WO2024067496A1 - 天线组件和通信设备 - Google Patents

天线组件和通信设备 Download PDF

Info

Publication number
WO2024067496A1
WO2024067496A1 PCT/CN2023/121142 CN2023121142W WO2024067496A1 WO 2024067496 A1 WO2024067496 A1 WO 2024067496A1 CN 2023121142 W CN2023121142 W CN 2023121142W WO 2024067496 A1 WO2024067496 A1 WO 2024067496A1
Authority
WO
WIPO (PCT)
Prior art keywords
antenna
branch
feeding
radiating
antenna assembly
Prior art date
Application number
PCT/CN2023/121142
Other languages
English (en)
French (fr)
Inventor
刘丹
张琛
李肖峰
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2024067496A1 publication Critical patent/WO2024067496A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/24Supports; Mounting means by structural association with other equipment or articles with receiving set
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/48Earthing means; Earth screens; Counterpoises
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/50Structural association of antennas with earthing switches, lead-in devices or lightning protectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/52Means for reducing coupling between antennas; Means for reducing coupling between an antenna and another structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/16Resonant antennas with feed intermediate between the extremities of the antenna, e.g. centre-fed dipole

Definitions

  • the present invention relates to the field of radio frequency communication technology, and in particular to an antenna component and a communication device.
  • CPE Customer Premises Equipment
  • Wi-Fi Wireless Fidelity
  • CPE products are devices that share the received wireless network broadband signals with various terminal products in the home in the form of Wi-Fi (Wireless Fidelity) signals. They are mainly used to solve the problem of users accessing the Internet. It can be seen that the quality of Wi-Fi performance in CPE products determines the quality of communication effects perceived by users. In CPE products, generally, Wi-Fi antennas are reasonably arranged to achieve better horizontal coverage.
  • the number of antennas in CPE products is increasing. With the increasing number of antennas in the same space, the mutual influence between antennas is becoming more and more serious. How to ensure that the radiation of each antenna is not affected by other surrounding antennas is a difficulty in current research.
  • the embodiments of the present invention provide an antenna assembly and a communication device, which can design a multi-Wi-Fi antenna solution in a compact space and can simultaneously achieve a low directivity coefficient and a high isolation.
  • an embodiment of the present invention provides an antenna assembly, comprising a first antenna, a second antenna, a first feeding port and a second feeding port, wherein the first antenna is formed on at least one first surface, and a direction perpendicular to the first surface is a first direction, wherein the first antenna comprises a feeding unit, a power dividing unit and a radiating unit, wherein the power dividing unit is connected between the feeding unit and the radiating unit, wherein the radiating unit surrounds the power dividing unit and the feeding unit, wherein the radiating unit comprises a plurality of sub-units arranged at intervals, and gaps are formed between adjacent sub-units, wherein the gaps pass through the first surface along the first direction; the first feeding port is connected to the feeding unit for feeding the first antenna; the second antenna is arranged at the position of the gap, wherein part of the second antenna is located on the top side of the first antenna in the first direction, and part of the second antenna is located on the bottom side of the first antenna in the first direction; and the
  • the present application arranges the second antenna in the gap position of the first antenna, and the second antenna and the first antenna are arranged crosswise, the second antenna passes through the gap along the first direction, part of the second antenna is located on the top side of the first antenna, and part of the second antenna is located on the bottom side of the first antenna, forming a shared space for the first antenna and the second antenna, that is, there is an intersection in space, which is conducive to miniaturization of the overall size of the antenna assembly.
  • This spatial arrangement architecture of the first antenna and the second antenna can not only ensure the low directivity system of the directional pattern of each antenna itself, but also the second antenna arranged in the gap position can meet the isolation requirements.
  • the first antenna has a radial direction and a circumferential direction
  • the radial direction is the direction from the feed unit to the radiation unit
  • the circumferential direction is the extension direction of the circumferential path formed by the radiation unit
  • the vertical projection of the second antenna on the first surface along the first direction is located within the range of the gap in the circumferential direction.
  • the first antenna is a dipole antenna
  • the second antenna is a dipole antenna
  • the antenna assembly includes an additional branch, which is connected between two adjacent second antennas to achieve decoupling between the two adjacent second antennas.
  • This solution limits the number of second antennas to multiple. In the architecture where multiple second antennas are arranged crosswise with the first antenna, the increase in the number of second antennas is conducive to improving the radiation efficiency of the antenna.
  • the additional branch structure the additional branch is used to achieve decoupling between the two second antennas. During the process of current flowing into the second antenna 30, the current flowing in from the additional branch is reversely offset by the original coupling current, which can achieve improved isolation between the two second antennas. For example, this solution makes the two second antennas The isolation between the lines is optimized to -13dB, achieving decoupling between the two second antennas.
  • the distance range between the connection position of the additional branch and the second antenna and the second feeding port is 0-3 mm. This solution limits the distance range between the connection position of the additional branch and the second antenna and the second feeding port, within which the decoupling efficiency of the additional branch between adjacent second antennas can be guaranteed.
  • the additional branch includes a first section of additional branches and a second section of additional branches, the first section of additional branches and the second section of additional branches are separated by an additional branch gap, the first section of additional branches is connected to one of the second antennas, and the second section of additional branches is connected to the other second antenna.
  • the size range of the additional branch gap is: 0.1 mm-2 mm. This solution helps to ensure the decoupling efficiency between the two second antennas by limiting the size range of the additional branch gap.
  • the first antenna is distributed on the first surface in a rotationally symmetrical manner with the first central axis as the center, the extension direction of the first central axis is the first direction, the radiation unit of the first antenna includes a first radiation branch and a second radiation branch, the antenna assembly also includes a third antenna, the radiator of the third antenna is a third radiation branch, the third radiation branch is connected to the feeding unit of the first antenna, the distance between the first radiation branch and the first central axis is greater than the distance between the second radiation branch and the first central axis, the distance between the third radiation branch and the first central axis is less than the distance between the second radiation branch and the first central axis, and the antenna assembly also has a third feeding port, the third feeding port feeds the third radiation branch.
  • This solution realizes high-isolation tri-band Wi-Fi 4*4 MIMO coverage by vertically placing the second antenna, the third antenna and the first antenna in space.
  • This application realizes the arrangement of more antenna architectures in a limited space by adding a 6E band solution within the spatial size design range of the dual-band antenna (e.g., 2.4G and 5G) solution, which is beneficial to the compactness of the overall structure of the antenna assembly.
  • the antenna assembly includes a first dielectric plate and a plurality of second dielectric plates, the first radiation branch and the second radiation branch are arranged on the first dielectric plate, the third radiation branch and one of the second antennas are arranged on one of the second dielectric plates, the remaining second antennas are arranged one by one on the remaining second dielectric plates, and the first dielectric plate and the second dielectric plate are arranged at an angle.
  • This solution defines that the third radiation branch of the third antenna is arranged on the same plate as one of the second antennas, which is beneficial to space compactness.
  • This solution defines the arrangement architecture in which the remaining first electric pair antennas are separately arranged on the remaining second dielectric plates, realizing a specific antenna arrangement scheme, the first dielectric plate and the second dielectric plate serve as substrates for carrying each antenna, and are combined to form an integrated antenna assembly, which is beneficial to the modular design of the antenna assembly and facilitates the assembly and layout of the antenna assembly in the electronic device.
  • one of the second dielectric plates includes a main body and a corner portion
  • the main body is used to set the second antenna
  • the corner portion is used to set the third radiating branch
  • the corner portion is connected to a corner position of the main body
  • the corner portion is provided with a slit
  • the first dielectric plate includes a central area
  • the feeding unit of the first antenna is arranged in the central area and distributed on the top surface and the bottom surface of the central area, and part of the central area is inserted into the slit, so that part of the third radiating branch contacts part of the feeding unit on the top surface of the central area.
  • This scheme defines the specific structure of the second dielectric plate where the third antenna and the second antenna are arranged on the same plate, and the connection between the first dielectric plate and the second dielectric plate is achieved by the slit, while at the same time, the position of the slit can ensure that part of the third radiating branch contacts part of the first antenna on the top surface of the central area, so that the overall structure of the antenna assembly is stable and the electrical connection is reliable.
  • the operating frequency band of the first radiation branch includes 2.4G-2.5G
  • the operating frequency band of the second radiation branch includes 5.15G-5.85G
  • the operating frequency band of the third radiation branch includes 5.925G-7.125G.
  • each of the second antennas includes a first radiating portion, a second radiating portion and a third radiating portion arranged on a common plate, the first radiating portion is located between the second radiating portion and the third radiating portion, the distance between the first radiating portion and the second radiating portion is smaller than the distance between the first radiating portion and the third radiating portion, the third radiating portion is located between the first radiating portion and the first center axis, and the distance between the third radiating portion and the first center axis is smaller than the distance between the third radiating portion and the first radiating portion, the second feeding port feeds the first radiating portion and the second radiating portion, and the antenna assembly also includes a fourth feeding port, which feeds the third radiating portion.
  • the operating frequency band of the first radiating unit includes 2.4G-2.5G
  • the operating frequency band of the second radiating unit includes 5.15G-5.85G
  • the operating frequency band of the third radiating unit includes 5.925G-7.125G.
  • the second antenna includes a feed branch, the fourth feed port and the second feed port are arranged on the feed branch, the first radiating portion, the second radiating portion and the third radiating portion are symmetrically distributed on both sides of the feed branch, one end of the feed branch is connected to the third radiating portion, and the other end of the feed branch is connected to the first radiating portion and the third radiating portion.
  • This scheme defines a specific implementation method to provide an antenna assembly as a co-body multi-antenna structure, the number of the first feed port, the second feed port, the third feed port and the fourth feed port is 8 in total, the number of the second feed port and the fourth feed port are both three, and the first feed port is 1.
  • the number of power ports and the third feeding port is one.
  • the radiation structure of the antenna is arranged on four dielectric plates, one of which is a first dielectric plate, and the other three are second dielectric plates, and two feeding ports are arranged on each dielectric plate.
  • This embodiment implements a co-body multi-feed eight WI-FI antenna solution, which can achieve a low directivity coefficient in a compact space.
  • the feeding of the first feeding port and the three second feeding ports can excite electromagnetic wave signals in two frequency bands (the first frequency band and the second frequency band), and the feeding of the third feeding port and the three fourth feeding ports can excite electromagnetic wave signals in the third frequency band.
  • Each antenna in the antenna assembly provided in this embodiment satisfies omnidirectional horizontal plane coverage.
  • the first radiating portion includes a first section and a second section, the first section and the second section are distributed on the same side of the feeding branch, the second section and the feeding branch are arranged at intervals, the two ends of the first section are respectively connected to the feeding branch and the second section, and the first section and the second section are not colinear.
  • the second section is parallel to the feed branch, and the angle between the first section and the feed branch is an acute angle.
  • the second antenna further includes an extended branch, one end of the extended branch is connected to the second section, the other end of the extended branch faces the second radiating portion and forms a gap between the extended branch and the second radiating portion, the extended branch, the first section and the second radiating portion are sequentially connected and surrounded to form an enclosed space, the gap is the opening of the enclosed space, and the extended branch is used to optimize the directional pattern of the electromagnetic wave beam generated by the second radiating portion.
  • This solution can optimize the directional pattern of the electromagnetic wave beam generated by the second radiating portion by setting the extended branch, which is conducive to the low directivity coefficient of the second antenna.
  • a grounding structure is provided on the feed branch, and the distance between the grounding structure and the second feed port is: greater than or equal to 7 mm and less than or equal to 8 mm.
  • the distance between the grounding structure and the second feed port is 7.5 mm.
  • the distance between the grounding structure and the second feed port is one-quarter of the dielectric wavelength of the working frequency band of the first radiating portion.
  • the distance between the grounding structure and the fourth feeding port is: greater than or equal to 3 mm and less than or equal to 4 mm.
  • the distance between the grounding structure and the fourth feeding port is 3.5 mm.
  • the distance between the grounding structure and the fourth feeding port is one-quarter of the dielectric wavelength of the working frequency band of the third radiating part.
  • part of the third radiating branch is located on the top surface of the first dielectric plate and is electrically connected to the first antenna
  • part of the third radiating branch passes through the first dielectric plate from the gap and is located on one side of the bottom surface of the first dielectric plate
  • the antenna assembly also includes a decoupling branch, part of the decoupling branch is electrically connected to the third radiating branch, another part of the decoupling branch is located on one side of the bottom surface of the first dielectric plate and is electrically connected to the first antenna
  • the decoupling branch is used to improve the isolation between the first antenna and the third radiating branch.
  • the decoupling branch is used to improve the isolation between the first antenna and the third radiating branch.
  • the decoupling branch includes a first decoupling section and a second decoupling section, the first decoupling section is on the bottom side of the first antenna and contacts the feeding unit of the first antenna, the extension direction of the first decoupling section can be the radial direction of the first antenna, and the second decoupling section passes through the first antenna and is connected between the first decoupling section and the third radiating branch.
  • the extension direction of the second decoupling section can be the first direction, that is, the direction in which the first center axis of the first antenna extends.
  • the present application provides a communication device, comprising a circuit board and an antenna assembly as described in any possible implementation of the first direction, wherein a radio frequency circuit is provided on the circuit board, and the first feeding port and the second feeding port are electrically connected to the radio frequency circuit.
  • FIG1 is a schematic diagram of an application of an electronic device including an antenna provided in the present application as a home gateway in a home gateway system.
  • FIG2 is a schematic diagram of a specific application scenario of the communication device provided in this application.
  • FIG3 is a schematic diagram of the internal structure of a specific implementation of the communication device provided in the present application, mainly showing the positional relationship between the surface antenna component and the circuit board.
  • FIG. 4 is a three-dimensional schematic diagram of an antenna assembly in one direction provided by a specific embodiment of the present application.
  • FIG5 is a plan view of an antenna assembly in one direction (eg, vertical direction) provided in a specific embodiment of the present application.
  • FIG. 6 is a plan view of an antenna assembly in another direction (eg, horizontal direction) provided in a specific embodiment of the present application.
  • FIG. 7 is a plan view of a first dielectric plate and a first antenna disposed on the first dielectric plate in an antenna assembly provided in a specific embodiment of the present application.
  • FIG8A is a plan view of a second dielectric plate and a second antenna disposed on the second dielectric plate in an antenna assembly provided in a specific embodiment of the present application.
  • FIG. 8B is a schematic diagram of a layer structure of a cross section of the structure shown in FIG. 8A .
  • FIG8C is a schematic diagram of a layer structure of a cross section of a second dielectric plate and a second antenna disposed on the second dielectric plate in an antenna assembly provided in a specific embodiment of the present application.
  • FIG. 9 is a schematic diagram of an antenna assembly provided in a specific embodiment of the present application.
  • FIG. 10A is a directional diagram of a first antenna in a case where the antenna assembly provided in a specific embodiment of the present application is composed of a single first antenna.
  • FIG. 10B is a directional diagram of a second antenna in a case where the antenna assembly provided in a specific embodiment of the present application is composed of four second antennas.
  • FIG10C is a directional diagram of a first antenna in a case where an antenna assembly provided in a specific embodiment of the present application includes a first antenna and four second antennas.
  • FIG. 10D is a directional diagram of a second antenna in a case where an antenna assembly provided in a specific embodiment of the present application includes a first antenna and four second antennas.
  • FIG. 11 is a three-dimensional schematic diagram of an antenna assembly in one direction provided in a specific embodiment of the present application.
  • FIG. 12 is a three-dimensional schematic diagram of an antenna assembly provided in another direction according to a specific embodiment of the present application.
  • FIG13 is a vertical plan view of an antenna assembly provided in a specific embodiment of the present application.
  • FIG. 14 is a front plan view in the horizontal direction of an antenna assembly provided in a specific embodiment of the present application.
  • FIG15 is a plan view of the reverse side in the horizontal direction of an antenna assembly provided in a specific embodiment of the present application.
  • FIG. 16 is a three-dimensional schematic diagram of an antenna assembly in one direction provided in a specific embodiment of the present application.
  • FIG. 17 is a three-dimensional schematic diagram of an antenna assembly provided in another direction according to a specific embodiment of the present application.
  • FIG. 18 is a vertical plan view of an antenna assembly provided in a specific embodiment of the present application.
  • FIG19 is a horizontal front plan view of an antenna assembly provided in a specific embodiment of the present application.
  • FIG. 20 is a plan view of the reverse side in the horizontal direction of an antenna assembly provided in a specific embodiment of the present application.
  • FIG. 21 is a three-dimensional schematic diagram of an antenna assembly in one direction provided in a specific embodiment of the present application.
  • FIG. 22 is a three-dimensional schematic diagram of an antenna assembly provided in another direction according to a specific embodiment of the present application.
  • FIG. 23 is a horizontal front plan view of an antenna assembly provided in a specific embodiment of the present application.
  • FIG. 24 is a plan view of the reverse side in the horizontal direction of an antenna assembly provided in a specific embodiment of the present application.
  • FIG. 25 is a vertical plan view of an antenna assembly provided in a specific embodiment of the present application.
  • FIG. 26 is another vertical plan view of an antenna assembly provided in a specific embodiment of the present application.
  • FIG. 27 is a schematic diagram of a second antenna in an antenna assembly provided in a specific embodiment of the present application.
  • FIG. 28 is a side view of a feed branch of a second antenna in an antenna assembly provided in a specific embodiment of the present application.
  • FIG. 29 is a three-dimensional schematic diagram of one direction of the positional relationship and specific structure between the first antenna and the third antenna in an antenna assembly provided in a specific embodiment of the present application.
  • FIG30 is a three-dimensional schematic diagram showing the positional relationship and specific structure of the first antenna and the third antenna in an antenna assembly provided in a specific embodiment of the present application from another direction.
  • FIG31 is a plan view showing the positional relationship and specific structure between the first antenna and the third antenna in an antenna assembly provided in a specific embodiment of the present application.
  • the left figure in FIG31A is a current distribution diagram when the third antenna is not provided with a decoupling branch
  • the right figure in FIG31A is a current distribution diagram when the third antenna is provided with a decoupling branch.
  • FIG31B is a comparison diagram of the isolation before and after adding the decoupling branches.
  • FIG. 32 is a schematic diagram of the positional relationship and specific structure between two second antennas in an antenna assembly provided in a specific embodiment of the present application.
  • 32A, 32B and 32C are respectively: the current distribution diagram when no additional branches are provided between the two second antennas, the current distribution diagram when an additional branch is provided between the two second antennas (but there is no gap on the additional branch), and the current distribution diagram when an additional branch is provided between the two second antennas and there is an additional branch gap on the additional branch.
  • FIG. 32D is a comparison of the isolation levels in the states shown in FIG. 32A , FIG. 32B , and FIG. 32C .
  • FIG. 33 is a diagram of a second dielectric plate and a second antenna and a third antenna thereon in an antenna assembly provided in a specific embodiment of the present application. Plan view of the direction.
  • FIG34 is a plan view of a second dielectric plate and a second antenna and a third antenna thereon in another direction in an antenna assembly provided by a specific embodiment of the present application.
  • FIG. 35 is a plan view in one direction of a second dielectric plate and a second antenna thereon in an antenna assembly provided in a specific embodiment of the present application.
  • FIG. 36 is a plan view of a second dielectric plate and a second antenna thereon in another direction in an antenna assembly provided by a specific embodiment of the present application.
  • FIG. 37 is a schematic diagram of a first dielectric plate and a first antenna thereon in one direction in an antenna assembly provided in a specific embodiment of the present application.
  • FIG38 is a three-dimensional schematic diagram of an antenna assembly in one direction provided by a specific embodiment of the present application.
  • FIG39 is a three-dimensional schematic diagram of an antenna assembly provided in another direction according to a specific embodiment of the present application.
  • FIG40 is a plan view of an antenna assembly in one direction provided in a specific embodiment of the present application.
  • FIG41 is a plan view schematically showing an antenna assembly in another direction according to a specific embodiment of the present application.
  • the left side diagram of FIG. 42 shows that the antenna assembly only includes three second antennas, and the right side diagram of FIG. 42 shows a schematic diagram of 2.45G current distribution in a structure with only three second antennas.
  • the left side diagram of FIG43 shows that the antenna assembly includes three second antennas and one first antenna, and the right side diagram of FIG43 shows a 2.45G current distribution diagram when one first antenna is added to the three second antennas.
  • FIG. 44 is an isolation curve diagram when a first antenna is added to the three second antennas.
  • FIG45 is an S parameter diagram of the three-band antenna architecture formed by the second antenna in the working state of three frequency bands.
  • FIG. 46 is a diagram showing current distribution of the three second antennas in three frequency bands.
  • FIG47 shows the radiation patterns of the three second antennas in three frequency bands.
