WO2022142664A1 - 交通信息的传输方法、装置、介质、电子设备和程序产品 - Google Patents

交通信息的传输方法、装置、介质、电子设备和程序产品 Download PDF

Info

Publication number
WO2022142664A1
WO2022142664A1 PCT/CN2021/127176 CN2021127176W WO2022142664A1 WO 2022142664 A1 WO2022142664 A1 WO 2022142664A1 CN 2021127176 W CN2021127176 W CN 2021127176W WO 2022142664 A1 WO2022142664 A1 WO 2022142664A1
Authority
WO
WIPO (PCT)
Prior art keywords
target
roadside
target vehicle
message
sub
Prior art date
Application number
PCT/CN2021/127176
Other languages
English (en)
French (fr)
Inventor
孙士坤
杨名非
朱峰
Original Assignee
东软集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 东软集团股份有限公司 filed Critical 东软集团股份有限公司
Publication of WO2022142664A1 publication Critical patent/WO2022142664A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/30Services specially adapted for particular environments, situations or purposes
    • H04W4/40Services specially adapted for particular environments, situations or purposes for vehicles, e.g. vehicle-to-pedestrians [V2P]
    • H04W4/44Services specially adapted for particular environments, situations or purposes for vehicles, e.g. vehicle-to-pedestrians [V2P] for communication between vehicles and infrastructures, e.g. vehicle-to-cloud [V2C] or vehicle-to-home [V2H]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F16/00Information retrieval; Database structures therefor; File system structures therefor
    • G06F16/20Information retrieval; Database structures therefor; File system structures therefor of structured data, e.g. relational data
    • G06F16/29Geographical information databases
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/02Services making use of location information
    • H04W4/029Location-based management or tracking services

