WO2022088863A1 - 天线、天线模组和电子设备 - Google Patents

天线、天线模组和电子设备 Download PDF

Info

Publication number
WO2022088863A1
WO2022088863A1 PCT/CN2021/113438 CN2021113438W WO2022088863A1 WO 2022088863 A1 WO2022088863 A1 WO 2022088863A1 CN 2021113438 W CN2021113438 W CN 2021113438W WO 2022088863 A1 WO2022088863 A1 WO 2022088863A1
Authority
WO
WIPO (PCT)
Prior art keywords
antenna
metal structure
slot
radiation
gradient
Prior art date
Application number
PCT/CN2021/113438
Other languages
English (en)
French (fr)
Inventor
邵金进
赵超
武东伟
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP21884595.6A priority Critical patent/EP4220863A4/en
Priority to MX2023005070A priority patent/MX2023005070A/es
Publication of WO2022088863A1 publication Critical patent/WO2022088863A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/16Resonant antennas with feed intermediate between the extremities of the antenna, e.g. centre-fed dipole
    • H01Q9/28Conical, cylindrical, cage, strip, gauze, or like elements having an extended radiating surface; Elements comprising two conical surfaces having collinear axes and adjacent apices and fed by two-conductor transmission lines
    • H01Q9/285Planar dipole
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/06Arrays of individually energised antenna units similarly polarised and spaced apart
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/2291Supports; Mounting means by structural association with other equipment or articles used in bluetooth or WI-FI devices of Wireless Local Area Networks [WLAN]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q13/00Waveguide horns or mouths; Slot antennas; Leaky-waveguide antennas; Equivalent structures causing radiation along the transmission path of a guided wave
    • H01Q13/08Radiating ends of two-conductor microwave transmission lines, e.g. of coaxial lines, of microstrip lines
    • H01Q13/085Slot-line radiating ends
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/30Combinations of separate antenna units operating in different wavebands and connected to a common feeder system
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/30Arrangements for providing operation on different wavebands
    • H01Q5/378Combination of fed elements with parasitic elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/40Imbricated or interleaved structures; Combined or electromagnetically coupled arrangements, e.g. comprising two or more non-connected fed radiating elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q7/00Loop antennas with a substantially uniform current distribution around the loop and having a directional radiation pattern in a plane perpendicular to the plane of the loop
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/30Resonant antennas with feed to end of elongated active element, e.g. unipole
    • H01Q9/42Resonant antennas with feed to end of elongated active element, e.g. unipole with folded element, the folded parts being spaced apart a small fraction of the operating wavelength

