WO2022143218A1 - 摄像模组、制造方法以及移动终端 - Google Patents

摄像模组、制造方法以及移动终端 Download PDF

Info

Publication number
WO2022143218A1
WO2022143218A1 PCT/CN2021/139086 CN2021139086W WO2022143218A1 WO 2022143218 A1 WO2022143218 A1 WO 2022143218A1 CN 2021139086 W CN2021139086 W CN 2021139086W WO 2022143218 A1 WO2022143218 A1 WO 2022143218A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens structure
photosensitive
assembly
camera module
lens
Prior art date
Application number
PCT/CN2021/139086
Other languages
English (en)
French (fr)
Inventor
刘佳
何艳宁
袁栋立
魏罕钢
Original Assignee
宁波舜宇光电信息有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宁波舜宇光电信息有限公司 filed Critical 宁波舜宇光电信息有限公司
Priority to CN202180084488.9A priority Critical patent/CN116762351A/zh
Priority to EP21913959.9A priority patent/EP4274208A1/en
Priority to US18/270,779 priority patent/US20240056658A1/en
Publication of WO2022143218A1 publication Critical patent/WO2022143218A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/50Constructional details
    • H04N23/51Housings
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/50Constructional details
    • H04N23/54Mounting of pick-up tubes, electronic image sensors, deviation or focusing coils
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/10Cameras or camera modules comprising electronic image sensors; Control thereof for generating image signals from different wavelengths
    • H04N23/13Cameras or camera modules comprising electronic image sensors; Control thereof for generating image signals from different wavelengths with multiple sensors
    • H04N23/16Optical arrangements associated therewith, e.g. for beam-splitting or for colour correction
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/50Constructional details
    • H04N23/52Elements optimising image sensor operation, e.g. for electromagnetic interference [EMI] protection or temperature control by heat transfer or cooling elements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/50Constructional details
    • H04N23/55Optical parts specially adapted for electronic image sensors; Mounting thereof
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/57Mechanical or electrical details of cameras or camera modules specially adapted for being embedded in other devices
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/67Focus control based on electronic image sensor signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/68Control of cameras or camera modules for stable pick-up of the scene, e.g. compensating for camera body vibrations
    • H04N23/681Motion detection

