3是本申请一实施例示出的一种电池加热系统检测方法的过程示意图。下面将结合图3,对本申请的电池加热系统检测方法进行详细说明。
在图3中,检测系统在确定当前处于低温环境时,启动检测程序,首先执行step1,读取电池包的最低单体温度,然后执行step2,判断最低单体温度是否在正常使用区间内,如果是,停止检测程序,否则进入step3,检测电池包的电池管理系统是否处于故障状态。如果电池包的电池管理系统处于故障状态,停止检测程序,否则进入step4,检测电池包是否向电池管理系统发送加热请求,以及电池包在向电池管理系统发送加热请求后是否处于加热状态。如果已向电池管理系统发送加热请求并处于加热状态,进入step5,获得电池包的荷电参数。在荷电参数表示电池包的电量充足时,在电池包处于加热状态期间的t时刻,首先获得电池加热系统的加热介质入口处的第一温度值T1,在与t时刻相隔300s的(t+300s)时刻,获得电池加热系统的加热介质入口处的第二温度值T2。然后执行step6,判断第一温度值T1和第二温度值T2是否均大于预设温度值,如果第一温度值T1和第二温度值T2均大于预设温度值10摄氏度,表示电池加热系统未失效。否则执行step7,判断第二温度值T2是否大于预设温度值,如果第二温度值T2不大于预设温度值10摄氏度,表示电池加热系统失效,输出预警提示,以提醒相关工作人员及时更换电池加热系统,从而保证电池加热系统在低温环境下对电池包的顺利加热。其中,step6和step7也可以交换执行,即先执行step7,再执行step6,本实施例对此不作具体限制。
本申请的电池加热系统检测方法通过实时监控电池加热系统的加热介质的温度值以确定电池加热系统是否失效,可使相关工作人员及时更换电池加热系统,从而保证电池加热系统在低温环境下对电池包的顺利加热,进而保证电池包的正常使用。
需要说明的是,对于方法实施例,为了简单描述,故将其都表述为一系列的动作组合,但是本领域技术人员应该知悉,本申请实施例并不受所描述的动作顺序的限制,因为依据本申请实施例,某些步骤可以采用其他顺序或者同时进行。其次,本领域技术人员也应该知悉,说明书中所描述的实施例均属于优选实施例,所涉及的动作并不一定是本申请实施例所必须的。
基于同一发明构思,本申请一实施例提供了一种电池加热系统检测装置400。参考图4,图4是本申请一实施例提供的一种电池加热系统检测装置的结构框图。如图4所示,该装置400包括:
第一获得模块401,用于在电池包处于加热状态期间的第一时刻,获得所述电池加热系统的加热介质入口处的第一温度值;
第二获得模块402,用于在与所述第一时刻相隔预设时长的第二时刻,获得所述电池加热系统的加热介质入口处的第二温度值;
第一确定模块403,用于根据所述第一温度值和第一预设阈值的大小关系,及所述第二温度值和所述第一预设阈值的大小关系,确定所述电池加热系统是否失效。
可选地,所述装置400还包括:
第三获得模块,用于在电池包未处于加热状态的情况下,获得所述电池包中温度最低的电池单体的第三温度值;
第一检测模块,用于在所述第三温度值处于预设区间的情况下,检测所述电池包的电池管理系统是否处于故障状态;
第二检测模块,用于在所述电池管理系统未处于故障状态的情况下,检测所述电池包是否向所述电池管理系统发送加热请求,以及所述电池包在向所述电池管理系统发送所述加热请求后是否处于加热状态;
第二确定模块,用于将所述电池包已向所述电池管理系统发送所述加热请求,并处于加热状态的时间段,确定为所述电池包处于加热状态期间。
可选地,所述装置400还包括:
第三检测模块,用于检测所述电池包所处的环境温度;
所述第三获得模块包括:
第一获得子模块,用于在所述环境温度不大于第二预设阈值,且电池包未处于加热状态的情况下,获得所述电池包中温度最低的电池单体的第三温度值。
可选地,所述装置400还包括:
第四获得模块,用于在所述电池包处于加热状态期间,获得所述电池包的荷电参数;
所述第一获得模块401包括:
第二获得子模块,用于在所述荷电参数大于第三预设阈值的情况下,在电池包处于加热状态期间的第一时刻,获得所述电池加热系统的加热介质入口处的第一温度值;
所述装置400还包括:
控制模块,用于在所述荷电参数不大于所述第三预设阈值的情况下,控制所述电池加热系统停止利用所述电池包的电能对所述电池包加热。
可选地,所述装置400还包括:
第五获得模块,用于对所述电池加热系统的各个元件的工作状态进行监测,获得监测结果;
所述第一确定模块403包括:
第一确定子模块,用于在所述第二温度值不大于所述第一预设阈值,或,所述监测结果表示所述电池加热系统处于失效状态的情况下,确定所述电池加热系统失效;
第二确定子模块,用于在所述第一温度值和所述第二温度值分别大于所述第一预设阈值,且所述监测结果表示所述电池加热系统处于正常状态的情况下,确定所述电池加热系统未失效;
所述装置400还包括:
输出模块,用于在确定所述电池加热系统失效的情况下,输出预警信息。对于装置实施例而言,由于其与方法实施例基本相似,所以描述的比较简单,相关之处参见方法实施例的部分说明即可。