  • FIG48 is an S parameter diagram of the three-band antenna architecture formed by the first antenna and the third antenna working in three frequency bands.
  • FIG49 is a current distribution diagram of the first antenna in the first frequency band and the second frequency band, and a current distribution diagram of the third antenna in the third frequency band.
  • FIG50 shows the directional patterns of the first antenna in the first frequency band and the second frequency band, and the directional pattern of the third antenna in the third frequency band.
  • MIMO technology Multiple-Input Multiple-Output, refers to the use of multiple transmitting antennas and receiving antennas at the transmitting end and the receiving end respectively, so that the signal is transmitted and received through multiple antennas at the transmitting end and the receiving end, thereby improving the communication quality. It can make full use of spatial resources and achieve multiple transmission and multiple reception through multiple antennas. Without increasing spectrum resources and antenna transmission power, it can multiply the system channel capacity, showing obvious advantages and is regarded as the core technology of the next generation of mobile communications.
  • Wireless AP Access Point. In simple terms, it is a wireless switch in a wireless network. It is an access point for mobile terminal users to enter a wired network. It has been widely used in network coverage for various occasions, including education, medical and other enterprise-level customer scenarios. Wireless AP can be used for home broadband, enterprise internal network deployment, etc., with a wireless coverage distance of tens to hundreds of meters. General wireless APs also have access point client mode, which means that APs can be wirelessly linked to each other, thereby expanding the coverage of the wireless network.
  • Home gateway It is a network device located inside a modern home. Its function is to connect home users to the Internet, so that various smart devices in the home can get Internet services, or these smart devices can communicate with each other.
  • the home gateway is a bridge that enables the networking of various smart devices in the home, and the interconnection from the inside of the home to the external network. From a technical point of view, the home gateway implements bridging/routing, protocol conversion, address management and conversion within the home and from the inside to the outside, assumes the responsibility of a firewall, and provides possible VoIP/Video over IP and other services.
  • the parallelism defined in this application is not limited to absolute parallelism.
  • This definition of parallelism can be understood as basic parallelism, which allows for non-absolute parallelism due to factors such as assembly tolerance, design tolerance, and influence of structural flatness. Small angular errors are allowed. For example, an assembly error range of less than 10 degrees can be understood as a parallel relationship.
  • the verticality defined in this application is not limited to an absolute vertical intersection relationship (angle of 90 degrees). It allows for non-absolute vertical intersection relationships caused by factors such as assembly tolerance, design tolerance, and influence of structural flatness. It also allows for errors in a small angle range. For example, the assembly error range of 80 to 100 degrees can be understood as a vertical relationship.
  • Coupling can be understood as direct coupling and/or indirect coupling
  • “coupled connection” can be understood as direct coupling connection and/or indirect coupling connection.
  • Direct coupling can also be called “electrical connection”, which is understood as the physical contact and electrical conduction between components; it can also be understood as the connection between different components in the circuit structure through physical lines such as printed circuit board (PCB) copper foil or wires that can transmit electrical signals; "indirect coupling” can be understood as two conductors being electrically conductive in an isolated/non-contact manner.
  • indirect coupling can also be called capacitive coupling, for example, signal transmission is achieved by coupling between the gap between two conductive parts to form an equivalent capacitor.
  • Connected Through the above The manner of "electrical connection” or “coupling connection” that enables two or more components to be conductive or connected to transmit signals/energy can be called connection.
  • Antenna pattern also called radiation pattern. It refers to the graph of the relative field strength (normalized modulus) of the antenna radiation field changing with direction at a certain distance from the antenna. It is usually represented by two mutually perpendicular plane patterns passing through the antenna's maximum radiation direction.
  • Antenna return loss It can be understood as the ratio of the signal power reflected back to the antenna port through the antenna circuit to the transmit power of the antenna port. The smaller the reflected signal, the larger the signal radiated into space through the antenna, and the greater the radiation efficiency of the antenna. The larger the reflected signal, the smaller the signal radiated into space through the antenna, and the lower the radiation efficiency of the antenna.
  • Antenna return loss can be expressed by the S11 parameter, which is usually a negative number.
  • Isolation refers to the ratio of the signal received by another antenna when an antenna transmits a signal to the signal of the transmitting antenna. Isolation is a physical quantity used to measure the degree of antenna mutual coupling. Assuming that the two antennas form a two-port network, the isolation between the two antennas is the S21 and S12 between the antennas. Antenna isolation can be represented by the S21 and S12 parameters. The S21 and S12 parameters are usually negative numbers. The smaller the S21 and S12 parameters are, the greater the isolation between the antennas and the smaller the degree of antenna mutual coupling; the larger the S21 and S12 parameters are, the smaller the isolation between the antennas and the greater the degree of antenna mutual coupling. The isolation of the antenna depends on the antenna radiation pattern, the spatial distance between the antennas, the antenna gain, etc.
  • Radiation efficiency refers to the ratio of the power radiated by the antenna into space (i.e. the power of the electromagnetic wave part that is effectively converted) to the active power input to the antenna.
  • the active power input to the antenna the input power of the antenna - the antenna loss;
  • the antenna loss mainly includes the ohmic loss of the metal and/or the dielectric loss.
  • Ground/floor can be used for grounding components in electronic devices.
  • "ground/floor” can include any one or more of the following: the grounding layer of the circuit board of the electronic device, the grounding plate formed by the middle frame of the electronic device, the grounding metal layer formed by the metal film under the screen, the conductive grounding layer of the battery, and the conductive parts or metal parts electrically connected to the above grounding layer/grounding plate/metal layer.
  • the circuit board can be a printed circuit board (PCB), such as an 8-layer, 10-layer or 12-14-layer board with 8, 10, 12, 13 or 14 layers of conductive material, or an element separated and electrically insulated by a dielectric layer or insulating layer such as glass fiber, polymer, etc.
  • the circuit board includes a dielectric substrate, a grounding layer and a routing layer, and the routing layer and the grounding layer are electrically connected through vias.
  • components such as display 120, touch screen, input button, transmitter, processor, memory, battery 140, charging circuit, system on chip (SoC) structure, etc. can be mounted on or connected to the circuit board; or electrically connected to the wiring layer and/or ground layer in the circuit board.
  • SoC system on chip
  • grounding layers, grounding plates, or grounding metal layers are made of conductive materials.
  • the conductive material can be any of the following materials: copper, aluminum, stainless steel, brass and their alloys, copper foil on an insulating substrate, aluminum foil on an insulating substrate, gold foil on an insulating substrate, silver-plated copper, silver-plated copper foil on an insulating substrate, silver foil and tin-plated copper on an insulating substrate, cloth impregnated with graphite powder, graphite-coated substrates, copper-plated substrates, brass-plated substrates, and aluminum-plated substrates.
  • the grounding layer/grounding plate/grounding metal layer can also be made of other conductive materials.
  • Working frequency band Regardless of the type of antenna, it always works within a certain frequency range (band width). For example, an antenna that supports the B40 frequency band has a working frequency band that includes frequencies in the range of 2300MHz to 2400MHz, or in other words, the working frequency band of the antenna includes the B40 frequency band. The frequency range that meets the index requirements can be regarded as the working frequency band of the antenna.
  • Gain It is used to characterize the degree to which the antenna concentrates the input power for radiation. Generally, the narrower the main lobe of the antenna pattern and the smaller the side lobe, the higher the antenna gain.
  • Dipole antenna An antenna formed by feeding two oppositely placed conductors as radiators at both ends of the conductors close to each other.
  • a common dipole antenna is composed of two coaxial straight conductors. It should be understood that in some embodiments, the two conductors constituting the radiator of the dipole antenna may not be coaxial, or may not be coplanar, but may have a certain offset. In some embodiments, the two conductors constituting the radiator of the dipole antenna may not be straight, for example, they may be arc-shaped, bent, etc.
  • Dipole antennas include electric dipole antennas and magnetic dipole antennas, where an electric dipole is two charges separated by a distance, with equal charge and opposite positive and negative charges. A magnetic dipole is a closed loop of electric current.
  • the magnetic dipole antenna is a physical model established by analogy with the electric dipole. Its current can be equivalent to a closed loop current.
  • the radiating units of the magnetic dipole antenna are distributed in a ring shape, and the feeding unit of the magnetic dipole antenna is located in the middle of the area surrounded by the radiating units. The current is distributed between the feeding unit and the radiating unit through the power division unit.
  • first”, “second”, etc. are used for descriptive purposes only and should not be understood as indicating or implying relative importance or implicitly indicating the number of the technical features indicated. Thus, features defined as “first”, “second”, etc. may explicitly or implicitly include one or more of the features. feature.
  • the antenna assembly and communication device provided in this application can be applied to a WLAN system, and the communication device can be a home gateway, such as a router, a wireless AP (Access Point), a CPE (Customer Premises Equipment), and the like.
  • a home gateway such as a router, a wireless AP (Access Point), a CPE (Customer Premises Equipment), and the like.
  • FIG1 shows an example of a communication device including an antenna assembly provided by the present application as a home gateway.
  • the communication device provided by the present application is a home gateway, which is connected between an optical local end and a terminal device, and the optical local end is connected to a wide area network (Internet).
  • the optical local end obtains a signal from the wide area network (Internet) and transmits the signal to the home gateway, and then the signal is transmitted to each terminal device by an antenna arranged in the home gateway.
  • the home gateway includes a digital module, a radio frequency module and an antenna, and the digital module is connected between the optical local end and the radio frequency module, and the radio frequency module is used to send a radio frequency signal to the antenna.
  • the antenna may include antenna 1, antenna 2, antenna 3, antenna 4 and antenna 5, antenna 1 may be a low-frequency antenna, for example, a low-frequency antenna may be a 2G antenna or a 3G antenna, antenna 2, antenna 3, antenna 4 and antenna 5 may be high-frequency antennas, for example, a high-frequency antenna may be a 5G antenna or a 6G antenna.
  • the antennas may have other configurations, for example, the number of low-frequency antennas may be two or more than three, and the number of high-frequency antennas may be one or two or more.
  • the terminal device may include a smart phone, a smart home (such as an air conditioner, an electric fan, a washing machine, a refrigerator, etc.), a smart TV, and a smart security (such as a camera).
  • Smart phones can be used in a low frequency range or a high frequency range.
  • smart phones can support signals of both 2G and 5G frequencies. Therefore, as shown in FIG1 , antenna 1 and antenna 2 both provide signals for smart phones.
  • Antenna 3 provides signals for smart homes.
  • users can view and control the status of remote smart home appliances, lighting systems, power systems, etc. through mobile phones and PC terminals.
  • Antenna 4 provides signals for smart TVs. Users can also remotely control smart TVs through terminal devices.
  • Smart TVs can have the functions of network TVs or video conferencing.
  • Antenna 5 provides signals for smart security.
  • Smart security systems can include functions such as fire prevention, theft prevention, leakage prevention, and remote monitoring. Users can use mobile phones and the Internet to remotely view and set up home security systems, and can also remotely monitor the internal situation of the home. If an abnormal situation is detected, the security system can notify the user by calling, sending text messages, or sending emails.
  • FIG2 is a schematic diagram of a communication device provided by an embodiment.
  • the communication device 100 includes a housing 1001.
  • the housing 1001 may be barrel-shaped or may be in other shapes, such as a square box or a round box.
  • a top cover 1002 is provided on the top of the barrel-shaped housing 1001.
  • the top cover 1002 is made of a non-shielding material, such as plastic.
  • the inside of the top cover 1002 is an antenna assembly.
  • the top cover 1002 is provided with a plurality of through holes 1003. The provision of the through holes 1003 is conducive to the signal radiation of the antenna assembly in the communication device 100 and the ventilation and heat dissipation inside the communication device 100.
  • FIG3 is a schematic diagram of the internal structure of a specific implementation of the communication device provided in the present application, mainly showing the positional relationship between the surface antenna assembly and the circuit board.
  • the antenna assembly 10 is disposed inside the housing 1001 of the communication device 100, and the housing 1001 of the communication device 100 has a circuit board, and the antenna assembly 10 is located in the top space of the circuit board. Specifically, the antenna assembly 10 is located between the top edge of the circuit board and the top cover 1002 of the housing 1001.
  • a radio frequency circuit 1005 is provided on the circuit board, and the radio frequency circuit 1005 is used to be electrically connected to the antenna assembly 10 and can feed the antenna assembly 10.
  • the antenna assembly 10 includes a first antenna 20 and a second antenna 30.
  • the first antenna 20 is placed horizontally and the second antenna 30 is placed vertically.
  • the present application realizes an architecture of arranging multiple antennas in a compact space by arranging the first antenna 20 and the second antenna 30 to intersect in space, that is, a portion of the second antenna 30 is located between the first antenna 20 and the top edge of the circuit board, and a portion of the second antenna 30 is located between the first antenna 20 and the top cover 1002, which is beneficial to the small-size design of the communication device 100 and still ensures the radiation performance of each antenna in the antenna assembly 10.
  • the antenna assembly provided in the specific embodiment of the present application is an integrated multi-antenna architecture, each of which needs to have a low directivity coefficient, and there needs to be good isolation between the antennas, so that multiple antennas can be arranged in a compact space, and low directivity coefficient and high isolation can be achieved at the same time.
  • Fig. 4, Fig. 5 and Fig. 6 are schematic diagrams showing the positional relationship between the first antenna and the second antenna of an antenna assembly provided in an embodiment of the present application
  • Fig. 4 is a three-dimensional schematic diagram of the antenna assembly 10 in one direction
  • Fig. 5 is a plan view of the antenna assembly 10 in one direction (e.g., vertical direction)
  • Fig. 6 is a plan view of the antenna assembly 10 in another direction (e.g., horizontal direction).
  • the antenna assembly 10 includes a first antenna 20 and four second antennas 30. In other embodiments, the number of the second antennas 30 may also be one, two, three or more.
  • the first antenna 20 is formed on at least one first surface S1.
  • the first antenna 20 is formed on two first surfaces S1.
  • the two first surfaces S1 may be parallel to each other.
  • FIG5 shows two first surfaces S1 with dotted lines.
  • the first surfaces S1 may be two surfaces of a dielectric plate or two surfaces of other dielectric bodies.
  • the direction perpendicular to the first surface S1 is the first direction A1.
  • the first surface S1 may also be non-planar, such as an arcuate surface or a surface with a bent shape, etc.
  • the direction perpendicular to the central area of the first surface S1 is the first direction A1.
  • the first surface S1 is an arcuate surface, and the normal direction of the first surface S1 may be equal to the direction perpendicular to the first surface S1, i.e., the first direction A1.
  • the direction of the stacked arrangement of the first surfaces S1 is the first direction A1.
  • there are two first surfaces S1 there are two first surfaces S1, and the two first surfaces S1 are planes parallel to each other.
  • the first antenna 20 and the second antenna 30 are both dipole antennas.
  • the first antenna 20 is a magnetic dipole antenna
  • the second antenna 30 is an electric dipole antenna. Both the first antenna 20 and the second antenna 30 can achieve omnidirectional horizontal plane coverage of electromagnetic waves.
  • the first antenna 20 is a rotationally symmetrical structure with the first central axis X1 as the center, and the dot-dashed line passing through the first antenna 20 in FIG4 schematically represents the first central axis X1.
  • the extension direction of the first central axis X1 is the first direction A1, that is, the first central axis X1 is perpendicular to the first surface S1.
  • the first antenna 20 may also be a non-rotationally symmetrical structure.
  • the radiator of the first antenna 20 is distributed in an annular area R, and the center of this annular area R is located on the first central axis X1.
  • the area between the two dotted circles in FIG6 is schematically represented as the annular area R.
  • the annular area R is not limited to a circular area, and may also be an annular area with a square outline, or an annular area with a polygonal outline.
  • the first antenna 20 includes a feeding unit 21, a power division unit 22 and a radiation unit 23.
  • the power division unit 22 is connected between the feeding unit 21 and the radiation unit 23.
  • the feeding unit 21 is used to set the first feeding port P1, or the feeding unit 21 can be the first feeding port P1, and the first feeding port P1 is used to be electrically connected to the RF cable, and the RF cable is used to transmit the signal on the RF chip to the first antenna 20.
  • the feeding port is schematically expressed by a black solid circle, which does not represent the specific structural form and position of the feeding port.
  • the power division unit 22 is used to transmit the signal to the radiation unit 23. The detailed structure of each part of the first antenna 20 is described as follows.
  • the feeding unit 21 is located in the central area of the first antenna 20.
  • the extension form of the feeding unit 21 on the first surface S1 is any form such as a circle, a square, a polygon, etc.
  • the center position of the feeding unit 21 can be located on the first central axis X1.
  • the feeding unit 21 includes two parts, namely, a first feeding plate 211 located on one of the first surfaces S1 and a second feeding plate 212 located on the other first surface S1.
  • the first feeding plate 211 and the second feeding plate 212 can be parallel to each other and arranged opposite to each other along the first direction A1.
  • the structural form and size of the first feeding plate 211 and the second feeding plate 212 can be the same, and the structural form and size of the first feeding plate 211 and the second feeding plate 212 can also be different.
  • the feeding structure at the first feeding port P1 is: the outer conductor of the RF cable is electrically connected to one of the first feeding plate 211 and the second feeding plate 212, and the inner conductor of the RF cable is electrically connected to the other of the first feeding plate 211 and the second feeding plate 212, so as to transmit the signal in the RF cable to the first antenna 20.
  • the radiation unit 23 is located in the peripheral area of the feed unit 21 and the power division unit 22, and the radiation unit 23 surrounds the power division unit 22 and the feed unit 21.
  • the radiation unit 23 is distributed in an annular area R, and the annular area R surrounds the power division unit 22 and the feed unit 21.
  • the radiation unit 23 may include a plurality of subunits 231 arranged at intervals, and a gap 24 is formed between adjacent subunits 231 (the second antenna 30 is arranged in this gap 24).
  • the first antenna 20 has a radial direction and a circumferential direction. The radial direction is the direction from the feed unit 21 to the radiation unit 23, and the circumferential direction is the extension direction of the surrounding path formed by the radiation unit 23.
  • the vertical projection of the second antenna 30 on the first surface along the first direction is located within the range of the gap 24 in the circumferential direction.
  • This solution defines the specific positional relationship between the second antenna 30 and the gap 24.
  • Each subunit 231 includes two subunit branches 2311 and 2312.
  • one subunit branch 2311 is located on a first surface S1
  • the other subunit branch 2312 is located on another first surface S1.
  • the two subunit branches 2311 and 2312 in each subunit 231 are in a splicing relationship (or a partially overlapping relationship, or a lapped relationship) along the circumferential direction.
  • the radiation unit 23 forms four subunits 231.
  • Each subunit branch 2311 and 2312 are arc-shaped.
  • the subunit branches 2311 and 2312 can also be in any form such as a straight line or a serrated shape. The present application does not limit the specific form and size of the subunit branches 2311 and 2312.
  • the power division unit 22 also includes two parts, namely, a first power group 221 located on one of the first surfaces S1 and a second power group 222 located on the other first surface S1.
  • the first power group 221 and the second power group 222 can be parallel to each other and arranged opposite to each other along the first direction A1.
  • the structural form and size of the first power group 221 and the second power group 222 can be the same, or the structural form and size of the first power group 221 and the second power group 222 can be different. In the embodiment shown in FIG.
  • the first power group 221 includes four first power division branches 2212, one end of each of the four first power branch nodes 2212 is connected to the first feeding plate 211 of the feeding unit 21, and the other end of each of the four first power branch nodes 2212 is connected to the first feeding plate 211 of the feeding unit 21.
  • the subunit branches 2311 of the radiation unit 23 arranged on a first surface S1, each first power branch 2212 can be in a straight line, a curve or other extended form.
  • the second power group 222 includes four second power branches 2222, and the connection relationship between the four second power branches 2222 and the feeding unit 21 and the radiation unit 23 is the same as the first power branch 2212 in the first power group 221.
  • the first antenna 20 forms a gap 24, and the gap 24 runs through the first surface S1 along the first direction A1.
  • a gap 24 is formed between the subunits 231 of adjacent radiation units 23.
  • the number of gaps 24 can be multiple and spaced along the circumferential direction around the first central axis X1. In the embodiment shown in FIG4, the antenna assembly 10 has four gaps 24. In other embodiments, the number of gaps 24 can be one, two, three or more.
  • the schematic diagram provided in FIG6 can be understood as a schematic diagram of the distribution of the antenna assembly 10 on a first surface S1.
  • the vertical projection of the second antenna 30 on the first surface S1 is located inside the gap 24.
  • each of the four second antennas 30 includes a partial area located on the top side of the first antenna 20, and each of the four second antennas 30 includes a partial area located on the bottom side of the first antenna 20.
  • each second antenna 30 includes two sections of radiation branches 31, and the two sections of radiation branches 31 are arranged at intervals on the same surface, that is, the second antenna 30 is a coplanar structure, and the two sections of radiation branches 31 of a second antenna 30 can be designed with the same structure and size, and the interval area between the two sections of radiation branches 31 is used to set the second feeding port P2, or the interval between the two sections of radiation branches 31 constitutes the second feeding port P2.
  • the second feeding port P2 is used to be electrically connected to the RF cable. Specifically, the outer conductor of the RF cable is electrically connected to one of the two radiating branches 31 , and the inner conductor of the RF cable is electrically connected to the other of the two radiating branches 31 .
  • the two radiating branches 31 of the second antenna 30 can both be L-shaped microstrip line structures, and the second feeding port P2 between the two radiating branches 31 can be set inside the gap 24 formed by the first antenna 20.
  • the second feeding port P2 between the two radiating branches 31 can also be set on one side of the first antenna 20, such as the bottom side.
  • FIGs 7, 8A, 8B, 8C and 9 are schematic diagrams of a specific implementation of the antenna assembly 10 provided in the implementation shown in Figure 4 being arranged on a dielectric plate (which can be understood as an insulating bracket of the antenna assembly).
  • the dielectric plate is a carrier for carrying the first antenna 20 and the second antenna 30.