Definitions

  • the present application relates to the technical field of optical devices, and more particularly, to a camera module, a manufacturing method, and a mobile terminal.
  • camera modules In order to meet users' requirements for imaging quality, camera modules usually need to have multiple functions such as high pixels, long focal length, large aperture, auto focus, and anti-shake.
  • the integration of these functions often leads to an increase in the size of the camera module, especially the Increase the height of the camera module.
  • the increased height of the camera module and the thinning of the mobile phone will cause the assembled camera module to protrude from the rear casing of the mobile phone and form a protrusion on the backside of the mobile phone. This will make the mobile phone in a tilted and unstable state when placed on a desktop or other surface, affecting the user's operating experience. More importantly, the camera module protrudes from the back cover of the mobile phone, which will cause the camera module or the protective cover outside the camera module to have a great risk of damage. For example, bumping or falling can easily lead to scratches and cracks. generation, thus affecting the imaging of the camera module.
  • the present application provides a camera module, a manufacturing method and a mobile terminal that can at least partially solve the above technical problems.
  • a camera module comprising: a photosensitive assembly, including a circuit board; a first lens structure, disposed on a photosensitive path of the photosensitive assembly; and a second lens structure, disposed between the first lens structure and the photosensitive assembly
  • the first lens structure is farther from the photosensitive component than the second lens structure
  • the focusing component is electrically connected to the circuit board and used to define the second lens structure along the optical axis of the first lens structure. moving in a direction
  • an anti-shake component which is electrically connected to the circuit board and used to drive the photosensitive component to move on a plane perpendicular to the optical axis of the first lens structure.
  • the electrical connection between the focusing assembly and the circuit board is realized through a laser circuit, and the electrical connection between the anti-shake assembly and the circuit board is realized.
  • the focusing assembly includes: a driving part fixedly connected with the second lens structure; and a fixed frame fixedly connected with the first lens structure and restricting the driving part to move along the direction of the optical axis of the first lens structure.
  • the driving part is provided with at least one first magnetic structure, and is provided with at least one first ball groove parallel to the optical axis of the first lens structure;
  • the fixed frame is provided with at least one first coil structure and at least one the second ball groove, wherein the position of the first coil structure corresponds to the position of the first magnetic structure, the position of the first ball groove corresponds to the position of the second ball groove;
  • the focusing assembly further comprises: a position located in the first ball groove and a plurality of first balls between the second ball grooves.
  • the anti-shake assembly includes: a movable part, fixedly connected to the photosensitive assembly; a fixed part, fixedly connected to the first lens structure, and used to drive the movable part in a plane perpendicular to the optical axis of the first lens structure move up.
  • the movable part is provided with at least one second magnetic structure, and is provided with a plurality of third ball grooves perpendicular to the optical axis of the first lens structure;
  • the fixed part is provided with at least one second coil structure and at least a fourth ball groove, wherein the position of the second coil structure corresponds to the position of the second magnetic structure, the position of the fourth ball groove corresponds to the position of the third ball groove;
  • the anti-shake assembly further comprises: A plurality of second balls between the ball groove and the fourth ball groove.
  • the camera module further includes: an installation casing for accommodating the first lens structure and the second lens structure; the focusing assembly is fixedly connected to the first lens structure through the installation casing; the anti-shake assembly is connected to the first lens structure through the installation casing The lens structure is fixedly connected.
  • the mounting housing accommodates the photosensitive assembly
  • the movable portion is fixedly connected to the top surface of the photosensitive assembly
  • the outer periphery of the fixed portion is fixedly connected to the inner side of the upper edge of the mounting housing.
  • it further includes: a third lens structure, disposed between the second lens structure and the photosensitive assembly, and fixedly connected to the first lens structure through a mounting shell;
  • the focusing assembly includes a radially outer side of the third lens structure and It extends to the extension part of the anti-shake component along the direction of the optical axis of the first lens structure, and the circuit board of the focusing component and the photosensitive component is electrically connected to the extension part.
  • At least one lens of the first lens structure includes: a first lens farthest away from the photosensitive component; and an object side surface of the first lens is a plane.
  • the image side surface of the first lens is concave.
  • the circuit board has a first surface; and the photosensitive component includes: a photosensitive element, disposed on the first surface of the circuit board, and having a photosensitive path; electronic components, disposed on the first surface of the circuit board, and spaced from the photosensitive element; the molding seat is disposed on the first surface of the circuit board, and has a stepped light-passing hole corresponding to the light-sensing path, the stepped light-passing hole includes a first cavity away from the light-sensitive element; and a filter The color filter is arranged in the first cavity, and the thickness of the color filter on the optical axis of the first lens structure is less than or equal to the height of the first cavity on the optical axis of the first lens structure.
  • the circuit board has a mounting groove for accommodating the photosensitive element, wherein the shape of the mounting groove corresponds to the shape of the photosensitive element.
  • a reinforcing plate is provided on the second surface of the circuit board opposite to the first surface, and the reinforcing plate is fixed to the second surface of the circuit board.
  • the depth of the mounting groove is less than or equal to the thickness of the circuit board.
  • the electronic components are encapsulated by a molded seat.
  • Another aspect of the present application provides a method for manufacturing a camera module, comprising: arranging a second lens structure on an image side of the first lens structure along an optical axis of the first lens structure; A focusing assembly is disposed on the image side of the first lens structure, wherein the focusing assembly is used to limit the movement of the second lens structure along the optical axis direction of the first lens structure; and a photosensitive sensor including a circuit board is disposed on the image side of the second lens structure assembly, and the second lens structure is located on the photosensitive path of the photosensitive assembly; an anti-shake assembly is arranged at the photosensitive assembly, wherein the anti-shake assembly is used to drive the photosensitive assembly to move on a plane perpendicular to the optical axis of the first lens structure; The anti-shake component and the circuit board are electrically connected, and the focusing component and the circuit board are electrically connected; wherein, the first lens structure is farther from the photosensitive component than the second lens structure.
  • the method further includes: using machine vision and active alignment technology to adjust the first lens structure and the second lens structure.
  • a third aspect of the present application provides a mobile terminal, including: the aforementioned camera module; and a body casing, wherein a camera module is disposed inside, including an installation hole matching a photosensitive path of the camera module.
  • the object side of the first lens farthest from the photosensitive element in the at least one lens of the first lens structure is on the same plane as the outer surface of the body casing.
  • the present application provides a camera module that implements a focusing function inside an optical system and implements an anti-shake function on the image side of the optical system.
  • the overall height of the camera module is low, and it has the characteristics of being light and thin.
  • the coordinated use of the focusing component and the anti-shake component is realized, so that the camera module has a better anti-shake function.
  • Fig. 1 is the assembly structure schematic diagram of the existing camera module
  • FIG. 2 is a schematic cross-sectional view of a camera module according to an embodiment of the present application.
  • FIG. 3 is a schematic cross-sectional view of a photosensitive assembly according to an embodiment of the present application.
  • FIG. 4 is a schematic cross-sectional view of another camera module according to an embodiment of the present application.
  • FIG. 5 is a schematic structural diagram of a fixed frame according to an embodiment of the present application.
  • FIG. 6 is a schematic structural diagram of a driving part according to an embodiment of the present application.
  • FIG. 7 is a schematic structural diagram of an anti-shake assembly according to an embodiment of the present application.
  • FIG. 8 is an assembled plan view of a movable portion according to an embodiment of the present application.
  • FIG. 9 is an assembly schematic diagram of another camera module according to an embodiment of the present application.
  • FIG. 10 is a flowchart of a method for manufacturing a camera module according to an embodiment of the present application.
  • FIG. 11 is an assembly schematic diagram of a lens module according to an embodiment of the present application.
  • FIG. 12 is a schematic structural diagram of a mobile terminal according to an embodiment of the present application.
  • FIG. 13 is a left side view of the mobile terminal of FIG. 12 .
  • FIG. 1 is a schematic diagram of an assembly structure of a conventional camera module 100 .
  • the conventional camera module 100 includes a lens assembly 110 , a driving motor 120 and a photosensitive assembly 130 .
  • the driving motor 120 may have a driving unit and a fixing unit (not shown).
  • the driving unit is fixedly connected with the lens assembly 110.
  • the lens assembly 110 fixedly connected with the driving unit can be made to move. The relative movement occurs, thereby realizing the focusing and anti-shake functions of the camera module 100 .
  • the installation height of the camera module 100 in the mobile phone can be composed of the height H1 of the movable space, the height H2 of the driving motor 120 and the height H3 of the photosensitive element 130 .
  • the camera module 100 When the existing camera module 100 is installed on a mobile phone, due to the thickness limitation of the mobile phone, the camera module 100 will protrude out of the body casing of the mobile phone after being installed, such as the rear casing, thereby affecting the performance of the mobile phone.
  • FIG. 2 is a schematic cross-sectional structure diagram of a camera module 200 according to an embodiment of the present application.
  • the camera module 200 may include: a first lens structure 210 , a second lens structure 220 , a photosensitive component 240 , a focusing component 260 and an anti-shake component 270 .
  • the lenses in the first lens structure 210 and the lenses in the second lens structure 220 can jointly form the optical system of the camera module 200 and can be maintained on the photosensitive path of the photosensitive component 240 .
  • the imaging plane of the optical system may be located at the photosensitive component 240 .
  • the optical system includes at least two lens structures arranged along the optical axis of the optical system from the object side to the image side, wherein the first lens structure 210 is located at the most object side along the optical axis direction.
  • the imaging light incident from the object side passes through the first lens structure 210 and the second lens structure 220 in sequence, and is then received by the photosensitive component 240 and photoelectrically converted to form an image of the object.
  • the object side may be referred to as the object side
  • the photosensitive component 240 side may be referred to as the image side.
  • the first lens structure 210 and the second lens structure 220 cooperate, they are jointly used to adjust the light and transmit the light to the photosensitive component 240 for imaging.
  • the focusing assembly 260 may include a driving part 261 and a fixed frame 262, the driving part 261 is fixedly connected with the second lens structure 220, the fixed frame 262 can be fixedly connected with the first lens structure 210, and restricts the driving part 261 to move along the direction of the optical axis , the driving part 261 can cause the second lens structure 220 and the first lens structure 210 to be displaced relative to each other in the direction of the optical axis, so as to realize the focusing function of the camera module 200 .
  • the anti-shake component 270 can adjust the displacement of the photosensitive component 240 according to the shaking of the camera module 200 , thereby compensating for the shaking of the camera module 200 .
  • the anti-shake assembly 270 includes a movable part 271 and a fixed part 272 .
  • the movable part 271 may be fixedly connected with the photosensitive component 240 by means of, for example, bonding.
  • the fixing portion 272 can be fixedly connected with the first lens structure 210 through the fixing frame 262 .
  • the fixing portion 272 , the fixing frame 262 and the first lens structure 210 may be fixedly connected through the mounting housing 250 .
  • the fixing portion 272 fixedly connected with the mounting shell 250 can be kept in a stationary state.
  • the fixed part 272 can drive the movable part 271 to move on a plane perpendicular to the optical axis.
  • the movable part 271 when the fixed part 272 is fixed, the movable part 271 is movable relative to the fixed part 272 on a plane perpendicular to the optical axis. Specifically, the movable portion 271 can be used to move a minute distance. Since the fixed portion 272 is fixedly connected to the first lens structure 210 and remains fixed, the movable portion 271 can drive the photosensitive assembly 240 to move slightly along the direction perpendicular to the optical axis, thereby realizing the anti-shake function of the camera module 200 .
  • Both the focusing assembly 260 and the anti-shake assembly 270 are electrically connected to the circuit board of the photosensitive assembly 240 .
