201241476 六4發明說明: 【發明所屬之技術領威】 [_ι]本發明為一種顯示裝置,特別是指一種用以顯示多重視 角影像之顯示裝置。 【先前技術] [00021近年來,為了追求更逼真更貼近真實的影像,顯示技術 不斷地推陳出新使其貼合觀測者的需求。從初期的平面 顯示對於解析度及色彩的追求,至近年的三維顯示装置 更可進一步提供觀測者除了影像以外的立體感受。 立體顯示主要的作用原理為分別饋送左右眼不同的角度 的觀看物體的影像,根據人眼的視覺特性,於雙眼分別 觀視相同影像内容但是具有不同視差(parallax)的二 影像時,觀測者會感覺所視物具有層次感及深度感,以 感受到一個三度空間立體影像。 應用上大略可分為需額外搭配眼鏡觀看或是直接裸視兩 種方式’近年來更主要的技術發展更以後者為主。再依 照饋送的方式不同,再細分為時域多工以及空間多工的 方式。 第1圖為習知採用時間多工模式之投影式立體顯示裝置工 之示意圖,如圖所示,習知採用時間多工模式之投影式 立體顯示裝置1包含複數個緊鄰條狀光源u、一菲涅耳透 鏡12及液晶面板13。此等條狀光源u依序提供一光束進 入菲淫耳透鏡12,利用菲料透鏡12進行平面化聚焦, 於液晶面板13成像後,再投射至對應之各視域。然而, 在上述傳統時間多工模式之立體影像顯示技術中,由於 100148899 一個光源僅對應至一個視角,因 表單編號A0101 第4頁/共29頁 此受到光源設置及其排 1002082144-0 201241476 列限制,能提供的視角數目有限,故解析度較差。 , 第2圖為另一種習知採用時域多工模式之投影式立體影像 顯示裝置之示意圖。如圖所示’此顯示裝置2包含一光源 21、一偏光鏡23、一旋轉多面鏡25、一面板27以及數個 光學元件2 9。光源21產生一先束,光束先藉由偏光鏡23 偏極化’再以旋轉多面鏡25反射至面板27成像’產生類 似掃描效果。後續的數個光學元件29在不同的時序中將 不同角度的影像投影至不同觀察區域。詳言之,以本實 施例為例,光源21依序在面板2 7相鄰的視域上產生第一 〕 視角影像、第二視角影像、第三視角影像及第四視角影 像,但此種投影式立體影像顯示裝置需藉由旋轉多面鏡 25旋轉,且多面鏡25的旋轉方式大多採用機械式運轉, 此種運轉方式較易因摩擦產生大量噪音。且若遇分割的 視角較多,此時,則需提高旋轉多面鏡25的轉速,使得 前述缺點將更為顯著。 事實上’無論單獨採用以空間多工模式(spatial multiplex) 或時域多工模式 (time 來達到 } 立體顯示效果,均有其美中不足的缺點及待克脈之問題 。基於此,如何設計出同時具有較低成本、簡化的光學 配置及解析度尚等優點之立體影像顯示裝置,乃為此業 界亟需努力之目標。 【發明内容】 [0003]本發明為一種用以顯示多重視角影像之顯示裝置,顯示 裝置包含一顯示螢幕和一投影裝置,以將至少二視角影 像成像至相鄰的至少二視域上,使觀看者看到/立體影 像。 100148899 表單編號 A0101 第 5 頁/共 29 頁 1002082144-0 201241476 •.投影裝置内包含至少一光源模組、一光學元件組、一第 一光調變器、一第二光調變器及一鏡頭。至少一光源模 組可產生一光線,光線進入光學元件組後被分為一第一 區塊光線及一第二區塊光線。第一區塊光線及第二區塊 光線分別被第一光調變器及第二光調變器接受,再分別 轉換成一第一視角影像及一第二視角影像,最後由鏡頭 同時投影至顯示螢幕上。 其中,顯示螢幕係將第一視角影像及第二視角影像,分 別經由第一區塊光線及第二區塊光線成像至相鄰之一第 一視域及一第二視域。 為了讓上述的目的'技術特徵和優點能夠更為本領域之 人士所知悉並應用,下文係以本發明之數個較佳實施例 以及附圖進行詳細的說明。 【實施方式】 [0004] 以下將透過實施方式來解釋本發明内容,本發明係關於 一種顯示裝置。需說明者,在下述實施例以及附圖中, 關於實施方式之說明僅為闡釋本發明之目的,而非用以 直接限制本發明,同時,以下實施例及圖式中,與本發 明非直接相關之元件均已省略而未繪示;且圖式中各元 件間之尺寸關係僅為求容易瞭解,非用以限制實際比例 及實際大小。 本發明為一種用以顯示多重視角影像之顯示裝置,顯示 裝置包含一顯示螢幕和一投影裝置,投影裝置將產生的 二視角影像產生在顯示螢幕上,使觀看者看到一立體影 像。 為了圖面的簡潔及易於辨讀,說明書中所繪示的光線僅 100148899 表單編號 A0101 第 6 頁/共 29 頁 1002082144-0 201241476 作為例示本發明的運作方式,其完整光路並未全數繪出 螓 ’但熟悉本領域技術者應可理解並輕易推及運用。 第3A圖至第3C圖為本發明之第一實施例之投影裝置3内部 不同角度示意圖。投影裝置3内包含一光源模組31、一光 學元件組32、一第一光調變器33、一第二光調變器34、 一鏡頭35及一合光元件36。201241476 VIII 4 invention description: [Technology Leading to the Invention] [_ι] The present invention is a display device, and more particularly to a display device for displaying a multi-value angle image. [Prior Art] [00021 In recent years, in order to pursue more realistic and closer to real images, display technology has been continuously updated to meet the needs of observers. From the initial flat display, the pursuit of resolution and color, the three-dimensional display device in recent years can further provide the stereoscopic experience of the observer in addition to the image. The main function of the stereoscopic display is to feed the images of the viewing objects at different angles of the left and right eyes respectively. According to the visual characteristics of the human eye, when the two images respectively view the same image content but have different parallax images, the observer I feel that the object has a sense of layering and depth to feel a three-dimensional space stereo image. The application can be roughly divided into two ways: extra glasses or direct nakedness. In recent years, more major technological developments have been made. According to the way of feeding, it is subdivided into time domain multiplex and space multiplex. 