  • the dielectric plate is also used to install the antenna assembly 10 inside the casing of the communication device.
  • the present application is not limited to the dielectric plate provided in the specific embodiment as the insulating bracket of the antenna assembly 10.
  • the insulating bracket of the antenna assembly 10 may also be other dielectric substrates, such as a dielectric block or tubular structure, etc.
  • the first antenna 20 is disposed on the first dielectric plate 40, and the first antenna 20 is distributed on the top surface and the bottom surface of the first dielectric plate 40.
  • the first feeding plate 211 of the feeding unit 21 of the first antenna 20 is located on the top surface of the first dielectric plate 40
  • the second feeding plate 212 of the feeding unit 21 of the first antenna 20 is located on the bottom surface of the first dielectric plate 40.
  • the first power group 221 of the power division unit 22 is located on the top surface of the first dielectric plate 40
  • the second power group 222 of the power division unit 22 is located on the bottom surface of the first dielectric plate 40.
  • the first dielectric plate 40 is provided with a plurality of gaps 24, and the gaps 24 extend radially from the outer edge of the first dielectric plate 40 toward the center of the first dielectric plate 40.
  • the first dielectric plate 40 is a circular plate-shaped structure, and the gaps 24 are formed by cutting off part of the material on the first dielectric plate 40.
  • the opening of the gaps 24 is located at the outer edge of the first dielectric plate 40, and the gaps 24 are in the shape of a straight line or a rectangular slot.
  • the number of gaps 24 is set in a one-to-one correspondence with the number of subunits 231 of the radiation unit 23, and the gaps 24 are formed between two adjacent subunits 231.
  • the number of gaps 24 is also set in a one-to-one correspondence with the number of second antennas 30, and each gap 24 is used to install a corresponding second antenna 30.
  • the present application forms a gap for setting the second antenna 30 of the first antenna 20 by setting the gaps 24 on the first dielectric plate 40.
  • the first dielectric plate 40 includes an intermediate dielectric portion 41 and a plurality of edge dielectric portions 42, and the plurality of edge dielectric portions 42 surround the periphery of the intermediate dielectric portion 41.
  • the gap 24 includes an open end 241 and a bottom end 242 that are arranged opposite to each other. The bottom end 242 is located between the open end 241 and the feed unit 21.
  • the middle dielectric portion 41 is between the bottom end 242 and the feed unit 21. It can be understood that the feed unit 21 is located at the center of the middle dielectric portion 41.
  • the middle dielectric portion 41 makes the first dielectric plate 40 form an integrated structure. Adjacent edge dielectric portions 42 are separated by slits. Each edge dielectric portion 42 is corresponding to a subunit 231 of a radiation unit 23. A part of the power division unit 22 is formed on the middle dielectric portion 41, and another part of the power division unit 22 is formed on the edge dielectric portion 42.
  • the second antenna 30 is disposed on the second dielectric plate 50, and the second antenna 30 is distributed on the same surface of the second dielectric plate 50.
  • the second dielectric plate 50 may be a rectangular plate structure, and the second antenna 30 is disposed along the edge of the second dielectric plate 50.
  • the second feeding port P2 may be located at the center of the long side of the rectangular second dielectric plate 50.
  • the second antenna 30 may also be distributed on different surfaces of the second dielectric plate 50. For example, one of the two radiation branches 31 of the second antenna 30 is located on the top surface of the second dielectric plate 50, and the other of the two radiation branches 31 of the second antenna 30 is located on the bottom surface of the second dielectric plate 50.
  • the second dielectric plate 50 is assembled in the gap 24 of the first dielectric plate 40 , which can also be understood as the second dielectric plate 50 is arranged in the gap 24 formed by the first antenna 20 .
  • the thickness of the second dielectric plate 50 is the same or approximately the same as the width of the slit on the first dielectric plate 40 , and the second dielectric plate 50 is inserted into the gap 24 and assembled with the first dielectric plate 40 into an integrated structure.
  • the first dielectric plate 40 and the second dielectric plate 50 are perpendicular. In the embodiment shown in FIG.
  • the number of the second dielectric plates 50 is four, and the four second dielectric plates 50 are arranged opposite to each other in the radial direction of the first dielectric plate 40 , and the two oppositely arranged second dielectric plates 50 can be coplanar. It can also be understood that the angle between the two adjacent second dielectric plates 50 is 90 degrees with the first central axis X1 of the first antenna 20 as the center.
  • the second dielectric plate 50 includes a front and a back side arranged opposite to each other, and the second antenna 30 is located on the front side of the second dielectric plate 50 .
  • the front side of one second dielectric plate 50 faces the back side of the other second dielectric plate 50 .
  • Figure 10A is a directional diagram of the first antenna when the antenna assembly is composed of a single first antenna
  • Figure 10B is a directional diagram of the second antenna when the antenna assembly is composed of four second antennas
  • Figure 10C is a directional diagram of the first antenna when the antenna assembly includes the first antenna and four second antennas
  • Figure 10D is a directional diagram of the second antenna when the antenna assembly includes the first antenna and four second antennas.
  • the present application combines the first antenna and the four second antennas into one, and is configured such that part of the second antenna is located on the top side of the first antenna and part of the second antenna is located on the bottom side of the first antenna, which has almost no effect on the directional diagram of the first antenna, is conducive to ensuring the fidelity of the directional diagram of the first antenna and achieving a low directivity coefficient of the first antenna.
  • Figure 10B and Figure 10D it can be seen that the present application combines the first antenna and the four second antennas into one, and is configured such that some of the second antennas are located on the top side of the first antenna, and some of the second antennas are located on the bottom side of the first antenna. This has almost no effect on the radiation pattern of the second antenna, which is beneficial to ensuring the fidelity of the radiation pattern of the second antenna and achieving a low directivity coefficient of the second antenna.
  • FIG11 to FIG15 are schematic diagrams showing the positional relationship between the first antenna 20 and the second antenna 30 of the antenna assembly 10 provided in one embodiment of the present application
  • FIG11 and FIG12 are three-dimensional schematic diagrams of the antenna assembly 10 in two directions
  • FIG13 is a plan view of the antenna assembly 10 in one direction (e.g., vertical direction)
  • FIG14 and FIG15 are a top plan view and a bottom plan view of the antenna assembly 10 in another direction (e.g., horizontal direction).
  • the antenna assembly 10 includes a first antenna 20 and three second antennas 30.
  • the first antenna 20 provided in this embodiment and the first antenna 20 provided in the embodiment shown in FIG4 partially differ in that the specific architecture of the power division unit 22 is different, the number and distribution of the subunits 231 of the radiation unit 23 are different, and the number of gaps 24 formed by the first antenna 20 is different.
  • each power group (including the first power group 221 and the second power group 222) in the power division unit 22 of the first antenna 20 has three power division branches, and the angle between two adjacent power division branches among the three power division branches is 120 degrees.
  • the number of the subunits 231 of the radiation unit 23 is three, and a gap 24 is formed between two adjacent ones of the three subunits 231, so the number of gaps 24 is three.
  • the number of second antennas 30 is three, and they are respectively located at the positions of the three gaps 24 of the first antenna 20.
  • the antenna assembly 10 further includes an additional branch 60, which is connected between two adjacent second antennas 30 to achieve decoupling between the two second antennas 30.
  • the distance D1 between the connection position of the additional branch 60 and the second antenna 30 and the second feed port P2 ranges from 0 to 3 mm.
  • the distance D1 can be the distance between the center point of the connection position of the additional branch 60 and the second antenna 30 and the center point of the second feed port P2.
  • the additional branch 60 of the antenna assembly 10 includes a first section of additional branches 61, a second section of additional branches 62, and a third section of additional branches 63 respectively connected to the three second antennas 30, wherein the first section of additional branches 61 is connected to the position of the second feeding port P2 of the first second antenna 30 (or near the second feeding port), the second section of additional branches 62 is connected to the position of the second feeding port P2 of the second second antenna 30 (or near the second feeding port), and the third section of additional branches 63 is connected to the position of the second feeding port P2 of the third second antenna 30 (or near the second feeding port).
  • first section of additional branches 61, the second section of additional branches 62, and the third section of additional branches 63 are all in a straight line.
  • first section of additional branches 61, the second section of additional branches 62, and the third section of additional branches 63 can also be in any form such as a curve, a line with a bent shape, etc., and this application does not make specific limitations.
  • the first section of additional branch 61 and the second section of additional branch 62 constitute additional branches between the first second antenna 30 and the second second antenna 30.
  • the first section of additional branch 61 and the second section of additional branch 62 can be interconnected as a whole.
  • An implementation method of the present application can achieve decoupling between the two second antennas 30 through the additional branches that are interconnected as a whole. Specifically, during the process of current flowing into the second antenna 30, the current flowing into the additional branch 60 and the original coupling current are reversely offset, so that the isolation between the two second antennas 30 can be improved. For example, this solution optimizes the isolation between the two second antennas 30 to -13dB, thereby achieving decoupling between the two second antennas 30.
  • the first section of additional branches 61 and the second section of additional branches 62 may also be separated by an additional branch gap 601 .
  • the second section of the additional branch 62 and the third section of the additional branch 63 can also be separated by an additional branch gap, and the first section of the additional branch 61 and the third section of the additional branch 63 can also be separated by an additional branch gap, and the size range of the additional branch gap 601 is: 0.1mm-2mm.
  • This solution by setting the additional branch gap, is equivalent to the effect of connecting a capacitor in series between the first section of the additional branch 61 and the second section of the additional branch 62.
  • this solution can improve the isolation.
  • this solution can optimize the isolation between the two second antennas 30 to more than -18dB. Therefore, this solution is conducive to improving the decoupling efficiency between the two second antennas 30.
  • the end of the first additional branch away from the second antenna, the end of the second additional branch away from the second antenna and the end of the third additional branch away from the second antenna are all directly opposite to the feeding unit 21 of the first antenna. It can also be understood that the end of the first additional branch 61 away from the second antenna 30, the end of the second additional branch 63 away from the second antenna 30 and the end of the third additional branch 63 away from the second antenna are all located within the vertical projection range of the feeding unit 21 of the first antenna along the first direction A1.
  • the end of the first section of the additional branch 61 away from the second antenna 30, the end of the second section of the additional branch 62 away from the second antenna 30, and the end of the third section of the additional branch 63 away from the second antenna 30 are blocked by the feeding unit 21.
  • the end of the first section of the additional branch 61 away from the second antenna 30, the end of the second section of the additional branch 62 away from the second antenna 30, and the end of the third section of the additional branch 63 away from the second antenna 30 are located within the outer contour of the feeding unit 21.
  • the area of the portion of the second antenna 30 located at the top side of the first antenna 20 is smaller than the area of the portion of the second antenna 30 located at the bottom side of the first antenna 20.
  • the space above the first antenna 20 is the top side of the first antenna 20, and the space below the first antenna 20 is the bottom side of the first antenna 20.
  • the additional branch 60 is located at the bottom side of the first antenna 20, and is spaced apart from the first antenna 20 to form a spacing space, which is used to reserve an avoidance space for assembling a radio frequency cable for the first feeding port P1.
  • FIGs 16, 17, 18, 19 and 20 are schematic diagrams showing that the antenna assembly provided by the implementation shown in Figure 11 is arranged on a dielectric plate (which can be understood as an insulating bracket of the antenna assembly). It can be understood that the dielectric plate is a carrier for carrying the first antenna and the second antenna. The dielectric plate is also used to assemble the antenna and install it inside the housing of the communication device.
  • the present application is not limited to the dielectric plate provided in the specific embodiment as the insulating bracket of the antenna assembly.
  • the insulating bracket of the antenna assembly may also be other dielectric substrates, such as a dielectric block or tubular structure, etc.
  • the difference between the embodiment shown in FIG16 and the embodiment shown in FIG9 is that the number of gaps on the first dielectric plate 40 for carrying the first antenna 20 is different.
  • the first dielectric plate 40 has three gaps 24, and the three gaps 24 are used to mount three second dielectric plates 50 in a one-to-one correspondence, and each second dielectric plate 50 is provided with a second antenna 30.
  • the arrangement of the second antenna 30 on the second dielectric plate 50 is the same as the embodiment shown in FIG8A, that is, the second antenna 30 is arranged on one surface of the second dielectric plate 50.
  • the second antenna 30 can also be arranged on two or more layers of the second dielectric plate 50.
  • the three second dielectric plates 50 are interconnected as a whole, and the intersection of the three second dielectric plates 50 forms a connection structure 501, and the connection structure 501 is arranged on the bottom side of the feeding unit 21 of the first antenna 20 in the first direction A1, and a spacing space 502 is provided between the connection structure 501 and the feeding unit 21, and the spacing space 502 is used to accommodate the RF cable connected to the first feeding port P1. It can also be understood that a spacing space 502 for avoiding the RF cable of the first feeding port P1 is formed between the connection structure 501 at the connection of the three second dielectric plates 50 and the first dielectric plate 40.
  • the second dielectric plate 50 and the first dielectric plate 40 are arranged to intersect, the top edge area of the second dielectric plate 50 is located on the top side of the first dielectric plate 40, and most of the area of the second dielectric plate 50 is located on the bottom side of the first dielectric plate 40.
  • a spacing space is provided between the position of the second feeding port P2 and the bottom surface of the first dielectric plate 40. Since the position of the first feeding port P1 can be on the bottom surface of the first dielectric plate 40, the second feeding port P2 and the first feeding port P1 are staggered in the first direction A1 in this solution, which is conducive to convenient wiring. This solution can avoid the tight wiring space arrangement that is easily generated when the second feeding port P2 and the first feeding port P1 are on the same surface, resulting in poor isolation between the first feeding port P1 and the second feeding port P2 or messy RF cable wiring and other undesirable factors.
  • the embodiments shown in Figures 11 to 20 are variations of the embodiments shown in Figures 4 to 6. These embodiments all utilize the cross arrangement of the first antenna 20 and the second antenna 30, that is, part of the second antenna 30 is located on the top side of the first antenna 20, and part of the second antenna 30 is located on the bottom side of the first antenna 20.
  • the overall small-size design of the antenna assembly 10 composed of multiple antennas is realized, and in a compact space, a low-directional system and a high-isolation antenna layout are realized. Not only does it save space, but also through the spatial arrangement relationship of the first antenna 20 and the second antenna 30, the fidelity of the directional pattern of each antenna is guaranteed, a low directivity coefficient is achieved, and the isolation between the antennas can also meet the design requirements.
  • FIG21 to FIG26 are schematic diagrams showing the positional relationship between the first antenna 20, the second antenna 30, and the third antenna 70 of the antenna assembly 10 provided in one embodiment of the present application.
  • FIG21 and FIG22 are three-dimensional schematic diagrams of the antenna assembly 10 in two directions
  • FIG23 and FIG24 are respectively a top plan view and a bottom plan view of the antenna assembly 10
  • FIG25 and FIG26 are side views of the antenna assembly 10 in two different directions.
  • the antenna assembly 10 includes a first antenna 20, a second antenna 30, and a third antenna 70.
  • a second antenna 30 and a third antenna 70 are schematic diagrams showing the positional relationship between the first antenna 20, the second antenna 30, and the third antenna 70 of the antenna assembly 10 provided in one embodiment of the present application.
  • FIG21 and FIG22 are three-dimensional schematic diagrams of the antenna assembly 10 in two directions
  • FIG23 and FIG24 are respectively a top plan view and a bottom plan view of the antenna assembly 10
  • FIG25 and FIG26 are side views of the antenna assembly 10 in two different directions.
  • the operating frequency of the electromagnetic wave signal that can be excited by the first antenna 20 through a first feeding port P1 is a first frequency band and a second frequency band, for example, the first frequency band includes 2.4G-2.5G, and the second frequency band includes 5.15G-5.85G.
  • the operating frequency of the electromagnetic wave signal that can be excited by the second feeding port P2 of each second antenna 30 includes the first frequency band and the second frequency band.
  • the first frequency band may include 2.4G-2.5G
  • the second frequency band may include 5.15G-5.85G.
  • Each second antenna 30 is also provided with a third feeding port P3, and the third feeding port P3 is used to excite the electromagnetic wave signal of a part of the radiating part on the second antenna 30, and the operating frequency is a third frequency band, for example, the third frequency band includes 5.925G-7.125G.
  • the antenna assembly 10 further includes a fourth feeding port P4, and the fourth feeding port P4 is used to excite the third antenna 70 to operate in a third frequency band, for example, the third frequency band includes 5.925G-7.125G.
  • the structure of the antenna assembly 10 is integrated and compact.
  • the three second antennas 30 are arranged at the gap 24 formed by the first antenna 20.
  • part of the second antenna 30 is located on the top side of the first antenna 20, and part of the second antenna 30 is located on the bottom side of the first antenna 20.
  • the third antenna 70 is also designed similarly, and part of the third antenna 70 is located on the top side of the first antenna 20, and part of the third antenna 70 is located on the bottom side of the first antenna 20.
  • the second antenna 30 For the second antenna 30, most of the area is distributed on the bottom side of the first antenna 20, and a small part of the area is distributed on the top side of the first antenna 20.
  • the third antenna 70 most of the area is distributed on the top side of the first antenna 20, and a small part of the area is distributed on the bottom side of the first antenna 20.
  • the third antenna 70 is connected to the first antenna 20 and can be designed in a co-existing body with the first antenna 20.
  • the first antenna 20 is distributed on the first surface S1 in a rotationally symmetrical manner with the first central axis X1 as the center. Similar to the aforementioned embodiments, the first antenna 20 in this embodiment is also distributed on two first surfaces S1, and the extension direction of the first central axis X1 is the first direction A1.
  • the first antenna 20 includes a feeding unit 21, a power splitter 22 and a radiation unit 23.
  • the power splitter 22 is connected between the feeding unit 21 and the radiation unit 23.
  • the feeding unit 21 is located in the central area of the first antenna 20.
  • the first central axis X1 is the central axis of the feeding unit 21.
  • the radiation unit 23 includes a first radiation branch 23A and a second radiation branch 23B.
  • the first radiation branch 23A is located at the periphery of the second radiation branch 23B.
  • the distance between the first radiation branch 23A and the first central axis X1 is greater than the distance between the second radiation branch 23B and the first central axis X1.
  • the electrical length of the first radiation branch 23A is greater than the electrical length of the second radiation branch 23B.
  • the first radiation branch 23A and the second radiation branch 23B are spaced apart in the radial direction.
  • the first antenna 20 forms three gaps 24, and the gaps 24 are used to set the second antenna 30.
  • the radiation unit 23 includes three subunits 231, the first radiation branch 23A constitutes a part of the three subunits 231, and the second radiation branch 23B constitutes a part of the three subunits 231.
  • the first feeding port P1 feeds the first antenna 20 at the position of the feeding unit 21.
  • the feeding of the first feeding port P1 can simultaneously excite the first radiation branch 23A and the second radiation branch 23B, so that the first radiation branch 23A works in the first frequency band, and the second radiation branch 23B works in the second frequency band.
  • the frequency of the first frequency band is lower than the frequency of the second frequency band.
  • the first frequency band may include 2.4G-2.5G
  • the second frequency band may include 5.15G-5.85G.
  • the number of the second antennas 30 is three, and each second antenna 30 includes a first radiating portion 30A, a second radiating portion 30B, and a third radiating portion 30C.
  • the first radiating portion 30A, the second radiating portion 30B, and the third radiating portion 30C can be arranged on the same board, and the arrangement on the same board can be understood as being arranged on different surfaces of the same board, or being arranged on the same surface of the same board.
  • the first radiating portion 30A, the second radiating portion 30B, and the third radiating portion 30C are all arranged on two surfaces.
  • the first radiating portion 30A is located between the second radiating portion 30B and the third radiating portion 30C, the distance between the first radiating portion 30A and the second radiating portion 30B is smaller than the distance between the first radiating portion 30A and the third radiating portion 30C, the third radiating portion 30C is located between the first radiating portion 30A and the first central axis X1, and the distance between the third radiating portion 30C and the first central axis X1 is smaller than the distance between the third radiating portion 30C and the first radiating portion 30A, the second feeding port P2 feeds the first radiating portion 30A and the second radiating portion 30B, and the antenna assembly 10 further includes a fourth feeding port P4, and the fourth feeding port P4 feeds the third radiating portion 30C.
  • the operating frequency band of the first radiating portion 30A may include 2.4G-2.5G
  • the operating frequency band of the second radiating portion 30B may include 5.15G-5.85G
  • the operating frequency band of the third radiating portion 30C includes 5.925G-7.125G.
  • FIG27 is a schematic diagram of a second antenna 30 in an antenna assembly provided in a specific embodiment of the present application.
  • the second antenna includes a first radiating portion 30A, a second radiating portion 30B, a third radiating portion 30C and a feeding branch 30D.
  • the feeding branch 30D may be a transmission line portion between the second feeding port P2 and the fourth feeding port P4, or it may also be understood that: the fourth feeding port P4 and the second feeding port P2 are arranged on the feeding branch 30D.
  • the first radiating portion 30A, the second radiating portion 30B and the third radiating portion 30C are symmetrically distributed on both sides of the feeding branch 30D, one end of the feeding branch 30D is connected to the third radiating portion 30C, and the other end of the feeding branch 30D is connected to the first radiating portion 30A and the third radiating portion 30C.
  • the first radiating portion 30A includes a first section 30A1 and a second section 30A2.
  • the first section 30A1 and the second section 30A2 are distributed on the same side of the feeding branch 30D.
  • the second section 30A2 and the feeding branch 30D are spaced apart. Both ends of the first section 30A1 are connected to The feeding branch 30D and the second section 30A2 are connected, the first section 30A1 and the second section 30A2 are not collinear, the number of the first sections 30A1 is two and they are symmetrically distributed on both sides of the feeding branch 30D, the number of the second sections 30A2 is also two, and they are also symmetrically distributed on both sides of the feeding branch 30D.
  • the second section 30A2 is parallel to the feeding branch 30D, and the angle between the first section 30A1 and the feeding branch 30D is an acute angle.
  • the second section 30A2 is located on the side of the first section 30A1 away from the second radiating portion 30B, and the second section 30A2 is located on the side of the first section 30A1 facing the third radiating portion 30C.