Definitions

  • the present application relates to the field of antenna technology, in particular to an antenna, an antenna module and an electronic device having the antenna.
  • the number of spatial streams continues to increase.
  • the maximum specification can support 16 streams, which means that built-in products require up to 16 sets of high-performance antennas, and each antenna is required to have little influence on each other to meet its radiation performance. Due to factors such as appearance, competitiveness, and usage habits in home scenarios, the size and ID of existing ONT (Optical network terminal, optical network terminal) built-in products are evolving in the direction of miniaturization, which means that product functions and performance are improved. Under certain conditions, the design space of MIMO antennas is actually getting more and more tight.
  • the embodiments of the present application provide an antenna and an electronic device, which can meet the radiation performance of the dipole antenna and the gradient slot antenna while realizing the miniaturization of the antenna by integrating the gradient slot antenna and the dipole antenna.
  • the present application provides an antenna, including a gradient slot antenna and a dipole antenna with the same polarization;
  • the gradient slot antenna includes a feed structure, a first metal structure and a second metal structure, the first metal structure
  • a gradient groove is formed between the structure and the second metal structure, the two ends of the gradient groove are respectively a narrow slit end and a wide end, and the feeding structure is coupled with the narrow slit end to connect the gradient groove
  • the antenna feeds to excite the directional antenna of the gradient slot antenna; the dipole antenna intersects the gradient slot, and at the intersection of the two, the dipole antenna is coupled and fed through the gradient slot. electricity to excite the dipole antenna into an omnidirectional antenna.
  • the gradient slot antenna is excited to be a directional antenna and the dipole antenna is excited to be an omnidirectional antenna at the same time through the same feeding structure, which can also be understood as passing
  • the gradient slot antenna excites the dipole antenna, which can ensure the radiation performance of the dipole antenna and the gradient slot antenna, which is beneficial to the miniaturized configuration of the antenna. Income compatible.
  • the working frequency of the gradient slot antenna is higher than the working frequency of the dipole antenna. It can be understood that the working frequency of the gradient slot antenna is different from that of the dipole antenna, so that the antenna provided by this application can have dual-frequency characteristics, and assume different functions through different frequencies, and at different frequencies, WiFi coverage The ability is conducive to the realization of omnidirectional coverage and directional enhancement benefits compatible with differentiated MIMO antenna design.
  • the working frequency of the gradient slot is 5G
  • the working frequency of the dipole antenna is 2G.
  • This embodiment may be applicable to the radio field that requires an antenna to transmit or receive electromagnetic wave signals, and its operating frequency may be correspondingly scaled down as required, so as to achieve an optimal matching design.
  • the present application enhances the applicability of the single antenna by introducing a low-frequency mode with omnidirectional radiation performance on the basis of the traditional high-frequency directional antenna, and can better match the ONT.
  • the requirements for WiFi antenna design cater to the strategy of home network Wi-Fi antenna design, and open up new ideas for the use of traditional directional antennas in ONT antenna design.
  • the gradual change groove includes a middle position between the narrow slit end and the wide mouth end, and the part between the narrow slit end and the middle position is a main feeding area, The part between the middle position and the wide mouth end is the main radiation area, the intersection of the dipole antenna and the gradient slot antenna is located in the main feeding area, and the extension of the dipole antenna An included angle is formed between the direction and the extending direction of the gradual change groove.
  • the main radiation area is the part of the gradient slot antenna that plays the main radiation, which means that other parts of the gradient slot antenna (such as the main feed area and the peripheral area of the gradient slot antenna) will also have the function of radiation.
  • the main function of the main feeding area is to feed the main radiating area, and the main feeding area may also have the function of radiating signals. Parameters such as the size and opening size of the part between the slit end and the middle position will affect the Radiation of electromagnetic wave signals.
  • the dipole antenna is arranged in the main feeding area, and the working frequency of the dipole antenna is different from that of the gradient slot antenna, that is, the working frequency of the dipole antenna is located outside the working frequency band of the gradient slot antenna. , so that the setting of the dipole antenna will not affect the radiation characteristics of the main radiation area, that is, the present application can not only stimulate the radiation of the dipole antenna through the gradient slot antenna, but also ensure the radiation performance of the gradient slot antenna.
  • the extension direction of the dipole antenna and the extension direction of the gradient groove are perpendicular to each other (ie, orthogonal). It can be understood that the dipole antennas are symmetrically distributed on both sides of the gradient slot, so that the omnidirectional radiation performance of the dipole antenna is better.
  • the dipole antenna includes a first radiation segment, a second radiation segment, and a switch structure electrically connected between the first radiation segment and the second radiation segment, and the switch
  • the structure intersects the gradient groove
  • the switch structure is electrically connected with the control circuit
  • the switch structure is controlled to be turned on or off by the control circuit, so as to realize the antenna between the first working state and the second working state
  • the first working state is to execute the tapered slot antenna alone
  • the second working state is to execute the tapered slot antenna and the dipole antenna simultaneously.
  • the reconfigurable performance of the antenna is realized through the setting of the switch, and the on or off of the switch can be selected according to specific requirements, so that the antenna has multiple functions.
  • the switch structure is a diode.
  • the control circuit can be electrically connected to the first radiation segment and the second radiation segment, so as to introduce a direct current bias voltage to realize the diode conductor and turn-off control.
  • the control circuit is electrically connected to the first radiation section, and the first radiation section is connected to the positive pole of the voltage source, and the second radiation section is grounded to achieve the purpose of forward biasing the diode; in another embodiment, the control circuit The circuit is electrically connected to the second radiation section, and the second radiation section is connected to the positive pole of the voltage source, and the first radiation section is grounded, so as to achieve the purpose of forward bias on the diode.
  • the antenna has the ability to cover the 5G frequency band and the 2G/5G dual frequency band independently, while the low frequency band exhibits the omnidirectional radiation characteristic of the dipole, and the high frequency band maintains the directional radiation characteristic.
  • the first radiation segment and the second radiation segment are symmetrically distributed on both sides of the switch structure.
  • the dipole antenna provided in this embodiment has a symmetrical structure and can satisfy the omnidirectional radiation characteristics of the dipole antenna.
  • the dipole antenna further includes a first patch
  • the first patch can be understood as a metal sheet-like structure, which not only increases the length of the radiation arm from the extension direction of the dipole antenna, Also increases the width of the radiating arms at the same time.
  • the first patch is located at one end of the first radiating section away from the second radiating section, and the first patch and the first metal structure are stacked and arranged to increase the capacity of the dipole antenna.
  • the arrangement of the first patch in this embodiment is conducive to ensuring the electrical length of the dipole antenna within a limited size range, and is conducive to the miniaturized design of the antenna.
  • the dipole antenna further includes a second patch, the second patch is located at an end of the second radiation segment away from the first radiation segment, the second patch It is disposed opposite to the second metal structure for increasing the capacitive coupling of the dipole antenna.
  • the design of the second patch is similar to that of the first patch, and the beneficial effects are also the same.
  • the first patch and the second patch are configured at the same time, which is beneficial to the symmetrical structural arrangement of the dipole antenna, and the polarization direction of the antenna can be better controlled.
  • the first patch and the first radiating segment form a paddle shape.
  • the first patch and the second patch are respectively arranged at the end of the first radiating segment and at the end of the second radiating segment.
  • the end, that is, the positions of the first patch and the second patch are far away from the gradient slot, specifically, away from the narrow slit end of the gradient slot.
  • This structure can minimize the effect of the first patch and the second patch on the gradient slot antenna. Therefore, the omnidirectional radiation mode of the dipole antenna can be excited on the premise of ensuring the radiation performance of the gradient slot antenna.
  • the present application realizes an antenna architecture with dual-frequency reconstruction characteristics.
  • the specific structures of the first patch and the second patch may be as follows: the first patch is used as an example for illustration, for example, the first patch includes a first part and a second part, and the first part is connected to the first radiating segment, the second part is connected to the end of the first part away from the first radiating segment, the first part is trapezoidal, the size of the end connecting the first part and the first radiating segment is smaller than the size of the end connecting the first part and the second part, The outer contour of the second part is arc-shaped.
  • the structural form of the second patch may be the same as that of the first patch.
  • the first patches are symmetrically distributed around the extension line of the first radiation segment.
  • the shape of the first patch may also be: circle, triangle, square, polygon and other shapes.
  • the dipole antenna further includes an extension line, the extension line is connected to the first radiation segment and/or the second radiation segment, and the extension line is used to increase the dipole The electrical length of the sub-antenna.
  • the specific shape of the extension line can be meandering, serpentine, zigzag, wavy, and the like.
  • the line width of the extension line is smaller than the line width of the first radiation segment.
  • the dipole antenna includes a radiation line and a first patch and a second patch respectively located at both ends of the radiation line, and the center of the radiation line is the dipole antenna.
  • the feeder part intersects the gradient groove, and the first patch and the second patch are used to increase the capacitive coupling of the dipole antenna.
  • the dipole antenna includes a strip-shaped radiating line and an extension line connected to the strip-shaped radiating line, and the extension line is used to increase the electrical length of the strip-shaped radiating line.
  • the first metal structure includes a first side facing the second metal structure and a second side facing away from the second metal structure
  • the second metal structure includes a side facing the second metal structure.
  • the third side of the first metal structure and the fourth side facing away from the first metal structure, the gradient groove is formed between the first side and the third side, and the second side is provided along the A plurality of first comb teeth of equal height distributed in the first direction
  • the fourth side is provided with a plurality of second comb teeth of equal height distributed along the first direction
  • the first comb teeth and The second comb teeth are used to increase the gain of the gradient slot antenna (generally, the gain can be increased by 0.5dB-1dB).
  • the gradient slot antenna mainly feeds and radiates through the edge of the gradient slot (ie, the first side of the first metal structure and the third side of the second metal structure).
  • the outer edges (ie, the second and fourth sides) of the first metal structure and the second metal structure that is, the outer edges of the first metal structure and the second metal structure.
  • the electromagnetic wave radiation is completed, and the electromagnetic waves radiated by the first and second comb teeth have a gain effect on the center frequency of the tapered slot antenna, that is, the signal of the tapered slot antenna can be enhanced, and the directional radiation performance of the tapered slot antenna is better.
  • the electrical length of the first comb tooth and the electrical length of the second comb tooth are both quarter wavelengths corresponding to the center frequency of the tapered slot antenna, and the center frequency may be is the middle value of the highest working frequency and the lowest working frequency of the gradient slot antenna, the gradient slot antenna can be excited to work within a high frequency bandwidth, and the high frequency bandwidth includes the highest working frequency and the lowest working frequency, and the center frequency is an intermediate value between the highest operating frequency and the lowest operating frequency.
  • the electrical length of the first comb tooth and the second comb tooth is close to a quarter wavelength, and has a radiation characteristic similar to that of a monopole.
  • the second side is provided with a plurality of third comb teeth of unequal height distributed along the first direction
  • the fourth side is provided with a plurality of third comb teeth distributed along the first direction.
  • the electrical length of the third comb tooth and the fourth comb tooth is the smallest, and the third comb tooth and the fourth comb tooth are used to suppress the unradiated energy of the tapered slot antenna from appearing on the second side and the other side.
  • the standing wave current distribution on the fourth side is the smallest, and the third comb tooth and the fourth comb tooth are used to suppress the unradiated energy of the tapered slot antenna from appearing on the second side and the other side.
  • the setting of the third comb tooth and the fourth comb tooth can reduce the ripple effect caused by the second side and the fourth side to the radiation pattern of the gradient slot antenna.
  • the ripple characteristic here mainly means that the surface of the pattern is not smooth.
  • a wave-like ripple feature will be formed, that is, the setting of the third comb tooth and the fourth comb tooth can ensure that the radiation pattern of the gradient slot antenna tends to be smooth, and the smoothness of the radiation pattern indicates that the radiation performance of the antenna is stable.
  • the third comb tooth is located between the first comb tooth and the wide mouth end, and the fourth comb tooth is located between the second comb tooth and the wide mouth end.
  • the third comb teeth and the fourth comb teeth are also symmetrically distributed on both sides of the gradient groove.
  • the gradual change groove includes a coupling intermediate position between the narrow slit end and the wide mouth end, and the part between the narrow slit end and the intermediate position is the main feeding area.
  • the part between the middle position and the wide mouth end is the main radiation area
  • the intersection position of the dipole antenna and the gradient slot antenna is located in the main feeding area
  • the dipole antenna An included angle is formed between the extending direction and the extending direction of the gradient groove (the included angle can be 90 degrees or close to 90 degrees), and the first comb teeth and the second comb teeth are symmetrically distributed in the main feeding area on both sides.
  • the third comb teeth and the fourth comb teeth are symmetrically distributed on both sides of the main radiation area.
  • a first area is set on the periphery of the first metal structure, the first area is located on the edge of the first metal structure away from the wide end, and the first area is set The first additional antenna.
  • a first additional antenna is provided at the first area, and the first additional antenna has a separate feeding structure and radiation structure. Since the first additional antenna is arranged in the first area, regardless of the feeding structure and The shape of the radiation structure will not affect the radiation efficiency of the gradient slot antenna and the dipole antenna.
  • a second area is set on the periphery of the second metal structure, the second area is located on the edge of the second metal structure away from the wide end, and the second area is set Second additional antenna.
  • the first additional antenna includes a first radiation structure and a first feed structure
  • the first radiation structure is located on the same layer of the dielectric plate as the feed structure and the dipole antenna of the tapered slot antenna, and is set to Microstrip line structure on dielectric board.
  • the second additional antenna includes a second radiation structure and a second feed structure. The second radiation structure is located on the same layer of the dielectric plate as the first metal structure and the second metal structure, and is also a microstrip line structure disposed on the dielectric plate.
  • the first additional antenna 50 may be a LOOP antenna, and the working frequency of the first additional antenna 50 is 5G.
  • the second additional antenna is an IFA antenna, and the operating frequency of the second additional antenna 60 is 2G.
  • the present application provides an electronic device, including a radio frequency circuit and the antenna according to any one of the implementation manners in the first direction, wherein the feeding structure of the antenna is electrically connected to the radio frequency circuit.
  • the present application further provides an antenna module, including a bracket and an antenna connected to the bracket, where the antenna is the antenna provided in any one of the implementation manners of the first aspect.
  • FIG. 1 is a schematic diagram of the application of an electronic device including the antenna provided by the present application as a home gateway in a home gateway system.
  • FIG. 2 is a schematic diagram of a specific application scenario of the electronic device (being a home gateway) provided by the present application.
  • FIG. 3 is a perspective view of an electronic device according to an embodiment of the present application.
  • FIG. 4 is a schematic view of the electronic device shown in FIG. 3 in a state in which the casing is removed.
  • FIG. 5 is a schematic diagram of the electronic device shown in FIG. 4 without the bracket for installing the antenna, which mainly expresses the positional relationship between the antenna and the single board in the electronic device.
  • FIG. 6 is a schematic diagram of a first surface of an antenna provided by an embodiment of the present application.
  • FIG. 7 is a schematic diagram of a second surface of an antenna provided by an embodiment of the present application.
  • FIG. 8 is a schematic side view of an antenna provided by an embodiment of the present application.
  • FIG. 9 is a schematic diagram of another side view of an antenna provided by an embodiment of the present application.
  • FIG. 10 is a schematic diagram of a surface of an antenna provided by an embodiment of the present application.
  • FIG. 11 is a schematic diagram of one surface of an antenna provided by an embodiment of the present application.
  • FIG. 12 is a schematic diagram of another side of an antenna provided by an embodiment of the present application.
  • FIG. 13 is a schematic diagram of a side surface of an antenna provided by an embodiment of the present application.
  • FIG. 14 is a schematic diagram of one surface of an antenna provided by an embodiment of the present application.
  • FIG. 15 is a schematic diagram of a first surface of an antenna provided by an embodiment of the present application.
  • FIG. 16 is a schematic diagram of a first surface of an antenna provided by an embodiment of the present application.
  • FIG. 17 is a schematic diagram of a first surface of an antenna provided by an embodiment of the present application.
  • FIG. 18 is a schematic diagram of a first surface of an antenna provided by an embodiment of the present application.
  • FIG. 19 is a schematic diagram of a cross-section of an antenna provided by an embodiment of the present application.
  • FIG. 20 is a schematic diagram of a first surface of an antenna provided by an embodiment of the present application.
  • FIG. 21 is a schematic diagram of a first surface of an antenna provided by an embodiment of the present application.
  • FIG. 22 is a schematic diagram of a first surface of an antenna provided by an embodiment of the present application.
  • FIG. 23 is a schematic diagram of a first surface of an antenna provided by an embodiment of the present application.
  • FIG. 24 is a schematic diagram of a first surface of an antenna provided by an embodiment of the present application.
  • FIG. 25 is a schematic diagram of an S-parameter curve of an impedance bandwidth of an antenna provided by an embodiment of the present application.
  • FIG. 26 is a radiation pattern of an antenna at different frequencies provided by an embodiment of the present application.
  • FIG. 27A is a current distribution diagram in the state where the conventional antenna includes only the gradient slot antenna and does not include the dipole antenna.
  • FIG. 27B is a current distribution diagram of the antenna provided by an embodiment of the present application under the operating frequency of the dipole antenna.
  • FIG. 27C is a current distribution diagram of the antenna provided by an embodiment of the present application under the working frequency of the gradient slot antenna.
  • Home gateway It is a network device located inside a modern home. Its function is to connect home users to the Internet, so that various smart devices located in the home can get Internet services, or enable these smart devices to communicate with each other. .
  • a home gateway is a bridge that enables networking between multiple smart devices in the home and interconnection from the home to the external network. From a technical point of view, the home gateway implements bridging/routing, protocol conversion, address management and conversion within the home and from the inside to the outside, undertakes the responsibilities of a firewall, and provides possible services such as VoIP/Video over IP.
  • Wireless AP (AP, Access Point, wireless access node, session point or access bridge) is a broad term that includes not only a simple wireless access point (wireless AP), but also a wireless router (including A general term for devices such as wireless gateways, wireless bridges, etc.
  • the wireless AP access point supports the wireless application of 2.4GHz frequency, the sensitivity conforms to the 802.11n standard, and adopts dual-channel RF output, each channel maximum output is 600 mW, which can be used in wireless distribution system (point-to-point and point-to-multipoint bridge) in Wireless coverage is deployed in a large area, and it is a necessary wireless AP device for hotels to develop wireless networks.
  • Multi-input multi-output is an abstract mathematical model used to describe a multi-antenna wireless communication system.
  • the antenna receives and restores the original information.
  • the technology was first proposed by Marconi in 1908, he used multiple antennas to suppress channel fading. According to the number of antennas at both ends of the transceiver, compared with the common single-input single-output system (Single-Input Single-Output, SISO), the multi-antenna technology such as MIMO still includes the early so-called “smart antenna", that is, the single-input multiple-output system. (Single-Input Multi-Output, SIMO) and multiple input single output system (Multiple-Input Single-Output, MISO).
  • Omnidirectional antennas that is, 360° uniform radiation on the horizontal pattern, that is, the so-called non-directional, and a beam with a certain width on the vertical pattern.
  • the smaller the lobe width The bigger the gain.
  • the omnidirectional antenna is generally used in the station type of the suburban county system in the mobile communication system, and the coverage is large.
  • Horizontal polarization means that the vibration direction of electromagnetic waves is horizontal. Any polarized wave whose polarization plane is perpendicular to the normal plane of the earth is called a horizontally polarized wave. Its electric field direction is parallel to the earth.
  • Vertical polarization means that the electric field vector vibrates along a fixed direction in a fixed plane, then the electromagnetic wave is said to be polarized, and the plane containing the electric field vector E is called the plane of polarization.
  • Polarization is called polarization in microwave remote sensing, and there are two types of polarization: horizontal polarization and vertical polarization.
  • V vertical polarization
  • FIG. 1 is a schematic diagram showing the application of an electronic device including the antenna provided by the present application as a home gateway in a home gateway system.
  • the electronic device provided by this application is a home gateway, the home gateway is connected between the optical central office and the terminal device, the optical central office is connected to the wide area network (Internet), and the optical central office is connected from the wide area network (Internet)
  • the signal is acquired, and the signal is transmitted to the home gateway, and then the antenna set in the home gateway transmits the signal to each terminal device.
  • the home gateway includes a digital module, a radio frequency module and an antenna.
  • the digital module is connected between the optical central office and the radio frequency module, and the radio frequency module is used to send radio frequency signals to the antenna.
  • the antenna may include Antenna 1, Antenna 2, Antenna 3, Antenna 4 and Antenna 5, Antenna 1 may be a low frequency antenna, for example, the low frequency antenna may be a 2G antenna or a 3G antenna, Antenna 2, Antenna 3, Antenna 4 and Antenna 5 may be It is a high-frequency antenna, for example, the high-frequency antenna can be a 5G antenna or a 6G antenna.
  • the antennas may have other configurations, for example, the number of low-frequency antennas may be two or more, and the number of high-frequency antennas may also be one or two or more.
  • the terminal device may include a smart phone, a smart home (eg, an air conditioner, an electric fan, a washing machine, a refrigerator, etc.), a smart TV, and a smart security (eg, a camera).
  • Smartphones can be used in the low frequency range or in the high frequency range.
