WO2022143236A1 - 显示系统 - Google Patents

显示系统 Download PDF

Info

Publication number
WO2022143236A1
WO2022143236A1 PCT/CN2021/139419 CN2021139419W WO2022143236A1 WO 2022143236 A1 WO2022143236 A1 WO 2022143236A1 CN 2021139419 W CN2021139419 W CN 2021139419W WO 2022143236 A1 WO2022143236 A1 WO 2022143236A1
Authority
WO
WIPO (PCT)
Prior art keywords
display system
screen
cylindrical lens
mirror
image
Prior art date
Application number
PCT/CN2021/139419
Other languages
English (en)
French (fr)
Inventor
毛磊
李肖
黄志勇
李仕茂
秦振韬
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to JP2023540200A priority Critical patent/JP2024501557A/ja
Priority to KR1020237023703A priority patent/KR20230118657A/ko
Priority to EP21913977.1A priority patent/EP4250004A1/en
Publication of WO2022143236A1 publication Critical patent/WO2022143236A1/zh
Priority to US18/344,386 priority patent/US20230341758A1/en

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/142Adjusting of projection optics
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • G03B21/208Homogenising, shaping of the illumination light
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/0101Head-up displays characterised by optical features
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • G03B21/2066Reflectors in illumination beam
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/09Beam shaping, e.g. changing the cross-sectional area, not otherwise provided for
    • G02B27/0938Using specific optical elements
    • G02B27/0944Diffractive optical elements, e.g. gratings, holograms
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/09Beam shaping, e.g. changing the cross-sectional area, not otherwise provided for
    • G02B27/0938Using specific optical elements
    • G02B27/095Refractive optical elements
    • G02B27/0955Lenses
    • G02B27/0961Lens arrays
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/09Beam shaping, e.g. changing the cross-sectional area, not otherwise provided for
    • G02B27/0938Using specific optical elements
    • G02B27/095Refractive optical elements
    • G02B27/0955Lenses
    • G02B27/0966Cylindrical lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/10Beam splitting or combining systems
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/10Beam splitting or combining systems
    • G02B27/12Beam splitting or combining systems operating by refraction only
    • G02B27/126The splitting element being a prism or prismatic array, including systems based on total internal reflection
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/28Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for polarising
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/42Diffraction optics, i.e. systems including a diffractive element being designed for providing a diffractive effect
    • G02B27/4205Diffraction optics, i.e. systems including a diffractive element being designed for providing a diffractive effect having a diffractive optical element [DOE] contributing to image formation, e.g. whereby modulation transfer function MTF or optical aberrations are relevant
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/10Projectors with built-in or built-on screen
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • G03B21/206Control of light source other than position or intensity
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/28Reflectors in projection beam
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/54Accessories
    • G03B21/56Projection screens
    • G03B21/60Projection screens characterised by the nature of the surface
    • G03B21/602Lenticular screens
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/54Accessories
    • G03B21/56Projection screens
    • G03B21/60Projection screens characterised by the nature of the surface
    • G03B21/604Polarised screens
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/54Accessories
    • G03B21/56Projection screens
    • G03B21/60Projection screens characterised by the nature of the surface
    • G03B21/62Translucent screens
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/0101Head-up displays characterised by optical features
    • G02B2027/013Head-up displays characterised by optical features comprising a combiner of particular shape, e.g. curvature
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/0101Head-up displays characterised by optical features
    • G02B2027/014Head-up displays characterised by optical features comprising information/image processing systems