1 is a schematic diagram of a conventional projection type stereoscopic display device adopting a time multiplexing mode. As shown in the figure, a conventional projection type stereoscopic display device 1 adopting a time multiplexing mode includes a plurality of adjacent strip light sources u and a Fresnel lens 12 and liquid crystal panel 13. The strip light sources u sequentially provide a light beam into the spectacles lens 12, and are planarized and focused by the phenanthrene lens 12, and then imaged by the liquid crystal panel 13 and then projected to the corresponding fields of view. However, in the stereoscopic image display technology of the above-mentioned conventional time multiplexing mode, since 100148899 one light source only corresponds to one viewing angle, since the form number A0101 is 4th/29th, this is subject to the light source setting and its row 1002082144-0 201241476 column limit. The number of viewing angles that can be provided is limited, so the resolution is poor. Fig. 2 is a schematic view showing another conventional projection type stereoscopic image display device using a time domain multiplex mode. As shown, the display device 2 includes a light source 21, a polarizer 23, a rotating polygon mirror 25, a panel 27, and a plurality of optical elements 29. The source 21 produces a pre-beam which is first polarized by the polarizer 23 and then reflected by the rotating polygon mirror 25 to the panel 27 to produce a similar scanning effect. Subsequent optical elements 29 project images of different angles into different viewing areas at different timings. In detail, taking the embodiment as an example, the light source 21 sequentially generates the first] view image, the second view image, the third view image, and the fourth view image on the adjacent viewing area of the panel 27. The projection type stereoscopic image display device needs to be rotated by the rotating polygon mirror 25, and the rotation mode of the polygon mirror 25 is mostly mechanically operated, and this operation mode is relatively easy to generate a large amount of noise due to friction. Further, if there are many viewing angles, in this case, it is necessary to increase the rotational speed of the rotating polygon mirror 25, so that the aforementioned drawbacks will be more remarkable. In fact, no matter whether it is used in spatial multiplex or time domain multiplex mode (time to achieve) stereoscopic display effect, it has its shortcomings and shortcomings. Based on this, how to design simultaneous A stereoscopic image display device having the advantages of lower cost, simplified optical configuration, and resolution is still an urgent need for the industry. [0003] The present invention is a display for displaying multiple-view images. The display device comprises a display screen and a projection device for imaging at least two viewing angle images onto the adjacent at least two viewing fields to enable the viewer to see/stereoscopic images. 100148899 Form No. A0101 Page 5 of 29 1002082144-0 201241476 • The projection device comprises at least one light source module, an optical component group, a first optical modulator, a second optical modulator and a lens. At least one light source module generates a light. After entering the optical component group, the light is divided into a first block light and a second block light. The first block light and the second block light are respectively The light modulator and the second light modulator are respectively received and converted into a first view image and a second view image, and finally projected by the lens onto the display screen. The display screen displays the first view image and the first The two-view image is imaged to the adjacent one of the first field of view and the second field of view by the first block of light and the second block of light, respectively. To enable the above-mentioned purpose, the technical features and advantages can be further in the field. The following is a detailed description of the preferred embodiments of the invention and the accompanying