  • the second radiating portion 30B includes L-shaped branches symmetrically distributed on both sides of the feeding branch 30D
  • the third radiating portion 30C includes two sub-branches symmetrically distributed on both sides of the feeding branch 30D
  • each sub-branch includes two sections of mutually perpendicular linear structures.
  • the present application does not limit the specific form of each radiating branch in the antenna assembly, and the specific forms of the first radiating portion 30A, the second radiating portion 30B, and the third radiating portion 30C of the second antenna 30 are not limited to the aforementioned contents.
  • the second antenna 30 further includes an extension branch 30E, and the number of the extension branch 30E is two, and they are symmetrically distributed on both sides of the feeding branch 30D.
  • One end of the extension branch 30E is connected to the second segment 30A2 of the first radiating portion 30A, and the other end of the extension branch 30E faces the second radiating portion 30B and forms a gap between the extension branch 30E and the second radiating portion 30B.
  • the extension branch 30E, the first segment 30A1 and the second radiating portion 30B are sequentially connected and surrounded to form an enclosed space, and the gap is the opening of the enclosed space.
  • the extension branch 30E is used to optimize the radiation pattern of the electromagnetic wave beam generated by the second radiating portion 30B.
  • the extension branch 30E and the second segment 30A2 are collinear.
  • FIG. 28 schematically expresses a side view of a feed branch 30D
  • the feed branch 30D includes two feed lines 30D1 and 30D2 arranged at intervals, wherein the two feed lines 30D1 and 30D2 may be parallel to each other, and the leftmost end of the feed branch 30D may be the second feed port P2, and is used to connect the first radiating portion 30A, and the rightmost end of the feed branch 30D may be the fourth feed port P 4, and is used to connect the third radiating portion 30C.
  • a grounding structure 30D3 is provided on the feed branch 30D, and the distance between the grounding structure 30D3 and the second feed port P2 is one-quarter of the dielectric wavelength of the working frequency band of the first radiating portion 30A, and the distance between the grounding structure 30D3 and the fourth feed port P4 is one-quarter of the dielectric wavelength of the working frequency band of the third radiating portion 30C.
  • the antenna assembly provided in the embodiment of the present application is a WiFi antenna
  • the distance between the grounding structure and the second feed port is: greater than or equal to 7 mm and less than or equal to 8 mm.
  • the distance between the ground structure and the second feeding port is 7.5 mm.
  • the distance between the ground structure and the fourth feeding port is: greater than or equal to 3 mm and less than or equal to 4 mm.
  • the distance between the ground structure and the fourth feeding port is 3.5 mm.
  • the grounding structure 30D3 includes two grounding posts, the second feeding port P2 is located at the leftmost end of the feeding branch 30D, and the fourth feeding port P4 is located at the rightmost end of the feeding branch 30D.
  • the distance L1 between the left grounding structure 30D3 and the leftmost end of the feeding branch 30D is one quarter wavelength of the working frequency band of the first radiating portion 30A, and the distance L2 between the right grounding structure 30D3 and the rightmost end of the feeding branch 30D is one quarter wavelength of the working frequency band of the third radiating portion 30C.
  • the number of the grounding structure 30D3 may be one or more.
  • the antenna assembly 10 further includes a third antenna 70 , the radiator of the third antenna 70 is a third radiating branch 70A, and the third radiating branch 70A is connected to the first antenna 20 .
  • the radiator of the third antenna 70 that is, the third radiating branch 70A
  • the radiator of the third antenna 70 is located in the area surrounded by the second radiating branch 23B of the first antenna 20, and the third radiating branch 70A and the feeding unit 21 of the first antenna 20 are partially overlapped.
  • part of the third radiating branch 70A is located on the top side of the first antenna 20, and part of the third radiating branch 70A is located on the bottom side of the first antenna 20.
  • the antenna assembly 10 also has a third feeding port P3, and the third feeding port P3 feeds the third radiating branch 70A.
  • FIG29 shows a schematic diagram of the space on the top side of the first antenna 20, and
  • FIG30 shows a schematic diagram of the space on the bottom side of the first antenna 20.
  • Most of the area of the third radiation branch 70A of the third antenna 70 is distributed on the top side of the first antenna 20, and a small part of the area extends to the bottom side of the first antenna 20.
  • most of the area of the second antenna 30 is distributed on the bottom side of the first antenna 20, and a small part of the area extends to the top side of the first antenna 20.
  • the specific implementation of the present application adopts this asymmetric distribution direction and reasonably arranges the positions of the second antenna 30 and the third antenna 70, which is not only conducive to miniaturization of the overall size of the antenna assembly 10, but also conducive to ensuring the low directivity coefficient of the directional diagram of the second antenna 30, the third antenna 70 and the first antenna 20, which can ensure full coverage of the horizontal plane of each antenna and ensure the balance of radiation performance.
  • the third radiating branch 70A located on the top side of the first antenna 20 is in contact with the feeding unit 21 of the first antenna 20, and the third radiating branch 70A extends from the gap 24 of the first antenna 20, through the gap 24, and to the bottom side of the first antenna 20, and part of the third radiating branch 70A on the bottom side of the first antenna 20 is spaced apart from the feeding unit 21, that is, not in contact.
  • the antenna assembly 10 also includes a decoupling branch 80, a portion of the decoupling branch 80 is electrically connected to the third radiating branch 70A on the top side of the first antenna 20, and another portion of the decoupling branch 80 is electrically connected to the feeding unit 21 of the first antenna 20 on the bottom side of the first antenna 20, and the decoupling branch 80 is used to improve the isolation between the first antenna 20 and the third radiating branch 70A.
  • the decoupling branch 80 In the specific embodiment shown in Figure 31, the decoupling branch 80 In an L-shape.
  • the decoupling branch 80 includes a first decoupling section 81 and a second decoupling section 82, the first decoupling section 81 is on the bottom side of the first antenna 20 and contacts the feeding unit 21 of the first antenna 20, the extension direction of the first decoupling section 81 can be the radial direction of the first antenna 20, and the second decoupling section 82 passes through the first antenna 20 and is connected between the first decoupling section 81 and the third radiation branch 70A.
  • the extension direction of the second decoupling section 82 can be the first direction A1, that is, the direction in which the first central axis X1 of the first antenna 20 extends.
  • the vertical spacing between the first decoupling section 81 and the third radiating branch 70A along the first direction A1 is the same as the thickness dimension of the first antenna 20 in the first direction, and the first decoupling section 81 and the third radiating branch 70A are both in contact with the first antenna 20.
  • the vertical spacing between the first decoupling section 81 and the third radiating branch 70A along the first direction A1 is slightly smaller than the thickness dimension of the first antenna 20 in the first direction A1, so that the first decoupling section 81 and the third radiating branch 70A have a clamping force on the first antenna 20, which can ensure the reliability of the electrical connection between the first antenna 20 and the third antenna 70.
  • FIG. 31A and FIG. 31B the left side of FIG. 31A is a current distribution diagram of the third antenna 70 without a decoupling branch 80
  • the right side of FIG. 31A is a current distribution diagram of the third antenna 70 with a decoupling branch 80
  • FIG. 31B is a comparison diagram of isolation before and after adding a decoupling branch. It can be seen from FIG. 31A that when the first antenna is excited, a portion of the current flows through the feeding port of the third antenna, that is, the fourth feeding port position, resulting in poor isolation between the first antenna and the third antenna.
  • the decoupling branch has a counteracting effect on the current flowing to the third antenna.
  • the addition of the decoupling branch is equivalent to adding a current path. From the comparison of the current distribution diagram, it can be seen that the current flowing from the first antenna to the third antenna after adding the decoupling branch is significantly reduced.
  • This method of improving isolation has the advantage of broadband, which can optimize the isolation by more than 10dB in the entire broadband of 5-7G, and the overall isolation can reach -28dB.
  • the antenna assembly 10 further includes an additional branch 60, which is connected between the two second antennas 30 to achieve decoupling between the two second antennas 30.
  • the additional branch 60 connected between the two second antennas 30 includes a first section of additional branch 61 and a second section of additional branch 62, wherein the first section of additional branch 61 and the second section of additional branch 62 are separated by an additional branch gap 601, wherein the first section of additional branch 61 is connected to one of the second antennas 30, and the second section of additional branch 62 is connected to the other second antenna 30.
  • the size range of the additional branch gap 601 is: 0.1 mm-2 mm.
  • the size of the additional branch gap 601 can be understood as the shortest straight-line distance between the free ends of the first section of additional branch 61 and the second section of additional branch 62.
  • the first section of additional branch 61 and the second section of additional branch 62 can be any one or a combination of a straight line, a curve, or a line with a bending shape.
  • Concentrated devices, such as capacitors, inductors, etc., may be provided on the first section additional branches 61 and/or the second section additional branches 62 .
  • connection position of the additional branch 60 and the second antenna 30 is close to the fourth feeding port P4, and the vertical distance between the connection position of the additional branch 60 and the second antenna 30 and the fourth feeding port P4 can be: 0-3mm.
  • the additional branch 60 and the feeding branch 30D are collinear, and both are straight lines.
  • the additional branch 60 can also be in other forms, such as a curve, a line with a bend, etc.
  • FIGS 32A, 32B and 32C are respectively: a current distribution diagram without additional branches between the two second antennas, a current distribution diagram with additional branches between the two second antennas (but no gaps on the additional branches), and a current distribution diagram with additional branches between the two second antennas and additional branch gaps on the additional branches.
  • the present application can improve the isolation between the second antennas by setting additional branches between the two second antennas, so that the current flowing in from the additional branches and the original coupling current are partially reflected and offset.
  • By setting the additional branch gap it is equivalent to connecting a capacitor structure in series on the additional branch, which can improve the isolation within the working frequency band.
  • FIG. 32D is a comparison of the isolation in the states shown in FIG. 32A, FIG. 32B, and FIG. 32C. It can be seen from FIG. 32D that without additional branches, the isolation between adjacent antennas is only -13dB. By setting additional branches, the isolation between antennas can reach -15dB. By setting additional branch gaps on the additional branches, the isolation between antennas can reach more than -18dB.
  • the number of second antennas 30 in the antenna assembly 10 is three. In other embodiments, the number of second antennas 30 may also be one, two or more. Taking the antenna assembly 10 having three second antennas 30 as an example, in one specific embodiment, each second antenna 30 is disposed on a separate second dielectric plate, one of the second dielectric plates is provided with not only a second antenna 30 but also a third antenna 70, and the remaining second dielectric plates are provided with only a second antenna 30.
  • the second dielectric plate shared by one second antenna 30 and one third antenna 70 is referred to as plate one, and the second dielectric plate provided with only one second antenna 30 is referred to as plate two.
  • FIG33 and FIG34 show the front view and the back view of the second dielectric plate (i.e., plate 1) of a second antenna and a third antenna co-plated arrangement.
  • the second dielectric plate 50 (plate 1) includes a main body 51 and a corner portion 52, wherein the main body 51 is used to arrange the second antenna 30, and the corner portion 52 is used to arrange the third antenna 70, i.e., the third radiation branch 70A.
  • the corner portion 52 is connected to a corner position of the main body 51, and the corner portion 52 is provided with a slit 521.
  • the slit 521 is used to accommodate the central area of the first dielectric plate 40.
  • the slit 521 is formed between part of the third radiation branch 70A and part of the decoupling branch 80.
  • the extension path of the feeding branch 30D of the second antenna 30 disposed on the same plate as the third antenna 70 includes a bending shape, as shown in FIG. 33 and FIG. 34.
  • the feeding branch 30D includes three transmission segments, namely, the first transmission segment 30D1, the second transmission segment 30D2 and the third transmission segment 30D3 are connected in sequence between the second feeding port P2 and the fourth feeding port P4, the second transmission segment 30D2 is bent and extended relative to the first transmission segment 30D1, and the third transmission segment 30D3 is bent and extended relative to the second transmission segment 30D2.
  • the second transmission segment 30D2 is vertically connected between the first transmission segment 30D1 and the third transmission segment 30D3, and the first transmission segment 30D1 and the third transmission segment 30D3 can be parallel to each other.
  • the bending shape of the feeding branch 30D is conducive to isolating the third radiating portion 30C of the second antenna 30 and the third antenna 70, so that the fourth feeding port P4 and the third feeding port P3 are kept in a safe distance range.
  • the third antenna 70 is arranged at the upper right corner of the second dielectric plate 50 (plate one), and the third radiating portion 30C is close to the lower right corner of the second dielectric plate 50 (plate one).
  • the operating frequency bands of the third radiating portion 30C and the third antenna 70 are both the third frequency band, in order to ensure their independence from each other, the physical distance between the third radiating portion 30C and the third antenna 70 is increased by setting the bending shape of the feeding branch 30D, thereby ensuring that the radiation performance of the two antennas meets the usage requirements.
  • the second antenna 30 is distributed on both the front and back sides of the second dielectric plate 50 (plate 1), and the third antenna 70 is only provided on one surface of the second dielectric plate 50 (plate 1).
  • the third antenna 70 is located on the back side of the corner portion 52 of the second dielectric plate 50 (plate 1), and no transmission line or radiation branch may be provided on the front side of the corner portion 52.
  • the third antenna 70 may also be distributed on both the front and back sides of the corner portion 52.
  • FIG35 and FIG36 are schematic diagrams of the front and back sides of the second dielectric plate 50 (plate 2).
  • plate 2 is a rectangular plate-shaped structure.
  • the feeding branch 30D of the second antenna 30 provided on plate 2 is different from the feeding branch 30D of the second antenna 30 provided on plate 1.
  • the feeding branch 30D of the second antenna 30 provided on plate 2 is in a straight line shape and is located at the center position of the width direction of plate 2.
  • the extending direction of the feeding branch 30D on plate 2 is the length direction of plate 2.
  • a notch 522 is provided at a corner position of plate 2. The notch 522 is used to cooperate with the central area of the first dielectric plate 40 to realize the assembly connection between the second dielectric plate 50 (plate 2) and the first dielectric plate 40.
  • the second dielectric plate 50 (plate 2) and the first dielectric plate 40 are assembled, the second dielectric plate 50 (plate 2) is inserted into the gap 24 of the first dielectric plate 40, and the central area of the first dielectric plate 40 overlaps the notch 522 position of the second dielectric plate 50 (plate 2), forming a stable connection relationship.
  • the first antenna 20 is disposed on the first dielectric plate 40, and the first dielectric plate 40 is provided with gaps 24, for example, the number of gaps 24 is 3.
  • the first dielectric plate 40 is in the shape of a circular plate, the gaps 24 extend from the outer edge of the first dielectric plate 40 to the central area, the open end of the gap 24 is located at the outer edge of the first dielectric plate 40, and the bottom end of the gap 24 is spaced apart from the feeding unit 21 of the first antenna 20.
  • the second dielectric plate 50 is installed at the gap 24 position of the first dielectric plate 40.
  • the connection between plate 1 and the first dielectric plate 40 is achieved through the cooperation of the slit 521 on plate 1 and the central area of the first dielectric plate 40, that is, the central area of the first dielectric plate 40 is inserted into the slit 521.
  • the top surface and the bottom surface of the central area are both the feeding unit of the first antenna 20.
  • Part of the central area is inserted into the slit 521, so that part of the third radiation branch 70A contacts the feeding unit of the first antenna on the top surface of the central area.
  • the notch 522 of plate 2 cooperates with the central area of the first dielectric plate 40, so that the central area of the first dielectric plate 40 overlaps at the notch 522, so that the connection between plate 2 and the first dielectric plate 40 is achieved.
  • a partial area of one second dielectric plate 50 extends to the inside of the feeding unit 21 of the first antenna 20 in the central area of the first dielectric plate 40, and the other two second dielectric plates 50 (plate 2) are located at the periphery of the feeding unit 21 of the first antenna 20.
  • partial areas of the three second dielectric plates 50 all extend to the inside of the feeding unit 21 of the first antenna 20 in the central area of the first dielectric plate 40.
  • the left side figure of FIG. 42 indicates that the antenna assembly includes only three second antennas
  • the right side figure of FIG. 42 indicates a schematic diagram of 2.45G current distribution under the architecture of only three second antennas.
  • the left side figure of FIG. 43 indicates that the antenna assembly includes three second antennas and one first antenna
  • the right side figure of FIG. 43 indicates a 2.45G current distribution diagram when a first antenna is added to the three second antennas.
  • FIG. 44 is an isolation curve diagram when a first antenna is added to the three second antennas. It can be seen from FIG.
  • the isolation can be improved to more than -15dB.
  • the main reason is that part of the current of the first radiation part of 2.4G is coupled to the first antenna, blocking part of the current coupled to the adjacent second antenna, thereby improving the isolation between adjacent second antennas.
  • the antenna assembly provided by the embodiments shown in Figures 21 to 41 is a co-body multi-antenna structure, which realizes high-isolation tri-band Wi-Fi 4*4 MIMO coverage by vertically placing the second antenna, the third antenna and the first antenna in space.
  • the present application adds a 6E band solution while maintaining the spatial size design range of the dual-band antenna (such as 2.4G and 5G) solution, thereby realizing the arrangement of more antenna architectures in a limited space, which is beneficial to the compactness of the overall structure of the antenna assembly.
  • the three second antennas are spaced 120 degrees apart in pairs and are placed vertically to the first antenna as a whole.
  • the second antenna is inserted into the gap formed by the first antenna, that is, the second antenna and the first antenna are orthogonally arranged, and part of the second antenna is located on the top side of the first antenna, and part of the second antenna is located on the bottom side of the first antenna.
  • This design scheme can more obviously save space and obtain a miniaturized antenna assembly.
  • the third antenna and one of the second antennas are connected.
  • the feeding unit 21 of the first antenna is electrically connected to the same line as the board, and the antenna of the 6E frequency band is added, so that the total number of antennas in the 6E frequency band is the same as the number of antennas in other frequency bands.
  • the antenna assembly provided in the present application can cover the signals of the three frequency bands with more stable and balanced signal coverage capabilities.
  • the antenna assembly provided by the embodiments shown in Figures 21 to 41 is a co-body multi-antenna structure, and the number of the first feed port P1, the second feed port P2, the third feed port P3 and the fourth feed port P4 is 8 in total, wherein the number of the second feed port P2 and the fourth feed port P4 are both three, and the number of the first feed port P1 and the third feed port P3 are both one.
  • the radiation structure of the antenna is arranged on four dielectric plates, one of which is a first dielectric plate 40, and the other three are second dielectric plates 50, and two feed ports are arranged on each dielectric plate.
  • This embodiment implements a co-body multi-feed eight WI-FI antenna solution, which can achieve a low directivity coefficient in a compact space.
  • the feeding of the first feed port P1 and the three second feed ports P2 can excite electromagnetic wave signals in two frequency bands (the first frequency band and the second frequency band), and the feeding of the third feed port P3 and the three fourth feed ports P4 can excite electromagnetic wave signals in the third frequency band.
  • Each antenna in the antenna assembly provided in this embodiment satisfies omnidirectional horizontal plane coverage.
  • the specific structure of the antenna assembly provided in this embodiment is not limited to the foregoing content, and can be expanded to a structure of N antennas, that is, N second antennas are inserted into the N gaps of the first antenna to form an overall N+1 MIMO antenna coverage.
  • FIG 45 shows an S parameter diagram of the three-band antenna architecture formed by the second antenna in the working state of three frequency bands. It can be seen from Figure 45 that the second antenna meets the usage requirements in the first frequency band, the second frequency band and the third frequency band.
  • FIG 46 shows the current distribution diagram of the three second antennas in three frequency bands. It can be seen from Figure 46 that the second antenna can excite electromagnetic wave signals in three frequency bands, and the isolation between different radiation parts is good.
  • Figure 47 shows the radiation patterns of the three second antennas in three frequency bands. It can be seen from Figure 47 that the directivity of the radiation patterns of the second antenna in the three frequency bands meets the requirements, especially in the two working frequency bands of 2.45G and 5.3G, the radiation patterns have no pits and have a low directivity coefficient. In the 6.5G working frequency band, although there are pits in local areas, the overall requirement of omnidirectional coverage is met.
  • Figure 48 shows the S parameter diagram of the three-band antenna architecture composed of the first antenna and the third antenna in the working state of three frequency bands. It can be seen from Figure 48 that the first antenna meets the usage requirements in the first and second frequency bands, and the third antenna meets the usage requirements in the third frequency band.
  • Figure 49 shows the current distribution diagram of the first antenna in the first frequency band and the second frequency band, and the current distribution diagram of the third antenna in the third frequency band. It can be seen from Figure 49 that the isolation between the first antenna and the third antenna is good.
  • Figure 50 which shows the directional patterns of the first antenna in the first frequency band and the second frequency band, and the directional pattern of the third antenna in the third frequency band.
  • the directivity of the directional patterns of the first antenna in the first frequency band and the second frequency band, and the third antenna in the third frequency band meet the requirements, especially the directional patterns of the first antenna in the 2.45G working frequency band and the third antenna in the 6.5G working frequency band, have no pits and have a low directivity coefficient.
  • the first antenna has pits in a local area in the 5.3G working frequency band, it meets the requirements of omnidirectional coverage as a whole.
  • the second antenna may also only have the first radiating portion 30A, the second radiating portion 30B and the second feeding port for feeding, that is, the antenna assembly does not include the fourth feeding port and the third radiating portion 30C.
  • the antenna assembly also does not include the third antenna.
  • Such an antenna assembly constitutes dual-band Wi-Fi 4*4 MIMO coverage.
  • the antenna assembly provided in this application can achieve: 1. In the first frequency band and the second frequency band, the combined gain of the antenna assembly is 0dBi, and there is no need to return power in the actual product; 2. The directivity coefficient of the antenna working in the first frequency band and the second frequency band is less than 3.5dBi; 3. The directional pattern fidelity of the antenna assembly is good, which can avoid the appearance of concave points in the horizontal plane; 4. The isolation between multiple closely distributed same-frequency or adjacent-frequency antennas meets the design requirements (higher than 15dBi).
  • the communication equipment for the specific application of the antenna assembly provided in the embodiment of this application can be, but is not limited to, IOT (Internet of things) related products (such as CPE wireless gateway equipment), and can also be expanded to other antenna scenarios that require omnidirectional coverage of the horizontal plane directional pattern.
  • IOT Internet of things
  • CPE wireless gateway equipment such as CPE wireless gateway equipment