  • the built-in focusing assembly 260 and the anti-shake assembly 270 are electrically connected to the circuit board of the photosensitive assembly 240, which can further miniaturize the camera module, and It is convenient to realize the electrical connection of two components at the same time.
  • the lens in the second lens structure may be trimmed based on the lens Dcut technology to remove the lens located in the second lens structure.
  • the lens part outside the photosensitive path of the photosensitive component 240 may be trimmed based on the lens Dcut technology to remove the lens located in the second lens structure.
  • the embodiments of the present application provide a camera module 200 that implements a focusing function inside an optical system and implements an anti-shake function on the image side of the optical system.
  • the camera module 200 does not need to be provided with a movable space that needs to be reserved when the conventional drive motor structure is used, but instead utilizes the second lens structure 220 located between the first lens structure 210 and the photosensitive component 240 .
  • the second lens structure 220 moves in a certain space on the object side and the image side to realize the focusing of the camera module 200 , which is beneficial to reduce the overall height of the camera module 200 and facilitate the lightness and thinness of the camera module 200 .
  • the cooperating use of the focusing assembly 260 and the anti-shake assembly 270 is realized, so that the camera module 200 has a better anti-shake function.
  • the circuit board 241 and the photosensitive element 242 of the photosensitive assembly 240 can be moved synchronously, so as to effectively protect the line connection between the two, and ensure that the circuit board 241 and the photosensitive element 242 of the photosensitive assembly 240 move synchronously. current supply.
  • FIG. 3 is a schematic cross-sectional structure diagram of a photosensitive assembly 240 according to an embodiment of the present application.
  • the photosensitive component 240 may include a circuit board 241 , a photosensitive element 242 , an electronic component 243 , a molding seat 244 and a color filter 245 .
  • the circuit board 241 can be used as a substrate of the photosensitive assembly 240 for carrying other parts of the photosensitive assembly 240 .
  • the wiring board 241 may have a first surface 2411 and a second surface 2412 opposite to the first surface 2411.
  • the photosensitive element 242 may be disposed on the first surface 2411 of the circuit board 241 . Specifically, the photosensitive element 242 may be mounted on the central area of the first surface 2411 of the circuit board 241 . The photosensitive element 242 and the circuit board 241 may be electrically connected to an edge area surrounding the central area of the circuit board 241 through connection wires 246 .
  • the photosensitive element 242 may be a photocoupler element (CCD) or a complementary metal oxide semiconductor element (COMS). And the photosensitive element 242 may include a photosensitive area at the center and a non-photosensitive area around the photosensitive area.
  • the photosensitive area of the photosensitive element 242 can receive light through the optical system including the first lens structure 210 and the second lens structure 220, and has a photosensitive path corresponding to the photosensitive area.
  • the connecting wires 246 may be gold wires. After the photosensitive element 240 is mounted on the circuit board 241 , one end of the gold wire is connected to the photosensitive element 242 and the other end of the gold wire is connected to the circuit board 241 through a gold wire bonding process. It should be understood by those skilled in the art that the connection wire 246 may also be of other types, such as silver wire, copper wire, and the like.
  • the circuit board 241 has an installation groove for accommodating the photosensitive element 242 , and the shape of the installation groove corresponds to the shape of the photosensitive element 242 .
  • the depth of the mounting groove may be equal to the thickness of the circuit board 241 .
  • the photosensitive element 242 can be completely embedded in the mounting groove of the circuit board 241 , and a reinforcing plate, such as a steel plate, can also be provided on the second surface 2412 of the circuit board 241 , for enhancing the strength of the circuit board 241 .
  • the depth of the mounting groove may be smaller than the thickness of the circuit board 241 , and when the photosensitive element 242 is embedded in the mounting groove, the photosensitive element 242 may protrude from the first surface 2411 of the circuit board 241 (as shown in FIG. 3 ) .
  • a reinforcing plate such as a steel plate, can also be provided on the second surface 2412 of the circuit board 241 to enhance the strength of the circuit board 241 .
  • the volume and weight of the photosensitive assembly 240 can be reduced as a whole by arranging the mounting groove on the circuit board 241 to match the photosensitive element 242 , which is beneficial to the anti-shake control accuracy of the photosensitive assembly 240 , and the anti-shake assembly 270 will be hereinafter described The specific structure and working principle are described in detail.
  • the electronic components 243 may be disposed on the first surface 2411 of the circuit board 241 and spaced apart from the photosensitive elements 242 . Specifically, the electronic component 243 can be mounted on the edge region of the first surface 2411 of the circuit board 241 and is spaced apart from the photosensitive element 242 by a certain distance.
  • the electronic components 243 may be implemented, for example, as capacitors, resistors, drive devices, or the like.
  • the molding seat 244 can be disposed on the first surface 2411 of the circuit board 241 and has a stepped light-passing hole corresponding to the light-sensing path of the light-sensing element 242 .
  • the stepped light-passing hole may have at least two cavities with different diameters, and the cavity farthest from the photosensitive element 242 may be the first cavity.
  • the molding seat 244 may have a top surface parallel to the first surface 2411 of the circuit board 241 , and the cavity of the stepped light through hole close to the photosensitive element 242 may have an inclined inner surface.
  • the molding seat 244 may be disposed on the edge region of the first surface 2411 of the circuit board 241 and not overlap with the photosensitive element 242 .
  • the molding seat 244 may be disposed on the edge area of the first surface 2411 of the circuit board 241 and overlap with the non-photosensitive area of the photosensitive element 242 (as shown in FIG. 3 ).
  • the molding seat 244 is used for molding the gold wire of the circuit board 241 in its interior, which can replace the traditional color filter holder while protecting the gold wire. Setting the molding seat 244 can not only reduce the weight of the camera module, but also reduce the height of the camera module.
  • the molding seat 244 covers the electronic components 243 and the connecting wires 246 and is integrally formed with the circuit board 241 through a molding process.
  • the electronic component 243 can be encapsulated inside the molding seat 244 .
  • the whole formed by the molding seat 244 and the circuit board 241 may further include a non-photosensitive area of the photosensitive element 242 .
  • the electronic component 243 is encapsulated between the molding seat 244 and the circuit board 241 , which can effectively protect the electronic component 243 .
  • the color filter 245 can be arranged in the first cavity of the stepped light-pass hole, and the thickness of the color filter 245 on the optical axis is less than or equal to the height of the first cavity of the stepped light-pass hole on the optical axis, and the filter A space is formed between the color chip 245 and the photosensitive element 242 .
  • the thickness of the color filter 245 is less than or equal to the height of the first cavity of the stepped light-pass hole on the optical axis
  • the color filter 245 and the top surface of the molding seat 244 can be in the same plane, or relative to the mold
  • the top surface of the plastic seat 244 is concave. This helps to reduce the overall height of the photosensitive component 240, thereby reducing the overall height of the camera module.
  • the use of the molded seat 244 to support the color filter 245 can eliminate the independently provided color filter mounting seat, which can reduce the volume and weight of the photosensitive assembly 240 as a whole, which is beneficial to the anti-shake control accuracy of the photosensitive assembly 240 , and the specific structure and working principle of the anti-shake assembly 270 will be described in detail below.
  • the color filter 245 may be implemented as an infrared cut filter, a fully transparent spectral filter, and other color filters or combinations of multiple color filters.
  • the electrical connection between the focusing component 260 and the circuit board 241 is realized through a laser circuit, and the electrical connection between the anti-shake component 270 and the circuit board 241 is realized.
  • Laser laser circuit is a circuit formed by laser laser.
  • the laser laser circuit of the present application can be formed by photochemical reaction, including methods such as photochemical deposition, stereolithography, laser engraving and etching.
  • a laser beam is used to irradiate the substrate of the focusing assembly 260, and based on the chemical agent arranged on the substrate, a circuit is formed by activating, initiating or controlling a photochemical reaction by means of high-energy photons.
  • the shape and configuration of the laser circuit can be attached to the substrate and can be freely designed and manufactured, and can be better suited for the zoom component 260 and the anti-shake component 270 that need to be moved.
  • the circuit board 241 of the photosensitive component 240 can be connected to the outside by using a structure such as a flexible board, and then a connector can be used to supply the same power to the zoom component 260 and the anti-shake component 270 . While ensuring the anti-shake performance, the volume of the camera module 200 is further reduced, and the installation space inside the device (eg, mobile phone) for setting the camera module 200 provided by the present application is saved.
  • a structure such as a flexible board
  • the plurality of lens structures used to form the optical system further includes: a third lens structure 230 arranged on the image side of the second lens structure 220 along the optical axis, and The first lens structure 210 is fixedly connected.
  • the first lens structure 210 includes a first lens 211 .
  • the first lens 211 is the lens located on the most object side, that is, the lens farthest from the photosensitive component 240 .
  • the lenses in the first lens structure 210 may be made of plastic or optical glass.
  • the first lens structure 210 may include a first lens barrel, and the lenses in the first lens structure 210 are connected to the first lens barrel by, for example, bonding, so as to carry and protect the lenses in the first lens structure 210 .
  • the object side of the first lens 211 farthest from the photosensitive component 240 may be a plane surface, so that the first lens 211 can be in contact with an external element such as a glass cover. It is completely fit during installation, which is beneficial to reduce the overall installation height of the camera module 200 .
  • the first lens structure 210 may include a plano-concave lens, and the object side of the plano-concave lens may be flat, and the image side may be concave. It should be understood that the first lens structure 210 may also be a single lens or a combination of multiple lenses in other forms. As long as the object side of the first lens 211 farthest from the photosensitive component 240 is flat and meets the requirements for optical imaging, a flat mounting plane can be provided for the external components.
  • the second lens structure 220 may include at least one lens, for example, two lenses, and the lenses in the second lens structure 220 may be made of optical plastic or optical glass.
  • the second lens structure 220 may include a second lens barrel, and the lenses in the second lens structure 220 are connected to the second lens barrel by, for example, gluing, so as to carry and protect the lenses in the second lens structure 220 .
  • the third lens structure 230 may include at least one lens, eg, three lenses, and the lenses in the third lens structure 230 may be made of plastic or optical glass.
  • the third lens structure 230 may include a third lens barrel, and the lenses in the third lens structure 230 are connected with the third lens barrel by, for example, gluing, so as to carry and protect the lenses in the third lens structure 230 .
  • the lenses of the first lens structure 210 , the second lens structure 220 , and the third lens structure 230 may together constitute an optical imaging system of the camera module 200 .
  • the first lens structure 210, the second lens structure 220 and the third lens structure 230 can be formed into a whole whose optical axes are located on the same straight line by, for example, bonding, so as to receive external image information and convert the image information into a whole. sent to the photosensitive component 240 .
  • the camera module 200 further includes: a mounting housing 250 for accommodating the first lens structure 210 and the second lens structure 220 .
  • the mounting housing 250 may only accommodate a portion of the first lens structure 210 that is biased toward the image side.
  • the focusing assembly 260 is fixedly connected to the first lens structure 210 through the installation casing 250 ;
  • the anti-shake assembly 270 is fixedly connected to the first lens structure 210 through the installation casing 250 .
  • the mounting shell 250 can accommodate the first lens structure 210, the second lens structure 220 and the third lens structure 230, and the mounting shell 250 can be fixed with the first lens structure 210 and the third lens structure 230 by, for example, bonding connection (not shown).
  • bonding connection not shown
  • the first lens structure 210 and the third lens structure 230 fixedly connected with the mounting housing 250 can remain in a static state in a working state.
  • At least one lens in the first lens structure 210, at least one lens in the second lens structure 220, and at least one lens in the third lens structure 230 may collectively form an optical system of the camera module 200.
  • the light incident on the object side passes through the first lens structure 210 , the second lens structure 220 and the third lens structure 230 in sequence, and is then received by the photosensitive component 240 and converted into photoelectricity.
  • the focusing assembly 260 may be designed in different styles according to the specific structure of the camera module 200 , and may include a driving part 261 and a fixing frame 262 .
  • the driving part 261 can be fixedly connected to the second lens structure 220 by means of, for example, bonding, threading and snapping. Specifically, the driving part 261 can be fixedly connected to the second lens barrel of the second lens structure 220 .
  • the fixing frame 262 can be fixedly connected with the mounting housing 250 .
  • the fixing frame 262 fixedly connected with the mounting shell 250 can remain in a stationary state.