Definitions

  • the present application relates to the field of image display, and in particular, to a display system.
  • embodiments of the present application provide a display system.
  • an embodiment of the present application discloses a display system, the display system includes an image generation unit, a diffusion screen, and a curved mirror, wherein,
  • the image generation unit for generating a real image and imaging to the diffusion screen
  • the diffuser screen used for diffuse reflection of the real image
  • the curved mirror is used for imaging according to the diffusely reflected real image to generate an enlarged virtual image.
  • the image generation unit includes a light source, a prism, a lens, an imaging chip and a projection lens, wherein,
  • the light source is used to output a light beam
  • the prism is used to combine the light beams output by the light source
  • the lens is used for collimating the combined beam and then entering the imaging chip
  • the imaging chip is used to generate the real image
  • the projection lens is used for imaging the real image to the diffusion screen.
  • the image generating unit includes a first diffractive optical element, the diffractive optical element is located between the light source and the prism, and the diffractive optical element is used for the light beam output by the light source Do beam splitting.
  • the display system further includes a second diffractive optical element, the diffractive optical element is located behind the curved mirror, and the diffractive optical element is used to divide the light beam reflected by the curved mirror. bundle.
  • the display system further includes a polarizing film, and after the polarizing film is placed on the diffusion screen, the polarizing film is used to filter out interfering light.
  • the display system further includes a Fresnel lens, the Fresnel lens is placed behind the diffuser screen, and the Fresnel lens is used to detect the real image passing through the diffuser screen. enlarge.
  • the display system further includes a black and white grating, a cylindrical lens array or a microlens array, and the black and white grating, the cylindrical lens array or the microlens array is located behind the diffusion screen.
  • the image generation unit further includes a polarization processing element, and the polarization processing element is used to adjust the polarization state of the light beam incident on the imaging chip.
  • the display system further includes a reflector, and the reflector is used to receive the light beam imaged by the curved mirror and reflect it back to the curved mirror, and the curved mirror is also used to receive the reflection The beam reflected by the mirror is magnified and imaged.
  • the light source includes a plurality of primary color sub-light sources.
  • the first diffractive optical element includes a plurality of sub-optical elements, which are respectively placed in front of the plurality of primary color sub-light sources.
  • the diffusing screen is a reflective diffusing screen or a projection diffusing screen.
  • the polarization processing element is any one of the following elements: a polarization splitter PBS, a quarter-wave plate, a half-wave plate, a polarizer, and a polarizer.
  • the curved mirror is a multifocal curved mirror.
  • the present application provides a display system, which can be used in various scenarios where images need to be enlarged, and can achieve close-up zoomed imaging without requiring a specific screen and occupying a small space.
  • the display system further includes a diffusing film, and the diffusing film is located on the light-emitting side of the diffusing screen, and is used for expanding the lateral scattering angle of the diffusely reflected real image.
  • the diffusing film is located on the light-emitting side of the diffusing screen, and is used for expanding the lateral scattering angle of the diffusely reflected real image.
  • the display system further includes a cylindrical lens array, and the cylindrical lens array is disposed on the light-emitting side of the diffuser screen and covers the pixels of the diffuser screen.
  • the light emitted by the pixel passes through different positions of the cylindrical lens array, which produces different refraction effects and diverges in different directions, which can further increase the scattering angle. After being reflected by the curved mirror, the light can enter the eyes of multiple different users, so as to achieve the technical effect of multiple viewing.
  • At least one cylindrical lens in the cylindrical lens array covers at least 2 columns of pixels (may be referred to as pixel columns) or at least 2 rows of pixels (may be referred to as pixel rows) of the diffusion screen.
  • the number of pixel columns or pixel rows covered by the cylindrical lens corresponds to the viewing person. Taking a column of pixels as an example, the light emitted by the pixels in one column can enter the eyes of the first user after being refracted by the cylindrical lens and reflected by the curved mirror. The user's eyes, the display system of this embodiment can be viewed by two people.
  • At least one cylindrical lens in the cylindrical lens array covers 3 columns of pixels or 3 rows of pixels of the diffusion screen.
  • the light emitted by each column of pixels is refracted by a cylindrical lens and reflected by a curved mirror, and then enters the eyes of different users respectively, enabling multiple viewing.
  • Row pixels can achieve the same technical effect as column pixels.
  • a plurality of pixel columns or pixel rows covered by at least one cylindrical lens in the cylindrical lens array display different pictures respectively, so that different pictures can be seen by different users, and multiple people can be seen. View the effects of different pictures respectively.
  • multiple pixel columns or pixel rows covered by at least one cylindrical lens in the cylindrical lens array display the same picture, so that multiple users can see the same picture and achieve the effect of viewing the same picture by multiple people. .
  • the display system further includes a holographic element or a diffusing element, and the holographic element or diffusing element is located on the light exit side of the cylindrical lens array, which is used to eliminate fringe interference introduced by the cylindrical lens array.
  • the radius of curvature and refractive index of the cylindrical lenses in the cylindrical lens array can be adjusted.
  • the position of the eye box can be changed to suit the position of the human eye, especially In scenarios where space is limited, such as inside a car.
  • the display system further includes a first reflective element, the first reflective element is located on the optical path between the image generating unit and the diffuser screen, and the first reflective element is used to The real image generated by the image generating unit is reflected to the diffusion screen.
  • the first reflective element in this embodiment can fold the light path and reduce the volume of the display system.
  • the first reflecting element is one of a plane mirror, a spherical mirror or a free-form mirror.
  • the first reflective element can also change the shape of the image generated by the image generating unit to achieve distortion correction.
  • the display system further includes a second reflection element, the second reflection element is located on the optical path between the curved mirror and the diffusion screen, and the second reflection element is used to The real image diffusely reflected by the diffusing screen is reflected to the curved mirror.
  • the second reflective element in this embodiment can fold the light path and reduce the volume of the display system.
  • the second reflection element is one of a plane mirror, a spherical mirror or a free-form mirror.
  • the second reflective element can also achieve distortion correction.
  • the image distortion brought by the second reflective element is complementary to the image distortion caused by the curved mirror, so that the image distortion caused by the curved mirror can be eliminated.
  • FIG. 1 is a schematic structural diagram of a display system disclosed in an embodiment of the present application.
  • FIG. 2 is a schematic structural diagram of an image generation unit disclosed in an embodiment of the present application.
  • FIG. 3 is a schematic structural diagram of another image generation unit disclosed in an embodiment of the present application.
  • FIG. 4 is a schematic structural diagram of a display system disclosed in an embodiment of the present application.
  • FIG. 5 is a schematic structural diagram of a display system disclosed in an embodiment of the present application.
  • FIG. 6 is a schematic structural diagram of a display system disclosed in an embodiment of the present application.
  • FIG. 7 is a schematic structural diagram of another display system disclosed in an embodiment of the present application.
  • FIG. 8 is a schematic structural diagram of still another display system disclosed in an embodiment of the present application.
  • FIG. 9 is a schematic structural diagram of another display system provided by an embodiment of the present application.
  • FIG. 10 is a schematic structural diagram of another display system provided by an embodiment of the present application.
  • FIG. 11 is a schematic structural diagram of another display system provided by an embodiment of the present application.