Landscapes

  • Variable-Direction Aerials And Aerial Arrays (AREA)

Abstract

本申请实施例公开了一种天线组件和通信设备。天线组件包括第一天线和第二天线,第一天线形成在至少一个第一面上,垂直于所述第一面的方向为第一方向,第一天线包括馈电单元、功分单元和辐射单元,功分单元连接在馈电单元和辐射单元之间,辐射单元包围功分单元和馈电单元,辐射单元包括多个间隔设置的子单元,相邻的所述子单元之间形成间隙,所述间隙沿所述第一方向贯穿所述第一面。第二天线设置在所述间隙的位置,部分所述第二天线位于所述第一天线的顶侧,部分所述第二天线位于所述第一天线的底侧。本申请通过第一天线和第二天线的集成设计,能够在紧凑空间下设计出多Wi-Fi天线方案且能够同时实现低方向性系数和高隔离度。

Description

天线组件和通信设备
本申请要求在2022年9月27日提交中国国家知识产权局、申请号为202211180248.1的中国专利申请的优先权,发明名称为“天线组件和通信设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及射频通信技术领域,尤其涉及一种天线组件和通信设备。
背景技术
随着无线通信规格的发展和应用场景的不断丰富,终端产品对天线智能波束的诉求越来越强烈,以CPE(Customer Premises Equipment,客户终端设备)为例,CPE产品是将接收到无线网络宽带信号通过Wi-Fi(Wireless Fidelity,无线网络通信技术)信号形式共享给家庭中各种终端产品上网的一种设备,主要用来解决用户上网问题,由此可见CPE产品中Wi-Fi性能的优劣决定了用户感知到的通信效果的优劣。在CPE产品中一般通过合理布局Wi-Fi天线来实现较好的水平面覆盖。随着智能终端设备的发展,CPE产品内的天线数量越来越多。随着同一空间下天线数量越来越多,天线之间的互相影响也越来越严重,如何保证各天线的辐射不受其它周边天线的影响是目前研究的难点。
由上述可知在紧凑空间下设计出多Wi-Fi天线方案且能够同时实现低方向性系数和高隔离度具有很高的应用机会和重要意义。
发明内容
本发明实施例提供一种天线组件和通信设备,能够在紧凑空间下设计出多Wi-Fi天线方案且能够同时实现低方向性系数和高隔离度。
第一方面,本发明实施例提供了一种天线组件,包括第一天线、第二天线、第一馈电端口和第二馈电端口,第一天线形成在至少一个第一面上,垂直于所述第一面的方向为第一方向,所述第一天线包括馈电单元、功分单元和辐射单元,所述功分单元连接在所述馈电单元和所述辐射单元之间,所述辐射单元包围所述功分单元和所述馈电单元,所述辐射单元包括多个间隔设置的子单元,相邻的所述子单元之间形成间隙,所述间隙沿所述第一方向贯穿所述第一面;第一馈电端口与所述馈电单元接通,用于为所述第一天线馈电;第二天线设置在所述间隙的位置,部分所述第二天线在所述第一方向上位于所述第一天线的顶侧,部分所述第二天线在所述第一方向上位于所述第一天线的底侧;第二馈电端口用于为所述第二天线馈电。
本申请通过将第二天线设置在第一天线的间隙位置,并且第二天线和第一天线之间为交叉布置,第二天线沿第一方向贯穿间隙,部分第二天线位于第一天线顶侧,部分第二天线位于第一天线底侧,构成第一天线和第二天线共用空间,即在空间上具有交集,有利于实现天线组件整体尺寸小型化。第一天线和第二天线的这种空间布置架构不但能保证各天线的本身的方向图的低方向性系统,第二天线设置在间隙位置还能够满足隔离度的需求。
一种可能的实现方式中,所述第一天线具有径向方向和周向方向,所述径向方向为从所述馈电单元指向所述辐射单元的方向,所述周向方向为所述辐射单元形成的环绕路径的延伸方向,所述第二天线沿所述第一方向在所述第一面上的垂直投影在所述周向方向上位于所述间隙的范围内。本方案限定第二天线和间隙之间的具体的位置关系,通过在第一天线的周向方向上,将第二天线布置在间隙范围内,使得第二天线对第一天线的辐射效率无影响,实现天线之间的解耦,能够满足隔离度的需求。
一种可能的实现方式中,所述第一天线为偶极子天线,所述第二天线为偶极子天线。
一种可能的实现方式中,所述第二天线的数量为多个且和所述间隙一一对应设置,所述第二馈电端口的数量为多个且和所述第二天线一一对应设置。
一种可能的实现方式中,所述天线组件包括附加枝节,所述附加枝节连接在相邻的两个所述第二天线之间,用于实现相邻的两个所述第二天线之间的解耦。本方案限定第二天线的数量为多个,多个第二天线与第一天线交叉布置的架构下,第二天线数量的增加有利于提升天线的辐射效率,通过引用附加枝节结构,附加枝节用于实现两个第二天线之间的解偶,第二天线30流入电流的过程中,从附加枝节流入的电流与原始的耦合电流反向抵消,可以实现两个第二天线之间的隔离度得到提升,例如,本方案使得两个第二天 线之间的隔离度优化至-13dB,实现两个第二天线之间的解耦。
一种可能的实现方式中,所述附加枝节和所述第二天线的连接位置和所述第二馈电端口之间的距离范围为0-3mm。本方案通过限定附加枝节和第二天线连接位置和第二馈电端口之间的距离范围,在此范围内,能够保证附加枝节在相邻的第二天线之间的解耦效率。
一种可能的实现方式中,所述附加枝节包括第一段附加枝节和第二段附加枝节,所述第一段附加枝节和所述第二段附加枝节之间通过附加枝节间隙相隔开,所述第一段附加枝节连接至其中一个所述第二天线,所述第二段附加枝节连接至另一个所述第二天线。(本方案通过设置附加枝节间隙,能够实现提升隔离度,有利于优化两个第二天线之间的解耦效率)
一种可能的实现方式中,所述附加枝节间隙的尺寸范围为:0.1mm-2mm。本方案通过限定附加枝节间隙尺寸的范围,有利于保证两个第二天线之间的解耦效率。
一种可能的实现方式中,所述第一天线以第一中心轴为中心呈旋转对称分布在所述第一面上,所述第一中心轴的延伸方向为所述第一方向,所述第一天线的所述辐射单元包括第一辐射枝节、第二辐射枝节,所述天线组件还包括第三天线,所述第三天线的辐射体为第三辐射枝节,所述第三辐射枝节连接至所述第一天线的所述馈电单元,所述第一辐射枝节距离所述第一中心轴的距离大于所述第二辐射枝节距离所述第一中心轴的距离,所述第三辐射枝节距离所述第一中心轴的距离小于所述第二辐射枝节距离所述第一中心轴的距离,所述天线组件还第三馈电端口,所述第三馈电端口为所述第三辐射枝节馈电。本方案通过空间垂直放置第二天线、第三天线和第一天线实现高隔离度的三频Wi-Fi 4*4 MIMO覆盖,本申请通过在保持双频天线(例如2.4G和5G)方案的空间尺寸设计范围内,增加6E频段的方案,实现了在有限的空间内布置更多的天线架构,有利于天线组件整体结构紧凑性。
一种可能的实现方式中,所述天线组件包括一个第一介质板和多个第二介质板,所述第一辐射枝节和所述第二辐射枝节设置在所述第一介质板上,所述第三辐射枝节和其中一个所述第二天线设置在其中一个所述第二介质板上,其余的所述第二天线一一对应地设置在其余的所述第二介质板上,所述第一介质板和所述第二介质板呈夹角设置。本方案限定了第三天线的第三辐射枝节与其中一个第二天线共板设置,有利于空间紧凑性。本方案限定了其余的第一电偶子天线单独设置在其余的第二介质板上的布置架构,实现一种具体的天线布置方案,第一介质板和第二介质板作为承载各天线的基板,组合后构成一体式天线组件,有利于实现天线组件的模组化设计,方便天线组件在电子设备内的组装和布局。
一种可能的实现方式中,其中一个所述第二介质板包括主体部和边角部,所述主体部用于设置所述第二天线,所述边角部用于设置所述第三辐射枝节,所述边角部连接至所述主体部的一个角落位置,所述边角部设有切缝,所述第一介质板包括中心区域,所述第一天线的所述馈电单元设置在所述中心区域且分布在所述中心区域的顶部表面和底部表面,部分所述中心区域插入所述切缝中,使得所述第三辐射枝节的部分与所述中心区域的顶部表面的部分所述馈电单元接触。本方案限定了共板设置的第三天线和第二天线所在的第二介质板的具体的结构,通过切缝实现第一介质板和第二介质板之间的连接,同时在切缝的位置又能保证所述第三辐射枝节的部分与所述中心区域的顶部表面的部分所述第一天线接触,使得天线组件整体结构稳固,且电连接可靠。
一种可能的实现方式中,所述第一辐射枝节的工作频段包括2.4G-2.5G,所述第二辐射枝节的工作频段包括5.15G-5.85G,所述第三辐射枝节的工作频段包括5.925G-7.125G。
一种可能的实现方式中,各所述第二天线包括共板设置的第一辐射部、第二辐射部和第三辐射部,所述第一辐射部位于所述第二辐射部和所述第三辐射部之间,所述第一辐射部和所述第二辐射部之间的距离小于所述第一辐射部和所述第三辐射部之间的距离,所述第三辐射部位于所述第一辐射部和所述第一中心轴之间,且所述第三辐射部和所述第一中心轴之间的距离小于所述第三辐射部和所述第一辐射部之间的距离,所述第二馈电端口为所述第一辐射部和所述第二辐射部馈电,所述天线组件还包括第四馈电端口,所述第四馈电端口为所述第三辐射部馈电。
一种可能的实现方式中,所述第一辐射部的工作频段包括2.4G-2.5G,所述第二辐射部的工作频段包括5.15G-5.85G,所述第三辐射部的工作频段包括5.925G-7.125G。
一种可能的实现方式中,所述第二天线包括馈电枝节,所述第四馈电端口和所述第二馈电端口设置在所述馈电枝节上,所述第一辐射部、所述第二辐射部和所述第三辐射部均对称分布在所述馈电枝节的两侧,所述馈电枝节的一端连接所述第三辐射部,所述馈电枝节的另一端连接至所述第一辐射部和所述第三辐射部。本方案限定一种具体实施方式提供的天线组件为一种共体多天线结构,第一馈电端口、第二馈电端口、第三馈电端口和第四馈电端口的数量共为8个,其中第二馈电端口和第四馈电端口的数量均为三个,第一馈 电端口和第三馈电端口的数量均为一个。天线的辐射结构设置在四个介质板上,其中一个为第一介质板,另三个为第二介质板,每个介质板上均设置两个馈电端口。本实施方式实现了一种共体多馈八WI-FI天线方案,能够在紧凑的空间下实现低方向性系数。第一馈电端口和三个第二馈电端口的馈电均能激励两个频段(第一频段和第二频段)的电磁波信号,第三馈电端口和三个第四馈电端口的馈电能激励第三频段的电磁波信号。本实施方式提供的天线组件中的各天线均满足全向水平面覆盖。
一种可能的实现方式中,所述第一辐射部包括第一段和第二段,所述第一段和所述第二段分布在所述馈电枝节的同侧,所述第二段和所述馈电枝节间隔设置,所述第一段的两端分别连接所述馈电枝节和所述第二段,所述第一段和所述第二段不共线。本方案限定了第一辐射部的具体的布置架构。
一种可能的实现方式中,所述第二段平行于所述馈电枝节,所述第一段和所述馈电枝节之间的夹角为锐角。本方案限定了第一辐射部的第二段和馈电枝节之间的关系及第一段和馈电枝节之间的关系,有利于保证第二天线性能的情况下,实现较小的占用空间。
一种可能的实现方式中,所述第二天线还包括延伸枝节,所述延伸枝节的一端连接至所述第二段,所述延伸枝节的另一端朝向所述第二辐射部且和所述第二辐射部之间形成间隔缝隙,所述延伸枝节、所述第一段和所述第二辐射部依次连接且包围形成包围空间,所述间隔缝隙为所述包围空间的开口,所述延伸枝节用于优化所述第二辐射部产生的电磁波波束的方向图。本方案通过设置延伸枝节能够优化第二辐射部产生的电磁波波束的方向图,有利于第二天线的低方向性系数。
一种可能的实现方式中,所述馈电枝节上设有接地结构,所述接地结构距离所述第二馈电端口的距离为:大于等于7mm小于等于8mm。例如,一种具体的实施方式中,所述接地结构距离所述第二馈电端口的距离为7.5mm。所述接地结构距离所述第二馈电端口的距离为所述第一辐射部的工作频段的四分之一介质波长。
一种可能的实现方式中,所述接地结构距离所述第四馈电端口的距离为:大于等于3mm小于等于4mm。例如,一种具体的实施方式中,所述接地结构距离所述第四馈电端口的距离为3.5mm。所述接地结构距离所述第四馈电端口的距离为所述第三辐射部的工作频段的四分之一介质波长。本方案通过设置接地结构及限定接地结构与第二馈电端口和第四馈电端口之间的位置关系,有利于保证第二天线上的第一辐射部、第二辐射部和第三辐射部工作在需要的工作频段范围内,有利于提升各部分辐射部的辐射效率。
一种可能的实现方式中,所述第三辐射枝节的部分位于所述第一介质板的顶部表面且和所述第一天线电连接,所述第三辐射枝节的部分从所述间隙穿过所述第一介质板并位于所述第一介质板的底部表面的一侧,所述天线组件还包括解耦枝节,所述解耦枝节的部分电连接所述第三辐射枝节,所述解耦枝节的另一部分位于所述第一介质板的底部表面的一侧且电连接所述第一天线,所述解耦枝节用于提升所述第一天线和所述第三辐射枝节之间的隔离度。
具体而言,所述解耦枝节用于提升所述第一天线和所述第三辐射枝节之间的隔离度。一种实施方式中,解耦枝节包括第一解耦段和第二解耦段,第一解耦段在第一天线的底侧且与第一天线的馈电单元接触,第一解耦段的延伸方向可以为第一天线的径向方向,第二解耦段穿过第一天线且连接在第一解耦段和第三辐射枝节之间。第二解耦段的延伸方向可以为第一方向,即第一天线的第一中心轴延伸的方向。当第一天线被激励的情况下,有一部分电流通过流到第三天线的馈电端口,即第四馈电端口位置,导致第一天线和第三天线之间的隔离度较差。当设置解耦枝节的情况下,解耦枝节对流到第三天线的电流具有抵消的作用,解耦枝节的增加,相当于增加了一条电流路径,从电流分布图对比可以看出,增加解耦枝节后从第一天线流入第三天线的电流明显减少了,这种提高隔离度的方式具有宽带的优势,能够使隔离度在5-7G整个宽频内有10dB以上的优化,整体隔离度可以达到-28dB。
第二方面,本申请提供一种通信设备,包括电路板和如第一方向任意一种可能的实现方式中所述的天线组件,所述电路板上设有射频电路,所述第一馈电端口和所述第二馈电端口电连接至所述射频电路。
附图说明
为了更清楚地说明本发明实施例或背景技术中的技术方案,下面将对本发明实施例或背景技术中所需要使用的附图进行说明。
图1为包括本申请提供的天线的电子设备作为家庭网关,在家庭网关系统中的应用示意图。
图2为本申请提供的通信设备的一种具体的应用场景示意图。
图3为本申请提供的通信设备的一种具体的实施方式中的内部结构示意图,主要表面天线组件和电路板之间的位置关系。
图4为本申请一种具体的实施方式提供的天线组件的一个方向的立体示意图。
图5为本申请一种具体的实施方式提供的天线组件的一个方向(例如竖直方向)的平面图。
图6为本申请一种具体的实施方式提供的天线组件的另一个方向(例如水平方向)的平面图。
图7为本申请一种具体的实施方式提供的天线组件中的第一介质板和设于第一介质板上的第一天线的平面示意图。
图8A为本申请一种具体的实施方式提供的天线组件中的第二介质板和设置于第二介质板上的第二天线的平面示意图。
图8B为图8A所示的结构的横截面的层结构示意图。
图8C为本申请一种具体的实施方式提供的天线组件中的第二介质板和设置于第二介质板上的第二天线的横截面的层结构示意图。
图9为本申请一种具体的实施方式提供的天线组件的示意图。
图10A为本申请一种具体的实施方式提供的天线组件为单独的第一天线构成的情况下的第一天线的方向图。
图10B为本申请一种具体的实施方式提供的天线组件为四个第二天线构成的情况下的第二天线的方向图。
图10C为本申请一种具体的实施方式提供的天线组件包括第一天线和四个第二天线构成的情况下的第一天线的方向图。
图10D为本申请一种具体的实施方式提供的天线组件包括第一天线和四个第二天线构成的情况下的第二天线的方向图。
图11为本申请一种具体的实施方式提供的天线组件的一个方向的立体示意图。
图12为本申请一种具体的实施方式提供的天线组件的另一个方向的立体示意图。
图13为本申请一种具体的实施方式提供的天线组件的竖直方向的平面图。
图14为本申请一种具体的实施方式提供的天线组件的水平方向的正面的平面图。
图15为本申请一种具体的实施方式提供的天线组件的水平方向的反面的平面图。
图16为本申请一种具体的实施方式提供的天线组件的一个方向的立体示意图。
图17为本申请一种具体的实施方式提供的天线组件的另一个方向的立体示意图。
图18为本申请一种具体的实施方式提供的天线组件的竖直方向的平面图。
图19为本申请一种具体的实施方式提供的天线组件的水平方向的正面的平面图。
图20为本申请一种具体的实施方式提供的天线组件的水平方向的反面的平面图。
图21为本申请一种具体的实施方式提供的天线组件的一个方向的立体示意图。
图22为本申请一种具体的实施方式提供的天线组件的另一个方向的立体示意图。
图23为本申请一种具体的实施方式提供的天线组件的水平方向的正面的平面图。
图24为本申请一种具体的实施方式提供的天线组件的水平方向的反面的平面图。
图25为本申请一种具体的实施方式提供的天线组件的一个竖直方向的平面图。
图26为本申请一种具体的实施方式提供的天线组件的另一个竖直方向的平面图。
图27为本申请一种具体实施方式提供的天线组件中的一个第二天线的示意图。
图28为本申请一种具体实施方式提供的天线组件中的一个第二天线的馈电枝节的侧视图。
图29为本申请一种具体实施方式提供的天线组件中的第一天线和第三天线之间的位置关系及具体结构的一个方向的立体示意图。
图30为本申请一种具体实施方式提供的天线组件中的第一天线和第三天线之间的位置关系及具体结构的另一个方向的立体示意图。
图31为本申请一种具体实施方式提供的天线组件中的第一天线和第三天线之间的位置关系及具体结构的平面示意图。
图31A中左侧图为第三天线不设置解耦枝节的电流分布图,图31A中右侧图为第三天线设置解耦枝节的电流分布图。
图31B为增加解耦枝节前后的隔离度对比图。
图32为本申请一种具体实施方式提供的天线组件中的两个第二天线之间的位置关系及具体结构的示意图。
图32A、图32B和图32C分别为:两个第二天线之间不设附加枝节的电流分布图、两个第二天线之间设附加枝节(但附加枝节上无间隙)的电流分布图、两个第二天线之间设附加枝节且附加枝节上具有附加枝节间隙的电流分布图。
图32D为图32A、图32B和图32C所示的状态下的隔离度对比。
图33为本申请一种具体实施方式提供的天线组件中的一个第二介质板和其上的第二天线和第三天线的一 个方向的平面图。
图34为本申请一种具体实施方式提供的天线组件中的一个第二介质板和其上的第二天线和第三天线的另一个方向的平面图。
图35为本申请一种具体实施方式提供的天线组件中的一个第二介质板和其上的第二天线的一个方向的平面图。
图36为本申请一种具体实施方式提供的天线组件中的一个第二介质板和其上的第二天线的另一个方向的平面图。
图37为本申请一种具体实施方式提供的天线组件中的第一介质板和其上的第一天线的一个方向的示意图。
图38为本申请一种具体实施方式提供的天线组件的一个方向的立体示意图。
图39为本申请一种具体实施方式提供的天线组件的另一个方向的立体示意图。
图40为本申请一种具体实施方式提供的天线组件的一个方向的平面示意图。
图41为本申请一种具体实施方式提供的天线组件的另一个方向的平面示意图。
图42的左侧图表示天线组件只包括三个第二天线,图42的右侧图表示只有三个第二天线的架构下的2.45G电流分布示意图。
图43的左侧图表示天线组件包括三个第二天线和一个第一天线,图43的右侧图表示在三个第二天线的基础上加入一个第一天线的情况下的2.45G电流分布图。
图44为三个第二天线的基础上加入一个第一天线的情况下的隔离度曲线图。
图45为第二天线构成的三频天线架构在三个频段的工作状态下的S参数图。
图46为三个第二天线在三个频段下的电流分布图。
图47为三个第二天线在三个频段下的方向图。
图48为第一天线和第三天线构成的三频天线架构在三个频段工作状态下的S参数图。
图49为第一天线在第一频段和第二频段下的电流分布图,及第三天线在第三频段下的电流分布图。
图50为第一天线在第一频段和第二频段下的方向图,及第三天线在第三频段下的方向图。
具体实施方式
部分术语的解释
MIMO技术:即Multiple-Input Multiple-Output,指在发射端和接收端分别使用多个发射天线和接收天线,使信号通过发射端与接收端的多个天线传送和接收,从而改善通信质量。它能充分利用空间资源,通过多个天线实现多发多收,在不增加频谱资源和天线发射功率的情况下,可以成倍的提高系统信道容量,显示出明显的优势、被视为下一代移动通信的核心技术。
无线AP:即Access Point,也就是无线接入点。简单来说就是无线网络中的无线交换机,它是移动终端用户进入有线网络的接入点,已大量用于各种场合的网络覆盖,包括教育、医疗等企业级等客户场景。无线AP可以用于家庭宽带、企业内部网络部署等,无线覆盖距离为几十米至上百米。一般的无线AP还带有接入点客户端模式,也就是说AP之间可以进行无线链接,从而可以扩大无线网络的覆盖范围。
家庭网关:是位于现代家庭内部的一个网络设备,它的作用是使家庭用户连接到Internet,使位于家庭中的多种智能设备都能得到Internet的服务,或者使这些智能设备相互之间实现通信。简单的说,家庭网关是使家庭内部多种智能设备之间实现联网,以及从家庭内部到外部网络实现互联的一座桥梁。从技术角度说,家庭网关在家庭内部以及从内部到外部实现桥接/路由、协议转换、地址管理和转换,承担防火墙的职责,并提供可能的VoIP/Video over IP等业务。
平行:本申请所定义的平行不限定为绝对平行,此平行的定义可以理解为基本平行,允许在组装公差、设计公差、结构平面度的影响等因素所带来的不是绝对平行的情况,允许存在小角度范围的误差,例如10度以内的组装误差范围内,都可以被理解为是平行的关系。
垂直:本申请所定义的垂直不限定为绝对的垂直相交(夹角为90度)的关系,允许在组装公差、设计公差、结构平面度的影响等因素所带来的不是绝对的垂直相交的关系,允许存在小角度范围的误差,例如80度至100度的范围的组装误差范围内,都可以被理解为是垂直的关系。
耦合:可理解为直接耦合和/或间接耦合,“耦合连接”可理解为直接耦合连接和/或间接耦合连接。直接耦合又可以称为“电连接”,理解为元器件物理接触并电导通;也可理解为线路构造中不同元器件之间通过印制电路板(printed circuit board,PCB)铜箔或导线等可传输电信号的实体线路进行连接的形式;“间接耦合”可理解为两个导体通过隔空/不接触的方式电导通。在一个实施例中,间接耦合也可以称为电容耦合,例如通过两个导电件间隔的间隙之间的耦合形成等效电容来实现信号传输。接通:通过以上 “电连接”或“耦合连接”的方式使得两个或两个以上的元器件之间导通或连通来进行信号/能量传输,都可称为接通。
天线方向图:也称辐射方向图。是指在离天线一定距离处,天线辐射场的相对场强(归一化模值)随方向变化的图形,通常采用通过天线最大辐射方向上的两个相互垂直的平面方向图来表示。
天线回波损耗:可以理解为经过天线电路反射回天线端口的信号功率与天线端口发射功率的比值。反射回来的信号越小,说明通过天线向空间辐射出去的信号越大,天线的辐射效率越大。反射回来的信号越大,说明通过天线向空间辐射出去的信号越小,天线的辐射效率越小。
天线回波损耗可以用S11参数来表示,S11参数通常为负数。S11参数越小,表示天线回波损耗越小,天线的辐射效率越大;S11参数越大,表示天线回波损耗越大,天线的辐射效率越小。
隔离度:是指一个天线发射信号,通过另一个天线接收的信号与该发射天线信号的比值。隔离度是用来衡量天线互耦程度大小的物理量。假定两个天线构成一个双端口网络,那么两个天线之间的隔离度就是天线之间的S21、S12。天线隔离度可以用S21、S12参数表示。S21、S12参数通常为负数。S21、S12参数越小,表示天线之间的隔离度越大,天线互耦程度越小;S21、S12参数越大,表示天线之间的隔离度越小,天线互耦程度越大。天线的隔离度取决于天线辐射方向图、天线的空间距离、天线增益等。
辐射效率:指天线向空间辐射出去的功率(即有效地转换电磁波部分的功率)和输入到天线的有功功率之比。其中,输入到天线的有功功率=天线的输入功率-天线损耗;天线损耗主要包括金属的欧姆损耗和/或介质损耗。
地板(参考地):可泛指电子设备(比如手机)内任何接地层、或接地板、或接地金属层等的至少一部分,或者上述任何接地层、或接地板、或接地部件等的任意组合的至少一部分,“地/地板”可用于电子设备内元器件的接地。一个实施例中,“地/地板”可以包括以下任一个或多个:电子设备的电路板的接地层、电子设备中框形成的接地板、屏幕下方的金属薄膜形成的接地金属层、电池的导电接地层,和与上述接地层/接地板/金属层有电连接的导电件或金属件。一个实施例中,电路板可以是印刷电路板(printed circuit board,PCB),例如具有8、10、12、13或14层导电材料的8层、10层或12至14层板,或者通过诸如玻璃纤维、聚合物等之类的介电层或绝缘层隔开和电绝缘的元件。一个实施例中,电路板包括介质基板、接地层和走线层,走线层和接地层通过过孔进行电连接。一个实施例中,诸如显示器120、触摸屏、输入按钮、发射器、处理器、存储器、电池140、充电电路、片上系统(system on chip,SoC)结构等部件可以安装在电路板上或连接到电路板;或者电连接到电路板中的走线层和/或接地层。例如,射频源设置于走线层。
上述任何接地层、或接地板、或接地金属层由导电材料制得。一个实施例中,该导电材料可以采用以下材料中的任一者:铜、铝、不锈钢、黄铜和它们的合金、绝缘基片上的铜箔、绝缘基片上的铝箔、绝缘基片上的金箔、镀银的铜、绝缘基片上的镀银铜箔、绝缘基片上的银箔和镀锡的铜、浸渍石墨粉的布、涂覆石墨的基片、镀铜的基片、镀黄铜的基片和镀铝的基片。本领域技术人员可以理解,接地层/接地板/接地金属层也可由其它导电材料制得。
