WO2022142598A1 - 天线装置和电子设备 - Google Patents

天线装置和电子设备 Download PDF

Info

Publication number
WO2022142598A1
WO2022142598A1 PCT/CN2021/124443 CN2021124443W WO2022142598A1 WO 2022142598 A1 WO2022142598 A1 WO 2022142598A1 CN 2021124443 W CN2021124443 W CN 2021124443W WO 2022142598 A1 WO2022142598 A1 WO 2022142598A1
Authority
WO
WIPO (PCT)
Prior art keywords
antenna
radiator
antenna device
frequency
floor
Prior art date
Application number
PCT/CN2021/124443
Other languages
English (en)
French (fr)
Inventor
武东伟
邵金进
石操
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2022142598A1 publication Critical patent/WO2022142598A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • H01Q1/38Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith formed by a conductive layer on an insulating support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q13/00Waveguide horns or mouths; Slot antennas; Leaky-waveguide antennas; Equivalent structures causing radiation along the transmission path of a guided wave
    • H01Q13/08Radiating ends of two-conductor microwave transmission lines, e.g. of coaxial lines, of microstrip lines
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/10Resonant antennas

Definitions

  • the present application relates to the field of antenna technology, in particular to an antenna device and electronic equipment.
  • the board-printed antenna is an antenna with a microstrip line structure printed on the circuit board.
  • the board-printed antenna has the advantages of saving space and low cost, but the conventional board-printed antenna can only achieve coverage of a beam in one direction.
  • Embodiments of the present application provide an antenna device and an electronic device, which can excite beams in two directions at the same time, thereby increasing the coverage direction of the antenna.
  • the present application provides an antenna device, including a circuit board and a first antenna
  • the circuit board includes a grounding area and a clearance area located at the periphery of the grounding area, the grounding area is provided with a floor, and the floor includes a first antenna.
  • the first antenna includes a feed end, a ground end, and a radiator extending between the feed end and the ground end, and the radiator is a microstrip line structure printed in the clearance area, so The feed end and the ground end are adjacent to the first side, the electrical length of the radiator is greater than 1 times the wavelength and less than 1.5 times the wavelength, and the wavelength is the working frequency of the first antenna (the working frequency here).
  • the wavelength of the electromagnetic wave in the resonant frequency) state that is, the wavelength of the electromagnetic wave radiated by the first antenna at its operating frequency, so that the first antenna can excite the floor and the radiator at the same time after feeding. Radiate electromagnetic waves.
  • the present application by arranging the first antenna in the clearance area, and by configuring the electrical length of the radiator of the first antenna, it is possible to simultaneously excite the radiator and the floor of the first antenna to radiate electromagnetic waves, thereby realizing that the antenna device has dual beams, Not only can it have beams in the horizontal direction, but also in the vertical direction, and in the home gateway environment, it can realize the electromagnetic wave signal radiation of the flat layer and the electromagnetic wave signal radiation of the jump layer.
  • the first antenna is a microstrip line structure formed on a circuit board by printing, which has the advantage of low cost, the present application utilizes a planar circuit board microstrip line structure to achieve a dual-beam antenna effect.
  • the shape of the floor in the grounding area is the same as the shape of the grounding area, and both are rectangles (which may also be squares, circles, polygons, or any other shape).
  • the shape of the floor and the shape of the grounding area may also be different, for example, the grounding area is rectangular, the floor may be a part of the grounding area, and the area of the floor is smaller than that of the grounding area.
  • the floor is a grounded copper foil set in a grounding area, and electronic devices can be arranged in the grounding area, and the ground of the electronic device (eg, the housing of the electronic device) and the floor together form the ground of the antenna device.
  • the midpoint of the vertical connection between the feed end and the ground end is the first midpoint
  • the extension direction of the first side is the first direction
  • passing through the A line extending at the first midpoint and perpendicular to the first direction is a first axis
  • the radiator includes a first radiation segment and a second radiation segment distributed on both sides of the first axis, the first radiation segment A radiating section is connected between the feed end and the second radiating section, the second radiating section is connected between the first radiating section and the grounding end, the first radiating section and the The electrical lengths of the second radiation segments are unequal.
  • the asymmetrically distributed radiators provided in this embodiment are beneficial to form a pattern of dual directional radiation. When the antenna has directional radiation requirements in both horizontal and vertical directions, a similar asymmetric radiator distribution structure can be used to configure corresponding direction map.
  • the electrical length of the first radiation segment is L1, and the electrical length of the second radiation segment is L2, 0.3 ⁇ L1/L2 ⁇ 0.7.
  • the electrical length of the first radiation segment is L1
  • the electrical length of the second radiation segment is L2, where 1.4 ⁇ L1/L2 ⁇ 3.3. It can be understood that, in the present application, different asymmetric structures of radiators can be set according to different specific waveform directions.
  • the working frequency of the first antenna is the first frequency
  • the radiator is provided with a slot
  • the slot is arranged so that the radiator runs from the feed end to the ground.
  • An open circuit is formed on the path extending from the end, and the slot is used to filter out the resonance of the second frequency (ie, filter out the electromagnetic wave of the second frequency), and the second frequency is lower than the first frequency.
  • the present application configures the structure of the radiator of the first antenna, that is, sets the slot structure, so that the first antenna has the performance of filtering out the electromagnetic waves of the second frequency, and the working frequency of the second antenna disposed next to the first antenna is the first antenna.
  • a relatively small distance between the first antenna and the second antenna can be achieved, and better isolation can also be achieved, which is beneficial to the miniaturized configuration of the antenna device and the electronic equipment.
  • the slit width is: greater than or equal to 0.001 times the wavelength and less than or equal to 0.02 times the wavelength, and the slit width is defined as: on the extending path of the radiator, the width of the slit on both sides of the slit is The size of the vertical lines between the radiators. In a specific embodiment, the width of the slit is 1 mm.
  • the distance between the slot and the ground terminal is smaller than the distance between the slot and the feed terminal.
  • the position of the slot on the radiator of the first antenna is adjustable. Different antennas have different resonance frequencies and the positions of the slots are also different. Therefore, the positions of the slots are determined by the resonance frequencies of the antennas.
  • the antenna device further includes a second antenna disposed in the clearance area, the second antenna is spaced apart from the first antenna, and the operating frequency of the second antenna is the second frequency.
  • the radiator (ring radiator structure) is divided into two sections by setting a slot, and the electrical length from the feed end to the slot determines the operating frequency of the antenna, and tuning can be achieved by adjusting the position of the slot, because the existence of the slot.
  • the ring structure of the radiator is disconnected, resulting in a capacitive effect, resulting in a serious mismatch of the low-frequency resonance mode of the ring structure, thereby realizing the filtering effect on adjacent frequency electromagnetic waves.
  • the first frequency is 5G
  • the second frequency is 2.4G
  • the distance between the first antenna and the second antenna is 8 mm.
  • two ends of the first side are a first end and a second end, respectively, and the distance between the first antenna and the first end is smaller than the distance between the first antenna and the first end. distance between the second ends.
  • the distance between the first antenna and the first end is less than or equal to 0.67 times the wavelength.
  • the ground terminal is located between the feed terminal and the first terminal.
  • the radiator and the floor are located in the same layer on the circuit board.
  • the circuit board can be a multi-layer board structure or a single-layer board structure.
  • the floor can be a certain metal ground layer (such as a copper foil layer) in the grounding area.
  • the floor can be located on the surface layer of the circuit board, and the floor can also be located on the middle layer of the circuit board.
  • the radiator of the first antenna may also be a certain layer or layers within the clearance area (i.e. the radiator may be distributed in at least two layers in the circuit board). The radiator can be located on the same floor as the floor or on a different floor from the floor.
  • both the radiator and the floor are located on the surface of the circuit board.
  • the advantage of this embodiment is that the radiator and the floor can be on the same layer, and can be fabricated in one process, with a simple structure and low cost.
  • the circuit board is a multi-layer board structure
  • the radiator is located on the surface layer of the circuit board
  • the floor is located on the middle layer of the circuit board.
  • the circuit board is a multi-layer board structure
  • the floor is located on the surface layer of the circuit board
  • the radiators are distributed on the surface layer and the middle layer of the circuit board
  • the part of the radiators distributed on the surface layer of the circuit board is the first part, distributed in the A part of the radiator in the middle layer of the circuit board is the second part, and the first part and the second part can be electrically connected through via holes between the circuit boards.
  • the electromagnetic waves radiated on the floor form a beam in a horizontal direction (or a horizontal plane), and the electromagnetic waves on the radiator form a beam in a vertical direction (or a vertical plane).
  • the number of the first antennas is at least two, and they are distributed at different lateral positions of the floor.
  • part of the radiator has an arc-shaped structure, so that the total size of the radiator in the first direction is larger than the total size in the second direction, and the second direction is perpendicular to the the first direction.
  • the total size of the radiators in the first direction can be expanded, so that the total size of the radiators in the first direction is larger than the total size of the radiators in the second direction.
  • the total size of the radiator in the second direction can be reduced, which is beneficial to the design of the antenna device and the electronic device with small size in the second direction.
  • the total size of the radiator in the second direction is larger than the total size of the radiator in the first direction, and the second direction is perpendicular to the first direction.
  • This embodiment can reduce the size of the radiator in the first direction by increasing the size of the radiator in the second direction. Combined with the arrangement of the slits on the radiator, the size of the antenna device and the electronic device in the first direction can be increased. be miniaturized.
  • the radiator includes a multi-segment microstrip line body extending in a straight line and a meandering line, the meandering line is connected between two adjacent microstrip line bodies, using The electrical length at increasing the unit size of the radiator.
  • the serpentine line is arranged on the radiator to increase the electrical length of the radiator per unit size, so that the radiator of suitable electrical length can be arranged in a small space.
  • the radiator includes a microstrip line body of equal width and a widened portion connected to the microstrip line main body, and the width of the widened portion is larger than that of the microstrip line main body.
  • Width dimension the operating frequency of the first antenna is the first frequency
  • the radiator is provided with a slot, and the slot is formed between the widened part and part of the microstrip line body, and the arrangement of the slot so that the radiator forms an open circuit on the path extending from the feed end to the ground end, and the gap is used to filter out the resonance of the second frequency (that is, to filter out the electromagnetic wave whose operating frequency is the second frequency),
  • the second frequency is lower than the first frequency.
  • the capacitance value of the slot position can be adjusted, which is beneficial to the tuning of the first antenna.
  • the present application provides an electronic device, including a radio frequency circuit and the antenna device according to any embodiment of the first aspect, wherein the feed end of the antenna is electrically connected to the radio frequency circuit through a feed structure .
  • FIG. 1 is a schematic diagram of the application of an electronic device including the antenna provided by the present application as a home gateway in a home gateway system.
  • FIG. 2 is a schematic diagram of a specific application scenario of the electronic device (being a home gateway) provided by the present application.
  • FIG. 3 is a perspective view of an electronic device according to an embodiment of the present application.
  • FIG. 4 is a schematic view of the electronic device shown in FIG. 3 in a state in which the casing is removed.
  • FIG. 5 and 6 are schematic diagrams of an antenna device according to an embodiment of the present application.
  • FIG. 5 is a front view of the circuit board 10
  • FIG. 6 is a back view of the circuit board 10 .
  • FIG. 7 is an example of the distribution of the first antenna on the circuit board in the antenna device according to an embodiment of the present application.
  • FIG. 8 is an example of the distribution of the first antenna on the circuit board in the antenna device provided by an embodiment of the present application.
  • FIG. 9 is an enlarged schematic view of the area I in FIG. 7 .
  • FIG. 10 is an enlarged schematic diagram of a first antenna in an antenna device according to another embodiment of the present application.
  • FIG. 11 is an enlarged schematic diagram of a first antenna in an antenna device according to another embodiment of the present application.
  • FIG. 12 is an enlarged schematic diagram of a first antenna in an antenna device according to another embodiment of the present application.
  • FIG. 13 is an enlarged schematic diagram of a first antenna in an antenna device according to another embodiment of the present application.
  • FIG. 14 is an enlarged schematic diagram of a first antenna in an antenna device according to another embodiment of the present application.
  • FIG. 15 is an enlarged schematic diagram of a first antenna in an antenna device according to another embodiment of the present application.
  • FIG. 16 is an enlarged schematic diagram of a first antenna in an antenna device according to another embodiment of the present application.
  • FIG. 17 is an enlarged schematic diagram of a first antenna in an antenna device provided by another embodiment of the present application.
  • FIG. 18 is an enlarged schematic diagram of a first antenna in an antenna device according to another embodiment of the present application.
  • FIG. 19 is an enlarged schematic diagram of a first antenna in an antenna device according to another embodiment of the present application.
  • FIG. 20 is a schematic diagram of an antenna device according to an embodiment of the present application.
  • FIG. 21 is a schematic diagram of an antenna device according to an embodiment of the present application.
  • FIG. 22 is a partial schematic diagram of an antenna device provided by an embodiment of the present application.
  • FIG. 23 is a schematic cross-sectional view of a circuit board in an antenna device provided by an embodiment of the present application.
  • FIG. 24 is a schematic cross-sectional view of a circuit board in an antenna device provided by an embodiment of the present application.
  • FIG. 25 is a schematic cross-sectional view of a circuit board in an antenna device provided by an embodiment of the present application.
  • FIGS. 26 and 27 are an antenna device (corresponding to the curves marked as dual-beam antennas in FIGS. 26 and 27 ) and a conventional loop antenna (corresponding to the curves marked as original loop antennas in FIGS. 26 and 27 ) provided by an embodiment of the present application ) 2D pattern comparison in the simulation model.
  • FIG. 28 is a directional diagram of an antenna device in a 5G frequency band provided by an embodiment of the present application.
  • FIG. 29 is a current distribution diagram of the antenna device provided by an embodiment of the present application in the case where no slot is provided on the radiator.
  • FIG. 30 is a current distribution diagram of the antenna device provided by an embodiment of the present application when a slot is provided on the radiator.
  • FIG. 31 is a current distribution diagram on a radiator of a first antenna in an antenna device according to an embodiment of the present application.
  • FIG. 32 and 33 are S-parameter curves ( FIG. 32 ) and S-parameter curves ( FIG. 33 ) of the radiator of the first antenna without a slot in the antenna device provided by an embodiment of the present application.
  • Home gateway It is a network device located inside a modern home. Its function is to connect home users to the Internet, so that various smart devices located in the home can get Internet services, or enable these smart devices to communicate with each other. .
  • a home gateway is a bridge that enables networking between multiple smart devices in the home and interconnection from the home to the external network. From a technical point of view, the home gateway implements bridging/routing, protocol conversion, address management and conversion within the home and from the inside to the outside, undertakes the responsibilities of a firewall, and provides possible services such as VoIP/Video over IP.