  • FIG. 12 is a schematic structural diagram of another display system provided by an embodiment of the present application.
  • FIG. 13 is a schematic diagram of a display system provided by an embodiment of the present application for viewing by multiple people;
  • Figure 14 is an enlarged schematic view of the diffuser screen and the cylindrical lens array in Figures 12 and 13;
  • 15-16 are schematic diagrams illustrating that the cylindrical lens array in the display system according to the embodiment of the present application covers the pixel array in the diffusion screen.
  • the present application provides a display system, which can be used in various scenarios where images need to be enlarged, and can achieve close-up zoomed imaging without requiring a specific screen and occupying a small space.
  • FIG. 1 is a schematic structural diagram of a display system according to an embodiment of the present application.
  • the display system includes an image generating unit 101 , a diffusion screen 102 and a curved mirror 103 .
  • the image generation unit 101 generates a real image and images it to the diffusion screen 102 .
  • the diffuser screen diffuses the received real image.
  • the curved mirror 103 performs imaging according to the diffusely reflected real image to generate an enlarged virtual image.
  • FIG. 2 is a schematic structural diagram of an image generating unit 101 disclosed in the present application.
  • the image generating unit 101 includes a light source 1011 , a lens 1012 , an imaging unit 1013 and a projection lens 1014 .
  • the light source 1011 is used to output the light beam.
  • the prism 1012 is used to combine the light beams output by the light source 1011 and output them to the lens 1012 .
  • the lens 1012 is used for collimating the combined light beam and then entering the imaging unit 1013 .
  • the imaging unit 1013 generates a real image according to the light beam incident on the lens.
  • the projection lens 1014 is used to image the real image to the diffuser screen 102 .
  • the light source 1011 may include a plurality of primary color light sources, such as RGB three-color light sources (red, blue, green). By adjusting the intensity of each primary color light source, images of different colors can be generated.
  • the prism 1012 can combine the light beams of each primary color light source, and the combined light beams of each primary color light source can be transmitted along the same path.
  • the imaging unit 1013 may be a polarization-independent imaging chip, such as a DLP (Digital Light Processor, digital optical processor).
  • DLP Digital Light Processor, digital optical processor
  • the projection lens can be an ultra-short-throw projection lens, which can provide a compact product size.
  • the lens throw ratio of the lens lens is required to be less than or equal to 1.
  • the curved mirror in this system is the user's observation window, and its size is equivalent to that of a conventional desktop monitor (such as 10 inches to 35 inches). During use, the user can see the virtual image magnified several times through the free-form surface mirror.
  • the embodiment of the present application combines the advantages of both a small-sized display and a laser projector PGU.
  • the PGU has the advantages of large-screen projection and excellent color performance, uses a curved mirror to replace the physical form of a conventional display, and uses a small-sized curved mirror screen to magnify the virtual image. , to achieve a large-screen viewing experience, while the product size is greatly reduced.
  • the curved mirror in the embodiment of the present application may be a multi-focal free-form curved mirror.
  • Multi-focal free-form mirrors are designed to achieve multi-person viewing.
  • the circle is a single focus curve, which corresponds to a common single focus lens, which is the basis of the free-form surface mirror in the current solution, and corresponds to a single observation point.
  • the ellipse is a bifocal curve, and its two focal points are the image planes of each other. In principle, there are two observation points.
  • a multifocal curve in principle, has multiple observation points. Therefore, multi-focal free-form surface mirrors can be designed to realize multi-person viewing.
  • FIG. 3 is a schematic structural diagram of another image generation unit 101 disclosed in this application. The difference between the image generating unit 101 shown in FIG. 3 and FIG. 2 is:
  • the image generation unit 101 may also include a polarization processing element 1015 .
  • the imaging unit 1013 may be a polarization-related imaging chip, such as LCOS (Liquid Crystal on Silicon, liquid crystal on silicon).
  • the polarization processing element 1015 may be a polarization beam splitter (PBS), a quarter-wave plate, a half-wave plate, a polarizer, or a polarizer.
  • the polarization processing element 1015 is used to adjust the polarization state of the light beam incident on the imaging chip 1013 .
  • the image generation unit 101 may also include a diffractive optical element 1016 .
  • the diffractive optical element 1016 may be a grating.
  • the diffractive optical element 1016 is mainly used for splitting the light beam output by the light source 1011 .
  • Each diffractive optical element 1016 can adjust the beam splitting angle of each primary color light source, so that the prism can combine the beams output by each primary color light source.
  • the diffuser screen 102 may be a reflective diffuser screen or a transmissive diffuser screen.
  • the diffuser screen 102 is a reflective diffuser screen.
  • the diffuser screen 102 is a transmission type diffuser screen, it is only necessary to adjust the positions of the image generating unit 101 , the diffuser screen 102 and the curved mirror 103 .
  • FIG. 4 is a schematic structural diagram of another display system disclosed in this application.
  • the diffuser screen 102 in the scene shown in FIG. 4 is a transmissive diffuser screen.
  • a polarizing film 104 may be arranged on the diffusion screen 102 . As shown in FIG. 4, the polarizing film 104 is used to filter out interfering light, such as ambient light and stray light in the system.
  • a Fresnel lens 107 can also be arranged behind the diffusion screen, as shown in FIG. 5 , the Fresnel lens 107 can further improve the magnification of the image.
  • a naked-eye 3D screen can also be arranged behind the diffusion screen 102 .
  • the naked-eye 3D screen is used to realize binocular parallax, so that the user can feel the 3D effect.
  • the naked eye 3D screen can be a black and white grating, a cylindrical lens array or a micro lens array.
  • the periodic black and white grating is placed at the preset position from the diffuser screen, and the odd-even column pixels in the image source can be projected to the user's left eye and right eye at the preset observation point by selecting the appropriate grating period, so as to achieve dual Visual parallax to construct a naked-eye 3D display experience.
  • black and white rasters lose the brightness of the displayed image source.
  • the naked eye 3D screen can also be realized by means of a cylindrical lens array. By selecting the appropriate period, focal length and thickness of the cylindrical lens array, the odd-even column pixels in the image source can be projected to the user's left eye and right eye at a certain observation point, thereby realizing binocular parallax and constructing a naked-eye 3D display experience.
  • Two-dimensional naked-eye 3D display can be realized by using two-dimensional microlens array. By selecting the appropriate period, focal length and thickness of the microlens array, pixels at different positions in the image source can be projected to the user's left eye at a certain observation point. and the right eye, so as to achieve a two-dimensional naked-eye 3D display experience.
  • the display/tablet computer can also be used as an image source in this system to superimpose a naked-eye 3D screen to achieve a naked-eye 3D display experience.
  • FIG. 7 is a schematic structural diagram of another display system disclosed in an embodiment of the present application.
  • the display system includes an image generation unit 101 , a diffuser screen 102 , a curved mirror 103 and a diffractive optical element 105 .
  • the structure of the display system shown in FIG. 7 is different from that of the display system shown in FIG. 2 in that the curved mirror 103 takes an image and then passes through the diffractive optical element 105 to diffract and split the light.
  • the diffractive optical element 105 can divide the light reflected by the curved mirror into different angles at different angles Multiple beams of light, so that multiple users can watch at the same time.
  • FIG. 8 is a schematic structural diagram of still another display system disclosed in an embodiment of the present application.
  • the display system includes an image generating unit 101 , a diffusion screen 102 , a curved mirror 103 and a reflecting mirror 106 .
  • the structure of the display system shown in FIG. 8 is different from that of the display system shown in FIG. 2 in that the curved mirror 103 needs to inject the light beam into the reflecting mirror 106 after the first magnification and imaging. After the mirror 106 reflects the received light beam back to the curved mirror 103, the curved mirror 103 performs a second magnification imaging, which can further increase the magnification of the image.
  • FIG. 9 is a schematic structural diagram of another display system provided by an embodiment of the present application.