  • smartphones can support both 2G and 5G frequency signals. Therefore, as shown in FIG. 1 , both the antenna 1 and the antenna 2 provide signals for the smartphone.
  • Antenna 3 provides signals for smart homes.
  • the antenna 4 provides signals for the smart TV, and the user can also remotely control the smart TV through the terminal device.
  • the smart TV can have the function of an Internet TV or a video conference function.
  • Antenna 5 provides signals for intelligent security, and the intelligent vision security system can include functions such as fire prevention, anti-theft, anti-leakage and remote monitoring. Users can use mobile phones and the Internet to remotely view and set up the home security system, and at the same time, they can also remotely monitor the internal situation of the home. If an abnormal situation is detected, the security system can notify the user by calling, texting, and emailing.
  • the present application can integrate antennas with different operating frequencies together, and can realize omnidirectional radiation of low-frequency antennas and directional gain of high-frequency antennas at the same time.
  • Antenna 1 and Antenna 4 are integrated together.
  • Antenna 1 provides signals for the low-frequency operating frequency of smartphones. Smartphones may appear anywhere in the home.
  • Antenna 1 needs omnidirectional radiation, and Antenna 4 needs to provide signals for smart TVs.
  • Signal usually the smart TV will be fixed at a certain position in the home, and the antenna 4 needs to be positioned and radiated to ensure the signal strength.
  • FIG. 2 shows a schematic diagram of a specific application scenario of the electronic device 100 (which is a home gateway) provided by the present application.
  • the electronic device 100 which is a home gateway
  • FIG. 2 shows a schematic diagram of a specific application scenario of the electronic device 100 (which is a home gateway) provided by the present application.
  • the home gateway 100 includes different antennas, which can not only achieve horizontal omnidirectional radiation between them, but also can radiate to different rooms on the same floor to meet the WIFI signal requirements of different rooms on the same floor. Vertical radiation through the building to meet the WIFI signal requirements of different floors.
  • the ellipse marked A in Figure 2 represents the antenna's ability to radiate horizontally polarized omnidirectionally
  • the ellipse marked B in Figure 2 represents the ability of the antenna to have horizontally polarized directional radiation
  • the ellipse marked C in Figure 2 It means that the antenna has vertical polarization radiation ability, and can realize the ability to radiate signals vertically through the building.
  • the antenna provided by this application can integrate two antennas, realize omnidirectional radiation and directional gain in the same polarization direction, and can also realize the integration of multiple antennas, which can ensure the omnidirectional radiation and directional gain in the same polarization direction.
  • Directional gain in turn, can achieve radiation in another polarization direction, such as vertically polarized omnidirectional radiation and directional gain, and horizontally polarized radiation.
  • FIG. 3 , FIG. 4 , and FIG. 5 are schematic diagrams of an electronic device 100 according to an embodiment of the present application.
  • the electronic device 100 may be a home gateway, or may be other electronic devices, such as a wireless AP, a home hotspot, a CPE (Customer Premise Equipment, customer terminal equipment), and the like.
  • the electronic device 100 includes a casing 1001 .
  • a top cover 1002 is provided on the top of the barrel-shaped casing 1001, the top cover 1002 is made of non-shielding material, such as plastic, the inside of the top cover 1002 is an antenna, the top cover 1002 is provided with a plurality of through holes 1003, and the through holes 1003
  • the setting of 100 is beneficial to the signal radiation of the antenna in the electronic device 100 and the ventilation and heat dissipation inside the electronic device 100 .
  • FIG. 4 is a schematic diagram of removing the casing 1001 from the electronic device 100 provided by the present application on the basis of FIG. 3 .
  • the electronic device 100 is provided with a single board 1004.
  • the antenna 1000 provided by an embodiment of the present application is disposed on one side of the single board 1004.
  • the single board 1004 may be provided with a radio frequency circuit 10041, and the radio frequency circuit 10041 is electrically connected to the feeder of the antenna 1000. , the radio frequency circuit 10041 transmits and receives signals through the antenna 1000 .
  • the single board 1004 and the antenna 1000 are arranged inside the casing 1001 .
  • the veneer 1004 is set as a vertical type, a base 1005 for fixing the veneer 1004 is arranged in the casing 1004, the veneer 1004 is connected to the base 1005, and the base 1005 can also be provided for
  • the structure 1006 that provides heat conduction and heat dissipation for the single board 1004 such as metal heat sinks, vapor chambers, heat pipes and other heat conduction structures, can also be used in combination with different types of heat conduction structures.
  • the electronic device 100 is provided with two single boards 1004 , the base 1005 is located at the bottom of the electronic device 100 , the heat conduction and heat dissipation structure 1006 is erected on the base 1005 , and the two single boards 1004 are respectively located in the heat conduction and heat dissipation structure 1006 On the opposite sides, the heat conduction and heat dissipation structure 1006 is sandwiched between the two veneers 1004. In this way, the heat conduction and heat dissipation structure 1006 can dissipate heat for the two veneers 1004 at the same time, and it is more beneficial to ensure that the veneer is close to the casing 1001. Heat dissipation of the single board 1004 .
  • the antenna 1000 may be arranged on the top of the single board 1004 .
  • the antenna 1000 can be installed on the bracket 1007 to form the antenna module R, and then the antenna module R can be assembled inside the casing 1001 , and other antennas or electronic devices can also be arranged on the bracket 1007 device.
  • the bracket 1007 is provided with a ventilation channel 10071, and the ventilation channel 10071 communicates with the through hole 1003 on the top cover 1002, so as to realize the function of ventilation and heat dissipation.
  • the antenna module R is located on the top of the single board 1004 and the structure 1006 for heat conduction and heat dissipation, that is, close to the top area of the casing 1004, and inside the top cover 1002.
  • the ventilation channel 10071 and the through hole 1003 are used for the heat conduction and heat dissipation structure 1006 and the electronic equipment. 100 Ventilation between the outside to improve heat dissipation.
  • the dielectric plate on which the antenna 1000 (with a gradient line antenna structure) is located is placed close to the horizontal, and the antenna is horizontally polarized.
  • the electronic device 100 can be The vertical type is changed to the horizontal type, and the opening of the gradient groove of the gradient wire antenna of the antenna is set as: the upward setting in the vertical direction.
  • the antenna 1000 may also be arranged at other locations within the electronic setup. As shown in FIG. 5 , the built-up bracket in the electronic device, that is, the part located between the two boards 1004, the antenna 1000 is arranged on this bracket, and the opening of the gradient slot of the antenna is arranged as follows: the vertical direction is upward. .
  • the housing 1001 may be made of plastic as a whole, or part of the housing 1001 may be made of metal, and part of the housing 1001 may be made of plastic (or non-shielding material). It has the advantage of good thermal conductivity.
  • the plastic (or non-shielding material) part of the casing 1001 is a part of the casing disposed on the periphery of the antenna 1000 , and the plastic material will not interfere and shield the antenna 1000 , which is beneficial to ensure the radiation performance of the antenna 1000 .
  • a tapered slot antenna (TSA) and a dipole antenna (Dipole antenna or doublet) with the same polarization and different operating frequencies are integrated into one antenna, and the tapered slot antenna is used to feed the dipole antenna,
  • the application range of the antenna is improved, so that the antenna can realize the low-frequency omnidirectional radiation of the dipole antenna, and can realize the high-frequency directional radiation of the gradient slot antenna.
  • the antenna provided by this application can better match the requirements of ONT (Optical network terminal, optical network terminal) for WiFi antenna design (for example: more antennas can be arranged in a limited space to cover more areas), catering to Strategies for home network WiFi antenna design (ie: high-performance WiFi coverage at different frequencies).
  • the antenna provided in this application can be used as a single-frequency antenna, can also be expanded into a dual-frequency antenna, or has space for upgrading frequency bands, or can achieve large-area wide coverage and high-gain enhanced coverage in specific areas, achieving wide coverage and high Experience the effect.
  • Both the gradient slot antenna and the dipole antenna in this application are vertically polarized (the gradient slot antenna and the dipole antenna can both be horizontally polarized by changing the placement angle), and the gradient slot antenna is the first frequency
  • the dipole antenna is an omnidirectional antenna with a second frequency, and the first frequency is higher than the second frequency.
  • the antenna provided by this application is arranged on the dielectric board 10 , and the dielectric board 10 can also be regarded as a part of the antenna, that is, it can be understood that the antenna includes a dielectric board.
  • FIG. 6 is a schematic diagram of antenna distribution on the first surface S1 of the dielectric board 10
  • FIG. 7 is a schematic diagram of antenna distribution on the second surface S2 of the dielectric board 10
  • FIGS. 8 and 9 are schematic views of two side surfaces of the dielectric board 10 .
  • the dielectric board 10 can be any insulating substrate such as a ceramic substrate, PCB, etc.
  • the dielectric board 10 can be a single-material board, or a composite board, for example, formed by laminating two boards of different materials.
  • the dielectric board 10 can be a single-layer board structure, or a two-layer board or a multi-layer board structure, wherein the first surface S1 and the second surface S2 can be the surface of the dielectric board 10, for example, the first surface S1 is the dielectric board 10.
  • the front side, the second side S2 is the back side of the dielectric board 10 ; the first side S1 and the second side S2 may also be a certain layer in the middle of the dielectric board 10 .
  • the antenna includes a graded slot antenna 20 and a dipole antenna 30 .
  • the antenna provided by the present application is a microstrip antenna structure formed on a dielectric board, which has a thin profile, light weight, conformal shape with a carrier (referred to as a dielectric board), and easy integration with active devices (such as a dielectric board).
  • a dielectric board which has a thin profile, light weight, conformal shape with a carrier
  • active devices such as a dielectric board.
  • the gradient slot antenna 20 includes a feeding structure 21 (the part indicated by the dotted line in FIG. 6 represents the feeding structure 21 disposed on the second surface S2 ), a first metal structure 22 and a second metal structure 23 . As shown in FIG.
  • the feeding structure 21 is a microstrip transmission line disposed on the second surface S2 of the dielectric plate, and can be electrically connected to the feeding cable C to feed the gradient slot antenna 20 .
  • the first metal structure 22 and the second metal structure 23 are ground layers disposed on the first surface S1 of the dielectric board 10 , and the outer conductor of the feed cable C (eg coaxial cable) is welded to the first metal
  • the structure 22 or the second metal structure 23, ie the outer conductor of the feed cable C is welded to the ground layer, and the inner conductor of the feed cable C is electrically connected to the feed structure 21 to form a coaxial feed structure.
  • the gradient slot antenna 20 can also be a metal plate structure. It can be understood that the gradient slot antenna 20 is not required to be provided on a dielectric plate, but the gradient slot antenna 20 is designed as a metal plate-like structure and is fixed in the electronic device. inside the shell, for example, it is fixed on a bracket or the surface of other structural parts.
  • a gradient groove 24 is formed between the first metal structure 22 and the second metal structure 23 , and the gradient groove 24 includes a narrow end 241 and a wide end 242 .
  • the first metal structure 22 and the second metal structure 23 are arranged on the first surface S1 , and the dielectric plate 10 includes a first edge 11 and a second edge 12 arranged opposite to each other, from the first edge
  • the direction in which 11 extends to the second edge 12 is the first direction A1
  • the slit end 241 is close to the first edge 11 (the slit end 241 can also be located at the position of the first edge 11 )
  • the wide end 242 is located at the second edge 12 Or at a position close to the second edge 12, it can be understood that the direction extending from the slit end 241 to the wide end 242 is the first direction A1.
  • first metal structure 22 and the second metal structure 23 may also be located in the middle area of the dielectric plate, so that the narrow slit end 241 and the wide end 242 may not be disposed at the edge of the dielectric plate 10, but still A direction extending from the slit end 241 to the wide end 242 may be defined as a first direction A1.
  • the gradient groove 24 further includes a middle position 243 between the slit end 241 and the wide end 242 , as shown in FIG. 6 , a first point P1 and a second metal structure on the edge of the first metal structure 22 .
  • the partial gradient groove 24 between the second point P2 of the edge of the 23 is defined as the middle position 243, and the "middle position 243" defined here refers to a certain position between the narrow slit end 241 and the wide mouth end 242, and Instead of defining the midpoint between the narrow slot end 241 and the wide mouth end 242 , depending on the shape of the gradient groove 24 , such as the size of the opening angle, the distance between the middle position 243 and the narrow slot end 241 and the wide mouth end 242 will also vary.
  • the size of the middle position 243 from the slit end 241 can be larger than the size of the middle position 243 from the wide mouth end 242, and the size of the middle position 243 from the narrow slit end 241 can also be smaller than the size of the middle position 243 from the wide mouth end 242.
  • the part of the tapered slot 24 between the middle position 243 and the wide end 242 is the main radiation area R1 of the tapered slot antenna 20 , and the part between the narrow slot 241 and the middle position 243 It is the main feeding area R2 of the gradient slot antenna 20, and the main feeding area R2 is used to feed the main radiation area R1, which can be understood as: the main radiation area R1 is the main radiation area in the gradient slot antenna 20. It means that other parts of the gradient slot antenna 20 (such as the main feeding area R2 and the peripheral area of the gradient slot antenna 20 ) also have the function of radiation and can also affect the radiated signal, but most of the radiation functions are concentrated in the main Radiation area R1.
  • the main function of the main feeding area R2 is to feed the main radiating area R1, and the main feeding area R2 may also have the function of radiating signals. and other parameters will affect the radiation of electromagnetic wave signals.
  • FIG. 8 is a schematic side view in the second direction A2 .
  • the second metal structure 23 is displayed on the first surface S1 of the dielectric board 10 , and the first metal structure 22 is not shown in FIG. 8 because it is blocked by the second metal structure 23 .
  • the feeding structure 21 and the dipole antenna 30 are shown on the second side S2 of the dielectric plate.
  • FIG. 9 is a schematic side view in the first direction A1, the first metal structure 22 and the second metal structure 23 are displayed on the first surface S1 of the dielectric board 10, and the feeding structure on the second surface S2 of the dielectric board 10 is shown 21 and the dipole antenna 30 partially overlap, wherein one end of the feeding structure 21 is located on the left edge of the dielectric plate 10, and the other end of the feeding structure 21 is blocked by the dipole antenna 30, which is shown as a dotted line.
  • the gap between the first metal structure 22 and the second metal structure 23 is the slit end 241 of the gradient groove 24 formed between the first metal structure 22 and the second metal structure 23 .
  • the working frequency of the gradient slot antenna 20 can be controlled between the lowest working frequency and the highest working frequency, for example: the working frequency of the gradient slot antenna 20 can be between 5G-6.5G, the lowest working frequency of the gradient slot antenna 20 is 5G, The highest operating frequency of the graded slot antenna 20 is 6.5G.
  • a direction perpendicular to the first direction A1 is defined as a second direction A2.
  • the size of the gradient groove 24 in the second direction A2 is defined as the width of the gradient groove 24. From the narrow slit end 241 to the wide mouth end 242, the width of the gradient groove 24 at different positions is different.
  • the width W1 of the tapered slot 24 at the middle position 243 is one-half wavelength of the highest operating frequency of the tapered slot antenna 20, and the width W2 of the tapered slot at the wide port end 242 is two times the lowest operating frequency of the tapered slot antenna 20. one-half wavelength.
  • the working frequency of the gradient slot antenna 20 can be between 5G and 6G, the width of the gradient slot at the wide end is 3cm, the width of the gradient slot at the middle position is 2.5cm, and the gradient is 2.5cm. The larger the operating frequency span of the slot antenna 20 is, the greater the difference between the width W1 of the tapered slot at the middle position 243 and the width W2 of the tapered slot at the wide end 241 is.
  • the extension direction of the line between the first metal structure 22 and the second metal structure 23 may be the second direction A2 (as shown in FIG. 6 ), that is, the first metal structure 22 is at the wide-mouth end 242
  • the connection line between the end point of the second metal structure 23 at the wide end 242 and the end point of the second metal structure 23 may be perpendicular to the first direction A1.
  • the connection between the end point P3 of the first metal structure 22 at the wide end 242 and the end point P4 of the second metal structure 23 at the wide end 242 may also be connected to the first direction A1.
  • Forming an included angle other than 90 degrees can also realize the directional radiation of the gradient slot antenna 20.
  • the polarization direction of the gradient slot antenna 20 can be configured according to the size of the angle A0 at the wide end. .
  • the first metal structure 22 includes a first side 221 facing the second metal structure 23 and a second side 222 facing away from the second metal structure 23
  • the second metal structure 23 includes facing the first metal structure
  • the gradient groove 24 is formed between the first side 221 and the third side 231 .
  • the first side 221 may be a smooth curved structure extending from the slit end 241 to the wide end 242, the first side 221 may include a straight line segment and an exponential line, and the straight line segment and the exponential line are connected by a smooth transition.
  • the first side 221 may also be a structure extending in a stepped shape from the slit end 241 to the wide end 242 .
  • the structures of the third side 231 and the first side 221 may or may not be the same.
  • the second side 222 and the fourth side 232 may be linear (as shown in the embodiment shown in FIG. 10 ), and both extend along the first direction, which can be understood as: the second side 222 is parallel to the fourth side Edge 231.
  • a comb-tooth structure may be formed on the first metal structure 22 and the second metal structure 23 by arranging notches on the second side 222 and the fourth side 232 .
  • the teeth of the tooth structure are slightly located on the second side 222 and the fourth side 232 , and the tooth roots of the comb structure are located inside the first metal structure 22 and the second metal structure 23 and between the first side 221 and the second side 222 and between the third side 231 and the fourth side 232 .
  • the second side 222 is provided with a plurality of first comb teeth 223 of equal height distributed along the first direction A1
  • the fourth side 232 is provided with a plurality of first comb teeth 223 distributed along the first direction A1
  • the “equal height” mentioned here means that the electrical lengths of the first comb teeth 223 are the same, that is, the extension dimensions in the second direction A2 are the same, and the second comb teeth 233 have the same electrical length. Gao also understands the same.
  • the electrical length of the first comb tooth 223 and the electrical length of the second comb tooth 233 are both the quarter wavelengths corresponding to the center frequency of the tapered slot antenna 20, and the center frequency may be the same as that of the tapered slot antenna.
  • the first comb teeth 223 and the second comb teeth 233 are symmetrically distributed on both sides of the gradual change groove 24 .
  • the gradient slot antenna 20 mainly feeds and radiates through the edge of the gradient slot 24 (ie, the first side 221 of the first metal structure 22 and the third side 223 of the second metal structure 23 ).
  • the edge of the gradient slot 24 ie, the first side 221 of the first metal structure 22 and the third side 223 of the second metal structure 23 .
  • the main feeding region R2 is close to the slit end, and is mainly used for feeding, that is, transmitting current, and the current in this part is mainly along the edge of the gradient slot 24 (ie, the first edge and third edge), but there will also be part of the current flowing in the direction of the first metal structure towards the second edge to the second edge, and part of the current will flow in the direction of the second metal structure towards the fourth edge
  • the fourth edge in this way, there will be part of the current on the second side and the fourth side.
  • the setting of the first comb teeth 223 and the second comb teeth 233 can radiate this part of the current, and improve the gradient slot antenna 20. gain.
  • the outer edges of the first metal structure 22 and the second metal structure 23 are straight lines extending along the first direction A1 and cannot participate in electromagnetic wave radiation.
  • the outer edges of the first metal structure 22 and the second metal structure 23 that is, the second side 222 and the fourth side 232 , adopt the design of the first comb teeth 223 and the second comb teeth 233 .
  • the extension direction of the first comb teeth 223 and the second comb teeth 233 is the second direction A2
  • their electrical length is a quarter wavelength corresponding to the center frequency of the gradient slot antenna 20
  • the current can reach the first comb teeth 223
  • the electromagnetic wave radiation is completed on the second comb tooth 233, and the electromagnetic wave radiated by the first comb tooth 223 and the second comb tooth 233 has the effect of generating a gain to the center frequency of the tapered slot antenna 20, that is, the signal of the tapered slot antenna 20 can be enhanced, This makes the directional radiation performance of the gradient slot antenna 20 better.
  • the design of the first comb teeth 223 and the second comb teeth 233 can improve the gain of the gradient slot antenna, and generally the gain can be increased by 0.5- 1dB.
  • the second side 222 is provided with a plurality of third comb teeth 224 of different heights distributed along the first direction A1
  • the fourth side 232 is provided with a plurality of third comb teeth 224 along the first direction A1
  • a plurality of fourth comb teeth 234 with different heights are distributed.
  • the “unequal height” mentioned here means that the electrical lengths of the third comb teeth 224 are not equal, that is, the lengths of the third comb teeth 224 extending in the second direction A2 are different.
  • the sizes of the fourth comb teeth 234 are unequal in height.
  • the electrical length of the third comb teeth 224 closer to the wide mouth end 242 is smaller, and the electrical length of the third comb teeth 224 is the size of the third comb teeth 224 in the first direction A1, That is, along the first direction A1, the electrical length of the third comb teeth 224 gradually decreases, and the fourth comb teeth 234 may also be provided in the same manner.
  • the third comb teeth 224 and the fourth comb teeth 234 have the same structure and are symmetrically distributed on both sides of the gradient groove 24 .
  • the third comb teeth 224 and the fourth comb teeth 234 are used to suppress standing wave current distribution on the second side 222 and the fourth side 232 of the energy not radiated by the tapered slot antenna 20 .
  • the arrangement of the third comb teeth 224 and the fourth comb teeth 234 can reduce the ripple effect caused by the second side 222 and the fourth side 232 to the radiation pattern of the tapered slot antenna 20 , where the ripple characteristic mainly refers to the direction
  • the surface of the graph is not smooth, which will form a wave-like ripple feature. That is, the setting of the third comb teeth 224 and the fourth comb teeth 234 can ensure that the radiation pattern of the gradient slot antenna 20 tends to be smooth, and the radiation pattern tends to be smooth. Radiation performance is stable.
  • the principle of suppressing the ripple effect by the third comb teeth 224 and the fourth comb teeth 234 is as follows: in the gap between two adjacent third comb teeth 224, the current is distributed along the edges of the third comb teeth 224 corresponding to the gap, The directions of the current distributions on the opposite edges of the two third comb teeth 224 on both sides of the gap are opposite, so the opposite currents cancel each other, thereby realizing the effect of suppressing the ripple effect.
  • the third comb teeth 224 are located between the first comb teeth 223 and the wide mouth end 242, and the fourth comb teeth 234 are located between the second comb teeth 233 and the wide mouth end.
  • the third comb teeth 224 and the fourth comb teeth 234 are also symmetrically distributed on both sides of the progressive groove 24 .
  • the width of the second comb teeth 233 may be the same as the width of the first comb teeth 223 .
  • the width of the fourth comb teeth 234 may be the same as the width of the third comb teeth 224 .
  • the second side and the fourth side are respectively located at two opposite edges of the media plate, and the gradient groove is located in a middle area of the media plate between the two opposite edges.
  • a matching groove 25 is further provided between the first metal structure 22 and the second metal structure 23 .
  • the matching groove 25 communicates with the gradual change groove 24 and is connected to the slit end 241 , and the matching groove 25 is located at the slit end 241 away from the width.
  • the function of the matching slot 25 is to mainly perform the function of impedance matching for the feeding of the tapered slot antenna 20 .