  • Multi-input Multi-output is an abstract mathematical model used to describe a multi-antenna wireless communication system.
  • the antenna receives and restores the original information.
  • multi-antenna technologies such as MIMO still include the early so-called "smart antennas", that is, single-input multiple-output systems.
  • Single-Input Multi-Output, SIMO Single-Input Multi-Output
  • MISO Multiple-Input Single-Output
  • Horizontal polarization means that the vibration direction of electromagnetic waves is horizontal. Any polarized wave whose polarization plane is perpendicular to the normal plane of the earth is called a horizontally polarized wave. Its electric field direction is parallel to the earth.
  • Vertical polarization means that the electric field vector vibrates along a fixed direction in a fixed plane, then the electromagnetic wave is said to be polarized, and the plane containing the electric field vector E is called the plane of polarization.
  • Polarization is called polarization in microwave remote sensing, and there are two types of polarization: horizontal polarization and vertical polarization.
  • V vertical polarization
  • FIG. 1 is a schematic diagram showing the application of an electronic device including the antenna provided by the present application as a home gateway in a home gateway system.
  • the electronic device provided by this application is a home gateway, the home gateway is connected between the optical central office and the terminal device, the optical central office is connected to the wide area network (Internet), and the optical central office is connected from the wide area network (Internet)
  • the signal is acquired, and the signal is transmitted to the home gateway, and then the antenna set in the home gateway transmits the signal to each terminal device.
  • the home gateway includes a digital module, a radio frequency module and an antenna.
  • the digital module is connected between the optical central office and the radio frequency module, and the radio frequency module is used to send radio frequency signals to the antenna.
  • the antenna may include Antenna 1, Antenna 2, Antenna 3, Antenna 4 and Antenna 5, Antenna 1 may be a low frequency antenna, for example, the low frequency antenna may be a 2G antenna or a 3G antenna, Antenna 2, Antenna 3, Antenna 4 and Antenna 5 may be It is a high-frequency antenna, for example, the high-frequency antenna can be a 5G antenna or a 6G antenna.
  • the antennas may have other configurations, for example, the number of low-frequency antennas may be two or more, and the number of high-frequency antennas may also be one or two or more.
  • the terminal device may include a smart phone, a smart home (eg, an air conditioner, an electric fan, a washing machine, a refrigerator, etc.), a smart TV, and a smart security (eg, a camera).
  • Smartphones can be used in the low frequency range or in the high frequency range.
  • smartphones can support both 2G and 5G frequency signals. Therefore, as shown in FIG. 1 , both the antenna 1 and the antenna 2 provide signals for the smartphone.
  • Antenna 3 provides signals for smart homes.
  • the antenna 4 provides signals for the smart TV, and the user can also remotely control the smart TV through the terminal device.
  • the smart TV can have the function of an Internet TV or a video conference function.
  • Antenna 5 provides signals for intelligent security, and the intelligent vision security system can include functions such as fire prevention, anti-theft, anti-leakage and remote monitoring. Users can use mobile phones and the Internet to remotely view and set up the home security system, and at the same time, they can also remotely monitor the internal situation of the home. If an abnormal situation is detected, the security system can notify users by calling, texting, and emailing.
  • FIG. 2 shows a schematic diagram of a specific application scenario of the electronic device 100 (which is a home gateway) provided by the present application.
  • the electronic device 100 which is a home gateway
  • FIG. 2 shows a schematic diagram of a specific application scenario of the electronic device 100 (which is a home gateway) provided by the present application.
  • the antenna provided in this application has the characteristics of dual beams, which can generate two beams in different directions based on the electromagnetic wave signal of the same operating frequency, for example, dual beam coverage covering both horizontal and vertical directions at the same time. , which can improve the WIFI coverage performance of both the leveling and escalating cascading of villas.
  • the ellipse marked A in Figure 2 represents the antenna's ability to radiate omnidirectionally in the horizontal plane
  • the ellipse marked B in Figure 2 represents the antenna's ability to radiate horizontally polarized
  • the ellipse marked C in Figure 2 represents that the antenna has The vertical plane radiation ability can realize the ability to radiate signals vertically through the building.
  • the electronic device 100 includes a plurality of antennas with different operating frequencies. Different antennas are set in the same electronic device. The isolation between the antennas needs to meet the requirements to ensure the radiation performance of each antenna. The isolation of the antennas provided in this application The advantage of good degree is that it can have a good isolation degree between adjacent antennas in a small space, which is beneficial to the development of small size of home gateways (or other electronic devices).
  • FIG. 3 shows a three-dimensional schematic diagram of an electronic device 100 provided by an embodiment of the present application.
  • the electronic device 100 may be a home gateway, or may be other electronic devices, such as: wireless AP, home hotspot, CPE (Customer Premise Equipment, client terminal equipment) etc.
  • FIG. 4 is a schematic diagram showing the internal structure of the electronic device 100 shown in FIG. 3 after removing part of the casing. Referring to FIG. 4 , the antenna device 1 provided by the present application is arranged on the circuit board 10 built in the electronic device 100 , and the part inside the dotted frame in FIG.
  • the antenna device 1 is distributed on the edge of the circuit board 10
  • a part of the circuit board 10 constitutes a part of the antenna device 1 , that is, the antenna device 1 provided in this application includes the circuit board 10 and one or more antennas 20 provided on the circuit board 10 .
  • One or more antennas 20 are planar layer structures on a certain layer or some layers of the circuit board 10 , and may be a microstrip line structure printed on the circuit board 10 .
  • the circuit board 10 includes a grounding area 11 and a clearance area 12 located at the periphery of the grounding area.
  • the clearance area 12 is located in the area between the grounding area 11 and the outer edge 13 of the circuit board 10, and the clearance area 12 is used for arrangement.
  • Antenna 20 .
  • the grounding area 11 is used to set functional modules in the electronic device 100 (for example, a power supply module, a power supply module, a signal processing module, a storage module, etc.).
  • One circuit board can also be distributed on different circuit boards in the electronic device.
  • the electronic device 100 includes two circuit boards, the antenna 20, the feeding module and the storage module are arranged on one of the circuit boards, and the power module and signal processing modules are distributed on another circuit board.
  • the grounding area 11 is provided with a floor 111 (in the embodiment shown in FIG. 4 , the marked positions of the floor 111 and the grounding area 11 are the same, it can be understood that the edge of the grounding area 11 coincides with the edge of the floor 111 ).
  • the shape of the floor 111 in the grounding area 11 is the same as the shape of the grounding area 11 , and both are rectangular (it may also be a square, a circle, a polygon or any other shape). In other embodiments, the shape of the floor 111 and the shape of the grounding area 11 may also be different.
  • the floor 111 is a ground copper foil disposed in the grounding area 11 , and an electronic device can be arranged in the grounding area 11 , and the ground of the electronic device (for example, the housing of the electronic device) can form the antenna device 1 together with the floor 111 . ground.
  • FIGS. 5 and 6 are schematic diagrams of an antenna device 1 according to an embodiment of the present application
  • FIG. 5 is a front view of the circuit board 10
  • FIG. 6 is a back view of the circuit board 10
  • the circuit board 10 has a rectangular plate-like structure, that is, the outer edge 13 of the circuit board 10 forms a rectangular outline, the outer outline of the floor 111 and the grounding area 11 overlap, and the floor 111 is roughly rectangular. In this way, the shape of the clearance area 12 surrounds the floor.
  • 8 antennas are configured in the clearance area 12. This application does not limit the number of antennas. According to the specific application environment, an appropriate number of antennas can be configured.
  • a radio frequency circuit 2 (also referred to as a radio frequency module) is arranged in the grounding area 11.
  • the part marked with 2 in the square area in the figure is the radio frequency circuit, which is connected to the radio frequency circuit.
  • the two radio frequency circuits 2 can provide radio frequency signals for different antennas.
  • the grounding area 11 is provided with a radiator 3 .
  • the grounding area 11 is provided with two radiators 3 , and the two radiators 3 may correspond to two radio frequency circuits respectively. 2 setting to provide heat dissipation for RF circuit 2.
  • the present application by arranging the first antenna 21 in the clearance area 12, and by configuring the electrical length of the radiator of the first antenna 21, it is possible to simultaneously excite the radiator and the floor of the first antenna 21 to radiate electromagnetic waves, thereby realizing the antenna device 1 With dual beams, it can not only have horizontal beams, but also vertical beams. In the home gateway environment, it can realize the electromagnetic wave signal radiation of the flat layer and the electromagnetic wave signal radiation of the jump layer. Since the first antenna is a microstrip line structure formed on a circuit board by printing, which has the advantage of low cost, the present application utilizes a planar circuit board microstrip line structure to achieve a dual-beam antenna effect.
  • the working frequency of the first antenna 21 is the first frequency.
  • the first antenna 21 has the performance of filtering electromagnetic waves of the second frequency, and the first antenna 21 is arranged next to the first antenna 21.
  • the operating frequency of the two antennas 22 is the second frequency. In this way, a relatively small distance between the first antenna 21 and the second antenna 22 can be achieved, and better isolation can also be achieved, which is beneficial to the antenna device 1 and the electronic Miniaturized configuration of device 100 .
  • the number of the first antennas 21 is not limited, and the number may be one, two or more.
  • FIG. 7 is an example of the distribution of the first antennas 21 on the circuit board 10 .
  • the floor 111 includes a first side 1112 .
  • the circuit board 10 and the floor 111 therein are both rectangular, and the clearance area 12 surrounds the floor 111 .
  • the first side 1112 is linear, and the number of the first side 1112 is two, which are two adjacent sides on the floor 111 .
  • the number of the first antennas 21 is also two, which are located at the upper right corner and the lower left corner of the circuit board 10 respectively.
  • the first antenna 21 located at the top of the floor 111 is disposed close to the right end of the first side 1112 , that is, the first antenna 21 is located adjacent to the upper right corner of the floor 11 .
  • the first antenna 21 located on the side of the floor 111 is disposed close to the bottom end of the first side 1112 , that is, the first antenna 21 is located adjacent to the lower left corner of the floor 11 . It can be understood that, in this embodiment, the position of the first antenna 21 is set close to the end of the first side 1112 of the floor 111 , the first antenna 21 is set at this position, and the current direction on the first side 1112 of the floor 111
  • the direction along the first side 1112 is in the same direction, that is, the direction from right to left in FIG. 7 .
  • the first antenna 21 excites a directional beam in a certain direction on the floor 111 , so that the gain of the antenna device 1 is better.
  • the two ends of the first side 1112 are the first end E1 and the second end E2 respectively, and the distance between the first antenna 21 and the first end E1 is smaller than The distance between the first antenna 21 and the second end E2.
  • the distance D1 between the first antenna 21 and the first end E1 is less than or equal to 0.67 times the wavelength.
  • the structure of the first antenna 21 located at the lower left corner of the circuit board 10 may be the same as that of the first antenna 21 located at the upper right corner of the circuit board 10.
  • the structures of the two first antennas may also be different.
  • the architectures of different embodiments of the first antenna provided in this application may be respectively, and the distance D2 between the first antenna 21 located at the lower left corner of the circuit board 10 and the lower left corner of the floor 111 may also be set to be less than or equal to 0.67 times the wavelength, this distance D2 is the distance in the extending direction of the first side.
  • the difference between the embodiment shown in FIG. 8 and the embodiment shown in FIG. 7 is that in the embodiment shown in FIG.
  • the middle position it can be understood that the position of the first antenna 21 can be set in the middle area of the first side 1112 (the middle area does not represent the position of the midpoint of the first side 1112, it can be understood that the first antenna 21 is located close to the first side In a certain area of the midpoint of the first antenna 21, the current that the first antenna 21 arranged in this range can excite on the floor 111 is distributed on both sides of the first antenna 21, and an omnidirectional pattern can be generated), not close to the first connection
  • the first antenna 21 can excite an omnidirectional beam on the floor 111, such as horizontal omnidirectional, although it does not have a good gain in a specific direction, it can widen the first antenna 21 radiation direction.
  • FIG. 9 is an enlarged schematic view of the area I in FIG. 7 .
  • the first antenna 21 includes a feed end 211 , a ground end 212 and a radiator 213 extending between the feed end 211 and the ground end 212 , and the radiator 213 is printed on the In the microstrip line structure of the clearance area 12, the feed end 211 and the ground end 212 are adjacent to the first side 1112.
  • the ground end 212 is directly connected to the first side 1112 of the floor 111
  • the feed end 211 is adjacent to the first side 1112, and the feeding end 211 and the first side 1112 are not directly connected, and the two are insulated.
  • FIG. 9 is an enlarged schematic view of the area I in FIG. 7 .
  • the first antenna 21 includes a feed end 211 , a ground end 212 and a radiator 213 extending between the feed end 211 and the ground end 212 , and the radiator 213 is printed on the In the microstrip line structure of the clearance area 12, the feed end 211 and
  • the feed end 211 is connected to the first side 1112 through the feed structure.
  • the feeding structure is a coaxial cable
  • the outer conductor of the coaxial cable (equivalent to the ground wire of the feeding structure) is electrically connected to the floor 111
  • the inner conductor of the coaxial cable (equivalent to the feeding signal of the feeding structure) line) is electrically connected to the feeding terminal 211 .
  • the feed structure is electrically connected to radio frequency circuitry within the electronic device.
  • the feeding method of the first antenna 21 may also be a feeding method such as coplanar waveguide feeding, microstrip line feeding, or the like.
  • the electrical length of the radiator 213 is greater than 1 times the wavelength and less than 1.5 times the wavelength, and the wavelength is the wavelength of the electromagnetic wave at the working frequency of the first antenna 21, so that the first antenna 21 can be fed with power.
  • the floor 111 and the radiator 213 are simultaneously excited to radiate electromagnetic waves.
  • the electrical length of the radiator 213 refers to the ratio of the physical size to the wavelength of the extension path of the radiator 213 from the feed end 211 to the ground end 212 .
  • the path extending from the radiator 213 of the first antenna 21 shown in FIG. 9 is a ring structure, forming a ring antenna structure, and the ratio of the physical length to the wavelength of the ring structure is the electrical length of the radiator 213 . If the electrical length of the radiator 213 is not between 1 times the wavelength and 1.5 times the wavelength, if the electrical length of the radiator 213 is too small or too large, the pattern characteristic of the first antenna generating double beams cannot be maintained.
  • the electrical length of the radiator 213 in the antenna device 1 provided by the present application is between one wavelength and 1.5 wavelengths, that is, greater than one wavelength and less than 1.5 wavelengths.
  • the configuration of the distance between the current zero point on one side of the radiator 213 and the floor 111 can make the floor 111 have a strong current. In this way, the radiator 213 and the floor 111 are excited to generate electromagnetic wave signals at the same time, and the radiator 213 radiates the electromagnetic wave signals.
  • the direction of the floor 111 is different from the direction in which the electromagnetic wave signal is radiated by the floor 111, so that double beams can be realized.
  • the extending direction of the first side 1112 is the first direction A1
  • the second direction A2 is perpendicular to the first direction A1
  • the radiator 213 includes a plurality of radiation sections, and the plurality of radiation sections are all linear. Specifically, the radiator 213 includes a first radiation section 31, a second radiation section 32, The third radiation segment 33 , the fourth radiation segment 34 , the fifth radiation segment 35 , the sixth radiation segment 36 and the seventh radiation segment 37 .
  • the extension direction of the first, third, fifth, and seventh radiation segments 31, 33, 35, and 37 is the second direction A2, and the extension directions of the second, fourth, and sixth radiation segments 32, 34, and 36 are The first direction A1.