  • the display system provided in this embodiment may further include a first reflective element 110 , and the first reflective element 110 is located between the image generating unit 101 and the diffuser screen 102 .
  • the first reflecting element 110 is used for reflecting the real image generated by the image generating unit 101 to the diffusing screen 102 .
  • the above-mentioned first reflection element 110 can be one of a plane mirror, a spherical mirror or a free-form mirror, which can fold the optical path and reduce the volume of the display system.
  • the first reflecting element 110 is a free-form surface mirror, it can also change the shape of the image generated by the image generating unit 101 to achieve distortion correction.
  • FIG. 10 is a schematic structural diagram of another display system provided by an embodiment of the present application.
  • the display system provided in this embodiment may further include a second reflection element 120 , and the second reflection element 110 is located on the curved mirror 103 and the diffuser screen 102 .
  • the second reflection element 120 is used to reflect the real image diffusely reflected by the diffuser screen 102 to the curved mirror 103 on the optical path between them.
  • the above-mentioned second reflection element 120 can be one of a plane mirror, a spherical mirror or a free-form mirror, which can fold the optical path and reduce the volume of the display system.
  • the second reflective element 120 can also achieve distortion correction.
  • the image distortion caused by the second reflective element 120 is complementary to the image distortion caused by the curved mirror 103 , and the image distortion caused by the curved mirror 103 can be eliminated.
  • FIG. 11 is a schematic structural diagram of another display system provided by an embodiment of the present application.
  • the display system provided by this embodiment may further include a diffusion film 130 in addition to the above-mentioned image generation unit 101 (not shown in FIG. 11 ), the diffusion screen 102 and the curved mirror 103 .
  • the light-emitting side of the diffuser screen 102 is used to expand the lateral scattering angle of the real image after diffuse reflection (the angle shown by the double-headed arrow in the figure).
  • the diffuser film 130 in this embodiment expands the lateral scattering angle
  • the light reflected by the curved mirror 103 can reach the eyes of multiple users, three in the figure, that is, three The user can see the enlarged virtual image 200 .
  • This embodiment can achieve the technical effect of viewing by multiple people.
  • FIGS. 1-10 can be understood as a top view of the display system, and the structure of the image generation unit 101 not shown and the positional relationship between the image generation unit 101 and the diffusion screen 102 and the curved mirror 103 can be referred to the embodiments shown in FIGS. 1-10 , It is not repeated here.
  • the display system provided in this embodiment can increase the horizontal eye box range and realize multi-user viewing.
  • the diffusing film 130 can maintain or reduce the longitudinal (direction perpendicular to the paper) divergence angle while expanding the lateral exit angle, so that the brightness of the image viewed by the user is not greatly affected or basically unchanged.
  • FIG. 12 is a schematic structural diagram of another display system provided by an embodiment of the present application.
  • the display system provided in this embodiment may further include a cylindrical lens array 140 .
  • the cylindrical lens array 140 is disposed on the light-emitting side of the diffusion screen 102 and covers the diffusion screen. 102 pixels.
  • the cylindrical lens array 140 includes a plurality of continuous cylindrical lenses (also referred to as micro-cylindrical lenses), and the light emitted by different pixels under one cylindrical lens is refracted through different positions of the cylindrical lens and diverges in different directions (producing Different refraction effects), the outgoing light in different directions reaches different positions on the free-form curved mirror, and enters the eyes of users at different positions through the reflection of the curved mirror 103 . Therefore, the cylindrical lens array 140 in this embodiment can also expand the exit angle of light, so as to achieve the technical effect of viewing by multiple people. As shown in FIG. 13 , FIG. 13 is a schematic diagram of a display system provided by an embodiment of the present application for viewing by multiple people.
  • the image generated by the image generation unit (Picture Generation Unit, PGU) 101 is projected onto the diffuser screen 102, and the image scattered by the diffuser screen 102 is refracted by the cylindrical lens array 140 to reach the curved mirror 103 (in the direction indicated by the upward arrow), and the curved mirror 103
  • the image can be reflected to 3 users (in the direction of the downward arrow), and multiple users can observe the magnified virtual image.
  • FIG. 14 is a partial enlarged view of FIGS. 12 and 13 (for the diffusion screen 102 and the cylindrical lens array 140 enlargement).
  • at least one cylindrical lens in the cylindrical lens array 140 covers at least two columns of pixels (three columns in the figure) of the diffusion screen 102 .
  • the light emitted by the three columns of pixels (1021/1022/1023) is refracted by the cylindrical lens 1401, and then diverges in three directions (divergence in the lateral direction). For example, the light emitted by the pixel row 1021 is refracted to the right, the light emitted by the pixel row 1022 is straight out, and the light emitted by the pixel row 1023 is refracted to the left.
  • the curvature and refractive index of the cylindrical lenses in the cylindrical lens array 140 can be adjusted to adjust the eye box of the image, that is, the user can adjust the position of the eye box according to his own position.
  • FIGS. 15-16 are schematic diagrams illustrating that the cylindrical lens array 140 in the display system according to the embodiment of the present application covers the pixel array in the diffusion screen 102 .
  • multiple pixel columns covered by the cylindrical lens 1401 in the cylindrical lens array 140 can display different pictures respectively, that is, the three columns of pixels in the figure display different pictures respectively, and different users see different pictures.
  • user 1 sees the content displayed by the pixels in the third column (from left) covered by the cylindrical lens 1401
  • user 2 sees the content displayed by the pixels in the second column (middle column) covered by the cylindrical lens 1401
  • user 3 What is seen is the display of the pixels in the first column (from left) covered by the cylindrical lens 1401.
  • multiple pixel columns covered by the cylindrical lens 1402 in the cylindrical lens array 140 can display the same picture, that is, the three columns of pixels covered by the cylindrical lens 1402 in the figure all display the same picture, and the pictures seen by different users same.
  • user 1 sees the content displayed by the pixels in the third column (from left) covered by the cylindrical lens 1402
  • user 2 sees the content displayed by the pixels in the second column (middle column) covered by the cylindrical lens 1402
  • user 3 What is seen is the display of the pixels in column 1 (from left) covered by the cylindrical lens 1402.
  • the different contents displayed by the above-mentioned pixels can be realized by preprocessing the displayed image by the image generating unit 101 , that is, the contents displayed by the specific pixels are determined by the image generating unit 101 .
  • the image generating unit 101 may split and recombine the pixels of the different display pictures, so that the corresponding users can view the corresponding picture pixels, as shown in FIG. 15 .
  • the image generation unit 101 can copy, split and combine picture pixels according to the period of the cylindrical lens, as shown in FIG. 16 .
  • FIG. 15-16 The dotted arrows in Figures 15-16 indicate the correspondence between the content displayed by the pixel column and the content observed by the user, rather than the propagation path of the light emitted by the pixel column.
  • the propagation path of light emitted by a specific pixel row is shown in FIG. 14 .
  • the above embodiment shows the case where the cylindrical lens in the cylindrical lens array 140 covers multiple pixel columns.
  • the cylindrical lens in the cylindrical lens array 140 can also cover multiple pixel rows.
  • the display principle and the above-mentioned cylindrical lens cover multiple pixel columns. the same scene.
  • the cylindrical lens array 140 is rotated 90 degrees clockwise or counterclockwise. After the light emitted by the plurality of rows of pixels is refracted by the cylindrical lens, it diverges in different directions (vertical divergence), and multiple users can also observe the enlarged virtual image.
  • a holographic diffusion element or other diffusion element may be added to the light-emitting side of the cylindrical lens array 140 to smooth the fringe display interference that may be introduced by the cylindrical lens array 140 and further enhance the display effect.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)
  • Overhead Projectors And Projection Screens (AREA)
  • Projection Apparatus (AREA)
  • Transforming Electric Information Into Light Information (AREA)