  • the fixed frame 262 may define the driving part 261 to move in the direction of the optical axis.
  • the driving part 261 can move a slight distance along the optical axis of the second lens structure 220 relative to the fixed frame 262 . Since the optical axis of the first lens structure 210 , the optical axis of the second lens structure 220 and the optical axis of the third lens structure 230 are coaxial, and since the first lens structure 210 (and the third lens structure 230 ) are fixed to the fixing frame 262 Connected so as to remain fixed, the driving part 261 can drive the second lens structure 220 to move slightly relative to the first lens structure 210 along the optical axis, so as to realize the fine adjustment of the position of the second lens structure 220, so that the first lens structure 210 In a fixed state, the camera module 200 implements a focusing function in its interior, thereby effectively improving the quality of the generated image.
  • the second lens structure 220 fixedly connected to the driving part 261 is also The relative displacement along the optical axis can be generated with the third lens structure 230 , so as to realize the focusing function of the camera module 200 .
  • the focusing assembly 260 includes an extension portion 2613 located radially outside the third lens structure 230 and extending to the anti-shake assembly 270 in the direction of the optical axis, and the focusing assembly is electrically connected to the circuit board 241 at the extension portion 2613.
  • the driving part 261 may be a rectangular parallelepiped having a central through structure, which can accommodate the second lens structure 220 and is fixedly connected to the second lens structure 220 .
  • a first magnetic structure 2611 is provided on the extension portion 2613 thereof.
  • two first ball grooves 2612 are symmetrically disposed on both sides of the first magnetic structure 2611, and the first ball grooves 2612 are spaced apart from the first magnetic structure 2611.
  • the extending direction of the first ball groove 2612 is parallel to the optical axis direction of the second lens structure 220 .
  • the extending direction of the first ball groove 2612 is parallel to the optical axis direction.
  • the fixed frame 262 can be used for accommodating the driving part 261 , and a first coil structure 2621 and a second ball groove 2622 are provided at positions corresponding to the extending part 2613 of the driving part 261 .
  • a plurality of first balls 263 may be disposed in the space formed between the first ball groove 2612 and the second ball groove 2622, and the size of the first ball 263 may be matched with the size of the first ball groove 2612 and the second ball groove 2622 .
  • the first ball groove 2612 and the second ball groove 2622 are formed with at least a pair of substantially parallel planes, and the diameter of the first ball 263 is equivalent to the distance between the at least one pair of planes.
  • the first ball grooves 2612 are displaced in parallel with respect to the second ball grooves 2622 along the optical axis direction.
  • the diameter of the first balls 263 is equivalent to the distance between a pair of planes
  • the focusing assembly 260 further includes a cage, which is used to keep the plurality of first balls 263 in relative positions.
  • the first magnetic structure 2611 and the first coil structure 2621 When the first coil structure 2621 applies current, according to the principle of electromagnetic induction, due to the magnetic force between the first coil structure 2621 and the first magnetic structure 2611, the first magnetic structure 2611 and the first coil structure 2621 generate a relative force . Specifically, when the electromagnetic force induced by the current applied by the first coil structure 2621 acts on the first magnetic structure 2611, the fixing frame 262 provided with the first coil structure 2621 is fixed. Therefore, the driving part 261 provided with the first magnetic structure 2611 moves along the optical axis along the first ball groove 2612 and the second ball groove 2622 and the plurality of first balls 263 matched therewith.
  • the second lens structure 220 fixedly connected with the driving part 261 can be moved along the optical axis direction, and since the first lens structure 210 and the third lens structure 230 are fixed, the second lens structure 220 can be moved
  • the relative position of 220 relative to the first lens structure 210 and the third lens structure 230 along the optical axis direction changes, and the focusing of the camera module 200 can be achieved by adjusting the relative positions of the respective lens structures.
  • the focusing function in the camera module 200 can be realized, and the principle is simple, easy to implement, and beneficial to cost saving.
  • the balls and ball grooves cooperate to reduce friction and help improve the sensitivity when focusing.
  • the specific structural form and implementation manner of the driving part and the fixed frame are not limited to this, and other forms can also be used to cause the driving part and the fixed frame to move relative to each other in a defined direction.
  • the present application enables an optical system composed of a plurality of lens structures to realize the internal focusing function, which is beneficial to reduce the overall installation height of the camera module, and is beneficial to the lightness and thinness of the camera module.
  • FIG. 7 is a schematic structural diagram of an anti-shake assembly 270 according to an embodiment of the present application.
  • FIG. 8 is an assembly plan view of the movable portion 271 according to the embodiment of the present application.
  • the movable portion 271 may be a rectangular parallelepiped having a central through structure, and the central through structure may correspond to the photosensitive path of the photosensitive component 240 and be fixedly connected to the photosensitive component 240 , for example , the bottom surface of the movable portion 271 can be fixedly connected with the top surface of the molding seat 244 of the photosensitive component 240 .
  • Second magnetic structures 2711 may be provided on two adjacent side surfaces of the movable portion 271 , and third ball grooves 2712 may be provided in four corner areas of the top surface of the movable portion 271 .
  • the plane where the third ball groove 2712 is located may be perpendicular to the optical axis.
  • the fixed part 272 can be used for accommodating the movable part 271 , and at the positions of the fixed part 272 corresponding to the second magnetic structure 2711 and the third ball groove 2712 , a second coil structure 2721 and a fourth ball groove 2722 are respectively provided.
  • a plurality of second balls 273 may be disposed in spaces formed between the third ball grooves 2712 and the fourth ball grooves 2722 , and the sizes of the second balls 273 may be matched with the third ball grooves 2712 and the fourth ball grooves 2722 .
  • the second magnetic structure 2711 moves relative to the second coil structure 2721 due to the magnetic force between the second coil structure 2721 and the second magnetic structure 2711 .
  • the fixing portion 272 provided with the second coil structure 2721 is The movable portion 271 is fixed, and thus the movable portion 271 provided with the second magnetic structure 2711 can drive the photosensitive element 240 to move along the y-axis direction.
  • the fixing portion 272 provided with the second coil structure 2721 is fixed. Therefore, the movable portion 272 provided with the second magnetic structure 2722 can drive the photosensitive element 240 to move along the x-axis direction. In this way, the movable part 272 can drive the photosensitive assembly 240 to move relatively on the xy plane.
  • the anti-shake assembly 270 can make the photosensitive assembly 240 move in a direction perpendicular to the optical axis.
  • the specific structural forms and implementation manners of the movable portion and the fixed portion are not limited thereto, and other forms may also be used to cause the movable portion and the fixed portion to move relative to each other.
  • piezoelectric ceramics can be used for anti-shake components and zoom components.
  • the present application realizes the anti-shake effect of the camera module by adjusting the relative position of the photosensitive assembly by using the anti-shake component, which can avoid the degradation of the imaging quality by adjusting multiple sets of lenses, and is beneficial to improve the imaging quality of the camera module.
  • FIG. 9 is an assembly schematic diagram of the camera module 200 according to the embodiment of the present application.
  • the mounting housing 250 can accommodate the photosensitive assembly 240 .
  • the movable portion 271 is fixedly connected to the top surface of the photosensitive assembly 240
  • the outer periphery of the fixed portion 272 is fixedly connected to the inner side of the upper edge of the mounting housing 250 . This can not only effectively protect the photosensitive assembly 240 , but also ensure the flatness of the bottom of the camera module 200 .
  • the installation casing 250 is directly installed on the mobile terminal, the flatness of the overall structure of the camera module 200 after installation can be guaranteed.
  • the present application further provides a manufacturing method 1000 of a camera module, including:
  • subsequent lens structures including the third lens structure may also be arranged on the image side of the second lens structure along the optical axis of the first lens structure.
  • a focusing assembly is arranged on the image side of the first lens structure along the optical axis of the first lens structure. Wherein, the focusing assembly is used to limit the movement of the second lens structure along the direction of the optical axis.
  • the focusing assembly includes a driving part and a fixed frame.
  • Steps S101 and S102 may be completed synchronously, that is, before steps S101 and S102, the steps include: fixing the fixing frame to the first lens structure; and fixing the driving part to the second lens structure. Furthermore, when the two lens structures are arranged along the optical axis, the setting of the focusing assembly is achieved synchronously.
  • step S103 disposing a photosensitive component including a circuit board on the image side of the second lens structure.
  • the second lens structure is located on the photosensitive path.
  • each lens structure along the optical axis is located on the photosensitive path, and among these lens structures, the first lens structure is the farthest from the photosensitive component.
  • the sequence of step S103 and step S101 is not limited, and can be selected according to assembly requirements.
  • an anti-shake assembly is provided at the photosensitive assembly, wherein the anti-shake assembly is used to drive the photosensitive assembly to move on a plane perpendicular to the optical axis.
  • the anti-shake assembly includes a fixed part and a movable part. Steps S103 and S104 may be performed simultaneously. Exemplarily, before steps S103 and S103, it includes: fixedly connecting the fixed part with the first lens structure (for example, fixedly connected by a fixed frame or a casing); fixedly connecting the movable part with the photosensitive assembly, and then connecting the first lens When the structure (and other components connected with the first lens structure) are arranged on the photosensitive path of the photosensitive component, the steps of arranging the anti-shake component are simultaneously realized.
  • the first lens structure for example, fixedly connected by a fixed frame or a casing
  • the steps of arranging the anti-shake component are simultaneously realized.
  • S105 electrically connect the anti-shake component and the circuit board and electrically connect the focusing component and the circuit board.
  • it may include forming a laser laser circuit on the anti-shake component or the focusing component; and electrically connecting the anti-shake component or the focusing component and the circuit board through the laser laser circuit.
  • FIG. 11 is a schematic diagram of the assembly of the camera module according to the embodiment of the present application.
  • the third lens structure 230 , the second lens structure 220 and the first lens structure 210 can be arranged in sequence on the on the photosensitive path of the photosensitive assembly (not shown).
  • the photosensitive assembly can be first set in the installation housing 250' and its position is relatively fixed, and then the third lens structure 230, the second lens structure 220 and the first lens structure 210 can be sequentially placed on the photosensitive path of the photosensitive assembly so that the optical axes of the three are in the same straight line.
  • the stability of the overall structure can be ensured, and the lens assembly is accommodated in the mounting housing 250', which can ensure the compactness of each lens structure, thereby reducing the assembly height of the assembled camera module.
  • a split assembly method can also be used, that is, the positions of the first lens structure, the second lens structure, and the third lens structure are relatively fixed, and the lenses of the three are used for imaging together.
  • the optical axes of the first lens structure, the second lens structure assembled with the focusing assembly, and the third lens structure can be adjusted to form an imageable optical lens. components. After that, it is assembled with other structures of the camera module. Specifically, machine vision and active alignment technology can be used to make the optical axes of the first to third lens structures in the same straight line.
  • the following steps may also be included: the first lens structure and the third lens structure are fixedly connected to the mounting housing, and the driving part is fixedly connected to the second lens structure.
  • the camera module manufactured by the method 1000 realizes the focusing function by adjusting the relative distance between each lens structure in the optical system. In this way, the overall height of the camera module can be effectively reduced, which is beneficial to the lightening and thinning of the camera module.
  • FIG. 12 is a schematic structural diagram of a mobile terminal 20 according to an embodiment of the present application.
  • FIG. 13 is a left side view of the mobile terminal 20 of FIG. 12 .
  • the mobile terminal 20 includes a body casing 202 and at least one camera module 200 as described in any of the above embodiments, for example, two.
  • the camera module 200 may be disposed inside the body casing 202 , and the body casing 202 may have a mounting hole matching the photosensitive path of the camera module 200 .
  • the object side of the first lens may be on the same plane as the outer surface of the body housing 202 .
  • the mobile terminal 20 with the camera module 200 installed in this way can avoid the problem that the camera module 200 is too high to protrude from the body shell 202 of the mobile terminal 20, which is beneficial to improve the user's operating experience.
  • the camera module 200 can also be applied to the side of the mobile terminal 20 with the display panel, which not only prevents the camera module from protruding from the body casing, but also ensures the imaging quality of the front camera module.