Definitions

  • the present disclosure relates to the technical field of electronic information processing, and in particular, to a traffic information transmission method, apparatus, medium, electronic device and program product.
  • vehicle-side-roadside collaboration technology relies on the RSU (English: Road Side Unit, Chinese: Roadside Unit) added on the roadside to collect road traffic information in real time, and broadcast the traffic information to nearby vehicles, so that vehicles can Traffic information for driving.
  • RSU directly sends the collected traffic information to all vehicles within a certain distance, and does not consider whether the traffic information is relevant to the vehicle. This will cause the vehicle to receive a large amount of irrelevant traffic information, waste processing resources and storage resources, and reduce the transmission efficiency of traffic information.
  • the purpose of the present disclosure is to provide a method, device, medium, electronic device and program product for transmitting traffic information, so as to solve the problem in the prior art that a vehicle may receive a large amount of irrelevant information.
  • a method for transmitting traffic information is provided, which is applied to an edge cloud control platform, and the edge cloud control platform can cover a specified range, and the method includes:
  • each of the areas is provided with at least one of the RSUs, and each of the areas includes at least one location node;
  • a target area to which the target vehicle belongs and a target position node corresponding to the target vehicle are determined, and the target position node is located at the In the target area, in the driving direction of the target vehicle, and the closest distance to the target vehicle;
  • the traffic information is sent to the target vehicle.
  • the method further includes:
  • the map message is sent by each of the RSUs and/or the central cloud control platform corresponding to the edge cloud control platform;
  • the determining the target area to which the target vehicle belongs and the target position node corresponding to the target vehicle according to the position of the target vehicle and the heading angle of the target vehicle included in the vehicle message include:
  • the target position node is determined within the target area according to the position of the target vehicle and the heading angle of the target vehicle.
  • the roadside message sent by each of the RSUs includes: traffic events collected by the RSU and the status of at least one traffic light; the roadside message sent according to each of the RSUs, and the location The preset correspondence between the node and the RSU, to determine the traffic information corresponding to the target location node, including:
  • the target traffic event determines at least one target traffic event of the target location node, and/or the state of at least one target traffic light, the target traffic event
  • the distance between the location of the target location node and the target location node is less than or equal to a first distance threshold, and the distance between the location of the target traffic light and the target location node is less than or equal to a second distance threshold value;
  • a final traffic light state is determined, and in at least one target traffic event, a final traffic event is determined, and the final traffic light traffic lights and the final traffic event in the direction of travel of the target vehicle;
  • the state of the final traffic light and the final traffic event are used as the traffic information.
  • the edge cloud control platform includes: a first receiving component, a second receiving component, a first processing component and a second processing component;
  • the vehicle message sent by the receiving target vehicle and the roadside message sent by each of the first number of roadside units RSUs include:
  • the first processing component is configured to determine the target area and the target position node according to the position of the target vehicle and the heading angle of the target vehicle;
  • the second processing component is configured to determine the traffic information according to the roadside message sent by each of the RSUs and the preset correspondence, and send the traffic information to the target vehicle.
  • the roadside message includes a third number of roadside sub-messages
  • the second receiving component includes a third number of receiving subcomponents running in parallel, and each of the receiving subcomponents corresponds to one type of the roadside. side message;
  • the second processing component includes a third number of processing sub-component groups that run in parallel, each of the processing sub-component groups corresponds to one type of the roadside sub-message, and each of the processing sub-component groups includes one that runs in parallel. or multiple processing subcomponents, each processing subcomponent corresponds to one or more of the regions;
  • the receiving, by using the second receiving component, the roadside message sent by each of the RSUs, and sending the roadside message sent by each of the RSUs to the second processing component, includes:
  • the receiving sub-component corresponding to this type of roadside sub-message receives the type of roadside sub-message sent by each of the RSUs, and converts the type of roadside sub-message sent by each of the RSUs.
  • the first processing sub-component in the processing sub-component group corresponding to this kind of roadside sub-message is used to acquire this kind of roadside sub-message sent by the first RSU, and according to the preset corresponding relationship and the first processing sub-component
  • This kind of roadside sub-message sent by the RSU determines the traffic information corresponding to this kind of roadside sub-message, and sends the traffic information corresponding to this kind of roadside sub-message to the target vehicle, and the first processing The subassembly corresponds to the target area, and the first RSU is located in the target area.
  • a device for transmitting traffic information is provided, which is applied to an edge cloud control platform, where the edge cloud control platform can cover a specified range, and the device includes:
  • the receiving module is configured to receive the vehicle message sent by the target vehicle, and the roadside message sent by each of the RSUs in the first number of roadside units, and the first number of the RSUs are located within the specified range.
  • each of the areas is provided with at least one of the RSUs, and each of the areas includes at least one location node;
  • a first determining module configured to determine a target area to which the target vehicle belongs and a target location node corresponding to the target vehicle according to the position of the target vehicle and the heading angle of the target vehicle included in the vehicle message,
  • the target location node is located in the target area, is in the driving direction of the target vehicle, and is the closest to the target vehicle;
  • a second determining module configured to determine the traffic information corresponding to the target location node according to the roadside message sent by each of the RSUs and the preset correspondence between the location node and the RSU;
  • a sending module configured to send the traffic information to the target vehicle.
  • the device further includes:
  • a preprocessing module configured to receive a map message, the map message is sent by each of the RSUs and/or the central cloud control platform corresponding to the edge cloud control platform; according to the map message, determine the specified range The integrated map; the integrated map is divided into a second number of the regions, and according to a preset spatial point index algorithm, the region index corresponding to the second number of the regions is established;
  • the first determining module includes:
  • a first determination submodule configured to determine the target area according to the position of the target vehicle and the area index
  • the second determination sub-module is configured to determine the target position node in the target area according to the position of the target vehicle and the heading angle of the target vehicle.
  • the roadside message sent by each of the RSUs includes: the traffic events collected by the RSU and the status of at least one traffic light; the second determining module includes:
  • a third determination submodule configured to determine at least one target traffic event and/or at least one target traffic light of the target location node according to the preset correspondence and the roadside message sent by each of the RSUs state, the distance between the location of the target traffic event and the target location node is less than or equal to a first distance threshold, and the distance between the location of the target traffic light and the target location node is less than or equal to a second distance threshold;
  • the fourth determination sub-module is configured to, according to the position of the target vehicle and the heading angle of the target vehicle, in the state of at least one target traffic light, determine the state of the final traffic light, and in at least one target traffic event, A final traffic event is determined, the final traffic light and the final traffic event are in the driving direction of the target vehicle; the state of the final traffic light and the final traffic event are used as the traffic information.
  • the edge cloud control platform includes: a first receiving component, a second receiving component, a first processing component and a second processing component; the receiving module is used for:
  • the first processing component is configured to determine the target area and the target position node according to the position of the target vehicle and the heading angle of the target vehicle;
  • the second processing component is configured to determine the traffic information according to the roadside message sent by each of the RSUs and the preset correspondence, and send the traffic information to the target vehicle.
  • the roadside message includes a third number of roadside sub-messages
  • the second receiving component includes a third number of receiving subcomponents running in parallel, and each of the receiving subcomponents corresponds to one type of the roadside.
  • side sub-message the second processing component includes a third number of processing sub-component groups running in parallel, each of the processing sub-component groups corresponds to one type of the roadside sub-message, and each processing sub-component group includes One or more processing subcomponents running in parallel, each processing subcomponent corresponding to one or more of the regions;
  • the receiving module is used for:
  • the receiving sub-component corresponding to this type of roadside sub-message receives the type of roadside sub-message sent by each of the RSUs, and converts the type of roadside sub-message sent by each of the RSUs.
  • the first processing sub-component in the processing sub-component group corresponding to this kind of roadside sub-message is used to acquire this kind of roadside sub-message sent by the first RSU, and according to the preset corresponding relationship and the first processing sub-component
  • This kind of roadside sub-message sent by the RSU determines the traffic information corresponding to this kind of roadside sub-message, and sends the traffic information corresponding to this kind of roadside sub-message to the target vehicle, and the first processing The subassembly corresponds to the target area, and the first RSU is located in the target area.
  • a non-transitory computer-readable storage medium on which a computer program is stored, and when the program is executed by a processor, implements the steps of the method described in the first aspect of the embodiments of the present disclosure .
  • an electronic device comprising:
  • a processor configured to execute the computer program in the memory, to implement the steps of the method in the first aspect of the embodiments of the present disclosure.
  • a computer program product comprising a computer program executable by a programmable apparatus, the computer program having functions that when executed by the programmable apparatus A code portion for executing the method described in the first aspect of the embodiment of the present disclosure.
  • the edge cloud control platform covering the specified range in the present disclosure first receives the vehicle message sent by the target vehicle and the roadside message sent by the first number of RSUs, wherein the specified range can be divided into the second number of areas , each area is provided with at least one RSU, and each area includes at least one location node. After that, according to the position and heading angle of the target vehicle included in the vehicle message, the target area to which the target vehicle belongs and the corresponding target position node are determined, and then according to the roadside message sent by each RSU, the position node corresponds to the preset of the RSU relationship, determine the traffic information corresponding to the target location node, and finally send the traffic information to the target vehicle.
  • the present disclosure utilizes the edge cloud computing capability of the edge cloud control platform, and can determine the location node that is located in the driving direction of the vehicle and is the closest within a specified range, so that the traffic information applicable to the vehicle at the location node has Targeted transmission to the vehicle avoids waste of processing resources and storage resources due to a large amount of irrelevant information, and improves the transmission efficiency of traffic information.
  • FIG. 1 is a schematic diagram of deployment within a specified range according to an exemplary embodiment
  • FIG. 2 is a flowchart of a method for transmitting traffic information according to an exemplary embodiment
  • FIG. 3 is a flowchart of another method for transmitting traffic information according to an exemplary embodiment
  • FIG. 4 is a flowchart of another method for transmitting traffic information according to an exemplary embodiment
  • FIG. 5 is a block diagram of an edge cloud control platform according to an exemplary embodiment
  • FIG. 6 is a flowchart of another method for transmitting traffic information according to an exemplary embodiment
  • FIG. 7 is a block diagram of another edge cloud control platform according to an exemplary embodiment
  • FIG. 8 is a block diagram of an apparatus for transmitting traffic information according to an exemplary embodiment
  • FIG. 9 is a block diagram of another apparatus for transmitting traffic information according to an exemplary embodiment.
  • Fig. 10 is a block diagram of another apparatus for transmitting traffic information according to an exemplary embodiment
  • Fig. 11 is a block diagram of an electronic device according to an exemplary embodiment.
  • the application scenarios may be a traffic information transmission system, wherein Including one or more edge cloud control platforms, each edge cloud control platform can cover the corresponding designated scope.
  • a first number of RSUs are set within the specified range corresponding to each edge cloud control platform.
  • the first number of RSUs may be distributed in a second number of areas within a specified range, and each area is provided with at least one RSU, and each area includes at least one location node.
  • the RSU is a physical device pre-installed at a specified location, and the RSU can be set at a specified intersection, for example.
  • the location node can be understood as a location identifier within a specified range, which can represent a specific location and does not represent a physical device.
  • the location indicated by the location node may be a location where attention needs to be paid to traffic information, such as an intersection within a specified range, an accident-prone place, a construction site, etc., which may be adjusted according to specific needs.
  • An RSU may or may not be set on the location node.
  • the specified range may be, for example, a city or a jurisdiction of the city, as shown in FIG. 1 , which includes 4 (ie the second number) regions: REGION1 , REGION2 , REGION9 , and REGION10 .
  • One or more RSUs are set in each area, and at the same time, each area includes one or more location nodes (ie, NODEs in FIG. 1 ).
  • 5G (English: the 5th Generation mobile communication technology, Chinese: 5th generation mobile communication technology), 4G (English: the 4th Generation mobile communication technology, Chinese: 4th generation mobile communication technology, Chinese: 4th generation mobile communication technology) mobile communication technology), WLAN (English: Wireless Local Area Networks, Chinese: Wireless Local Area Network), Telematics (Chinese: Automotive Information Service), V2X (English: Vehicle to Everything, Chinese: Internet of Vehicles) any one of the protocols to communicate .
  • the target vehicle, the edge cloud control platform and the RSU can perform V2X communication based on the LTE (English: Long Term Evolution, Chinese: Long Term Evolution)-Uu mode in a 5G scenario.
  • the target vehicle may be a car, which is not limited to a traditional car, a pure electric car or a hybrid car, and may also be other types of motor vehicles or non-motor vehicles.
  • the target vehicle can be equipped with intelligent network-connected terminal equipment, such as OBU (English: On board Unit, Chinese: On-board Unit), camera, millimeter-wave radar, lidar, and various environmental perception devices to collect vehicle information of the target vehicle .
  • OBU English: On board Unit, Chinese: On-board Unit
  • the RSU is also equipped with cameras, millimeter-wave radars, lidars, and various environmental perception devices to collect roadside information about the location of the RSU.
  • FIG. 2 is a flow chart of a method for transmitting traffic information according to an exemplary embodiment. As shown in FIG. 2 , the method is applied to an edge cloud control platform, and the edge cloud control platform can cover a specified range, including:
  • Step 101 Receive the vehicle message sent by the target vehicle, and the roadside message sent by each RSU in the first number of roadside unit RSUs, the first number of RSUs are located in the second number of areas within the specified range, and each area At least one RSU is arranged inside, and each area includes at least one location node.
  • the edge cloud control platform first receives the vehicle message sent by the target vehicle and the roadside message sent by each RSU.
  • the target vehicle can be any vehicle within the specified range, and the vehicle message can reflect the current driving condition of the target vehicle.
  • it can be BSM (English: Basic Safety Message, Chinese: Basic Safety Message), which includes the location of the target vehicle and heading angle, and can also include the speed, acceleration, model, etc. of the target vehicle.
  • the roadside message sent by any RSU can reflect the traffic conditions at the location of the RSU, for example, it may include: RSI (English: Road Side Information, Chinese: Road Side Information), RSM (English: Road Safety Message, Chinese: Road At least one of SPAT (English: Signal Phase Timing Message, Chinese: Traffic Light Phase and Timing Message) and MAP (Chinese: Map Message).
  • Step 102 according to the position of the target vehicle and the heading angle of the target vehicle included in the vehicle message, determine the target area to which the target vehicle belongs and the target position node corresponding to the target vehicle, and the target position node is located in the target area and is in the driving direction of the target vehicle. , and is the closest to the target vehicle.
  • the edge cloud control platform may determine the target area to which the target vehicle belongs in the second number of areas according to the position of the target vehicle included therein.
  • the location of the target vehicle can be understood as the longitude and latitude of the target vehicle, and then the target area to which the target vehicle belongs can be determined according to the longitude range and latitude range of each area in the second number of areas.
  • the target position node that is located in the driving direction of the target vehicle and is the closest to the target vehicle.
  • the driving direction or driving trajectory of the target vehicle can be determined according to the position of the target vehicle and the heading angle of the target vehicle, and then the position nodes located in the driving direction or on the driving trajectory are filtered out from the position nodes included in the target area. . After that, according to the position of the target vehicle, the target position node closest to the target vehicle is screened out.
  • Step 103 Determine the traffic information corresponding to the target location node according to the roadside message sent by each RSU and the preset correspondence between the location node and the RSU.
  • Step 104 sending the traffic information to the target vehicle.
  • the edge cloud control platform may determine the traffic information corresponding to the target location node according to the pre-established corresponding relationship between the location node and the RSU.
  • the preset correspondence may include multiple records, each record includes a location node, and the location node corresponds to one or more RSUs. It can be understood that the location node corresponds to the roadside sent by the one or more RSUs. message, which can reflect the traffic conditions at the location indicated by the location node.
  • the RSU corresponding to the target location node can be found in the preset correspondence relationship, and traffic information corresponding to the target location node can be generated according to the roadside message sent by the RSU corresponding to the target location node, and the traffic information can be sent to the target vehicle.
  • the target vehicle can be determined according to the vehicle identifier (for example: Vehicle ID), so that the traffic information applicable to the target vehicle is sent to the target vehicle.
  • the traffic information can reflect the traffic conditions at the location indicated by the target location node. Since the target location node is in the traveling direction of the target vehicle and is closest to the target vehicle, the traffic information is applicable to the target vehicle. In this way, the target vehicle does not need to receive other irrelevant information, avoids the processing and storage of irrelevant information, and effectively improves the transmission efficiency of traffic information.
  • the edge cloud control platform has a wide coverage and strong processing capacity, and is not limited by the processing capacity and coverage of the RSU, and can quickly and accurately determine traffic information.
  • the edge cloud control platform covering the specified range in the present disclosure first receives the vehicle message sent by the target vehicle and the roadside message sent by the first number of RSUs, wherein the specified range can be divided into the second number of areas , each area is provided with at least one RSU, and each area includes at least one location node. After that, according to the position and heading angle of the target vehicle included in the vehicle message, the target area to which the target vehicle belongs and the corresponding target position node are determined, and then according to the roadside message sent by each RSU, the position node corresponds to the preset of the RSU relationship, determine the traffic information corresponding to the target location node, and finally send the traffic information to the target vehicle.
  • the present disclosure utilizes the edge cloud computing capability of the edge cloud control platform, and can determine the location node that is located in the driving direction of the vehicle and is the closest within a specified range, so that the traffic information applicable to the vehicle at the location node has Targeted transmission to the vehicle avoids waste of processing resources and storage resources due to a large amount of irrelevant information, and improves the transmission efficiency of traffic information.
  • Fig. 3 is a flowchart of another method for transmitting traffic information according to an exemplary embodiment. As shown in Fig. 3, the method may further include:
  • Step 105 Receive a map message, where the map message is sent by each RSU and/or the central cloud control platform corresponding to the edge cloud control platform.
  • Step 106 Determine a comprehensive map of the specified range according to the map message.
  • Step 107 Divide the comprehensive map into a second number of regions, and establish region indices corresponding to the second number of regions according to a preset spatial point index algorithm.
  • the edge cloud control platform since the edge cloud control platform continuously receives vehicle messages sent by various vehicles and roadside messages sent by the first number of RSUs, the edge cloud control platform needs to process a large amount of data. Therefore, in order to improve the efficiency of data processing, the specified range covered by the edge cloud control platform can be divided in advance. Specifically, a map message (for example, a MAP) may be received first, wherein the map message may be sent by the RSU, or may be sent by the central cloud control platform corresponding to the edge cloud control platform. It can be understood that the map message sent by the RSU reflects the local map of the location of the RSU, with high timeliness and accuracy. The map message sent by the central cloud control platform reflects the global map of the specified range, which contains a large amount of information.
  • a map message for example, a MAP
  • the central cloud control platform can be understood as a platform used to manage multiple edge cloud control platforms and provide services for multiple edge cloud control platforms.