基于同一发明构思,本申请还提供了一种计算机可读存储介质,其上存储有计算机程序,该程序被处理器执行时实现如本申请上述任一实施例所述的电池加热系统检测方法中的步骤。
本申请实施例提供的计算机可读存储介质包括但不限于任何类型的盘(包括软盘、硬盘、光盘、CD-ROM、和磁光盘)、ROM(Read-Only  Memory,只读存储器)、RAM(Random Access Memory,随即存储器)、EPROM(Erasable Programmable Read-Only Memory,可擦写可编程只读存储器)、EEPROM(Electrically Erasable Programmable Read-Only Memory,电可擦可编程只读存储器)、闪存、磁性卡片或光线卡片。也就是,可读存储介质包括由设备(例如,计算机)以能够读的形式存储或传输信息的任何介质。
本申请实施例还提供了一种车辆,包括:存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,所述处理器执行时实现本申请上述任一实施例所述的电池加热系统检测方法中的步骤。
对于装置实施例而言,由于其与方法实施例基本相似,所以描述的比较简单,相关之处参见方法实施例的部分说明即可。
本说明书中的各个实施例均采用递进的方式描述,每个实施例重点说明的都是与其他实施例的不同之处,各个实施例之间相同相似的部分互相参见即可。
本领域内的技术人员应明白,本申请实施例可提供为方法、装置、或计算机程序产品。因此,本申请实施例可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本申请实施例可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。
本申请实施例是参照根据本申请实施例的方法、终端设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。
因此,本申请实施例还提供一种计算机程序,包括计算机可读代码,当所述计算机可读代码在计算处理设备上运行时,可以导致所述计算处理设备执行本申请任意一个实施例所阐释的任意一种电池加热系统检测方 法。具体地,可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理终端设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理终端设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理终端设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理终端设备上,使得在计算机或其他可编程终端设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程终端设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
尽管已描述了本申请实施例的优选实施例,但本领域内的技术人员一旦得知了基本创造性概念,则可对这些实施例做出另外的变更和修改。所以,所附权利要求意欲解释为包括优选实施例以及落入本申请实施例范围的所有变更和修改。
最后,还需要说明的是,在本文中,诸如第一和第二等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。而且,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者终端设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者终端设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者终端设备中还存在另外的相同要素。
本技术领域技术人员可以理解,本申请中已经讨论过的各种操作、方 法、流程中的步骤、措施、方案可以被交替、更改、组合或删除。进一步地,具有本申请中已经讨论过的各种操作、方法、流程中的其他步骤、措施、方案也可以被交替、更改、重排、分解、组合或删除。进一步地,现有技术中的具有与本申请中公开的各种操作、方法、流程中的步骤、措施、方案也可以被交替、更改、重排、分解、组合或删除。
以上对所提供的一种电池加热系统检测方法、装置、车辆及存储介质。,进行了详细介绍,本文中应用了具体个例对本申请的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本申请的方法及其核心思想;同时,对于本领域的一般技术人员,依据本申请的思想,在具体实施方式及应用范围上均会有改变之处,综上所述,本说明书内容不应理解为对本申请的限制。本领域技术人员在不脱离本公开的精神和范围的前提下,可进行各种变更与修改,这些变更与修改均将落入本发明的保护范围。