  • the slit end 241 is formed between the first slot line 225 of the first metal structure 22 and the second slot line 235 of the second metal structure 23.
  • the first slot line 225 and the second slot line 235 can be understood as Part of the line segment on the first side 221 and the second side 231 .
  • the shape of the matching slot 25 is a fan shape
  • the matching slot 25 is composed of two straight lines 251, 252 and an arc-shaped line 253, and the two straight lines 251, 252 are located at both ends of the arc-shaped line 253, and wherein A straight line 251 is connected between the arc line 253 and the first segment of the slot line 225 , and another straight line 252 is connected between the arc line 253 and the second segment of the slot line 235 .
  • the first slot line 225 and the second slot line 235 may both be in the shape of straight segments, and the extending direction is the first direction A1.
  • the first slot line 225 and the second slot line 235 form a rectangular slot-like structure, matching the slot 25 is symmetrically distributed with the rectangular slit-like structure as the center, which can be understood as: the angle between a straight line 251 in the matching slot 25 and the first segment of the slot line 225 and the other straight line 253 and the second segment of the slot line 235.
  • the included angles are equal.
  • the shape of the matching groove 25 may also be circular or other shapes.
  • the feeding structure 21 is coupled with the slit end 241 to feed the tapered slot antenna 20 .
  • the feeding structure 21 includes a transmission line 211 and a matching part 212, the matching part 212 is connected to one end of the transmission line 211, and the other end of the transmission line 211 is used to connect the feed source, for example, the transmission line 211 is connected to the feeding cable C, and the feeding The cable C is connected to the feed source.
  • the end of the transmission line 211 connected to the feed source is set at the edge of the dielectric board 10, and the inner conductor of the feed cable C is welded to the transmission line 211.
  • the outer conductor of the electric cable C is welded to the first metal structure 22 or the second metal structure 23, and the first metal structure 22 or the second metal structure 23 is equivalent to the ground of the tapered slot antenna.
  • the unit area of the matching portion 212 is larger than the unit area of the transmission line 21, which can be understood as: the transmission line 211 is a metal portion extending linearly, while the matching portion 212 is a sheet metal portion, and the shape of the matching portion 212 can be fan-shaped, circular or other shape.
  • the main function of the transmission line 211 is to transmit current, and the main function of the matching part 212 is to form a capacitive structure (electromagnetic coupling structure) with the metal structure on the back (ie, the connection between the first metal structure 22 or the second metal structure 23 ), so that the micro High-efficiency coupling transmission of the transmitted feed signal to the slot.
  • the slot end 241 is disposed opposite to the region of the transmission line 211 adjacent to the matching portion 212 , and feeds the tapered slot antenna 20 through the coupling between the transmission line 211 and the slot 241 . It can be understood that the transmission line 211 and the narrow slot 241 are crossed, and the area where the two intersect is the position of coupling and feeding. any location.
  • the shape of the transmission line 211 can be a straight line (as shown in FIG. 7 ), and the shape of the transmission line 211 can also be a microstrip line structure with a bend.
  • the transmission line 211 includes a first section 2111 and a second section 2112 , the second segment 2112 is connected between the first segment 2111 and the matching part 212 , the extension direction of the second segment 2112 is the second direction A2 , and the first segment 2111 is connected between the second segment 2112 and one edge of the dielectric board 10 , an angle is formed between the first segment 2111 and the second segment 2112. In the embodiment shown in FIG. 12, the angle is greater than 90 degrees.
  • the shape of the transmission line 211 can be arranged according to the specific structure of the antenna.
  • Other transmission lines (which may be arc-shaped lines or straight-line segments) may also be arranged between the first segment 2111 and the second segment 2112 .
  • the line width of the transmission line 211 can be understood as the dimension perpendicular to the extension direction of the transmission line 211 , and the extension direction of the transmission line 211 is the direction extending from one end of the transmission line 211 to the other end, that is, the direction extending from the feed source to the matching part 212 along the transmission line 211 .
  • the width of the transmission line 211 may be a single size, and different positions of the transmission line may also have different widths.
  • the present application realizes the configuration of different frequency bands and different polarization directions by integrating the dipole antenna 30 and the gradient slot antenna 20 into one antenna.
  • the dielectric plate 10 is used as a carrier of the antenna, and the dipole antenna 30 and the gradient slot antenna 30 are arranged on the dielectric plate 10 by means of microstrip lines.
  • the dipole antenna 30 and the feeding structure 21 may be located on the same layer of the dielectric plate 10 (for example, on the first surface S1 ), and the first metal structure 22 and the second metal structure 23 may be located on the dielectric plate 10 .
  • the same layer of the board 10 eg on the second side S2).
  • FIG. 13 is a side view of the dielectric board 10 , showing the structure of the dielectric board 10 including two substrate layers and three functional layers, FIGS. 14 , 15 and 16 They are the arrangement of the three functional layers on the dielectric board 10 respectively.
  • the dielectric plate 10 includes a first base material layer 11 and a second base material layer 12 .
  • the side of the first base material layer 11 away from the second base material layer 12 is the first functional layer, and the first functional layer includes the feeding structure 21 and the dipole antenna 30 , and
  • FIG. 14 shows the plane where the first functional layer is located. 's architecture.
  • the second functional layer includes a first metal structure 22
  • FIG. 15 shows the structure of the plane where the second functional layer is located.
  • the side of the second base material layer 12 away from the first base material layer 11 is a third functional layer
  • the third functional layer includes a second metal structure 23 .
  • FIG. 16 shows the structure of the plane where the third functional layer is located.
  • the first metal structure 22 and the second metal structure 23 can be arranged on different layers of the dielectric plate 10, respectively, and the dipole antenna 30 and the feeding structure 21 are also Can be on different layers of the dielectric board.
  • the first metal structure 22 and the second metal structure 23 correspond to the ground plane of the antenna.
  • first metal structure 22 and the second metal structure 23 when the first metal structure 22 and the second metal structure 23 are located on the same layer, part of the first metal structure 22 and part of the second metal structure 23 are connected as a whole, and the connection position is located at the matching slot 25 away from the slit end 241 side.
  • a complete copper layer is provided on the dielectric plate 10, and the gradient groove 24 and the matching groove 25 are formed on the copper layer by etching, but the etched copper layer is still kept as one piece.
  • the etched copper layer is divided into a first metal structure 22 and a second metal structure 23 through the gradient groove 24 and the matching groove 25 .
  • FIG. 17 shows that the first metal structure 22 and the second metal structure 23 are located on different layers on the dielectric board, wherein the first metal structure 22 is represented by a solid line, and the second metal structure 23 is represented by a dotted line, which can be understood as :
  • the first metal structure 22 is located in the visible surface layer
  • the second metal structure 23 is located in the middle layer of the dielectric plate and is blocked.
  • the first metal structure 22 and the second metal structure 23 may have a partial overlapping area S.
  • the partial overlapping area S is a rectangular area.
  • the partially overlapping area S is located on the side of the matching groove 25 away from the slit end 241 .
  • the first metal structure 22 and the second metal structure 23 may be electrically connected through the metal vias 13 on the dielectric board 10 .
  • FIG. 18 shows that the first metal structure 22 and the second metal structure 23 are located at different layers on the dielectric board, wherein the first metal structure 22 is represented by a solid line, and the second metal structure 23 is represented by a dotted line means that there is no overlapping area between the first metal structure 22 and the second metal structure 23 .
  • the first metal structure 22 and the second metal structure 23 are electrically connected through metal vias 13 between different layers of the dielectric board 10. As shown in FIG. 19, the first metal structure 22 and the second metal structure do not overlap each other.
  • the metal vias 13 between 23 may be arranged obliquely between different layers of the dielectric board 10. "Oblique arrangement" means that the relationship between the metal vias 13 and the dielectric board 10 is not vertical. One end is located on the first metal structure 22 , the other end of the metal via hole 13 is located on the second metal structure 23 , and in the substrate layer of the dielectric board 10 , the metal via hole 13 extends obliquely.
  • the dipole antenna 30 intersects with the tapered slot 24 of the tapered slot antenna 20, and at the intersection of the two, the dipole antenna 30 is coupled and fed through the tapered slot 24 to excite the dipole In the sub-antenna 30, the working frequency of the dipole antenna 30 is the second frequency, and the dipole antenna 30 is an omnidirectional antenna.
  • the second frequency is lower than the first frequency, for example, the second frequency is an operating frequency in the range of 2G-3G, and the first frequency is an operating frequency in the range of 5G-7G.
  • the intersection of the dipole antenna 30 and the tapered slot 24 is located in the main feeding region R2 of the tapered slot antenna 20 , and an angle is formed between the extension direction of the dipole antenna 30 and the extension direction of the tapered slot 24 .
  • the extension direction of the dipole antenna 30 is perpendicular to the extension direction of the gradient slot 24, that is, the extension direction of the dipole antenna 30 is the second direction A2, and the extension direction of the gradient slot 24 is perpendicular to each other.
  • the direction is the first direction A1.
  • the extending direction of the dipole antenna 30 may also be deflected compared to the second direction A2, for example, the extending direction of the dipole antenna 30 may form a predetermined angle (this angle is The specific value of is not limited, and can be 80 degrees, 70 degrees, 60 degrees, or some angles close to 90 degrees, such as 83 degrees, 89 degrees).
  • the dipole antenna is arranged in the main feeding area, and the working frequency of the dipole antenna is different from that of the gradient slot antenna, that is, the working frequency of the dipole antenna is located outside the working frequency band of the gradient slot antenna. , so that the setting of the dipole antenna will not affect the radiation characteristics of the main radiation area, that is, the present application can not only stimulate the radiation of the dipole antenna through the gradient slot antenna, but also ensure the radiation performance of the gradient slot antenna.
  • the dipole antenna 30 includes a first radiation segment 31 , a second radiation segment 32 , and is electrically connected to the first radiation segment 31 and the second radiation segment 32
  • the switching between the first working state and the second working state of the antenna is realized.
  • the first working state is the state in which the switch structure 33 is disconnected. In this state, the antenna independently executes the gradient slot antenna 20, so the The second working state is a state in which the switch structure 33 is turned on. In this state, the antenna simultaneously executes the gradient slot antenna 20 and the dipole antenna 30 .
  • the control circuit 100 may be a circuit structure provided on a circuit board in an electronic device or an independent driving device, and the control circuit 100 may also be integrated on a dielectric board as a part of the antenna provided in the present application.
  • the switch structure 33 can be a diode, and the control circuit 100 can control the turn-on and turn-off of the switch structure 33 by introducing a DC bias voltage on the first radiation segment 31 and the second radiation segment 32 .
  • the first radiating section 31 is connected to the positive voltage source, and the second radiating section 32 is grounded, or the opposite configuration, the first radiating section 31 is grounded, and the second radiating section 32 is connected to the negative voltage, and finally the switch structure 33 is connected Forward bias purpose.
  • the first radiation segment 31 and the second radiation segment 32 are symmetrically distributed on both sides of the switch structure 33 .
  • the switch structure 33 spans the slit end 241 , the connection point P5 between the switch structure 33 and the first radiation segment 31 is located within the range of the first metal structure 22 , and the connection point P6 between the switch structure 33 and the second radiation segment 32 is located at the second metal structure 22 .
  • the position of the connection between the switch structure 33 and the first radiating segment 31 and the second radiator 32 overlaps with the first metal structure 22 and the second metal structure 23, and does not fall within the gradient groove 24.
  • the current transmission of the gradient slot 24 will not be affected, and the signal radiation performance of the gradient slot antenna 20 can be guaranteed.
  • the dipole antenna 30 further includes a first patch 34 and a second patch 35 , and the first patch 34 and the second patch 35 can be understood as metal sheet shapes
  • the structure not only increases the length of the radiation arm from the extension direction of the dipole antenna 30, but also increases the width of the radiation arm at the same time.
  • the first patch 34 is located at one end of the first radiation segment 31 away from the second radiation segment 32 , and the first patch 34 is disposed opposite to the first metal structure 22 for increasing the dual Capacitive coupling of the pole antenna 30 .
  • the second patch 35 is located at one end of the second radiation segment 32 away from the first radiation segment 31 .
  • the second patch 35 is disposed opposite to the second metal structure 23 for increasing the coupling rate.
  • the dipole antenna 30 includes a first radiation segment 31 , a second radiation segment 32 , a switch structure 33 , a first patch 34 and a second patch 35 at the same time.
  • the first patch 34 is arranged at the end of the first radiation segment 31, and the second patch 35 is arranged at the end of the second radiation segment 32.
  • the small size of the dipole antenna 30 is realized through the capacitive coupling design of the end, which can be understood as :
  • the role of the first patch 34 and the second patch 35 is to generate capacitive coupling between the dipole antenna 30 and the first metal structure 22 and the second metal structure 23 of the tapered slot antenna 20 . Therefore, it can be ensured that the dipole antenna 20 can still achieve its working frequency in a state of small size.
  • the first patch is symmetrically distributed around the extension line of the first radiation segment.
  • the shape of the first patch may also be: circle, triangle, square, polygon and other shapes.
  • the first patch 34 and the first radiating segment 31 form a paddle shape.
  • the first patch 34 and the second patch 35 are arranged at the end and the end of the first radiating segment 31 respectively.
  • the ends of the second radiation segment 32 that is, the first patch 34 and the second patch 35 are located away from the gradient groove 24 , specifically, away from the slit end 241 of the gradient groove 24 .
  • Such a structure can minimize the first The influence of the patch 34 and the second patch 35 on the gradient slot antenna 20, so that the omnidirectional radiation pattern of the dipole antenna can be excited under the premise of ensuring the radiation performance of the gradient slot antenna, and the present application realizes dual-frequency reconstruction characteristics antenna architecture.
  • the first patch 34 includes a first part 341 and a second part 342, the first part 341 is connected to the first radiation segment 31, and the second part 342 is connected to the first part 341 away from the first radiation segment At one end of 31, the first part 341 is trapezoidal, the size of the end of the first part 341 connected to the first radiation segment 31 is smaller than the size of the end of the first part 341 connected to the second part 342, and the outer contour of the second part 342 is arc-shaped.
  • the second patch 35 includes a first part 351 and a second part 352 .
  • the specific structures of the first part 351 and the second part 352 of the second patch 35 are the same as the first part 341 and the second part 342 of the first part 341 , and will not be repeated here. .
  • the dipole antenna 30 may not include the switch structure 33. It can be understood that the first radiation segment 31 is directly connected to the second radiation segment 32. As shown in FIG. 7, the dipole antenna 30 includes a middle radiation segment. The line 310 (equivalent to the first radiation segment 31 and the second radiator segment 32 in the embodiment shown in FIG. 20 ) and the first patch 34 and the second patch 35 located at both ends of the radiation line 310 (equivalent to the 20, the first patch and the second patch in the embodiment shown). In this embodiment, only the tapered slot antenna 20 and the dipole antenna 30 can be activated at the same time, and the function of individually exciting the tapered slot antenna 20 cannot be realized.
  • the dipole antenna 30 further includes extension lines 36 and 37 , wherein one of the extension lines 36 is connected to the first radiation Segment 31 , another extension line 37 is connected to the second radiating segment 32 , the extension lines 36 , 37 are used to increase the electrical length of the dipole antenna 30 .
  • the specific shapes of the extension lines 36 and 37 can be meandering, serpentine, zigzag, wavy, and the like.
  • the line width of the extension lines 36 , 37 is smaller than the line width of the first radiating segment 31 .
  • the dipole antenna 30 may include two extension lines 36 and 37, that is, the first radiating section 31 and the second radiating section 32 are both configured with one extension line.
  • the dipole antenna 30 may also include only one extension line.
  • only one extension line 36 is provided on the first radiating segment 31, and no extension line is provided on the second radiating segment 32, so that the electrical length of the dipole antenna 30 can also be changed.
  • the dipole antenna 30 includes a strip radiating line 38 and an extension line 39 connected to the strip radiating line, and the number of the extension lines 39 may be one, two or more In the embodiment shown in FIG. 22 , the dipole antenna 30 includes two extension lines 39 .
  • the extension lines 39 are used to increase the electrical length of the strip radiating lines 38 .
  • the gradient slot 24 in the gradient slot antenna 20 provided by the present application has a form of up-down symmetry, and its narrow slot end 241 (feeding position) is an elongated slot, from the narrow slot end 241 to the wide mouth end
  • the 242 is gradually opened, and the stroke is similar to the effect of a horn.
  • the part between the slit end 241 and the middle position 243 (which can be understood as the slit close to the feed end) can be regarded as a kind of energy conduction part, guiding radio frequency energy from the feed structure to the wide port end 242 part of the energy transfer.
  • the energy conduction part is concentrated in the main feeding area R2 to complete the conduction of energy from the feeding structure to the radiation gap.
  • the main feeding area R2 can be regarded as the feeding network of the main radiating area R1.
  • the design of the main feeding area R2 will not affect the radiation characteristics of the main radiating area R1, especially when the added design part is in the right half Outside the operating frequency band of some radiators. Therefore, a dipole antenna 30 (for example, a boat paddle conductor structure with a wavelength of symmetrical upper and lower structure) is introduced on the back of the main feeding area R2.
  • the size of the dipole antenna 30 is approximately equal to the half wavelength of the corresponding working frequency band of the WiFi low-frequency 2G, realizing a A dipole antenna covering the vertical polarization characteristics of WiFi low frequency, and feeding through the coupling effect of the gradient slot.
  • the antenna provided by the present application further includes a first additional antenna 50 and a second additional antenna 60, the first additional antenna 50 and the second additional antenna 60 are also arranged on the dielectric board 10, and the first additional antenna
  • the antenna 50 is disposed on the periphery of the first metal structure 22 and is located at the edge of the first metal structure 22 away from the wide end 242 , that is, the position of the first additional antenna 50 is adjacent to the first metal structure 22 .
  • the second additional antenna 60 is disposed on the periphery of the second metal structure 23 .
  • the second additional antenna 60 is also located at the edge of the second metal structure 23 away from the wide end 242 .
  • the second additional antenna 60 is connected to the second metal structure 23 . adjacency.
  • the antenna provided by the present application may simultaneously include a gradient slot antenna 20, a dipole antenna 30, a first additional antenna 50 and a second additional antenna 60.
  • the present application The provided antenna may include the gradient slot antenna 20, the dipole antenna 30 and the first additional antenna 50 (or the second additional antenna 60), ie only one of the first additional antenna 50 and the second additional antenna 60 may be provided.
  • the dielectric board 10 is provided with a first region R3 , the first region R3 is located at a corner of the first metal structure 22 , and the first region R3 is located at the end of the first metal structure 22 away from the wide mouth At the edge of 242, it can be understood that the wide end 242 is located at the second edge 12 of the medium board, the first region R3 is located near the first edge 11 of the medium board 10, and the first edge 11 and the second edge 12 are arranged opposite each other , for the gradient slot antenna 20 and the dipole antenna 30, the first region R3 is an area with less current distribution or no current distribution, so other antennas are arranged in the first region R3, which will not affect the gradient slot antenna. and the radiation efficiency of dipole antennas.
  • the first additional antenna 50 is arranged at the first region R3, and the first additional antenna 50 has a separate feeding structure and radiation structure. Since the first additional antenna 50 is arranged in the first region R3, regardless of the first additional antenna The shape of the feeding structure and the radiation structure of the additional antenna 50 will not affect the radiation efficiency of the gradient slot antenna 20 and the dipole antenna 30 .
  • a second region R4 also exists at the corners of the second metal structure 23. The position of the second region R4 is similar to that of the first region R3, and is also located at the edge of the second metal structure 23 away from the wide end 242. In the working state of the gradient slot antenna 20 and the dipole antenna 30, the second region R4 distributes less current or no current distribution.
  • the first region R3 is located at the upper left corner of the medium plate 10
  • the second region R4 is located at the lower left corner of the medium plate 10
  • the first additional antenna 50 includes a first radiation structure 51 and a first feed structure 52 .
  • the first radiation structure 51 and the feed structure 21 of the tapered slot antenna 20 and the dipole antenna 30 are located on the dielectric plate 10
  • the same layer is also a microstrip line structure disposed on the dielectric board 10 .
  • the first additional antenna 50 may be a LOOP antenna, and the working frequency of the first additional antenna 50 is 5G. As shown in FIG.
  • the second additional antenna 60 includes a second radiation structure 61 and a second feed structure 62 .
  • the second radiation structure 61 is located on the same layer of the dielectric plate 10 as the first metal structure 22 and the second metal structure 23 . It is also a microstrip line structure arranged on the dielectric plate 10 .
  • the first and second additional antennas 60 are IFA antennas, and the operating frequency of the second additional antennas 60 is 2G.
  • FIG. 25 is a schematic diagram showing the S-parameter curve of the impedance bandwidth of the antenna provided by an embodiment of the present application, wherein the vertical axis is the return loss scale, -10dB is an industry-recognized threshold for measuring port matching, and the horizontal axis is the frequency , 1-2 marked the specific frequency range of the low frequency omnidirectional, 3-4 marked the working range of the high frequency frequency band.
  • the antenna provided by this application combines a gradient slot antenna with an operating frequency in the range of 5G-6G and a dipole antenna with an operating frequency between 2G and 3G, which can meet the requirements of both the gradient slot antenna and the dipole antenna. Radiation performance of the sub-antenna.
  • the left picture is the radiation pattern of the dipole antenna
  • the right picture is the radiation pattern of the gradient slot antenna
  • the dipole antenna The pole antenna is an omnidirectional antenna
  • the directional antenna of the gradient slot antenna is an omnidirectional antenna
  • FIG. 27A is a current distribution diagram in a state in which the antenna provided by the present application only includes a gradient slot antenna and does not include a dipole antenna. In this state, only the gradient slot antenna is excited, the operating frequency is 5.5G, and the current is mainly distributed at the edge of the gradient slot, that is, where the first metal structure and the second metal structure face the edge of the gradient slot.
  • FIG. 27B is a current distribution diagram of the antenna provided by an embodiment of the present application under the operating frequency of the dipole antenna. In this state, only the dipole antenna is excited, the current is mainly distributed on the dipole antenna, and the operating frequency is 2G.
  • FIG. 27C is a current distribution diagram of the antenna provided by an embodiment of the present application under the working frequency of the gradient slot antenna. In this state, only the gradient slot antenna is excited, the operating frequency is 5.5G, and the current is mainly distributed at the edge of the gradient slot.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)