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Adjustment Of Camera Lenses (AREA)
  • Studio Devices (AREA)

Abstract

本申请提供了一种摄像模组及其制造方法。该摄像模组包括:感光组件,包括线路板;第一镜头结构,设置在感光组件的感光路径上;第二镜头结构,设置于第一镜头结构和感光组件之间,其中,共同用于成像,第一镜头结构比第二镜头结构距离感光组件更远;对焦组件,与线路板电连接,并用于限定第二镜头结构沿着第一镜头结构的光轴方向移动;以及防抖组件,与线路板电连接,并用于驱动感光组件在垂直于第一镜头结构的光轴的平面上移动。

Description

摄像模组、制造方法以及移动终端 技术领域
本申请涉及光学器件技术领域,更具体地,涉及摄像模组、制造方法以及移动终端。
背景技术
近年来,移动终端诸如手机等逐渐向着轻薄化、高性能的方向发展。手机的轻薄化有助于提升用户手持体验。因而,手机厂商对作为手机的标准配置之一的摄像模组也提出了相应的要求。
为了满足用户对成像品质的要求,摄像模组通常需要具备高像素、长焦距、大光圈、自动对焦以及防抖等多种功能,而集成这些功能往往会导致摄像模组的尺寸增加,尤其会使摄像模组的高度增加。
摄像模组的高度增加和手机轻薄化会造成组装后的摄像模组凸出于手机的后部外壳,并在手机的背侧形成凸起。这会使手机置于桌面或其他平面时,处于倾斜且不稳定的状态,影响用户的操作体验。更为重要的是,摄像模组凸出于手机后盖,会使得摄像模组或者摄像模组外侧的保护盖板有极大的损坏风险,例如磕碰或者摔落都极易导致划痕和裂缝的产生,从而影响摄像模组成像。
发明内容
本申请提供了一种可至少部分解决上述技术问题的摄像模组、制造方法以及移动终端。
本申请一方面提供了一种摄像模组,包括:感光组件,包括线路板;第一镜头结构,设置在感光组件的感光路径上;第二镜头结构,设置在第一镜头结构和感光组件之间,其中,共同用于成像,且第一镜头结构比第二镜头结构距离感光组件更远;对焦组件,与线路板电连接,并用于限定第二镜头结构沿着第一镜头结构的光轴方向移动;以及防抖组件,与线路板电连接,并用于驱动感光组件在垂直于第一 镜头结构的光轴的平面上移动。
在一个实施方式中,通过激光镭射电路实现对焦组件与线路板的电连接,并实现防抖组件与线路板的电连接。
在一个实施方式中,对焦组件包括:驱动部,与第二镜头结构固定连接;以及固定框架,与第一镜头结构固定连接,并限定驱动部沿着第一镜头结构的光轴的方向移动。
在一个实施方式中,驱动部设置有至少一个第一磁性结构,并且设置有平行于第一镜头结构的光轴的至少一个第一滚珠槽;固定框架设置有至少一个第一线圈结构和至少一个第二滚珠槽,其中,第一线圈结构的位置与第一磁性结构的位置相对应,第一滚珠槽的位置与第二滚珠槽的位置相对应;以及对焦组件还包括:位于第一滚珠槽和第二滚珠槽之间的多个第一滚珠。
在一个实施方式中,防抖组件包括:可动部,与感光组件固定连接;固定部,与第一镜头结构固定连接,并用于驱动可动部在垂直于第一镜头结构的光轴的平面上移动。
在一个实施方式中,可动部设置有至少一个第二磁性结构,并且设置有垂直于第一镜头结构的光轴的多个第三滚珠槽;固定部设置有至少一个第二线圈结构和至少一个第四滚珠槽,其中,第二线圈结构的位置与第二磁性结构的位置相对应,第四滚珠槽的位置与第三滚珠槽的位置相对应;以及防抖组件还包括:位于第三滚珠槽和第四滚珠槽之间的多个第二滚珠。
在一个实施方式中,摄像模组还包括:安装外壳,用于容纳第一镜头结构和第二镜头结构;对焦组件通过安装外壳与第一镜头结构固定连接;防抖组件通过安装外壳与第一镜头结构固定连接。
在一个实施方式中,安装外壳容纳感光组件,可动部与感光组件的顶面固定连接,固定部的外周与安装外壳的上部边缘的内侧固定连接。
在一个实施方式中,还包括:第三镜头结构,设置于第二镜头结构与感光组件之间,通过安装外壳与第一镜头结构固定连接;对焦组件包括位于第三镜头结构的径向外侧并沿第一镜头结构的光轴的方向 延伸至防抖组件的延伸部,对焦组件与感光组件的线路板电连接于延伸部。
在一个实施方式中,第一镜头结构的至少一个透镜包括:最远离感光组件的第一透镜;第一透镜的物侧面为平面。
在一个实施方式中,第一透镜的像侧面为凹面。
在一个实施方式中,线路板,具有第一表面;以及感光组件包括:感光元件,设置于线路板的第一表面,并具有感光路径;电子元器件,设置于线路板的第一表面,并且与感光元件间隔设置;模塑座,设置于线路板的第一表面,并且具有与感光路径相对应的阶梯式通光孔,阶梯式通光孔包括远离感光元件的第一腔体;以及滤色片,设置于第一腔体内,并且滤色片在第一镜头结构的光轴上的厚度小于或者等于第一腔体在第一镜头结构的光轴上的高度。
在一个实施方式中,线路板具有容纳感光元件的安装槽,其中,安装槽的形状与感光元件的形状相对应。
在一个实施方式中,在线路板的与第一表面相对的第二表面设置有补强板,补强板与线路板的第二表面固定。
在一个实施方式中,安装槽的深度小于或者等于线路板的厚度。
在一个实施方式中,电子元器件被模塑座封装。
本申请另一方面提供了一种摄像模组的制造方法,包括:沿着第一镜头结构的光轴、在第一镜头结构的像侧设置第二镜头结构;沿着第一镜头结构的光轴在第一镜头结构的像侧设置对焦组件,其中,对焦组件用于限定第二镜头结构沿着第一镜头结构的光轴方向移动;在第二镜头结构的像侧设置包括线路板的感光组件,并使第二镜头结构位于感光组件的感光路径上;在感光组件处设置防抖组件,其中,防抖组件用于驱动感光组件在垂直于第一镜头结构的光轴的平面上移动;电连接防抖组件与线路板并且电连接对焦组件与线路板;其中,第一镜头结构比第二镜头结构距离感光组件更远。
在一个实施方式中,还包括:利用机器视觉和主动对准技术,调整第一镜头结构和第二镜头结构。
本申请的第三方面提供一种移动终端,包括:前述的摄像模组; 以及机体外壳,内部设置有摄像模组,包括与摄像模组的感光路径相匹配的安装孔。
在一个实施方式中,第一镜头结构的至少一个透镜中最远离感光元件的第一透镜的物侧面与机体外壳的外表面处于同一平面。
本申请提供了一种采用在光学系统内部实现对焦功能并在光学系统的像侧实现防抖功能的摄像模组。该摄像模组的整体高度低、具有轻薄化的特点。而且通过对线路的布置,实现了对焦组件和防抖组件的配合使用,继而使摄像模组具有更好的防抖功能。
附图说明
通过阅读参照以下附图所作的对非限制性实施例所作的详细描述,本申请的其它特征、目的和优点将会变得更明显:
图1是现有的摄像模组的装配结构示意图;
图2是根据本申请实施方式的一种摄像模组的剖面示意图;
图3是根据本申请实施方式的感光组件的剖面示意图;
图4是根据本申请实施方式的另一种摄像模组的剖面示意图;
图5是根据本申请实施方式的一种固定框架的结构示意图;
图6是根据本申请实施方式的驱动部的结构示意图;
图7是根据本申请实施方式的防抖组件的结构示意图;
图8是根据本申请实施方式的可动部的装配平面图;
图9是根据本申请实施方式的另一种摄像模组的装配示意图;
图10是根据本申请实施方式的摄像模组制造方法的流程图;
图11是根据本申请实施方式的镜头模组的装配示意图;
图12是根据本申请实施方式的移动终端的结构示意图;以及
图13是图12的移动终端的左视图。
具体实施方式
为了更好地理解本申请,将参考附图对本申请的各个方面做出更详细的说明。应理解,这些详细说明只是对本申请的示例性实施方式的描述,而非以任何方式限制本申请的范围。
本文使用的术语是为了描述特定示例性实施方式的目的,并且不意在进行限制。当在本说明书中使用时,术语“包含”、“包含有”、“包括”和/或“包括有”表示存在所述特征、整体、元件、部件和/或它们的组合,但是并不排除一个或多个其它特征、整体、元件、部件和/或它们的组合的存在性。
本文参考示例性实施方式的示意图来进行描述。本文公开的示例性实施方式不应被解释为限于示出的具体形状和尺寸,而是包括能够实现相同功能的各种等效结构以及由例如制造时产生的形状和尺寸偏差。附图中所示的位置本质上是示意性的,而非旨在对各部件的位置进行限制。
除非另有限定,否则本文使用的所有术语(包括技术术语和科学术语)具有与本公开所属技术领域的普通技术人员的通常理解相同的含义。诸如常用词典中定义的术语应被解释为具有与其在相关领域的语境下的含义一致的含义,并且将不以理想化或过度正式的意义来解释,除非本文明确地如此定义。
图1是现有的摄像模组100的装配结构示意图。如图1所示,现有的摄像模组100包括镜头组件110、驱动马达120以及感光组件130。
驱动马达120可具有驱动单元和固定单元(未示出),驱动单元与镜头组件110固定连接,通过使驱动单元相对于固定单元进行不同方向的移动,可使与驱动单元固定连接的镜头组件110发生相对移动,从而实现摄像模组100的对焦和防抖功能。
通常而言,将摄像模组100安装于移动终端例如手机时,需要在镜头组件110的远离感光组件130的上方设置玻璃盖板101,以保护摄像模组100的内部结构。并且在镜头组件110和玻璃盖板101的之间需要预留出镜头组件110的可移动空间。也就是说,镜头组件110和玻璃盖板之间具有高度为H1的镜头组件110的可移动空间,以实现摄像模组的对焦功能。因此,摄像模组100安装于手机中的安装高度可由可移动空间的高度H1、驱动马达120的高度H2以及感光组件130的高度H3组成。
将现有的摄像模组100安装于手机时,由于手机的厚度的限制, 会造成摄像模组100安装后凸出于手机的机体外壳,例如后部外壳,从而影响手机的性能。
下面将结合附图详细地描述本申请实施方式的摄像模组。
图2是根据本申请实施方式的摄像模组200的剖面结构示意图。如图2所示,摄像模组200可包括:第一镜头结构210、第二镜头结构220、感光组件240、对焦组件260以及防抖组件270。
第一镜头结构210中的透镜和第二镜头结构220中的透镜可共同组成摄像模组200的光学系统,并且可保持在感光组件240的感光路径上。该光学系统的成像面可位于感光组件240处。光学系统包括沿光学系统的光轴由物侧至像侧设置的至少两个镜头结构,其中,在沿光轴方向上第一镜头结构210位于最物侧的位置。
由物侧入射的成像光线依次经过第一镜头结构210和第二镜头结构220,进而被感光组件240接收并进行光电转化,形成关于物体的图像。具体地,对于光学系统而言,被摄物体一侧可称为物侧,感光组件240一侧可称为像侧。在本实施例中,第一镜头结构210和第二镜头结构220配合后,共同用于调节光线并使光线传输到用于成像的感光组件240上。
对焦组件260可包括驱动部261和固定框架262,驱动部261与第二镜头结构220固定连接,固定框架262可与第一镜头结构210固定连接,并限定驱动部261沿着光轴的方向移动,驱动部261可使第二镜头结构220与第一镜头结构210在光轴方向上发生相对位移,从而实现摄像模组200的对焦功能。
防抖组件270可根据摄像模组200的抖动调整感光组件240的位移,从而补偿摄像模组200的抖动。防抖组件270包括可动部271和固定部272。可动部271可通过例如粘接等方式与感光组件240固定连接。