  • the edge cloud control platform can integrate the map messages sent by the RSU and the central cloud control platform to obtain a comprehensive map of the specified range. In this way, the comprehensive map combines the local map and the global map, which can not only cover the specified range, but also have good timeliness and accuracy.
  • the composite map can be divided into a second number of regions.
  • the size of each area can be set according to specific requirements, and can also be divided according to specific administrative areas, which is not specifically limited in the present disclosure.
  • area indexes corresponding to the second number of areas may be established according to a preset spatial point index algorithm.
  • the spatial point indexing algorithm may be, for example, the Geohash algorithm, the Google S2 algorithm, the filling curve algorithm, and the like.
  • step 102 may include:
  • Step 1021 Determine the target area according to the location of the target vehicle and the area index.
  • Step 1022 according to the position of the target vehicle and the heading angle of the target vehicle, determine the target position node in the target area.
  • the target area may be determined according to the location of the target vehicle and the area index.
  • the area index can be understood as setting a number for each area according to the range of each area.
  • the longitude range and latitude range of each area can be encoded to obtain the number of the area. Then, according to the longitude and latitude of the target vehicle, the corresponding number can be searched according to the Geohash algorithm, so as to determine the target area.
  • each location node in the area can also be numbered, and the number of a location node can be divided into two parts: one part is the number of the area to which it belongs (that is, the location node in the same area should be The number of the part is the same), and the other part is a number that can uniquely identify the location node (for example, it can be a number determined according to the longitude and latitude of the location indicated by the location node).
  • the driving direction of the target vehicle can be determined according to the position and heading angle of the target vehicle, and then according to the number of one or more position nodes included in the target area, it is possible to screen out the driving direction that is in the driving direction and is related to the target vehicle. The closest target location node.
  • Fig. 4 is a flow chart of another method for transmitting traffic information according to an exemplary embodiment.
  • the roadside message sent by each RSU includes: traffic events collected by the RSU and at least one traffic light status.
  • the implementation of step 103 may include:
  • Step 1031 according to the preset correspondence and the roadside message sent by each RSU, determine at least one target traffic event of the target location node, and/or the state of at least one target traffic light, the location of the target traffic event and the target location node.
  • the distance is less than or equal to the first distance threshold, and the distance between the location of the target traffic light and the target location node is less than or equal to the second distance threshold.
  • Step 1032 according to the position of the target vehicle and the heading angle of the target vehicle, in the state of at least one target traffic light, determine the state of the final traffic light, and in the at least one target traffic event, determine the final traffic event, the final traffic light and the The final traffic event is in the direction of travel of the target vehicle.
  • Step 1033 taking the state of the final traffic light and the final traffic event as the traffic information.
  • the roadside message sent by each RSU may include the traffic event collected by the RSU and the status of at least one traffic light, where the traffic event may be RSI and/or RSM, which includes the content of the traffic event and location.
  • the state of at least one traffic light may be SPAT, which includes the state and position of the traffic light.
  • the specific step of determining the traffic information may be: first, according to the preset correspondence and the roadside message sent by each RSU, determine the target whose distance from the target location node is less than or equal to the first distance threshold (for example, it may be 20m). Traffic events, and target traffic lights whose distance to the target location node is less than or equal to a second distance threshold (which may be, for example, 10m).
  • the target traffic event and the target traffic light may also be determined according to the number of the location node. It can be understood that in the preset correspondence, which RSUs each location node is related to is recorded, and then the traffic events and the status of at least one traffic light in the roadside messages sent by these RSUs are determined according to the first distance threshold, the second The distance threshold is screened to filter out the target traffic time and target traffic lights that can reflect the location indicated by the location node.
  • the final traffic lights and final traffic events in the driving direction of the target vehicle are screened out, and then the final traffic lights and the final traffic events are screened out.
  • Status and final traffic event as traffic information.
  • the preset correspondence records that the target location node is related to two RSUs A and B, and the roadside message sent by A includes three traffic events a, b, and c, and the status of two traffic lights r1 and r2.
  • the roadside message sent by B includes two traffic events d and e, and the state of the traffic light r3.
  • the distance between the position of the two traffic events b and e and the target location node is less than 20m, then the two traffic events b and e can be determined as the target traffic event. If the distance between the positions of the two traffic lights r2 and r3 and the target location node is less than 10m, then the two traffic lights r2 and r3 can be determined as the target traffic lights.
  • the traffic information includes: b, the traffic event, and r3, the state of the traffic light.
  • the edge cloud control platform may adopt a stream processing framework to divide data reception and processing into different components to complete, so that massive The data is distributed and processed in parallel according to the relational topology flow, so that the edge cloud control platform can process massive data in real time and improve the data processing capability of the edge cloud control platform.
  • the edge cloud control platform may include: a first receiving component, a second receiving component, a first processing component and a second processing component.
  • the first receiving component can be the first SPOUT (SPOUT can be understood as NettyServer), the second receiving component can be the second SPOUT, and the first processing component can be the first BOLT (BOLT It can be understood as Handle), and the second processing component can be the second BOLT, as shown in FIG. 5 .
  • SPOUT can be understood as NettyServer
  • the second receiving component can be the second SPOUT
  • the first processing component can be the first BOLT (BOLT It can be understood as Handle)
  • the second processing component can be the second BOLT, as shown in FIG. 5 .
  • Fig. 6 is a flowchart showing another method for transmitting traffic information according to an exemplary embodiment. As shown in Fig. 6 , step 101 may include:
  • Step 1011 receiving the vehicle message through the first receiving component, and sending the vehicle message to the first processing component.
  • Step 1012 Receive the roadside message sent by each RSU through the second receiving component, and send the roadside message sent by each RSU to the second processing component.
  • the first receiving component is configured to receive the vehicle message and send it to the first processing component.
  • the second receiving component is configured to receive the roadside message sent by each RSU and send it to the second processing component.
  • the first receiving component and the second receiving component may run in parallel, and the first processing component and the second processing component may also run in parallel.
  • the first processing component is configured to determine the target area and the target position node according to the position of the target vehicle and the heading angle of the target vehicle.
  • the second processing component is configured to determine traffic information according to the roadside message sent by each RSU and the preset correspondence, and send the traffic information to the target vehicle. That is, step 102 is performed by the first processing component, and steps 103 and 104 are performed by the second processing component.
  • the roadside message may include a third number of roadside sub-messages.
  • the second receiving component can be divided into a third number of receiving sub-components running in parallel, each receiving sub-component corresponds to a kind of roadside sub-message, that is, each receiving sub-component is responsible for receiving a kind of roadside sub-message.
  • the second processing component can be divided into a third number of processing sub-component groups running in parallel, each processing sub-component group corresponds to a kind of roadside sub-message, that is, each processing sub-component group is responsible for processing a Kind of roadside sub-message.
  • Each processing subcomponent group includes one or more processing subcomponents running in parallel, and each processing subcomponent corresponds to one or more regions.
  • the area corresponding to each processing subcomponent may be understood as the area governed by the processing subcomponent, or an area related to the area governed by the processing subcomponent.
  • a certain processing subcomponent group may include four processing subcomponents, and the corresponding regions are (REGION1, REGION2), (REGION2, REGION9), (REGION9, REGION10), ( REGION10, REGION1).
  • the first processing component can also be divided into multiple processing sub-components running in parallel, and each processing sub-component in the first processing component corresponds to a different Vehicle ID range.
  • step 1012 may be:
  • the receiving sub-component corresponding to this type of roadside sub-message receives the type of roadside sub-message sent by each RSU, and sends the type of roadside sub-message sent by each RSU to the The processing sub-component group corresponding to this kind of roadside sub-message.
  • the first processing sub-component in the processing sub-component group corresponding to this kind of roadside sub-message can be used to obtain this kind of roadside sub-message sent by the first RSU, and according to the preset correspondence
  • the roadside sub-message determines the traffic information corresponding to the roadside sub-message, and sends the traffic information corresponding to the roadside sub-message to the target vehicle.
  • the first processing sub-component corresponds to the target area, and the first RSU is located at the target. within the area.
  • the receiving sub-component corresponding to this type of roadside sub-message can receive the type of roadside sub-message sent by each RSU, and send the type of roadside sub-message sent by each RSU.
  • the sub-message is sent to the processing sub-component group corresponding to the roadside sub-message. That is to say, a roadside sub-message is sent to the corresponding processing sub-component group.
  • the processing sub-component group corresponding to the roadside sub-message allocates the roadside sub-message to the processing sub-components corresponding to the area to which the RSU that sends the roadside sub-message belongs. For example, taking the first RSU located in the target area as an example, the one corresponding to the target area is the first processing sub-component, then the first processing sub-component can first obtain the roadside sub-message sent by the first RSU, and correspondingly correspond to the target area. The relationship with the roadside sub-message sent by the first RSU determines the traffic information corresponding to the roadside sub-message, and finally sends the traffic information corresponding to the roadside sub-message to the target vehicle.
  • the first receiving component can send the vehicle message to The corresponding processing subcomponent in the first processing component. That is to say, the vehicle message adopts the localized processing method, and only needs to be sent to the corresponding processing sub-component in the first processing component and processed (ie LocalOrShuffleGrouping), instead of being sent to each processing sub-component in the first processing component.
  • the roadside message may include: RSI, RSM, MAP, SPAT, a total of 4 types (that is, the third number) of roadside sub-messages, then the second receiving sub-component can be divided into 4 receiving sub-components (that is, RSI SPOUT, RSM SPOUT, MAP SPOUT, SPAT SPOUT), the first receiving component can be represented as BSM SPOUT.
  • the second processing sub-component can be divided into 4 processing sub-component groups, wherein each processing sub-component group can include 3 processing sub-components (that is, a total of 12 processing sub-components, all denoted as BOLT), the first processing component can be Divided into 2 processing sub-components, both denoted as BOLT.
  • the edge cloud control platform is shown in Figure 7.
  • the receiving sub-component corresponding to the SPAT can receive the SPAT sent by each RSU, and send it to the processing sub-component group corresponding to the SPAT.
  • the first processing component firstly select the first RSU located in the target area from the first number of RSUs, and then determine the processing subcomponent group corresponding to the SPAT, which corresponds to the target area. The first handles the subcomponent.
  • the first processing subcomponent is used to obtain the SPAT sent by the first RSU, and according to the preset correspondence and the SPAT sent by the first RSU, the traffic information corresponding to the SPAT (which can be understood as the state of the final traffic light) is determined, and sent to target vehicle.
  • the roadside sub-message is RSI
  • the RSI sent by each RSU can be received through the receiving sub-component corresponding to the RSI, and sent to the processing sub-component group corresponding to the RSI.
  • the first processing component firstly select the first RSU located in the target area from the first number of RSUs, and then determine the processing subcomponent group corresponding to the RSI, which corresponds to the target area. The first handles the subcomponent.
  • the first processing sub-component is used to obtain the RSI sent by the first RSU, and according to the preset correspondence and the RSI sent by the first RSU, determine the traffic information corresponding to the RSI (which can be understood as the final traffic event), and send it to the target vehicle .
  • the edge cloud control platform covering the specified range in the present disclosure first receives the vehicle message sent by the target vehicle and the roadside message sent by the first number of RSUs, wherein the specified range can be divided into the second number of areas , each area is provided with at least one RSU, and each area includes at least one location node. After that, according to the position and heading angle of the target vehicle included in the vehicle message, the target area to which the target vehicle belongs and the corresponding target position node are determined, and then according to the roadside message sent by each RSU, the position node corresponds to the preset of the RSU relationship, determine the traffic information corresponding to the target location node, and finally send the traffic information to the target vehicle.
  • the present disclosure utilizes the edge cloud computing capability of the edge cloud control platform, and can determine the location node that is located in the driving direction of the vehicle and is the closest within a specified range, so that the traffic information applicable to the vehicle at the location node has Targeted transmission to the vehicle avoids waste of processing resources and storage resources due to a large amount of irrelevant information, and improves the transmission efficiency of traffic information.
  • FIG. 8 is a block diagram of an apparatus for transmitting traffic information according to an exemplary embodiment. As shown in FIG. 8 , the apparatus 200 is applied to an edge cloud control platform, and the edge cloud control platform can cover a specified range, including:
  • the receiving module 201 is configured to receive a vehicle message sent by a target vehicle and a roadside message sent by each RSU in a first number of roadside units RSUs, where the first number of RSUs are located within a second number of areas within a specified range, Each area is provided with at least one RSU, and each area includes at least one location node.
  • the first determination module 202 is used for determining the target area to which the target vehicle belongs and the target position node corresponding to the target vehicle according to the position of the target vehicle and the heading angle of the target vehicle included in the vehicle message. It is in the driving direction of the target vehicle and is the closest to the target vehicle.
  • the second determining module 203 is configured to determine the traffic information corresponding to the target location node according to the roadside message sent by each RSU and the preset correspondence between the location node and the RSU.
  • the sending module 204 is used for sending the traffic information to the target vehicle.
  • FIG. 9 is a block diagram of another apparatus for transmitting traffic information according to an exemplary embodiment. As shown in FIG. 9 , the apparatus 200 further includes:
  • the preprocessing module 205 is configured to receive map messages, which are sent by each RSU and/or the central cloud control platform corresponding to the edge cloud control platform. According to the map message, determine the comprehensive map of the specified range. Divide the comprehensive map into a second number of regions, and establish region indexes corresponding to the second number of regions according to a preset spatial point index algorithm.
  • the first determining module 202 may include:
  • the first determination sub-module 2021 is configured to determine the target area according to the location of the target vehicle and the area index.
  • the second determination sub-module 2022 is configured to determine the target position node in the target area according to the position of the target vehicle and the heading angle of the target vehicle.
  • Fig. 10 is a block diagram of another apparatus for transmitting traffic information according to an exemplary embodiment.
  • the roadside message sent by each RSU includes: traffic events collected by the RSU and at least one traffic light state.
  • the second determining module 203 may include:
  • the third determination sub-module 2031 is configured to determine at least one target traffic event of the target location node, and/or the state of at least one target traffic light, according to the preset correspondence and the roadside message sent by each RSU.
  • the distance between the location and the target location node is less than or equal to the first distance threshold, and the distance between the location of the target traffic light and the target location node is less than or equal to the second distance threshold.
  • the fourth determination sub-module 2032 is configured to, according to the position of the target vehicle and the heading angle of the target vehicle, in the state of at least one target traffic light, determine the state of the final traffic light, and in the at least one target traffic event, determine the final traffic light event, final traffic light and final traffic event in the direction of travel of the target vehicle.
  • the state of the final traffic light and the final traffic event are taken as traffic information.
  • the edge cloud control platform includes: a first receiving component, a second receiving component, a first processing component, and a second processing component.
  • the receiving module 201 can be used for:
  • the vehicle message is received by the first receiving component, and the vehicle message is sent to the first processing component.
  • the roadside message sent by each RSU is received by the second receiving component, and the roadside message sent by each RSU is sent to the second processing component.
  • the first processing component is used for determining the target area and the target position node according to the position of the target vehicle and the heading angle of the target vehicle.
  • the second processing component is configured to determine traffic information according to the roadside message sent by each RSU and the preset correspondence, and send the traffic information to the target vehicle.
  • the roadside message includes a third number of roadside sub-messages
  • the second receiving component includes a third number of receiving sub-components running in parallel
  • each receiving sub-component corresponds to one type of roadside sub-message.
  • the second processing component includes a third number of processing sub-component groups running in parallel, each processing sub-component group corresponds to a kind of roadside sub-message, each processing sub-component group includes one or more processing sub-components running in parallel, each processing sub-component group
  • Each processing subcomponent corresponds to one or more regions.
  • the receiving module 201 can be used for:
  • the receiving sub-component corresponding to this type of roadside sub-message receives the type of roadside sub-message sent by each RSU, and sends the type of roadside sub-message sent by each RSU to the The processing sub-component group corresponding to this kind of roadside sub-message.
  • the first processing sub-component in the processing sub-component group corresponding to this kind of roadside sub-message is used to obtain this kind of roadside sub-message sent by the first RSU, and according to the preset corresponding relationship and this kind of roadside sub-message sent by the first RSU
  • the side sub-message determines the traffic information corresponding to the roadside sub-message, and sends the traffic information corresponding to the roadside sub-message to the target vehicle.
  • the first processing sub-component corresponds to the target area, and the first RSU is located in the target area.
  • the edge cloud control platform covering the specified range in the present disclosure first receives the vehicle message sent by the target vehicle and the roadside message sent by the first number of RSUs, wherein the specified range can be divided into the second number of areas , each area is provided with at least one RSU, and each area includes at least one location node. After that, according to the position and heading angle of the target vehicle included in the vehicle message, the target area to which the target vehicle belongs and the corresponding target position node are determined, and then according to the roadside message sent by each RSU, the position node corresponds to the preset of the RSU relationship, determine the traffic information corresponding to the target location node, and finally send the traffic information to the target vehicle.
  • the present disclosure utilizes the edge cloud computing capability of the edge cloud control platform, and can determine the location node that is located in the driving direction of the vehicle and is the closest within a specified range, so that the traffic information applicable to the vehicle at the location node has Targeted transmission to the vehicle avoids waste of processing resources and storage resources due to a large amount of irrelevant information, and improves the transmission efficiency of traffic information.
  • FIG. 11 is a block diagram of an electronic device 300 according to an exemplary embodiment.
  • the electronic device 300 may be provided as a server.
  • the electronic device 300 includes a processor 322 , which may be one or more in number, and a memory 332 for storing a computer program executable by the processor 322 .
  • the computer program stored in memory 332 may include one or more modules, each corresponding to a set of instructions.
  • the processor 322 may be configured to execute the computer program to perform the above-mentioned transmission method of traffic information.
  • the electronic device 300 may also include a power supply component 326, which may be configured to perform power management of the electronic device 300, and a communication component 350, which may be configured to enable communication of the electronic device 300, eg, wired or wireless communication. Additionally, the electronic device 300 may also include an input/output (I/O) interface 358 . Electronic device 300 may operate based on an operating system stored in memory 332, such as Windows Server TM , Mac OS X TM , Unix TM , Linux TM , and the like.
  • an operating system stored in memory 332, such as Windows Server TM , Mac OS X TM , Unix TM , Linux TM , and the like.
  • a non-transitory computer-readable storage medium including program instructions is also provided, and when the program instructions are executed by a processor, the steps of the above-mentioned method for transmitting traffic information are implemented.
  • the computer-readable storage medium can be the above-mentioned memory 332 including program instructions, and the above-mentioned program instructions can be executed by the processor 322 of the electronic device 300 to complete the above-mentioned method for transmitting traffic information.
  • a computer program product comprising a computer program executable by a programmable apparatus, the computer program having, when executed by the programmable apparatus, for performing the above The code part of the transmission method of the traffic information.