Abstract

本申请提供一种天线、天线模组和电子设备,天线包括极化相同的渐变槽天线和偶极子天线。渐变槽天线包括馈电结构、第一金属结构和第二金属结构,第一、第二金属结构之间形成渐变槽,渐变槽的两端分别为窄缝端和宽口端,馈电结构与窄缝端耦合对渐变槽天线馈电,以激励渐变槽天线为定向天线。偶极子天线与渐变槽相交,且在二者的相交位置处,通过所述渐变槽为所述偶极子天线耦合馈电,以激励所述偶极子天线为全向天线。本申请将渐变槽天线和偶极子天线集成在一起实现小型化,且通过渐变槽天线为偶极子天线馈电,可以同时满足偶极子天线和渐变槽天线的辐射性能。

Description

天线、天线模组和电子设备
本申请要求于2020年10月30日提交中国国家知识产权局、申请号为202011193933.9、申请名称为“天线、天线模组和电子设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及天线技术领域,特别是一种天线和具有该天线的天线模组和电子设备。
背景技术
随着WiFi协议演进,空间流数不断增加,目前最大规格已能支持16流,意味着内置产品最多需要16组高性能天线,且要求各天线之间彼此影响小,满足其辐射性能。现有ONT(Optical network terminal,光网络终端)内置产品在外观、竞争力以及家居场景使用习惯等因素下,其尺寸和ID在朝着小型化的方向演进,意味着在产品功能和性能提高的条件下,MIMO天线的设计空间实际上越来越紧张。
如何设计可以将定向天线和全向天线集成在一起实现小型化成为业界的研发的方向。
发明内容
本申请实施例提供一种天线和电子设备,通过将渐变槽天线和偶极子天线集成在一起实现天线的小型化的同时,可以满足偶极子天线和渐变槽天线的辐射性能。
第一方面,本申请提供一种天线,包括极化相同的渐变槽天线和偶极子天线;所述渐变槽天线包括馈电结构、第一金属结构和第二金属结构,所述第一金属结构和所述第二金属结构之间形成渐变槽,所述渐变槽的两端分别为窄缝端和宽口端,所述馈电结构与所述窄缝端耦合,以对所述渐变槽天线馈电,以激励所述渐变槽天线定向天线;所述偶极子天线与所述渐变槽相交,且在二者的相交位置处,通过所述渐变槽为所述偶极子天线耦合馈电,以激励所述偶极子天线为全向天线。本申请通过将极化相同的渐变槽天线的偶极子天线集成在一起,通过同一个馈电结构同时激励渐变槽天线为定向天线及激励偶极子天线为全向天线,也可以理解为通过渐变槽天线激励偶极子天线,可以保证偶极子天线和渐变槽天线的辐射性能,有利于天线的小型化配置,本申请有利于做差异化的MIMO天线设计,实现全向覆盖和定向增强收益兼容。
一种可能的实施方式中,所述渐变槽天线的工作频率高于所述偶极子天线的工作频率。可以理解的是,渐变槽天线的工作频率与偶极子天线的工作频率不同,使得本申请提供的天线可以具有双频特性,通过不同频率承担不同的功能,而且在不同的频率下,WiFi覆盖能力利于做差异化MIMO天线设计的实现全向覆盖与定向增强收益兼容。
一种可能的实施方式中,渐变槽的工作频率为5G,偶极子天线的工作频率为2G。本实施方式可以为适用于需要天线来发射或接收电磁波信号的无线电领域,其工作频率可以根据需要进行相应的缩比,从而实现最佳的匹配设计。
相比传统的内置双频小天线的单极化设计,本申请通过在传统高频定向天线基础上引入具有全向辐射性能的低频模式,增强了单天线的适用性,能够较好的匹配ONT对于WiFi天线 设计的要求,迎合了家庭网络Wi-Fi天线设计的战略,打开了传统定向天线用于ONT天线设计的新思路。
一种可能的实施方式中,所述渐变槽包括位于所述窄缝端和所述宽口端之间中间位置,所述窄缝端和所述中间位置之间的部分为主要馈电区,所述中间位置和所述宽口端之间的部分为主要辐射区,所述偶极子天线和所述渐变槽天线的相交位置位于所述主要馈电区,所述偶极子天线的延伸方向与所述渐变槽的延伸方向之间形成夹角。可以理解为:主要辐射区是渐变槽天线中起到主要辐射的部分,意思是渐变槽天线的其它部分(例如主要馈电区及渐变槽天线的外围区域)也会具有辐射的功能,也能够对辐射信号产生影响,但大部分辐射功能集中在主要辐射区。主要馈电区主要作用是为主要辐射区馈电,主要馈电区也可能具有辐射信号的功能,所述窄缝端和所述中间位置之间的部分的尺寸、开口大小等参数均会影响电磁波信号的辐射。本实施方式通过将偶极子天线设置在主要馈电区,而且偶极子天线的工作频率与渐变槽天线的工作频率不同,即偶极子天线的工作频率位于渐变槽天线的工作频段之外,使得偶极子天线的设置不会影响到主要辐射区的辐射特性,即:本申请即能够通过渐变槽天线来激励偶极子天线的辐射,又可以保证渐变槽天线的辐射性能。
一种可能的实施方式中,所述偶极子天线的延伸方向与所述渐变槽的延伸方向相互垂直(即正交)。可以理解为,偶极子天线对称分布在渐变槽的两侧,使得偶极子天线的全向辐射性能更佳。
一种可能的实施方式中,所述偶极子天线包括第一辐射段、第二辐射段和电连接在所述第一辐射段和所述第二辐射段之间的开关结构,所述开关结构与所述渐变槽相交,所述开关结构与控制电路电连接,通过所述控制电路控制所述开关结构导通或断开,实现所述天线在第一工作状态和第二工作状态之间的切换,所述第一工作状态为单独执行所述渐变槽天线,所述第二工作状态为同时执行所述渐变槽天线和所述偶极子天线。本实施方式通过开关的设置,实现了天线的可重构的性能,可以根据具体的需求,去选择开关的导通或断开,使得天线具有多功能。
具体而言,开关结构为二极管。控制电路可以电连接至第一辐射段和第二辐射段,从而引入一路直流偏置电压实现对二极管导体和关断控制。一种实施方式中,控制电路电连接至第一辐射段,且使得第一辐射段接电压源正极,第二辐射段接地,实现二极管上正向偏置目的;另一种实施方式中,控制电路电连接至第二辐射段,且使得第二辐射段接电压源正极,第一辐射段接地,实现二极管上正向偏置目的。通过这种方式可以实现天线具有单独覆盖5G频段和2G/5G双频段的能力,同时低频段表现为偶极子的全向辐射特性,高频段维持定向辐射特性。
一种可能的实施方式中,所述第一辐射段和所述第二辐射段对称分布在所述开关结构的两侧。本实施方式提供的偶极子天线为对称的结构,可以满足偶极子天线的全向辐射特性。
一种可能的实施方式中,所述偶极子天线还包括第一贴片,第一贴片可以理解为金属片状结构,不但从偶极子天线的延伸方向上增加了辐射臂的长度,还同时增加辐射臂的宽度。所述第一贴片位于所述第一辐射段远离所述第二辐射段的一端,所述第一贴片与所述第一金属结构层叠设置,用于增加所述偶极子天线的容性耦合。本实施方式通过第一贴片的设置有利于在有限的尺寸范围内保证偶极子天线的电长度,有利于天线的小型化设计。
一种可能的实施方式中,所述偶极子天线还包括第二贴片,所述第二贴片位于所述第二辐射段远离所述第一辐射段的一端,所述第二贴片与所述第二金属结构相对设置,用于增加 所述偶极子天线的容性耦合。第二贴片和第一贴片的设计相似,有益效果也是一样的。本实施方式同时配置第一贴片和第二贴片,有利于偶极子天线的对称的结构布置,对天线的极化方向可以得到更好的控制。
一种可能的实施方式中,第一贴片和第一辐射段构成船桨形态,本申请通过将第一贴片和第二贴片分别配置在第一辐射段的末端和第二辐射段的末端,即第一贴片和第二贴片的位置远离渐变槽,具体为,远离渐变槽的窄缝端,这样的架构,可以最大程度降低第一贴片和第二贴片对渐变槽天线的影响,从而实现在保证渐变槽天线辐射性能的前提下激发偶极子天线的全向辐射模式,本申请实现了具有双频重构特性的天线架构。
具体而言,第一贴片和第二贴片的具体结构可以为如下的方案:以第一贴片为例进行说明,例如,第一贴片包括第一部分和第二部分,第一部分连接至第一辐射段,第二部分连接至第一部分远离第一辐射段的一端,第一部分呈梯形,第一部分与第一辐射段连接的一端的尺寸小于第一部分与第二部分连接的一端的尺寸,第二部分外轮廓呈弧形。第二贴片的结构形态可以与第一贴片相同。
一种具体的实施方式中,第一贴片以第一辐射段的延长线为中心呈对称分布的架构。第一贴片的形状还可以为:圆形、三角形、方形、多边形等其它形状。
一种可能的实施方式中,所述偶极子天线还包括延伸线,所述延伸线连接至所述第一辐射段和/或第二辐射段,所述延伸线用于增加所述偶极子天线的电长度。延伸线的具体的形状可以为蜿蜒状、蛇形、锯齿状、波浪状等。延伸线的线宽小于第一辐射段的线宽。
一种可能的实施方式中,所述偶极子天线包括辐射线和分别位于所述辐射线两端的第一贴片和第二贴片,所述辐射线的中心位置为所述偶极子天线的馈电部,所述馈电部与所述渐变槽相交,所述第一贴片和所述第二贴片用于增加所述偶极子天线的容性耦合。
一种可能的实施方式中,所述偶极子天线包括带状辐射线及连接至所述带状辐射线的延伸线,所述延伸线用于增加所述带状辐射线的电长度。
一种可能的实施方式中,所述第一金属结构包括面对所述第二金属结构的第一边和背离所述第二金属结构的第二边,所述第二金属结构包括面对所述第一金属结构的第三边和背离所述第一金属结构的第四边,所述第一边和所述第三边之间构成所述渐变槽,所述第二边设有沿着所述第一方向分布的多个等高的第一梳齿,所述第四边设有沿着所述第一方向分布的多个等高的第二梳齿,所述第一梳齿和所述第二梳齿用于提升所述渐变槽天线的增益(一般可以提升增益0.5dB-1dB)。具体而言,由于天线在工作状态下,渐变槽天线主要通过渐变槽边缘(即,第一金属结构的第一边和第二金属结构的第三边)进行馈电及辐射。然而,在第一金属结构和第二金属结构的外侧边缘(即第二边和第四边)可能会存在未被辐射的电磁波,也就是说,第一金属结构和第二金属结构的外侧边缘(即第二边和第四边)上可能会有电流分布。由于第一梳齿和第二梳齿的延伸方向为第二方向,且其电长度为渐变槽天线的中心频率对应的四分之一波长,电流可以在第一梳齿和第二梳齿上完成电磁波辐射,而且通过第一梳齿和第二梳齿辐射的电磁波对渐变槽天线的中心频率产生增益的效果,即可以增强渐变槽天线的信号,使得渐变槽天线的定向辐射性能更好。
一种可能的实施方式中,所述第一梳齿的电长度和所述第二梳齿的电长度均为所述渐变槽天线的中心频率对应的四分之一波长,所述中心频率可以为渐变槽天线的最高工作频率和最低工作频率的中间值,所述渐变槽天线能够被激励工作一个高频带宽内,所述高频带宽包括最高工作频率和最低工作频率,所述中心频率为所述最高工作频率和所述最低工作频率之 间的中间值。具体而言,本申请通过第一梳齿和第二梳齿电长度接近四分之一波长,具有类似单极子的辐射特性。
一种可能的实施方式中,所述第二边设有沿着所述第一方向分布的多个不等高的第三梳齿,所述第四边设有沿着所述第一方向分布的多个不等高的第四梳齿,沿所述第一方向,所述第三梳齿的电长度和所述第四梳齿的电长度均呈递减分布,靠近所述宽口端的所述第三梳齿和所述第四梳齿的电长度最小,所述第三梳齿和所述第四梳齿用于抑制所述渐变槽天线未辐射的能量在所述第二边和所述第四边上的驻波电流分布。通过第三梳齿和第四梳齿的设置能够减小第二边和第四边对渐变槽天线的辐射方向图造成纹波效应,这里的纹波特性主要是指方向图曲面不平滑,会形成波浪式的纹波特征,即通过第三梳齿和第四梳齿的设置能够保证渐变槽天线的辐射方向图趋向平滑,辐射方向图趋向平滑代表天线的辐射性能稳定。
一种具体的实施方式中,第三梳齿位于第一梳齿和宽口端之间,第四梳齿位于第二梳齿和宽口端之间。第三梳齿和第四梳齿亦对称分布在渐变槽的两侧。
一种可能的实施方式中,所述渐变槽包括位于所述窄缝端和所述宽口端之间耦合中间位置,所述窄缝端和所述中间位置之间的部分为主要馈电区,所述中间位置和所述宽口端之间的部分为主要辐射区,所述偶极子天线和所述渐变槽天线的相交位置位于所述主要馈电区,所述偶极子天线的延伸方向与所述渐变槽的延伸方向之间形成夹角(夹角可以为90度或接近90度),所述第一梳齿和所述第二梳齿对称分布在所述主要馈电区的两侧。
一种可能的实施方式中,所述第三梳齿和所述第四梳齿对称分布在所述主要辐射区的两侧。
一种可能的实施方式中,所述第一金属结构的外围设第一区域,所述第一区域位于所述第一金属结构上远离所述宽口端的边缘处,所述第一区域处设置第一附加天线。本申请在所述第一区域处设置第一附加天线,第一附加天线具有单独的馈电结构及辐射结构,由于第一附加天线布置在第一区域,不管第一附加天线的馈电结构及辐射结构的形态如何,都不会影响渐变槽天线和偶极子天线的辐射效能。
一种可能的实施方式中,所述第二金属结构的外围设第二区域,所述第二区域位于所述第二金属结构上远离所述宽口端的边缘处,所述第二区域处设置第二附加天线。
一种可能的实施方式中,第一附加天线包括第一辐射结构和第一馈电结构,第一辐射结构与渐变槽天线的馈电结构和偶极子天线位于介质板的同一层,为设置在介质板上的微带线结构。第二附加天线包括第二辐射结构和第二馈电结构,第二辐射结构与第一金属结构和第二金属结构位于介质板的同一层,亦为设置在介质板上的微带线结构。
一种实施方式中,第一附加天线50可以为LOOP天线,第一附加天线50的工作频率为5G。第二附加天线为IFA天线,第二附加天线60的工作频率为2G。
第二方面,本申请提供一种电子设备,包括射频电路和第一方向任意一种实施方式所述的天线,所述天线的所述馈电结构电连接至所述射频电路。
第三方面,本申请还提供一种天线模组,包括支架和连接至所述支架的天线,此天线为第一方面任意一种实施方式提供的天线。
附图说明
图1为包括本申请提供的天线的电子设备作为家庭网关,在家庭网关系统中的应用示意图。
图2为本申请提供的电子设备(为家庭网关)的一种具体的应用场景示意图。
图3为本申请一种实施方式提供的电子设备的立体图。
图4为图3所示的电子设备去除外壳的状态的示意图。
图5为图4所示的电子设备去除用于安装天线的支架的示意图,主要表达天线与电子设备内的单板的位置关系。
图6为本申请一种实施方式提供的天线的第一面的示意图。
图7为本申请一种实施方式提供的天线的第二面的示意图。
图8为本申请一种实施方式提供的天线的侧面示意图。
图9为本申请一种实施方式提供的天线的另一侧面示意图。
图10为本申请一种实施方式提供的天线的一个表面的示意图。
图11为本申请一种实施方式提供的天线的一个面的示意图。
图12为本申请一种实施方式提供的天线的另一面的示意图。
图13为本申请一种实施方式提供的天线的一个侧面的示意图。
图14为本申请一种实施方式提供的天线的一个面的示意图。
图15为本申请一种实施方式提供的天线的第一面的示意图。
图16为本申请一种实施方式提供的天线的第一面的示意图。
图17为本申请一种实施方式提供的天线的第一面的示意图。
图18为本申请一种实施方式提供的天线的第一面的示意图。
图19为本申请一种实施方式提供的天线的剖面的示意图。
图20为本申请一种实施方式提供的天线的第一面的示意图。
图21为本申请一种实施方式提供的天线的第一面的示意图。
图22为本申请一种实施方式提供的天线的第一面的示意图。
图23为本申请一种实施方式提供的天线的第一面的示意图。
图24为本申请一种实施方式提供的天线的第一面的示意图。
图25为本申请一种实施方式提供的天线的阻抗带宽的S参数曲线示意图。
图26为本申请一种实施方式提供的天线的不同频率下的辐射方向图。
图27A为常规天线只包括渐变槽天线,不包括偶极子天线状态的电流分布图。
图27B为本申请一种实施方式提供的天线在偶极子天线工作频率状态下的电流分布图。
图27C为本申请一种实施方式提供的天线在渐变槽天线工作频率状态下的电流分布图。
具体实施方式
为方便理解,下面对本申请实施例所涉及的相关技术术语进行解释和描述。
家庭网关:是位于现代家庭内部的一个网络设备,它的作用是使家庭用户连接到Internet,使位于家庭中的多种智能设备都能得到Internet的服务,或者使这些智能设备相互之间实现通信。简单的说,家庭网关是使家庭内部多种智能设备之间实现联网,以及从家庭内部到外部网络实现互联的一座桥梁。从技术角度说,家庭网关在家庭内部以及从内部到外部实现桥接/路由、协议转换、地址管理和转换,承担防火墙的职责,并提供可能的VoIP/Video over IP等业务。
无线AP:(AP,Access Point,无线访问节点、会话点或存取桥接器)是一个包含很广的名称,它不仅包含单纯性无线接入点(无线AP),也同样是无线路由器(含无线网关、无 线网桥)等类设备的统称。无线AP接入点支持2.4GHz频率的无线应用,敏感度符合802.11n标准,并采用双路射频输出,每一路最大输出600毫瓦,可通过无线分布系统(点对点和点对多点桥接)在大面积的区域部署无线覆盖,是酒店宾馆发展无线网络必备的无线AP设备。
多输入多输出系统(Multi-input Multi-output;MIMO)是一种用来描述多天线无线通信系统的抽象数学模型,能利用发射端的多个天线各自独立发送信号,同时在接收端用多个天线接收并恢复原信息。该技术最早是由马可尼于1908年提出的,他利用多天线来抑制信道衰落(fading)。根据收发两端天线数量,相对于普通的单输入单输出系统(Single-Input Single-Output,SISO),MIMO此类多天线技术尚包含早期所谓的“智能天线”,亦即单输入多输出系统(Single-Input Multi-Output,SIMO)和多输入单输出系统(Multiple-Input Single-Output,MISO)。
全向天线,即在水平方向图上表现为360°都均匀辐射,也就是平常所说的无方向性,在垂直方向图上表现为有一定宽度的波束,一般情况下波瓣宽度越小,增益越大。全向天线在移动通信系统中一般应用于郊县大区制的站型,覆盖范围大。
水平极化,是指电磁波的振动方向是水平方向。凡是极化面与大地法线面垂直的极化波称为水平极化波。其电场方向与大地相平行。
垂直极化,是指电场矢量在一个固定的平面内沿一个固定的方向振动,则称该电磁波是偏振的,包含电场矢量E的平面称为偏振面。偏振在微波遥感中称为极化,极化有水平极化和垂直极化两种方式。当电磁波的电场矢量平行于波束入射面时,称为垂直极化,用V表示。
下面结合本申请实施例中的附图对本申请实施例进行描述。
图1所示为包括本申请提供的天线的电子设备作为家庭网关,在家庭网关系统中的应用示意图。图1所示的实施方式中,本申请提供的电子设备为家庭网关,家庭网关连接在光局端和终端设备之间,光局端连接至广域网(因特网),光局端从广域网(因特网)获取信号,并将此信号传送至家庭网关,再由设置在家庭网关中的天线将信号传送至各终端设备。家庭网关包括数字模块、射频模块和天线,数字模块连接在光局端和射频模块之间,射频模块用于发送射频信号给天线。随着家庭智能化的发展,各种智能化终端设备被配置在家庭中,需要在家庭网关内的配置更多的天线,以为各种终端设备提供信号。例如,天线可以包括天线1、天线2、天线3、天线4和天线5,天线1可以为低频天线,例如低频天线可以为2G天线或3G天线,天线2、天线3、天线4和天线5可以为高频天线,例如高频天线可以为5G天线或6G天线。其它实施方式中天线可以有其它的配置,例如包括低频天线的数量可以为两个或三个以上,高频天线的数量也可以为一个或两个或更多个。
一种实施方式中,终端设备可以包括智能手机、智能家居(例如空调、电风扇、洗衣机、电冰箱等)、智能电视、智能安防(例如摄像机)。智能手机可以使用在低频频率范围,也可以使用在高频频率范围,例如智能手机可以支持2G和5G两种频率的信号。因此如图1所示的,天线1和天线2均为智能手机提供信号。天线3为智能家居提供信号,对于智能家居而言,通过智能家庭网关系统平台,用户可以通过手机和PC端等方式对远程智能家电、照明系统、电源系统等进行状态查看和控制。天线4为智能电视提供信号,用户也可以通过终端设备远程操控智能电视,智能电视可以具网络电视的功能,也可以具有视频会议的功能。天线5为智能安防提供信号,智能视安防系统可以包括防火、防盗、防泄漏和远程监控等功能。用户可以利用手机、Internet远程查看和设置家庭安防系统,同时还可远程监视家庭内部情 况,如果检测到异常状况,安防系统可以通过打电话、发短信、发邮件等方式通知用户。
本申请可以将不同工作频率的天线集成在一起,且能够实现低频天线的全向辐射,同时实现高频天线的定向增益。例如,天线1和天线4集成在一起,天线1为智能手机的低频的工作频率提供信号,智能手机可能会出现在家庭中的任意位置,天线1需要全向辐射,天线4需要为智能电视提供信号,通常智能电视会固定在家庭中的某个位置,天线4需要定位辐射,以保证信号强度。
图2所示为本申请提供的电子设备100(为家庭网关)的一种具体的应用场景示意图,如图2所示,具体的家庭场景中,同一楼层中的不同的房间均需要WIFI信号,不同的楼层也有WIFI信号的需求,家庭网关100内包括不同的天线,不但可以实现之间水平全向辐射,即可以辐射至同一楼层不同房间,满足同一楼层不同房间的WIFI信号需求,还可以实现垂直穿楼辐射,满足不同楼层的WIFI信号需求。图2中标示为A的椭圆形代表天线具有水平极化的全向辐射的能力,图2中标为B的椭圆形代表天线具有水平极化的定向辐射的能力,图2中标示为C椭圆形代表天线具有垂直极化辐射能力,能够实现垂直穿楼辐射信号的能力。
本申请提供的天线能够集成两个天线,在同一个极化方向上,实现全向辐射及定向增益,也可以实现多个天线的集成,即可保证同一个极化方向上的全向辐射及定向增益,又可以实现另一个极化方向上的辐射,例如垂直极化的全向辐射和定向增益,及水平极化的辐射。
图3、图4和图5所示为本申请一种实施方式提供的电子设备100的示意图。电子设备100可以为家庭网关,也可以为其它的电子设备,例如:无线AP、家庭热点、CPE(Customer Premise Equipment,客户终端设备)等。
参阅图3,以电子设备100为家庭网关为例,电子设备100包括外壳1001,外壳1001可以呈桶状,也可以为其它的形状,例如方形盒状或圆形盒状等。本实施方式中,桶状外壳1001的顶部设有顶盖1002,顶盖1002为非屏蔽材料,例如塑料,顶盖1002的内部为天线,顶盖1002设有多个通孔1003,通孔1003的设置有利于电子设备100内的天线的信号辐射及电子设置100内部的通风散热。
结合图3和图4,图4为在图3的基础上,本申请提供的电子设备100去掉外壳1001的示意图。电子设备100内设单板1004,本申请一种实施方式提供的天线1000设置在单板1004的一侧,单板1004上可以设置射频电路10041,射频电路10041电连接至天线1000的馈电部,射频电路10041通过天线1000收发信号。单板1004和天线1000设置在外壳1001内部。为方便单板1004的散热,将单板1004设为立式,外壳1004内设用于固定单板1004的基座1005,单板1004连接至基座1005,基座1005上也可以设置用于为单板1004提供导热散热的结构1006,例如金属散热器、均热板、热管及其它导热结构,也可以将不同类型的导热结构组合使用。本实施方式中,电子设备100内设两块单板1004,基座1005位于电子设备100的底部,导热散热的结构1006直立在基座1005上,两块单板1004分别位于导热散热的结构1006的相对的两侧,即导热散热的结构1006夹设在两块单板1004之间,这样,导热散热的结构1006可以同时为两块单板1004散热,而且保证单板靠近外壳1001,更利于单板1004的散热。
为了保证天线1000的辐射性能,可以将天线1000设置在单板1004的顶部。具体而言,如图4所示,可以将天线1000安装在支架1007上,以构成天线模组R,再将天线模组R组装在外壳1001内部,支架1007上还可以设置其它的天线或电子器件。支架1007上设有通风道10071,此通风道10071与顶盖1002上的通孔1003相通,以实现通风散热的作用。天线 模组R位于单板1004和导热散热的结构1006的顶部,即靠近外壳1004的顶部区域,位于顶盖1002的内侧,通风道10071和通孔1003用于使得导热散热的结构1006与电子设备100外部之间通风,提升散热效果。图4所示的实施方式中,天线1000(具有渐变线天线架构)所在的介质板接近水平放置,天线产生水平极化,若具体的使用场景需要垂直极化的天线,可以将电子设备100由立式变为卧式,将天线的渐变线天线的渐变槽的开口设置为:竖直方向的向上设置。其它实施方式中,也可以将天线1000布置在电子设置内的其它位置。如图5所示,电子设备内设立式的支架,即位于两个单板1004之间的部分,天线1000设置在此支架上,天线的渐变槽的开口设置为:竖直方向的向上设置。
外壳1001可以整体为塑料材质,或者部分外壳1001为金属材质,部分外壳1001为塑料材质(或非屏蔽材料),外壳1001的金属部分为设置在单板1004外围的部分外壳,金属材质的部分外壳具有导热性能好的优势,单板1004上设有功率器件或其它发热元件,单板1004工作的情况下,可以通过导热结构将热传导至外壳1001,通过外壳1001辅助散热,这样可以提升散热,保证电子设备100的使用寿命。外壳1001的塑料(或非屏蔽材料)部分为设置在天线1000外围的部分外壳,塑料材质不会对天线1000形成信号干扰和屏蔽,有利于保证天线1000辐射性能。
本申请通过将极化相同、工作频率不同的渐变槽天线(Tapered slot antenna,TSA)和偶极子天线(Dipole antenna或doublet)集成为一个天线,通过渐变槽天线为偶极子天线馈电,提升了天线的适用范围,使得天线可以实现偶极子天线的低频全向辐射,又能够实现渐变槽天线的高频定向辐射。本申请提供的天线能够较好的匹配ONT(Optical network terminal,光网络终端)对于WiFi天线设计的要求(例如:在有限的空间内布置更多的天线,可以覆盖更多的区域),迎合了家庭网络WiFi天线设计的战略(即:不同频率下高性能的WiFi覆盖能力)。本申请提供的天线可以作为一个单频天线使用,也可以扩展成双频天线,或者具备升级频段的空间,或是可以实现大面积广覆盖和特定区域的高增益增强覆盖,实现广覆盖和高体验效果。本申请中的渐变槽天线和偶极子天线都是垂直极化(可以通过更换摆放角度,使得渐变槽天线和偶极子天线均成为水平极化),所述渐变槽天线为第一频率的定向天线,所述偶极子天线为第二频率的全向天线,所述第一频率高于所述第二频率。
一种实施方式中,参阅图6、图7、图8和图9,本申请提供的天线设置在介质板10上,介质板10也可以视为天线的一部分,即可以理解为天线包括介质板10。图6为介质板10的第一面S1天线分布的示意图、图7为介质板10的第二面S2的天线分布的示意图,图8和图9为介质板10的两个侧面的示意图。介质板10可以为陶瓷基板、PCB等任何绝缘基板,介质板10可以为单一材质的板材,也可以为复合板材,例如通过两种不同材质的板材压合而成。介质板10可以为单层板结构,也可以为两层板或多层板结构,其中的第一面S1和第二面S2可以为介质板10的表面,例如第一面S1为介质板10的正面,第二面S2为介质板10的背面;第一面S1和第二面S2也可以为介质板10的中间的某个层。
天线包括渐变槽天线20和偶极子天线30。一种实施方式中,本申请提供的天线为形成在介质板上的微带天线架构,具有剖面薄、重量轻、可与载体(指的介质板)共形、以及易与有源器件(例如射频电路、滤波电路、信号放大电路等)集成的特点。结合图6和图7,渐变槽天线20包括馈电结构21(图6中虚线表示的部分表示设置在第二面S2上的馈电结构21)、第一金属结构22和第二金属结构23。如图7所示,馈电结构21为设置在介质板的第二面S2上的微带传输线,可以电连接馈电线缆C以实现为渐变槽天线20馈电。所述第一金 属结构22和所述第二金属结构23为设置在介质板10的第一面S1上的接地层,馈电线缆C(例如同轴线)的外导体焊接至第一金属结构22或第二金属结构23,即馈电线缆C的外导体焊接至接地层,馈电线缆C的内导体电连接至馈电结构21,以形成同轴线馈电架构。
其它实施方式中,渐变槽天线20也可以为金属板结构,可以理解为,不需要介质板设置渐变槽天线20,而是将渐变槽天线20为设计为金属板状结构,固定在电子设备中的壳体内,例如固定在支架上或者其它结构件的表面。
一种实施方式中,所述第一金属结构22和所述第二金属结构23之间形成渐变槽24,所述渐变槽24包括窄缝端241和宽口端242。具体而言,如图6所示,第一金属结构22和第二金属结构23设置在第一面S1上,介质板10包括相对设置的第一边缘11和第二边缘12,从第一边缘11向第二边缘12延伸的方向为第一方向A1,窄缝端241靠近第一边缘11(窄缝端241也可以位于第一边缘11的位置处),宽口端242位于第二边缘12或者靠近第二边缘12的位置处,可以理解为,从所述窄缝端241至所述宽口端242延伸的方向为第一方向A1。其它实施方式中,第一金属结构22和第二金属结构23也可以位于介质板的中间区域,这样窄缝端241和宽口端242均可以不设置在介质板10的边缘位置,但是,仍然可以将从所述窄缝端241至所述宽口端242延伸的方向定义为第一方向A1。