固定部272可通过固定框架262与第一镜头结构210固定连接。示例性地,固定部272、固定框架262与第一镜头结构210三者可通过安装外壳250固定连接。通常而言,当安装外壳250安装于移动终端例如手机时,与安装外壳250固定连接的固定部272可保持静止状 态。并且固定部272可驱动可动部271在垂直于光轴的平面上移动。
具体地,当固定部272固定不动时,可动部271可相对于固定部272在垂直于光轴的平面上可移动。具体地,可动部271可用于移动微小的距离。由于固定部272与第一镜头结构210固定连接而保持固定不动,可动部271可带动感光组件240沿着垂直于光轴的方向微小地移动,从而实现摄像模组200的防抖功能。
对焦组件260和防抖组件270都与感光组件240的线路板电连接。相比于传统的利用导线将驱动马达与外部电路电连接的方式,将内置的对焦组件260和防抖组件270与感光组件240的线路板电连接,可以使摄像模组进一步的小型化,而且便于实现对两个组件同时电连接。
示例性地,为了配合对焦组件260和防抖组件270,使摄像模组200进一步地小型化,可以基于镜头切边(Lens Dcut)技术对第二镜头结构中的透镜进行切边,以去除位于感光组件240的感光路径之外的镜头部分。
本申请实施方式提供了一种采用在光学系统内部实现对焦功能并在光学系统的像侧实现防抖功能的摄像模组200。该摄像模组200不必再设置采用常规驱动马达结构时需要预留的可移动空间,而是利用了位于第一镜头结构210和感光组件240之间的第二镜头结构220。第二镜头结构220在其物侧和像侧的一定空间内移动来实现摄像模组200对焦,这样有利于降低摄像模组200的整体高度,并且有利于摄像模组200的轻薄化。而且通过对线路的布置,实现了对焦组件260和防抖组件270的配合使用,继而使摄像模组200具有更好的防抖功能。还通过使感光组件240整体在垂直于光轴的平面上移动,可确保感光组件240的线路板241和感光元件242同步移动,从而有效地保护两者之间的线路连接,保证工作状态下的电流供给。
图3是根据本申请实施方式的感光组件240的剖面结构示意图。如图3所示,感光组件240可包括线路板241、感光元件242、电子元器件243、模塑座244以及滤色片245。
线路板241可作为感光组件240的基板,用于承载感光组件240的其他部分。线路板241可具有第一表面2411和与第一表面2411相 对的第二表面2412。
感光元件242可设置于线路板241的第一表面2411。具体地,感光元件242可贴装于线路板241的第一表面2411的中心区域。感光元件242和线路板241可通过连接线246与围绕线路板241的中心区域的边缘区域电连接。
示例性地,感光元件242可为感光耦合元件(CCD)或互补性氧化金属半导体元件(COMS)。并且感光元件242可包括位于中心的感光区域和围绕感光区域的非感光区域。感光元件242的感光区域可接收经由包括第一镜头结构210和第二镜头结构220的光学系统的光线,并且具有与感光区域相对应的感光路径。
示例性地,连接线246可为金线。在感光元件240贴装于线路板241后,通过打金线工艺使金线的一端连接感光元件242,另一端连接线路板241。本领域技术人员应理解的是,连接线246还可为其他类型,例如银线、铜线等。
在一个实施方式中,所述线路板241具有容纳感光元件242的安装槽,并且该安装槽的形状与感光元件242的形状相对应。示例性地,安装槽的深度可等于线路板241的厚度。当感光元件242的厚度小于或等于线路板241的厚度时,感光元件242可完全地嵌入线路板241的安装槽中,并且还可在线路板241的第二表面2412设置补强板,例如钢板,用于增强线路板241的强度。
作为一种选择,安装槽的深度可小于线路板241的厚度,当感光元件242嵌入至该安装槽时,感光元件242可凸出于线路板241的第一表面2411(如图3所示)。同样地,还可在线路板241的第二表面2412设置补强板,例如钢板,用于增强线路板241的强度。
通过在线路板241上设置与感光元件242配合的安装槽可整体上减小感光组件240的体积和重量,有利于对感光组件240的防抖控制精确度,并且将在下文中对防抖组件270的具体结构以及工作原理进行详细地描述。
电子元器件243可设置于线路板241的第一表面2411,并与感光元件242间隔设置。具体地,电子元器件243可贴装于线路板241的 第一表面2411的边缘区域,并且与感光元件242间隔一定的距离。电子元器件243可例如被实施为电容、电阻、驱动器件等。
模塑座244可设置于线路板241的第一表面2411,并且具有阶梯式通光孔,阶梯式通光孔与感光元件242的感光路径相对应。阶梯式通光孔可具有直径不同的至少两个腔体,并且最远离感光元件242的腔体可为第一腔体。
在一个实施方式中,模塑座244可具有平行于线路板241的第一表面2411的顶面,并且阶梯式通光孔靠近感光元件242的腔体可具有倾斜的内侧面。示例性地,模塑座244可设置于线路板241的第一表面2411边缘区域,并且与感光元件242不重叠。作为一种选择,模塑座244可设置于线路板241的第一表面2411的边缘区域,并与感光元件242的非感光区域重叠(如图3所示)。
模塑座244用于将线路板241的金线模塑在其内部,在保护金线的同时可以取代传统的滤色片支架。设置模塑座244不仅可以减轻摄像模组的重量,还可以降低摄像模组的高度。
在一个实施方式中,模塑座244包覆电子元器件243和连接线246通过模塑工艺与线路板241形成整体。换言之,电子元器件243可被模塑座244封装于其内部。示例性地,模塑座244与线路板241所形成的整体还可包括感光元件242的非感光区域。将电子元器件243封装于模塑座244和线路板241之间,可有效地保护电子元器件243。
滤色片245可设置于阶梯式通光孔的第一腔体内,并且滤色片245在光轴上的厚度小于或者等于阶梯式通光孔的第一腔体在光轴上的高度,滤色片245与感光元件242之间形成间隔空间。当滤色片245的厚度小于或者等于阶梯式通光孔的第一腔体在光轴上的高度时,可使滤色片245与模塑座244的顶面处于一个平面,或者相对于模塑座244的顶面凹陷。这样有助于降低感光组件240的整体高度,从而降低摄像模组的整体高度。此外,采用模塑座244支撑滤色片245,可取消独立设置的滤色片安装座,这样可整体上减小感光组件240的体积和重量,有利于对感光组件240的防抖控制精确度,并且将在下文中对防抖组件270的具体结构以及工作原理进行详细地描述。
示例性地,滤色片245可被实施为红外截止滤色片、全透光谱滤色片以及其他滤色片或者多个滤色片的组合。
在示例性实施方式中,通过激光镭射电路实现对焦组件260与线路板241的电连接,并实现防抖组件270与线路板241的电连接。
激光镭射电路是利用镭射激光方式形成的电路。具体地,根据激光束与材料相互作用的机理,本申请的镭射激光电路可以是利用光化学反应形成的,包括光化学沉积、立体光刻、激光雕刻刻蚀等方法。例如用镭射激光束照射到对焦组件260的基体,基于在基体设置的化学剂,借助高能光子活化、引发或控制光化学反应而形成电路。激光镭射电路的形态、构型可以贴合于基体并比较自由的设计和制造出,能较好地适用于需要移动的变焦组件260和防抖组件270。
感光组件240的线路板241可利用软板等结构与外部连接,进而可利用一个连接器对变焦组件260和防抖组件270同一供电。在保证防抖性能的同时进一步减小了摄像模组200的体积,并节省了设置本申请提供给的摄像模组200的设备(例如手机)等内部的安装空间。
参考图2和图4,在示例性实施方式中,用于形成光学系统的多个镜头结构中还包括:第三镜头结构230,其沿光轴设置于第二镜头结构220的像侧,与第一镜头结构210固定连接。
在示例性实施方式中,第一镜头结构210包括第一透镜211。当第一镜头结构210包括多个透镜时,第一透镜211是其中位于最物侧的透镜,也即最远离感光组件240的透镜。
第一镜头结构210中的透镜可由塑料或者光学玻璃制成。示例性地,第一镜头结构210可包括第一镜筒,通过例如粘接将第一镜头结构210中的透镜与第一镜筒连接,用于承载并保护第一镜头结构210中的透镜。
在一个实施方式中,第一镜头结构210的至少一个透镜中,最远离感光组件240的第一透镜211的物侧面可为平面,这样可使第一透镜211与外部元件例如玻璃盖板在接触安装时完全贴合,有利于降低摄像模组200的整体安装高度。
示例性地,第一镜头结构210可包括一个平凹透镜,并且平凹透 镜的物侧面可为平面,像侧面可为凹面。应理解的是,第一透镜结构210还可为其他形式的单个透镜或多个透镜的组合。只要满足最远离感光组件240的第一透镜211的物侧面为平面且满足光学成像的要求,即可为外部元件提供一个平坦的安装平面。
同样地,第二镜头结构220可包括至少一个透镜,例如两个透镜,第二镜头结构220中的透镜可由光学塑胶或者光学玻璃制成。示例性地,第二镜头结构220可包括第二镜筒,通过例如粘接将第二镜头结构220中的透镜与第二镜筒连接,用于承载并保护第二镜头结构220中的透镜。
第三镜头结构230可包括至少一个透镜,例如三个透镜,第三镜头结构230中的透镜可由塑料或者光学玻璃制成。示例性地,第三镜头结构230可包括第三镜筒,通过例如粘接将第三镜头结构230中的透镜与第三镜筒连接,用于承载并保护第三镜头结构230中的透镜。
第一镜头结构210、第二镜头结构220以及第三镜头结构230的透镜可共同构成摄像模组200的光学成像系统。示例性地,可通过例如粘接的方式使第一镜头结构210、第二镜头结构220以及第三镜头结构230形成光轴位于同一直线的整体,用于接收外部的图像信息,并将图像信息传送至感光组件240。
参考图4,示例性地,摄像模组200还包括:安装外壳250,用于容纳第一镜头结构210和第二镜头结构220。示例性地,安装外壳250可只容纳第一镜头结构210中偏向像侧的部分结构。对焦组件260通过安装外壳250与第一镜头结构210固定连接;防抖组件270通过安装外壳250与第一镜头结构210固定连接。
进一步地,安装外壳250可容纳第一镜头结构210、第二镜头结构220和第三镜头结构230,并且安装外壳250可与第一镜头结构210、第三镜头结构230通过例如粘接的方式固定连接(未示出)。当安装外壳250安装于移动终端例如手机时,在工作状态时,与安装外壳250固定连接的第一镜头结构210和第三镜头结构230可保持静止状态。
第一镜头结构210中的至少一个透镜、第二镜头结构220中的至少一个透镜和第三镜头结构230中的至少一个透镜可共同组成摄像模 组200的光学系统。物侧入射的光线依次经由第一镜头结构210、第二镜头结构220和第三镜头结构230,进而被感光组件240接收并进行光电转化。
参考图2和图4,对焦组件260可根据摄像模组200的具体构造设计成不同的样式,可包括驱动部261和固定框架262。驱动部261可通过例如粘接、螺纹以及卡扣等方式与第二镜头结构220固定连接,具体地,驱动部261可与第二镜头结构220的第二镜筒固定连接。