工作频段:无论何种类型的天线,总是在一定的频率范围(频段宽度)内工作。例如,支持B40频段的天线,其工作频段包括2300MHz~2400MHz范围内的频率,或者是说,该天线的工作频段包括B40频段。满足指标要求的频率范围可以看作天线的工作频段。
增益:用于表征天线把输入功率集中辐射的程度。通常,天线方向图的主瓣越窄,副瓣越小,天线增益越高。
偶极子(dipole)天线:由两个相对放置的导体作为辐射体,在导体相互靠近的两端分别馈电而形成的天线形式。常见的偶极子天线由两根共轴的直导体构成。应可理解,在一些实施例中,构成偶极子天线辐射体的两个导体可以是不共轴的,或者可以是不共面的,而有一定的偏移。在一些实施例中,构成偶极子天线辐射体的两个导体可以不是直线形的,例如可以是弧形、折弯形等等。偶极子天线包括电偶极子(electric dipole)天线和磁偶极子(magnetic dipole)天线,其中电偶极子:是两个分隔一段距离,电量相等,正负相反的电荷。磁偶极子是一圈封闭循环的电流。例如一个有常定电流运行的线圈。磁偶极子天线是类比电偶极子而建立的物理模型,其电流可以等效为一段封闭回路电流,例如:磁偶极子天线的辐射单元呈环状分布,磁偶极子天线的馈电单元位于辐射单元包围的区域的中间位置,馈电单元与辐射单元之间通过功分单元分配电流。
术语“第一”、“第二”等仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”等的特征可以明示或者隐含地包括一个或者更多个该 特征。
以下通过实施例对本申请方案进行示例说明。
本申请提供的天线组件和通信设备可以应用于WLAN系统,通信设备可以为家庭网关,例如路由器、无线AP(Access Point,无线接入点)、CPE(Customer Premises Equipment,客户终端设备)等等。
图1所示为包括本申请提供的包括天线组件的通信设备作为家庭网关的示例。图1所示的实施方式中,本申请提供的通信设备为家庭网关,家庭网关连接在光局端和终端设备之间,光局端连接至广域网(因特网),光局端从广域网(因特网)获取信号,并将此信号传送至家庭网关,再由设置在家庭网关中的天线将信号传送至各终端设备。家庭网关包括数字模块、射频模块和天线,数字模块连接在光局端和射频模块之间,射频模块用于发送射频信号给天线。随着家庭智能化的发展,各种智能化终端设备被配置在家庭中,需要在家庭网关内的配置更多的天线,以为各种终端设备提供信号。例如,天线可以包括天线1、天线2、天线3、天线4和天线5,天线1可以为低频天线,例如低频天线可以为2G天线或3G天线,天线2、天线3、天线4和天线5可以为高频天线,例如高频天线可以为5G天线或6G天线。其它实施方式中天线可以有其它的配置,例如包括低频天线的数量可以为两个或三个以上,高频天线的数量也可以为一个或两个或更多个。
一种实施方式中,终端设备可以包括智能手机、智能家居(例如空调、电风扇、洗衣机、电冰箱等)、智能电视、智能安防(例如摄像机)。智能手机可以使用在低频频率范围,也可以使用在高频频率范围,例如智能手机可以支持2G和5G两种频率的信号。因此如图1所示的,天线1和天线2均为智能手机提供信号。天线3为智能家居提供信号,对于智能家居而言,通过智能家庭网关系统平台,用户可以通过手机和PC端等方式对远程智能家电、照明系统、电源系统等进行状态查看和控制。天线4为智能电视提供信号,用户也可以通过终端设备远程操控智能电视,智能电视可以具网络电视的功能,也可以具有视频会议的功能。天线5为智能安防提供信号,智能视安防系统可以包括防火、防盗、防泄漏和远程监控等功能。用户可以利用手机、Internet远程查看和设置家庭安防系统,同时还可远程监视家庭内部情况,如果检测到异常状况,安防系统可以通过打电话、发短信、发邮件等方式通知用户。
本申请提供的通信设备内的天线组件在具体应用场景中需要实现较好的水平面全覆盖,图2所示为一种实施方式提供的通信设备的示意图,通信设备100包括外壳1001,外壳1001可以呈桶状,也可以为其它的形状,例如方形盒状或圆形盒状等。本实施方式中,桶状外壳1001的顶部设有顶盖1002,顶盖1002为非屏蔽材料,例如塑料,顶盖1002的内部为天线组件,顶盖1002设有多个通孔1003,通孔1003的设置有利于通信设备100内的天线组件的信号辐射及通信设备100内部的通风散热。
图3为本申请提供的通信设备的一种具体的实施方式中的内部结构示意图,主要表面天线组件和电路板之间的位置关系。参阅图3,一种实施方式中,天线组件10设置在通信设备100的外壳1001内部,通信设备100的外壳1001内具有电路板,天线组件10位于电路板的顶部空间内,具体而言,天线组件10位于电路板的顶部边缘和外壳1001的顶盖1002之间。电路板上设有射频电路1005,射频电路1005用于与天线组件10电连接,可以为天线组件10馈电。天线组件10包括第一天线20和第二天线30。一种实施方式中,第一天线20水平放置,第二天线30竖直放置,本申请通过将第一天线20和第二天线30在空间上相交设置,即第二天线30的部分位于第一天线20和电路板的顶部边缘之间,第二天线30的部分位于第一天线20和顶盖1002之间,实现了在紧凑的空间中布置多个天线的架构,有利于通信设备100的小尺寸设计,并仍然能保证天线组件10中的各天线的辐射性能。
本申请具体实施方式提供的天线组件为集成多天线的架构,其中的每个天线均需要具有低方向性系数,天线之间需要具有较好的隔离度,能够实现在紧凑的空间内布置多个天线,同时可以实现低方向系数和高隔离度。
图4、图5和图6所示为本申请一种实施方式提供的天线组件的第一天线和第二天线的位置关系示意图,图4为天线组件10的一个方向的立体示意图,图5为天线组件10的一个方向(例如竖直方向)的平面图,图6为天线组件10的另一个方向(例如水平方向)的平面图。参阅图4、图5和图6,天线组件10包括一个第一天线20和四个第二天线30,其它实施方式中,第二天线30的数量也可以为一个、两个、三个或更多个。
一种实施方式中,第一天线20形成在至少一个第一面S1上。参阅图5,一种实施方式中,第一天线20形成在两个第一面S1上,这两个第一面S1可以相互平行,图5中用虚线表示两个第一面S1,实际产品中,第一面S1可以为介质板的两个表面,或者其它介质体的两个表面。当第一面S1为一个时,且第一 面S1为平面状(指的是第一面S1的延伸方向大致呈平面状,并非绝对的平面,允许制作工艺公差等因素导致的局部凹凸变形或具有微结构特征)时,垂直于第一面S1的方向为第一方向A1。第一面S1也可以为非平面状,例如弧形面状或具有弯折形态的表面等等,对于非平面状的第一面而言,垂直于第一面S1中心区域的方向为第一方向A1,第一面S1为弧形面状,第一面S1的法线方向可以等同于垂直于第一面S1的方向,即第一方向A1。当第一面S1两个或两个以上时,第一面S1的层叠设置的方向为第一方向A1。图4和图5所示的实施方式中,第一面S1的数量为两个,且这两个第一面S1为相互平行的平面。
一种实施方式中,第一天线20和第二天线30均为偶极子天线。
第一天线20为磁偶极子天线,第二天线30为电偶极子天线。第一天线20和第二天线30均能实现电磁波的全向水平面的覆盖。
一种实施方式中,第一天线20为以第一中心轴X1为中心呈旋转对称结构,图4中穿过第一天线20的点划线示意性地代表第一中心轴X1。所述第一中心轴X1的延伸方向为第一方向A1,即第一中心轴X1垂直于第一面S1。其它实施方式中,第一天线20也可以为非旋转对称结构。如图6所示,第一天线20的辐射体分布在环形区域R内,此环形区域R的中心位于第一中心轴X1上,图6中两个虚线圆之间的面积示意性地代表为环形区域R,环形区域R并不限于圆环状的区域,也可以为轮廓为方形的环状区域,或轮廓为多边形的环状区域。
具体而言,如图4所示,第一天线20包括馈电单元21、功分单元22和辐射单元23。功分单元22连接在馈电单元21和辐射单元23之间,馈电单元21处用于设置第一馈电端口P1,或者馈电单元21可以为第一馈电端口P1,第一馈电端口P1用于和射频线缆电连接,射频线缆用于将射频芯片上的信号传送至第一天线20。本申请提供说明书附图中,用黑色实心圆示意性地表达馈电端口,并不代表馈电端口的具体的结构形态和位置。功分单元22用于将信号输送至辐射单元23。第一天线20的各部分的详细结构展开描述如下。
馈电单元21位于第一天线20的中心区域,一种实施方式中,馈电单元21在第一面S1上的延伸形态为圆形、方形、多边形等任意形态,馈电单元21的中心位置可以位于第一中心轴X1上。一种实施方式中,馈电单元21包括两部分,分别为位于其中一个第一面S1上的第一馈电片211和位于另一个第一面S1上的第二馈电片212,第一馈电片211和第二馈电片212可以相互平行,且沿第一方向A1正对设置,第一馈电片211和第二馈电片212的结构形态和尺寸可以相同,第一馈电片211和第二馈电片212的结构形态和尺寸也可以不同。一种实施方式中,第一馈电端口P1处的馈电架构为:射频线缆的外导体与第一馈电片211和第二馈电片212中的一个电连接,射频线缆的内导体与第一馈电片211和第二馈电片212中的另一个电连接,以实现将射频线缆中的信号传送至第一天线20。
辐射单元23位于馈电单元21和功分单元22的外围区域,所述辐射单元23包围所述功分单元22和所述馈电单元21。辐射单元23分布在一个环形区域R中,所述环形区域R包围所述功分单元22和所述馈电单元21,辐射单元23可以包括多个间隔设置的子单元231,相邻设置子单元231之间形成间隙24(第二天线30设置在此间隙24中)。所述第一天线20具有径向方向和周向方向,所述径向方向为从所述馈电单元21指向所述辐射单元23的方向,所述周向方向为所述辐射单元23形成的环绕路径的延伸方向,所述第二天线30沿所述第一方向在所述第一面上的垂直投影在所述周向方向上位于所述间隙24的范围内。本方案限定第二天线30和间隙24之间的具体的位置关系,通过在第一天线20的周向方向上,将第二天线30布置在间隙范围内,使得第二天线30对第一天线20的辐射效率无影响,实现天线之间的解耦,能够满足隔离度的需求。
每个子单元231都包括两个子单元枝节2311、2312,一种实施方式中,其中一个子单元枝节2311位于一个第一面S1上,另一个子单元枝节2312位于另一个第一面S1上。一种实施方式中,每个子单元231中的两个子单元枝节2311、2312沿圆周方向为拼接的关系(或者是部分重叠的关系、或者是搭接的关系)。图4所示的实施方式中,辐射单元23形成四个子单元231。每个子单元枝节2311、2312均呈弧形。子单元枝节2311、2312也可以为直线状、锯齿状等任意形态,本申请不限定子单元枝节2311、2312的具体的形态和尺寸。
功分单元22也包括两部分,分别为位于其中一个第一面S1上的第一功分组221和位于另一个第一面S1上的第二功分组222,第一功分组221和第二功分组222可以相互平行且沿第一方向A1正对设置,第一功分组221和第二功分组222的结构形态和尺寸可以相同,第一功分组221和第二功分组222的结构形态和尺寸也可以不同。图4所示的实施方式中,第一功分组221包括四个第一功分枝节2212,四个第一功分枝节2212的一端均连接至馈电单元21的第一馈电片211,四个第一功分枝节2212的另一端分别连接至 辐射单元23的设置在一个第一面S1上的子单元枝节2311,各第一功分枝节2212可以为直线状,也可以为曲线状或其它的延伸形态。第二功分组222包括四个第二功分枝节2222,而且这四个第二功分枝节2222与馈电单元21和辐射单元23的连接关系与第一功分组221中的第一功分枝节2212相同。
本申请具体实施方式中,第一天线20形成间隙24,所述间隙24沿所述第一方向A1贯穿所述第一面S1。具体的实施试方式中,相邻的辐射单元23的子单元231之间形成间隙24。间隙24的数量可以为多个且以所述第一中心轴X1为中心沿圆周方向间隔分布。图4所示的实施方式中,天线组件10具有四个间隙24。其它实施方式中,间隙24的数量可以为一个、两个、三个或更多个。
如图6所示,图6提供的示意图中,可以理解为在一个第一面S1上,天线组件10的分布的示意图,此实施方式中,第二天线30在第一面S1上的垂直投影位于间隙24的内部。如图4和图5所示,四个第二天线30中的每一个第二天线30均包括部分区域位于第一天线20的顶侧,四个第二天线30中的每一个第二天线30均包括部分区域位于第一天线20的底侧。一种实施方式中,每个第二天线30包括两段辐射枝部31,这两段辐射枝部31间隔设置在同一个面上,即第二天线30为共面的结构,一个第二天线30的两段辐射枝部31可以为结构形态及尺寸均相同的设计,两段辐射枝部31之间的间隔区域用于设置第二馈电端口P2,或者,两段辐射枝部31之间的间隔处构成第二馈电端口P2。第二馈电端口P2用于和射频线缆电连接,具体而言射频线缆的外导体电连接至这两段辐射枝部31中的一个上,射频线缆的内导体电连接至这两段辐射枝部31的另一个上。
一种实施方式中,第二天线30的两段辐射枝部31可以均为L形微带线结构,两段辐射枝部31之间的第二馈电端口P2可以设置在第一天线20形成的间隙24内部,两段辐射枝部31之间的第二馈电端口P2也可以设置在第一天线20的一侧,例如底侧。
图7、图8A、图8B、图8C和图9所示为图4所示的实施方式提供的天线组件10设置在介质板(可以理解为天线组件的绝缘支架)上的具体实施方式的示意图,可以理解为,介质板为承载第一天线20和第二天线30的载体,介质板还用于将天线组件10安装在通信设备的外壳内部,本申请不限于具体实施例提供的介质板作为天线组件10的绝缘支架,天线组件10的绝缘支架也可以为其它的介质基体,例如介质块状或筒状结构,等等。
结合参阅图4和图7,一种实施方式中,第一天线20设置在第一介质板40上,第一天线20分布在第一介质板40的顶部表面和底部表面,具体而言,第一天线20的馈电单元21的第一馈电片211位于第一介质板40的顶部表面,第一天线20的馈电单元21的第二馈电片212位于第一介质板40的底部表面。功分单元22的第一功分组221位于第一介质板40的顶部表面,功分单元22的第二功分组222位于第一介质板40的底部表面,图7中只能看到第一馈电片211和第一功分组221,第二馈电片212和第二功分组222位于第一介质板40的底部表面,且分别被第一馈电片211和第一功分组221遮挡。第一天线20的辐射单元23的每个子单元231中的一个子单元枝节2311位于顶部表面,每个子单元231中的另一个子单元枝节2312位于底部表面,图7中用虚线表示的图形代表位于底部表面上的子单元枝节2312,用填充剖面线的图形代表的子单元枝节2311、第一馈电片211和第一功分组221为设置在顶部表面的部分。
如图7所示,第一介质板40设有多个间隙24,此间隙24从第一介质板40的外边缘朝向第一介质板40的中心位置沿径向延伸,例如,图7所示的实施方式中,第一介质板40为圆板状结构,间隙24为通过在第一介质板40上切除部分材料形成,间隙24的开口位于第一介质板40的外边缘,间隙24呈直线状或矩形槽孔状。间隙24的数量与辐射单元23的子单元231的数量一一对应设置,间隙24形成在相邻的两个子单元231之间。间隙24的数量也第二天线30的数量一一对应设置,每个间隙24均用于安装一个对应的第二天线30。本申请通过设置在第一介质板40上的间隙24形成第一天线20的用于设置第二天线30的间隙。图7所示的实施方式中,第一介质板40包括中间介质部41和多个边缘介质部42,多个边缘介质部42环绕在中间介质部41的外围。间隙24包括相对设置的开口端241和底端242,底端242位于开口端241和馈电单元21之间,底端242和馈电单元21之间为中间介质部41,可以理解为馈电单元21位于中间介质部41的中心位置,中间介质部41使得第一介质板40构成一体式的结构。相邻的边缘介质部42之间通过切缝相隔开,每个边缘介质部42对应设置一个辐射单元23的一个子单元231,功分单元22的一部分形成在中间介质部41上,功分单元22的另一部分形成在边缘介质部42上。
参阅图8A和图8B,一种实施方式中,第二天线30设置在第二介质板50上,且第二天线30分布在第二介质板50的同一个面上,第二介质板50可以为矩形板状结构,第二天线30为沿着第二介质板50的边 缘延伸的微带线架构,第二馈电端口P2可以位于矩形的第二介质板50的长边的中心位置。其它实施方式中,参阅图8C,第二天线30也可以分布在第二介质板50的不同面上,例如,第二天线30的两段辐射枝部31中的一段位于第二介质板50的顶面,第二天线30的两段辐射枝部31中的另一段位于第二介质板50的底部。
参阅图9,第二介质板50组装在第一介质板40的间隙24中,也可以理解为,第二介质板50设置在第一天线20所形成的间隙24中。本申请一种实施方式中,第二介质板50的厚度和第一介质板40上的切缝的宽度相同或近似相同,第二介质板50插入间隙24中且和第一介质板40组装为一体式架构。一种实施方式中,第一介质板40和第二介质板50垂直。图9所示的实施方式中,第二介质板50的数量为四个,四个第二介质板50沿第一介质板40的径向方向两两相对设置,且相对设置的两个第二介质板50可以共面。也可以理解为,以第一天线20的第一中心轴X1为中心,相邻的两个第二介质板50之间的夹角为90度。图9所示的实施方式中,第二介质板50包括相对设置的正面和背面,第二天线30位于第二介质板50的正面,相邻的两个第二介质板50中,其中一个第二介质板50的正面朝向另一个第二介质板50的背面。
参阅图10A、图10B和图10C和图10D,图10A为天线组件为单独的第一天线构成的情况下的第一天线的方向图,图10B为天线组件为四个第二天线构成的情况下的第二天线的方向图,图10C为天线组件包括第一天线和四个第二天线构成的情况下的第一天线的方向图,图10D为天线组件包括第一天线和四个第二天线构成的情况下的第二天线的方向图。对比图10A和图10C,可以看出,本申请将第一天线和四个第二天线结合为一体,且设置为部分所述第二天线位于所述第一天线的顶侧,部分所述第二天线位于所述第一天线的底侧的架构,对第一天线的方向图几乎无影响,有利于保证第一天线的方向图的保真,实现第一天线的低方向性系数。对比图10B和图10D,可以看出,本申请将第一天线和四个第二天线结合为一体,且设置为部分所述第二天线位于所述第一天线的顶侧,部分所述第二天线位于所述第一天线的底侧的架构,对第二天线的方向图也几乎无影响,有利于保证第二天线的方向图的保真,实现第二天线的低方向性系数。
图11至图15所示为本申请一种实施方式提供的天线组件10的第一天线20和第二天线30的位置关系示意图,图11和图12分别为天线组件10的两个方向的立体示意图,图13为天线组件10的一个方向(例如竖直方向)的平面图,图14和图15为天线组件10的另一个方向(例如水平方向)的俯视平面图和仰视平面图。参阅图11、图12、图13、图14和图15,本实施方式中,天线组件10包括一个第一天线20和三个第二天线30。
本实施方式提供的第一天线20和图4所示的实施方式提供的第一天线20的部分区别在于:功分单元22的具体架构不同、辐射单元23的子单元231的数量和分布不同、及第一天线20形成的间隙24的数量不同。参阅图11、图12、图14和图15,第一天线20的功分单元22中的每个功分组(包括第一功分组221和第二功分组222)均具有三个功分枝节,三个功分枝节中的相邻的两个功分枝节之间夹角为120度。相应地,辐射单元23的子单元231的数量为三个,三个子单元231中的相邻的两个之间形成间隙24,因此间隙24的数量为三个。第二天线30的数量为三个,且分别位于第一天线20的三个间隙24位置处。
本实施方式中,天线组件10还包括附加枝节60,附加枝节60连接在相邻的两个第二天线30之间,用于实现两个第二天线30之间的解偶。所述附加枝节60和所述第二天线30的连接位置和所述第二馈电端口P2之间的距离D1范围为0-3mm。一种实施方式中,如图12所示,距离D1可以为附加枝节60和第二天线30连接位置的中心点与第二馈电端口P2的中心点之间的距离。参阅图11和图12,一种实施方式中,天线组件10的附加枝节60包括分别连接至三个第二天线30的第一段附加枝节61、第二段附加枝节62和第三段附加枝节63,第一段附加枝节61连接至第一个第二天线30的第二馈电端口P2的位置(或者第二馈电端口的附近),第二段附加枝节62连接是第二个第二天线30的第二馈电端口P2的位置(或者第二馈电端口的附近),第三段附加枝节63连接是第三个第二天线30的第二馈电端口P2的位置(或者第二馈电端口的附近)。一种实施方式中,第一段附加枝节61、第二段附加枝节62、第三段附加枝节63均呈直线状。其它实施方式中,第一段附加枝节61、第二段附加枝节62、第三段附加枝节63也可以为曲线状、具有弯折形态的线状等任何形态,本申请不做具体的限定。第一段附加枝节61和第二段附加枝节62构成第一个第二天线30和第二个第二天线30之间的附加枝节,第一段附加枝节61和第二段附加枝节62可以互连为一体,本申请一种实施方式可以通过互连为一体的附加枝节,实现两个第二天线30之间的解耦,具体而言,第二天线30流入电流的过程中,从附加枝节60流入的电流与原始的耦合电流反向抵消,可以实现两个第二天线30之间的隔离度得到提升,例如,本方案使得两个第二天线30之间的隔离度优化至-13dB,实现两个第二天线30之间的解耦。
如图13所示,第一段附加枝节61和第二段附加枝节62之间也可以通过附加枝节间隙601相隔开。 第二段附加枝节62和第三段附加枝节63之间也可以通过附加枝节间隙隔开,第一段附加枝节61和第三段附加枝节63之间也可以通过附加枝节间隙隔开,所述附加枝节间隙601的尺寸范围为:0.1mm-2mm。本方案通过设置附加枝节间隙,相当于在第一段附加枝节61和第二段附加枝节62之间串连一个电容的作用,在第二天线30的工作频段范围内,本方案能够提升隔离度,例如,本方案能使得两个第二天线30之间的隔离度优化至-18dB以上,因此,本方案有利于提升两个第二天线30之间的解耦效率。
参阅图11、图12和图15,在第一方向上,第一段附加枝节的远离第二天线的末端、第二段附加枝节的远离第二天线的末端和第三段附加枝节的远离第二天线的末端均和第一天线的馈电单元21正对,也可以理解为:第一段附加枝节61的远离第二天线30的末端、第二段附加枝节63的远离第二天线30的末端和第三段附加枝节63的远离第二天线的末端均位于第一天线的馈电单元21的沿第一方向A1的垂直投影范围内。如图14所示,第一段附加枝节61的远离第二天线30的末端、第二段附加枝节62的远离第二天线30的末端和第三段附加枝节63的远离第二天线30的末端被馈电单元21遮挡,如图15所示,第一段附加枝节61的远离第二天线30的末端、第二段附加枝节62的远离第二天线30的末端和第三段附加枝节63的远离第二天线30的末端位于馈电单元21的外轮廓范围内。
参阅图13,位于第一天线20顶侧的部分第二天线30的面积小于位于第一天线20的底侧的部分第二天线30的面积,图13中,第一天线20的上方的空间为第一天线20的顶侧,第一天线20下方的空间为第一天线20的底侧。附加枝节60位于第一天线20的底侧,且和第一天线20之间间隔设置形成间隔空间,此间隔空间用于为第一馈电端口P1预留组装射频线缆的避让空间。
图16、图17、图18、图19和图20所示为图11所示的实施方式提供的天线组件设置在介质板(可以理解为天线组件的绝缘支架)上的示意图,可以理解为,介质板为承载第一天线和第二天线的载体,介质板还用于将天线组装安装在通信设置的外壳内部,本申请不限于具体实施例提供的介质板作为天线组件的绝缘支架,天线组件的绝缘支架也可以为其它的介质基体,例如介质块状或筒状结构,等等。
图16所示的实施方式与图9所示的实施方式的区别在于,用于承载第一天线20的第一介质板40上的间隙的数量不同。图16所示的实施方式中,第一介质板40上具有三个间隙24,三个间隙24用于一一对应地安装三个第二介质板50,每个第二介质板50上均设置一个第二天线30。第二天线30在第二介质板50上的设置的方式与图8A所示的实施方式相同,即第二天线30设置在第二介质板50的一个表面上。当然,其它实施方式中,第二天线30也可以设置在第二介质板50上的两层或多层。
图16和图17所示的实施方式中,三个第二介质板50互连为一体,三个第二介质板50交汇连接处构成连接结构501,连接结构501在第一方向A1上排列在第一天线20的馈电单元21的底侧,而且连接结构501和馈电单元21之间设有间隔空间502,此间隔空间502用于容纳连接在第一馈电端口P1处的射频线缆,也可以理解为,三个第二介质板50的连接处的连接结构501和第一介质板40之间形成用于避开第一馈电端口P1的射频线缆的间隔空间502。
参阅图16、图17和图18,一种实施方式中,第二介质板50和第一介质板40相交设置,第二介质板50的顶部边缘区域位于第一介质板40的顶侧,第二介质板50的大部分区域位于第一介质板40的底侧。第二馈电端口P2的位置与第一介质板40的底部表面之间设有间隔空间,由于第一馈电端口P1的位置可以在第一介质板40的底部表面,本方案将第二馈电端口P2和第一馈电端口P1在第一方向A1上错位设置,有利于方便接线,本方案能够避免第二馈电端口P2和第一馈电端口P1在同一表面上的情况下容易产生的接线空间排布紧密,导致第一馈电端口P1和第二馈电端口P2之间隔离度差或射频线缆布线杂乱等不良因素。
图11至图20所示的实施方式为图4至图6所示的实施方式的变形,这些实施方式均利用第一天线20和第二天线30交叉布置,即部分所述第二天线30位于所述第一天线20的顶侧,部分所述第二天线30位于所述第一天线20的底侧的方式,一方面实现多天线构成的天线组件10的整体小尺寸设计,而且在紧凑的空间下,实现低方向系统和高隔离度的天线布局。不但节约了空间,还通过第一天线20和第二天线30在空间上的布置关系,保证各天线的方向图的保真,实现低方向性系数,而且天线之间的隔离度也能满足设计的需求。
图21至图26所示为本申请一种实施方式提供的天线组件10的第一天线20和第二天线30、第三天线70的位置关系示意图,图21和图22分别为天线组件10的两个方向的立体示意图,图23和图24分别为天线组件10的俯视平面图和仰视平面图,图25和图26分别为天线组件10的两个不同的方向的侧视图。参阅图21、图22、图23、图24、图25和图26,本实施方式中,天线组件10包括一个第一天线20、三 个第二天线30和一个第三天线70。一种实施方式中,第一天线20通过一个第一馈电端口P1能够激励的电磁波信号的工作频率为第一频段和第二频段,例如第一频段包括2.4G-2.5G,第二频段包括5.15G-5.85G。各第二天线30的第二馈电端口P2能够激励的电磁波信号的工作频率包括第一频段和第二频段,同样,第一频段可以包括2.4G-2.5G,第二频段可以包括5.15G-5.85G。各第二天线30上还设有第三馈电端口P3,第三馈电端口P3用于激励第二天线30上的部分辐射部的电磁波信号的工作频率为第三频段,例如,第三频段包括5.925G-7.125G。一种实施方式中,天线组件10还包括第四馈电端口P4,第四馈电端口P4用于激励第三天线70的工作频段在第三频段,例如,第三频段包括5.925G-7.125G。
参阅图21和图22,一种实施方式中,通过将一个第一天线20、三个第二天线30和一个第三天线70互连为一体,实现天线组件10的结构的一体化和紧凑性。参阅图23和图24,三个第二天线30设置在第一天线20形成的间隙24处。如图25和图26所示,第二天线30的部分位于第一天线20的顶侧,部分第二天线30位于第一天线20的底侧,第三天线70也是类似的设计,部分第三天线70位于第一天线20的顶侧,部分第三天线70位于第一天线20的底侧。对于第二天线30而言,大部分区域分布在第一天线20的底侧,小部分区域分布在第一天线20的顶侧。对于第三天线70而言,大部分区域分布在第一天线20的顶侧,小部分区域分布在第一天线20的底侧。第三天线70连接至第一天线20,可以且与第一天线20共体设计,通过这样的密集度较大的集成方式,实现多天线共体设计,使得节约空间的优势更为明显,而且在紧凑的空间布局架构也仍然能保证各天线的辐射效率、低方向性系数和隔离度。
图21和图22所示的实施方式中,第一天线20以第一中心轴X1为中心呈旋转对称分布在第一面S1上,与前述实施方式类似,本实施方式中的第一天线20也分布在两个第一面S1上,第一中心轴X1的延伸方向为第一方向A1。参阅图23和图24,第一天线20包括馈电单元21、功分单元22和辐射单元23,功分单元22连接在馈电单元21和辐射单元23之间,馈电单元21位于第一天线20的中心区域,第一中心轴X1为馈电单元21的中心轴,辐射单元23包括第一辐射枝节23A和第二辐射枝节23B,第一辐射枝节23A位于第二辐射枝节23B的外围,第一辐射枝节23A距离第一中心轴X1的距离大于第二辐射枝节23B距离第一中心轴X1的距离。第一辐射枝节23A的电长度大于第二辐射枝节23B的电长度。第一辐射枝节23A和第二辐射枝节23B沿径向方向间隔分布。图21所示的实施方式中,第一天线20形成三个间隙24,此间隙24用于设置第二天线30,辐射单元23包括三个子单元231,第一辐射枝节23A构成三个子单元231的一部分,第二辐射枝节23B构成三个子单元231的一部分。第一馈电端口P1在馈电单元21位置处为第一天线20馈电,第一馈电端口P1的馈电能够同时激励第一辐射枝节23A和第二辐射枝节23B,使得第一辐射枝节23A工作在第一频段,所述第二辐射枝节23B工作在第二频段,第一频段的频率低于第二频段的频率,例如第一频段可以包括2.4G-2.5G,第二频段可以包括5.15G-5.85G。
图21所示的实施方式中,第二天线30的数量为三个,每个第二天线30包括第一辐射部30A、第二辐射部30B和第三辐射部30C,一种实施方式中,第一辐射部30A、第二辐射部30B和第三辐射部30C可以共板设置,共板设置可以理解为设置在同一个板上的不同的面,或者设置在同一个板上的同一个面。图21所示的实施方式中,第一辐射部30A、第二辐射部30B和第三辐射部30C均设置在两个面上,相较将第二天线30设置在同一个面上,本实施方式有利于第二天线30整体的小尺寸的设计。所述第一辐射部30A位于所述第二辐射部30B和所述第三辐射部30C之间,所述第一辐射部30A和所述第二辐射部30B之间的距离小于所述第一辐射部30A和所述第三辐射部30C之间的距离,所述第三辐射部30C位于所述第一辐射部30A和所述第一中心轴X1之间,且所述第三辐射部30C和所述第一中心轴X1之间的距离小于所述第三辐射部30C和所述第一辐射部30A之间的距离,所述第二馈电端口P2为所述第一辐射部30A和所述第二辐射部30B馈电,所述天线组件10还包括第四馈电端口P4,所述第四馈电端口P4为所述第三辐射部30C馈电。一种实施方式中,所述第一辐射部30A的工作频段为可以包括2.4G-2.5G,所述第二辐射部30B的工作频段可以包括5.15G-5.85G,所述第三辐射部30C的工作频段包括5.925G-7.125G。
图27所示为本申请一种具体实施方式提供的天线组件中的一个第二天线30的示意图。参阅图27,一种实施方式中,第二天线包括第一辐射部30A、第二辐射部30B、第三辐射部30C和馈电枝节30D。馈电枝节30D可以为第二馈电端口P2和第四馈电端口P4之间的传输线部分,或者也可以理解为:第四馈电端口P4和第二馈电端口P2设置在所述馈电枝节30D上。所述第一辐射部30A、所述第二辐射部30B和所述第三辐射部30C均对称分布在所述馈电枝节30D的两侧,所述馈电枝节30D的一端连接所述第三辐射部30C,所述馈电枝节30D的另一端连接至所述第一辐射部30A和所述第三辐射部30C。
所述第一辐射部30A包括第一段30A1和第二段30A2,所述第一段30A1和所述第二段30A2分布在所述馈电枝节30D的同侧,所述第二段30A2和所述馈电枝节30D间隔设置,所述第一段30A1的两端分别连 接所述馈电枝节30D和所述第二段30A2,所述第一段30A1和所述第二段30A2不共线,第一段30A1的数量为两个且对称分布在馈电枝节30D的两侧,第二段30A2的数量也是两个,亦对称分布在馈电枝节30D的两侧。一种实施方式中,所述第二段30A2平行于所述馈电枝节30D,所述第一段30A1和所述馈电枝节30D之间的夹角为锐角。第二段30A2位于第一段30A1远离第二辐射部30B的一侧,第二段30A2位于第一段30A1面对第三辐射部30C的一侧。图27所示的实施方式中,第二辐射部30B包括对称分布在馈电枝节30D的两侧的L形枝节,第三辐射部30C包括对称分布在馈电枝节30D的两侧的两个子枝节,每个子枝节包括两段相互垂直的线状结构。本申请不限定天线组件中各辐射枝节的具体形态,第二天线30的第一辐射部30A、第二辐射部30B、第三辐射部30C的具体形态不限于前述内容。
参阅图27,所述第二天线30还包括延伸枝节30E,延伸枝节30E的数量为两个,且对称分布在馈电枝节30D的两侧。所述延伸枝节30E的一端连接至第一辐射部30A的所述第二段30A2,所述延伸枝节30E的另一端朝向所述第二辐射部30B且和所述第二辐射部30B之间形成间隔缝隙,所述延伸枝节30E、所述第一段30A1和所述第二辐射部30B依次连接且包围形成包围空间,所述间隔缝隙为所述包围空间的开口,所述延伸枝节30E用于优化所述第二辐射部30B产生的电磁波波束的方向图。一种具体的实施方式中,所述延伸枝节30E和所述第二段30A2共线。
一种具体的实施方式中,参阅图28,图28示意性地表达了馈电枝节30D的侧视图,馈电枝节30D包括间隔设置的两条馈电线30D1、30D2,这两条馈电线30D1、30D2可以相互平行,馈电枝节30D的最左端可以为第二馈电端口P2,且用于连接第一辐射部30A,馈电枝节30D的最右端可以为第四馈电端口P 4,且用于连接第三辐射部30C。所述馈电枝节30D上设有接地结构30D3,所述接地结构30D3距离所述第二馈电端口P2的距离为所述第一辐射部30A的工作频段的四分之一介质波长,所述接地结构30D3距离所述第四馈电端口P4的距离为所述第三辐射部30C的工作频段的四分之一介质波长。一种具体的实施方式中,本申请实施例子提供的天线组件为WiFi天线,所述接地结构距离所述第二馈电端口的距离为:大于等于7mm小于等于8mm。例如,一种具体的实施方式中,所述接地结构距离所述第二馈电端口的距离为7.5mm。所述接地结构距离所述第四馈电端口的距离为:大于等于3mm小于等于4mm。例如,一种具体的实施方式中,所述接地结构距离所述第四馈电端口的距离为3.5mm。
图28中接地结构30D3包括两个接地柱,第二馈电端口P2位于馈电枝节30D的最左端的位置,第四馈电端口P4位于馈电枝节30D最右端的位置。左侧的接地结构30D3与馈电枝节30D的最左端之间的距离L1为第一辐射部30A的工作频段的四分之一波长,右侧的接地结构30D3与馈电枝节30D的最右端之间的距离L2为第三辐射部30C的工作频段的四分之一波长。其它实施方式中,接地结构30D3的数量可以为一个或多个。
图21和图22所示的实施方式中,天线组件10还包括第三天线70,所述第三天线70的辐射体为第三辐射枝节70A,所述第三辐射枝节70A连接至所述第一天线20。
图29和图30示意性地表达了第一天线20和第三天线70之间的位置关系及具体结构的示意图。参阅图29和图30,在第一天线20的径向方向上,第三天线70的辐射体,即第三辐射枝节70A,位于第一天线20的第二辐射枝节23B包围的区域内,第三辐射枝节70A和第一天线20的馈电单元21部分重叠设置。结合参阅图29、图30和图31,在第一天线20的第一中心轴X1的延伸方向上(即第一方向A1上),部分第三辐射枝节70A位于第一天线20的顶侧,部分第三辐射枝节70A位于第一天线20的底侧。所述天线组件10还第三馈电端口P3,所述第三馈电端口P3为所述第三辐射枝节70A馈电。图29显示了第一天线20顶侧空间的示意图,图30显示了第一天线20底侧空间的示意图,第三天线70的第三辐射枝节70A的大部分区域分布在第一天线20的顶侧,小部分区域延伸至第一天线20的底侧。对比图21和图22所示,第二天线30的大部分区域分布在第一天线20的底侧,小部分区域延伸至第一天线20的顶侧。本申请具体实施方式采用这种不对称的分布方向,合理地布局第二天线30和第三天线70的位置,不但有利于实现天线组件10整体尺寸的小型化,还有利于保证第二天线30、第三天线70及第一天线20的方向图的低方向性系数,能保证各天线的水平面的全覆盖,保证辐射性能的均衡性。
参阅图29、图30和图31,位于第一天线20顶侧的第三辐射枝节70A与第一天线20的馈电单元21接触,第三辐射枝节70A从第一天线20的间隙24处,穿过间隙24,并延伸至第一天线20的底侧,且在第一天线20的底侧的部分第三辐射枝节70A与馈电单元21之间间隔设置,即不接触。天线组件10还包括解耦枝节80,所述解耦枝节80的部分在第一天线20的顶侧电连接所述第三辐射枝节70A,所述解耦枝节80的另一部分在第一天线20的底侧电连接所述第一天线20的馈电单元21,所述解耦枝节80用于提升所述第一天线20和所述第三辐射枝节70A之间的隔离度。如图31所示的具体实施方式中,解耦枝节80 呈L形。一种实施方式中,解耦枝节80包括第一解耦段81和第二解耦段82,第一解耦段81在第一天线20的底侧且与第一天线20的馈电单元21接触,第一解耦段81的延伸方向可以为第一天线20的径向方向,第二解耦段82穿过第一天线20且连接在第一解耦段81和第三辐射枝节70A之间。第二解耦段82的延伸方向可以为第一方向A1,即第一天线20的第一中心轴X1延伸的方向。
一种实施方式中,第一解耦段81和第三辐射枝节70A之间沿第一方向A1的垂直间距与第一天线20在第一方向上的厚度尺寸相同,第一解耦段81和第三辐射枝节70A均和第一天线20接触。一种实施方式中,第一解耦段81和第三辐射枝节70A之间沿第一方向A1的垂直间距稍小于第一天线20在第一方向A1上的厚度尺寸,这样,第一解耦段81和第三辐射枝节70A对第一天线20具有夹持力,可以保证第一天线20和第三天线70之间电连接的可靠性。
参阅图31A和图31B,图31A中左侧图为第三天线70不设置解耦枝节80的电流分布图,图31A中右侧图为第三天线70设置解耦枝节80的电流分布图,图31B为增加解耦枝节前后的隔离度对比图。通过图31A可以看出,当第一天线被激励的情况下,有一部分电流通过流到第三天线的馈电端口,即第四馈电端口位置,导致第一天线和第三天线之间的隔离度较差。当设置解耦枝节的情况下,解耦枝节对流到第三天线的电流具有抵消的作用,解耦枝节的增加,相当于增加了一条电流路径,从电流分布图对比可以看出,增加解耦枝节后从第一天线流入第三天线的电流明显减少了,这种提高隔离度的方式具有宽带的优势,能够使隔离度在5-7G整个宽频内有10dB以上的优化,整体隔离度可以达到-28dB。
参阅图32,一种实施方式中,天线组件10还包括附加枝节60,附加枝节60连接在两个第二天线30之间,实现所述两个第二天线30之间的解耦。连接在所述两个第二天线30之间的所述附加枝节60包括第一段附加枝节61和第二段附加枝节62,所述第一段附加枝节61和所述第二段附加枝节62之间通过附加枝节间隙601相隔开,所述第一段附加枝节61连接至其中一个所述第二天线30,所述第二段附加枝节62连接至另一个所述第二天线30。所述附加枝节间隙601的尺寸范围为:0.1mm-2mm。附加枝节间隙601的尺寸可以理解为第一段附加枝节61和第二段附加枝节62的自由末端之间的最短直线距离。所述第一段附加枝节61和第二段附加枝节62可以为直线状、曲线状、具有弯折形态的线状中的任意一种或组合。第一段附加枝节61上和/或第二段附加枝节62上可以设置集中器件,例如电容、电感等器件。
本实施方式中,附加枝节60和第二天线30的连接位置靠近第四馈电端口P4,附加枝节60和第二天线30的连接位置距离第四馈电端口P4的垂直距离可以为:0-3mm。一种具体实施方式中,附加枝节60和馈电枝节30D共线,二者均为直线状。其它实施方式中,附加枝节60也可以为其它的形态,例如曲线状,具有弯折形态的线状等等。
参阅图32A、图32B和图32C,这三个图分别为:两个第二天线之间不设附加枝节的电流分布图、两个第二天线之间设附加枝节(但附加枝节上无间隙)的电流分布图、两个第二天线之间设附加枝节且附加枝节上具有附加枝节间隙的电流分布图。从这几个图可以看出,本申请通过在两个第二天线之间设置附加枝节,从附加枝节流入的电流与原始的耦合电流部分反射抵消,可以提升第二天线之间的隔离度。通过设置附加枝节间隙,相当于在附加枝节上串连电容结构,能够在工作频段范围内提升隔离度。
参阅图32D,图32D为图32A、图32B和图32C所示的状态下的隔离度对比。通过图32D可以看出,在不设附加枝节的情况下,相邻的天线之间的隔离度仅在-13dB。通过设置附加枝节,天线之间的隔离度可以达到-15dB。通过在附加枝节上设附加枝节间隙,天线之间的隔离度可以达到-18dB以上。
图21所示的一种实施方式中,天线组件10中的第二天线30的数量为三个,其它实施方式中,第二天线30的数量也可以为一个、两个或更多个。以天线组件10具有三个第二天线30为例进行说明,一种具体实施方式中,每一个第二天线30均设置在一个单独的第二介质板上,其中一个第二介质板上不但设有一个第二天线30,还设有一个第三天线70,其余的第二介质板上就只设有一个第二天线30。一个第二天线30和一个第三天线70共用的第二介质板称为板一,只设置一个第二天线30的第二介质板称为板二。
图33和图34所示为一个第二天线和一个第三天线共板设置方案的第二介质板(即板一)的正面视图和反面视图。参阅图33和图34,第二介质板50(板一)包括主体部51和边角部52,所述主体部51用于设置所述第二天线30,所述边角部52用于设置第三天线70,即第三辐射枝节70A,所述边角部52连接至所述主体部51的一个角落位置,所述边角部52设有切缝521。切缝521用于收容第一介质板40的中心区域。切缝521形成在部分第三辐射枝节70A和部分解耦枝节80之间。
和第三天线70共板设置的第二天线30的馈电枝节30D的延伸路径包括弯折形态,图33和图34所示 的实施方式中,馈电枝节30D包括三部分传输段,分别为在第二馈电端口P2和第四馈电端口P4之间依次连接第一传输段30D1、第二传输段30D2和第三传输段30D3,第二传输段30D2相对第一传输段30D1弯折延伸,第三传输段30D3相对第二传输段30D2弯折延伸,例如第二传输段30D2垂直连接在第一传输段30D1和第三传输段30D3之间,第一传输段30D1和第三传输段30D3可以相互平行。馈电枝节30D的弯折形态的设置有利于隔离第二天线30的第三辐射部30C和第三天线70,使得第四馈电端口P4和第三馈电端口P3之间保持在安全距离范围。例如,第三天线70设置在第二介质板50(板一)的右上角,第三辐射部30C靠近第二介质板50(板一)的右下角。因为第三辐射部30C和第三天线70的工作频段均为第三频段,为了保证它们的彼此独立,通过馈电枝节30D的弯折形态的设置,拉远第三辐射部30C和第三天线70之间的物理距离,可以保证两个天线的辐射性能均满足使用需求。
结合图33和图34,一种实施方式中,第二天线30分布在第二介质板50(板一)的正反两面上,第三天线70只设置在第二介质板50(板一)的一个表面,如图34所示的,第三天线70位于第二介质板50(板一)的边角部52的反面,边角部52的正面可以不设置任何传输线或辐射枝节。其它实施方式中,第三天线70也可以分布在边角部52的正反两面。
图35和图36所示为第二介质板50(板二)的正反面示意图。结合图35和图36,板二为长方形板状结构,板二上设置的第二天线30的馈电枝节30D与板一上设置的第二天线30的馈电枝节30D的形态不同,板二上设置的第二天线30的馈电枝节30D呈直线状,且位于板二的宽度方向的中心位置,馈电枝节30D在板二上的延伸方向为板二的长度方向。板二的一个角落位置设有缺口522,缺口522用于与第一介质板40的中心区域配合,实现第二介质板50(板二)和第一介质板40之间的组装连接。第二介质板50(板二)和第一介质板40组装后的状态下,第二介质板50(板二)插入第一介质板40的间隙24中,且第一介质板40的中心区域搭接在第二介质板50(板二)的缺口522位置,形成稳固的连接关系。
参阅图37,一种实施方式中,第一天线20设置在第一介质板40上,第一介质板40上设有间隙24,例如间隙24的数量为3个。一种实施方式中,第一介质板40呈圆板状,间隙24从第一介质板40的外边缘向中心区域延伸,间隙24的开口端位于第一介质板40的外边缘,间隙24的底端和第一天线20的馈电单元21之间间隔设置。
参阅图38和图39,将第二介质板50安装至第一介质板40的间隙24位置,对于板一而言,通过板一上的切缝521和第一介质板40的中心区域的配合,即第一介质板40的中心区域插入切缝521中,实现板一和第一介质板40之间的连接,所述中心区域的顶部表面和底部表面均为所述第一天线20的馈电单元,部分所述中心区域插入所述切缝521中,使得所述第三辐射枝节70A的部分与所述中心区域的顶部表面的部分所述第一天线的馈电单元接触。对于板二而言,板二的缺口522和第一介质板40的中心区域配合,使得第一介质板40的中心区域搭接在缺口522处,实现板二和第一介质板40之间的连接。
参阅图40,其中一个第二介质板50(板一)的部分区域延伸至第一介质板40的中心区域中的第一天线20的馈电单元21内部,另两个第二介质板50(板二)的位于第一天线20的馈电单元21的外围。参阅图41,三个第二介质板50(包括板一和板二)的部分区域均延伸至第一介质板40的中心区域中的第一天线20的馈电单元21内部。
参阅图42和图43,图42所示的实施方式中,图42的左侧图表示天线组件只包括三个第二天线,图42的右侧图表示只有三个第二天线的架构下的2.45G电流分布示意图。图43所示的实施方式中,图43的左侧图表示天线组件包括三个第二天线和一个第一天线,图43的右侧图表示在三个第二天线的基础上加入一个第一天线的情况下的2.45G电流分布图。参阅图44,图44为三个第二天线的基础上加入一个第一天线的情况下的隔离度曲线图。通过图44可以看出,通过在第二天线中间引入第一天线,且第一天线位于第二天线的第一辐射部的第二段附近位置,隔离度能提升至-15dB以上,主要原因是2.4G的第一辐射部的电流有一部分耦合至第一天线上,阻断了耦合到相邻的第二天线上的部分电流,因此提升了相邻的第二天线之间的隔离度。
图21至图41所示的实施方式提供的天线组件为一种共体多天线结构,通过空间垂直放置第二天线、第三天线和第一天线实现高隔离度的三频Wi-Fi 4*4MIMO覆盖,本申请通过在保持双频天线(例如2.4G和5G)方案的空间尺寸设计范围内,增加6E频段的方案,实现了在有限的空间内布置更多的天线架构,有利于天线组件整体结构紧凑性。一种具体的设计架构下,其中三个第二天线两两间隔120度,且整体与第一天线垂直放置,具体为利用第一天线形成的间隙来插入第二天线,即第二天线和第一天线正交设置,部分第二天线位于第一天线的顶侧,部分第二天线位于第一天线的底侧,此种设计方案更加明显地可以节约空间,获得小型化的天线组件。本申请具体实施方式中通过增设第三天线,第三天线与其中一个第二天 线共板且电连接第一天线的馈电单元21,增加6E频段的天线,使得6E频段的天线的总的数量与其它频段的天线的数量相同,本申请提供的天线组件能够覆盖的三个频段的信号均具有较稳定、较均衡的信号覆盖能力。
图21至图41所示的实施方式提供的天线组件为一种共体多天线结构,第一馈电端口P1、第二馈电端口P2、第三馈电端口P3和第四馈电端口P4的数量共为8个,其中第二馈电端口P2和第四馈电端口P4的数量均为三个,第一馈电端口P1和第三馈电端口P3的数量均为一个。天线的辐射结构设置在四个介质板上,其中一个为第一介质板40,另三个为第二介质板50,每个介质板上均设置两个馈电端口。本实施方式实现了一种共体多馈八WI-FI天线方案,能够在紧凑的空间下实现低方向性系数。第一馈电端口P1和三个第二馈电端口P2的馈电均能激励两个频段(第一频段和第二频段)的电磁波信号,第三馈电端口P3和三个第四馈电端口P4的馈电能激励第三频段的电磁波信号。本实施方式提供的天线组件中的各天线均满足全向水平面覆盖。本实施方式提供的天线组件的具体结构不限于前述内容,可拓展为N天线的结构,即利用第一天线的N个间隙来插入N个第二天线,整体形成N+1MIMO天线的覆盖。
参阅图45,图45所示为第二天线构成的三频天线架构在三个频段的工作状态下的S参数图,从图45可以看出,第二天线在第一频段、第二频段和第三频段下均满足使用需求。
参阅图46,图46所示为三个第二天线在三个频段下的电流分布图。从图46可以看出,第二天线能够激励出三个频段的电磁波信号,且不同的辐射部之间的隔离度较好。
参阅图47,图47所示为三个第二天线在三个频段下的方向图,从图47可以看出,第二天线在三个频段下的方向图的方向性都满足需求,特别是2.45G和5.3G这两个工作频段下,方向图没有凹坑,具有低方向性系数,6.5G工作频段下,虽然局部区域有凹坑,但整体满足全方向覆盖的需求。
参阅图48,图48所示为第一天线和第三天线构成的三频天线架构在三个频段工作状态下的S参数图,从图48可以看出,第一天线在第一频段和第二频段下,第三天线在第三频段下均满足使用需求。
参阅图49,图49所示为第一天线在第一频段和第二频段下的电流分布图,及第三天线在第三频段下的电流分布图。从图49可以看出第一天线和第三天线之间的隔离度较好。
参阅图50,图50所示为第一天线在第一频段和第二频段下的方向图,及第三天线在第三频段下的方向图。从图50可以看出,第一天线在第一频段和第二频段下,及第三天线在第三频段下的方向图的方向性都满足需求,特别是第一天线在2.45G工作频段下及第三天线在6.5G工作频段下,方向图没有凹坑,具有低方向性系数。第一天线在5.3G工作频段下,虽然局部区域有凹坑,但整体满足全方向覆盖的需求。
其它实施方式中,第二天线也可以只具有第一辐射部30A、第二辐射部30B和第二馈电端口馈电,即天线组件不包括第四馈电端口和第三辐射部30C。天线组件也不包括第三天线。这样的天线组件构成双频Wi-Fi 4*4 MIMO覆盖。
本申请提供的天线组件能够实现:1、在第一频段和第二频段下,天线组件的合路增益均为0dBi,在实际产品中无需退回功率;2、工作在第一频段和第二频段的天线的方向性系数小于3.5dBi;3、天线组件的方向图保真性较好,能够避免水平面凹点出现;4、多个近距离分布的同频或邻频天线之间的隔离度满足设计需求(高于15dBi)。本申请实施例提供的天线组件的具体应用的通信设备,可以为但不限于IOT(Internet of things)相关产品(例如CPE无线网关设备),也可以拓展应用到其它需要用到水平面方向图全向覆盖的天线场景。
以上已经描述了本申请的各实施例,上述说明是示例性的,并非穷尽性的,并且也不限于所披露的各实施例。在不偏离所说明的各实施例的范围和精神的情况下,对于本技术领域的普通技术人员来说许多修改和变更都是显而易见的。本文中所用术语的选择,旨在最好地解释各实施例的原理、实际应用或对市场中的技术改进,或者使本技术领域的其它普通技术人员能理解本文披露的各实施例。

Claims (19)

  1. 一种天线组件,其特征在于,包括:
    第一天线,形成在至少一个第一面上,垂直于所述第一面的方向为第一方向,所述第一天线包括馈电单元、功分单元和辐射单元,所述功分单元连接在所述馈电单元和所述辐射单元之间,所述辐射单元包围所述功分单元和所述馈电单元,所述辐射单元包括多个间隔设置的子单元,相邻的所述子单元之间形成间隙,所述间隙沿所述第一方向贯穿所述第一面;
    第一馈电端口,与所述馈电单元接通,用于为所述第一天线馈电;
    第二天线,设置在所述间隙的位置,部分所述第二天线在所述第一方向上位于所述第一天线的顶侧,部分所述第二天线在所述第一方向上位于所述第一天线的底侧;和
    第二馈电端口,用于为所述第二天线馈电。
  2. 根据权利要求1所述的天线组件,其特征在于,所述第一天线具有径向方向和周向方向,所述径向方向为从所述馈电单元指向所述辐射单元的方向,所述周向方向为所述辐射单元形成的环绕路径的延伸方向,所述第二天线沿所述第一方向在所述第一面上的垂直投影在所述周向方向上位于所述间隙的范围内。
  3. 根据权利要求1或2所述的天线组件,其特征在于,所述第一天线为偶极子天线,所述第二天线为偶极子天线。
  4. 根据权利要求1-3任一项所述的天线组件,其特征在于,所述第二天线的数量为多个且和所述间隙一一对应设置,所述第二馈电端口的数量为多个且和所述第二天线一一对应设置。
  5. 根据权利要求4所述的天线组件,其特征在于,所述天线组件包括附加枝节,所述附加枝节连接在相邻的两个所述第二天线之间。
  6. 根据权利要求5所述的天线组件,其特征在于,所述附加枝节和所述第二天线的连接位置和所述第二馈电端口之间的距离范围为0-3mm。
  7. 根据权利要求5或6所述的天线组件,其特征在于,所述附加枝节包括第一段附加枝节和第二段附加枝节,所述第一段附加枝节和所述第二段附加枝节之间通过附加枝节间隙相隔开,所述第一段附加枝节连接至其中一个所述第二天线,所述第二段附加枝节连接至另一个所述第二天线。
  8. 根据权利要求7所述的天线组件,其特征在于,所述附加枝节间隙的尺寸范围为:0.1mm-2mm。
  9. 根据权利要求1-8任一项所述的天线组件,其特征在于,所述第一天线以第一中心轴为中心呈旋转对称分布在所述第一面上,所述第一中心轴的延伸方向为所述第一方向,所述第一天线的所述辐射单元包括第一辐射枝节、第二辐射枝节,所述天线组件还包括第三天线,所述第三天线的辐射体为第三辐射枝节,所述第三辐射枝节连接至所述第一天线的所述馈电单元,所述第一辐射枝节距离所述第一中心轴的距离大于所述第二辐射枝节距离所述第一中心轴的距离,所述第三辐射枝节距离所述第一中心轴的距离小于所述第二辐射枝节距离所述第一中心轴的距离,所述天线组件还第三馈电端口,所述第三馈电端口为所述第三辐射枝节馈电。
  10. 根据权利要求9所述的天线组件,其特征在于,所述天线组件包括一个第一介质板和多个第二介质板,所述第一辐射枝节和所述第二辐射枝节设置在所述第一介质板上,所述第三辐射枝节和其中一个所述第二天线设置在其中一个所述第二介质板上,其余的所述第二天线一一对应地设置在其余的所述第二介质板上,所述第一介质板和所述第二介质板呈夹角设置。
  11. 根据权利要求9所述的天线组件,其特征在于,其中一个所述第二介质板包括主体部和边角部,所述主体部用于设置所述第二天线,所述边角部用于设置所述第三辐射枝节,所述边角部连接至所述主体 部的一个角落位置,所述边角部设有切缝,所述第一介质板包括中心区域,所述第一天线的所述馈电单元设置在所述中心区域且分布在所述中心区域的顶部表面和底部表面,部分所述中心区域插入所述切缝中,使得所述第三辐射枝节的部分与所述中心区域的顶部表面的部分所述馈电单元接触。
  12. 根据权利要求9-11任一项所述的天线组件,其特征在于,各所述第二天线包括共板设置的第一辐射部、第二辐射部和第三辐射部,所述第一辐射部位于所述第二辐射部和所述第三辐射部之间,所述第一辐射部和所述第二辐射部之间的距离小于所述第一辐射部和所述第三辐射部之间的距离,所述第三辐射部位于所述第一辐射部和所述第一中心轴之间,且所述第三辐射部和所述第一中心轴之间的距离小于所述第三辐射部和所述第一辐射部之间的距离,所述第二馈电端口为所述第一辐射部和所述第二辐射部馈电,所述天线组件还包括第四馈电端口,所述第四馈电端口为所述第三辐射部馈电。
  13. 根据权利要求12所述的天线组件,其特征在于,所述第二天线包括馈电枝节,所述第四馈电端口和所述第二馈电端口设置在所述馈电枝节上,所述第一辐射部、所述第二辐射部和所述第三辐射部均对称分布在所述馈电枝节的两侧,所述馈电枝节的一端连接所述第三辐射部,所述馈电枝节的另一端连接至所述第一辐射部和所述第三辐射部。
  14. 根据权利要求13所述的天线组件,其特征在于,所述第一辐射部包括第一段和第二段,所述第一段和所述第二段分布在所述馈电枝节的同侧,所述第二段和所述馈电枝节间隔设置,所述第一段的两端分别连接所述馈电枝节和所述第二段,所述第一段和所述第二段不共线。
  15. 根据权利要求14所述的天线组件,其特征在于,所述第二段平行于所述馈电枝节,所述第一段和所述馈电枝节之间的夹角为锐角。
  16. 根据权利要求14或15所述的天线组件,其特征在于,所述第二天线还包括延伸枝节,所述延伸枝节的一端连接至所述第二段,所述延伸枝节的另一端朝向所述第二辐射部且和所述第二辐射部之间形成间隔缝隙,所述延伸枝节、所述第一段和所述第二辐射部依次连接且包围形成包围空间,所述间隔缝隙为所述包围空间的开口,所述延伸枝节用于优化所述第二辐射部产生的电磁波波束的方向图。
  17. 根据权利要求13-16任一项所述的天线组件,其特征在于,所述馈电枝节上设有接地结构,所述接地结构距离所述第二馈电端口的距离为:大于等于7mm且小于等于8mm,所述接地结构距离所述第四馈电端口的距离为:大于等于3mm且小于等于4mm。
  18. 根据权利要求12-17任一项所述的天线组件,其特征在于,所述第三辐射枝节的部分位于所述第一介质板的顶部表面且和所述第一天线电连接,所述第三辐射枝节的部分从所述间隙穿过所述第一介质板并位于所述第一介质板的底部表面的一侧,所述天线组件还包括解耦枝节,所述解耦枝节的部分电连接所述第三辐射枝节,所述解耦枝节的另一部分位于所述第一介质板的底部表面的一侧且电连接所述第一天线,所述解耦枝节用于提升所述第一天线和所述第三辐射枝节之间的隔离度。
  19. 一种通信设备,其特征在于,包括电路板和如权利要求1-18任一项所述的天线组件,所述电路板上设有射频电路,所述第一馈电端口和所述第二馈电端口电连接至所述射频电路。
PCT/CN2023/121142 2022-09-27 2023-09-25 天线组件和通信设备 WO2024067496A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211180248.1A CN117832844A (zh) 2022-09-27 2022-09-27 天线组件和通信设备
CN202211180248.1 2022-09-27

Publications (1)

Publication Number Publication Date
WO2024067496A1 true WO2024067496A1 (zh) 2024-04-04

Family

ID=90476254

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/121142 WO2024067496A1 (zh) 2022-09-27 2023-09-25 天线组件和通信设备

Country Status (2)

Country Link
CN (1) CN117832844A (zh)
WO (1) WO2024067496A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103811861A (zh) * 2014-01-21 2014-05-21 盛宇百祺(南京)通信技术有限公司 水平极化全向天线
CN206441871U (zh) * 2016-11-08 2017-08-25 深圳市普方众智精工科技有限公司 双频双极化全向天线
CN109904606A (zh) * 2019-03-13 2019-06-18 重庆邮电大学 一种高隔离度三频四单元mimo天线
CN210200961U (zh) * 2019-09-25 2020-03-27 潍坊歌尔电子有限公司 低剖面双频全向天线、wifi模块和电子设备
CN212848856U (zh) * 2020-10-10 2021-03-30 上海日安天线有限公司 一种应用于wlan双频双极化定向天线的低成本辐射单元及其天线
WO2021212277A1 (zh) * 2020-04-20 2021-10-28 深圳市大疆创新科技有限公司 双频双极化天线
CN216120728U (zh) * 2021-09-30 2022-03-22 广东中元创新科技有限公司 一种适于5g的双极化室内分布天线

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103811861A (zh) * 2014-01-21 2014-05-21 盛宇百祺(南京)通信技术有限公司 水平极化全向天线
CN206441871U (zh) * 2016-11-08 2017-08-25 深圳市普方众智精工科技有限公司 双频双极化全向天线
CN109904606A (zh) * 2019-03-13 2019-06-18 重庆邮电大学 一种高隔离度三频四单元mimo天线
CN210200961U (zh) * 2019-09-25 2020-03-27 潍坊歌尔电子有限公司 低剖面双频全向天线、wifi模块和电子设备
WO2021212277A1 (zh) * 2020-04-20 2021-10-28 深圳市大疆创新科技有限公司 双频双极化天线
CN212848856U (zh) * 2020-10-10 2021-03-30 上海日安天线有限公司 一种应用于wlan双频双极化定向天线的低成本辐射单元及其天线
CN216120728U (zh) * 2021-09-30 2022-03-22 广东中元创新科技有限公司 一种适于5g的双极化室内分布天线

Also Published As

Publication number Publication date
CN117832844A (zh) 2024-04-05

Similar Documents

Publication Publication Date Title
KR102589595B1 (ko) 편파-가변 위상 어레이 안테나를 포함하는 무선 통신 장치
KR20170083949A (ko) 누설파 위상 어레이 안테나를 포함하는 무선 통신 장치
WO2022088866A1 (zh) 天线、天线模组和电子设备
JP2022531808A (ja) アンテナユニット及び端末機器
KR20210101319A (ko) 안테나 구조 및 고주파 다중 대역 무선 통신 단말
CN109616766A (zh) 天线系统及通讯终端
WO2021244158A1 (zh) 双极化天线及客户前置设备
US6801165B2 (en) Multi-patch antenna which can transmit radio signals with two frequencies
WO2022088863A1 (zh) 天线、天线模组和电子设备
JP3552693B2 (ja) 平板多重アンテナおよびそれを備えた電気機器
US20230369778A1 (en) Antenna module and electronic device including same
CN112751158B (zh) 一种天线组件及通信设备
WO2024067496A1 (zh) 天线组件和通信设备
KR20240024209A (ko) 안테나 구조, 안테나 모듈, 칩 및 전자 디바이스
CN212062698U (zh) 天线装置和室内分布系统
TW201208197A (en) High gain loop array antenna system and electronic device
CN114256601B (zh) 天线、天线模组和电子设备
US10381733B2 (en) Multi-band patch antenna module
CN114696078B (zh) 天线装置和电子设备
TWI833214B (zh) 多天線模組系統
US20230155302A1 (en) Antenna and Electronic Device
WO2023221681A1 (zh) 印刷天线以及通信设备
TWI830952B (zh) 天線結構及具有該天線結構之無線通訊裝置
CN215266649U (zh) 天线及电子设备
WO2024037129A1 (zh) 天线模组、天线阵列及电子设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23870726

Country of ref document: EP

Kind code of ref document: A1