Abstract

本公开涉及一种交通信息的传输方法、装置、介质、电子设备和程序产品,涉及电子信息处理技术领域,该方法应用于覆盖指定范围的边缘云控平台,包括:接收目标车辆发送的车辆消息,和第一数量个RSU中每个RSU发送的路侧消息,第一数量个RSU位于指定范围内的第二数量个区域内,每个区域内包括至少一个位置节点,根据车辆消息中包括的目标车辆的位置和目标车辆的航向角,确定目标车辆所属的目标区域和目标车辆对应的目标位置节点,目标位置节点位于目标区域内,在目标车辆的行驶方向上,且与目标车辆距离最近,根据每个RSU发送的路侧消息,和位置节点与RSU的预设对应关系,确定目标位置节点对应的交通信息,将交通信息发送至目标车辆。

Description

交通信息的传输方法、装置、介质、电子设备和程序产品
相关申请的交叉引用
本公开要求在2020年12月31日提交中国专利局、申请号为202011618936.2、名称为“交通信息的传输方法、装置、存储介质和电子设备”的中国专利申请的优先权,其全部内容通过引用结合在本公开中。
技术领域
本公开涉及电子信息处理技术领域,具体地,涉及一种交通信息的传输方法、装置、介质、电子设备和程序产品。
背景技术
随着我国汽车保有量的不断升高,道路交通安全的形势愈发严峻。为了减少交通安全事故、改善驾驶体验、提高交通效率,车端-路侧协同技术受到了广泛的关注。车端-路侧协同技术,依赖于在道路边增设的RSU(英文:Road Side Unit,中文:路侧单元)实时采集道路的交通信息,并将交通信息广播给附近的车辆,使得车辆可以根据交通信息进行行驶。然而,RSU是将采集到的交通信息直接发送给距离在一定范围内的所有车辆,并不会考虑到交通信息对车辆是否有关。这样会导致车辆接收到大量无关的交通信息,浪费了处理资源和存储资源,也降低了交通信息的传输效率。
发明内容
本公开的目的是提供一种交通信息的传输方法、装置、介质、电子设备和程序产品,用以解决现有技术中存在的车辆会接收到大量无关信息的问题。
为了实现上述目的,根据本公开实施例的第一方面,提供一种交通信息的传输方法,应用于边缘云控平台,所述边缘云控平台能够覆盖指定范围,所述方法包括:
接收目标车辆发送的车辆消息,和第一数量个路侧单元RSU中每个所述RSU发送的路侧消息,第一数量个所述RSU位于所述指定范围内的第二数量个区域内,每个所述区域内设置有至少一个所述RSU,每个所述区域内包括至少一个位置节点;
根据所述车辆消息中包括的所述目标车辆的位置和所述目标车辆的航向角,确定所述目标车辆所属的目标区域和所述目标车辆对应的目标位置节点,所述目标位置节点位 于所述目标区域内,在所述目标车辆的行驶方向上,且与所述目标车辆距离最近;
根据每个所述RSU发送的所述路侧消息,和位置节点与RSU的预设对应关系,确定所述目标位置节点对应的交通信息;
将所述交通信息发送至所述目标车辆。
可选地,所述方法还包括:
接收地图消息,所述地图消息为每个所述RSU,和/或所述边缘云控平台对应的中心云控平台发送的;
根据所述地图消息,确定所述指定范围的综合地图;
将所述综合地图划分为第二数量个所述区域,并按照预设的空间点索引算法建立第二数量个所述区域对应的区域索引;
所述根据所述车辆消息中包括的所述目标车辆的位置和所述目标车辆的航向角,确定所述目标车辆所属的目标区域和所述目标车辆对应的目标位置节点,包括:
根据所述目标车辆的位置和所述区域索引,确定所述目标区域;
根据所述目标车辆的位置和所述目标车辆的航向角,在所述目标区域内确定所述目标位置节点。
可选地,每个所述RSU发送的所述路侧消息包括:该RSU采集的交通事件和至少一个交通灯的状态;所述根据每个所述RSU发送的所述路侧消息,和位置节点与RSU的预设对应关系,确定所述目标位置节点对应的交通信息,包括:
根据所述预设对应关系和每个所述RSU发送的所述路侧消息,确定所述目标位置节点的至少一个目标交通事件,和/或至少一个目标交通灯的状态,所述目标交通事件的位置与所述目标位置节点的距离小于或等于第一距离阈值,所述目标交通灯的位置与所述目标位置节点的距离小于或等于第二距离阈值;
根据所述目标车辆的位置和所述目标车辆的航向角,在至少一个目标交通灯的状态中,确定最终交通灯的状态,并在至少一个目标交通事件中,确定最终交通事件,所述最终交通灯和所述最终交通事件在所述目标车辆的行驶方向上;
将所述最终交通灯的状态和所述最终交通事件作为所述交通信息。
可选地,所述边缘云控平台包括:第一接收组件、第二接收组件、第一处理组件和第二处理组件;
所述接收目标车辆发送的车辆消息,和第一数量个路侧单元RSU中每个所述RSU 发送的路侧消息,包括:
通过所述第一接收组件接收所述车辆消息,并将所述车辆消息发送至所述第一处理组件;
通过所述第二接收组件接收每个所述RSU发送的所述路侧消息,并将每个所述RSU发送的所述路侧消息发送至所述第二处理组件;
所述第一处理组件用于根据所述目标车辆的位置和所述目标车辆的航向角,确定所述目标区域和所述目标位置节点;
所述第二处理组件用于根据每个所述RSU发送的所述路侧消息和所述预设对应关系,确定所述交通信息,并将所述交通信息发送至所述目标车辆。
可选地,所述路侧消息包括第三数量种路侧子消息,所述第二接收组件包括并行运行的第三数量个接收子组件,每个所述接收子组件对应一种所述路侧子消息;
所述第二处理组件包括并行运行的第三数量个处理子组件组,每个所述处理子组件组对应一种所述路侧子消息,每个所述处理子组件组包括并行运行的一个或多个处理子组件,每个处理子组件对应一个或多个所述区域;
所述通过所述第二接收组件接收每个所述RSU发送的所述路侧消息,并将每个所述RSU发送的所述路侧消息发送至所述第二处理组件,包括:
针对每种路侧子消息,通过该种路侧子消息对应的所述接收子组件,接收每个所述RSU发送的该种路侧子消息,并将每个所述RSU发送的该种路侧子消息,发送至该种路侧子消息对应的所述处理子组件组;
该种路侧子消息对应的所述处理子组件组中的第一处理子组件,用于获取第一RSU发送的该种路侧子消息,并根据所述预设对应关系和所述第一RSU发送的该种路侧子消息,确定该种路侧子消息对应的所述交通信息,并将该种路侧子消息对应的所述交通信息发送至所述目标车辆,所述第一处理子组件对应所述目标区域,所述第一RSU位于所述目标区域内。
根据本公开实施例的第二方面,提供一种交通信息的传输装置,应用于边缘云控平台,所述边缘云控平台能够覆盖指定范围,所述装置包括:
接收模块,用于接收目标车辆发送的车辆消息,和第一数量个路侧单元RSU中每个所述RSU发送的路侧消息,第一数量个所述RSU位于所述指定范围内的第二数量个区域内,每个所述区域内设置有至少一个所述RSU,每个所述区域内包括至少一个位置节 点;
第一确定模块,用于根据所述车辆消息中包括的所述目标车辆的位置和所述目标车辆的航向角,确定所述目标车辆所属的目标区域和所述目标车辆对应的目标位置节点,所述目标位置节点位于所述目标区域内,在所述目标车辆的行驶方向上,且与所述目标车辆距离最近;
第二确定模块,用于根据每个所述RSU发送的所述路侧消息,和位置节点与RSU的预设对应关系,确定所述目标位置节点对应的交通信息;
发送模块,用于将所述交通信息发送至所述目标车辆。
可选地,所述装置还包括:
预处理模块,用于接收地图消息,所述地图消息为每个所述RSU,和/或所述边缘云控平台对应的中心云控平台发送的;根据所述地图消息,确定所述指定范围的综合地图;将所述综合地图划分为第二数量个所述区域,并按照预设的空间点索引算法建立第二数量个所述区域对应的区域索引;
所述第一确定模块包括:
第一确定子模块,用于根据所述目标车辆的位置和所述区域索引,确定所述目标区域;
第二确定子模块,用于根据所述目标车辆的位置和所述目标车辆的航向角,在所述目标区域内确定所述目标位置节点。
可选地,每个所述RSU发送的所述路侧消息包括:该RSU采集的交通事件和至少一个交通灯的状态;所述第二确定模块包括:
第三确定子模块,用于根据所述预设对应关系和每个所述RSU发送的所述路侧消息,确定所述目标位置节点的至少一个目标交通事件,和/或至少一个目标交通灯的状态,所述目标交通事件的位置与所述目标位置节点的距离小于或等于第一距离阈值,所述目标交通灯的位置与所述目标位置节点的距离小于或等于第二距离阈值;
第四确定子模块,用于根据所述目标车辆的位置和所述目标车辆的航向角,在至少一个目标交通灯的状态中,确定最终交通灯的状态,并在至少一个目标交通事件中,确定最终交通事件,所述最终交通灯和所述最终交通事件在所述目标车辆的行驶方向上;将所述最终交通灯的状态和所述最终交通事件作为所述交通信息。
可选地,所述边缘云控平台包括:第一接收组件、第二接收组件、第一处理组件和 第二处理组件;所述接收模块用于:
通过所述第一接收组件接收所述车辆消息,并将所述车辆消息发送至所述第一处理组件;
通过所述第二接收组件接收每个所述RSU发送的所述路侧消息,并将每个所述RSU发送的所述路侧消息发送至所述第二处理组件;
所述第一处理组件用于根据所述目标车辆的位置和所述目标车辆的航向角,确定所述目标区域和所述目标位置节点;
所述第二处理组件用于根据每个所述RSU发送的所述路侧消息和所述预设对应关系,确定所述交通信息,并将所述交通信息发送至所述目标车辆。
可选地,所述路侧消息包括第三数量种路侧子消息,所述第二接收组件包括并行运行的第三数量个接收子组件,每个所述接收子组件对应一种所述路侧子消息;所述第二处理组件包括并行运行的第三数量个处理子组件组,每个所述处理子组件组对应一种所述路侧子消息,每个所述处理子组件组包括并行运行的一个或多个处理子组件,每个处理子组件对应一个或多个所述区域;
所述接收模块用于:
针对每种路侧子消息,通过该种路侧子消息对应的所述接收子组件,接收每个所述RSU发送的该种路侧子消息,并将每个所述RSU发送的该种路侧子消息,发送至该种路侧子消息对应的所述处理子组件组;
该种路侧子消息对应的所述处理子组件组中的第一处理子组件,用于获取第一RSU发送的该种路侧子消息,并根据所述预设对应关系和所述第一RSU发送的该种路侧子消息,确定该种路侧子消息对应的所述交通信息,并将该种路侧子消息对应的所述交通信息发送至所述目标车辆,所述第一处理子组件对应所述目标区域,所述第一RSU位于所述目标区域内。
根据本公开实施例的第三方面,提供一种非临时性计算机可读存储介质,其上存储有计算机程序,该程序被处理器执行时实现本公开实施例的第一方面所述方法的步骤。
根据本公开实施例的第四方面,提供一种电子设备,包括:
存储器,其上存储有计算机程序;
处理器,用于执行所述存储器中的所述计算机程序,以实现本公开实施例的第一方面所述方法的步骤。
根据本公开实施例的第五方面,提供一种计算机程序产品,所述计算机程序产品包含能够由可编程的装置执行的计算机程序,所述计算机程序具有当由所述可编程的装置执行时用于执行本公开实施例的第一方面所述方法的代码部分。
通过上述技术方案,本公开中覆盖指定范围的边缘云控平台首先接收目标车辆发送的车辆消息,和第一数量个RSU发送的路侧消息,其中,指定范围可以被分为第二数量个区域,每个区域内设置有至少一个RSU,且每个区域内包括至少一个位置节点。之后,根据车辆消息中包括的目标车辆的位置和航向角,确定目标车辆所属的目标区域和对应的目标位置节点,再根据每个RSU发送的路侧消息,和位置节点与RSU的预设对应关系,确定目标位置节点对应的交通信息,最后将交通信息发送至目标车辆。本公开利用了边缘云控平台的边缘云计算能力,可以为在指定范围内,确定位于车辆的行驶方向上,且距离最近的位置节点,从而将该位置节点处适用于该车辆的交通信息有针对性地发送至该车辆,避免了大量无关信息对处理资源和存储资源的浪费,提高了交通信息的传输效率。
本公开的其他特征和优点将在随后的具体实施方式部分予以详细说明。
附图说明
附图仅用于示出实施方式,而并不认为是对本发明的限制。而且在整个附图中,用相同的参考符号表示相同的部件。在附图中:
图1是根据一示例性实施例示出的一种指定范围内的部署示意图;
图2是根据一示例性实施例示出的一种交通信息的传输方法的流程图;
图3是根据一示例性实施例示出的另一种交通信息的传输方法的流程图;
图4是根据一示例性实施例示出的另一种交通信息的传输方法的流程图;
图5是根据一示例性实施例示出的一种边缘云控平台的框图;
图6是根据一示例性实施例示出的另一种交通信息的传输方法的流程图;
图7是根据一示例性实施例示出的另一种边缘云控平台的框图;
图8是根据一示例性实施例示出的一种交通信息的传输装置的框图;
图9是根据一示例性实施例示出的另一种交通信息的传输装置的框图;
图10是根据一示例性实施例示出的另一种交通信息的传输装置的框图;
图11是根据一示例性实施例示出的一种电子设备的框图。
具体实施方式
这里将详细地对示例性实施例进行说明,其示例表示在附图中。下面的描述涉及附图时,除非另有表示,不同附图中的相同数字表示相同或相似的要素。以下示例性实施例中所描述的实施方式并不代表与本公开相一致的所有实施方式。相反,它们仅是与如所附权利要求书中所详述的、本公开的一些方面相一致的装置和方法的例子。