drawings. In the following embodiments and the accompanying drawings, the description of the embodiments is only for the purpose of illustrating the invention, and is not intended to limit the present invention, and in the following embodiments and drawings, The components that are not directly related are omitted and are not shown; and the dimensional relationships between the components in the drawings are only for easy understanding, and are not intended to limit the actual ratio and the actual size. The invention relates to a display device for displaying multiple viewing angle images. The display device comprises a display screen and a projection device, and the projection device generates the generated two-view image on the display screen to enable the viewer to see a stereoscopic image. The surface is simple and easy to read. The light shown in the manual is only 100148899. Form No. A0101 Page 6 of 29 1002082144-0 201241476 As an illustration of the operation of the present invention, the complete optical path is not fully drawn. A person skilled in the art should understand and easily use it. 3A to 3C are schematic diagrams showing different internal angles of the projection device 3 according to the first embodiment of the present invention. The projection device 3 includes a light source module 31 and a The optical component group 32, a first optical modulator 33, a second optical modulator 34, a lens 35 and a light combining component 36.
本實施例以一光源模組為例但不以此為限,此光源模組 31可產生一光線310 ’並通過一集光柱均勻光線31〇。光 學元件組32包令集光元件組320、一第一光路元件組 321及一第二光路元件組322。光線310 (集光柱出口) 經由集光元件組320進行集光後成像(本實施例之集光元 件組320係為一透鏡),第3A圖中僅繪虛線以表示光線穿 過集光元件組320原本預計成像處,並藉由第一光路元件 組321及第二光路元件組322之透鏡及反射鏡,將光線 310透射和反射分為一第一區塊光線311及一第二區塊光 線312 (僅以主光線示意),各別以不同光路前進。In this embodiment, a light source module is taken as an example, but not limited thereto. The light source module 31 can generate a light ray 310' and uniformly illuminate 31 通过 through a light collecting column. The optical component group 32 encloses a light collecting component group 320, a first optical path component group 321 and a second optical path component group 322. The light ray 310 (the light collecting rod outlet) is condensed and imaged by the light collecting element group 320 (the light collecting element group 320 of the present embodiment is a lens), and only the dotted line is drawn in FIG. 3A to indicate that the light passes through the light collecting element group. 320 originally projected the image, and through the lens and mirror of the first optical path component group 321 and the second optical path component group 322, the light 310 is transmitted and reflected into a first block light 311 and a second block light. 312 (only in the main light), each with a different light path.
詳細而言,第一光路元件組321包含數個第一反射鏡,以 將第一區塊光線311反射導引至第一光調變器33 ;同樣地 ,第二光路元件組322亦包含數個第二反射鏡,以將第二 區塊光線312反射導引至第二光調變器34。在本實施例中 ,相對於入射第一區塊光線311、第二區塊光線312,反 射鏡係以45度角設置,故第一區塊光線311、第二區塊光 線312得以45度入射並反射地傳遞,但本發明不以此角度 設置為限。此處的第一光路元件組321,係泛指當第一區 塊光線311離開光學元件組32後,到達第一光調變器33之 前經過的光學元件;相似的,第二光路元件組322係泛指 100148899 表單编號A0101 第7頁/共29頁 1002082144-0 201241476 * -當第二區塊光線312離開光學元件組3 2後,到達第二光調 變器3 4之刖經過的光學元件。因此,此處的光學元件的 種類、數量以及配置,皆會因為投影裝置3的内部容積、 鏡頭35的設置位置等有所更動,因此並不以本實施例揭 示的光路元件為限。此外,為了方便閱讀圖面,集光元 件組320、第一光路元件組321及第二光路元件組322等 元件僅部分地標註於圖面中。 第一區塊光線311及第二區塊光線312分別經由相應的内 部全反射稜鏡(total internal reflection Prism,TIRprism)傳遞而被第一光調變器33及第二 光調變器34接受,再分別轉換成一第一視角影像及一第 二視角影像’再次通過相應的内部全反射棱鏡投射出。 需說明的是,由於光線31〇後續將分為第一區塊光線3U 及第二區塊光線312,以提供至第一光調變器33和第二光 調變器34 ’是故,經集光柱均勻後之光線310,其面積恰 等於第一光調變器33和第二光調變.器34的成像面積總和 。以本實施例為例,若均勻後之光線31〇的長寬比為32 : 9 ’則各光調變器之長寬比便為16 : 9,藉此完整接收並 轉換各自的視角影像。於本實施例中,第-光調變器33 和第-光調變器34均係數位微鏡裝置(digital micr〇 mirror device,,然於其他實施態樣中,光調 變器亦可採用液㈣示裝置。 