Claims (11)

  1. 一种电池加热系统检测方法,其特征在于,包括:
    在电池包处于加热状态期间的第一时刻,获得所述电池加热系统的加热介质入口处的第一温度值;
    在与所述第一时刻相隔预设时长的第二时刻,获得所述电池加热系统的加热介质入口处的第二温度值;
    根据所述第一温度值和第一预设阈值的大小关系,及所述第二温度值和所述第一预设阈值的大小关系,确定所述电池加热系统是否失效。
  2. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    在电池包未处于加热状态的情况下,获得所述电池包中温度最低的电池单体的第三温度值;
    在所述第三温度值处于预设区间的情况下,检测所述电池包的电池管理系统是否处于故障状态;
    在所述电池管理系统未处于故障状态的情况下,检测所述电池包是否向所述电池管理系统发送加热请求,以及所述电池包在向所述电池管理系统发送所述加热请求后是否处于加热状态;
    将所述电池包已向所述电池管理系统发送所述加热请求,并处于加热状态的时间段,确定为所述电池包处于加热状态期间。
  3. 根据权利要求2所述的方法,其特征在于,所述方法还包括:
    检测所述电池包所处的环境温度;
    在电池包未处于加热状态的情况下,获得所述电池包中温度最低的电池单体的第三温度值,包括:
    在所述环境温度不大于第二预设阈值,且电池包未处于加热状态的情况下,获得所述电池包中温度最低的电池单体的第三温度值。
  4. 根据权利要求1-3任一所述的方法,其特征在于,所述方法还包括:
    在所述电池包处于加热状态期间,获得所述电池包的荷电参数;
    在电池包处于加热状态期间的第一时刻,获得所述电池加热系统的加 热介质入口处的第一温度值,包括:
    在所述荷电参数大于第三预设阈值的情况下,在电池包处于加热状态期间的第一时刻,获得所述电池加热系统的加热介质入口处的第一温度值;
    所述方法还包括:
    在所述荷电参数不大于所述第三预设阈值的情况下,控制所述电池加热系统停止利用所述电池包的电能对所述电池包加热。
  5. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    对所述电池加热系统的各个元件的工作状态进行监测,获得监测结果;
    根据所述第一温度值和所述第二温度值分别与第一预设阈值的大小关系,确定所述电池加热系统是否失效,包括:
    在所述第二温度值不大于所述第一预设阈值,或,所述监测结果表示所述电池加热系统处于失效状态的情况下,确定所述电池加热系统失效;
    在所述第一温度值和所述第二温度值分别大于所述第一预设阈值,且所述监测结果表示所述电池加热系统处于正常状态的情况下,确定所述电池加热系统未失效;
    所述方法还包括:
    在确定所述电池加热系统失效的情况下,输出预警信息。
  6. 一种电池加热系统检测装置,其特征在于,包括:
    第一获得模块,用于在电池包处于加热状态期间的第一时刻,获得所述电池加热系统的加热介质入口处的第一温度值;
    第二获得模块,用于在与所述第一时刻相隔预设时长的第二时刻,获得所述电池加热系统的加热介质入口处的第二温度值;
    第一确定模块,用于根据所述第一温度值和第一预设阈值的大小关系,及所述第二温度值和所述第一预设阈值的大小关系,确定所述电池加热系统是否失效。
  7. 根据权利要求6所述的装置,其特征在于,所述装置还包括:
    第三获得模块,用于在电池包未处于加热状态的情况下,获得所述电池包中温度最低的电池单体的第三温度值;
    第一检测模块,用于在所述第三温度值处于预设区间的情况下,检测所述电池包的电池管理系统是否处于故障状态;
    第二检测模块,用于在所述电池管理系统未处于故障状态的情况下,检测所述电池包是否向所述电池管理系统发送加热请求,以及所述电池包在向所述电池管理系统发送所述加热请求后是否处于加热状态;
    第二确定模块,用于将所述电池包已向所述电池管理系统发送所述加热请求,并处于加热状态的时间段,确定为所述电池包处于加热状态期间。
  8. 根据权利要求7所述的装置,其特征在于,所述装置还包括:
    第三检测模块,用于检测所述电池包所处的环境温度;
    所述第三获得模块包括:
    第一获得子模块,用于在所述环境温度不大于第二预设阈值,且电池包未处于加热状态的情况下,获得所述电池包中温度最低的电池单体的第三温度值。
  9. 一种计算机可读存储介质,其上存储有计算机程序,其特征在于,该程序被处理器执行时实现如权利要求1-5任一所述的电池加热系统检测方法中的步骤。
  10. 一种车辆,其特征在于,包括:存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,其特征在于,所述处理器执行时实现如权利要求1-5任一所述的电池加热系统检测方法中的步骤。
  11. 一种计算机程序,包括计算机可读代码,当所述计算机可读代码在计算处理设备上运行时,所述计算处理设备执行根据权利要求1-5中任一项所述的电池加热系统检测方法。
PCT/CN2021/142087 2020-12-30 2021-12-28 电池加热系统检测方法、装置、车辆及存储介质 WO2022143668A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011631481.8A CN112838295B (zh) 2020-12-30 2020-12-30 电池加热系统检测方法、装置、车辆及存储介质
CN202011631481.8 2020-12-30

Publications (1)

Publication Number Publication Date
WO2022143668A1 true WO2022143668A1 (zh) 2022-07-07

Family

ID=75924900

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/142087 WO2022143668A1 (zh) 2020-12-30 2021-12-28 电池加热系统检测方法、装置、车辆及存储介质

Country Status (2)

Country Link
CN (1) CN112838295B (zh)
WO (1) WO2022143668A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115649005A (zh) * 2022-09-21 2023-01-31 岚图汽车科技有限公司 电池温度采样故障预警方法、系统、电子设备及存储介质
CN115659790A (zh) * 2022-10-13 2023-01-31 厦门宇电自动化科技有限公司 一种动力电池包的温度实时检测方法
CN115792362A (zh) * 2022-10-31 2023-03-14 国家能源蓬莱发电有限公司 一种电厂热控设备监控方法与相关装置
CN117301954A (zh) * 2023-09-26 2023-12-29 重庆赛力斯新能源汽车设计院有限公司 电池荷电状态的调整方法、装置、电子设备及存储介质

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112838295B (zh) * 2020-12-30 2022-05-10 广州橙行智动汽车科技有限公司 电池加热系统检测方法、装置、车辆及存储介质
CN116516456B (zh) * 2023-07-05 2023-09-12 深圳中宝新材科技有限公司 一种智能电镀线生产加热系统自动过压保护设备的方法
CN118294843A (zh) * 2024-06-04 2024-07-05 宁德时代新能源科技股份有限公司 检修站及检测方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN205985274U (zh) * 2016-08-17 2017-02-22 重庆长安汽车股份有限公司 一种电动车电池加热装置
CN206524394U (zh) * 2016-12-20 2017-09-26 比亚迪股份有限公司 一种电池组热管理系统
CN109193077A (zh) * 2018-08-21 2019-01-11 河南电池研究院有限公司 电池恒温控制系统、电池系统和车辆
CN110882450A (zh) * 2019-12-16 2020-03-17 宋均会 一种自控式手术室输液保温护理控制装置
JP2020064810A (ja) * 2018-10-19 2020-04-23 トヨタ自動車株式会社 冷却システム
CN112838295A (zh) * 2020-12-30 2021-05-25 广州橙行智动汽车科技有限公司 电池加热系统检测方法、装置、车辆及存储介质

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006140005A (ja) * 2004-11-11 2006-06-01 Nissan Motor Co Ltd 燃料電池冷却システム及び燃料電池システムの保護方法
US7682720B2 (en) * 2005-09-16 2010-03-23 Gm Global Technology Operations, Inc. Diagnostic method for detecting a coolant pump failure in a fuel cell system by temperature measurement
JP6046472B2 (ja) * 2011-12-09 2016-12-14 トヨタ自動車株式会社 電池温度検出手段の取付状態判定方法、及び電池温度検出手段の取付状態判定装置
US9096134B2 (en) * 2012-01-24 2015-08-04 GM Global Technology Operations LLC Enhanced HV pre-charge heater diagnostic detection system for liquid cooled HV battery packs
JP6210105B2 (ja) * 2015-11-04 2017-10-11 トヨタ自動車株式会社 バッテリ装置
CN205680751U (zh) * 2016-05-25 2016-11-09 烟台创为新能源科技有限公司 一种电池热失控检测系统
JP6766638B2 (ja) * 2016-12-26 2020-10-14 株式会社デンソー 燃料電池冷却システム
CN206551892U (zh) * 2017-01-22 2017-10-13 深圳市沃特玛电池有限公司 一种电池系统
CN109975711A (zh) * 2017-12-28 2019-07-05 宝沃汽车(中国)有限公司 电池组故障检测方法及装置
CN209298306U (zh) * 2019-02-25 2019-08-23 深圳市智锂能源科技有限公司 一种锂电池多元控制加热模块
CN110957542B (zh) * 2019-04-30 2021-03-09 宁德时代新能源科技股份有限公司 电池热失控的检测方法、装置、系统和电池管理单元
CN210006864U (zh) * 2019-06-12 2020-01-31 武汉德朗高科汽车电气有限公司 一种电动汽车的电池热管理系统
CN111361454B (zh) * 2020-03-18 2021-06-15 一汽解放汽车有限公司 动力电池热管理系统的诊断方法、装置、设备和存储介质
CN111890988B (zh) * 2020-07-15 2021-12-07 广州小鹏汽车科技有限公司 电池热失控检测方法、装置、电池管理系统以及车辆

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN205985274U (zh) * 2016-08-17 2017-02-22 重庆长安汽车股份有限公司 一种电动车电池加热装置
CN206524394U (zh) * 2016-12-20 2017-09-26 比亚迪股份有限公司 一种电池组热管理系统
CN109193077A (zh) * 2018-08-21 2019-01-11 河南电池研究院有限公司 电池恒温控制系统、电池系统和车辆
JP2020064810A (ja) * 2018-10-19 2020-04-23 トヨタ自動車株式会社 冷却システム
CN110882450A (zh) * 2019-12-16 2020-03-17 宋均会 一种自控式手术室输液保温护理控制装置
CN112838295A (zh) * 2020-12-30 2021-05-25 广州橙行智动汽车科技有限公司 电池加热系统检测方法、装置、车辆及存储介质

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115649005A (zh) * 2022-09-21 2023-01-31 岚图汽车科技有限公司 电池温度采样故障预警方法、系统、电子设备及存储介质
CN115659790A (zh) * 2022-10-13 2023-01-31 厦门宇电自动化科技有限公司 一种动力电池包的温度实时检测方法
CN115659790B (zh) * 2022-10-13 2024-02-06 厦门宇电自动化科技有限公司 一种动力电池包的温度实时检测方法
CN115792362A (zh) * 2022-10-31 2023-03-14 国家能源蓬莱发电有限公司 一种电厂热控设备监控方法与相关装置
CN115792362B (zh) * 2022-10-31 2024-03-01 国家能源蓬莱发电有限公司 一种电厂热控设备监控方法与相关装置
CN117301954A (zh) * 2023-09-26 2023-12-29 重庆赛力斯新能源汽车设计院有限公司 电池荷电状态的调整方法、装置、电子设备及存储介质

Also Published As

Publication number Publication date
CN112838295A (zh) 2021-05-25
CN112838295B (zh) 2022-05-10

Similar Documents

Publication Publication Date Title
WO2022143668A1 (zh) 电池加热系统检测方法、装置、车辆及存储介质
CN111114328A (zh) 一种电动汽车动力蓄电池热失控预警方法、装置及系统
WO2018107766A1 (zh) 电池内短路的在线检测方法
CN112751099B (zh) 电池加热系统检测方法、装置、车辆及存储介质
CN102862490B (zh) 一种电动汽车电池管理系统自适应控制方法
CN113948781A (zh) 一种电池热失控预警方法和装置
CN103487760B (zh) 一种电池健康度的判定方法
CN107611513A (zh) 一种用于监测电动汽车锂离子电池热失控的方法
CN104393357A (zh) 电动汽车动力电池的充电方法
CN112977160B (zh) 电池管理方法、电池系统、车辆及计算机存储介质
US20230127667A1 (en) Method and system for heat preservation of battery of vehicle, storage medium and processor
CN107240730B (zh) 一种锂电池板安全管理检测的方法及装置
CN108146267A (zh) 充电系统、充电机、电动汽车、充电电池的安全防护方法
CN109921146A (zh) 一种基于瞬时外部短路的动力电池低温自加热系统及方法
CN109823232A (zh) 电池均衡控制方法、装置、电池管理系统及车辆
CN113219353A (zh) 一种基于bms的热失控控制方法及其系统
CN115649005B (zh) 电池温度采样故障预警方法、系统、电子设备及存储介质
CN105048010B (zh) 一种电动汽车电池包的监控方法及系统
CN104979594A (zh) 动力电池的控制方法及系统
CN105667326A (zh) 一种具有主动防护功能的混合动力汽车充电系统和方法
CN113067056A (zh) 一种电池加热方法、装置、电子设备及存储介质
CN111129659B (zh) 一种车辆电池的充电加热控制方法及系统
CN110611353A (zh) 智能门锁的充电控制方法、装置及智能门锁
CN114824581A (zh) 一种电池包低温区域加热方法及装置
CN114290952A (zh) 动力电池的热失控预警系统、方法、车辆及存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21914402

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21914402

Country of ref document: EP

Kind code of ref document: A1