Abstract

一种显示系统,显示系统包括图像生成单元(101)、扩散屏(102)、曲面镜(103),其中,图像生成单元(101),用于生成实像并成像至扩散屏(102);扩散屏(102),用于对实像进行漫反射;曲面镜(103),用于根据经过漫反射后的实像进行成像,生成放大的虚像。

Description

显示系统
本申请要求于2020年12月31日提交中国国家知识产权局、申请号为202011641286.3、申请名称为“显示系统”的中国专利申请的优先权,以及要求于2021年8月5日提交中国国家知识产权局、申请号为202110898215.X、申请名称为“显示系统”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及图像显示领域,尤其涉及一种显示系统。
背景技术
目前大屏幕的显示系统(如80寸以上的显示背板)的成本很高。激光电视可以实现100寸以上的投影效果,但是需要具备特定功能的幕布(菲涅尔屏)以提升观看体验,且占地空间很大。现有的投影仪往往需要较大投影距离,无法近距离成放大的图像,且对环境亮度要求较高。
发明内容
鉴于此,本申请实施例提供了一种显示系统。
第一方面,本申请实施例公开了一种显示系统,所述显示系统包括图像生成单元、扩散屏、曲面镜,其中,
所述图像生成单元,用于生成实像并成像至所述扩散屏;
所述扩散屏,用于对所述实像进行漫反射;
所述曲面镜,用于根据所述经过漫反射后的实像进行成像,生成放大的虚像。
一种可能的实现方式中,所述图像生成单元包括光源、棱镜、透镜、成像芯片和投影镜头,其中,
所述光源用于输出光束;
所述棱镜用于对所述光源输出的光束进行合束;
所述透镜用于将所述合束后的光束进行准直后入射所述成像芯片;
所述成像芯片用于生成所述实像;
所述投影镜头用于将所述实像成像至所述扩散屏。
一种可能的实现方式中,所述图像生成单元包括第一衍射光学元件,所述衍射光学元件位于所述光源与所述棱镜之间,所述衍射光学元件用于对所述光源输出的光束进行分束。
一种可能的实现方式中,所述显示系统还包括第二衍射光学元件,所述衍射光学元件位于所述曲面镜之后,所述衍射光学元件用于对所述经过曲面镜反射的光束进行分束。
一种可能的实现方式中,所述显示系统还包括偏振膜,所述偏振膜放置于所述扩散屏后,所述偏振膜用于滤除干扰光。
一种可能的实现方式中,,所述显示系统还包括菲涅尔透镜,所述菲涅尔透镜放置于所述扩散屏后,所述菲涅尔透镜用于对经过所述扩散屏的实像放大。
一种可能的实现方式中,所述显示系统还包括黑白光栅、柱透镜阵列或微透镜阵列,所 述黑白光栅、柱透镜阵列或微透镜阵列位于所述扩散屏后。
一种可能的实现方式中,所述图像生成单元还包括偏振处理元件,所述偏振处理元件用于调节所述入射到成像芯片的光束的偏振态。
一种可能的实现方式中,所述显示系统还包括反射镜,所述反射镜用于接收所述曲面镜成像的光束并反射回所述曲面镜,所述曲面镜还用于接收所述反射镜反射回来的光束进行放大成像。
一种可能的实现方式中,所述光源包括多个基色子光源。
一种可能的实现方式中,所述第一衍射光学元件包括多个子光学元件,分别放置于所述多个基色子光源前。
一种可能的实现方式中,所述扩散屏为反射型扩散屏或投射型扩散屏。
一种可能的实现方式中,所述偏振处理元件是如下元件的任意一种:偏振分波器PBS、四分之一波片、二分之一波片、偏振片和旋光片。
一种可能的实现方式中,所述曲面镜为多焦点曲面镜。
本申请提供一种显示系统,该显示系统可以用于各种需要放大图像的场景,可以实现近距离放大成像,同时不需要特定的幕布,占地空间小。
一种可能的实现方式中,所述显示系统还包括扩散膜,扩散膜位于所述扩散屏的出光侧,用于扩大所述漫反射后的实像的横向散射角。本实施例通过扩大横向散射角,可以扩大眼盒的大小,提高显示系统的可视角度。
一种可能的实现方式中,所述显示系统还包括柱透镜阵列,所述柱透镜阵列设置于所述扩散屏的出光侧,覆盖所述扩散屏的像素。像素发出的光经过柱透镜阵列的不同位置,产生不同的折射效果,向不同的方向发散,可以进一步增大散射角。曲面镜反射后,光线可以进入多个不同的用户的眼睛,从而实现多人观看的技术效果。
一种可能的实现方式中,柱透镜阵列中的至少一个柱透镜覆盖所述扩散屏的至少2列像素(可以称为像素列)或至少2行像素(可以称为像素行)。其中,柱透镜覆盖的像素列数或像素行数和观看的人对应。以列像素为例,1列像素发出的光线通过柱透镜折射、曲面镜反射后可以进入第一个用户的眼睛,另一列像素发出的光线通过柱透镜折射、曲面镜反射后可以进入第二个用户的眼睛,本实施例显示系统可以供两个人观看。
一种可能的实现方式中,柱透镜阵列中的至少一个柱透镜覆盖所述扩散屏的3列像素或3行像素。以列像素为例,每一列像素发出的光线经过柱透镜折射、曲面镜反射后,分别进入不同的用户的眼睛,实现多人观看。行像素能实现的技术效果和列像素相同。
一种可能的实现方式中,所述柱透镜阵列中的至少一个柱透镜覆盖的多个像素列或像素行分别显示不同的画面,从而不同的画面可以被不同的用户看到,可以实现多人分别观看不同的画面的效果。
一种可能的实现方式中,柱透镜阵列中的至少一个柱透镜覆盖的多个像素列或像素行显示相同的画面,从而多个用户可以看到相同的画面,实现多人观看相同画面的效果。
一种可能的实现方式中,显示系统还包括全息元件或扩散元件,所述全息元件或扩散元件位于所述柱透镜阵列的出光侧,其用于消除柱透镜阵列引入的条纹干扰。
一种可能的实现方式中,柱透镜阵列中的柱透镜的曲率半径、折射率可调整,通过调整柱透镜的曲率半径、折射率,可以改变眼盒的位置适配人眼的位置,尤其是在车内等空间有限的场景中。
一种可能的实现方式中,显示系统还包括第一反射元件,所述第一反射元件位于所述图 像生成单元和所述扩散屏之间的光路上,所述第一反射元件用于将所述图像生成单元生成的实像反射至所述扩散屏。本实施例中的第一反射原件可以折叠光路、减小显示系统的体积。
一种可能的实现方式中,所述第一反射元件为平面镜、球面镜或自由曲面镜之一。第一反射元件还可以改变图像生成单元生成的图像的形状,实现畸变矫正。
一种可能的实现方式中,所述显示系统还包括第二反射元件,所述第二反射元件位于所述曲面镜和所述扩散屏之间的光路上,所述第二反射元件用于将所述扩散屏漫反射的实像反射至所述曲面镜。本实施例中的第二反射原件可以折叠光路、减小显示系统的体积。
一种可能的实现方式中,所述第二反射元件为平面镜、球面镜或自由曲面镜之一。第二反射元件还可以实现畸变矫正,例如第二反射元件所带来的图像畸变与曲面镜造成的图像畸变互补,即可消除曲面镜造成的图像畸变。
附图说明
图1为本申请实施例公开的一种显示系统的结构示意图;
图2为本申请实施例公开的一种图像生成单元的结构示意图;
图3为本申请实施例公开的另一种图像生成单元的结构示意图;
图4为本申请实施例公开的一种显示系统的结构示意图;
图5为本申请实施例公开的一种显示系统的结构示意图;
图6为本申请实施例公开的一种显示系统的结构示意图;
图7为本申请实施例公开的又一种显示系统的结构示意图;
图8为本申请实施例公开的再一种显示系统的结构示意图;
图9是本申请实施例提供的另一种显示系统的结构示意图;
图10是本申请实施例提供的另一种显示系统的结构示意图;
图11是本申请实施例提供的另一种显示系统的结构示意图;
图12是本申请实施例提供的另一种显示系统的结构示意图;
图13是本申请实施例提供的显示系统多人观看的示意图;
图14是图12和图13中的扩散屏和柱透镜阵列的放大示意图;
图15-16是本申请实施例显示系统中的柱透镜阵列覆盖扩散屏中像素阵列的示意图。
具体实施方式
本申请提供一种显示系统,该显示系统可以用于各种需要放大图像的场景,可以实现近距离放大成像,同时不需要特定的幕布,占地空间小。
图1为本申请实施例提供的一种显示系统的结构示意图。如图1所示,该显示系统包括图像生成单元101、扩散屏102和曲面镜103。图像生成单元101生成实像并成像至扩散屏102。扩散屏对接收到的实像进行漫反射。曲面镜103根据经过漫反射后的实像进行成像生成放大的虚像。
图2为本申请公开的一种图像生成单元101的结构示意图。如图2所示,该图像生成单元101包括光源1011、透镜1012、成像单元1013和投影镜头1014。光源1011用于输出光束。棱镜1012用于对光源1011输出的光束进行合束并输出到透镜1012。透镜1012用于将合束后的光束进行准直后入射成像单元1013。成像单元1013根据透镜入射到的光束生成实像。投影镜头1014用于将实像成像至扩散屏102。
光源1011可以包括多个基色光源,例如RGB三色光源(红、蓝、绿)。通过调节各个基 色光源的强度,即可以生成不同色彩的图像。棱镜1012可以对各个基色光源的光束进行合束,合束后的各个基色光源的光束可以沿着相同的路径进行传输。
成像单元1013可以是与偏振无关的成像芯片,例如DLP(Digital Light Processor,数字光学处理器)。
投影镜头可以是超短焦投影镜头,可以提供紧凑的产品尺寸,一般要求透镜镜头的镜头投射比小于等于1。
本系统中曲面镜即为用户的观察窗口,尺寸与常规桌面显示器相当(如10寸~35寸)。使用过程中,用户通过自由曲面镜可以看到放大数倍的虚像。
本申请实施例结合小尺寸的显示器和激光投影机PGU二者的优势,PGU具备大屏投射、色彩性能优等优势,利用曲面镜替代常规显示器的物理形态,通过小尺寸的曲面镜屏幕进行放大虚像,实现了超大屏观看体验,同时产品尺寸大大缩小。
值得注意的是,本申请实施例中的曲面镜可以是多焦点的自由曲面镜。通过设计多焦点的自由曲面反射镜来实现多人观看。圆形为单焦点曲线,对应常见的单焦点透镜,也就是目前现有方案中自由曲面镜的基础,对应单个观察点。椭圆为双焦点曲线,其两个焦点互为物像面,原理上有两个观察点。多焦点曲线,原理上有多个观察点。因此可以设计多焦点的自由曲面反射镜来实现多人观看。
图3为本申请公开的另一种图像生成单元101的结构示意图。图3所示的图像生成单元101与图2的区别在于:
图像生成单元101还可以包括偏振处理元件1015。此时成像单元1013可以是与偏振有关的成像芯片,例如LCOS(Liquid Crystal on Silicon,硅基液晶)。偏振处理元件1015可以是PBS(polarization beam splitter,偏振分波器)、四分之一波片、二分之一波片、偏振片或旋光片。偏振处理元件1015用于调整入射到成像芯片1013的光束的偏振态。