  • the first radiation segment 31 and the seventh radiation segment 37 are arranged relatively parallel, the third radiation segment 33 and the fifth radiation segment 35 are arranged relatively parallel, the second radiation segment 32 and the sixth radiation segment 36 are collinear, and the second radiation segment 32 and the sixth radiating segment 36 are parallel to the fourth radiating segment 34 .
  • a slit 214 is provided between the fourth radiation segment 34 and the fifth radiation segment 35 (in other embodiments, the slit 214 can also be provided at other positions, for example, a slit is provided between the other two radiation segments, such as the first radiation segment
  • a gap is provided between the segment 31 and the second radiation segment 32, or the gap can also be provided on one of the radiation segments, and one of the radiation segments is divided into two parts).
  • the working frequency of the first antenna 21 is the first frequency
  • the setting of the slot 214 makes the radiator 213 form an open circuit on the path extending from the feed end 211 to the ground end 212
  • the slot 214 is used for
  • the second frequency is lower than the first frequency.
  • a slit is arranged on the radiator 213, so that the electrical length of the radiator 213 cannot meet the radiation requirements of the electromagnetic wave of the second frequency, which is equivalent to having a filtering effect on the resonance of the second frequency. Therefore, the present application can not affect the resonance mode. Under the circumstance that the first antenna 21 does not radiate the electromagnetic wave of the first frequency, the port matching is improved.
  • the width W1 of the slit 214 is limited to be between 0.001 wavelengths and 0.02 wavelengths, and the width W1 of the slit 214 refers to the vertical distance between the radiation segments on both sides of the slit 214 on the extending path of the radiator 213 .
  • the distance for example, the vertical distance between the fourth radiation segment 34 and the fifth radiation segment 35 in FIG. 9 (which can be understood as the minimum distance).
  • the slit width W1 is 1 mm.
  • the first frequency is 5G and the second frequency is 2.4G. As shown in FIG. 5 , the distance D between the first antenna and the second antenna is 8 mm.
  • FIG. 10 is an enlarged schematic diagram of a first antenna in an antenna device according to another embodiment of the present application.
  • the difference between the embodiment shown in FIG. 10 and the embodiment shown in FIG. 9 is that in the embodiment shown in FIG. 10 , there is no slot on the radiator 213 of the first antenna 21 , that is, the fourth radiation segment 34 and the fifth radiation
  • the segments 35 are directly connected as a whole, and the radiator 213 forms a closed-loop structure from the feed end 211 to the ground end 212 without any open-circuit structure like a gap.
  • the midpoint of the vertical connection line between the feed end 211 and the ground end 212 is the first midpoint A3, and the extension direction of the first side 1112 of the floor 111 is the first direction A1, passing through the The first midpoint A3 and a line extending perpendicular to the first direction A1 is the first axis C1.
  • the vertical connection between the feed end 211 and the ground end 212 can be understood as the difference between the point where the feed end 211 is closest to the ground end 212 and the point where the ground end 212 is closest to the feed end 211 Alternatively, it can also be understood as the connection between the central position of the feed end 211 and the central position of the ground end 212 .
  • the first side 1112 is linear, so the first direction A1 and the extending direction of the first side 112 are the same. In other embodiments, if the first side 1112 is arc-shaped, the first direction A1 can be understood is the direction of the tangent of the first side 1112 .
  • the radiators 213 are symmetrically distributed on the two radiating segments on both sides of the first axis C1. One understanding may be that the symmetrical distribution of the two radiating segments refers to the radiating segments distributed on the first axis C1.
  • the electrical lengths of the radiation segments on both sides are equal, and it is not limited whether their shapes are the same; another understanding can be that the symmetrical distribution of the two radiation segments means that the radiation segments distributed on both sides of the first axis have the same electrical length and shape. Also the same.
  • the radiator 213 provided in this application can realize "vertical orientation, horizontal orientation” radiation, and can also achieve “vertical orientation, horizontal omnidirectional” radiation. When there is a need for horizontal omnidirectional radiation, the radiator 213 can be arranged in a single The middle position of the board edge clearance is conducive to the formation of an omnidirectional radiation pattern.
  • FIG. 11 is an enlarged schematic diagram of a first antenna in an antenna device according to another embodiment of the present application.
  • the radiator 213 of the first antenna 21 has an asymmetric distribution structure.
  • the radiator 213 includes a first radiating section 2131 and a second radiating section 2132 distributed on both sides of the first axis C1, the first radiating section 2131 is connected to the feeding end 211 and the second radiating section 2132. between the second radiation segments 2132, the second radiation segments 2132 are connected between the first radiation segment 2131 and the grounding end 212, the first radiation segment 2131 and the second radiation segment 2132
  • the electrical lengths vary.
  • the electrical length of the first radiation segment 2131 is smaller than that of the second radiation segment 2132, the electrical length of the first radiation segment 2131 is L1, and the electrical length of the second radiation segment 2132 is L2, 0.3 ⁇ L1/L2 ⁇ 0.7.
  • the asymmetrically distributed radiators 213 provided in this embodiment are beneficial to form a pattern of dual directional radiation.
  • a similar asymmetric radiator distribution structure can be used to configure corresponding direction map.
  • FIG. 12 is an enlarged schematic diagram of a first antenna in an antenna device according to another embodiment of the present application.
  • the difference between the embodiment shown in FIG. 12 and the embodiment shown in FIG. 11 is that in the embodiment shown in FIG. 12 , the radiator 213 of the first antenna 21 is provided with a slot 214 , and the function of the slot 214 is the same as that shown in FIG. 9 .
  • the slot 214 on the radiator in the embodiment shown serves the same purpose. Specifically, in this embodiment, the slot 214 is disposed on the second radiation segment 2132 .
  • FIG. 13 is an enlarged schematic diagram of a first antenna in an antenna device according to another embodiment of the present application.
  • the embodiment shown in FIG. 13 also has an asymmetrically distributed radiator 213 structure, that is, the radiator 213 includes a first radiating section 2131 and a second radiating section 2132 distributed on both sides of the first axis C1 .
  • the first radiation segment 2131 is connected between the feed end 211 and the second radiation segment 2132, and the second radiation segment 212 is connected between the first radiation segment 2131 and the ground end 212, so the The electrical lengths of the first radiation segment 2131 and the second radiation segment 2132 are different.
  • the electrical length of the first radiation segment 2131 is greater than that of the second radiation segment 2132, and the electrical length of the first radiation segment is L1, so The electrical length of the second radiation segment is L2, 1.4 ⁇ L1/L2 ⁇ 3.3.
  • This embodiment is similar to the embodiment shown in FIG. 11 in that the beneficial effects that can be achieved are both beneficial to the first antenna 21 to achieve a directional radiation waveform. It can be understood that the present application can set different radiation patterns according to different specific waveform directions. Asymmetric architecture of the body.
  • FIG. 14 is an enlarged schematic diagram of a first antenna in an antenna device according to another embodiment of the present application.
  • the difference between the embodiment shown in FIG. 14 and the embodiment shown in FIG. 13 is that in the embodiment shown in FIG. 14 , the radiator 213 of the first antenna 21 is provided with a slot 214 , and the function of the slot 214 is the same as that shown in FIG. 9 .
  • the slot 214 on the radiator in the embodiment shown serves the same purpose. Specifically, in this embodiment, the slot 214 is disposed on the second radiation segment 2132 .
  • FIG. 15 is an enlarged schematic diagram of a first antenna in an antenna device according to another embodiment of the present application.
  • the radiator 213 of the first antenna 21 is provided with a slot, and the function of the slot 214 is the same as that shown in FIG. 9 .
  • the slot 214 on the radiator 213 in the illustrated embodiment has the same function.
  • the slot 214 is disposed on the first radiation segment 2131 . It can be seen that the position of the slot 214 on the radiator 213 of the first antenna 21 is adjustable. Different antennas have different resonance frequencies and the positions of the slots 214 are also different. Therefore, the position of the slot 214 is determined by the resonance frequency of the antenna. .
  • the total size of the radiators 213 in the first direction A1 can be expanded, so that the total size of the radiators in the first direction is greater than the total size of the radiators in the second direction size.
  • the total electrical length of the radiator 213 is the same, the total size of the radiator 213 in the second direction A2 can be reduced, which is beneficial to the small size design of the antenna device 21 and the electronic device 100 in the second direction A2.
  • the radiator 213 in the first direction A1 is increased, in a specific application environment, in the first direction A1, there may be a space around the first antenna 21 to accommodate the increased part of the radiator 213 , especially in this embodiment, the radiator 213 is provided with a slit 214, and the setting of the slit 214 can filter out the resonance of the second frequency, and the second frequency is lower than the first frequency.
  • the antenna device 21 further includes a second antenna 22 (refer to FIG. 5 and FIG. 6 ).
  • the second antenna 22 is arranged adjacent to the first antenna 21.
  • the operating frequency of the second antenna 22 is the second frequency.
  • FIG. 17 is an enlarged schematic diagram of a first antenna in an antenna device provided by another embodiment of the present application.
  • the difference between the embodiment shown in FIG. 17 and the embodiment shown in FIG. 9 lies in the specific shape of the radiator.
  • the total size of the radiator 213 in the second direction A2 is larger than the total size of the radiator 213 in the first direction A1.
  • the radiator 213 includes a first portion 2134 , an arcuate segment 2135 and a second portion 2136 connected in sequence, and the first portion 2134 includes a first radiation segment 31 , a second radiation segment 32 and a third radiation segment 31 , a second radiation segment 32 and a third radiation segment 31 , a second radiation segment 32 and a third radiation segment that are linearly connected in sequence
  • the radiating section 33, the second part 2136 includes a fifth radiating section 35, a sixth radiating section 36 and a seventh radiating section 37 that are connected in sequence in a straight line.
  • the first radiating section 31 is adjacent to the feed end 211, and the seventh radiating section 37 Connected to the ground terminal 212, the first part 2134 and the second part 2136 may be symmetrically disposed on both sides of the first axis C1.
  • the size of the radiator 213 in the second direction A1 can be reduced.
  • the antenna device and the electronic device can be The size in the first direction A1 is miniaturized.
  • FIG. 19 is an enlarged schematic diagram of a first antenna in an antenna device according to another embodiment of the present application.
  • the radiator of the first antenna in the embodiment shown in FIG. 9 is a microstrip line structure of equal width, that is, the path extending on the radiator , the width of the radiator remains the same, and the width refers to the size of the radiator in the direction perpendicular to the extending path of the radiator.
  • the 19 includes a microstrip line body 2137 of equal width and a widened portion 2138 connected to the microstrip line body 2137 , and the width of the widened portion 2138 is larger than that of the microstrip line.
  • the gap is formed between the widened portion and part of the main body of the microstrip line, and the capacitance value at the position of the gap can be adjusted.
  • the widened portion 2138 is trapezoidal, and the width of the widened portion 2138 can be understood as the average value of the dimensions of the top and bottom sides of the trapezoid.
  • the widened portion 2138 may also have other shapes such as a rectangle, a square, a fan shape, and a trumpet shape.
  • the main body 2137 of the microstrip line includes a first part 71 and a second part 72. One end of the first part 71 is connected to the feeding part 211, and the widened part 2138 is connected to the end of the first part 71 away from the feeding end 211.
  • the radiator 213 (ring radiator structure) is divided into two sections by setting the slot 214.
  • the electrical length from the feed end 211 to the slot 214 determines the operating frequency of the antenna, and tuning can be achieved by adjusting the position of the slot 214.
  • the circuit board 10 has a rectangular structure, the floor 111 is also rectangular, and the clearance area 12 surrounding the periphery of the floor 111 is L-shaped.
  • the clearance area 12 Since the two sides of the floor 111 are surrounded, in this embodiment, the number of the first sides 1112 of the floor 111 is also two.
  • Two first antennas 21 are arranged in the clearance area 12 , one of which is located at the upper right corner of the floor 111 and the other is located at the lower left corner of the floor 111 .
  • Two second antennas 22 are also arranged in the clearance area 21 , which are respectively located on the periphery of the two first sides 1112 and are respectively disposed adjacent to the two first antennas 21 .
  • the circuit board 10 has a rectangular structure, the floor 111 is also rectangular, and the clearance area 12 surrounding the periphery of the floor 111 is in the shape of The three sides of the floor 111 are surrounded. Therefore, in this embodiment, the number of the first sides 1112 of the floor 111 is three.
  • three first antennas 21 and three second antennas 22 may be disposed in the clearance area 12 , and one first antenna 21 and one second antenna 22 are disposed on the periphery of each first side 1112 .
  • FIG. 22 is a partial schematic diagram of an antenna device provided by an embodiment of the application.
  • the circuit board 10 is circular, semicircular, or fan-shaped, and the first side 1112 of the floor 111 in the circuit board 10 is Arc shape, the periphery of the first side 1112 is provided with a first antenna 21 and a second antenna 22 adjacent to and spaced from the first antenna 21.
  • the first antenna 21 can also excite the radiators of the floor 111 and the first antenna 21. With strong current, both can radiate electromagnetic waves and produce double beams.
  • the distance between the first antenna 21 and the second antenna 22 is the straight-line distance between the first antenna 21 and the second antenna 22 from the closest point.
  • an open-circuited slot 214 structure can also be arranged on the first antenna 21 to improve the isolation degree between the first antenna 21 and the second antenna 22, so that the gap between the first antenna and the second antenna can be In the case of setting at a smaller distance, the isolation requirement can still be met, whereby more antennas can be arranged in a limited space, or the size of the antenna device and electronic equipment can be reduced.
  • the overall appearance of the electronic equipment to which the antenna device provided in this embodiment is applied is a disk shape or a column shape.
  • the circuit board can be a multi-layer board structure or a single-layer board structure.
  • the floor can be a certain metal ground layer (such as a copper foil layer) in the grounding area.
  • the floor can be located on the surface layer of the circuit board, and the floor can also be located on the middle layer of the circuit board.
  • the radiator of the first antenna may also be a certain layer or some layers in the clearance area (that is, the radiator may be distributed in at least two layers in the circuit board). The radiator can be located on the same floor as the floor or on a different floor from the floor.
  • both the radiator 213 and the floor 111 are located on the surface layer of the circuit board 10 .
  • the circuit board 10 may be a single-layer board or a multi-layer board.
  • the advantage of this embodiment is that the radiator and the floor can be on the same layer, and can be fabricated in one process, with a simple structure and low cost.
  • the circuit board 10 is a multi-layer board structure
  • the floor 111 is located on the surface layer of the circuit board 10
  • the radiators 213 are distributed on the surface layer and the middle layer of the circuit board 10
  • some radiators 213 distributed on the surface layer of the circuit board are the first
  • a part of the radiator 213 distributed in the middle layer of the circuit board is the second part, and the first part and the second part can be electrically connected through the via holes between the circuit boards.
  • FIG. 29 is a current distribution diagram of the antenna device provided by an embodiment of the present application in the case where no slot is provided on the radiator. It can be seen that the antenna device provided by the present application can excite the current on the floor and the radiator at the same time, so that both the floor and the radiator participate in radiation.
  • FIG. 31 is a current distribution diagram on a radiator of a first antenna in an antenna device according to an embodiment of the present application.
  • there are two current zero points on the radiator namely the part in the circle marked A and the part in the circle marked B.
  • One of the current zero points is located close to the ground terminal, so that the floor has Strong current distribution, which excites the current on the floor and radiator at the same time,
  • FIG. 32 and 33 are S-parameter curves ( FIG. 32 ) and S-parameter curves ( FIG. 33 ) of the radiator of the first antenna without a slot in the antenna device provided by an embodiment of the present application. It can be seen from Fig. 32 and Fig. 33 that after opening the slot, the first antenna has only one resonance frequency point, which can filter out the resonance of adjacent frequencies.