100148899 當第一區塊先線3!1、第二區塊光線312分別由第-光調 變器33及第〜光調變器34轉換成第一視角影像 '第二視 角影像後’接著由内部全反射棱鏡投射出之第一視角影 像及第-視角影像,由合光元件自不同方向接收並 表單編號A0101 第8頁/共29頁 1002082】44-0 轉換成相同方向以提供至鏡頭3 5。更詳細而言,請參考 第4圖’其為本發明第一實施例之投影裝置3内部部分光 路示意圖。投影裝置3中,合光元件36係將二光調變器33 、34轉換後之視角影像傳送至鏡頭35。最後,由鏡頭35 將此二視角影像同時投影至顯示螢幕上(詳參後述)。 在本實施例中’合光元件36為一全反射立方體,例如_ 全反射稜鏡(TIR prism)。此合光元件36可依據不同 的材質,設計成不同的夹角0,使用BK7玻璃時,角度較 佳為41.2°。若採用SF-1,則角度較佳為35.6°。此外, 本實施例雖僅以二光調變器搭配一合光元件,但熟知本 項技術領域者亦可推及二個以上的光調變器搭配一合先 元件的實施態樣,亦即本實施例僅為例示,而本發明並 不以此為限。 請同時參考第5A圖及第5B圖,為本發明第一實施例之投 影裝置3搭配顯示螢幕4之不同角度示意圖。顯示裝置包 含一投影裝置3、一顯示螢幕4和一反射面5,且投影裝置 3係為一背投式投影裝置,故可藉由反射面5將影像顯示 在顯示螢幕上4。 請參考第6圖,為應用本發明第一實施例之投影裝置3的 顯示裝置之成像示意圖。如前所述,顯示裝置包含一投 影裝置3、一顯示螢幕4和一反射面5,而顯示螢幕4包含 一雙層柱狀透鏡(double lenticular lens),雙層 柱狀透鏡具有二柱狀透鏡層4la及夾於二柱狀透鏡層41a 之間的一全向擴散板41b (all direction diffuser )。在二柱狀透鏡層41a之兩外側,分別設置一外板42。 藉由具全向擴散功能之全向擴散板41b,即可將來自投影 表單編號A0101 第9頁/共29頁 100: 201241476 裝置3之第一視角影像、第二視角影像並投射至參考面6 〇 此外,本發明亦可具有其他之顯示螢幕實施態樣,例如 顯示螢幕包含一菲淫耳透鏡(Fresnel lens)及一垂直 擴散板(vertical diffuser)。複數視角區塊影像光 線進入此態樣之顯示螢幕後,垂直擴散板便將該些區塊 光線於一垂直方向擴散,若以第一實施例為例,該些區 塊光線即為第一區塊光線及第二區塊光線。接著,該些 區塊光線再藉由菲涅耳透鏡聚焦在相鄰的視域分別形成 第一視角影像及第二視角影像,換言之,觀看者即可於 參考面上觀看到不同視角影像。 需特別說明的是,雖然第一實施例僅使用一個光源搭配 二光調變器,故只能在顯示螢幕上的顯示兩個視角的影 像。但於其他實施態樣中,投影裝置中可包含複數的光 源以搭配二個光調變器,該些光源分別依序的提供光線 ,以時間多工模式達成產生多視角影像之目的。此外, 亦可藉由在顯示裝置内設置複數個投影裝置得到多視角 的影像,換言之,每增設一額外的投影裝置時,視角影 像的數目則可倍增,此種設置方式亦可以達到上述產生 多重視角影像之目的。 詳言之,請參考第7圖,其為本發明應用異於第一實施例 之投影裝置的顯示裝置成像示意圖。與第6圖相異的部分 在於:第7圖中的投影裝置7中,其光源模組係採用四組 光源,光源模組中的四組光源依序產生一光線,依序產 生的四道光線經兩個光調變器及顯示螢幕4成像後,便會 在參考面6上產生八個視角影像,且八個視角影像係依序 100148899 表單編號A0101 第10頁/共29頁 1002082144-0 201241476 相鄰的成像於各視角視域之中。換言之,觀看者可以於 參考面上觀測到8個視角的影像。故如前述,具有本領域 通常知識者可藉由增設光源數目,達到視角倍增的效果 ,提高視角影像之數目及密集度,改善影像呈現品質。 如第8圖所示,其係為本發明之投影裝置8具有二光源模 組之態樣示意圖。投影裝置8除了包含二光源模組以外, 還包含了 一合光元件82、一第一透鏡組83、一第二透鏡 組84等其他必要光學元件(圖未示出)。 二光源模組其中一者包含光源812a、814a、816a,另一 者包含光源812b、814b、816b,於本實施態樣中,每一 光源模組均具有三個LED光源。詳言之,光源812a、 814a、816a於第一時序分別提供一第一色光、一第二色 光及一第三色光,以成為第一光線;而光源812b、814b 、816b則於第二時序分別提供一第一色光、一第二色光 及一第三色光,以成為第二光線。且於此實施例中,第 一色光、第二色光及第三色光係分別為一紅光、一綠光 及藍光,但本發明並不以此為限。需說明的是,為使圖 式清晰且說明簡潔,故僅繪示一光源之光路行進方式, 省略其餘光源光路未繪示,然熟知此技術領域者應可輕 易推及。 是故,第一光線與第二光線便可輪流配合二光調變器, 產生第一視角影像、第二視角影像、第三視角影像、第 四視角影像。若改為三組光源模組搭配二光調變器,則 可產生六視角影像,以此類推,可藉由光源與光調變器 的數量的調整產生的更多對應的視角影像數目。 本實施例係採用分光棱鏡(X-cube)作為合光元件82, 100148899 表單編號A0101 第11頁/共29頁 1002082144-0 201241476 藉以將紅色、綠色、藍色三色光進行合光。於其他實施 態樣中,合光元件亦可為十字分光鏡(X-plate)、分光 鏡(dichroic Mirror)等合光裝置,且本發明並不以上 述舉例為限。 最後,請參考第9圖,其係為本發明之投影裝置具有陣列 型態光源模組之示意圖。第9圖與第8圖最大的差異在於 ,第9圖中之光源模組具有12組光源,且分成三組不同色 光源912、914 (圖式因角度關係僅能示意兩組光源), 採陣列的形式排列於投影裝置8之中。三組不同色光源 912、914同樣利用合光元件82輪流進行合光,再搭配光 調變器產生複數個視角影像。此外,本實施例與前述說 明相同之元件與相關成像機制在此不另贅述。 綜上所述,本發明為利用至少一光源搭配二光調變器作 為原理,並藉由調整光源數目達到增加視角的手段,此 種設計可以有效的達到簡化顯示裝置的體積、簡化光路 設計及降低成本的目的。 上述之實施例僅用來例舉本發明之實施態樣,以及闡釋 本發明之技術特徵,並非用來限制本發明之保護範疇。 任何熟悉此技術者可輕易完成之改變或均等性之安排均 屬於本發明所主張之範圍,本發明之權利保護範圍應以 申請專利範圍為準。 【圖式簡單說明】 [0005] 第1圖係為習知採用時域多工的投影式立體顯示裝置示意 圖; 第2圖係為習知採用時域多工的投影式立體顯示裝置示意 100148899 圖; 表單編號A0101 第12頁/共29頁 1002082144-0 201241476In detail, the first optical path component group 321 includes a plurality of first mirrors for guiding the first block light 311 to the first light modulator 33; likewise, the second optical path component group 322 also includes the number And a second mirror to guide the second block light 312 to the second light modulator 34. In this embodiment, the mirror is disposed at an angle of 45 degrees with respect to the incident first block ray 311 and the second block ray 312, so that the first block ray 311 and the second block ray 312 are incident at 45 degrees. And transmitted in a reflective manner, but the invention is not limited to this angle setting. The first optical path component group 321 herein generally refers to an optical component that passes before the first block light ray 311 leaves the optical component group 32 before reaching the first optical modulator 33; similarly, the second optical path component group 322 General refers to 100148899 Form No. A0101 Page 7 / Total 29 Page 1002082144-0 201241476 * - When the second block ray 312 leaves the optical element group 3 2, after passing through the second optical modulator 34 element. Therefore, the type, number, and arrangement of the optical elements herein are limited by the internal volume of the projection device 3, the position at which the lens 35 is disposed, and the like, and therefore are not limited to the optical path elements disclosed in the embodiment. Further, in order to facilitate the reading of the drawing, elements such as the light collecting element group 320, the first optical path element group 321, and the second optical path element group 322 are only partially labeled in the drawing. The first block ray 311 and the second block ray 312 are respectively received by the first optical modulator 33 and the second optical modulator 34 via the corresponding internal internal reflection Prism (TIRprism). Then converted into a first view image and a second view image respectively, and then projected through the corresponding internal total reflection prism. It should be noted that, since the light 31〇 is further divided into the first block light 3U and the second block light 312 to be provided to the first light modulator 33 and the second light modulator 34′, The light ray 310 is evenly distributed, and its area is exactly equal to the sum of the imaging areas of the first light modulator 33 and the second light modulator 34. Taking this embodiment as an example, if the uniform light ray 31 〇 has an aspect ratio of 32:9 ′, the optical modulators have an aspect ratio of 16:9, thereby completely receiving and converting the respective viewing angle images. In this embodiment, the first optical modulator 33 and the first optical modulator 34 are both digital micr〇mirror devices. However, in other implementations, the optical modulator can also be used. Liquid (4) display device 100148899 When the first block first line 3!1, the second block light 312 is converted by the first light modulator 33 and the first light modulator 34 into the first view image 'second view After the image, the first view image and the first view image projected by the internal total reflection prism are received by the light combining elements from different directions and form number A0101 page 8 / page 29 1002082] 44-0 converted into the same direction For more details, please refer to FIG. 4, which is a schematic diagram of an internal optical path of the projection device 3 according to the first embodiment of the present invention. In the projection device 3, the light combining member 36 modulates the two lights. The converted view image of the device 33, 34 is transmitted to the lens 35. Finally, the two-view image is simultaneously projected onto the display screen by the lens 35 (described later). In the present embodiment, the light-collecting element 36 is a total reflection. Cube, such as _ TIR prism. The light element 36 can be designed to have different angles 0 according to different materials. When using BK7 glass, the angle is preferably 41.2. If SF-1 is used, the angle is preferably 35.6. In addition, this embodiment only The two-light modulator is combined with a light-combining component, but those skilled in the art can also push the implementation of two or more optical modulators with a first component, that is, the embodiment is merely an example. The present invention is not limited thereto. Please refer to FIG. 5A and FIG. 5B simultaneously, which are schematic diagrams of different angles of the projection device 3 according to the first embodiment of the present invention with the display screen 4. The display device includes a projection device 3 and a The screen 4 and a reflecting surface 5 are displayed, and the projection device 3 is a rear projection type projection device, so that the image can be displayed on the display screen 4 by the reflecting surface 5. Referring to FIG. 6, the first application of the present invention is applied. The imaging device of the display device of the projection device 3 of the embodiment. As described above, the display device comprises a projection device 3, a display screen 4 and a reflecting surface 5, and the display screen 4 comprises a double lenticular lens (double lenticular Lens), double lenticular lens There is a two-columnar lens layer 41a and an omnidirectional diffuser 41b sandwiched between the two columnar lens layers 41a. On both outer sides of the two columnar lens layers 41a, an outer plate 42 is provided. From the omnidirectional diffusion plate 41b having the omnidirectional diffusion function, the first view image and the second view image from the projection form No. A0101 page 9/29 page 100: 201241476 device 3 can be projected onto the reference surface 6 〇 In addition, the present invention may also have other display screen embodiments, such as a display screen comprising a Fresnel lens and a vertical diffuser. After the complex view block image light enters the display screen of the state, the vertical diffuser diffuses the block light in a vertical direction. If the first embodiment is taken as an example, the block light is the first area. Block light and second block light. Then, the block rays are focused by the Fresnel lens in the adjacent fields of view to form the first view image and the second view image respectively, in other words, the viewer can view different view images on the reference surface. It should be particularly noted that although the first embodiment uses only one light source in combination with the two-light modulator, only the two-view images on the display screen can be displayed. In other embodiments, the projection device may include a plurality of light sources to match the two light modulators, and the light sources respectively provide light in sequence to achieve multi-view images in a time multiplexing mode. In addition, multiple viewing angle images can be obtained by providing a plurality of projection devices in the display device. In other words, the number of viewing angle images can be multiplied every time an additional projection device is added, and the setting manner can also achieve the above multiple generation. The purpose of the perspective image. In detail, please refer to Fig. 7, which is a schematic view showing the application of the display device different from the projection device of the first embodiment. The difference from the sixth figure is that in the projection device 7 in Fig. 7, the light source module adopts four groups of light sources, and the four groups of light sources in the light source module sequentially generate a light, sequentially generating four channels. After the light is imaged by the two light modulators and the display screen 4, eight viewing angle images are generated on the reference surface 6, and the eight viewing angle images are sequentially 100148899. Form number A0101 Page 10 / Total 29 pages 1002082144-0 201241476 Adjacent imaging is in the field of view of each perspective. In other words, the viewer can observe images of 8 viewing angles on the reference surface. Therefore, as described above, those skilled in the art can increase the number of light sources to achieve the effect of multiplying the viewing angle, increase the number and density of the viewing angle images, and improve the image rendering quality. As shown in Fig. 8, it is a schematic view of a projection apparatus 8 of the present invention having two light source modules. In addition to the two light source modules, the projection device 8 further includes a light combining component 82, a first lens group 83, a second lens group 84 and other necessary optical components (not shown). One of the two light source modules includes light sources 812a, 814a, and 816a, and the other includes light sources 812b, 814b, and 816b. In this embodiment, each of the light source modules has three LED light sources. In detail, the light sources 812a, 814a, and 816a respectively provide a first color light, a second color light, and a third color light to become the first light at the first timing; and the light sources 812b, 814b, and 816b are in the second The timings respectively provide a first color light, a second color light, and a third color light to become the second light. In this embodiment, the first color light, the second color light, and the third color light system are respectively a red light, a green light, and a blue light, but the invention is not limited thereto. It should be noted that, in order to make the drawing clear and simple, only the light path of a light source is shown, and the other light source paths are omitted, but those skilled in the art should be able to easily push it. Therefore, the first light and the second light can alternately cooperate with the two light modulator to generate the first view image, the second view image, the third view image, and the fourth view image. If the three sets of light source modules are combined with the two-light modulator, six-view images can be generated, and so on, and the number of corresponding view images can be generated by adjusting the number of light sources and light modulators. In this embodiment, a dichroic prism (X-cube) is used as the light combining element 82, 100148899 Form No. A0101 Page 11 of 29 1002082144-0 201241476 By combining the three colors of red, green and blue light. In other embodiments, the light combining element may be a light combining device such as an X-plate or a dichroic Mirror, and the present invention is not limited to the above examples. Finally, please refer to FIG. 9, which is a schematic diagram of the projection device of the present invention having an array type light source module. The biggest difference between Figure 9 and Figure 8 is that the light source module in Figure 9 has 12 sets of light sources and is divided into three sets of different color light sources 912, 914 (the figure can only indicate two sets of light sources due to the angle relationship). The form of the array is arranged in the projection device 8. The three sets of different color light sources 912 and 914 are also combined by the light combining element 82 in turn, and then combined with the light modulator to generate a plurality of viewing angle images. In addition, the components and related imaging mechanisms in this embodiment that are identical to the foregoing description are not described herein. In summary, the present invention utilizes at least one light source in combination with a two-light modulator as a principle, and by adjusting the number of light sources to increase the viewing angle, the design can effectively simplify the size of the display device, simplify the optical path design, and The purpose of reducing costs. The embodiments described above are only intended to illustrate the embodiments of the present invention, and to explain the technical features of the present invention, and are not intended to limit the scope of protection of the present invention. It is intended that any change or equivalents that can be easily made by those skilled in the art are within the scope of the invention. The scope of the invention should be determined by the scope of the claims. BRIEF DESCRIPTION OF THE DRAWINGS [0005] FIG. 1 is a schematic diagram of a conventional projection type stereoscopic display device using time domain multiplexing; FIG. 2 is a schematic diagram of a conventional projection type stereoscopic display device using time domain multiplexing. ; Form No. A0101 Page 12 / Total 29 Page 1002082144-0 201241476
[0006] 100148899 第3A圖係為本發明之第一實施例之投影裝置内部示意圖 , 第3B圖係為第3A圖之投影裝置内部另一角度之示意圖; 第3C圖係為第3A圖之投影裝置内部又一角度之示意圖; 第4圖係為本發明第一實施例之投影裝置内部部分光路示 意圖; 第5A圖係為本發明第一實施例之投影裝置搭配顯示螢幕 之不意圖, 第5B圖係為本發明之第一實施例投影裝置搭配顯示螢幕 之另一角度示意圖; 第6圖係為應用本發明之第一實施例之投影裝置的顯示裝 置成像示意圖; 第7圖係為本發明應用另一實施例的投影裝置之顯示裝置 成像示意圖; 第8圖係為本發明之投影裝置具有二組光源模組之示意圖 ;以及 第9圖係為本發明之投影裝置具有陣列型態光源模組之示 意圖。 【主要元件符號說明】 1 :立體顯示裝置 11 :條狀光源 12 :菲涅耳透鏡 13 .液晶面板 2 :顯示裝置 21 :光源 23 :偏光鏡 表單編號A0101 第13頁/共29頁 1002082144-0 201241476 2 5 :旋轉多面鏡 27 :面板 29 :光學元件 3 :投影裝置 31 :光源模組 310 :光線 311 :第一區塊光線 312 :第二區塊光線 32 :光學元件組 320 :集光元件組 321 :第一光路元件組 322 :第二光路元件組 33 :第一光調變器 34 :第二光調變器 35 :鏡頭 3 6 :合光元件 4 :顯示螢幕 41a :柱狀透鏡層 41b :全向擴散板 42 :外板 5 :反射面 6 :參考面 7:投影裝置 8 :投影裝置 812a、814a、816a、812b、814b、816b :光源 82 :合光元件 100148899 表單編號A0101 第14頁/共29頁 1002082144-0 201241476 83 :第一透鏡組 84 :第二透鏡組 912、914 :光源[0006] 100148899 FIG. 3A is a schematic diagram of the inside of the projection apparatus according to the first embodiment of the present invention, FIG. 3B is a schematic diagram of another angle inside the projection apparatus of FIG. 3A; FIG. 3C is a projection of FIG. 3A 4 is a schematic diagram of an internal optical path of a projection apparatus according to a first embodiment of the present invention; FIG. 5A is a schematic view of a projection apparatus according to the first embodiment of the present invention with a display screen, 5B FIG. 6 is a schematic view showing another embodiment of the projection device of the first embodiment of the present invention, and FIG. 6 is a schematic view showing the imaging device of the projection device according to the first embodiment of the present invention; A schematic diagram of a display device using a projection device of another embodiment; FIG. 8 is a schematic view showing a projection device of the present invention having two sets of light source modules; and FIG. 9 is a projection device of the present invention having an array type light source mode Schematic diagram of the group. [Description of main component symbols] 1 : Stereoscopic display device 11 : Strip light source 12 : Fresnel lens 13 . Liquid crystal panel 2 : Display device 21 : Light source 23 : Polarizing mirror form No. A0101 Page 13 / 29 pages 1002082144-0 201241476 2 5 : Rotating polygon mirror 27 : panel 29 : optical element 3 : projection device 31 : light source module 310 : light 311 : first block light 312 : second block light 32 : optical element group 320 : light collecting element Group 321 : First optical path component group 322 : Second optical path component group 33 : First optical modulator 34 : Second optical modulator 35 : Lens 3 6 : Light combining component 4 : Display screen 41 a : Cylindrical lens layer 41b: omnidirectional diffusion plate 42: outer plate 5: reflection surface 6: reference surface 7: projection device 8: projection device 812a, 814a, 816a, 812b, 814b, 816b: light source 82: light combining element 100148899 Form No. A0101 No. 14 Page / Total 29 pages 1002082144-0 201241476 83 : First lens group 84 : Second lens group 912, 914 : Light source
〇 100148899 表單編號A0101 第15頁/共29頁 1002082144-0〇 100148899 Form No. A0101 Page 15 of 29 1002082144-0