图像生成单元101还可以包括衍射光学元件1016。衍射光学元件1016可以是光栅。该衍射光学元件1016主要用于对光源1011输出的光束进行分束。在多个基色光源的场景下,衍射光学元件1016可以有多个。每个基色光源前都有一个衍射光学元件1016。各个衍射光学元件1016可以调整各个基色光源分束的角度,以便于棱镜对各基色光源输出的光束进行合束。
扩散屏102可以是反射型扩散屏或者透射型扩散屏。在图1的场景下,扩散屏102即为反射型扩散屏。当扩散屏102是透射型扩散屏时,只需要对图像生成单元101、扩散屏102和曲面镜103的位置摆放作调整即可。如图4所示,图4为本申请公开的另一种显示系统的结构示意图。图4场景下的扩散屏102即为透射型扩散屏。
扩散屏102上可以布置偏振膜104。如图4所示,偏振膜104用于滤除干扰光,例如环境光以及系统中杂散光。
还可以在扩散屏后布置菲涅尔透镜107,如图5所示,菲涅尔透镜107可以进一步提升图像的放大倍数。扩散屏102后还可以布置裸眼3D屏。
如图6所示,该裸眼3D屏用于实现双目视差,以使用户感受到3D效果。裸眼3D屏可以是黑白光栅、柱透镜阵列或微透镜阵列。
将周期性的黑白光栅放置于距离扩散屏预设的位置,通过选取合适的光栅周期即可将图像源中奇偶列像素分别投射至预设观察点上的用户左眼和右眼中,从而实现双目视差,构造裸眼3D显示体验。但黑白光栅会损失显示图像源的亮度。也可以通过柱透镜阵列的方式来实现裸眼3D屏。通过选取合适的柱透镜阵列周期、焦距及厚度,即可将图像源中奇偶列像 素分别投射至某一观察点上的用户左眼和右眼中,从而实现双目视差,构造裸眼3D显示体验。二维裸眼3D显示可利用二维微透镜阵列实现,通过选取合适的微透镜阵列周期、焦距及厚度,即可将图像源中不同位置的像素分别投射至某一观察点上的用户的左眼和右眼中,从而实现二维裸眼3D显示体验。
除了扩散屏之外,也可以在本系统中利用显示屏/平板电脑作为图像源,叠加裸眼3D屏以实现裸眼3D显示体验。
图7为本申请实施例公开的又一种显示系统的结构示意图。该显示系统包括图像生成单元101、扩散屏102、曲面镜103和衍射光学元件105。
图7所示的显示系统与图2所示的显示系统结构不同在于,曲面镜103成像后再经过衍射光学元件105进行衍射分光,衍射光学元件105可以将曲面镜反射的光向不同角度分为多束光,这样可以实现多个用户同时观看。
图8为本申请实施例公开的再一种显示系统的结构示意图。该显示系统包括图像生成单元101、扩散屏102、曲面镜103和反射镜106。
图8所示的显示系统与图2所示的显示系统结构不同在于,曲面镜103第一次放大成像后需要将光束入射到反射镜106。反射镜106将接收到的光束反射回曲面镜103后,曲面镜103再次进行第二次放大成像,可以实现进一步提升图像放大倍数。
参考图9,图9是本申请实施例提供的另一种显示系统的结构示意图。
本实施例提供的显示系统除了上述图像生成单元101、扩散屏102、曲面镜103之外,还可以包括第一反射元件110,第一反射元件110位于图像生成单元101和扩散屏102之间的光路上,第一反射元件110用于将所述图像生成单元101生成的实像反射至所述扩散屏102。
上述第一反射元件110可以为平面镜、球面镜或自由曲面镜之一,其可以折叠光路、减小显示系统的体积。当第一反射元件110为自由曲面镜时,其还可以改变图像生成单元101生成的图像的形状,实现畸变矫正。
参考图10,图10是本申请实施例提供的另一种显示系统的结构示意图。
本实施例提供的显示系统除了上述图像生成单元101、扩散屏102、曲面镜103之外,还可以包括第二反射元件120,第二反射元件110位于所述曲面镜103和所述扩散屏102之间的光路上,所述第二反射元件120用于将所述扩散屏102漫反射的实像反射至所述曲面镜103。
上述第二反射元件120可以为平面镜、球面镜或自由曲面镜之一,其可以折叠光路、减小显示系统的体积。此外,第二反射元件120还可以实现畸变矫正,例如第二反射元件120所带来的图像畸变与曲面镜103造成的图像畸变互补,即可消除曲面镜103造成的图像畸变。
参考图11,图11是本申请实施例提供的另一种显示系统的结构示意图。
与上述实施例相比,本实施例提供的显示系统除了上述图像生成单元101(图11中未示出)、扩散屏102、曲面镜103之外,还可以包括扩散膜130,扩散膜130位于所述扩散屏102的出光侧,用于扩大漫反射后的实像的横向散射角(图中双向箭头所示的角度)。相对于图10和图11所示的实施例,本实施例的扩散膜130在扩大横向散射角之后,曲面镜103反射的光线可以到达多个用户的眼睛,图中为3个,即3个用户均能看到放大的虚像200。本实施例可以实现多人观看的技术效果。
其中,图11可以理解为显示系统的俯视图,其中未示出的图像生成单元101的结构以及其与扩散屏102、曲面镜103之间的位置关系可以参考图1-10所示的实施例,在此不再赘述。
本实施例提供的显示系统可以增大横向的眼盒范围,实现多用户观看。另外,扩散膜130可以在扩大横向出射角的同时,保持或缩小纵向(垂直于纸面的方向)发散角,从而使得用 户观看的图像的亮度受到的影响不大或基本不变。
参考图12,图12是本申请实施例提供的另一种显示系统的结构示意图。
本实施例提供的显示系统除了上述图像生成单元101、扩散屏102、曲面镜103之外,还可以包括柱透镜阵列140,柱透镜阵列140设置于扩散屏102的出光侧,覆盖所述扩散屏102的像素。
其中,柱透镜阵列140包括多个连续的柱透镜(也可以称为微柱透镜),一个柱透镜下的不同像素发出的光,经过柱透镜的不同位置折射出来,向不同的方向发散(产生不同的折射效果),不同方向的出射光到达自由曲面镜上的不同位置,通过曲面镜103的反射,进入不同位置的用户的眼睛。因此,本实施例中的柱透镜阵列140也可以扩大光线的出射角,实现多人观看的技术效果。如图13所示,图13是本申请实施例提供的显示系统多人观看的示意图。图像生成单元(Picture Generation Unit,PGU)101生成的图像投射到扩散屏102上,扩散屏102散射后的图像经过柱透镜阵列140折射到达曲面镜103(向上的箭头所示方向),曲面镜103可以向3个用户反射图像(向下的箭头所示方向),多个用户即可观察到放大的虚像。
进一步的,本实施例提供的显示系统中的柱透镜阵列140和扩散屏102的具体位置关系可以参考图14,图14是图12和图13的局部放大图(对扩散屏102和柱透镜阵列140的放大图)。如图14所示,柱透镜阵列140中的至少一个柱透镜覆盖扩散屏102的至少2列像素(图中为3列)。3列像素(1021/1022/1023)发出的光通过柱透镜1401折射后,分别向三个方向发散(横向方向发散)。例如,像素列1021发出的光线向右折射,像素列1022发出的光线径直射出,像素列1023发出的光线向左折射。
在本实施例提供的显示系统中,柱透镜阵列140中的柱透镜的曲率、折射率可以调节,进而调整图像的眼盒,即用户可以根据自己所在的位置来调整眼盒的位置。
参考图15-16,图15-16是本申请实施例显示系统中的柱透镜阵列140覆盖扩散屏102中像素阵列的示意图。
如图15所示,柱透镜阵列140中的柱透镜1401覆盖的多个像素列可以分别显示不同的画面,即图中的3列像素分别显示不同的画面,不同用户看到的画面不同。例如,用户1看到的是柱透镜1401覆盖的第3列(左起)像素显示的内容,用户2看到的是柱透镜1401覆盖的第2列(中间列)像素显示的内容,用户3看到的是柱透镜1401覆盖的第1列(左起)像素显示的内容。
如图16所示,柱透镜阵列140中的柱透镜1402覆盖的多个像素列可以显示相同的画面,即图中柱透镜1402覆盖的3列像素均显示相同的画面,不同用户看到的画面相同。例如,用户1看到的是柱透镜1402覆盖的第3列(左起)像素显示的内容,用户2看到的是柱透镜1402覆盖的第2列(中间列)像素显示的内容,用户3看到的是柱透镜1402覆盖的第1列(左起)像素显示的内容。
其中,上述像素显示不同的内容可以通过图像生成单元101对显示图像进行预处理来实现,即具体像素显示的内容由图像生成单元101来决定。例如,在对多用户显示不同画面时,图像生成单元101可以对不同的显示画面进行像素的拆分和重新组合,使对应用户观看到对应的画面像素,具体如图15所示。在对多用户显示相同画面时,图像生成单元101可以将画面像素按照柱透镜的周期复制、拆分和组合,具体如图16所示。
其中,图15-16中的虚线箭头指示的是像素列显示的内容和用户观察到的内容之间的对应性关系,而并非像素列发出的光线的传播路径。具体像素列发出的光线的传播路径参考图14所示。
以上实施例给出了柱透镜阵列140中的柱透镜覆盖多个像素列的情况,柱透镜阵列140中的柱透镜也可以覆盖多个像素行,其显示原理和上述柱透镜覆盖多个像素列的场景相同。此时,柱透镜阵列140顺时针或逆时针旋转90度。多个行像素发出的光通过柱透镜折射后,分别向不同的方向发散(竖向方向发散),多个用户也可观察到放大的虚像。
在本实施例提供的显示系统中,在柱透镜阵列140的出光侧还可以加上全息扩散元件或其他扩散元件以平滑柱透镜阵列140可能引入的条纹显示干扰,进一步增强显示效果。
本申请的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序,应该理解这样使用的数据在适当情况下可以互换,以便这里描述的实施例能够以本申请未描述的顺序实施。为了更加明显地体现不同实施例中的组件的关系,本申请采用相同的附图编号来表示不同实施例中功能相同或相似的组件。
还需要说明的是,除非特殊说明,一个实施例中针对一些技术特征的具体描述也可以应用于解释其他实施例提及对应的技术特征。
本申请中的各个实施例之间相同相似的部分互相参见即可,尤其,对于图4~图8实施例而言,由于基于图1~图3对应的实施例,所以描述的比较简单,相关之处参见图1~图3对应实施例的部分说明即可。
最后应说明的是:以上所述仅为本申请的具体实施方式,本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。