固定框架262可与安装外壳250固定连接。通常而言,当安装外壳250安装于移动终端例如手机时,与安装外壳250固定连接的固定框架262可保持静止状态。此外,固定框架262可限定驱动部261沿着光轴的方向移动。
具体地,当固定框架262固定不动时,驱动部261可相对于固定框架262沿着第二镜头结构220的光轴移动微小的距离。由于第一镜头结构210的光轴、第二镜头结构220的光轴以及第三镜头结构230的光轴同轴,并且由于第一镜头结构210(和第三镜头结构230)与固定框架262固定连接从而保持固定不动,驱动部261可带动第二镜头结构220相对于第一镜头结构210沿着光轴微小地移动,实现第二镜头结构220的位置的微调,从而使第一镜头结构210在保持固定不动的状态下,使摄像模组200在其内部实现对焦功能,从而有效地提高生成的图像质量。
应理解的是,当对焦组件260的固定框架262与第三镜头结构230固定连接时,由于固定框架262对驱动部261的限定移动的作用,与驱动部261固定连接的第二镜头结构220也可与第三镜头结构230产生沿着光轴的相对位移,从而实现摄像模组200的对焦功能。
参考图4和图5,示例性地,对焦组件260包括位于第三镜头结构230的径向外侧并沿光轴的方向延伸至防抖组件270的延伸部2613,对焦组件与线路板241电连接于延伸部2613。
具体地参考图5,驱动部261可为具有中部贯通结构的长方体,中部贯通结构可容纳第二镜头结构220,并且与第二镜头结构220固定连接。可选地,在其延伸部2613设置有第一磁性结构2611。在延 伸部2613的侧面上,位于第一磁性结构2611的两侧对称地设置两个第一滚珠槽2612,并且第一滚珠槽2612与第一磁性结构2611间隔设置。此外,第一滚珠槽2612的延伸方向平行于第二镜头结构220的光轴方向。换言之,第一滚珠槽2612的延伸方向平行于光轴方向。
固定框架262可用于容纳驱动部261,在与驱动部261的延伸部2613相对应的位置设置有第一线圈结构2621和第二滚珠槽2622。
多个第一滚珠263可设置于第一滚珠槽2612和第二滚珠槽2622之间形成的空间,并且第一滚珠263的尺寸可与第一滚珠槽2612和第二滚珠槽2622的尺寸相匹配。具体地,第一滚珠槽2612与第二滚珠槽2622形成有至少一对大致平行的平面,第一滚珠263的直径与至少一对平面的间距相当。受第一滚珠263的支撑作用,当驱动部261受力时,第一滚珠槽2612相对第二滚珠槽2622沿光轴方向平行错动。进一步地,第一滚珠263的直径与一对平面的间距相当,对焦组件260还包括保持架,保持架用于使多个第一滚珠263保持相对位置。
当第一线圈结构2621施加电流时,根据电磁感应原理,由于第一线圈结构2621和第一磁性结构2611之间的磁力作用,从而使第一磁性结构2611与第一线圈结构2621产生相对作用力。具体地,当第一线圈结构2621施加的电流所感应的电磁力作用于第一磁性结构2611时,由于设置有第一线圈结构2621的固定框架262为固定不动的。因而,设置有第一磁性结构2611的驱动部261,沿着第一滚珠槽2612和第二滚珠槽2622以及与之相配合的多个第一滚珠263,产生沿着光轴方向的移动。从而可使与驱动部261固定连接的第二镜头结构220产生沿着光轴方向的移动,又由于第一镜头结构210和第三镜头结构230为固定不动的,因而可使第二镜头结构220相对于第一镜头结构210和第三镜头结构230的产生沿着光轴方向上的相对位置的变化,通过调整各个镜头结构之间的相对位置可实现摄像模组200的对焦。
通过线圈与磁性结构相配合以及滚珠与滚珠槽相配合,可实现在摄像模组200的内部对焦功能,其原理简单、易于实现、利于节约成本。此外,滚珠与滚珠槽相配合还可减小摩擦,并且有利于提升对焦时的灵敏度。
本领域技术人员应理解的是,驱动部和固定框架的具体结构形式以及实现方式不限于此,还可采用其他的形式使驱动部和固定框架在限定的方向上产生相对移动。本申请可使多个镜头结构构成的光学系统实现内部对焦功能,有利于降低摄像模组的整体安装高度,有利于摄像模组的轻薄化。
图7是根据本申请实施方式的防抖组件270的结构示意图。图8是根据本申请实施方式的可动部271的装配平面图。如图7和图8所示,在一个实施方式中,可动部271可为具有中部贯通结构的长方体,中部贯通结构可对应于感光组件240的感光路径,并且与感光组件240固定连接,例如,可动部271的底面可与感光组件240的模塑座244的顶面固定连接。在可动部271的相邻的两个侧面上可设置有第二磁性结构2711,在可动部271的顶面的四个顶角区域可设置第三滚珠槽2712。当可动部271垂直于光轴布置时,第三滚珠槽2712所在的平面可垂直于光轴。
固定部272可用于容纳可动部271,并且在固定部272与第二磁性结构2711和第三滚珠槽2712相对应的位置,分别设置第二线圈结构2721和第四滚珠槽2722。
多个第二滚珠273可设置于第三滚珠槽2712和第四滚珠槽2722之间形成的空间,并且第二滚珠273的尺寸可与第三滚珠槽2712和第四滚珠槽2722相匹配。
当第二线圈结构2721施加电流时,根据电磁感应原理,由于第二线圈结构2721和第二磁性结构2711之间的磁力作用,使第二磁性结构2711相对于第二线圈结构2721产生相对移动。具体地,当平行于x轴方向上的第二线圈结构2721施加的电流所感应的电磁力与第二磁性结构2711相吸或相斥时,由于设置有第二线圈结构2721的固定部272为固定不动的,因而设置有第二磁性结构2711的可动部271可带动感光组件240沿着y轴方向移动。当平行于y方向上的第二线圈结构2721施加的电流所感应的电磁力与第二磁性结构2711相吸或相斥时,由于设置有第二线圈结构2721的固定部272为固定不动的,因而设置有第二磁性结构2722的可动部272可带动感光组件240沿着x 轴方向移动。这样就可使可动部272带动感光组件240在xy平面上相对移动,当光轴处于z轴方向时,防抖组件270可使感光组件240在垂直于光轴的方向上移动。
本领域技术人员应理解的是,可动部和固定部的具体结构形式以及实现方式不限于此,还可采用其他形式使可动部和固定部产生相对移动。例如,防抖组件和变焦组件可选用压电陶瓷。本申请通过利用防抖组件调整感光组件的相对位置而实现摄像模组防抖的效果,可以避免通过调整多组镜头而使成像质量下降,有利于提高摄像模组的成像质量。
图9是本申请实施方式的摄像模组200的装配示意图。如图9所示,在一个实施方式中,安装外壳250可容纳感光组件240。可动部271与感光组件240的顶面固定连接,固定部272的外周与安装外壳250的上部边缘的内侧固定连接。这样不仅可以有效地保护感光组件240,同时还可以保证摄像模组200的底部的平整度。当安装外壳250直接安装在移动终端时,可以保证安装以后摄像模组200整体结构的平整度。
参考图10,本申请还提供一种摄像模组的制造方法1000,包括:
S101,在第一镜头结构的像侧设置第二镜头结构。其中,还可以沿着第一镜头结构的光轴在第二镜头结构的像侧设置包括第三镜头结构在内的后续镜头结构。
S102,沿着第一镜头结构的光轴在第一镜头结构的像侧设置对焦组件。其中,对焦组件用于限定第二镜头结构沿着光轴方向移动。
示例性地,对焦组件包括驱动部和固定框架。步骤S101和步骤S102可同步完成,即在步骤S101和S102之前,包括:将固定框架与第一镜头结构固定连接;将驱动部与第二镜头结构固定连接。进而在沿光轴设置两个镜头结构时同步实现了设置对焦组件。
S103,在第二镜头结构的像侧设置包括线路板的感光组件。第二镜头结构位于感光路径上。其中,沿着光轴的各镜头结构都位于感光路径上,这些镜头结构中第一镜头结构距离感光组件最远。步骤S103与步骤S101的顺序不限定,可根据组装需求而选择。
S104,在感光组件处设置防抖组件,其中,防抖组件用于驱动感光组件在垂直于光轴的平面上移动。
示例性地,防抖组件包括固定部和可动部。步骤S103和S104可同时完成。示例性地,在步骤S103和S103之前,包括:将固定部与第一镜头结构固定连接(例如通过固定框架或外壳固定连接);将可动部与感光组件固定连接,进而在将第一镜头结构(以及与第一镜头结构连接的其他组件)设置于感光组件的感光路径上时,同时实现了设置防抖组件的步骤。
S105,电连接防抖组件与线路板并且电连接对焦组件与线路板。具体地,可包括在防抖组件或对焦组件上形成镭射激光电路;以及通过镭射激光电路电连接防抖组件或对焦组件与线路板。
图11是根据本申请实施方式的摄像模组的装配示意图,如图11所示,在一个实施方式中,可将第三镜头结构230、第二镜头结构220、第一镜头结构210依次设置于感光组件(未示出)的感光路径上。具体地,可先将感光组件设置在安装外壳250’内并且使其位置相对固定,然后将第三镜头结构230、第二镜头结构220以及第一镜头结构210依次设置于该感光组件的感光路径上,以使三者的光轴处于同一直线。采用这种组装方法,可保证整体结构的稳定性,并且镜头组件容纳在安装外壳250’内部,可保证各个镜头结构之间的紧凑性,从而降低组装的摄像模组的组装高度。
在另一实施方式中,也可利用分体式组装的方法,即将第一镜头结构、第二镜头结构以及第三镜头结构的位置相对固定,并使三者的透镜共同用于成像。示例性地,可在第二镜头结构与对焦组件进行组装后,调整第一镜头结构、与对焦组件组装的第二镜头结构以及第三镜头结构的光轴,以用于构成可成像的光学镜头组件。之后,再将其与摄像模组的其他结构进行组装。具体地,可利用机器视觉和主动对准技术使第一至第三镜头结构的光轴处于同一直线。
示例性地,还可以包括如下步骤:将第一镜头结构、第三镜头结构与安装外壳固定连接,并且将驱动部与第二镜头结构固定连接。
通过方法1000制造的摄像模组,通过调整光学系统内的各个镜头 结构之间的相对距离,实现对焦功能。这种方式可有效地降低摄像模组的整体高度,有利于摄像模组的轻薄化。
图12是本申请实施方式的移动终端20的结构示意图。图13是图12的移动终端20的左视图。如图12和图13所示,移动终端20包括机体外壳202和如上文中任一实施方式所描述的至少一个摄像模组200,例如两个。摄像模组200可设置于机体外壳202内部,并且机体外壳202可具有与摄像模组200的感光路径相匹配的安装孔。
在一个实施方式中,当第一镜头结构包括所述第一透镜时,第一透镜的物侧面可与机体外壳202的外表面处于同一平面。这样安装有摄像模组200的移动终端20,可避免摄像模组200的高度过高而造成的凸出于移动终端20的机体外壳202的问题,这样有利于提高用户的操作体验。
在一个实施方式中,摄像模组200还可以应用于移动终端20的具有显示面板的一侧,不仅可以使摄像模组不凸出于机体外壳,还可以保证前置摄像模组的成像质量。
以上描述仅为本申请的较佳实施方式以及对所运用技术原理的说明。本领域技术人员应当理解,本申请中所涉及的发明范围,并不限于上述技术特征的特定组合而成的技术方案,同时也应涵盖在不脱离所述发明构思的情况下,由上述技术特征或其等同特征进行任意组合而形成的其它技术方案。例如上述特征与本申请中公开的(但不限于)具有类似功能的技术特征进行互相替换而形成的技术方案。

Claims (19)

  1. 摄像模组,其特征在于,包括:
    感光组件,包括线路板;
    第一镜头结构,设置在所述感光组件的感光路径上;
    第二镜头结构,设置于所述第一镜头结构和所述感光组件之间,其中,共同用于成像,所述第一镜头结构比所述第二镜头结构距离所述感光组件更远;
    对焦组件,与所述线路板电连接,并用于限定所述第二镜头结构沿着所述第一镜头结构的光轴方向移动;以及
    防抖组件,与所述线路板电连接,并用于驱动所述感光组件在垂直于所述第一镜头结构的光轴的平面上移动。
  2. 根据权利要求1所述的摄像模组,其特征在于,通过激光镭射电路实现所述对焦组件与所述线路板的电连接,并实现所述防抖组件与所述线路板的电连接。
  3. 根据权利要求1所述的摄像模组,其特征在于,所述对焦组件包括:
    驱动部,与所述第二镜头结构固定连接;以及
    固定框架,与所述第一镜头结构固定连接,并限定所述驱动部沿着所述第一镜头结构的光轴的方向移动。
  4. 根据权利要求3所述的摄像模组,其特征在于,
    所述驱动部设置有至少一个第一磁性结构,并且设置有平行于所述第一镜头结构的光轴的至少一个第一滚珠槽;
    所述固定框架设置有至少一个第一线圈结构和至少一个第二滚珠槽,其中,所述第一线圈结构的位置与所述第一磁性结构的位置相对应,所述第一滚珠槽的位置与所述第二滚珠槽的位置相对应;以及
    所述对焦组件还包括:位于所述第一滚珠槽和所述第二滚珠槽之间的多个第一滚珠。
  5. 根据权利要求1所述的摄像模组,其特征在于,所述防抖组件包括:
    可动部,与所述感光组件固定连接;
    固定部,与所述第一镜头结构固定连接,并用于驱动所述可动部在垂直于所述第一镜头结构的光轴的平面上移动。
  6. 根据权利要求5所述的摄像模组,其特征在于,
    所述可动部设置有至少一个第二磁性结构,并且设置有垂直于所述第一镜头结构的光轴的多个第三滚珠槽;
    所述固定部设置有至少一个第二线圈结构和至少一个第四滚珠槽,其中,所述第二线圈结构的位置与所述第二磁性结构的位置相对应,所述第四滚珠槽的位置与所述第三滚珠槽的位置相对应;以及
    所述防抖组件还包括:位于所述第三滚珠槽和所述第四滚珠槽之间的多个第二滚珠。
  7. 根据权利要求1所述的摄像模组,其特征在于,还包括:安装外壳,用于容纳所述第一镜头结构和所述第二镜头结构;
    所述对焦组件通过所述安装外壳与所述第一镜头结构固定连接;
    所述防抖组件通过所述安装外壳与所述第一镜头结构固定连接。
  8. 根据权利要求7所述的摄像模组,其特征在于,所述安装外壳容纳所述感光组件,所述可动部与所述感光组件的顶面固定连接,所述固定部的外周与所述安装外壳的上部边缘的内侧固定连接。
  9. 根据权利要求7所述的摄像模组,其特征在于,还包括:第三镜头结构,设置于所述第二镜头结构与所述感光组件之间,通过所述安装外壳与所述第一镜头结构固定连接;
    所述对焦组件包括位于所述第三镜头结构的径向外侧并沿所述第一镜头结构的光轴的方向延伸至所述防抖组件的延伸部,所述对焦组 件与所述感光组件的线路板电连接于所述延伸部。
  10. 根据权利要求1所述的摄像模组,其特征在于,所述第一镜头结构的至少一个透镜包括:最远离所述感光组件的第一透镜;
    所述第一透镜的物侧面为平面。
  11. 根据权利要求1至10中任一项所述的摄像模组,其特征在于,所述线路板具有第一表面;以及
    所述感光组件包括:
    感光元件,设置于所述线路板的第一表面,并具有所述感光路径;
    电子元器件,设置于所述线路板的第一表面,并且与所述感光元件间隔设置;
    模塑座,设置于所述线路板的第一表面,并且具有与所述感光路径相对应的阶梯式通光孔,所述阶梯式通光孔包括远离所述感光元件的第一腔体;以及
    滤色片,设置于所述第一腔体内,并且所述滤色片在所述第一镜头结构的光轴上的厚度小于或者等于所述第一腔体在所述第一镜头结构的光轴上的高度。
  12. 根据权利要求11所述的摄像模组,其特征在于,所述线路板具有容纳所述感光元件的安装槽,其中,所述安装槽的形状与所述感光元件的形状相对应。
  13. 根据权利要求12所述的摄像模组,其特征在于,在所述线路板的与所述第一表面相对的第二表面设置有补强板,所述补强板与所述线路板的第二表面固定。
  14. 根据权利要求12所述的摄像模组,其特征在于,所述安装槽的深度小于或者等于所述线路板的厚度。
  15. 根据权利要求11所述的摄像模组,其特征在于,所述电子元器件被所述模塑座封装。
  16. 摄像模组的制造方法,其特征在于,包括:
    沿着第一镜头结构的光轴、在第一镜头结构的像侧设置第二镜头结构;
    沿着第一镜头结构的光轴在第一镜头结构的像侧设置对焦组件,其中,所述对焦组件用于限定所述第二镜头结构沿着所述第一镜头结构的光轴方向移动;
    在所述第二镜头结构的像侧设置包括线路板的感光组件,并使所述第二镜头结构位于所述感光组件的感光路径上;
    在所述感光组件处设置防抖组件,其中,所述防抖组件用于驱动所述感光组件在垂直于所述第一镜头结构的光轴的平面上移动;以及
    电连接所述防抖组件与所述线路板并且电连接所述对焦组件与所述线路板;
    其中,所述第一镜头结构比所述第二镜头结构距离所述感光组件更远。
  17. 根据权利要求16所述的方法,其特征在于,还包括:
    利用机器视觉和主动对准技术,调整所述第一镜头结构和所述第二镜头结构。
  18. 移动终端,其特征在于,包括:
    如权利要求1至15中任一项所述的摄像模组;以及
    机体外壳,内部设置有所述摄像模组,包括与所述摄像模组的感光路径相匹配的安装孔。
  19. 根据权利要求18所述的移动终端,其特征在于,所述第一镜头结构的至少一个透镜中最远离所述感光元件的第一透镜的物侧面与所述机体外壳的外表面处于同一平面。
PCT/CN2021/139086 2021-01-04 2021-12-17 摄像模组、制造方法以及移动终端 WO2022143218A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202180084488.9A CN116762351A (zh) 2021-01-04 2021-12-17 摄像模组、制造方法以及移动终端
EP21913959.9A EP4274208A1 (en) 2021-01-04 2021-12-17 Camera module, fabrication method, and mobile terminal
US18/270,779 US20240056658A1 (en) 2021-01-04 2021-12-17 Camera module, manufacturing method and mobile terminal

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110003170.5A CN114726970B (zh) 2021-01-04 2021-01-04 摄像模组、制造方法以及移动终端
CN202110003170.5 2021-01-04

Publications (1)

Publication Number Publication Date
WO2022143218A1 true WO2022143218A1 (zh) 2022-07-07

Family

ID=82233646

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/139086 WO2022143218A1 (zh) 2021-01-04 2021-12-17 摄像模组、制造方法以及移动终端

Country Status (4)

Country Link
US (1) US20240056658A1 (zh)
EP (1) EP4274208A1 (zh)
CN (2) CN114726970B (zh)
WO (1) WO2022143218A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110398872A (zh) * 2018-04-25 2019-11-01 华为技术有限公司 一种镜头模组及照相机
CN110737077A (zh) * 2019-11-29 2020-01-31 Oppo广东移动通信有限公司 光学镜头和电子装置
CN210781015U (zh) * 2019-12-03 2020-06-16 南昌欧菲光电技术有限公司 摄像头模组及电子设备
CN111474680A (zh) * 2020-05-13 2020-07-31 Oppo广东移动通信有限公司 光学镜头、相机模组及电子装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105573014A (zh) * 2016-01-22 2016-05-11 南昌欧菲光电技术有限公司 具有对焦及防抖功能的摄像头模组
KR102400516B1 (ko) * 2017-06-12 2022-05-23 마이크로엑츄에이터(주) 렌즈 구동 장치 및 이를 포함하는 카메라 렌즈모듈
CN110740235A (zh) * 2019-10-14 2020-01-31 Oppo广东移动通信有限公司 电子设备及其摄像头模组
CN111641760A (zh) * 2020-05-27 2020-09-08 Oppo广东移动通信有限公司 镜头组件、摄像头模组及电子设备
CN112153285A (zh) * 2020-09-23 2020-12-29 上海创功通讯技术有限公司 一种摄像装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110398872A (zh) * 2018-04-25 2019-11-01 华为技术有限公司 一种镜头模组及照相机
CN110737077A (zh) * 2019-11-29 2020-01-31 Oppo广东移动通信有限公司 光学镜头和电子装置
CN210781015U (zh) * 2019-12-03 2020-06-16 南昌欧菲光电技术有限公司 摄像头模组及电子设备
CN111474680A (zh) * 2020-05-13 2020-07-31 Oppo广东移动通信有限公司 光学镜头、相机模组及电子装置

Also Published As

Publication number Publication date
CN116762351A (zh) 2023-09-15
CN114726970B (zh) 2024-03-05
CN114726970A (zh) 2022-07-08
EP4274208A1 (en) 2023-11-08
US20240056658A1 (en) 2024-02-15

Similar Documents

Publication Publication Date Title
US11601576B2 (en) Array camera module having height difference, circuit board assembly and manufacturing method therefor, and electronic device
CN109698894B (zh) 基于金属支架的感光组件和摄像模组
EP2124431B1 (en) Camera module comprising three members
US11994668B2 (en) Camera module having conductive member electrically connected to lens outer frame and circuit substrate
WO2022127735A1 (zh) 摄像模组、制造方法以及移动终端
US11740429B2 (en) Lens assembly, camera module, and optical device
JP2008191423A (ja) レンズユニット及びカメラモジュール、並びに該カメラモジュールを備えた撮像装置
TWI706215B (zh) 鏡片組驅動裝置、攝影模組與電子裝置
TWI673531B (zh) 鏡頭致動模組與電子裝置
WO2022143218A1 (zh) 摄像模组、制造方法以及移动终端
KR100829982B1 (ko) 카메라 모듈
JP4696192B2 (ja) 固体撮像素子ユニット及びその製造方法並びに撮像装置
CN115774316A (zh) 光学镜头以及摄像模组
CN113194220A (zh) 摄像头模组和电子产品
JP2012137789A (ja) カメラモジュール
JP5708955B2 (ja) カメラモジュールの製造方法
CN211557354U (zh) 摄像头模组
CN211791706U (zh) 摄像头模组和电子产品
KR102402900B1 (ko) 카메라 모듈 제작 방법 및 카메라 모듈 제작용 키트
JP2011018080A (ja) 固体撮像素子ユニット及びその製造方法並びに撮像装置
JP5983971B2 (ja) カメラモジュールの製造方法
JP2014081517A (ja) カメラモジュール
CN113194217A (zh) 摄像头模组
CN115774311A (zh) 光学镜头及其组装方法
JP2013003180A (ja) レンズユニット

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21913959

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202180084488.9

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 18270779

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021913959

Country of ref document: EP

Effective date: 20230802