在介绍本公开提供的交通信息的传输方法、装置、介质、电子设备和程序产品之前,首先对本公开中各个实施例所涉及的应用场景进行介绍,该应用场景可以为交通信息的传输系统,其中包括一个或多个边缘云控平台,每个边缘云控平台能够覆盖相应的指定范围。在每个边缘云控平台对应的指定范围内,设置有第一数量个RSU。第一数量个RSU可以分布在指定范围内的第二数量个区域内,并且,每个区域内设置有至少一个RSU,每个区域内包括至少一个位置节点。需要说明的是,RSU是预先安装在指定位置的实体设备,RSU例如可以设置在指定路口。而位置节点可以理解为指定范围内的位置标识,能够表示一个具体的位置,并不表示实体设备。位置节点指示的位置可以是需要关注交通信息的位置,例如可以是指定范围内的路口、事故多发地、施工地点等,可以根据具体需求进行调整。位置节点上可以设置有RSU,也可以不设置RSU。指定范围例如可以是一个城市或者城市的一个辖区,如图1所示,其中包括4个(即第二数量)区域:REGION1、REGION2、REGION9、REGION10。每个区域内都设置有一个或多个RSU,同时,每个区域内都包括一个或多个位置节点(即图1中的NODE)。
目标车辆、边缘云控平台和RSU之间能够通过5G(英文:the 5th Generation mobile communication technology,中文:第五代移动通信技术)、4G(英文:the 4th Generation mobile communication technology,中文:第四代移动通信技术)、WLAN(英文:Wireless Local Area Networks,中文:无线局域网)、Telematics(中文:汽车信息服务)、V2X(英文:Vehicle to Everything,中文:车联网)中的任一种协议进行通信。例如,目标车辆、边缘云控平台和RSU可以在5G场景下,基于LTE(英文:Long Term Evolution,中文:长期演进)-Uu模式进行V2X通信。其中,目标车辆可以是汽车,该汽车不限于传统汽车、纯电动汽车或是混动汽车,还可以是其他类型的机动车或非机动车。目标车辆上可以设置有智能网联终端设备,例如OBU(英文:On board Unit,中文:车载单元)、摄像头、毫米波雷达、激光雷达和各类环境感知设备,用于采集目标车辆的车辆消息。RSU上也设置有摄像头、毫米波雷达、激光雷达和各类环境感知设备,用于采集RSU所在位 置的路侧消息。
图2是根据一示例性实施例示出的一种交通信息的传输方法的流程图,如图2所示,该方法应用于边缘云控平台,边缘云控平台能够覆盖指定范围,包括:
步骤101,接收目标车辆发送的车辆消息,和第一数量个路侧单元RSU中每个RSU发送的路侧消息,第一数量个RSU位于指定范围内的第二数量个区域内,每个区域内设置有至少一个RSU,每个区域内包括至少一个位置节点。
举例来说,边缘云控平台首先接收目标车辆发送的车辆消息,和每个RSU发送的路侧消息。其中,目标车辆可以是指定范围内的任一车辆,车辆消息能够反映目标车辆当前的行驶状况,例如可以是BSM(英文:Basic Safety Message,中文:基础安全消息),其中包括了目标车辆的位置和航向角,还可以包括目标车辆的速度、加速度、型号等。任一RSU发送的路侧消息,能够反映该RSU所在位置处的交通状况,例如可以包括:RSI(英文:Road Side Information,中文:路侧信息),RSM(英文:Road Safety Message,中文:路侧安全消息),SPAT(英文:Signal Phase Timing Message,中文:交通灯相位与时序消息)和MAP(中文:地图消息)中的至少一种。
步骤102,根据车辆消息中包括的目标车辆的位置和目标车辆的航向角,确定目标车辆所属的目标区域和目标车辆对应的目标位置节点,目标位置节点位于目标区域内,在目标车辆的行驶方向上,且与目标车辆距离最近。
示例的,边缘云控平台在接收到车辆消息后,可以根据其中包括的目标车辆的位置,在第二数量个区域中,确定目标车辆所属的目标区域。例如,目标车辆的位置可以理解为目标车辆的经度和纬度,然后可以根据第二数量个区域中,每个区域的经度范围和维度范围,确定目标车辆所属的目标区域。进一步的,可以在目标车辆的位置的基础上,结合目标车辆的航向角,在目标区域包括的至少一个位置节点中,确定位于目标车辆的行驶方向上,并且与目标车辆距离最近的目标位置节点。例如,可以先根据目标车辆的位置和目标车辆的航向角,确定目标车辆的行驶方向或者行驶轨迹,然后在目标区域包括的位置节点中筛选出位于行驶方向上,或者位于行驶轨迹上的位置节点。之后,再根据目标车辆的位置,筛选出与目标车辆距离最近的目标位置节点。
步骤103,根据每个RSU发送的路侧消息,和位置节点与RSU的预设对应关系,确定目标位置节点对应的交通信息。
步骤104,将交通信息发送至目标车辆。
示例的,边缘云控平台在接收到每个RSU发送的路侧消息之后,可以根据预先建立的位置节点与RSU的预设对应关系,确定目标位置节点对应的交通信息。其中,预设对应关系中可以包括多条记录,每条记录中包括一个位置节点,和该位置节点对应一个或多个RSU,可以理解为,该位置节点对应一个或多个RSU发送的路侧消息,能够反映该位置节点所指示的位置处的交通状况。这样,可以在预设对应关系中,查找目标位置节点对应的RSU,并根据目标位置节点对应的RSU发送的路侧消息,生成目标位置节点对应的交通信息,并将交通信息发送至目标车辆。需要说明的是,在指定范围内存在多个车辆时,可以根据车辆的标识(例如:Vehicle ID)来确定目标车辆,从而将适用于目标车辆的交通信息发送给目标车辆。
交通信息能够反映目标位置节点所指示的位置处的交通状况,由于目标位置节点在目标车辆的行驶方向上,且与目标车辆距离最近,因此交通信息适用于目标车辆。这样,目标车辆无需接收其他无关的信息,避免了对无关的信息的处理和存储,有效提高了交通信息的传输效率。同时,边缘云控平台的覆盖范围广,处理能力强,不受RSU的处理能力和覆盖范围的限制,可以快速、准确地确定交通信息。
综上所述,本公开中覆盖指定范围的边缘云控平台首先接收目标车辆发送的车辆消息,和第一数量个RSU发送的路侧消息,其中,指定范围可以被分为第二数量个区域,每个区域内设置有至少一个RSU,且每个区域内包括至少一个位置节点。之后,根据车辆消息中包括的目标车辆的位置和航向角,确定目标车辆所属的目标区域和对应的目标位置节点,再根据每个RSU发送的路侧消息,和位置节点与RSU的预设对应关系,确定目标位置节点对应的交通信息,最后将交通信息发送至目标车辆。本公开利用了边缘云控平台的边缘云计算能力,可以为在指定范围内,确定位于车辆的行驶方向上,且距离最近的位置节点,从而将该位置节点处适用于该车辆的交通信息有针对性地发送至该车辆,避免了大量无关信息对处理资源和存储资源的浪费,提高了交通信息的传输效率。
图3是根据一示例性实施例示出的另一种交通信息的传输方法的流程图,如图3所示,该方法还可以包括:
步骤105,接收地图消息,地图消息为每个RSU,和/或边缘云控平台对应的中心云控平台发送的。
步骤106,根据地图消息,确定指定范围的综合地图。
步骤107,将综合地图划分为第二数量个区域,并按照预设的空间点索引算法建立第 二数量个区域对应的区域索引。
举例来说,由于边缘云控平台不断地接收到各个车辆发送的车辆消息,和第一数量个RSU发送的路侧消息,对于边缘云控平台来说,要处理的数据量很大。因此,为了提高数据处理的效率,可以预先对边缘云控平台所覆盖的指定范围进行划分。具体的,可以先接收地图消息(例如可以是MAP),其中地图消息可以是由RSU发送的,也可以是由边缘云控平台对应的中心云控平台发送的。可以理解为,RSU发送的地图消息反映的是RSU所在位置处的局部地图,时效性、准确度高,中心云控平台发送的地图消息反映的是指定范围的全局地图,包含的信息量大,覆盖的范围广,中心云控平台可以理解为用于管理多个边缘云控平台,并为多个边缘云控平台提供服务的平台。边缘云控平台可以对RSU和中心云控平台发送的地图消息进行整合,得到指定范围的综合地图。这样,综合地图结合了局部地图和全局地图,既能够覆盖指定范围,有能够有良好的时效性、准确度。
之后,可以将综合地图划分为第二数量个区域。每个区域的大小可以根据具体的需求来设置,也可以按照具体的行政区域进行划分,本公开对此不作具体限定。进一步的,为了能够根据目标车辆的位置,快速查找到所属的目标区域,可以按照预设的空间点索引算法建立第二数量个区域对应的区域索引。空间点索引算法例如可以是Geohash算法、Google S2算法、填充曲线算法等。
相应的,步骤102可以包括:
步骤1021,根据目标车辆的位置和区域索引,确定目标区域。
步骤1022,根据目标车辆的位置和目标车辆的航向角,在目标区域内确定目标位置节点。
示例的,可以根据目标车辆的位置和区域索引,来确定目标区域。区域索引可以理解为,按照每个区域的范围,给每个区域设定一个编号。例如,以空间点索引算法为Geohash算法来举例,可以对每个区域的经度范围、维度范围进行编码,得到该区域的编号。那么,可以根据目标车辆的经度和纬度,按照Geohash算法查找所属的编号,从而确定目标区域。
进一步的,在建立区域索引的同时,还可以为区域内的每个位置节点进行编号,一个位置节点的编号可以分为两部分:一部分是所属区域的编号(即同一个区域内的位置节点该部分的编号相同),另一部分是能够唯一标识该位置节点的编号(例如可以是根据 该位置节点所指示的位置的经度和纬度确定的编号)。在确定目标区域之后,可以根据目标车辆的位置和航向角,确定目标车辆的行驶方向,然后根据目标区域内包括的一个或多个位置节点的编号,筛选出位于行驶方向上,且与目标车辆距离最近的目标位置节点。
图4是根据一示例性实施例示出的另一种交通信息的传输方法的流程图,如图4所示,每个RSU发送的路侧消息包括:该RSU采集的交通事件和至少一个交通灯的状态。步骤103的实现方式可以包括:
步骤1031,根据预设对应关系和每个RSU发送的路侧消息,确定目标位置节点的至少一个目标交通事件,和/或至少一个目标交通灯的状态,目标交通事件的位置与目标位置节点的距离小于或等于第一距离阈值,目标交通灯的位置与目标位置节点的距离小于或等于第二距离阈值。
步骤1032,根据目标车辆的位置和目标车辆的航向角,在至少一个目标交通灯的状态中,确定最终交通灯的状态,并在至少一个目标交通事件中,确定最终交通事件,最终交通灯和最终交通事件在目标车辆的行驶方向上。
步骤1033,将最终交通灯的状态和最终交通事件作为交通信息。
举例来说,每个RSU发送的路侧消息中,可以包括该RSU采集的交通事件和至少一个交通灯的状态,其中,交通事件可以为RSI和/或RSM,其中包括了该交通事件的内容和位置。至少一个交通灯的状态可以为SPAT,其中包括了该交通灯的状态和位置。相应的,确定交通信息的具体步骤可以为:先根据预设对应关系和每个RSU发送的路侧消息,确定与目标位置节点的距离小于或等于第一距离阈值(例如可以是20m)的目标交通事件,和与目标位置节点的距离小于或等于第二距离阈值(例如可以是10m)的目标交通灯。在另一种实现方式中,也可以根据位置节点的编号,确定目标交通事件和目标交通灯。可以理解为,预设对应关系中,记录了每个位置节点与哪些RSU相关,然后对这些RSU发送的路侧消息中的交通事件和至少一个交通灯的状态,按照第一距离阈值、第二距离阈值进行筛选,筛选出能够反映该位置节点所指示的位置处的目标交通时间和目标交通灯。
之后,再根据目标车辆的行驶方向,从步骤1031中筛选出的目标交通灯和目标交通事件中,筛选出在目标车辆的行驶方向上的最终交通灯和最终交通事件,然后将最终交通灯的状态和最终交通事件作为交通信息。
例如,预设对应关系记录了目标位置节点与A和B两个RSU相关,A发送的路侧 消息中包括了a、b、c三个交通事件,和r1、r2两个交通灯的状态。B发送的路侧消息中包括了的d、e两个交通事件,和r3这个交通灯的状态。其中,b和e两个交通事件的位置与目标位置节点的距离小于20m,那么可以将b和e两个交通事件确定为目标交通事件。r2和r3两个交通灯的位置与目标位置节点的距离小于10m,那么可以将r2和r3两个交通灯确定为目标交通灯。最后,确定b这个交通事件,和r3这个交通灯在目标车辆的行驶方向上,那么将r3这个交通灯确定为最终交通灯,并将b这个交通事件确定为最终交通事件。相应的,交通信息中包括了:b这个交通事件、r3这个交通灯的状态。
在一种应用场景中,边缘云控平台在执行本实施例提供的交通信息的传输方法时,可以采用流式处理框架,将数据的接收和处理分成不同的组件来完成,这样可以将海量的数据按照关系拓扑流进行分流、并行地处理,使得边缘云控平台可以实时处理海量的数据,提高了边缘云控平台的数据处理能力。具体的,边缘云控平台可以包括:第一接收组件、第二接收组件、第一处理组件和第二处理组件。以流式处理框架为Storm框架为例,那么第一接收组件可以为第一SPOUT(SPOUT可以理解为NettyServer)、第二接收组件可以为第二SPOUT,第一处理组件可以为第一BOLT(BOLT可以理解为Handle)、第二处理组件可以为第二BOLT,如图5所示。
图6是根据一示例性实施例示出的另一种交通信息的传输方法的流程图,如图6所示,步骤101可以包括:
步骤1011,通过第一接收组件接收车辆消息,并将车辆消息发送至第一处理组件。
步骤1012,通过第二接收组件接收每个RSU发送的路侧消息,并将每个RSU发送的路侧消息发送至第二处理组件。
示例的,第一接收组件用于接收车辆消息,并发送至第一处理组件。第二接收组件用于接收每个RSU发送的路侧消息,并发送至第二处理组件。其中,第一接收组件和第二接收组件之间可以并行运行,第一处理组件和第二处理组件之间也可以并行运行。
相应的,第一处理组件用于根据目标车辆的位置和目标车辆的航向角,确定目标区域和目标位置节点。第二处理组件用于根据每个RSU发送的路侧消息和预设对应关系,确定交通信息,并将交通信息发送至目标车辆。也就是说,由第一处理组件执行步骤102,由第二处理组件执行步骤103和步骤104。
在另一种应用场景中,路侧消息可以包括第三数量种路侧子消息。可以将第二接收组件分为并行运行的第三数量个接收子组件,每个接收子组件对应一种路侧子消息,也 就是说,每个接收子组件负责接收一种路侧子消息。相应的,可以将第二处理组件分为并行运行的第三数量个处理子组件组,每个处理子组件组对应一种路侧子消息,也就是说,每个处理子组件组负责处理一种路侧子消息。每个处理子组件组中包括并行运行的一个或多个处理子组件,每个处理子组件对应一个或多个区域。每个处理子组件对应的区域可以理解为,该处理子组件所管辖的区域,或者与该处理子组件所管辖的区域相关的区域。
以图1所示的4个区域来举例,某个处理子组件组可以包括4个处理子组件,分别对应的区域为(REGION1,REGION2)、(REGION2,REGION9)、(REGION9,REGION10)、(REGION10,REGION1)。进一步的,当指定范围内存在的车辆过多时,第一处理组件,也可以分为并行运行的多个处理子组件,第一处理组件中的每个处理子组件对应不同的Vehicle ID范围。
相应的,步骤1012的实现方式可以为:
针对每种路侧子消息,通过该种路侧子消息对应的接收子组件,接收每个RSU发送的该种路侧子消息,并将每个RSU发送的该种路侧子消息,发送至该种路侧子消息对应的处理子组件组。
那么,该种路侧子消息对应的处理子组件组中的第一处理子组件,可以用于获取第一RSU发送的该种路侧子消息,并根据预设对应关系和第一RSU发送的该种路侧子消息,确定该种路侧子消息对应的交通信息,并将该种路侧子消息对应的交通信息发送至目标车辆,第一处理子组件对应目标区域,第一RSU位于目标区域内。
举例来说,针对每种路侧子消息,可以通过该种路侧子消息对应的接收子组件,接收每个RSU发送的该种路侧子消息,并将每个RSU发送的该种路侧子消息,发送至该种路侧子消息对应的处理子组件组。也就是说,一种路侧子消息,发送给对应的处理子组件组。
之后,该种路侧子消息对应的处理子组件组,将该种路侧子消息分配到发送该路侧子消息的RSU所属的区域对应的处理子组件。例如,以位于目标区域内第一RSU来举例,对应目标区域的为第一处理子组件,那么第一处理子组件可以先获取第一RSU发送的该种路侧子消息,并根据预设对应关系和第一RSU发送的该种路侧子消息,确定该种路侧子消息对应的交通信息,最后将该种路侧子消息对应的交通信息发送至目标车辆。
需要说明的是,第一接收组件在接收到车辆消息后,可以按照车辆消息中包括的 Vehicle ID,和第一处理组件中包括的每个处理子组件对应的Vehicle ID范围,将车辆消息发送到第一处理组件中对应的处理子组件。也就是说,车辆消息采用本地化处理方式,只需要发送给第一处理组件中对应的处理子组件并进行处理(即LocalOrShuffleGrouping),而不是发送给第一处理组件中的每个处理子组件。
路侧消息可以包括:RSI、RSM、MAP、SPAT共4种(即第三数量)路侧子消息,那么第二接收子组件可以分为4个接收子组件(即RSI SPOUT、RSM SPOUT、MAP SPOUT、SPAT SPOUT),第一接收组件可以表示为BSM SPOUT。第二处理子组件可以分为4个处理子组件组,其中每个处理子组件组中可以包括3个处理子组件(即一共12个处理子组件,均表示为BOLT),第一处理组件可以分为2个处理子组件,均表示为BOLT。边缘云控平台如图7所示。
以路侧子消息为SPAT来举例,针对SPAT,可以通过SPAT对应的接收子组件,接收每个RSU发送的SPAT,并发送至SPAT对应的处理子组件组。相应的,可以根据第一处理组件确定的目标区域,先从第一数量个RSU中,筛选出位于目标区域内的第一RSU,再确定SPAT对应的处理子组件组中,与目标区域对应的第一处理子组件。然后利用第一处理子组件来获取第一RSU发送的SPAT,并根据预设对应关系和第一RSU发送的SPAT,确定SPAT对应的交通信息(可以理解为最终交通灯的状态),并发送至目标车辆。
再比如路侧子消息为RSI,针对RSI,可以通过RSI对应的接收子组件,接收每个RSU发送的RSI,并发送至RSI对应的处理子组件组。相应的,可以根据第一处理组件确定的目标区域,先从第一数量个RSU中,筛选出位于目标区域内的第一RSU,再确定RSI对应的处理子组件组中,与目标区域对应的第一处理子组件。然后利用第一处理子组件来获取第一RSU发送的RSI,并根据预设对应关系和第一RSU发送的RSI,确定RSI对应的交通信息(可以理解为最终交通事件),并发送至目标车辆。
综上所述,本公开中覆盖指定范围的边缘云控平台首先接收目标车辆发送的车辆消息,和第一数量个RSU发送的路侧消息,其中,指定范围可以被分为第二数量个区域,每个区域内设置有至少一个RSU,且每个区域内包括至少一个位置节点。之后,根据车辆消息中包括的目标车辆的位置和航向角,确定目标车辆所属的目标区域和对应的目标位置节点,再根据每个RSU发送的路侧消息,和位置节点与RSU的预设对应关系,确定目标位置节点对应的交通信息,最后将交通信息发送至目标车辆。本公开利用了边缘云控平台的边缘云计算能力,可以为在指定范围内,确定位于车辆的行驶方向上,且距 离最近的位置节点,从而将该位置节点处适用于该车辆的交通信息有针对性地发送至该车辆,避免了大量无关信息对处理资源和存储资源的浪费,提高了交通信息的传输效率。
图8是根据一示例性实施例示出的一种交通信息的传输装置的框图,如图8所示,该装置200应用于边缘云控平台,边缘云控平台能够覆盖指定范围,包括:
接收模块201,用于接收目标车辆发送的车辆消息,和第一数量个路侧单元RSU中每个RSU发送的路侧消息,第一数量个RSU位于指定范围内的第二数量个区域内,每个区域内设置有至少一个RSU,每个区域内包括至少一个位置节点。
第一确定模块202,用于根据车辆消息中包括的目标车辆的位置和目标车辆的航向角,确定目标车辆所属的目标区域和目标车辆对应的目标位置节点,目标位置节点位于目标区域内,在目标车辆的行驶方向上,且与目标车辆距离最近。
第二确定模块203,用于根据每个RSU发送的路侧消息,和位置节点与RSU的预设对应关系,确定目标位置节点对应的交通信息。
发送模块204,用于将交通信息发送至目标车辆。
图9是根据一示例性实施例示出的另一种交通信息的传输装置的框图,如图9所示,该装置200还包括:
预处理模块205,用于接收地图消息,地图消息为每个RSU,和/或边缘云控平台对应的中心云控平台发送的。根据地图消息,确定指定范围的综合地图。将综合地图划分为第二数量个区域,并按照预设的空间点索引算法建立第二数量个区域对应的区域索引。
相应的,第一确定模块202可以包括:
第一确定子模块2021,用于根据目标车辆的位置和区域索引,确定目标区域。
第二确定子模块2022,用于根据目标车辆的位置和目标车辆的航向角,在目标区域内确定目标位置节点。
图10是根据一示例性实施例示出的另一种交通信息的传输装置的框图,如图10所示,每个RSU发送的路侧消息包括:该RSU采集的交通事件和至少一个交通灯的状态。第二确定模块203可以包括:
第三确定子模块2031,用于根据预设对应关系和每个RSU发送的路侧消息,确定目标位置节点的至少一个目标交通事件,和/或至少一个目标交通灯的状态,目标交通事件的位置与目标位置节点的距离小于或等于第一距离阈值,目标交通灯的位置与目标位置节点的距离小于或等于第二距离阈值。
第四确定子模块2032,用于根据目标车辆的位置和目标车辆的航向角,在至少一个目标交通灯的状态中,确定最终交通灯的状态,并在至少一个目标交通事件中,确定最终交通事件,最终交通灯和最终交通事件在目标车辆的行驶方向上。将最终交通灯的状态和最终交通事件作为交通信息。
在一种应用场景中,边缘云控平台包括:第一接收组件、第二接收组件、第一处理组件和第二处理组件。接收模块201可以用于:
通过第一接收组件接收车辆消息,并将车辆消息发送至第一处理组件。
通过第二接收组件接收每个RSU发送的路侧消息,并将每个RSU发送的路侧消息发送至第二处理组件。
第一处理组件用于根据目标车辆的位置和目标车辆的航向角,确定目标区域和目标位置节点。
第二处理组件用于根据每个RSU发送的路侧消息和预设对应关系,确定交通信息,并将交通信息发送至目标车辆。
在另一种应用场景中,路侧消息包括第三数量种路侧子消息,第二接收组件包括并行运行的第三数量个接收子组件,每个接收子组件对应一种路侧子消息。第二处理组件包括并行运行的第三数量个处理子组件组,每个处理子组件组对应一种路侧子消息,每个处理子组件组包括并行运行的一个或多个处理子组件,每个处理子组件对应一个或多个区域。
接收模块201可以用于:
针对每种路侧子消息,通过该种路侧子消息对应的接收子组件,接收每个RSU发送的该种路侧子消息,并将每个RSU发送的该种路侧子消息,发送至该种路侧子消息对应的处理子组件组。
该种路侧子消息对应的处理子组件组中的第一处理子组件,用于获取第一RSU发送的该种路侧子消息,并根据预设对应关系和第一RSU发送的该种路侧子消息,确定该种路侧子消息对应的交通信息,并将该种路侧子消息对应的交通信息发送至目标车辆,第一处理子组件对应目标区域,第一RSU位于目标区域内。
关于上述实施例中的装置,其中各个模块执行操作的具体方式已经在有关该方法的实施例中进行了详细描述,此处将不做详细阐述说明。
综上所述,本公开中覆盖指定范围的边缘云控平台首先接收目标车辆发送的车辆消 息,和第一数量个RSU发送的路侧消息,其中,指定范围可以被分为第二数量个区域,每个区域内设置有至少一个RSU,且每个区域内包括至少一个位置节点。之后,根据车辆消息中包括的目标车辆的位置和航向角,确定目标车辆所属的目标区域和对应的目标位置节点,再根据每个RSU发送的路侧消息,和位置节点与RSU的预设对应关系,确定目标位置节点对应的交通信息,最后将交通信息发送至目标车辆。本公开利用了边缘云控平台的边缘云计算能力,可以为在指定范围内,确定位于车辆的行驶方向上,且距离最近的位置节点,从而将该位置节点处适用于该车辆的交通信息有针对性地发送至该车辆,避免了大量无关信息对处理资源和存储资源的浪费,提高了交通信息的传输效率。
图11是根据一示例性实施例示出的一种电子设备300的框图。例如,电子设备300可以被提供为一服务器。参照图11,电子设备300包括处理器322,其数量可以为一个或多个,以及存储器332,用于存储可由处理器322执行的计算机程序。存储器332中存储的计算机程序可以包括一个或一个以上的每一个对应于一组指令的模块。此外,处理器322可以被配置为执行该计算机程序,以执行上述的交通信息的传输方法。
另外,电子设备300还可以包括电源组件326和通信组件350,该电源组件326可以被配置为执行电子设备300的电源管理,该通信组件350可以被配置为实现电子设备300的通信,例如,有线或无线通信。此外,该电子设备300还可以包括输入/输出(I/O)接口358。电子设备300可以操作基于存储在存储器332的操作系统,例如Windows Server TM,Mac OS X TM,Unix TM,Linux TM等等。
在另一示例性实施例中,还提供了一种包括程序指令的非临时性计算机可读存储介质,该程序指令被处理器执行时实现上述的交通信息的传输方法的步骤。例如,该计算机可读存储介质可以为上述包括程序指令的存储器332,上述程序指令可由电子设备300的处理器322执行以完成上述的交通信息的传输方法。
在另一示例性实施例中,还提供一种计算机程序产品,该计算机程序产品包含能够由可编程的装置执行的计算机程序,该计算机程序具有当由该可编程的装置执行时用于执行上述的交通信息的传输方法的代码部分。
以上结合附图详细描述了本公开的优选实施方式,但是,本公开并不限于上述实施方式中的具体细节,在本公开的技术构思范围内,可以对本公开的技术方案进行多种简单变型,这些简单变型均属于本公开的保护范围。
另外需要说明的是,在上述具体实施方式中所描述的各个具体技术特征,在不矛盾 的情况下,可以通过任何合适的方式进行组合,为了避免不必要的重复,本公开对各种可能的组合方式不再另行说明。
此外,本公开的各种不同的实施方式之间也可以进行任意组合,只要其不违背本公开的思想,其同样应当视为本公开所公开的内容。

Claims (11)

  1. 一种交通信息的传输方法,其特征在于,应用于边缘云控平台,所述边缘云控平台能够覆盖指定范围,所述方法包括:
    接收目标车辆发送的车辆消息,和第一数量个路侧单元RSU中每个所述RSU发送的路侧消息,第一数量个所述RSU位于所述指定范围内的第二数量个区域内,每个所述区域内设置有至少一个所述RSU,每个所述区域内包括至少一个位置节点;
    根据所述车辆消息中包括的所述目标车辆的位置和所述目标车辆的航向角,确定所述目标车辆所属的目标区域和所述目标车辆对应的目标位置节点,所述目标位置节点位于所述目标区域内,在所述目标车辆的行驶方向上,且与所述目标车辆距离最近;
    根据每个所述RSU发送的所述路侧消息,和位置节点与RSU的预设对应关系,确定所述目标位置节点对应的交通信息;
    将所述交通信息发送至所述目标车辆。
  2. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    接收地图消息,所述地图消息为每个所述RSU,和/或所述边缘云控平台对应的中心云控平台发送的;
    根据所述地图消息,确定所述指定范围的综合地图;
    将所述综合地图划分为第二数量个所述区域,并按照预设的空间点索引算法建立第二数量个所述区域对应的区域索引;
    所述根据所述车辆消息中包括的所述目标车辆的位置和所述目标车辆的航向角,确定所述目标车辆所属的目标区域和所述目标车辆对应的目标位置节点,包括:
    根据所述目标车辆的位置和所述区域索引,确定所述目标区域;
    根据所述目标车辆的位置和所述目标车辆的航向角,在所述目标区域内确定所述目标位置节点。
  3. 根据权利要求1所述的方法,其特征在于,每个所述RSU发送的所述路侧消息包括:该RSU采集的交通事件和至少一个交通灯的状态;所述根据每个所述RSU发送的所述路侧消息,和位置节点与RSU的预设对应关系,确定所述目标位置节点对应的交通信息,包括:
    根据所述预设对应关系和每个所述RSU发送的所述路侧消息,确定所述目标位置节点的至少一个目标交通事件,和/或至少一个目标交通灯的状态,所述目标交通事件的位置与所述目标位置节点的距离小于或等于第一距离阈值,所述目标交通灯的位置与所述目标位置节点的距离小于或等于第二距离阈值;
    根据所述目标车辆的位置和所述目标车辆的航向角,在至少一个目标交通灯的状态中,确定最终交通灯的状态,并在至少一个目标交通事件中,确定最终交通事件,所述最终交通灯和所述最终交通事件在所述目标车辆的行驶方向上;
    将所述最终交通灯的状态和所述最终交通事件作为所述交通信息。
  4. 根据权利要求1所述的方法,其特征在于,所述边缘云控平台包括:第一接收组件、第二接收组件、第一处理组件和第二处理组件;
    所述接收目标车辆发送的车辆消息,和第一数量个路侧单元RSU中每个所述RSU发送的路侧消息,包括:
    通过所述第一接收组件接收所述车辆消息,并将所述车辆消息发送至所述第一处理组件;
    通过所述第二接收组件接收每个所述RSU发送的所述路侧消息,并将每个所述RSU发送的所述路侧消息发送至所述第二处理组件;
    所述第一处理组件用于根据所述目标车辆的位置和所述目标车辆的航向角,确定所述目标区域和所述目标位置节点;
    所述第二处理组件用于根据每个所述RSU发送的所述路侧消息和所述预设对应关系,确定所述交通信息,并将所述交通信息发送至所述目标车辆。
  5. 根据权利要求4所述的方法,其特征在于,所述路侧消息包括第三数量种路侧子消息,所述第二接收组件包括并行运行的第三数量个接收子组件,每个所述接收子组件对应一种所述路侧子消息;
    所述第二处理组件包括并行运行的第三数量个处理子组件组,每个所述处理子组件组对应一种所述路侧子消息,每个所述处理子组件组包括并行运行的一个或多个处理子组件,每个处理子组件对应一个或多个所述区域;
    所述通过所述第二接收组件接收每个所述RSU发送的所述路侧消息,并将每个所述 RSU发送的所述路侧消息发送至所述第二处理组件,包括:
    针对每种路侧子消息,通过该种路侧子消息对应的所述接收子组件,接收每个所述RSU发送的该种路侧子消息,并将每个所述RSU发送的该种路侧子消息,发送至该种路侧子消息对应的所述处理子组件组;
    该种路侧子消息对应的所述处理子组件组中的第一处理子组件,用于获取第一RSU发送的该种路侧子消息,并根据所述预设对应关系和所述第一RSU发送的该种路侧子消息,确定该种路侧子消息对应的所述交通信息,并将该种路侧子消息对应的所述交通信息发送至所述目标车辆,所述第一处理子组件对应所述目标区域,所述第一RSU位于所述目标区域内。
  6. 一种交通信息的传输装置,其特征在于,应用于边缘云控平台,所述边缘云控平台能够覆盖指定范围,所述装置包括:
    接收模块,用于接收目标车辆发送的车辆消息,和第一数量个路侧单元RSU中每个所述RSU发送的路侧消息,第一数量个所述RSU位于所述指定范围内的第二数量个区域内,每个所述区域内设置有至少一个所述RSU,每个所述区域内包括至少一个位置节点;
    第一确定模块,用于根据所述车辆消息中包括的所述目标车辆的位置和所述目标车辆的航向角,确定所述目标车辆所属的目标区域和所述目标车辆对应的目标位置节点,所述目标位置节点位于所述目标区域内,在所述目标车辆的行驶方向上,且与所述目标车辆距离最近;
    第二确定模块,用于根据每个所述RSU发送的所述路侧消息,和位置节点与RSU的预设对应关系,确定所述目标位置节点对应的交通信息;
    发送模块,用于将所述交通信息发送至所述目标车辆。
  7. 根据权利要求6所述的装置,其特征在于,所述装置还包括:
    预处理模块,用于接收地图消息,所述地图消息为每个所述RSU,和/或所述边缘云控平台对应的中心云控平台发送的;根据所述地图消息,确定所述指定范围的综合地图;将所述综合地图划分为第二数量个所述区域,并按照预设的空间点索引算法建立第二数量个所述区域对应的区域索引;
    所述第一确定模块包括:
    第一确定子模块,用于根据所述目标车辆的位置和所述区域索引,确定所述目标区域;
    第二确定子模块,用于根据所述目标车辆的位置和所述目标车辆的航向角,在所述目标区域内确定所述目标位置节点。
  8. 根据权利要求6所述的装置,其特征在于,每个所述RSU发送的所述路侧消息包括:该RSU采集的交通事件和至少一个交通灯的状态;所述第二确定模块包括:
    第三确定子模块,用于根据所述预设对应关系和每个所述RSU发送的所述路侧消息,确定所述目标位置节点的目标交通事件,和/或至少一个目标交通灯的状态,所述目标交通事件的位置与所述目标位置节点的距离小于或等于第一距离阈值,所述目标交通灯的位置与所述目标位置节点的距离小于或等于第二距离阈值;
    第四确定子模块,用于根据所述目标车辆的位置和所述目标车辆的航向角,在至少一个目标交通灯的状态中,确定最终交通灯的状态,并将所述最终交通灯的状态和所述目标交通事件作为所述交通信息,所述最终交通灯在所述目标车辆的行驶方向上。
  9. 一种非临时性计算机可读存储介质,其上存储有计算机程序,其特征在于,该程序被处理器执行时实现权利要求1-5中任一项所述方法的步骤。
  10. 一种电子设备,其特征在于,包括:
    存储器,其上存储有计算机程序;
    处理器,用于执行所述存储器中的所述计算机程序,以实现权利要求1-5中任一项所述方法的步骤。
  11. 一种计算机程序产品,其特征在于,所述计算机程序产品包含能够由可编程的装置执行的计算机程序,所述计算机程序具有当由所述可编程的装置执行时用于执行权利要求1-5中任一项所述的方法的代码部分。
PCT/CN2021/127176 2020-12-31 2021-10-28 交通信息的传输方法、装置、介质、电子设备和程序产品 WO2022142664A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011618936.2A CN112839320B (zh) 2020-12-31 2020-12-31 交通信息的传输方法、装置、存储介质和电子设备
CN202011618936.2 2020-12-31

Publications (1)

Publication Number Publication Date
WO2022142664A1 true WO2022142664A1 (zh) 2022-07-07

Family

ID=75924013

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/127176 WO2022142664A1 (zh) 2020-12-31 2021-10-28 交通信息的传输方法、装置、介质、电子设备和程序产品

Country Status (2)

Country Link
CN (1) CN112839320B (zh)
WO (1) WO2022142664A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115273471A (zh) * 2022-07-27 2022-11-01 海信集团控股股份有限公司 一种公交车及公交车出入站提示方法
CN115472004A (zh) * 2022-08-04 2022-12-13 阿波罗智联(北京)科技有限公司 路侧点位与车辆驾驶行为关联方法、装置及存储介质
CN115643547A (zh) * 2022-08-25 2023-01-24 广州汽车集团股份有限公司 鸣笛提示方法、装置、车辆及存储介质
CN116913095A (zh) * 2023-09-08 2023-10-20 湖南湘江智能科技创新中心有限公司 基于智能锥桶的交通警示系统及交通警示方法

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112839320B (zh) * 2020-12-31 2024-01-16 东软集团股份有限公司 交通信息的传输方法、装置、存储介质和电子设备
CN113395659B (zh) * 2021-06-13 2022-06-10 西北工业大学 一种基于多元信标的车辆通信区域划分方法
CN113570868A (zh) * 2021-09-26 2021-10-29 华砺智行(武汉)科技有限公司 交叉口绿灯通过率计算方法、装置、设备及存储介质
CN114374624A (zh) * 2021-12-17 2022-04-19 信通院车联网创新中心(成都)有限公司 V2x路侧终端功能性信息下发功能仿真测试方法
CN115285177B (zh) * 2022-09-14 2024-03-22 北京世纪东方智汇科技股份有限公司 应用于地方铁路的行车预警系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017176329A1 (en) * 2016-04-05 2017-10-12 Intel IP Corporation Devices and methods for mec v2x
CN109299822A (zh) * 2018-09-21 2019-02-01 中国联合网络通信集团有限公司 车辆调度方法、装置、系统及存储介质
CN110296713A (zh) * 2019-06-17 2019-10-01 深圳数翔科技有限公司 路侧自动驾驶车辆定位导航系统及单个、多个车辆定位导航方法
US20200372795A1 (en) * 2018-01-08 2020-11-26 Nokia Technologies Oy Target vehicle selection and message delivery in vehicular systems
CN112839320A (zh) * 2020-12-31 2021-05-25 东软集团股份有限公司 交通信息的传输方法、装置、存储介质和电子设备

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104240500A (zh) * 2014-08-25 2014-12-24 奇瑞汽车股份有限公司 一种路况信息预测方法及系统
US9911334B2 (en) * 2016-07-12 2018-03-06 Siemens Industry, Inc. Connected vehicle traffic safety system and a method of warning drivers of a wrong-way travel
CN108377252B (zh) * 2016-11-23 2020-12-08 武汉万集信息技术有限公司 一种车路协同信息推送方法及装置
CN107293143A (zh) * 2017-07-28 2017-10-24 维沃移动通信有限公司 交通信息的获取方法和终端设备
WO2019245375A1 (en) * 2018-06-18 2019-12-26 Ellertsen Roger Andre A road traffic navigation system
US11295617B2 (en) * 2018-10-19 2022-04-05 Blackberry Limited Method and system for wireless road side units
CN110248311B (zh) * 2019-06-17 2021-01-01 重庆西部汽车试验场管理有限公司 一种基于智能网联平台的v2i应用功能测试方法
CN110400480B (zh) * 2019-08-28 2021-02-12 广东利通科技投资有限公司 基于交通通信站的交通信息处理方法、装置、设备和介质
CN110570674A (zh) * 2019-09-06 2019-12-13 杭州博信智联科技有限公司 车路协同数据交互方法、系统、电子设备及可读存储介质
CN111565423B (zh) * 2020-04-01 2023-05-30 中国联合网络通信集团有限公司 交通数据的处理方法及装置
CN112100196B (zh) * 2020-11-23 2021-06-25 蘑菇车联信息科技有限公司 实时交通信息处理方法、系统及电子设备

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017176329A1 (en) * 2016-04-05 2017-10-12 Intel IP Corporation Devices and methods for mec v2x
US20200372795A1 (en) * 2018-01-08 2020-11-26 Nokia Technologies Oy Target vehicle selection and message delivery in vehicular systems
CN109299822A (zh) * 2018-09-21 2019-02-01 中国联合网络通信集团有限公司 车辆调度方法、装置、系统及存储介质
CN110296713A (zh) * 2019-06-17 2019-10-01 深圳数翔科技有限公司 路侧自动驾驶车辆定位导航系统及单个、多个车辆定位导航方法
CN112839320A (zh) * 2020-12-31 2021-05-25 东软集团股份有限公司 交通信息的传输方法、装置、存储介质和电子设备

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115273471A (zh) * 2022-07-27 2022-11-01 海信集团控股股份有限公司 一种公交车及公交车出入站提示方法
CN115472004A (zh) * 2022-08-04 2022-12-13 阿波罗智联(北京)科技有限公司 路侧点位与车辆驾驶行为关联方法、装置及存储介质
CN115643547A (zh) * 2022-08-25 2023-01-24 广州汽车集团股份有限公司 鸣笛提示方法、装置、车辆及存储介质
CN116913095A (zh) * 2023-09-08 2023-10-20 湖南湘江智能科技创新中心有限公司 基于智能锥桶的交通警示系统及交通警示方法
CN116913095B (zh) * 2023-09-08 2023-12-12 湖南湘江智能科技创新中心有限公司 基于智能锥桶的交通警示系统及交通警示方法

Also Published As

Publication number Publication date
CN112839320A (zh) 2021-05-25
CN112839320B (zh) 2024-01-16

Similar Documents

Publication Publication Date Title
WO2022142664A1 (zh) 交通信息的传输方法、装置、介质、电子设备和程序产品
US11520331B2 (en) Methods and apparatus to update autonomous vehicle perspectives
CN109672996B (zh) 一种基于v2x路侧设备系统及其信息分发方法
US20230415750A1 (en) Road surface friction based predictive driving for computer assisted or autonomous driving vehicles
CN113498011B (zh) 车联网方法、装置、设备、存储介质及系统
US20230030446A1 (en) Remote driving method, apparatus, and system, device, and medium
US20230057394A1 (en) Cooperative vehicle-infrastructure processing method and apparatus, electronic device, and storage medium
US11600172B2 (en) Internet of vehicles message exchange method and related apparatus
CN108009169B (zh) 一种数据处理方法、装置及设备
WO2020216308A1 (zh) 一种网络资源调度方法及相关设备
US20200327806A1 (en) Connected vehicle platform assisted v2x communications
US20190297474A1 (en) Connecting and managing vehicles using a publish-subscribe system
CN112583872B (zh) 一种通信方法及装置
JP2023517389A (ja) 地図データ収集方法および装置、ならびにシステム
CN112233419A (zh) 一种数据处理方法、装置、设备及存储介质
CN115240470A (zh) 基于nr-v2x的弱势交通参与者碰撞预警系统与方法
CN112504291B (zh) 一种车辆导航的方法及装置
CN114845267A (zh) 一种基于车联网的传感器数据共享方法和装置
CN113734184A (zh) 自动驾驶车辆在途组队方法、装置及电子设备
CN116346862B (zh) 用于智能网联汽车的传感器共享方法及装置
CN115175099B (zh) 信息分享方法、装置、电子设备、可读存储介质及芯片
WO2022068558A1 (zh) 一种地图数据的传输方法及装置
US20240040600A1 (en) Vehicle communication control device, system, and method
WO2016177101A1 (zh) 车与车通信的管理方法和装置
CN112398932B (zh) 获取路况信息的方法、装置、设备及计算机可读存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21913408

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21913408

Country of ref document: EP

Kind code of ref document: A1