Claims (25)

  1. 一种显示系统,其特征在于,所述显示系统包括图像生成单元、扩散屏、曲面镜,其中,
    所述图像生成单元,用于生成实像并成像至所述扩散屏;
    所述扩散屏,用于对所述实像进行漫反射;
    所述曲面镜,用于根据所述经过漫反射后的实像进行成像,生成放大的虚像。
  2. 如权利要求1所述的显示系统,其特征在于,所述图像生成单元包括光源、棱镜、透镜、成像芯片和投影镜头,其中,
    所述光源用于输出光束;
    所述棱镜用于对所述光源输出的光束进行合束;
    所述透镜用于将所述合束后的光束进行准直后入射所述成像芯片;
    所述成像芯片用于生成所述实像;
    所述投影镜头用于将所述实像成像至所述扩散屏。
  3. 如权利要求2所述的显示系统,其特征在于,所述图像生成单元包括第一衍射光学元件,所述衍射光学元件位于所述光源与所述棱镜之间,所述衍射光学元件用于对所述光源输出的光束进行分束。
  4. 如权利要求2所述的显示系统,其特征在于,所述显示系统还包括第二衍射光学元件,所述衍射光学元件位于所述曲面镜之后,所述衍射光学元件用于对所述经过曲面镜反射的光束进行分束。
  5. 如权利要求1至4任一所述的显示系统,其特征在于,所述显示系统还包括偏振膜,所述偏振膜放置于所述扩散屏后,所述偏振膜用于滤除干扰光。
  6. 如权利要求1至5任一所述的显示系统,其特征在于,所述显示系统还包括菲涅尔透镜,所述菲涅尔透镜放置于所述扩散屏后,所述菲涅尔透镜用于对经过所述扩散屏的实像放大。
  7. 如权利要求1至6任一所述的显示系统,其特征在于,所述显示系统还包括黑白光栅、柱透镜阵列或微透镜阵列,所述黑白光栅、柱透镜阵列或微透镜阵列位于所述扩散屏后。
  8. 如权利要求2至7任一所述的显示系统,其特征在于,所述图像生成单元还包括偏振处理元件,所述偏振处理元件用于调节所述入射到成像芯片的光束的偏振态。
  9. 如权利要求1至8任一所述的显示系统,其特征在于,所述显示系统还包括反射镜,所述反射镜用于接收所述曲面镜成像的光束并反射回所述曲面镜,所述曲面镜还用于接收所述反射镜反射回来的光束进行放大成像。
  10. 如权利要求1至8任一所述的显示系统,其特征在于,所述光源包括多个基色子光源。
  11. 如权利要求9所述的显示系统,其特征在于,所述第一衍射光学元件包括多个子光学元件,分别放置于所述多个基色子光源前。
  12. 如权利要求1至10所述的显示系统,其特征在于,所述扩散屏为反射型扩散屏或投射型扩散屏。
  13. 如权利要求8所述的显示系统,其特征在于,所述偏振处理元件是如下元件的任意一种:偏振分波器PBS、四分之一波片、二分之一波片、偏振片和旋光片。
  14. 如权利要求1至13所述的显示系统,其特征在于,所述曲面镜为多焦点曲面镜。
  15. 如权利要求1至13任一所述的显示系统,其特征在于,所述显示系统还包括扩散膜,所述扩散膜位于所述扩散屏的出光侧,用于扩大所述漫反射后的实像的横向散射角。
  16. 如权利要求1至13任一所述的显示系统,其特征在于,所述显示系统还包括柱透镜阵列,所述柱透镜阵列设置于所述扩散屏的出光侧,覆盖所述扩散屏的像素。
  17. 如权利要求16所述的显示系统,其特征在于,所述柱透镜阵列中的至少一个柱透镜覆盖所述扩散屏的至少2列像素。
  18. 如权利要求17所述的显示系统,其特征在于,所述柱透镜阵列中的至少一个柱透镜覆盖所述扩散屏的3列像素。
  19. 如权利要求17所述的显示系统,其特征在于,所述柱透镜阵列中的至少一个柱透镜覆盖的多个像素列分别显示不同的画面。
  20. 如权利要求17所述的显示系统,其特征在于,所述柱透镜阵列中的至少一个柱透镜覆盖的多个像素列显示相同的画面。
  21. 如权利要求16所述的显示系统,其特征在于,还包括全息元件或扩散元件,所述全息元件或扩散元件位于所述柱透镜阵列的出光侧。
  22. 如权利要求1至13任一所述的显示系统,其特征在于,所述显示系统还包括第一反射元件,所述第一反射元件位于所述图像生成单元和所述扩散屏之间的光路上,所述第一反射元件用于将所述图像生成单元生成的实像反射至所述扩散屏。
  23. 如权利要求1至13任一所述的显示系统,其特征在于,所述显示系统还包括第二反射元件,所述第二反射元件位于所述曲面镜和所述扩散屏之间的光路上,所述第二反射元件用于将所述扩散屏漫反射的实像反射至所述曲面镜。
  24. 如权利要求22任一所述的显示系统,其特征在于,所述第一反射元件为平面镜、球面镜或自由曲面镜之一。
  25. 如权利要求23任一所述的显示系统,其特征在于,所述第二反射元件为平面镜、球面镜或自由曲面镜之一。
PCT/CN2021/139419 2020-12-31 2021-12-18 显示系统 WO2022143236A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2023540200A JP2024501557A (ja) 2020-12-31 2021-12-18 表示システム
KR1020237023703A KR20230118657A (ko) 2020-12-31 2021-12-18 디스플레이 시스템
EP21913977.1A EP4250004A1 (en) 2020-12-31 2021-12-18 Display system
US18/344,386 US20230341758A1 (en) 2020-12-31 2023-06-29 Display system