所述渐变槽24还包括位于所述窄缝端241和所述宽口端242之间中间位置243,如图6所示,第一金属结构22的边缘的第一点P1和第二金属结构23的边缘的第二点P2之间的部分渐变槽24定义为中间位置243,此处定义的“中间位置243”指的是窄缝端241和宽口端242之间的某个位置,并不是限定窄缝端241和宽口端242之间的中点,根据渐变槽24的形态的不同,例如张角大小的不同,中间位置243距离窄缝端241和宽口端242的尺寸也会有变动,中间位置243距离窄缝端241的尺寸可以大于中间位置243距离宽口端242的尺寸,中间位置243距离窄缝端241的尺寸也可以小于中间位置243距离宽口端242的尺寸。
所述中间位置243和所述宽口端242之间的部分所述渐变槽24为所述渐变槽天线20的主要辐射区R1,所述窄缝端241和所述中间位置243之间的部分为所述渐变槽天线20的主要馈电区R2,主要馈电区R2用于为所述主要辐射区R1馈电,可以理解为:主要辐射区R1是渐变槽天线20中起到主要辐射的部分,意思是渐变槽天线20的其它部分(例如主要馈电区R2及渐变槽天线20的外围区域)也会具有辐射的功能,也能够对辐射信号产生影响,但大部分辐射功能集中在主要辐射区R1。主要馈电区R2主要作用是为主要辐射区R1馈电,主要馈电区R2也可能具有辐射信号的功能,所述窄缝端241和所述中间位置243之间的部分的尺寸、开口大小等参数均会影响电磁波信号的辐射。
图8所示为第二方向A2上的侧面示意图,介质板10的第一面S1上显示的是第二金属结构23,第一金属结构22因被第二金属结构23遮挡未显示在图8中,介质板的第二面S2上显示的是馈电结构21和偶极子天线30。图9所示为第一方向A1上的侧面示意图,介质板10的第一面S1上显示了第一金属结构22和第二金属结构23,介质板10的第二面S2上的馈电结构21和偶极子天线30部分重叠,其中馈电结构21的一端位于介质板10的左侧边缘,馈电结构21的另一端被偶极子天线30遮挡,显示为虚线。第一金属结构22和第二金属结构23之间的缝隙为第一金属结构22和所述第二金属结构23之间形成渐变槽24的窄缝端241。
渐变槽天线20的工作频率能够被控制在最低工作频率和最高工作频率之间,例如:渐变槽天线20的工作频率可以在5G-6.5G之间,渐变槽天线20的最低工作频率为5G,渐变槽天线20的最高工作频率为6.5G。参阅图6,在第一金属结构22所在的平面上,垂直于第一方 向A1被定义为第二方向A2。渐变槽24在第二方向A2上的尺寸定义为渐变槽24的宽度,从窄缝端241至宽口端242,不同的位置处的渐变槽24的宽度不同,一种可能的实施方式中,中间位置243处的渐变槽24的宽度W1为渐变槽天线20的最高工作频率的二分之一波长,在宽口端242处的渐变槽的宽度W2为渐变槽天线20的最低工作频率的二分之一波长。一种具体的实施例中,渐变槽天线20的工作频率可以在5G-6G之间,在宽口端处的渐变槽的宽度为3cm,在中间位置处的渐变槽的宽度为2.5cm,渐变槽天线20的工作频率跨度越大,中间位置243的渐变槽的宽度W1和宽口端241的渐变槽的宽度W2的差异越大。
在宽口端242处,第一金属结构22和第二金属结构23之间连线的延伸方向可以为第二方向A2(如图6所示),即第一金属结构22在宽口端242处的端点与第二金属结构23在宽口端242处的端点的连线可以垂直于第一方向A1。其它实施方式中,参阅图10,第一金属结构22在宽口端242处的端点P3与第二金属结构23在宽口端242处的端点P4的连线也可以与第一方向A1之间形成非90度的夹角(称为宽口端夹角A0),同样可以实现渐变槽天线20的定向辐射,可以根据此宽口端夹角A0的大小来配置渐变槽天线20的极化方向。
参阅图10和图11,第一金属结构22包括面对第二金属结构23的第一边221和背离第二金属结构23的第二边222,第二金属结构23包括面对第一金属结构22的第三边231和背离第一金属结构22的第四边232,第一边221和第三边231之间构成所述渐变槽24。一种实施方式中,第一边221可以为从窄缝端241至宽口端242延伸的圆滑的曲线状结构,第一边221可以包括直线段和指数线,直线段和指数线圆滑过渡连接,其它实施方式中,第一边221也可以为从窄缝端241至宽口端242呈阶梯状延伸的架构。第三边231和第一边221的结构形态可以相同,也可以不完全相同。一种实施方式中,第二边222和第四边232可以呈直线状(如图10所示的实施方式),且均沿第一方向延伸,可以理解为:第二边222平行于第四边231。一种实施方式中,如图11所示,可以通过在第二边222和第四边232上设置切槽的方式,在第一金属结构22和第二金属结构上23形成梳齿结构,梳齿结构的齿稍位于第二边222和第四边232上,梳齿结构的齿根位于第一金属结构22和第二金属结构23的内部且位于第一边221和第二边222之间以及第三边231和第四边232之间。
具体而言,所述第二边222设有沿着所述第一方向A1分布的多个等高的第一梳齿223,所述第四边232设有沿着所述第一方向A1分布的多个等高的第二梳齿233,所述第一梳齿223和所述第二梳齿233用于提升所述渐变槽天线20的增益。对于第一梳齿223而言,这里所述的“等高”是指各第一梳齿223的电长度相同,即在第二方向A2上的延伸的尺寸相同,第二梳齿233的等高也是同样的理解。所述第一梳齿223的电长度和所述第二梳齿233的电长度均为所述渐变槽天线20的中心频率对应的四分之一波长,所述中心频率可以为渐变槽天线的最高工作频率和最低工作频率的中间值。第一梳齿223和第二梳齿233对称分布在渐变槽24的两侧。
本申请提供的天线在工作状态下,渐变槽天线20主要通过渐变槽24边缘(即,第一金属结构22的第一边221和第二金属结构23的第三边223)进行馈电及辐射。然而,在第一金属结构22和第二金属结构23的外侧边缘(即第二边222和第四边232)可能会存在未被辐射的电磁波,也就是说,第一金属结构22和第二金属结构23的外侧边缘(即第二边222和第四边232)上可能会有电流分布。具体而言,对于渐变槽天线20而言,其主要馈电区R2靠近窄缝端,主要用于馈电,即传输电流,这部分的电流主要是沿着渐变槽24的边缘(即第一边和第三边)流动,但是也会有部分电流顺着第一金属结构朝向第二边缘的方向流至第二 边缘,及会有部分电流顺着第二金属结构朝向第四边缘的方向流向第四边缘,这样,在第二边和第四边上就会存在部分电流,第一梳齿223和第二梳齿233的设置,就可以将这部分电流进行辐射,提升渐变槽天线20的增益。
图10所示的实施方式中,第一金属结构22和第二金属结构23的外侧边缘,即第二边222和第四边232为沿第一方向A1延伸的直线形态,无法参与电磁波辐射。而图11所示的实施方式中,第一金属结构22和第二金属结构23的外侧边缘,即第二边222和第四边232,采用第一梳齿223和第二梳齿233的设计,由于第一梳齿223和第二梳齿233的延伸方向为第二方向A2,且其电长度为渐变槽天线20的中心频率对应的四分之一波长,电流可以在第一梳齿223和第二梳齿233上完成电磁波辐射,而且通过第一梳齿223和第二梳齿233辐射的电磁波对渐变槽天线20的中心频率产生增益的效果,即可以增强渐变槽天线20的信号,使得渐变槽天线20的定向辐射性能更好。因此,本实施方式通过第一金属结构22和第二金属结构23的外侧边缘,采用第一梳齿223和第二梳齿233的设计可以使得渐变槽天线的增益提升,一般可以提升增益0.5-1dB。
参阅图11,所述第二边222设有沿着所述第一方向A1分布的多个不等高的第三梳齿224,所述第四边232设有沿着所述第一方向A1分布的多个不等高的第四梳齿234。对第三梳齿224而言,此处所述的“不等高”指的是各第三梳齿224的电长度不等,即,各第三梳齿224在第二方向A2上延伸的尺寸不等,第四梳齿234的不等高也是同样的理解。对于第三梳齿224而言,越靠近宽口端242的第三梳齿224的电长度越小,第三梳齿224的电长度为第一方向A1上的第三梳齿224的尺寸,即沿着第一方向A1,第三梳齿224的电长度逐渐变小,第四梳齿234也可以是同样的设置。第三梳齿224和第四梳齿234的结构相同,对称分布在渐变槽24的两侧。所述第三梳齿224和所述第四梳齿234用于抑制所述渐变槽天线20未辐射的能量在所述第二边222和所述第四边232上的驻波电流分布。通过第三梳齿224和第四梳齿234的设置能够减小第二边222和第四边232对渐变槽天线20的辐射方向图造成纹波效应,这里的纹波特性主要是指方向图曲面不平滑,会形成波浪式的纹波特征,即通过第三梳齿224和第四梳齿234的设置能够保证渐变槽天线20的辐射方向图趋向平滑,辐射方向图趋向平滑代表天线的辐射性能稳定。通过第三梳齿224和第四梳齿234抑制纹波效应的原理如下:相邻两个第三梳齿224之间的间隙中,电流沿着间隙对应的第三梳齿224的边缘分布,间隙两侧的两个第三梳齿224的相对的边缘上的电流分布的方向是相反的,因此,相反的电流相互抵消,从而实现抑制纹波效应的作用。
一种具体的实施方式中,第三梳齿224位于第一梳齿223和宽口端242之间,第四梳齿234位于第二梳齿233和宽口端之间。第三梳齿224和第四梳齿234亦对称分布在渐变槽24的两侧。
第二梳齿233的宽度可以与第一梳齿223的宽度相同。第四梳齿234的宽度可以与第三梳齿224的宽度相同。
一种实施方式中,第二边和第四边分别位于介质板的两个相对的边缘,渐变槽位于这两个相对的边缘之间的介质板的中间区域。
参阅图11,第一金属结构22和第二金属结构23之间还设有匹配槽25,匹配槽25与渐变槽24连通且连接至窄缝端241,匹配槽25位于窄缝端241背离宽口端243的一侧,匹配槽25的作用为主要起到渐变槽天线20馈电的阻抗匹配的作用。窄缝端241形成在第一金属结构22的第一段槽线225和第二金属结构23的第二段槽线235之间,第一段槽线225和第 二段槽线235可以理解为第一边221和第二边231上的部分线段。一种实施方式中,匹配槽25的形状为扇形,匹配槽25由两条直线251,252和一条弧形线253构成,两条直线251,252分别位于弧形线253的两端,且其中一条直线251连接在弧形线253和第一段槽线225之间,另一条直线252连接在弧形线253和第二段槽线235之间。第一段槽线225和第二段槽线235可以均为直线段形状,且延伸方向为第一方向A1,第一段槽线225和第二段槽线235构成矩形缝状结构,匹配槽25以矩形缝状结构为中心呈对称分布,可以理解为:匹配槽25其中的一条直线251与第一段槽线225之间的夹角与另一条直线253与第二段槽线235之间的夹角相等。其它实施方式中,匹配槽25的形状也可以为圆形或其它形状。
参阅图7,所述馈电结构21与所述窄缝端241耦合以对所述渐变槽天线20馈电。馈电结构21包括传输线211和匹配部212,所述匹配部212连接在传输线211的一端,传输线211的另一端用于连接馈源,例如:传输线211与馈电线缆C连接,通过馈电线缆C连接至馈源,为了方便连接,一种实施方式中,传输线211与馈源连接的一端设置在介质板10的边缘位置,馈电线缆C的内导体焊接至传输线211上,馈电线缆C的外导体焊接至第一金属结构22或第二金属结构23上,第一金属结构22或第二金属结构23相当于渐变槽天线的地。匹配部212的单位面积大于传输线21的单位面积,可以理解为:传输线211呈线状延伸的金属部,而匹配部212为片状金属部,匹配部212的形状可以为扇形、圆形或其它的形状。传输线211的主要作用是传送电流,匹配部212的主要作用是与其背面的金属结构(即第一金属结构22或第二金属结构23的连接处)形成容性结构(电磁耦合结构),使得微带传递的馈电信号到槽缝高效率的耦合传输。窄缝端241与传输线211上邻近匹配部212的区域相对设置,通过传输线211与窄缝槽241之间的耦合对渐变槽天线20馈电。可以理解为,传输线211与窄缝槽241交叉设置,二者相交的区域为耦合馈电的位置,此交叉的位置可以为传输线211和匹配部212之间的连接位置,也可以为传输线211上的任意位置。
传输线211的形状可以为直线状(如图7所示),传输线211的形状也可以为具有弯折的微带线结构,如图12所示,传输线211包括第一段2111和第二段2112,第二段2112连接在第一段2111和匹配部212之间,第二段2112的延伸方向为第二方向A2,第一段2111连接在第二段2112和介质板10的一个边缘之间,第一段2111和第二段2112之间形成夹角,图12所示的实施方式中,此夹角大于90度,可以理解的是,可以根据天线的具体的架构布置传输线211的形态,第一段2111和第二段2112之间还可以设置其它传输线(可以为弧形线、直线段状)。传输线211的线宽可以理解为垂直于传输线211延伸方向的尺寸,传输线211的延伸方向为从传输线211的一端向另一端延伸的方向,即从馈源向匹配部212沿着传输线211延伸的方向。传输线211的宽度可以为单一的尺寸,传输线的不同的位置也可以具有不同的宽度。通过改变匹配部212的形状、尺寸,以及传输线211的宽度、长度等参数,可以调节渐变槽天线20的带宽、回波损耗等,可以提升渐变槽天线20的辐射性能。
本申请通过将偶极子天线30与渐变槽天线20集成在一个天线中,实现不同频段和不同极化方向的配置。一种具体的实施方式中,介质板10作为天线的载体,偶极子天线30和渐变槽天线30通过微带线的方式布置在介质板10上。如图6和图7所示,偶极子天线30与馈电结构21可以位于介质板10的同一层(例如位于第一面S1上),第一金属结构22和第二金属结构23位于介质板10的同一层(例如位于第二面S2上)。
参阅图13、图14、图15和图16,图13为介质板10的侧面图,显示了介质板10包括两层基材层和三层功能层的架构,图14、图15和图16分别为介质板10上的三层功能层的 布置。如图13所示,介质板10包括第一基材层11和第二基材层12。第一基材层11背离第二基材层12的一侧为第一功能层,第一功能层包括馈电结构21和偶极子天线30,图14所示为第一功能层所在的平面的架构。第一基材层11和第二基材层12之间为第二功能层,第二功能层包括第一金属结构22,图15所示为第二功能层所在的平面的架构。第二基材层12背离第一基材层11的一侧为第三功能层,第三功能层包括第二金属结构23,图16所示为第三功能层所在的平面的架构。概括而言,对于本申请提供的天线而言,其中的第一金属结构22和第二金属结构23可以分别布置在介质板10的不同的层上,偶极子天线30与馈电结构21也可以位于介质板的不同的层上。
第一金属结构22和第二金属结构23相当于天线的接地层。
参阅图11,当第一金属结构22和第二金属结构23位于同一层时,部分第一金属结构22和部分第二金属结构23连接为一体,连接的位置位于匹配槽25背离窄缝端241的一侧。可以理解为,在制作过程中,在介质板10上设一层完整的铜层,通过蚀刻的方式在铜层上制作渐变槽24和匹配槽25,但仍然保持蚀刻后的铜层为一体式的结构,通过渐变槽24和匹配槽25将蚀刻后的铜层划分为第一金属结构22和第二金属结构23。
参阅图17,图17表示了第一金属结构22和第二金属结构23位于介质板上不同的层,其中第一金属结构22用实线表示,第二金属结构23用虚线表示,可以理解为:第一金属结构22位于可见的表层,第二金属结构23位于介质板的中间层,被遮挡。当第一金属结构22和第二金属结构23位于不同层时,第一金属结构22和第二金属结构23可以有部分重叠区域S,图17所示的实施方式中,部分重叠区域S为呈矩形的区域。部分重叠区域S位于匹配槽25背离窄缝端241的一侧。重叠的区域S处,第一金属结构22和第二金属结构23之间可以通过介质板10上的金属过孔13电连接。
其它实施方式中,参阅图18,图18表示了第一金属结构22和第二金属结构23位于介质板上不同的层,其中第一金属结构22用实线表示,第二金属结构23用虚线表示,第一金属结构22和第二金属结构23之间没有重叠区域。第一金属结构22和第二金属结构23之间通过介质板10不同层之间的金属过孔13实现电连接,如图19所示,互相不重叠的第一金属结构22和第二金属结构23之间的金属过孔13可以是倾斜设置在介质板10的不同层间的,“倾斜设置”指的是金属过孔13与介质板10之间的关系不是垂直的,金属过孔13的一端位于第一金属结构22上,金属过孔13的另一端位于第二金属结构23上,在介质板10的基材层内,金属过孔13倾斜延伸。
参阅图7和图12,偶极子天线30与渐变槽天线20的渐变槽24相交,且在二者的相交位置处,通过渐变槽24为偶极子天线30耦合馈电,以激励偶极子天线30,偶极子天线30的工作频率为第二频率,偶极子天线30为全向天线。第二频率低于第一频率,例如,第二频率为2G-3G范围内的工作频率,第一频率为5G-7G范围内的工作频率。偶极子天线30和所述渐变槽24的相交位置位于渐变槽天线20的主要馈电区R2,所述偶极子天线30的延伸方向与所述渐变槽24的延伸方向之间形成夹角。一种具体的实施方式中,所述偶极子天线30的延伸方向与所述渐变槽24的延伸方向相互垂直,即偶极子天线30的延伸方向为第二方向A2,渐变槽24的延伸方向为第一方向A1。其它实施方式中,偶极子天线30的延伸方向也可以相较第二方向A2偏转,例如,偶极子天线30的延伸方向可以与第一方向A1之间形成预设夹角(此夹角的具体值不做限定,可以为80度、70度、60度,也可以为接近90度的某些角度,例如83、89度)。
本实施方式通过将偶极子天线设置在主要馈电区,而且偶极子天线的工作频率与渐变槽天线的工作频率不同,即偶极子天线的工作频率位于渐变槽天线的工作频段之外,使得偶极子天线的设置不会影响到主要辐射区的辐射特性,即:本申请即能够通过渐变槽天线来激励偶极子天线的辐射,又可以保证渐变槽天线的辐射性能。
参阅图12,一种具体的实施方式中,所述偶极子天线30包括第一辐射段31、第二辐射段32和电连接在所述第一辐射段31和所述第二辐射段32之间的开关结构33,所述开关结构33与所述渐变槽24相交,所述开关结构33与控制电路100电连接,通过所述控制电路100控制所述开关结构33导通或断开,实现所述天线在第一工作状态和第二工作状态之间的切换,所述第一工作状态为所述开关结构33断开的状态,此状态下天线单独执行所述渐变槽天线20,所述第二工作状态为所述开关结构33导通的状态,此状态下天线同时执行所述渐变槽天线20和所述偶极子天线30。
控制电路100可以为设置在电子设备内的电路板上的电路结构或独立的驱动器件,控制电路100也可以作为本申请提供的天线的一部分,集成在介质板上。
具体而言,开关结构33可以为二极管,控制电路100可以通过在第一辐射段31和第二辐射段32上引入一路直流偏置电压实现对开关结构33的导通和关断的控制,可以在第一辐射段31上接电压源正极,在第二辐射段32上接地,亦或是相反的配置,第一辐射段31接地,第二辐射段32接负电压,最终实现开关结构33上正向偏置目的。
所述第一辐射段31和所述第二辐射段32对称分布在所述开关结构33的两侧。开关结构33横跨窄缝端241,开关结构33与第一辐射段31的连接处P5位于第一金属结构22的范围内,开关结构33与第二辐射段32的连接处P6位于第二金属结构23的范围内,这样的架构下,开关结构33与第一辐射段31和第二辐射体32的连接的位置与第一金属结构22和第二金属结构23重叠,不落在渐变槽24的范围内,不会影响渐变槽24的电流传输,能够保证渐变槽天线20的信号辐射的性能。
参阅图20,一种具体的实施方式中,所述偶极子天线30还包括第一贴片34和第二贴片35,第一贴片34和第二贴片35可以理解为金属片状结构,不但从偶极子天线30的延伸方向上增加了辐射臂的长度,还同时增加辐射臂的宽度。所述第一贴片34位于所述第一辐射段31远离所述第二辐射段32的一端,所述第一贴片34与所述第一金属结构22相对设置,用于增加所述偶极子天线30的容性耦合。所述第二贴片35位于所述第二辐射段32远离所述第一辐射段31的一端,所述第二贴片35与所述第二金属结构23相对设置,用于增加所述偶极子天线30的容性耦合。第一贴片34和第二贴片35可以同时存在,也可以只设置其中的一个。本实施方式通过第一贴片34和第二贴片35的设置有利于在有限的尺寸范围内保证偶极子天线30的电长度,有利于天线的小型化设计。图20所示的实施方式中,偶极子天线30同时包括第一辐射段31、第二辐射段32、开关结构33、第一贴片34和第二贴片35。
第一贴片34设置在第一辐射段31的末端,第二贴片35设置在第二辐射段32的末端,通过末端容性耦合设计,实现偶极子天线30的小尺寸,可以理解为:第一贴片34和第二贴片35的作用在于产生偶极子天线30与渐变槽天线20的第一金属结构22和第二金属结构23之间的容性耦合,通过容性耦合的作用,可以保证偶极子天线20在小尺寸状态下仍然能实现其的工作频率。第一贴片以第一辐射段的延长线为中心呈对称分布的架构。第一贴片的形状还可以为:圆形、三角形、方形、多边形等其它形状。一种具体的实施方式中,第一贴片34和第一辐射段31构成船桨形态,本申请通过将第一贴片34和第二贴片35分别配置在第一辐 射段31的末端和第二辐射段32的末端,即第一贴片34和第二贴片35的位置远离渐变槽24,具体为,远离渐变槽24的窄缝端241,这样的架构,可以最大程度降低第一贴片34和第二贴片35对渐变槽天线20的影响,从而实现在保证渐变槽天线辐射性能的前提下激发偶极子天线的全向辐射模式,本申请实现了具有双频重构特性的天线架构。
如图20所示,具体而言,第一贴片34包括第一部分341和第二部分342,第一部分341连接至第一辐射段31,第二部分342连接至第一部分341远离第一辐射段31的一端,第一部分341呈梯形,第一部分341与第一辐射段31连接的一端的尺寸小于第一部分341与第二部分342连接的一端的尺寸,第二部分342外轮廓呈弧形。第二贴片35包括第一部分351和第二部分352,第二贴片35的第一部分351和第二部分352的具体结构与第一部分341的第一部分341和第二部分342相同,不再赘述。
其它实施方式中,偶极子天线30可以不包括开关结构33,可以理解为,第一辐射段31直接连接至第二辐射段32,如图7所示,偶极子天线30包括中间一条辐射线310(相当于图20所示的实施方式中的第一辐射段31和第二辐射体段32)及位于此辐射线310两端的第一贴片34和第二贴片35(相当于图20所示的实施方式中的第一贴片和第二贴片)。此种实施方式,只能同时启动渐变槽天线20和偶极子天线30,无法实现单独激励渐变槽天线20的功能。
参阅图21,在图20所示的实施方式的基础上,本实施方式中,所述偶极子天线30还包括延伸线36、37,其中一个所述延伸线36连接至所述第一辐射段31,另一个延伸线37连接至第二辐射段32,所述延伸线36、37用于增加所述偶极子天线30的电长度。延伸线36,37的具体的形状可以为蜿蜒状、蛇形、锯齿状、波浪状等。延伸线36,37的线宽小于第一辐射段31的线宽。偶极子天线30可以包括两个延伸线36、37,即第一辐射段31和第二辐射段32均配置一个延伸线,可以理解的是,偶极子天线30也可以只包括一个延伸线,例如,只在第一辐射段31上设置一个延伸线36,而第二辐射段32上不设置延伸线,这样也可以改变偶极子天线30的电长度。
参阅图22,本实施方式中,所述偶极子天线30包括带状辐射线38及连接至所述带状辐射线的延伸线39,延伸线39的数量可以为一个、两个或更多个,图22所示的实施方式中,偶极子天线30包括两个延伸线39。延伸线39用于增加带状辐射线38的电长度。
综上所述,本申请提供的渐变槽天线20中的渐变槽24具有上下对称的形式,其窄缝端241(馈电位置)为一条细长窄缝,从窄缝端241至宽口端242逐渐张开,行程类似喇叭的效果。所述窄缝端241和所述中间位置243之间的部分(可以理解为:靠近馈电端的窄缝)可以看成是一种能量传导部分,引导射频能量从馈电结构向宽口端242的部分传递能量。能量传导部分集中在主要馈电区R2,完成能量从馈电结构到辐射缝隙的传导,随着张角的加大,当张角达到二分之一波长时,即开始对外辐射,形成主要辐射区R1(主要位于渐变槽24的右半部分)。因此主要馈电区R2可以看成是主要辐射区R1的馈电网络,对主要馈电区R2进行设计不会影响到主要辐射区R1的辐射特性,特别是当增加的设计部分处在右半部分辐射体的工作频段之外时。因此在主要馈电区R2的背面引入偶极子天线30(例如一个上下结构对称的波长的船桨导体架构),偶极子天线30尺寸约等于WiFi低频2G对应工作频段的半波长,实现一个覆盖WiFi低频的垂直极化特征的偶极子天线,并通过渐变槽缝的耦合作用实现馈电。
参阅图23和图24,本申请提供的天线还包括第一附加天线50和第二附加天线60,第一 附加天线50和第二附加天线60亦设置在介质板10上,并且,第一附加天线50设置在第一金属结构22的外围,且位于第一金属结构22的远离宽口端242的边缘处,即第一附加天线50所在的位置与第一金属结构22邻接。第二附加天线60设置在第二金属结构23的外围,同样,第二附加天线60也位于第二金属结构23的远离宽口端242的边缘处,第二附加天线60与第二金属结构23邻接。可以理解的是,一种实施方式中,本申请提供的天线可以同时包括渐变槽天线20、偶极子天线30、第一附加天线50和第二附加天线60,其它的实施方式中,本申请提供的天线可以包括渐变槽天线20、偶极子天线30和第一附加天线50(或第二附加天线60),即可以只设置第一附加天线50和第二附加天线60中的一个。
具体而言,介质板10上设有第一区域R3,第一区域R3位于所述第一金属结构22一个边角位置,第一区域R3位于所述第一金属结构22远离所述宽口端242的边缘处,可以理解为:宽口端242位于介质板的第二边缘12处,第一区域R3位于靠近介质板10的第一边缘11处,第一边缘11和第二边缘12相对设置,对于渐变槽天线20和偶极子天线30而言,第一区域R3为电流分布较少,或者没有电流分布的区域,因此在第一区域R3中设置其它的天线,不会影响渐变槽天线和偶极子天线的辐射效能。因此,本申请在所述第一区域R3处设置第一附加天线50,第一附加天线50具有单独的馈电结构及辐射结构,由于第一附加天线50布置在第一区域R3,不管第一附加天线50的馈电结构及辐射结构的形态如何,都不会影响渐变槽天线20和偶极子天线30的辐射效能。同样,在第二金属结构23的边角位置也存在第二区域R4,第二区域R4的位置与第一区域R3的位置相似,也是位于第二金属结构23远离宽口端242的边缘位置,渐变槽天线20和偶极子天线30工作状态下,第二区域R4分布较少电流或没有电流分布。
如图23和图24所示,第一区域R3位于介质板10的左上角的位置处,第二区域R4位于介质板10的左下角的位置处。如图24所示,第一附加天线50包括第一辐射结构51和第一馈电结构52,第一辐射结构51与渐变槽天线20的馈电结构21和偶极子天线30位于介质板10的同一层,亦为设置在介质板10上的微带线结构。一种实施方式中,第一附加天线50可以为LOOP天线,第一附加天线50的工作频率为5G。如图23所示,第二附加天线60包括第二辐射结构61和第二馈电结构62,第二辐射结构61与第一金属结构22和第二金属结构23位于介质板10的同一层,亦为设置在介质板10上的微带线结构。一种实施方式中,第一二附加天线60为IFA天线,第二附加天线60的工作频率为2G。
图25所示为本申请一种实施方式提供的天线的阻抗带宽的S参数曲线示意图,其中纵轴为回波损耗刻度,-10dB为业界公认的衡量端口匹配好坏的门限,横轴为频率,1-2标注了低频全向的具体频段范围,3-4标注为高频频段的工作范围。从图25可以看到,本申请提供的天线结合了工作频率在5G-6G范围内的渐变槽天线及工作频率在2G至3G之间的偶极子天线,能够同时满足渐变槽天线和偶极子天线的辐射性能。
图26所示为本申请一种实施方式提供的天线的不同频率下的辐射方向图,左图为偶极子天线的辐射方向图,右图为渐变槽天线的辐射方向图,可以看出偶极子天线为全向天线,渐变槽天线的定向天线。
图27A为本申请提供的天线只包括渐变槽天线,不包括偶极子天线的状态下的电流分布图。此状态下,只有渐变槽天线被激励,工作频率为5.5G,电流主要分布在渐变槽边缘位置,即第一金属结构和第二金属结构朝向渐变槽的边缘处。
图27B为本申请一种实施方式提供的天线在偶极子天线工作频率状态下的电流分布图。 此状态下,只有偶极子天线被激励,电流主要分布在偶极子天线上,工作频率为2G。
图27C为本申请一种实施方式提供的天线在渐变槽天线工作频率状态下的电流分布图。此状态下,只有渐变槽天线被激励,工作频率为5.5G,电流主要分布在渐变槽边缘位置。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (20)

  1. 一种天线,其特征在于,包括极化相同的渐变槽天线和偶极子天线;
    所述渐变槽天线包括馈电结构、第一金属结构和第二金属结构,所述第一金属结构和所述第二金属结构之间形成渐变槽,所述渐变槽的两端分别为窄缝端和宽口端,所述馈电结构与所述窄缝端耦合,激励所述渐变槽天线为定向天线;
    所述偶极子天线与所述渐变槽相交,且在二者的相交位置处,通过所述渐变槽为所述偶极子天线耦合馈电,激励所述偶极子天线为全向天线。
  2. 根据权利要求1所述的天线,其特征在于,所述渐变槽天线的工作频率高于所述偶极子天线的工作频率。
  3. 根据权利要求1或2所述的天线,其特征在于,所述渐变槽包括位于所述窄缝端和所述宽口端之间中间位置,所述窄缝端和所述中间位置之间的部分为主要馈电区,所述中间位置和所述宽口端之间的部分为主要辐射区,所述偶极子天线和所述渐变槽天线的相交位置位于所述主要馈电区,所述偶极子天线的延伸方向与所述渐变槽的延伸方向之间相交。
  4. 根据权利要求3所述的天线,其特征在于,所述偶极子天线的延伸方向与所述渐变槽的延伸方向正交。
  5. 根据权利要求1或2所述的天线,其特征在于,所述偶极子天线包括第一辐射段、第二辐射段和电连接在所述第一辐射段和所述第二辐射段之间的开关结构,所述开关结构与所述渐变槽相交,所述开关结构与控制电路电连接,通过所述控制电路控制所述开关结构导通或断开,实现所述天线在第一工作状态和第二工作状态之间的切换,所述第一工作状态为单独执行所述渐变槽天线,所述第二工作状态为同时执行所述渐变槽天线和所述偶极子天线。
  6. 根据权利要求5所述的天线,其特征在于,所述第一辐射段和所述第二辐射段对称分布在所述开关结构的两侧。
  7. 根据权利要求5所述的天线,其特征在于,所述偶极子天线还包括第一贴片,所述第一贴片位于所述第一辐射段远离所述第二辐射段的一端,所述第一贴片与所述第一金属结构层叠设置。
  8. 根据权利要求7所述的天线,其特征在于,所述偶极子天线还包括第二贴片,所述第二贴片位于所述第二辐射段远离所述第一辐射段的一端,所述第二贴片与所述第二金属结构层叠设置。
  9. 根据权利要求5所述的天线,其特征在于,所述偶极子天线还包括延伸线,所述延伸线连接至所述第一辐射段和/或第二辐射段,所述延伸线用于增加所述偶极子天线的电长度。
  10. 根据权利要求1或3所述的天线,其特征在于,所述偶极子天线包括辐射线和分别位于所述辐射线两端的第一贴片和第二贴片,所述辐射线的中心位置为所述偶极子天线的馈电部,所述馈电部与所述渐变槽相交,所述第一贴片和所述第二贴片用于增加所述偶极子天线的容性耦合。
  11. 根据权利要求1或2所述的天线,其特征在于,所述偶极子天线包括带状辐射线及连接至所述带状辐射线的延伸线,所述延伸线用于增加所述带状辐射线的电长度。
  12. 根据权利要求1或2所述的天线,其特征在于,所述第一金属结构包括面对所述第二金属结构的第一边和背离所述第二金属结构的第二边,所述第二金属结构包括面对所述第 一金属结构的第三边和背离所述第一金属结构的第四边,所述第一边和所述第三边之间构成所述渐变槽,所述第二边设有沿着所述第一方向分布的多个等高的第一梳齿,所述第四边设有沿着所述第一方向分布的多个等高的第二梳齿,所述第一梳齿和所述第二梳齿用于提升所述渐变槽天线的增益。
  13. 根据权利要求12所述的天线,其特征在于,所述第一梳齿的电长度和所述第二梳齿的电长度均为所述渐变槽天线的中心频率对应的四分之一波长,所述渐变槽天线能够被激励工作一个高频带宽内,所述高频带宽包括最高工作频率和最低工作频率,所述中心频率为所述最高工作频率和所述最低工作频率之间的中间值。
  14. 根据权利要求12所述的天线,其特征在于,所述第二边设有沿着所述第一方向分布的多个不等高的第三梳齿,所述第四边设有沿着所述第一方向分布的多个不等高的第四梳齿,沿所述第一方向,所述第三梳齿的电长度和所述第四梳齿的电长度均呈递减分布,靠近所述宽口端的所述第三梳齿和所述第四梳齿的电长度最小,所述第三梳齿和所述第四梳齿用于抑制所述渐变槽天线未辐射的能量在所述第二边和所述第四边上的驻波电流分布。
  15. 根据权利要求14所述的天线,其特征在于,所述渐变槽包括位于所述窄缝端和所述宽口端之间的中间位置,所述窄缝端和所述中间位置之间的部分为主要馈电区,所述中间位置和所述宽口端之间的部分为主要辐射区,所述偶极子天线和所述渐变槽天线的相交位置位于所述主要馈电区,所述第一梳齿和所述第二梳齿对称分布在所述主要馈电区的两侧。
  16. 根据权利要求15所述的天线,其特征在于,所述第三梳齿和所述第四梳齿对称分布在所述主要辐射区的两侧。
  17. 根据权利要求1或2所述的天线,其特征在于,所述第一金属结构的外围设第一区域,所述第一区域位于所述第一金属结构上远离所述宽口端的边缘处,所述第一区域处设置第一附加天线。
  18. 根据权利要求17所述的天线,其特征在于,所述第二金属结构的外围设第二区域,所述第二区域位于所述第二金属结构上远离所述宽口端的边缘处,所述第二区域处设置第二附加天线。
  19. 一种电子设备,其特征在于,包括射频电路和权利要求1-18任一项所述的天线,所述天线的所述馈电结构电连接至所述射频电路。
  20. 一种天线模组,其特征在于,包括支架和连接至所述支架的如权利要求1-18任一项所述的天线。
PCT/CN2021/113438 2020-10-30 2021-08-19 天线、天线模组和电子设备 WO2022088863A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP21884595.6A EP4220863A4 (en) 2020-10-30 2021-08-19 ANTENNA, ANTENNA MODULE, AND ELECTRONIC DEVICE
MX2023005070A MX2023005070A (es) 2020-10-30 2021-08-19 Antena, modulo de antena, y dispositivo electronico.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011193933.9 2020-10-30
CN202011193933.9A CN114447629B (zh) 2020-10-30 2020-10-30 天线、天线模组和电子设备

Publications (1)

Publication Number Publication Date
WO2022088863A1 true WO2022088863A1 (zh) 2022-05-05

Family

ID=81357888

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/113438 WO2022088863A1 (zh) 2020-10-30 2021-08-19 天线、天线模组和电子设备

Country Status (4)

Country Link
EP (1) EP4220863A4 (zh)
CN (1) CN114447629B (zh)
MX (1) MX2023005070A (zh)
WO (1) WO2022088863A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114883796A (zh) * 2022-05-31 2022-08-09 深圳Tcl数字技术有限公司 一种天线结构
CN115020975B (zh) * 2022-08-09 2022-12-09 中信科移动通信技术股份有限公司 圆极化渐变双开槽天线及其控制方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060170605A1 (en) * 2005-02-03 2006-08-03 Chia-Lun Tang Planar dipole antenna
CN101901960A (zh) * 2010-06-13 2010-12-01 中国科学院上海微系统与信息技术研究所 一种宽带毫米波小型渐变缝隙天线及应用
GB2508428A (en) * 2012-12-03 2014-06-04 Eads Singapore Pte Ltd Small tapered slot antenna using a magneto-dielectric material

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100418270C (zh) * 2006-01-20 2008-09-10 东南大学 移动通信基台用的宽频带赋形波束天线
US7271775B1 (en) * 2006-10-19 2007-09-18 Bae Systems Information And Electronic Systems Integration Inc. Deployable compact multi mode notch/loop hybrid antenna
CN105337030B (zh) * 2014-08-08 2018-04-13 中电科微波通信(上海)股份有限公司 Vivaldi天线以及天线装置
CN105958188A (zh) * 2016-05-31 2016-09-21 北京邮电大学 带反射板的交叉渐变槽天线
CN110190393B (zh) * 2019-06-26 2020-12-01 南京邮电大学 金属柱透镜加载的高增益渐变槽线天线
WO2020106344A2 (en) * 2019-08-21 2020-05-28 Futurewei Technologies, Inc. Y-shaped single substrate ultra-wideband antenna and antenna array
CN210245712U (zh) * 2019-08-21 2020-04-03 南京曼杰科电子工程有限公司 一种小型低频超宽带天线
CN111555025A (zh) * 2020-06-04 2020-08-18 西安光启尖端技术研究院 缝隙天线

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060170605A1 (en) * 2005-02-03 2006-08-03 Chia-Lun Tang Planar dipole antenna
CN101901960A (zh) * 2010-06-13 2010-12-01 中国科学院上海微系统与信息技术研究所 一种宽带毫米波小型渐变缝隙天线及应用
GB2508428A (en) * 2012-12-03 2014-06-04 Eads Singapore Pte Ltd Small tapered slot antenna using a magneto-dielectric material

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
MIKHNEV V., MAKSIMOVITCH YE., VAINIKAINEN P.: "A tapered-slot antenna with emulated continuous resistive loading", EUROPEAN CONFERENCE ON ANTENNAS AND PROPAGATION : EUCAP 2007 ; 11 - 16 NOVEMBER 2007, EICC, EDINBURGH, UK, EDINBURG, 1 January 2007 (2007-01-01) - 16 November 2007 (2007-11-16), pages 378 - 378, XP055925821, ISBN: 978-0-86341-842-6, DOI: 10.1049/ic.2007.1501 *
PENG ZHANG ; WEN-XUN ZHANG: "Gain enhancement of tapered slot-line antenna with directive grating", MICROWAVE CONFERENCE, 2008. APMC 2008. ASIA-PACIFIC, IEEE, PISCATAWAY, NJ, USA, 16 December 2008 (2008-12-16), Piscataway, NJ, USA , pages 1 - 4, XP031636689, ISBN: 978-1-4244-2641-6, DOI: 10.1109/APMC.2008.4958154 *
See also references of EP4220863A4

Also Published As

Publication number Publication date
MX2023005070A (es) 2023-05-16
CN114447629B (zh) 2023-01-06
EP4220863A4 (en) 2024-03-20
EP4220863A1 (en) 2023-08-02
CN114447629A (zh) 2022-05-06

Similar Documents

Publication Publication Date Title
JP6345263B2 (ja) 偏波共用アンテナおよびアンテナアレイ
US8854270B2 (en) Hybrid multi-antenna system and wireless communication apparatus using the same
CN104752824B (zh) 天线结构及应用该天线结构的无线通信装置
WO2022088866A1 (zh) 天线、天线模组和电子设备
US10985453B2 (en) Low profile high performance integrated antenna for small cell base station
WO2022088863A1 (zh) 天线、天线模组和电子设备
WO2014206111A1 (zh) 多天线系统及移动终端
WO2020134362A1 (zh) 一种天线、天线阵列和基站
WO2021244158A1 (zh) 双极化天线及客户前置设备
WO2023016180A1 (zh) 一种可重构天线及其控制方法、路由器和信号收发设备
WO2021197399A1 (zh) 一种天线及终端
US20230020807A1 (en) Antenna, Antenna Module, And Wireless Network Device
US10148002B2 (en) Horizontally-polarized antenna for microcell coverage having high isolation
CN110112561B (zh) 一种单极化天线
WO2021083055A1 (zh) 一种天线组件及通信设备
WO2019029189A1 (zh) 天线组件及具有此天线组件的无线通信电子设备、遥控器
CN114696078B (zh) 天线装置和电子设备
CN114256601B (zh) 天线、天线模组和电子设备
CN215266649U (zh) 天线及电子设备
CN206301937U (zh) 一种mimo天线、路由器及电子装置
TWI464962B (zh) 複合式多天線系統及其無線通訊裝置
WO2024067496A1 (zh) 天线组件和通信设备
US20240170858A1 (en) Antenna apparatus and communication device
CN209913031U (zh) 一种单极化天线
WO2022152022A1 (zh) 天线装置及电子设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21884595

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021884595

Country of ref document: EP

Effective date: 20230427

NENP Non-entry into the national phase

Ref country code: DE