Landscapes

  • Waveguide Aerials (AREA)

Abstract

本申请提供一种天线装置和电子设备,天线装置包括电路板和第一天线,电路板的地板包括第一边,第一天线包括馈电端、接地端和在所述馈电端和所述接地端之间延伸的辐射体,辐射体为印制在电路板的净空区的微带线结构,馈电端和接地端邻接第一边,辐射体的电长度大于1倍波长且小于1.5倍波长,以使第一天线馈电后能够同时激励所述地板和所述辐射体辐射电磁波。本申请提供的天线装置能够同时激励出两个方向的波束,增加天线装置的覆盖方向。

Description

天线装置和电子设备
本申请要求于2020年12月31日提交中国国家知识产权局、申请号为202011640902.3、申请名称为“天线装置和电子设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及天线技术领域,特别是一种天线装置和电子设备。
背景技术
随着WiFi协议演进,空间流数不断增加,目前最大规格已能支持16流,意味着内置产品最多需要16组高性能天线,且要求各天线之间彼此影响小,满足其辐射性能。现有ONT(Optical network terminal,光网络终端)内置产品在外观、竞争力以及家居场景使用习惯等因素下,其尺寸和ID在朝着小型化的方向演进,意味着在产品功能和性能提高的条件下,天线的设计空间实际上越来越紧张。板印天线为印刷在电路板上的微带线结构的天线,板印天线具有节约空间且低成本的优势,但是常规板印天线只能实现一个方向波束的覆盖。
如何设计一种天线装置,通过印制在电路板上的微带线结构,能够同时激励出两个方向的波束,增加天线的覆盖方向,为业界研发的方向。
发明内容
本申请实施例提供一种天线装置和电子设备,能够同时激励出两个方向的波束,增加天线的覆盖方向。
第一方面,本申请提供一种天线装置,包括电路板和第一天线,电路板包括接地区和位于所述接地区外围的净空区,所述接地区内设地板,所述地板包括第一边;第一天线包括馈电端、接地端和在所述馈电端和所述接地端之间延伸的辐射体,所述辐射体为印制在所述净空区的微带线结构,所述馈电端和所述接地端邻接所述第一边,所述辐射体的电长度大于1倍波长且小于1.5倍波长,所述波长为所述第一天线的工作频率(这里的工作频率可理解为谐振频率)状态下的电磁波的波长,即第一天线在其工作频率下所辐射的电磁波的波长,以使所述第一天线馈电后能够同时激励所述地板和所述辐射体辐射电磁波。
本申请通过在净空区内设置第一天线,通过对第一天线的辐射体的电长度的配置,能够实现同时激励第一天线的辐射体和地板均辐射电磁波,从而实现天线装置具有双波束,不但能具有水平方向的波束,还具有垂直方向的波束,在家庭网关环境中能实现平层的电磁波信号辐射和跃层的电磁波信号辐射。由于第一天线是通过印制的方式形成在电路板上的微带线结构,具有成本低的优势,因此,本申请利用平面状的电路板微带线架构实现了双波束的天线效果。
一种可能的实施方式中,接地区内的地板的形状与接地区的形状相同,均为矩形(也可以为正方形、圆形、多边形或其它任意形状)。其它实施方式中,地板的形状与接地区的形状也可以不同,例如接地区呈矩形,地板可以为接地区内的部分区域,地板的面积小于接地区的面积。一种实施方式中,地板为设在接地区内的接地铜箔,接地区内可以设置电子器件, 电子器件的地(例如电子器件的壳体)可以与地板共同构成天线装置的地。
一种可能的实施方式中,所述馈电端和所述接地端之间的垂直连线的中点为第一中点,所述第一边的延伸方向为第一方向,穿过所述第一中点且沿垂直于所述第一方向延伸的线为第一轴线,所述辐射体包括分布在所述第一轴线的两侧的第一辐射段和第二辐射段,所述第一辐射段连接在所述馈电端和所述第二辐射段之间,所述第二辐射段连接在所述第一辐射段和所述接地端之间,所述第一辐射段和所述第二辐射段的电长度不等。本实施方式提供的不对称的分布的辐射体,有利于形成双定向辐射的方向图,当天线具有水平垂直两个方向定向辐射需求时,可以通过类似的不对称的辐射体分布架构,配置相应的方向图。
一种可能的实施方式中,所述第一辐射段的电长度为L1,所述第二辐射段的电长度为L2,0.3≤L1/L2<0.7。一种可能的实施方式中,所述第一辐射段的电长度为L1,所述第二辐射段的电长度为L2,1.4<L1/L2≤3.3。可以理解的是,本申请可以根据具体的波形方向的不同,设置不同的辐射体的非对称架构。
一种可能的实施方式中,所述第一天线的工作频率为第一频率,所述辐射体设有缝隙,所述缝隙的设置使得所述辐射体在从所述馈电端向所述接地端延伸的路径上形成开路,所述缝隙用于滤除第二频率的谐振(即滤除第二频率的电磁波),所述第二频率低于所述第一频率。
本申请通过对第一天线的辐射体的结构的配置,即设置缝隙结构,使得第一天线具有滤除第二频率电磁波的性能,而设置在第一天线旁边的第二天线的工作频率为第二频率,这样,可以实现第一天线和第二天线之间在较小的间距设置下,亦能实现较好的隔离度,有利于天线装置和电子设备的小型化配置。
一种可能的实施方式中,所述缝隙宽度为:大于等于0.001倍波长且小于等于0.02倍波长,所述缝隙宽度定义为:在所述辐射体的延伸的路径上,所述缝隙两侧的所述辐射体之间的垂直连线的尺寸。一种具体的实施方式中,缝隙宽度为1mm。
一种可能的实施方式中,在所述辐射体延伸的路径上,所述缝隙与所述接地端之间的距离小于所述缝隙与所述馈电端之间的距离。第一天线的辐射体上的缝隙的位置是可调的,不同的天线的谐振频点不同,缝隙的位置也不同,因此,缝隙的位置由天线的谐振频点决定。
一种可能的实施方式中,所述天线装置还包括设于所述净空区的第二天线,所述第二天线与所述第一天线间隔设置,所述第二天线的工作频率为所述第二频率。
本实施方式通过设置缝隙,将辐射体(环形辐射体结构)分为两段,从馈电端到缝隙的电长度决定天线工作频率,通过调整缝隙的位置可以实现调谐的作用,因为缝隙的存在使得辐射体的环结构断开,形成电容效应,导致环结构低频的谐振模式严重不匹配,进而实现了对邻频电磁波的滤除作用。
一种可能的实施方式中,所述第一频率为5G,所述第二频率为2.4G,所述第一天线和所述第二天线之间的间距为8mm。
一种可能的实施方式中,所述第一边的两端分别为第一端和第二端,所述第一天线与所述第一端之间的距离小于所述第一天线与所述第二端之间的距离。
一种可能的实施方式中,沿所述第一边的延伸方向,所述第一天线与所述第一端之间的距离小于等于0.67倍波长。
一种可能的实施方式中,所述接地端位于所述馈电端和所述第一端之间。
一种可能的实施方式中,所述辐射体和所述地板位于所述电路板上的同一层内。
电路板可以为多层板结构,也可以单层板结构。地板可以为接地区的某一金属接地层(例如铜箔层),例如地板可以位于电路板的表层,地板也可以位于电路板的中间层。第一天线的 辐射体也可以为净空区内的某一层或某些层(即辐射体可以分布在电路板中的至少两层中)。辐射体可以和地板位于同一层,也可以与地板位于不同的层内。
一种可能的实施方式中,辐射体和地板均位于电路板的表层。本实施方式的好处在于,辐射体和地板可以在同一层,采用一道工序制作,结构简单,成本低。其它实施方式中,电路板为多层板架构,辐射体位于电路板的表层,地板位于电路板的中间层。
一种可能的实施方式中,电路板为多层板架构,地板位于电路板的表层,辐射体分布在电路板的表层及中间层,分布在电路板表层的部分辐射体为第一部分,分布在电路板的中间层中的部分辐射体为第二部分,第一部分和第二部分之间可以通过电路板间的过孔实现电连接。
一种可能的实施方式中,所述地板上辐射的电磁波构成水平方向(或水平面)的波束,所述辐射体上的电磁波构成垂直方向(或垂直面)的波束。
一种可能的实施方式中,所述第一天线的数量为至少两个,且分布在所述地板的不同的侧边位置。
一种可能的实施方式中,部分所述辐射体呈弧形结构,以使得所述辐射体在所述第一方向上的总尺寸大于第二方向上的总尺寸,所述第二方向垂直于所述第一方向。本实施方式通过将部分辐射体设置为弧形,可以扩展第一方向上的辐射体的总尺寸,以使得所述辐射体在第一方向上的总尺寸大于第二方向上的总尺寸。在辐射体总的电长度相同的情况下,可以减少第二方向上的辐射体的总尺寸,有利于天线装置和电子设备在第二方向上的小尺寸的设计。
一种可能的实施方式中,所述辐射体在第二方向上的总尺寸大于所述辐射体在所述第一方向上的总尺寸,所述第二方向垂直于所述第一方向。本实施方式通过增加辐射体第二方向上的尺寸的方式,可以减少辐射体在第一方向上的尺寸,结合辐射体上缝隙的设置,能够使得天线装置和电子设备在第一方向上的尺寸做到小型化。
一种可能的实施方式中,所述辐射体包括呈直线状延伸的多段微带线主体和蜿蜒线,所述蜿蜒线连接在相邻的两个所述微带线主体之间,用于增加所述辐射体的单位尺寸下的电长度。本实施方式在辐射体上设置蜿蜒线的方式增加辐射体的单位尺寸下的电长度,可以实现在较小的空间内布置合适的电长度的辐射体。
一种可能的实施方式中,所述辐射体包括等宽的微带线主体和连接至所述微带线主体的加宽部,所述加宽部的宽度尺寸大于所述微带线主体的宽度尺寸,所述第一天线的工作频率为第一频率,所述辐射体设有缝隙,所述缝隙形成在所述加宽部和部分所述微带线主体之间,所述缝隙的设置使得所述辐射体在从所述馈电端向所述接地端延伸的路径上形成开路,所述缝隙用于滤除第二频率的谐振(即滤除工作频率为第二频率的电磁波),所述第二频率低于所述第一频率。本实施方式通过加宽部的设计,能够调节缝隙位置的电容值,有利于第一天线的调谐。
第二方面,本申请提供一种电子设备,包括射频电路和第一方面任意一种实施方式所述的天线装置,所述天线的所述馈电端通过馈电结构电连接至所述射频电路。
附图说明
图1为包括本申请提供的天线的电子设备作为家庭网关,在家庭网关系统中的应用示意图。
图2为本申请提供的电子设备(为家庭网关)的一种具体的应用场景示意图。
图3为本申请一种实施方式提供的电子设备的立体图。
图4为图3所示的电子设备去除外壳的状态的示意图。
图5和图6所示为本申请一种实施方式提供的天线装置的示意图,图5所示为电路板10的正面视图,图6为电路板10的反面视图。
图7为本申请一种实施方式提供的天线装置中的第一天线在电路板上分布的一种示例。
图8为本申请一种实施方式提供的天线装置中的第一天线在电路板上分布的一种示例。
图9为图7中I区域内的放大示意图。
图10为本申请另一实施方式提供的天线装置中的第一天线的放大示意图。
图11为本申请另一实施方式提供的天线装置中的第一天线的放大示意图。
图12为本申请另一实施方式提供的天线装置中的第一天线的放大示意图。
图13为本申请另一实施方式提供的天线装置中的第一天线的放大示意图。
图14为本申请另一实施方式提供的天线装置中的第一天线的放大示意图。
图15为本申请另一实施方式提供的天线装置中的第一天线的放大示意图。
图16为本申请另一实施方式提供的天线装置中的第一天线的放大示意图。
图17为本申请另一实施方式提供的天线装置中的第一天线的放大示意图。
图18为本申请另一实施方式提供的天线装置中的第一天线的放大示意图。
图19为本申请另一实施方式提供的天线装置中的第一天线的放大示意图。
图20为本申请一种实施方式提供的天线装置的示意图。
图21为本申请一种实施方式提供的天线装置的示意图。
图22为本申请一种实施方式提供的天线装置的局部示意图。
图23为本申请一种实施方式提供的天线装置中的电路板截面示意图。
图24为本申请一种实施方式提供的天线装置中的电路板截面示意图。
图25为本申请一种实施方式提供的天线装置中的电路板截面示意图。
图26和图27为本申请一种实施方式提供的天线装置(对应图26和图27中标为双波束天线的曲线)和常规的环天线(对应图26和图27中标为原始环形天线的曲线)仿真模型中的二维方向图对比。
图28为本申请一种实施方式提供的天线装置在5G频段方向图。
图29为本申请一种实施方式提供的天线装置,在辐射体上不设缝隙的情况下的电流分布图。
图30为本申请一种实施方式提供的天线装置,在辐射体上开设缝隙的情况下的电流分布图。
图31为本申请一种实施方式提供的天线装置中的第一天线的辐射体上的电流分布图。
图32和图33为本申请一种实施方式提供的天线装置中的第一天线的辐射体不设缝隙的S参数曲线图(图32)及开设缝隙的S参数曲线图(图33)。
具体实施方式
为方便理解,下面对本申请实施例所涉及的相关技术术语进行解释和描述。
家庭网关:是位于现代家庭内部的一个网络设备,它的作用是使家庭用户连接到Internet,使位于家庭中的多种智能设备都能得到Internet的服务,或者使这些智能设备相互之间实现通信。简单的说,家庭网关是使家庭内部多种智能设备之间实现联网,以及从家庭内部到外部网络实现互联的一座桥梁。从技术角度说,家庭网关在家庭内部以及从内部到外部实现桥接/路由、协议转换、地址管理和转换,承担防火墙的职责,并提供可能的 VoIP/Video over IP等业务。
多输入多输出系统(Multi-input Multi-output;MIMO)是一种用来描述多天线无线通信系统的抽象数学模型,能利用发射端的多个天线各自独立发送信号,同时在接收端用多个天线接收并恢复原信息。根据收发两端天线数量,相对于普通的单输入单输出系统(Single-Input Single-Output,SISO),MIMO此类多天线技术尚包含早期所谓的“智能天线”,亦即单输入多输出系统(Single-Input Multi-Output,SIMO)和多输入单输出系统(Multiple-Input Single-Output,MISO)。
水平极化,是指电磁波的振动方向是水平方向。凡是极化面与大地法线面垂直的极化波称为水平极化波。其电场方向与大地相平行。
垂直极化,是指电场矢量在一个固定的平面内沿一个固定的方向振动,则称该电磁波是偏振的,包含电场矢量E的平面称为偏振面。偏振在微波遥感中称为极化,极化有水平极化和垂直极化两种方式。当电磁波的电场矢量平行于波束入射面时,称为垂直极化,用V表示。
下面结合本申请实施例中的附图对本申请实施例进行描述。
图1所示为包括本申请提供的天线的电子设备作为家庭网关,在家庭网关系统中的应用示意图。图1所示的实施方式中,本申请提供的电子设备为家庭网关,家庭网关连接在光局端和终端设备之间,光局端连接至广域网(因特网),光局端从广域网(因特网)获取信号,并将此信号传送至家庭网关,再由设置在家庭网关中的天线将信号传送至各终端设备。家庭网关包括数字模块、射频模块和天线,数字模块连接在光局端和射频模块之间,射频模块用于发送射频信号给天线。随着家庭智能化的发展,各种智能化终端设备被配置在家庭中,需要在家庭网关内的配置更多的天线,以为各种终端设备提供信号。例如,天线可以包括天线1、天线2、天线3、天线4和天线5,天线1可以为低频天线,例如低频天线可以为2G天线或3G天线,天线2、天线3、天线4和天线5可以为高频天线,例如高频天线可以为5G天线或6G天线。其它实施方式中天线可以有其它的配置,例如包括低频天线的数量可以为两个或三个以上,高频天线的数量也可以为一个或两个或更多个。
一种实施方式中,终端设备可以包括智能手机、智能家居(例如空调、电风扇、洗衣机、电冰箱等)、智能电视、智能安防(例如摄像机)。智能手机可以使用在低频频率范围,也可以使用在高频频率范围,例如智能手机可以支持2G和5G两种频率的信号。因此如图1所示的,天线1和天线2均为智能手机提供信号。天线3为智能家居提供信号,对于智能家居而言,通过智能家庭网关系统平台,用户可以通过手机和PC端等方式对远程智能家电、照明系统、电源系统等进行状态查看和控制。天线4为智能电视提供信号,用户也可以通过终端设备远程操控智能电视,智能电视可以具网络电视的功能,也可以具有视频会议的功能。天线5为智能安防提供信号,智能视安防系统可以包括防火、防盗、防泄漏和远程监控等功能。用户可以利用手机、Internet远程查看和设置家庭安防系统,同时还可远程监视家庭内部情况,如果检测到异常状况,安防系统可以通过打电话、发短信、发邮件等方式通知用户。
图2所示为本申请提供的电子设备100(为家庭网关)的一种具体的应用场景示意图,如图2所示,具体的家庭场景中,同一楼层中的不同的房间均需要WIFI信号,不同的楼层也有WIFI信号的需求,本申请提供的天线具有双波束特性,能够实现基于同一工作频率电磁波信号,产生两个不同方向的波束,例如,同时覆盖水平和垂直两个方向的双波束覆盖,能提高别墅户型平层和跃层级联兼顾的WIFI覆盖性能。图2中标示为A的椭圆形代表天线具有水平面全向辐射的能力,图2中标为B的椭圆形代表天线具有水平极化的定向辐射的能力,图 2中标示为C椭圆形代表天线具有垂直面辐射能力,能够实现垂直穿楼辐射信号的能力。
电子设备100内包括多个具有不同工作频率的天线,不同的天线设置在同一个电子设备内,天线之间的隔离度需要满足要求,以保证各天线的辐射性能,本申请提供的天线的隔离度好的优势,能够在较小的空间内与相邻的天线之间具有较好的隔离度,有利于家庭网关(或其它电子设备)的小尺寸的发展。
图3所示为本申请一种实施方式提供的电子设备100的立体示意图,电子设备100可以为家庭网关,也可以为其它的电子设备,例如:无线AP、家庭热点、CPE(Customer Premise Equipment,客户终端设备)等。图4所示为图3所示的电子设备100去掉部分外壳后的内部结构示意图。参阅图4,本申请提供的天线装置1设置在电子设备100内设电路板10上,图4中虚线框内部分视为本申请提供的天线装置1,天线装置1分布在电路板10的边缘区域,部分电路板10构成天线装置1的一部分,即本申请提供的天线装置1包括电路板10和设在电路板10上的一个或多个天线20。一个或多个天线20为电路板10的某一层或某些层上的平面的层结构,可以为是印制在电路板10上的微带线结构。
一种实施方式中,电路板10包括接地区11和位于接地区外围的净空区12,净空区12位于接地区11和电路板10的外边缘13之间的区域,净空区12内用于布置天线20。接地区11内用于设置电子设备100内的功能模块(例如馈电模块、电源模块、信号处理模块、存储模块等),可以理解的是,不同的功能模块可以设置在电子设备100内的同一个电路板上,也可以分布在电子设备内的不同的电路板上,例如电子设备100内包括两块电路板,天线20、馈电模块和存储模块设置在其中一个电路板上,而电源模块和信号处理模块分布在另一个电路板上。接地区11内设地板111(图4所示的实施方式中,地板111与接地区11的标示位置是相同的,可以理解为,接地区11边缘与地板111边缘重合)。此实施方式中,接地区11内的地板111的形状与接地区11的形状相同,均为矩形(也可以为正方形、圆形、多边形或其它任意形状)。其它实施方式中,地板111的形状与接地区11的形状也可以不同,例如接地区11呈矩形,地板111可以为接地区11内的部分区域,地板111的面积小于接地区11的面积。一种实施方式中,地板111为设在接地区11内的接地铜箔,接地区11内可以设置电子器件,电子器件的地(例如电子器件的壳体)可以与地板111共同构成天线装置1的地。
图5和图6所示为本申请一种实施方式提供的天线装置1的示意图,图5所示为电路板10的正面视图,图6为电路板10的反面视图。其中电路板10呈长方形板状结构,即,电路板10的外边缘13构成长方形轮廓,地板111和接地区11外轮廓重合,地板111大致呈长方形,这样,净空区12的形状为环绕在地板111外围的封闭的环状区域,图5和图6所示的实施方式中,净空区12内配置了8根天线,本申请不对天线的数量做限定,为了满足电子设备的多输入多输出系统的需求,可以根据具体的应用环境配置合适数量的天线。电路板10的正面,接地区11内设有射频电路2(也可以称之为射频模块),示例性地,如图5所示,图中方形区域内具有标号2的部分为射频电路,接地区11内设两个射频电路2,这两个射频电路2可以为不同的天线提供射频信号。如图6所示,电路板10的反面,接地区11内设有散热器3,示例性地,接地区11内设两个散热器3,这两个散热器3可以分别对应两个射频电路2设置,以为射频电路2提供散热。
本申请通过在净空区12内设置第一天线21,通过对第一天线21的辐射体的电长度的配置,能够实现同时激励第一天线21的辐射体和地板均辐射电磁波,从而实现天线装置1具有双波束,不但能具有水平方向的波束,还具有垂直方向的波束,在家庭网关环境中能实现平 层的电磁波信号辐射和跃层的电磁波信号辐射。由于第一天线是通过印制的方式形成在电路板上的微带线结构,具有成本低的优势,因此,本申请利用平面状的电路板微带线架构实现了双波束的天线效果。第一天线21的工作频率为第一频率,通过对第一天线21的辐射体的结构的配置使得第一天线21具有滤除第二频率电磁波的性能,而设置在第一天线21旁边的第二天线22的工作频率为第二频率,这样,可以实现第一天线21和第二天线22之间在较小的间距设置下,亦能实现较好的隔离度,有利于天线装置1和电子设备100的小型化配置。本申请提供的天线装置1和电子设备100中,不对第一天线21的数量限制,其数量可以为一个、两个或更多个。
参阅图7,图7为第一天线21在电路板10上分布的一种示例。地板111包括第一边1112,图7所示的实施方式中,电路板10和其中的地板111均为长方形,净空区12环绕在地板111的四周。第一边1112呈直线状,第一边1112的数量为两条,分别为在地板111上相邻的两条侧边。对应的,第一天线21的数量亦为两个,分别位于电路板10的右上角和左下角位置处。位于地板111的顶部的第一天线21靠近第一边1112的右端设置,即这个第一天线21位于邻近地板11的右上角的位置。位于地板111的侧部的第一天线21靠近第一边1112的底端设置,即这个第一天线21位于邻近地板11的左下角的位置。可以理解的是,本实施方式中,第一天线21的位置靠近地板111的第一边1112的端部设置,第一天线21设置在这个位置,在地板111的第一边1112上的电流方向沿着第一边1112的朝同一方向,即图7中从右向左的方向,这样,第一天线21在地板111上激励起某个方向的定向波束,使得天线装置1的增益性较好。以顶部的第一边1112为例,所述第一边1112的两端分别为第一端E1和第二端E2,所述第一天线21与所述第一端E1之间的距离小于所述第一天线21与所述第二端E2之间的距离。所述第一天线21与所述第一端E1之间的距离D1小于等于0.67倍波长。图7所示的实施方式中,位于电路板10的左下角的第一天线21的结构可以与位于电路板10的右上角的第一天线21的结构形态相同,这两个第一天线的结构也可以不同,例如可以分别为本申请提供的第一天线的不同的实施方式的架构,位于电路板10的左下角的第一天线21与地板111的左下角的距离D2也可以设置为小于等于0.67倍波长,这个距离D2为在第一边的延伸方向上的距离。
参阅图8,图8所示的实施方式与图7所示的实施方式的区别在于:图8所示的实施方式中的位于地板111的顶部的第一天线21的位置靠近第一边1112的中间位置,可以理解的是,第一天线21的位置可以设置第一边1112的中间区域(中间区域不代表第一边1112的中点的位置,可以理解为第一天线21位于靠近第一边的中点的某个区域内,这个范围内布置的第一天线21能够在地板111上激励的电流分布在第一天线21的两侧,能产生全向的方向图),不靠近第一连1112的某一端,这样的实施方式中,第一天线21能够在地板111上激励出全向的波束,例如水平全向,虽然不具某个特定方向的良好增益,但是可以扩宽第一天线21的辐射方向。
图9所示为图7中I区域内的放大示意图。参阅图9,第一天线21包括馈电端211、接地端212和在所述馈电端211和所述接地端212之间延伸的辐射体213,所述辐射体213为印制在所述净空区12的微带线结构,所述馈电端211和所述接地端212邻接所述第一边1112,具体而言,接地端212直接连接至地板111的第一边1112,馈电端211与第一边1112相邻,且馈电端211和第一边1112之间不直接连接,二者之间绝缘设置,如图9所示,馈电端211和第一边1112之间具有间隙,馈电端211通过馈电结构与第一边1112产生连接关系。例如馈电结构为同轴线缆,同轴线缆的外导体(相当于馈电结构的地线)电连接至地板111,同 轴线缆的内导体(相当于馈电结构的馈电信号线)电连接至馈电端211。馈电结构电连接至电子设备内的射频电路。其它实施方式中,第一天线21的馈电方式也可以为共面波导馈电、微带线馈电等馈电方式。
所述辐射体213的电长度大于1倍波长且小于1.5倍波长,所述波长为所述第一天线21的工作频率状态下的电磁波的波长,以使所述第一天线21馈电后能够同时激励所述地板111和所述辐射体213辐射电磁波。辐射体213的电长度指的是从馈电端211到接地端212,辐射体213的延伸路径的物理尺寸与波长的比值。图9所示的第一天线21的辐射体213延伸的路径呈环状结构,构成环状天线架构,环状结构的物理长度和波长的比值为辐射体213的电长度。对于辐射体213的电长度,若不介于1倍波长和1.5倍波长之间,如果辐射体213的电长度过小或过大,都不能保持第一天线产生双波束的方向图特性。
对于类似本申请提供的辐射体213的架构的天线,当辐射体的电长度为半波长的倍数时,辐射体上只有一个电流零点,地板上具有很强的电流,只有地板参与辐射,辐射体可以看作是馈电结构。当辐射体的电长度为波长的倍数时,辐射体上具有两个对称的电流零点,地板电流很弱不能参与辐射,只有辐射体参数辐射,地板对辐射体具有反射电磁波的功能。而本申请提供的天线装置1中的辐射体213的电长度介于一倍波长和1.5倍波长之间,即大于1倍波长且小于1.5倍波长,天线装置1馈电时,近接地端212一侧的辐射体213上的电流零点与地板111的距离的配置能够使地板111上具有较强的电流,这样,辐射体213和地板111同时被激励产生电磁波信号,且辐射体213辐射电磁波信号的方向与地板111辐射电磁波信号的方向是不同的,能够实现双波束。
图9所示的实施方式中,第一边1112的延伸方向为第一方向A1,第二方向A2垂直于第一方向A1。辐射体213包括多个辐射段,多个辐射段均呈直线状,具体而言,辐射体213包括从馈电端211至接地端213依次连接的第一辐射段31、第二辐射段32、第三辐射段33、第四辐射段34、第五辐射段35、第六辐射段36和第七辐射段37。其中,第一、第三、第五、第七辐射段31、33、35、37的延伸方向为第二方向A2,第二、第四、第六辐射段32、34、36的延伸方向为第一方向A1。第一辐射段31和第七辐射段37相对平行设置,第三辐射段33和第五辐射段35相对平行设置,第二辐射段32和第六辐射段36共线,且第二辐射段32和第六辐射段36均平行于第四辐射段34。第四辐射段34和第五辐射段35之间设有缝隙214(其它实施方式中,缝隙214也可以设置在其它的位置,例如,在其它两个辐射段之间设置缝隙,例如第一辐射段31和第二辐射段32之间设置缝隙,或者缝隙也可以设置个其中一个辐射段上,将其中一个辐射段分为两部分)。第一天线21的工作频率为第一频率,所述缝隙214的设置使得所述辐射体213在从所述馈电端211向所述接地端212延伸的路径上形成开路,所述缝隙214用于滤除第二频率的谐振,所述第二频率低于所述第一频率。本申请通过在辐射体213上设置缝隙,使得辐射体213的电长度不能满足第二频率的电磁波的辐射要求,相当于对第二频率的谐振具有滤波功效,因此本申请能够在不影响谐振模式的情况下(即不影响第一天线21辐射第一频率的电磁波)提高端口匹配。
一种实施方式中,缝隙214宽度W1限制为0.001个波长至0.02个波长之间,缝隙214的宽度W1指的是在辐射体213延伸的路径上,缝隙214两侧的辐射段之间的垂直距离,例如,图9中的第四辐射段34和第五辐射段35之间的垂直距离(可以理解为最小距离)。一种具体的实施方式中,缝隙宽度W1为1mm。
一种实施方式中,所述第一频率为5G,所述第二频率为2.4G,如图5所示,所述第一天线和所述第二天线之间的间距D为8mm。
图10为本申请另一实施方式提供的天线装置中的第一天线的放大示意图。图10所示的实施方式与图9所示的实施方式的区别在于:图10所示的实施方式中,第一天线21的辐射体213上没有缝隙,即第四辐射段34和第五辐射段35直接连为一体,辐射体213从馈电端211至接地端212构成闭环架构,没有任何类似缝隙的开路结构。所述馈电端211和所述接地端212之间的垂直连线的中点为第一中点A3,地板111的所述第一边1112的延伸方向为第一方向A1,穿过所述第一中点A3且沿垂直于所述第一方向A1延伸的线为第一轴线C1。具体而言,所述馈电端211和所述接地端212之间的垂直连线可以理解为馈电端211距离接地端212的最近的点与接地端212距离馈电端211最近的点之间的连线,或者,也可以理解为馈电端211的中心位置和接地端212的中心位置之间的连线。本实施方式中,第一边1112为直线状,因此第一方向A1与第一边112的延伸方向是相同的,其它实施方式中,若第一边1112呈弧形,第一方向A1可以理解为第一边1112的切线的方向。图10所示的实施方式中,辐射体213对称分布在第一轴线C1的两侧的两个辐射段,一种理解可以为,两个辐射段对称分布指的是分布在第一轴线C1的两侧的辐射段的电长度相等,不限定它们的形状是否相同;另一种理解可以为,两个辐射段对称分布指的是分布在第一轴线两侧的辐射段的电长度相等,形状也相同。本申请提供的辐射体213可以实现“垂直定向、水平定向”辐射,也可以实现“垂直定向、水平全向”辐射,当有水平全向辐射需求时,可以采用将辐射体213布放在单板边缘净空中间位置,有利于形成全向辐射的方向图。
图11为本申请另一实施方式提供的天线装置中的第一天线的放大示意图。图11所示的实施方式与图10所示的实施方式的区别在于:图11所示的实施方式中,第一天线21的辐射体213呈非对称的分布架构。一种实施方式中,辐射体213包括分布在所述第一轴线C1的两侧的第一辐射段2131和第二辐射段2132,所述第一辐射段2131连接在所述馈电端211和所述第二辐射段2132之间,所述第二辐射段2132连接在所述第一辐射段2131和所述接地端212之间,所述第一辐射段2131和所述第二辐射段2132的电长度不等。本实施方式中,第一辐射段2131的电长度小于第二辐射段2132的电长度,所述第一辐射段2131的电长度为L1,所述第二辐射段2132的电长度为L2,0.3≤L1/L2<0.7。本实施方式提供的不对称分布的辐射体213,有利于形成双定向辐射的方向图,当天线具有水平垂直两个方向定向辐射需求时,可以通过类似的不对称的辐射体分布架构,配置相应的方向图。
图12为本申请另一实施方式提供的天线装置中的第一天线的放大示意图。图12所示的实施方式与图11所示的实施方式的区别在于:图12所示的实施方式中,第一天线21的辐射体213上设有缝隙214,此缝隙214的作用与图9所示的实施方式中的辐射体上的缝隙214的作用相同。具体而言,本实施方式中,缝隙214设置在第二辐射段2132上。
图13为本申请另一实施方式提供的天线装置中的第一天线的放大示意图。图13所示的实施方式亦具有非对称分布的辐射体213架构,即,辐射体213包括分布在所述第一轴线C1的两侧的第一辐射段2131和第二辐射段2132,所述第一辐射段2131连接在所述馈电端211和所述第二辐射段2132之间,所述第二辐射段212连接在所述第一辐射段2131和所述接地端212之间,所述第一辐射段2131和所述第二辐射段2132的电长度不等。图13所示的实施方式与图11所示的实施方式的区别在于:第一辐射段2131的电长度大于第二辐射段2132的电长度,所述第一辐射段的电长度为L1,所述第二辐射段的电长度为L2,1.4<L1/L2≤3.3。本实施方式与图11所示的实施方式能够实现的有益效果相似,均有利于第一天线21实现定向辐射波形,可以理解的是,本申请可以根据具体的波形方向的不同,设置不同的辐射体的非对称架构。
图14为本申请另一实施方式提供的天线装置中的第一天线的放大示意图。图14所示的实施方式与图13所示的实施方式的区别在于:图14所示的实施方式中,第一天线21的辐射体213上设有缝隙214,此缝隙214的作用与图9所示的实施方式中的辐射体上的缝隙214的作用相同。具体而言,本实施方式中,缝隙214设置在第二辐射段2132上。
图15为本申请另一实施方式提供的天线装置中的第一天线的放大示意图。图14所示的实施方式与图13所示的实施方式的区别在于:图15所示的实施方式中,第一天线21的辐射体213上设有缝隙,此缝隙214的作用与图9所示的实施方式中的辐射体213上的缝隙214的作用相同。具体而言,本实施方式中,缝隙214设置在第一辐射段2131上。可见,第一天线21的辐射体213上的缝隙214的位置是可调的,不同的天线的谐振频点不同,缝隙214的位置也不同,因此,缝隙214的位置由天线的谐振频点决定。
图16为本申请另一实施方式提供的天线装置中的第一天线的放大示意图。图16所示的实施方式与图9所示的实施方式的区别在于:辐射体213的具体的形状。图16所示的实施方式中,辐射体213包括两段弧形辐射段38,这两段弧形辐射段38相对设置,且对称分布第一轴线C1的两侧。可以理解为,在图9所示的实施方式的基础上,将其中的第三辐射段和第五辐射段替换为弧形结构,可以得到本实施方式。本实施方式通过将部分辐射体213设置为弧形,可以扩展第一方向A1上的辐射体213的总尺寸,以使得所述辐射体在第一方向上的总尺寸大于第二方向上的总尺寸。在辐射体213总的电长度相同的情况下,可以减少第二方向A2上的辐射体213的总尺寸,有利于天线装置21和电子设备100在第二方向A2上的小尺寸的设计。虽然辐射体213的第一方向A1上的总尺寸有所增加,但是在具体的应用环境中,在第一方向A1上,第一天线21的周围可能具有空间可以容纳所增加的部分辐射体213,特别是本实施方式中,辐射体213上设有缝隙214,缝隙214的设置可以滤除第二频率的谐振,所述第二频率低于所述第一频率。天线装置21还包括第二天线22(参阅图5和图6),第二天线22与第一天线21相邻设置,第二天线22的工作频率为第二频率,由于缝隙214的设置,第一天线21可以滤除第二频率的谐振,这样第一天线21和第二天线22之间的具有较好的隔离度,二者之间不需要较大的间隔空间,即可以满足这两个天线的性能。可见缝隙214的设置有利于节约第一方向A1上的空间,而本实施方式中具有两段弧形辐射段38的设置可以节约第二方向A2上的空间,刚好占用缝隙214所节约的第一方向A1的空间,也就是说,整体而言,天线装置21在第一方向A1上的尺寸不会增加。
图17为本申请另一实施方式提供的天线装置中的第一天线的放大示意图。图17所示的实施方式与图9所示的实施方式的区别在于:辐射体的具体的形状。图17所示的实施方式中,辐射体213在第二方向A2上的总尺寸大于辐射体213在第一方向A1上的总尺寸。具体而言,辐射体213包括依次连接的第一部分2134、弧形段2135和第二部分2136,第一部分2134包括呈直线状且依次连接的第一辐射段31、第二辐射段32和第三辐射段33,第二部分2136包括呈直线状全依次连接的第五辐射段35、第六辐射段36和第七辐射段37,第一辐射段31邻近馈电端211,第七辐射段37连接至接地端212,第一部分2134和第二部分2136可以对称设置在第一轴线C1的两侧。本实施方式通过增加辐射体213第二方向A2上的尺寸的方式,可以减少辐射体213在第一方向A1上的尺寸,结合辐射体213上缝隙214的设置,能够使得天线装置和电子设备在第一方向A1上的尺寸做到小型化。
图18为本申请另一实施方式提供的天线装置中的第一天线的放大示意图。图18所示的实施方式与图9所示的实施方式的区别在于:在辐射体213上设置蜿蜒线39的方式增加辐射体的单位尺寸下的电长度,可以实现在较小的空间内布置合适的电长度的辐射体213。具体 而言,辐射体213包括呈直线状延伸的多段微带线主体390和蜿蜒线39,相邻的微带线主体390之间设有蜿蜒线39,即蜿蜒线39连接在相邻的两个微带线主体390之间,蜿蜒线39的形状可以为:蛇形或锯齿形或波浪形等。
图19为本申请另一实施方式提供的天线装置中的第一天线的放大示意图。图19所示的实施方式与图9所示的实施方式的区别在于:图9所示的实施方式中的第一天线的辐射体为等宽的微带线结构,即在辐射体延伸的路径上,辐射体的宽度保持一致,宽度指的是垂直于辐射体延伸路径的方向上的辐射体的尺寸。图19所示的实施方式中的第一天线21的辐射体213包括等宽的微带线主体2137和连接至微带线主体2137的加宽部2138,加宽部2138的宽度尺寸大于微带线主体2137的宽度尺寸。所述缝隙形成在所述加宽部和部分所述微带线主体之间,可以调节缝隙位置的电容值。如图19所示,加宽部2138呈梯形,加宽部2138的宽度可以理解为梯形的顶边和底边的尺寸的平均值。其它实施方式中,加宽部2138也可以为矩形、正方形、扇形、喇叭形等其它形状。本实施方式中,微带线主体2137包括第一部分71和第二部分72,第一部分71的一端连接至馈电部211,加宽部2138连接至第一部分71远离馈电端211的一端,第二部分72的一端连接至接地端212,第二部分72远离接地端212的一端与加宽部2138间隔相对,且第二部分72和加宽部2138之间形成缝隙214,此缝隙214的功能与图9中的缝隙的功能相同,不再赘述。本实施方式通过设置缝隙214,将辐射体213(环形辐射体结构)分为两段,从馈电端211到缝隙214的电长度决定天线工作频率,通过调整缝隙214的位置可以实现调谐的作用,因为缝隙214的存在使得辐射体213的环结构断开,形成电容效应,导致环结构低频的谐振模式严重不匹配,进而实现了对邻频电磁波的滤除作用。
图20为本申请一种实施方式提供的天线装置的示意图,本实施方式中,电路板10呈长方形结构,地板111亦为长方形,环绕在地板111外围的净空区12呈L形,净空区12包围地板111的两条边,因此,本实施方式中,地板111的第一边1112的数量也是两个。净空区12内设置两个第一天线21,其中一个位于地板111的右上角,另一个位于地板111的左下角。净空区21内还设两个第二天线22,分别位于两个第一边1112的外围,且分别与两个第一天线21相邻设置。
图21为本申请一种实施方式提供的天线装置的示意图,本实施方式中,电路板10呈长方形结构,地板111亦为长方形,环绕在地板111外围的净空区12呈匚形,净空区12包围地板111的三条边,因此,本实施方式中,地板111的第一边1112的数量为三个。本实施方式中,净空区12内可以设置三个第一天线21和三个第二天线22,每个第一边1112的外围均设一个第一天线21和一个第二天线22。
图22为本申请一种实施方式提供的天线装置的局部示意图,本实施方式中,电路板10呈圆形、或半圆形、或扇形,电路板10中的地板111的第一边1112为弧形,第一边1112的外围设有第一天线21和与第一天线21相邻且间隔的第二天线22,第一天线21同样可以激励起地板111和第一天线21的辐射体均具有较强的电流,均能够辐射电磁波,产生双波束。第一天线21和第二天线22之间的距离为第一天线21和第二天线22之间距离最近点的直线距离。本实施方式同样可以通过在第一天线21上设置开路状的缝隙214结构,来提升第一天线21和第二天线22之间的隔离度,使得第一天线和第二天线之间的可以在较小的间距设置的情况下,仍然能满足隔离度要求,藉此,可以实现在在限的空间内布置更多的天线,或减少天线装置和电子设备的尺寸。本实施方式提供的天线装置所应用的电子设备整体外观呈圆盘状或圆柱状。
电路板可以为多层板结构,也可以单层板结构。地板可以为接地区的某一金属接地层(例如铜箔层),例如地板可以位于电路板的表层,地板也可以位于电路板的中间层。第一天线的辐射体也可以为净空区内的某一层或某些层(即辐射体可以分布在电路板中的至少两层中)。辐射体可以和地板位于同一层,也可以与地板位于不同的层内。
如图23所示,辐射体213和地板111均位于电路板10的表层,此种架构下,电路板10可以为单层板,也可以为多层板。本实施方式的好处在于,辐射体和地板可以在同一层,采用一道工序制作,结构简单,成本低。
如图24所示,电路板10为多层板架构,辐射体214位于电路板10的表层,地板111位于电路板10的中间层。
如图25所示,电路板10为多层板架构,地板111位于电路板10的表层,辐射体213分布在电路板10的表层及中间层,分布在电路板表层的部分辐射体213为第一部分,分布在电路板的中间层中的部分辐射体213为第二部分,第一部分和第二部分之间可以通过电路板间的过孔实现电连接。
图26和图27为本申请一种实施方式提供的天线装置(对应图26和图27中标为双波束天线的曲线)和常规的环天线(对应图26和图27中标为原始环形天线的曲线)的仿真二维方向图对比,图26为水平面的方向图对比,图27为垂直面的方向图对比。常规的环天线中的辐射体的电长度通常为1倍波长或2倍波长,或者为半波长或半波长的倍数,为单波束天线。本申请提供的天线装置与常规环天线对比,可以发现,本申请提供的天线装置垂直面最大增益降低1.9dB(4.1dB变为2.2dB),波束变宽,水平面左定向增益提高3.5dB(-1.0dB变为2.5dB),前后比大于12dB,具有双波束特征。
图28为本申请一种实施方式提供的天线装置在5G频段方向图,从图28可以看出,本申请提供的天线装置在5.1G、5.5G和5.9G三种工作频率下的方向图是一致的。
图29为本申请一种实施方式提供的天线装置,在辐射体上不设缝隙的情况下的电流分布图。可以看出,本申请提供的天线装置能够同时激励起地板和辐射体上的电流,使得地板和辐射体均参与辐射。
图30为本申请一种实施方式提供的天线装置,在辐射体上开设缝隙的情况下的电流分布图。可以看出,本申请提供的天线装置能够同时激励起地板和辐射体上的电流,使得地板和辐射体均参与辐射。而且缝隙的设置影响了地板上的电流分布,能够实现了天线的调谐。
图31为本申请一种实施方式提供的天线装置中的第一天线的辐射体上的电流分布图。图31可以看出,辐射体上有两个电流零点,即图中标示为A的圈内的部分及标示为B的圈内的部分,其中一个电流零点的位置靠近接地端,使得地板上具有较强的电流分布,这样可以同时激励地板和辐射体上的电流,
图32和图33为本申请一种实施方式提供的天线装置中的第一天线的辐射体不设缝隙的S参数曲线图(图32)及开设缝隙的S参数曲线图(图33)。图32和图33可以看出,开设缝隙以后,第一天线只有一个谐振频点,能够滤除相邻频率的谐振。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (20)

  1. 一种天线装置,其特征在于,包括
    电路板,包括接地区和位于所述接地区外围的净空区,所述接地区内设地板,所述地板包括第一边;和
    第一天线,包括馈电端、接地端和在所述馈电端和所述接地端之间延伸的辐射体,所述辐射体为印制在所述净空区的微带线结构,所述馈电端和所述接地端邻接所述第一边,所述辐射体的电长度大于1倍波长且小于1.5倍波长,所述波长为所述第一天线的工作频率状态下的电磁波的波长,以使所述第一天线馈电后能够同时激励所述地板和所述辐射体辐射电磁波。
  2. 根据权利要求1所述的天线装置,其特征在于,所述馈电端和所述接地端之间的垂直连线的中点为第一中点,所述第一边的延伸方向为第一方向,穿过所述第一中点且沿垂直于所述第一方向延伸的线为第一轴线,所述辐射体包括分布在所述第一轴线的两侧的第一辐射段和第二辐射段,所述第一辐射段连接在所述馈电端和所述第二辐射段之间,所述第二辐射段连接在所述第一辐射段和所述接地端之间,所述第一辐射段和所述第二辐射段的电长度不等。
  3. 根据权利要求2所述的天线装置,其特征在于,所述第一辐射段的电长度为L1,所述第二辐射段的电长度为L2,0.3≤L1/L2<0.7。
  4. 根据权利要求2所述的天线装置,其特征在于,所述第一辐射段的电长度为L1,所述第二辐射段的电长度为L2,1.4<L1/L2≤3.3。
  5. 根据权利要求1-4任一项所述的天线装置,其特征在于,所述第一天线的工作频率为第一频率,所述辐射体设有缝隙,所述缝隙的设置使得所述辐射体在从所述馈电端向所述接地端延伸的路径上形成开路,所述缝隙用于滤除第二频率的谐振,所述第二频率低于所述第一频率。
  6. 根据权利要求5所述的天线装置,其特征在于,所述缝隙宽度为:大于等于0.001倍波长且小于等于0.02倍波长,所述缝隙宽度定义为:在所述辐射体的延伸的路径上,所述缝隙两侧的所述辐射体之间的垂直连线的尺寸。
  7. 根据权利要求5或6所述的天线装置,其特征在于,在所述辐射体延伸的路径上,所述缝隙与所述接地端之间的距离小于所述缝隙与所述馈电端之间的距离。
  8. 根据权利要求5-7任一项所述的天线装置,其特征在于,所述天线装置还包括设于所述净空区的第二天线,所述第二天线与所述第一天线间隔设置,所述第二天线的工作频率为所述第二频率。
  9. 根据权利要求8所述的天线装置,其特征在于,所述第一频率为5G,所述第二频率为2.4G,所述第一天线和所述第二天线之间的间距为8mm。
  10. 根据权利要求1-9任一项所述的天线装置,其特征在于,所述第一边的两端分别为第一端和第二端,所述第一天线与所述第一端之间的距离小于所述第一天线与所述第二端之间的距离。
  11. 根据权利要求10所述的天线装置,其特征在于,沿所述第一边的延伸方向,所述第一天线与所述第一端之间的距离小于等于0.67倍波长。
  12. 根据权利要求11所述的天线装置,其特征在于,所述接地端位于所述馈电端和所述 第一端之间。
  13. 根据权利要求1-12任一项所述的天线装置,其特征在于,所述辐射体和所述地板位于所述电路板上的同一层内。
  14. 根据权利要求1-13任一项所述的天线装置,其特征在于,所述地板上辐射的电磁波构成水平方向的波束,所述辐射体上的电磁波构成垂直方向的波束。
  15. 根据权利要求1-14任一项所述的天线装置,其特征在于,所述第一天线的数量为至少两个,且分布在所述地板的不同的侧边位置。
  16. 根据权利要求2所述的天线装置,其特征在于,部分所述辐射体呈弧形结构,以使得所述辐射体在所述第一方向上的总尺寸大于第二方向上的总尺寸,所述第二方向垂直于所述第一方向。
  17. 根据权利要求2所述的天线装置,其特征在于,所述辐射体在第二方向上的总尺寸大于所述辐射体在所述第一方向上的总尺寸,所述第二方向垂直于所述第一方向。
  18. 根据权利要求1所述的天线装置,其特征在于,所述辐射体包括呈直线状延伸的多段微带线主体和蜿蜒线,所述蜿蜒线连接在相邻的两个所述微带线主体之间,用于增加所述辐射体的单位尺寸下的电长度。
  19. 根据权利要求1所述的天线装置,其特征在于,所述辐射体包括等宽的微带线主体和连接至所述微带线主体的加宽部,所述加宽部的宽度尺寸大于所述微带线主体的宽度尺寸,所述第一天线的工作频率为第一频率,所述辐射体设有缝隙,所述缝隙形成在所述加宽部和部分所述微带线主体之间,所述缝隙的设置使得所述辐射体在从所述馈电端向所述接地端延伸的路径上形成开路,所述缝隙用于滤除第二频率的谐振,所述第二频率低于所述第一频率。
  20. 一种电子设备,其特征在于,包括射频电路和权利要求1-19任一项所述的天线装置,所述天线的所述馈电端通过馈电结构电连接至所述射频电路。
PCT/CN2021/124443 2020-12-31 2021-10-18 天线装置和电子设备 WO2022142598A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011640902.3A CN114696078B (zh) 2020-12-31 2020-12-31 天线装置和电子设备
CN202011640902.3 2020-12-31

Publications (1)

Publication Number Publication Date
WO2022142598A1 true WO2022142598A1 (zh) 2022-07-07

Family

ID=82136259

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/124443 WO2022142598A1 (zh) 2020-12-31 2021-10-18 天线装置和电子设备

Country Status (2)

Country Link
CN (1) CN114696078B (zh)
WO (1) WO2022142598A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012001742A1 (en) * 2010-06-30 2012-01-05 Nec Corporation Via structures and compact three-dimensional filters with the extended low noise out-of-band area
CN104022322A (zh) * 2013-03-01 2014-09-03 国基电子(上海)有限公司 平衡非平衡转换器
EP3016204A1 (en) * 2014-11-03 2016-05-04 Thomson Licensing Antenna assembly and electronic device comprising said antenna assembly
CN105576350A (zh) * 2014-10-15 2016-05-11 中兴通讯股份有限公司 多频天线
CN106549222A (zh) * 2015-09-23 2017-03-29 中兴通讯股份有限公司 印刷电路板和用户设备

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004080660A (ja) * 2002-08-22 2004-03-11 Matsushita Electric Ind Co Ltd アンテナ装置
CN103460505B (zh) * 2011-04-06 2016-06-15 拉迪娜股份有限公司 使用电容器的接地辐射体以及接地天线
US20130241800A1 (en) * 2012-03-14 2013-09-19 Robert W. Schlub Electronic Device with Tunable and Fixed Antennas
CN105811123A (zh) * 2014-12-31 2016-07-27 联想(北京)有限公司 一种天线系统及电子设备
CN111628274B (zh) * 2019-02-27 2022-10-04 华为技术有限公司 天线装置及电子设备
CN111934089B (zh) * 2019-05-13 2021-10-26 华为技术有限公司 天线装置及移动终端
CN212257696U (zh) * 2020-07-10 2020-12-29 深圳市欣音科技有限公司 Pcb天线以及应用该pcb天线的电子装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012001742A1 (en) * 2010-06-30 2012-01-05 Nec Corporation Via structures and compact three-dimensional filters with the extended low noise out-of-band area
CN104022322A (zh) * 2013-03-01 2014-09-03 国基电子(上海)有限公司 平衡非平衡转换器
CN105576350A (zh) * 2014-10-15 2016-05-11 中兴通讯股份有限公司 多频天线
EP3016204A1 (en) * 2014-11-03 2016-05-04 Thomson Licensing Antenna assembly and electronic device comprising said antenna assembly
CN106549222A (zh) * 2015-09-23 2017-03-29 中兴通讯股份有限公司 印刷电路板和用户设备

Also Published As

Publication number Publication date
CN114696078A (zh) 2022-07-01
CN114696078B (zh) 2023-09-29

Similar Documents

Publication Publication Date Title
CN108886202B (zh) 包含变极化相控阵列天线的无线通信系统
WO2022088866A1 (zh) 天线、天线模组和电子设备
Iwamoto et al. Design of an antenna decoupling structure for an inband full-duplex collinear dipole array
JP2018529269A (ja) 基板集積導波路を含む広帯域アンテナ
WO2021082935A1 (zh) 电子设备
JP7381741B2 (ja) アンテナ装置及び電子デバイス
WO2021197399A1 (zh) 一种天线及终端
WO2020216241A1 (zh) 紧凑型天线及移动终端
US20230020807A1 (en) Antenna, Antenna Module, And Wireless Network Device
WO2022088863A1 (zh) 天线、天线模组和电子设备
JP2004120733A (ja) ストリップライン並列‐直列給電型プロキシミティ結合空洞バックパッチアンテナアレイ
CN110112561B (zh) 一种单极化天线
WO2021213182A1 (zh) 一种电子设备及天线装置
WO2022133922A1 (zh) 一种多频天线及通信设备
WO2022142598A1 (zh) 天线装置和电子设备
CN112787080A (zh) 天线模组及电子设备
WO2022134785A1 (zh) 一种天线和通信设备
CN114256601B (zh) 天线、天线模组和电子设备
WO2024067496A1 (zh) 天线组件和通信设备
CN215266649U (zh) 天线及电子设备
US20230155302A1 (en) Antenna and Electronic Device
WO2022111409A1 (zh) 一种多输入多输出mimo天线以及通信装置
WO2024055868A1 (zh) 一种可穿戴设备
WO2023221681A1 (zh) 印刷天线以及通信设备
CN209913031U (zh) 一种单极化天线

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21913343

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21913343

Country of ref document: EP

Kind code of ref document: A1