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202011641286 2020-12-31
CN202011641286.3 2020-12-31
CN202110898215.XA CN114690532B (zh) 2020-12-31 2021-08-05 显示系统
CN202110898215.X 2021-08-05

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/344,386 Continuation US20230341758A1 (en) 2020-12-31 2023-06-29 Display system

Publications (1)

Publication Number Publication Date
WO2022143236A1 true WO2022143236A1 (zh) 2022-07-07

Family

ID=82135718

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/139419 WO2022143236A1 (zh) 2020-12-31 2021-12-18 显示系统

Country Status (6)

Country Link
US (1) US20230341758A1 (zh)
EP (1) EP4250004A1 (zh)
JP (1) JP2024501557A (zh)
KR (1) KR20230118657A (zh)
CN (1) CN114690532B (zh)
WO (1) WO2022143236A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104133292A (zh) * 2013-03-13 2014-11-05 日立乐金光科技株式会社 虚像显示装置
US20140368923A1 (en) * 2013-03-29 2014-12-18 JVC Kenwood Corporation Image display device
CN106707478A (zh) * 2017-01-12 2017-05-24 北京航宇荣康科技股份有限公司 一种自由曲面投影屏幕的离轴虚像显示系统
JP2017097189A (ja) * 2015-11-25 2017-06-01 株式会社リコー スクリーン、画像表示装置及び物体装置
CN108152959A (zh) * 2018-01-02 2018-06-12 京东方科技集团股份有限公司 车载抬头显示系统
CN110221430A (zh) * 2018-03-02 2019-09-10 蒋晶 Hud系统和多屏拼接式衍射显示系统

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007279204A (ja) * 2006-04-04 2007-10-25 Seiko Epson Corp プロジェクタ
JP2015152718A (ja) * 2014-02-13 2015-08-24 矢崎総業株式会社 ヘッドアップディスプレイ装置
JP2016194555A (ja) * 2015-03-31 2016-11-17 パイオニア株式会社 光学システム及び出射装置
CN104766544B (zh) * 2015-04-21 2016-07-06 京东方科技集团股份有限公司 一种显示装置及交通工具
CN204855944U (zh) * 2015-07-17 2015-12-09 樊强 一种图像放大及失真可调的抬头显示器
CN207216159U (zh) * 2017-08-04 2018-04-10 杨明海 一种手机屏幕放大装置
CN109557767A (zh) * 2017-09-25 2019-04-02 深圳市纳姆达科技有限公司 一种无掩膜投影光刻系统
CN107843985A (zh) * 2017-11-27 2018-03-27 上海驾馥电子科技有限公司 增强现实抬头显示器系统及方法
WO2020233528A1 (zh) * 2019-05-17 2020-11-26 未来(北京)黑科技有限公司 抬头显示装置及机动车
CN210666314U (zh) * 2019-05-17 2020-06-02 未来(北京)黑科技有限公司 光线控制装置、像源、投影幕布、投影系统和成像系统

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104133292A (zh) * 2013-03-13 2014-11-05 日立乐金光科技株式会社 虚像显示装置
US20140368923A1 (en) * 2013-03-29 2014-12-18 JVC Kenwood Corporation Image display device
JP2017097189A (ja) * 2015-11-25 2017-06-01 株式会社リコー スクリーン、画像表示装置及び物体装置
CN106707478A (zh) * 2017-01-12 2017-05-24 北京航宇荣康科技股份有限公司 一种自由曲面投影屏幕的离轴虚像显示系统
CN108152959A (zh) * 2018-01-02 2018-06-12 京东方科技集团股份有限公司 车载抬头显示系统
CN110221430A (zh) * 2018-03-02 2019-09-10 蒋晶 Hud系统和多屏拼接式衍射显示系统

Also Published As

Publication number Publication date
EP4250004A1 (en) 2023-09-27
CN114690532A (zh) 2022-07-01
US20230341758A1 (en) 2023-10-26
JP2024501557A (ja) 2024-01-12
CN114690532B (zh) 2024-04-23
KR20230118657A (ko) 2023-08-11

Similar Documents

Publication Publication Date Title
JP5190480B2 (ja) 光導体光学装置
US7150531B2 (en) Autostereoscopic projection viewer
CN113748671B (zh) 用于可变分辨率屏幕的方法和装置
GB2404991A (en) LCD device having at least one viewing window
US9116422B2 (en) Display apparatus for displaying multiple images of viewing angles
US11194158B2 (en) Light guide with beam separator for dual images
US20070139767A1 (en) Stereoscopic image display apparatus
US10310369B2 (en) Stereoscopic reproduction system using transparency
US20020101657A1 (en) Stereoscopic display device
US20080259281A1 (en) Apparatus and method for displaying three-dimensional image
JP7432339B2 (ja) ヘッドマウントディスプレイ
US8888292B2 (en) Projection apparatus for providing multiple viewing angle images
WO2022143236A1 (zh) 显示系统
US6871956B1 (en) Autostereoscopic optical apparatus
US7165842B2 (en) Autostereoscopic display apparatus having glare suppression
US6834961B1 (en) Autostereoscopic optical apparatus
Zhao et al. High dynamic range near-eye displays
TW201241476A (en) Display apparatus for displaying multiple view angle images
TW202111391A (zh) 雷射光學投影模組及包含其之穿戴裝置
TWI571656B (zh) 光源模組與顯示裝置
WO2021143640A1 (zh) 一种全固态全息拍摄器及全固态全息投影器
TWI476447B (zh) 立體投影顯示裝置
US20230418068A1 (en) Anamorphic directional illumination device
TW587176B (en) Illumination device used in a refraction projector
CN116149077A (zh) 用于悬浮图像的拼接显示装置以及包括其的多层显示设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21913977

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023540200

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 2021913977

Country of ref document: EP

Effective date: 20230623

ENP Entry into the national phase

Ref document number: 20237023703

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE