WO2023016180A1 - 一种可重构天线及其控制方法、路由器和信号收发设备 - Google Patents

一种可重构天线及其控制方法、路由器和信号收发设备 Download PDF

Info

Publication number
WO2023016180A1
WO2023016180A1 PCT/CN2022/105526 CN2022105526W WO2023016180A1 WO 2023016180 A1 WO2023016180 A1 WO 2023016180A1 CN 2022105526 W CN2022105526 W CN 2022105526W WO 2023016180 A1 WO2023016180 A1 WO 2023016180A1
Authority
WO
WIPO (PCT)
Prior art keywords
antenna
dielectric
polarized antenna
board
diodes
Prior art date
Application number
PCT/CN2022/105526
Other languages
English (en)
French (fr)
Inventor
陈建强
曹啡
徐殿平
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Priority to EP22855163.6A priority Critical patent/EP4386988A1/en
Publication of WO2023016180A1 publication Critical patent/WO2023016180A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas

Definitions

  • the present application relates to the technical field of wireless local area network communication, in particular to a reconfigurable antenna and a control method thereof, a router and a signal transceiving device.
  • a solution in some cases is to introduce beam reconfigurable technology, which realizes power allocation to a specific area by controlling the deflection direction of the directional beam, so as to ensure the reliability of the communication system.
  • beam reconfigurable technology which realizes power allocation to a specific area by controlling the deflection direction of the directional beam, so as to ensure the reliability of the communication system.
  • the deployed wireless local area network needs to have good environmental adaptability and flexibility, so there are great difficulties when it comes to antenna devices.
  • most current antennas can only provide a limited number of directional beams in one polarization direction.
  • the present application provides a reconfigurable antenna, a control method thereof, a router, and a signal transceiving device.
  • the embodiment of the present application provides a reconfigurable antenna, including: a horizontally polarized antenna, including a patch structure arranged on the upper surface of the first dielectric board and a first reflector arranged on the lower surface of the first dielectric board.
  • the first reflector is provided with a plurality of first slits, and the first reflector is connected to a first diode electrode located on the upper surface of the first dielectric plate at each of the first slits.
  • the vertically polarized antenna is arranged below the horizontally polarized antenna , including a third dielectric board and a fourth dielectric board perpendicular to the first dielectric board, the third dielectric board and the fourth dielectric board are clamped along a clamping line perpendicular to the first dielectric board so that Combined into one;
  • the back of the third dielectric board is provided with a radiation patch at the clamping line, and one or more second reflectors are respectively provided on both sides of the radiation patch;
  • the back of the fourth dielectric board is located at the One or more second reflectors are provided on both sides of the clamping line; each of the second reflectors is provided with one or more second slits, and the second slits are connected across a second diode;
  • the multiple second diodes are turned on or off to control the vertically polarized antenna to radiate omnidirectional beams or multiple directional beams by turning on or off a plurality of the first diodes;
  • the vertically polarized antenna
  • an embodiment of the present application provides a method for controlling a reconfigurable antenna, the reconfigurable antenna is the above-mentioned reconfigurable antenna, and the control method includes the following steps: receiving a beam switching signal; The beam switching signal controls the bias voltage; according to the bias voltage, the first diode is controlled to be turned on or off, and the change of the first diode to be turned on or off controls the horizontal polarization
  • the antenna switches between omnidirectional beams and multiple directional beams; the second diode is controlled to be turned on or off according to the bias voltage, and the second diode is turned on or off to control the
  • the vertically polarized antenna described above switches between omnidirectional beams and multiple directional beams.
  • an embodiment of the present application provides a router, where the router includes the foregoing reconfigurable antenna.
  • an embodiment of the present application provides a signal transceiving device, where the signal transceiving device includes the reconfigurable antenna as described above.
  • FIG. 1 is a schematic diagram of the overall structure of a reconfigurable antenna in an embodiment of the present application
  • FIG. 2 is a schematic diagram of the connection between a horizontally polarized antenna and a vertically polarized antenna in an embodiment of the present application;
  • Fig. 3 is the connection diagram of vertically polarized antenna, choke board and antenna board in the embodiment of the present application;
  • FIG. 4 is a top view of the top structure of the horizontally polarized antenna in an embodiment of the present application.
  • FIG. 5 is a top view of the underlying structure of the horizontally polarized antenna in an embodiment of the present application.
  • FIG. 6 is a top view of the structure of the first reflector and the second dielectric plate of the horizontally polarized antenna in the embodiment of the present application;
  • FIG. 7 is a top view of the structure of the circular metal patch of the horizontally polarized antenna in the embodiment of the present application.
  • FIG. 8 is a schematic diagram of a first diode arrangement of a horizontally polarized antenna in an embodiment of the present application.
  • Fig. 9 is the S parameter graph under 5 kinds of radiation states of the horizontally polarized antenna in the embodiment of the present application.
  • FIG. 10 is a gain pattern diagram of five radiation states of a horizontally polarized antenna in an embodiment of the present application.
  • Fig. 11 is a schematic diagram of simulated main lobe gains under five radiation states of a horizontally polarized antenna in an embodiment of the present application;
  • Fig. 12 is a schematic front view of the first vertically polarized antenna board in an embodiment of the present application.
  • Fig. 13 is a schematic diagram of the back of the first vertically polarized antenna board in an embodiment of the present application.
  • FIG. 14 is a schematic front view of a second vertically polarized antenna plate in an embodiment of the present application.
  • Fig. 15 is a schematic diagram of the back of the second vertically polarized antenna board in an embodiment of the present application.
  • 16 is a schematic diagram of a second diode arrangement of a vertically polarized antenna in an embodiment of the present application
  • Fig. 17 is an S-parameter curve diagram under nine radiation states of a vertically polarized antenna in an embodiment of the present application.
  • Fig. 18 is a gain pattern diagram under 9 radiation states of a vertically polarized antenna in an embodiment of the present application.
  • Fig. 19 is a schematic diagram of simulated main lobe gains under nine radiation states of a vertically polarized antenna in an embodiment of the present application;
  • Fig. 20 is a schematic diagram of the front structure of the antenna board in the embodiment of the present application.
  • Fig. 21 is a schematic diagram of the back structure of the antenna board in the embodiment of the present application.
  • Fig. 22 is a schematic view of the front structure of the choke plate in the embodiment of the present application.
  • Fig. 23 is a schematic diagram of the back structure of the choke plate in the embodiment of the present application.
  • Horizontally polarized antenna An antenna whose direction of electric field strength is parallel to the ground during radiation.
  • Vertically polarized antenna An antenna whose electric field strength direction is perpendicular to the ground during radiation.
  • Omnidirectional antenna An antenna that radiates uniformly in 360° on the horizontal pattern. The smaller the beam width of the antenna, the greater the gain.
  • Directional antenna An antenna that radiates in a certain angle range on the horizontal pattern, which is commonly referred to as a directional antenna.
  • wireless communication is required in areas such as industrial parks, hotels, office buildings, transportation hubs, and large venues, but the population flow in these areas changes greatly and the environment is complex.
  • industrial parks which usually includes some
  • the buildings in the park are basically reinforced concrete structures, and the fourth floor of the building is surrounded by rings.
  • the interior of the building is divided into multiple rooms by reinforced concrete walls, including stairs, corridors and other auxiliary facilities.
  • Electromagnetic waves will have a lot of loss when propagating through these areas, which will affect communication to a large extent. System reliability. These areas not only have complex indoor layouts but also have a large flow of people.
  • the deployed wireless local area network needs good environmental adaptability and flexibility, and the performance of the wireless local area network system is largely determined by the antenna.
  • equipment, and the current antenna equipment is often an antenna that cannot provide omnidirectional radiation and directional radiation at the same time, or even if it is an antenna that can provide omnidirectional radiation and directional radiation at the same time, it can only provide limited directional beams and cannot achieve Free switching between omnidirectional beam and directional beam.
  • An embodiment of the present application provides a reconfigurable antenna, including: a horizontally polarized antenna, including a patch structure disposed on the upper surface of a first dielectric board and a first reflector disposed on the lower surface of the first dielectric board, the The first reflector is provided with a plurality of first slits, and the first reflector is electrically connected to a first diode located on the upper surface of the first dielectric plate at each of the first slits, through The multiple first diodes are turned on or off to control the horizontally polarized antenna to radiate omnidirectional beams or multiple directional beams; the vertically polarized antenna is arranged below the horizontally polarized antenna, including vertical the third dielectric board and the fourth dielectric board of the first dielectric board, the third dielectric board and the fourth dielectric board are clamped along a clamping line perpendicular to the first dielectric board so as to be combined into one ; The back of the third dielectric board is provided with a radiation patch at the clamping line,
  • the patch structure includes a plurality of discretely arranged Alford antenna loops, a section of circular chamfer is cut off at the tail of the Alford antenna loop, and the head of the Alford antenna loop passes through the impedance
  • the converter is connected to the feed point.
  • the first reflector is provided with four first slits
  • the second reflector is connected with four first diodes, among which four of the first two The pole diodes are adjacent in pairs; when the four first diodes are all off, the horizontally polarized antenna radiates an omnidirectional beam; or when two adjacent two of the four first diodes are off state, and the other two are in the on state, and the horizontally polarized antenna radiates a directional beam.
  • the reconfigurable antenna further includes multiple sets of first bias lines disposed on the first dielectric board, the third dielectric board, and the fourth dielectric board, each group
  • the first bias line is used to apply a bias voltage to the multiple first diodes, and the bias voltage controls the switching on or off of the multiple first diodes.
  • the reconfigurable antenna further includes a plurality of sets of second bias lines arranged on the third dielectric plate or the fourth dielectric plate, and the second bias lines are used for A bias voltage is applied to the multiple second diodes, and the bias voltage controls the switching on or off of the multiple second diodes.
  • the first bias line or the second bias line includes 2 or more offset short lines arranged at intervals, and the space between the two offset short lines is connected with choke inductive element.
  • a first capacitive element is further connected between the first bias line and the first diode; and/or between the second bias line and the second A second capacitive element is also connected between the diodes.
  • the horizontally polarized antenna further includes a second dielectric plate, the second dielectric plate is disposed on the lower surface of the first reflector, and the lower surface of the second dielectric plate is disposed with
  • the annular metal patch is etched with a plurality of third slits along the radius of the annular metal patch.
  • two second reflectors are arranged on the back of the third dielectric plate, two second reflectors are arranged on the back of the fourth dielectric plate, and each second reflector is provided with one of the second reflectors.
  • the second slit, the 4 second diodes connected to the 4 second slits are adjacent to each other; when the 4 second diodes are all off, the vertical pole Or when 2 adjacent ones of the 4 first diodes are off and the other two are on, the vertically polarized antenna radiates a directional beam; or when 4 Three of the first diodes are in an off state, and the other one is in an on state, and the vertically polarized antenna radiates a directional beam.
  • a feed patch is provided at the center line on the front surface of the third dielectric board, for coupling and feeding the radiation patch.
  • the radiation patch is a monopole patch
  • the monopole patch is provided with a fourth slit.
  • the reconfigurable antenna further includes a choke plate plugged on the antenna board to cancel the secondary radiation of the surface current of the first coaxial cable, and the first coaxial cable A cable is used to feed the horizontally polarized antenna.
  • the choke plate includes a sixth dielectric plate and a second conductor plate disposed on a top layer of the sixth dielectric plate, and a pair of fifth slits is provided on the second conductor plate.
  • FIG. 1 is a schematic diagram of the overall structure of the reconfigurable antenna.
  • the reconfigurable antenna in FIG. 1 includes a horizontally polarized antenna 1, a vertically polarized antenna, and an antenna board 4 and a choke plate 5 , the vertically polarized antenna includes a first vertically polarized antenna plate 2 and a second vertically polarized antenna plate 3 .
  • Figure 2 is a schematic diagram of the connection between a horizontally polarized antenna and a vertically polarized antenna, in Figure 2, the horizontally polarized antenna 1 is connected to the first vertically polarized antenna board 2 and the second vertically polarized antenna through four sets of first pins 11 Referring to Fig.
  • Fig. 3 is the connection diagram of vertically polarized antenna, choke plate and antenna board, the first vertically polarized antenna board 2 and the second vertically polarized antenna board 3 in Fig. 3, Through 4 sets of second pins 31 and 4 first slots 41, the connection with the antenna board 4 is realized; the choke plate 5 is connected with the antenna board 4 through the third pins 51 and the second slots 42, wherein the first A circular slot 43 and a second circular slot 44 are used to pass coaxial cables feeding the horizontally polarized antenna and the vertically polarized antenna.
  • connection part of the horizontally polarized antenna and the vertically polarized antenna is only used as an example to illustrate the setting of the connection part.
  • the use of the second pin and the third pin for the connecting parts of the vertically polarized antenna, the choke board, and the antenna board is only an exemplary description of the arrangement of the connecting parts.
  • the horizontally polarized antenna may include a three-layer structure, which is a patch structure, a first dielectric plate, and a first reflector in sequence from top to bottom, wherein the first reflector of the horizontally polarized antenna may adopt a circular shape Grounding plate, four rectangular first slots can be set on the circular grounding plate, see Figure 4-5, Figure 4 is a top view of the horizontally polarized antenna, and Figure 5 is a top view of the bottom structure of the horizontally polarized antenna.
  • the horizontally polarized antenna includes a patch structure 113 arranged on the upper surface of the first dielectric plate 101 and a circular ground plate 121 on the lower surface of the first dielectric plate 101.
  • a plurality of first slits 122 are provided, and the circular ground plate 121 is electrically connected to a first diode 115 located on the upper surface of the first dielectric plate 101 at each of the first slits 122. Turning on or off of each of the first diodes 115 controls the horizontally polarized antenna to radiate omnidirectional beams or multiple directional beams.
  • the quantity of the first slit (for example, can be n, wherein n ⁇ 1), size and shape (for example, can be trapezoidal, triangular, elliptical, etc.) also has multiple options, which can be increased or decreased by increasing or decreasing the number of slits Depending on the number of directional beams and the size of the slot, different antenna gains can be obtained.
  • the circular first dielectric plate, circular ground plate, and rectangular slit in the embodiment of the present application are only exemplary illustrations of the first dielectric plate, first reflector, and first slit, and are not specific limitations on the reconfigurable antenna. .
  • the patch structure of the horizontally polarized antenna includes four discretely arranged Alford (Alford) antenna rings 113, and the tail of the Alford (Alford) antenna ring cuts off a loop Corner cut 116 , the head of the Alford antenna loop is connected to the feed point 111 through an impedance transformer 112 .
  • the patch structure in the embodiment of the present application includes 4 discrete Alford (Alford) antenna loops, which are just examples of the antenna structure This is for illustrative purposes, but not a specific limitation on reconfigurable antennas.
  • the horizontally polarized antenna may include a five-layer structure, which is a patch structure, a first dielectric plate, a first reflector, a second dielectric plate, and a circular metal patch from top to bottom.
  • Figures 6-7 Figure 6 is a top view of the structure of the first reflector and the second dielectric plate of the horizontally polarized antenna, and Figure 7 is a top view of the structure of the circular metal patch of the horizontally polarized antenna.
  • the second dielectric plate 102 is arranged on the lower surface of the circular ground plate 121, and the lower surface of the second dielectric plate 102 is provided with an annular metal patch, wherein the annular metal patch can be a circular metal patch A plurality of third slits are etched along the radius of the circular metal patch 131 .
  • the horizontally polarized antenna in this embodiment is composed of the patch structure in FIG. 4 , the first dielectric plate, the first reflector in FIG. 6 , the second dielectric plate and the circular metal patch in FIG. 7 .
  • the horizontally polarized antenna can work in the WLAN2.4GHz frequency band, wherein the material of the first dielectric board 101 and the second dielectric board 102 is FR-4, the radius of the first dielectric board 101 and the second dielectric board 102 are both 29mm, and the thickness is 1.6mm.
  • the sector angle of each section of Alford (Alford) antenna ring 113 is 61 degrees, the ring inner diameter of Alford (Alford) antenna ring is 16.5mm, and the outer diameter is 23mm; Alford (Alford) antenna ring is composed of 4 quarters
  • One of the wavelength impedance converters 112 implements impedance matching between the feed point (circular pad) 111 and the Alford antenna loop 113, wherein the length of the impedance converter 112 is 15mm and the width is 0.2mm.
  • the radius of the circular grounding plate 121 is 15 mm, and the size of the first slit 122 etched on the circular grounding plate 121 is 8.5 mm*1.5 mm. As shown in FIG.
  • the bottom layer of the horizontally polarized antenna is composed of a circular metal patch 131 etched with 20 middle gaps to form an isolation screen.
  • the inner diameter of the circular metal patch is 4mm and the outer diameter is 29mm.
  • the circular through hole 132 with a radius of 4mm is removed to be used for welding the outer conductor of the coaxial cable on the ground plate 121 of the horizontally polarized antenna, and the inner conductor of the coaxial cable passes through the first dielectric plate 101 and the second dielectric plate.
  • the two dielectric plates 102 are welded on the feeding point (circular pad) 111 to feed the horizontally polarized antenna.
  • the circular ground plate 121 is electrically connected to a first diode 115 located on the upper surface of the first dielectric plate 101 at each first gap 122, and the level is controlled by turning on or off the four first diodes 115.
  • Polarized antennas radiate omnidirectional beams or multiple directional beams.
  • the horizontally polarized antenna further includes a first bias line arranged on the upper surface of the first dielectric plate, which is used to apply a bias voltage to the plurality of first diodes, and control the plurality of first diodes according to the change of the bias voltage on or off.
  • the first bias line includes two or more first bias short lines arranged at intervals, and an inductance element is connected across the space between the two first bias short lines.
  • a capacitive element may also be connected between the first bias line and the first diode.
  • four sets of first bias lines 114 are arranged on the first dielectric board. One section of each group of first bias lines is connected to the first diode, so as to apply a bias voltage to the first diode through the first bias line.
  • a first capacitive element may also be connected between the first bias line and the first diode.
  • the crossover in the embodiment of the present application means that the inductance element is arranged between two first bias short lines, one end of the inductance element is connected to one of the first bias short lines, and the other end is connected to the other A first bias stub is connected so that the inductive element is connected across the gap.
  • FIG 8 is a schematic diagram of the diode arrangement of the horizontally polarized antenna.
  • the first diodes are welded on the two pads in the circle corresponding to each set of first bias lines, and the first diodes are soldered on the other two pads.
  • two of the four pads away from the feeding point (circular pad) 111 are connected to the first reflector etched with the first slit through metallized via holes.
  • the first bias line 114 provides a bias voltage, controls the on-off of the first diode according to the change of the bias voltage, and then controls the change of the electrical size of the first reflector of the antenna, and the current distribution changes with the change of the electrical size to achieve Beam switching for horizontally polarized antennas.
  • the four first diodes in Fig. 8 are diode D1, diode D2, diode D3 and diode D4 respectively, when the diode is in the conduction state when the forward voltage is applied, it is set to 1, otherwise it is in the off state and is set to 0.
  • Table 1 shows the beam switching control method of the horizontally polarized antenna, including 5 coding states 0000, 0110, 0011, 1001, 1100 and the resulting pattern characteristics.
  • the generated pattern characteristics include 1 omnidirectional beam and 4 Directional beam.
  • the horizontally polarized antenna radiates an omnidirectional beam; when two of the four first diodes are off, the other two are on state, the horizontally polarized antenna radiates a directional beam.
  • the first coaxial cable is used to feed the horizontally polarized antenna, wherein the outer conductor of the first coaxial cable is connected to the first reflector, and the inner conductor of the first coaxial cable feeds the patch structure , the first coaxial cable passes through the antenna plate 4 of the reconfigurable antenna, the inner ring of the annular metal patch, and the circular through hole 132 of the second dielectric plate to be welded on the first reflector, and the first coaxial cable
  • the inner conductor passes through the circular through hole 132 of the second dielectric plate, the first reflector and the through hole at the center of the first dielectric plate in order to be welded on the feed point (circular pad) 111, when the first gap 122 When the first diodes are all disconnected, the Alford antenna loop 113 can provide omnidirectional beams, generate horizontally polarized radiation waves and cover 360°; when any two adjacent first diodes in the four first slots conduct When connected, a directional beam can be generated.
  • Fig. 9 is a graph of S parameters (including S22 and S12) in five radiation states of the horizontally polarized antenna of the reconfigurable antenna of the present application.
  • Fig. 10 is a diagram of gain patterns in five radiation states of the horizontally polarized antenna of the reconfigurable antenna of the present application. It can be seen from Fig. 9 and Fig. 10 that the reflection coefficients of the horizontally polarized antenna designed in this application from 2.4GHz to 2.835GHz are all lower than -10dB, and the switching between omnidirectional beams and four directional beams is realized.
  • Fig. 11 is a schematic diagram of simulated main lobe gains in five radiation states of the horizontally polarized antenna of the reconfigurable antenna of the present application. It can be seen from Fig. 11 that the main lobe gain of each beam tested at 2.44GHz is greater than 3.2dBi, and the peak gain is 3.65dBi.
  • the patch structure in the embodiment of the present application includes 4 Alford (Alford) antenna loops that are discretely arranged only for the antenna structure. It is used as an example and does not constitute a specific limitation on the electronically steered beam scanning dual-polarization reconfigurable antenna. It can also be understood that the shape and size of the first dielectric plate, the second dielectric plate and the annular metal patch of the horizontally polarized antenna have multiple choices.
  • the first dielectric plate, the second dielectric plate and the annular metal patch The shapes of the slices are the same; the shape and size of the first reflector of the horizontally polarized antenna can be selected in many ways, and different shapes (such as rectangle, trapezoid, ellipse, etc.) and size parameters can obtain different antenna gains.
  • the quantity of the first slit for example, can be n, wherein n ⁇ 1)
  • size and shape for example, can be trapezoidal, triangular, elliptical, etc.
  • different antenna gains can be obtained.
  • the number of the first slits is the same as the number of the first diodes.
  • the circular first dielectric plate, circular second dielectric plate, circular grounding plate, circular metal patch and rectangular slit in the embodiment of this application are only for the first dielectric plate, the second dielectric plate, and the first reflector. and the first slot are exemplarily described, and do not constitute a specific limitation on the electronically steered beam scanning dual-polarization reconfigurable antenna.
  • a horizontally polarized antenna and a vertically polarized antenna are assembled and plugged together to generate dual polarization characteristics;
  • the horizontally polarized antenna can use the Alford antenna ring as the radiation core, and a circular floor with four rectangular slots as the first Reflector, by changing the current distribution of the first reflector, the horizontally polarized antenna can realize the switching function of omnidirectional beam and directional beam; among them, the vertically polarized antenna can be placed vertically with the monopole antenna as the core, and the four second reflectors
  • the reflector is evenly placed in four directions with a monopole, and the vertically polarized antenna realizes the switching function of omnidirectional beam and directional beam by changing the electrical length of the second reflector.
  • the vertically polarized antenna of the electrically controlled beam scanning dual-polarized reconfigurable antenna includes a first vertically polarized antenna board 2 and a second vertically polarized antenna board 3 .
  • FIG. 12 is a schematic front view of the first vertically polarized antenna board
  • FIG. 13 is a schematic rear view of the first vertically polarized antenna board.
  • FIG. 14 is a schematic front view of the second vertically polarized antenna board
  • FIG. 15 is a schematic rear view of the second vertically polarized antenna board.
  • the first vertically polarized antenna board 2 includes a third dielectric board 201, the third dielectric board 201 is an FR-4 dielectric board, and the thickness of the FR-4 dielectric board is 1 mm.
  • the second vertically polarized antenna board 3 includes a fourth dielectric board 301 , both the third dielectric board 201 and the fourth dielectric board 301 are FR-4 dielectric boards, and the thickness of the FR-4 dielectric board is 1 mm.
  • the third dielectric board 201 is provided with a first connection slot 202 at the clip line.
  • the fourth dielectric board 301 is provided with a second connection slot 302 at the clip line.
  • the first vertically polarized antenna board 2 and the second vertically polarized antenna board 3 are clamped together through the first connection slot 202 and the second connection slot 302 .
  • the clamping line is perpendicular to the first dielectric board of the horizontally polarized antenna. It should be noted that the clamping line may be the center line of the third dielectric board or the fourth dielectric board.
  • the width of the first connection gap 202 and the second connection gap 302 may be 1.3mm. It can be understood that the material and size of the dielectric plate used in the vertically polarized antenna and the size of the connection gap are only for illustrative purposes, and do not constitute a specific limitation on the electronically steered beam scanning dual-polarization reconfigurable antenna.
  • first bias lines 211 are provided on the front of the third dielectric board 201, and the two ends of each bias line are respectively connected to the first metallized through hole 223 and the On the second metallized through hole 224, the first metallized through hole 223 is used to connect the first bias line 114 on the first dielectric board provided with the horizontally polarized antenna, and the second metallized through hole 224 is used to connect the antenna
  • the pins between board 4 and the vertically polarized antenna apply a bias voltage to the first diode.
  • the first bias line 313 is provided on the back side of the fourth dielectric board 301, and the two ends of each bias line are respectively connected to the third metallized through hole 321 and the fourth metallized through hole 322.
  • the metallized through hole 321 is used to connect the first bias line 114 on the first dielectric board provided with the horizontally polarized antenna
  • the fourth metallized through hole 322 is used to connect the pin between the antenna board 4 and the vertically polarized antenna,
  • a bias voltage is applied to the first diode.
  • the first bias line includes two or more short bias lines arranged at intervals, and a choke inductance element is connected across the space between the two short bias lines. It can be understood that the setting method of the bias line adopted by the vertically polarized antenna is only for exemplary illustration, and does not constitute a specific limitation on the electronically steered beam scanning dual-polarized reconfigurable antenna.
  • crossover in the embodiment of the present application means that the choke inductance element is set between two bias short wires, one end of the choke inductance element is connected to one of the bias short wires, and the other end is connected to the other bias short wire.
  • a bias stub is connected so that the choke inductive element is connected across the gap.
  • the front surface of the third dielectric board 201 may be provided with a feed patch 212, which is used for welding the inner conductor of the second coaxial cable feeding the vertically polarized antenna.
  • a feed patch 212 which is used for welding the inner conductor of the second coaxial cable feeding the vertically polarized antenna.
  • the radiation patch of the vertically polarized antenna can be coupled and fed, and the feeding patch can be set as a rectangular patch, and its size can be set to 10mm*4.5mm.
  • a radiation patch can be provided on the back of the third dielectric plate 201 , and the radiation patch can be a monopole patch 221 for radiating electromagnetic waves, wherein the monopole patch 221 can be an inverted triangle.
  • the fourth slit 227 etched on the monopole patch 221 can trap the 5GHz frequency band and reduce interference.
  • one or more second reflectors are arranged on both sides of the monopole patch 221, and one or more second reflectors are respectively arranged on both sides of the center line on the back of the fourth dielectric plate.
  • the reflector is provided with one or more second slits, and a second diode is connected across each second slit. Wherein the size of the second reflector may be 35mm*3.5mm.
  • the second diode is connected across the second slit, which means that the two ends of the second diode are respectively connected to the two ends of the second slit, so as to be connected to the second reflector at both ends of the second slit. conductor connection.
  • a second reflector 222 can be arranged on both sides of the monopole patch 221, and the second reflector 222 is provided with a second slit, and a second diode is connected across each second slit. 226.
  • the second diode 226 is electrically connected to the second bias line 225, and the second bias line 225 is connected to a pin between the antenna board 4 and the vertically polarized antenna through a metallized through hole.
  • a second reflector 311 can be arranged on both sides of the center line on the back of the fourth dielectric plate, and the second reflector 311 is provided with a second slit, and each second slit is connected with a second second slit.
  • the second bias line provides a bias voltage for the second diode 312 on the fourth dielectric plate of the vertically polarized antenna, and the second diode 312 is controlled to be turned on or off by changing the bias voltage.
  • a capacitive element may further be connected between the second bias line and the second diode.
  • the use of the feeding patch to feed the monopole antenna 221 is only an exemplary illustration of the feeding method, and does not constitute a specific limitation on the electronically controlled beam scanning dual-polarization reconfigurable antenna, as long as It only needs to be able to realize the purpose of feeding the monopole antenna.
  • the size of the feed patch and the second reflector and the arrangement of the second bias line are only illustrative, and do not constitute a specific specification for the electronically steered beam scanning dual-polarization reconfigurable antenna. limited.
  • the shape of the monopole patch such as rectangular, trapezoidal, conical, circular and other shapes.
  • Fig. 16 is a schematic diagram of the arrangement of diodes of the vertically polarized antenna in the embodiment of the present application.
  • a second diode is respectively connected across the fourth slot of each second reflector of the vertically polarized antenna, and four second The diodes are diode D5, diode D6, diode D7 and diode D8 respectively, when the diode is in the conduction state when the forward voltage is applied, it is set to 1, otherwise it is in the off state and is set to 0.
  • Table 2 shows the vertically polarized antenna beam switching control method, including nine coding states 0000, 0010, 0011, 0001, 1001, 1000, 1100, 0100, 0110 and their generated pattern characteristics.
  • the generated pattern characteristics include 1 omnidirectional beam and 8 directional beams.
  • the vertically polarized antenna radiates an omnidirectional beam, generating vertically polarized radiation waves and covering 360 degrees; when two adjacent two of the four second diodes are off In the open state, the other two are in the on state, and the vertically polarized antenna radiates directional beams; when three of the four second diodes are in the off state, and the other one is in the on state, the vertically polarized antenna radiates directional beams beam.
  • Fig. 17 is a graph of S parameters (including S22 and S12) in nine radiation states of the vertically polarized antenna of the reconfigurable antenna of the present application.
  • Fig. 18 is a diagram of gain patterns in nine radiation states of the vertically polarized antenna of the reconfigurable antenna of the present application. It can be seen from Figure 17 and Figure 18 that the reflection coefficients of the horizontally polarized antenna designed in this application are lower than -10dB from 2.4GHz to 2.825GHz, and the switching between omnidirectional beams and 8 kinds of directional beams is realized.
  • Fig. 19 is a schematic diagram of simulated main lobe gains in nine radiation states of the vertically polarized antenna of the reconfigurable antenna of the present application. It can be seen from Figure 19 that the main lobe gain of each beam tested at 2.44GHz is greater than 3.1dBi, and the peak gain is 3.8dBi.
  • the reconfigurable antenna further includes an antenna board.
  • FIG. 20 is a schematic diagram of the front structure of the antenna board 4 of the reconfigurable antenna in the embodiment of the present application
  • FIG. 21 is a schematic diagram of the rear structure of the antenna board 4 of the reconfigurable antenna in the embodiment of the present application.
  • the fifth dielectric board 401 of the antenna board is an FR-4 dielectric board with a thickness of 1 mm, and its size is 20 mm*20 mm.
  • the top layer of the fifth dielectric plate 401 is covered with a first conductor plate except for the hole-digging and slotting parts, and the first conductor plate can use copper foil 411; the outer conductor of the second coaxial cable is welded on the Copper foil 411 on.
  • first conductor plate can use copper foil 411; the outer conductor of the second coaxial cable is welded on the Copper foil 411 on.
  • first pin holes 412 on the antenna board which are air through holes, and each set of first pin holes has two air through holes, and one of the two pins is used to connect the first pin hole.
  • One bias line, the other is used to connect the second bias line;
  • the four second pin holes 413 are metal through holes, and each pin hole 413 is used to connect the first bias line; the air through hole and metal
  • the diameter of the through hole may be 1mm.
  • the rectangular slots beside the first pin hole 412 and the second pin hole 413 are used for inserting the third dielectric board and the fourth dielectric board of the vertically polarized antenna.
  • the third pin hole 414 is used to connect the choke board 5 with the third pin 51 of the antenna board 4 in FIG. 3 .
  • the rectangular slot next to the third pin hole is used for inserting the choke plate 5 . It can also be understood that the arrangement of the material, size and shape of the fifth dielectric plate and the first conductor plate, and the arrangement of the size and position of each through-hole therein are only illustrative, and do not constitute a reference to the electronically controlled beam. Specific constraints for scanning dual-polarized reconfigurable antennas.
  • the reconfigurable antenna in order to offset the secondary radiation generated by the surface current of the first coaxial cable feeding the horizontally polarized antenna, the reconfigurable antenna further includes a choke plate.
  • FIG. 22 is a schematic diagram of the front structure of the reconfigurable antenna choke board in the embodiment of the present application
  • FIG. 23 is a schematic diagram of the rear structure of the reconfigurable antenna choke board in the embodiment of the present application.
  • the choke plate includes a sixth dielectric plate 501
  • the sixth dielectric plate is an FR-4 dielectric plate with a thickness of 1mm
  • the top layer of the sixth dielectric plate 501 is covered with a second conductor plate, and the second conductor
  • the board can use copper foil 511 on which a pair of L-shaped slits 512 are etched; the pad 521 on the back of the sixth dielectric board 501 is used for soldering the third pin 51 .
  • the arrangement of the material, size and shape of the sixth dielectric plate and the second conductor plate, as well as the arrangement of the shape and position of the slit 512 are only illustrative, and do not constitute a dual function of electronically controlled beam scanning. Specific limitations of polarization reconfigurable antennas.
  • the embodiment of the present application realizes an electronically controlled beam scanning dual-polarization antenna working at WLAN2.4GHz, and provides a corresponding beam control method, which realizes 360° directional beam scanning and switching between omnidirectional beam and directional beam. It has the characteristics of dual polarization and high gain, high anti-interference and good stability, and is suitable for wireless local area network systems.
  • the application of the electronically controlled beam scanning dual-polarization antenna in the example of this application makes the information transmission of the WLAN wireless communication system more reliable, further improves the throughput rate, reduces power consumption and enhances environmental adaptability.
  • Horizontally polarized waves and vertically polarized waves can be transmitted or received at the same time, so the transmission and reception of information can obtain higher reliability; the horizontally polarized antennas and vertically polarized antennas in the embodiments of this application have omnidirectional beams
  • the function of switching with directional beams can flexibly change the radiation beam of the antenna according to the distribution of personnel density and environmental changes in the usage scene, so as to realize the functions of improving throughput, reducing power consumption and enhancing environmental adaptability.
  • the electronically controlled beam-scanning dual-polarization reconfigurable antenna in the embodiment of the present application can be mounted on a 5GHz wireless router, and can build a more reliable and flexible wireless local area network. And other urban public places, combined with a specific antenna selection algorithm to provide a better enterprise-level wireless network solution.
  • a method for controlling the electronically controlled beam scanning dual-polarization reconfigurable antenna is provided, which is applied to the electronically controlled beam scanning dual-polarization reconfigurable antenna in the embodiment of the present application, including the following steps:
  • the first diode of the horizontally polarized antenna is controlled to be turned on or off, and the first diode is turned on or off to change the current distribution of the first reflector of the horizontally polarized antenna.
  • a variation of the horizontally polarized antenna switches between an omnidirectional beam and a variety of directional beams; and/or
  • the second diode in the vertically polarized antenna is controlled to be turned on or off, and the second diode is turned on or off to change the electrical dimension of the second reflector of the vertically polarized antenna. Variations in electrical dimensions enable vertically polarized antennas to switch between omnidirectional and multiple directional beams.
  • a router is provided, where the router includes the reconfigurable antenna in the embodiment of the present application.
  • the router includes the reconfigurable antenna in the embodiment of the present application.
  • a signal transceiving device is provided, wherein the signal transceiving device includes the reconfigurable antenna in the embodiment of the present application.
  • the router By using the router, the same technical effect as that of the reconfigurable antenna in the embodiment of the present application can be achieved.
  • the reconfigurable antenna in the embodiment of the present application includes a horizontally polarized antenna, a vertically polarized antenna and an antenna board, by controlling the multiple first diodes on the horizontally polarized Turn on or off to control the switch between the omnidirectional beam radiated by the horizontally polarized antenna and multiple horizontally polarized directional beams, by controlling the switching on or off of multiple second diodes on the vertically polarized antenna Disconnecting and controlling the switching between omnidirectional beams radiated by the vertically polarized antenna and multiple vertically polarized directional beams, the antenna can simultaneously generate horizontally polarized and vertically polarized electromagnetic waves to improve the reliability and reliability of the antenna Flexibility, the directional beams generated by the vertically polarized antenna and the horizontally polarized antenna can both cover the circumferential direction to achieve good electromagnetic wave coverage.

Landscapes

  • Waveguide Aerials (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)

Abstract

一种可重构天线及其控制方法、路由器和信号收发设备。该可重构天线包括水平极化天线(1)、垂直极化天线和天线板(4),其中,通过控制水平极化天线(1)上的多个第一二极管(115)的接通或断开控制水平极化天线(1)辐射全向波束和多种水平极化定向波束之间的切换,通过控制垂直极化天线上的多个第二二极管(226、312)的接通或断开控制垂直极化天线辐射全向波束和多种垂直极化定向波束之间的切换。

Description

一种可重构天线及其控制方法、路由器和信号收发设备
相关申请的交叉引用
本申请基于申请号为202110928285.5、申请日为2021年08月13日的中国专利申请提出,并要求该中国专利申请的优先权,该中国专利申请的全部内容在此引入本申请作为参考。
技术领域
本申请涉及无线局域网通信技术领域,尤其是一种可重构天线及其控制方法、路由器和信号收发设备。
背景技术
随着IEEE.802.11协议族的不断发展,近些年推出的最新标准加入了多用户多输入多输出技术,其物理层速率可高达10Gbit/s,无线局域网系统(WLAN)对天线的性能提出了更高的要求。针对如今无线局域网系统主要存在三个主要的问题:1.边缘用户覆盖:由于现在大多数的WLAN系统用的是全向天线,其增益较低,难以对更远距离的用户提供良好的无线信号覆盖;2.跨越障碍物覆盖:天线所发射的电磁波在经过一些地形复杂的环境中时会有很大的损耗;3.链路干扰:在人流量比较密集的地区,多用户同时使用将会导致通信链路之间的干扰。针对这些问题,在一些情形下的一种解决方案是引入波束可重构技术,通过控制定向波束的偏转方向实现对特定区域的功率分配,以保障通信系统的可靠性。然而,由于这些区域本身内部复杂的布局以及人口流量的变化要求所部署的无线局域网络需要良好的环境适应性以及灵活性,因此在涉及天线设备时存在较大困难。而当前大多数天线往往只能够提供一个极化方向上的数目有限的定向波束。
发明内容
本申请提供一种可重构天线及其控制方法、路由器和信号收发设备。
一方面,本申请实施例提供一种可重构天线,包括:水平极化天线,包括设置在第一介质板上表面的贴片结构和设置在所述第一介质板下表面的第一反射器,所述第一反射器上设有多个第一缝隙,所述第一反射器在每个所述第一缝隙处与位于所述第一介质板上表面的一第一二极管电连接,通过多个所述第一二极管的接通或断开控制所述水平极化天线辐射全向波束或多种定向波束;垂直极化天线,设置在所述水平极化天线的下方,包括垂直于所述第一介质板的第三介质板和第四介质板,所述第三介质板和所述第四介质板沿垂直于所述第一介质板的卡接线进行卡接从而组合为一体;所述第三介质板背面在所述卡接线处设置有辐射贴片,所述辐射贴片两侧各设置一个或一个以上第二反射器;所述第四介质板背面在所述卡接线的两侧各设置一个或一个以上第二反射器;每个所述第二反射器设有一个或一个以上第二缝隙,所述第二缝隙跨接一第二二极管;通过多个所述第二二极管的接通或断开控制所述垂直极化天线辐射全向波束或多种定向波束;天线板,包括第五介质板,所述第三介质板和所述第四介质板插接在所述第五介质板上,所述第五介质板的上表面设有第一导体板。
另一方面,本申请实施例提供一种可重构天线的控制方法,所述可重构天线为如上所述的可重构天线,所述控制方法包括以下步骤:接收波束切换信号;根据所述波束切换信号控制偏置电压;根据所述偏置电压控制所述第一二极管的接通或断开,所述第一二极管的接通或断开改变控制所述水平极化天线在全向波束和多种定向波束之间切换;根据所述偏置电压控制所述第二二极管的接通或断开,所述第二二极管的接通或断开控制所述垂直极化天线在全向波束和多种定向波束之间切换。
另一方面,本申请实施例提供一种路由器,所述路由器包括如上所述的可重构天线。
另一方面,本申请实施例提供一种信号收发设备,所述信号收发设备包括如上所述的可重构天线。
本申请的附加方面和要点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本申请的实践了解到。
附图说明
图1为本申请的实施例中可重构天线的整体结构示意图;
图2为本申请的实施例中水平极化天线与垂直极化天线的连接示意图;
图3为本申请的实施例中垂直极化天线、扼流板与天线板的连接示意图;
图4为本申请的实施例中水平极化天线的顶层结构俯视图;
图5为本申请的实施例中水平极化天线的底层结构俯视图;
图6为本申请的实施例中水平极化天线的第一反射器和第二介质板的结构俯视图;
图7为本申请的实施例中水平极化天线的圆环形金属贴片的结构俯视图;
图8为本申请的实施例中水平极化天线的第一二极管设置示意图;
图9为本申请的实施例中水平极化天线5种辐射状态下的S参数曲线图;
图10为本申请的实施例中水平极化天线5种辐射状态下的增益方向图;
图11是本申请的实施例中水平极化天线5种辐射状态下的仿真主瓣增益示意图;
图12是本申请的实施例中第一垂直极化天线板的正面示意图;
图13是本申请的实施例中第一垂直极化天线板的背面示意图;
图14是本申请的实施例中第二垂直极化天线板的正面示意图;
图15是本申请的实施例中第二垂直极化天线板的背面示意图;
图16是本申请的实施例中垂直极化天线的第二二极管设置示意图;
图17是本申请的实施例中垂直极化天线9种辐射状态下的S参数曲线图;
图18是本申请的实施例中垂直极化天线9种辐射状态下的增益方向图;
图19是本申请的实施例中垂直极化天线9种辐射状态下的仿真主瓣增益示意图;
图20是本申请的实施例中天线板的正面结构示意图;
图21是本申请的实施例中天线板的背面结构示意图;
图22是本申请的实施例中扼流板的正面结构示意图;
图23是本申请的实施例中扼流板的背面结构示意图。
具体实施方式
为了使本技术领域的人员更好地理解本申请方案,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分的实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都应当属于本申请保护的范围。
本申请的说明书和权利要求书及所述附图中的术语“第一”、“第二”、“第三”和“第四”等是用于区别不同对象,而不是用于描述特定顺序。此外,术语“包括”和“具有”以及它们任何变形,意图在于覆盖不排他的包含。例如包含了一系列步骤或单元的过程、方法、系统、产品或设备没有限定于已列出的步骤或单元,而是还可以包括没有列出的步骤或单元,或还可以包括对于这些过程、方法、产品或设备固有的其它步骤或单元。
在本文中提及“实施例”意味着,结合实施例描述的特定特征、结构或特性可以包含在本申请的至少一个实施例中。在说明书中的各个位置出现该短语并不一定均是指相同的实施例,也不是与其它实施例互斥的独立的或备选的实施例。本领域技术人员显式地和隐式地理解的是,本文所描述的实施例可以与其它实施例相结合。
首先,对本申请实施例中涉及的相关名词术语进行介绍和说明:
水平极化天线:在辐射时形成的电场强度方向平行于地面的天线。
垂直极化天线:在辐射时形成的电场强度方向垂直于地面的天线。
全向天线:在水平方向图上表现为360°都均匀辐射的天线。天线的波瓣宽度越小,增益越大。
定向天线:在水平方向图上表现为一定角度范围辐射的天线,也就是平常所说的有方向性的天线。天线的波瓣宽度越小,增益越大。
在一些情形下,在工业园区、酒店、办公楼、交通枢纽以及大型场馆等区域需要进行无线通信,但这些区域的人口流量变化较大且环境复杂,以工业园区为例,其中通常包括某些公司的办公写字楼、生产制造大楼、食堂、员工宿舍或是库房等,园区内楼房基本为钢筋混凝土结构,楼房四楼环立。通常楼房内部多被钢筋混凝土墙体隔断为多个房间,其中还包括楼梯,楼道以及其他的辅助设施,电磁波在经过这些区域传播时会有很大的损耗,这在很大程度上会影响通信系统的可靠性。这些区域不仅室内布局复杂而且人流量较大,如工业园区上班时间人流量较大,对无线局域网的容量要求高,而在下班后园区人流量较少,用网需求比较小;酒店在旅游旺季的时候入住人数较多,在淡季的时候顾客少,所以对网络的需求随时间在不断变化。综上所述,由于这些区域本身内部复杂的布局以及人口流量的变化要求所部署的无线局域网络需要良好的环境适应性以及灵活性,而在很大程度上决定无线局域网系统这些性能的是天线设备,而当前的天线设备,很多时候为无法同时提供全向辐射和定向辐射的天线,或者即使为能够同时提供全向辐射和定向辐射的天线,但也只能提供有限的定向波束且不能实现全向波束和定向波束之间的自由切换。
本申请实施例提供一种可重构天线,包括:水平极化天线,包括设置在第一介质板上表面的贴片结构和设置在所述第一介质板下表面的第一反射器,所述第一反射器上设有多个第一缝隙,所述第一反射器在每个所述第一缝隙处与位于所述第一介质板上表面的一第一二极管电连接,通过多个所述第一二极管的接通或断开控制所述水平极化天线辐射全向波束或多种定向波束;垂直极化天线,设置在所述水平极化天线的下方,包括垂直于所述第一介质板的第三介质板和第四介质板,所述第三介质板和所述第四介质板沿垂直于所述第一介质板的卡接线进行卡接从而组合为一体;所述第三介质板背面在所述卡接线处设置有辐射贴片,所述辐射贴片两侧各设置一个或一个以上第二反射器;所述第四介质板背面在所述卡接线的两侧各设置一个或一个以上第二反射器;每个所述第二反射器设有一个或一个以上第二缝隙,所述第二缝隙跨接一第二二极管;通过多个所述第二二极管的接通或断开控制所述垂直极化天线辐射全向波束或多种定向波束;天线板,包括第五介质板,所述第三介质板和所述第四介质板插接在所述第五介质板上,所述第五介质板的上表面设有第一导体板。
根据本申请的一些实施例,所述贴片结构包括多个分立设置的阿尔福特天线环,所述阿尔福特天线环的尾部切去一段环形切角,所述阿尔福特天线环的头部通过阻抗变换器与馈电点连接。
根据本申请的一些实施例,所述第一反射器设有4个所述第一缝隙,所述第二反射器连接有4个所述第一二极管,其中4个所述第一二极管两两相邻;当4个第一二极管都为断开状态,所述水平极化天线辐射全向波束;或当4个第一二极管中相邻的2个为断开状态,另外2个为接通状态,所述水平极化天线辐射定向波束。
根据本申请的一些实施例,所述可重构天线还包括设置在所述第一介质板、所述第三介质板和所述第四介质板上的多组第一偏置线,每组所述第一偏置线用于对多个所述第一二极管施加偏置电压,所述偏置电压控制多个所述第一二极管的接通或断开。
根据本申请的一些实施例,所述可重构天线还包括设置在所述第三介质板或所述第四介质板的多组第二偏置线,所述第二偏置线用于对多个所述第二二极管施加偏置电压,所述偏置电压控制多个所述第二二极管的接通或断开。
根据本申请的一些实施例,所述第一偏置线或第二偏置线包括2段或2段以上间隔设置的偏置短线,两个所述偏置短线之间的间隔处跨接有扼流电感元件。
根据本申请的一些实施例,在所述第一偏置线与所述第一二极管之间还连接有第一电容元件;和/或在所述第二偏置线与所述第二二极管之间还连接有第二电容元件。
根据本申请的一些实施例,所述水平极化天线还包括第二介质板,所述第二介质板设置在所述第一反射器的下表面,所述第二介质板的下表面设置有环形金属贴片,沿所述环形金属贴片的半径刻蚀有多个第三缝隙。
根据本申请的一些实施例,所述第三介质板背面设置2个第二反射器,所述第四介质板背面设置2个第二反射器,每个所述第二反射器设有一个所述第二缝隙,4个所述第二缝隙上跨接的4个所述第二二极管两两相邻;当4个所述第二二极管都为断开状态,所述垂直极化天线辐射全向波束;或当4个第一二极管中的相邻的其中2个为断开状态,另外2个为接通状态,所述垂直极化天线辐射定向波束;或当4个第一二极管中的其中3个为断开状态,另外1个为接通状态,所述垂直极化天线辐射定向波束。
根据本申请的一些实施例,所述第三介质板正面的所述中线处设置有馈电贴片,用于对所述辐射贴片耦合馈电。
根据本申请的一些实施例,所述辐射贴片为单极子贴片,所述单极子贴片上设有第四缝隙。
根据本申请的一些实施例,所述可重构天线还包括插接在所述天线板上的扼流板,用于抵消第一同轴电缆表面电流的二次辐射,所述第一同轴电缆用于为所述水平极化天线馈电。
根据本申请的一些实施例,所述扼流板包括第六介质板和设于所述第六介质板顶层的第二导体板,所述第二导体板上设有一对第五缝隙。
本申请实施例提供一种可重构天线,参见图1,图1是可重构天线的整体结构示意图,图1中可重构天线包括水平极化天线1、垂直极化天线、天线板4和扼流板5,垂直极化天线包括第一垂直极化天线板2和第二垂直极化天线板3。参见图2,图2是水平极化天线与垂直极化天线的连接示意图,图2中水平极化天线1通过4组第一插针11与第一垂直极化天线板2以及第二垂直极化天线板3相连接;参见图3,图3是垂直极化天线、扼流板与天线板的连接示意图,图3中第一垂直极化天线板2以及第二垂直极化天线板3,过4组第二插针31以及4个第一插槽41,实现与天线板4的连接;扼流板5通过第三插针51和第二插槽42与天线板4相连接,其中第一圆形槽43、第二圆形槽44用于穿过对水平极化天线以及垂直极化天线进行馈电的同轴电缆。可以理解的是,水平极化天线与垂直极化天线的连接部件和垂直极化天线、扼流板与天线板的连接部件的设置可根据具体情况进行设置;可根据连接部件的可选材质、形状等的不同,其对应选择的连接部件也不同,本申请实施例中将水平极化天线与垂直极化天线的连接部件采用第一插针只是对连接部件的设置作示例性地说明,将垂直极化天线、扼流板与天线板的连接部件采用第二插针和第三插针也只是对连接部件的设置示例性地说明。
本申请实施例中,水平极化天线可以包含三层结构,自上而下依次是贴片结构、第一介质板和第一反射器,其中水平极化天线的第一反射器可以采用圆形接地板,圆形接地板上可以设置4个矩形第一缝隙,参见图4-5,图4是水平极化天线的顶层结构俯视图,图5是水平极化天线的底层结构俯视图。图4-5中,水平极化天线包括设置在第一介质板101上表面的贴片结构113和所述第一介质板101下表面的圆形接地板121,所述圆形接地板121上设有多个第一缝隙122,所述圆形接地板121在每个所述第一缝隙122处与位于所述第一介质板101上表面的一第一二极管115电连接,通过多个所述第一二极管115的接通或断开控制所述水平极化天线辐射全向波束或多种定向波束。
可以理解的是,水平极化天线的第一介质板的形状、尺寸有多种选择。水平极化天线的第一反射器的形状、尺寸有多种选择,不同形状(例如可以为矩形、梯形、椭圆形等)、尺寸的参数可以获得不同的天线增益。第一缝隙的数量(例如可以为n个,其中n≥1)、尺寸和形状(例如可以为梯形、三角形、椭圆形等)也有多种选择,可以通过增加或减少缝隙的数量来增加或减少定向波束的数量,缝隙的尺寸大小不同可以获得 不同的天线增益。本申请实施例中的圆形第一介质板、圆形接地板和矩形缝隙只是对第一介质板、第一反射器和第一缝隙示例性地说明,并不是对可重构天线的具体限定。
本申请实施例中,如图4所示,所述水平极化天线的贴片结构包括4个分立设置的阿尔福特(Alford)天线环113,阿尔福特(Alford)天线环的尾部切去一段环形切角116,所述阿尔福特天线环的头部通过阻抗变换器112与馈电点111连接。
可以理解的是,贴片结构包含的天线贴片的类型和数目有多种选择,本申请实施例中的贴片结构包括4个分立设置的阿尔福特(Alford)天线环只是对天线结构作示例性地说明,并不是对可重构天线的具体限定。
本申请实施例中,水平极化天线可以包含五层结构,自上而下依次是贴片结构、第一介质板、第一反射器、第二介质板、环形金属贴片。如图6-7所示,图6是水平极化天线的第一反射器和第二介质板的结构俯视图,图7是水平极化天线的环形金属贴片的结构俯视图。参见图6-7,第二介质板102设置在圆形接地板121的下表面,第二介质板102的下表面设置有环形金属贴片,其中环形金属贴片可以采用圆环形金属贴片,沿圆环形金属贴片131的半径刻蚀有多个第三缝隙。本实施例中的水平极化天线由图4中的贴片结构、第一介质板、图6中的第一反射器、第二介质板和图7中的圆环形金属贴片构成。水平极化天线可以工作在WLAN2.4GHz频段,其中第一介质板101和第二介质板102的材质为FR-4,第一介质板101和第二介质板102半径皆为29mm,厚度皆为1.6mm。水平极化天线部分顶层印刷有四个阿尔福特(Alford)天线环113用以产生周向水平极化辐射波,阿尔福特(Alford)天线环尾部各切去了一定尺寸的一段圆环切角116,每段阿尔福特(Alford)天线环113的扇形角为61度,阿尔福特(Alford)天线环的圆环内径为16.5mm,外径为23mm;阿尔福特(Alford)天线环由4个四分之一波长阻抗变换器112实现馈电点(圆形焊盘)111对阿尔福特(Alford)天线环113的阻抗匹配,其中阻抗变换器112的长度为15mm,宽度为0.2mm。如图6所示,圆形接地板121的半径为15mm,圆形接地板121上蚀刻掉的第一缝隙122的尺寸为8.5mm*1.5mm。如图7所示,水平极化天线最底层由蚀刻有20个中间缝隙的圆环形金属贴片131构成隔离屏,圆环形金属贴片的内径为4mm、外径为29mm。第二介质板的中间去掉半径4mm的圆形通孔132用于在水平极化天线的接地板121上焊接同轴电缆的外导体,同轴电缆的内导体穿过第一介质板101和第二介质板102焊接在馈电点(圆形焊盘)111上对水平极化天线馈电。圆形接地板121在每个第一缝隙122处与位于第一介质板101上表面的一第一二极管115电连接,通过四个第一二极管115的接通或断开控制水平极化天线辐射全向波束或多种定向波束。
水平极化天线还包括设置在第一介质板上表面的第一偏置线,用于对多个第一二极管施加偏置电压,根据偏置电压的改变控制多个第一二极管的接通或断开。第一偏置线包括2段或2段以上间隔设置的第一偏置短线,两个第一偏置短线之间的间隔处跨接有电感元件。在第一偏置线与所述第一二极管之间还可以连接电容元件。参见图4,第一介质板上设置四组第一偏置线114。其中每组第一偏置线中的其中一段连接第一二极管,从而实现通过第一偏置线对第一二极管施加偏置电压。在一实施方式中,还可以在第一偏置线与第一二极管之间连接第一电容元件。
需要注意的是,本申请实施例中出现的跨接,是指电感元件设置在两个第一偏置短线之间,该电感元件的一端与其中一个第一偏置短线连接,另一端与另一个第一偏置短线连接,从而实现电感元件跨接在该间隔处。
图8是水平极化天线的二极管设置示意图,参见图8,每组第一偏置线对应的圆圈中的两个焊盘上焊接有第一二极管,另外两个焊盘焊接有第一电容元件,四个焊盘中远离馈电点(圆形焊盘)111的两个焊盘通过金属化通孔连接蚀刻有第一缝隙的第一反射器。第一偏置线114通过提供偏置电压,根据偏置电压的改变控制第一二极管的通断进而控制天线第一反射器电尺寸的改变,电流分布随电尺寸的改变而改变从而实现水平极化天线的波束切换。图8中四个第一二极管分别为二极管D1、二极管D2、二极管D3和二极管D4,当二极管加正向电压时处于导通状态置为1,否则处于断开状态置为0。表1给出了水平极化天线波束切换控制方法,包括5种编码状态0000、0110、0011、1001、1100及其产生的方向图特征,产生的方向图特征包括1种全向波束和4种定向波束。当4个第一二极管都为断开状态,所述水平极化天线辐射全向波束;当4个第一二极管中相邻的2个为断开状态,另外2个为接通状态,所述水平极化天线辐射定向波束。
表1
Figure PCTCN2022105526-appb-000001
本申请实施例中,采用第一同轴电缆为水平极化天线馈电,其中第一同轴电缆的外导体与第一反射器连接,第一同轴电缆的内导体对贴片结构馈电,第一同轴电缆依次穿过可重构天线的天线板4、环形金属贴片的内环、第二介质板的圆形通孔132焊接在第一反射器上,第一同轴电缆的内导体依次穿过第二介质板圆形通孔132、第一反射器和第一介质板中心处的通孔焊接在馈电点(圆形焊盘)111上,当第一缝隙122上的第一二极管全部断开时,Alford天线环113可以提供全向波束,产生水平极化辐射波并覆盖360°;当四个第一缝隙中任意相邻的两个第一二极管导通时,可以产生定向波束。图9是本申请可重构天线的水平极化天线5种辐射状态下的S参数(包括S22和S12)曲线图。图10是本申请可重构天线的水平极化天线5种辐射状态下的增益方向图。从图9与图10中可知,本申请设计的水平极化天线2.4GHz到2.835GHz的反射系数均低于-10dB,并且实现了全向波束与4种定向波束之间的切换。图11是本申请可重构天线的水平极化天线5种辐射状态下的仿真主瓣增益示意图。从图11中可知,在2.44GHz下测试的各个波束的主瓣增益均大于3.2dBi,峰值增益为3.65dBi。
可以理解的是,贴片结构包含的天线贴片的类型、尺寸和数目有多种选择,本申请实施例中的贴片结构包括4个分立设置的阿尔福特(Alford)天线环只是对天线结构作示例性地说明,并不构成对电控波束扫描双极化可重构天线的具体限定。同样可以理解的是,水平极化天线的第一介质板和第二介质板、环形金属贴片的形状、尺寸有多种选择,一般情况下第一介质板和第二介质板和环形金属贴片的形状相同;水平极化天线的第一反射器的形状、尺寸有多种选择,不同形状(例如可以为矩形、梯形、椭圆形等)、尺寸的参数可以获得不同的天线增益。第一缝隙的数量(例如可以为n个,其中n≥1)、尺寸和形状(例如可以为梯形、三角形、椭圆形等)也有多种选择,可以通过增加或减少缝隙的数量来增加或减少定向波束的数量,缝隙的尺寸大小不同可以获得不同的天线增益。值得注意的是,第一缝隙的数量和第一二极管的数量相同。本申请实施例中的圆形第一介质板、圆形第二介质板、圆形接地板、圆环形金属贴片和矩形缝隙只是对第一介质板、第二介质板、第一反射器和第一缝隙示例性地说明,并不构成对电控波束扫描双极化可重构天线的具体限定。
本申请实施例采用水平极化天线与垂直极化天线拼装插接产生双极化特性;其中水平极化天线可以以Alford天线环为辐射核心,开有四个矩形缝隙的圆形地板作为第一反射器,通过改变第一反射器的电流分布使水平极化天线实现全向波束和定向波束切换功能;其中垂直极化天线则可以以单极子天线为核心竖直放置,四个第二反射器以单极子均匀的放置于四个方向,通过改变第二反射器的电长度使垂直极化天线实现全向波束和定向波束切换功能。
本申请实施例中,参见图1,电控波束扫描双极化可重构天线的垂直极化天线包括第一垂直极化天线板2和第二垂直极化天线板3。图12为第一垂直极化天线板的正面示意图,图13为第一垂直极化天线板的背面示意图。图14为第二垂直极化天线板的正面示意图,图15为第二垂直极化天线板的背面示意图。参见图12-15,第一垂直极化天线板2包括第三介质板201,第三介质板201为FR-4介质板,该FR-4介质板厚度为1mm。第二垂直极化天线板3包括第四介质板301,第三介质板201和第四介质板301都为FR-4介质板,该FR-4介质板厚度为1mm。参见图12,第三介质板201的卡接线处设有第一连接缝隙202,参见图15,第四介质板301的卡接线处设有第二连接缝隙302,第一垂直极化天线板2和第二垂直极化天线板3通过该第一连接缝隙202和第二连接缝隙302卡接在一起。该卡接线垂直于水平极化天线的第一介质板,值得说明的是,该卡接线可以是第三介质板或第四介质板的中线。该第一连接缝隙202和第二连接缝隙302的宽度可以为1.3mm。可以理解的是,其中垂直极化天线采用的介质板的材质、尺寸以及连接缝隙的尺寸只是作示例性地说明,并不构成对电控波束扫描双极化可重构天线的具体限定。
本申请实施例中,参见图12-15,第三介质板201的正面还设有两组第一偏置线211,每条偏置线的两端分别连接在第一金属化通孔223和第二金属化通孔224上,该第一金属化通孔223用于连接设置水平极化天线的第一介质板上的第一偏置线114,第二金属化通孔224用于连接天线板4与垂直极化天线之间的插针,从而对第一二极管施加偏置电压。第四介质板301的背面设有两组第一偏置线313,每条偏置线的两端分别连接在第三金属化通孔321和第四金属化通孔322上,该第三金属化通孔321用于连接设置水平极化天线的第一介质板上的第一偏置线114,第四金属化通孔322用于连接天线板4与垂直极化天线之间的插针,从而对第一二极管施加偏置电压。该第一偏置线包括2段或2段以上间隔设置的偏置短线,两个偏置短线之间的间隔处跨接有扼流电感元件。可以理解的是,其中垂直极化天线采用的偏置线的设置方法只是作示例性地说明,并不构成对电控波束扫描双极化可重构天线的具体限定。
需要注意的是,本申请实施例中出现的跨接,是指扼流电感元件设置在两个偏置短线之间,该扼流电感元件的一端与其中一个偏置短线连接,另一端与另一个偏置短线连接,从而实现扼流电感元件跨接在该间隔处。
本申请实施例中,参见图12,第三介质板201的正面可以设有馈电贴片212,该馈电贴片用于焊接为垂直极化天线馈电的第二同轴电缆的内导体,从而可以对垂直极化天线的辐射贴片进行耦合馈电,该馈电贴片可以设置为矩形贴片,其尺寸可以设为10mm*4.5mm。参见图13,第三介质板201的背面可以设有辐射贴片,该辐射贴片可以为单极子贴片221,用以辐射电磁波,其中单极子贴片221可采用倒三角形。单极子贴片221上蚀刻的第四缝隙227能起到对5GHz频段的陷波作用,减少干扰。参见图12-15,在单极子贴片221两侧各设置一个或一个以上第二反射器,第四介质板背面的中线的两侧各设置一个或一个以上第二反射器,该第二 反射器设有一个或一个以上第二缝隙,每个第二缝隙上跨接一第二二极管。其中第二反射器的尺寸可以为35mm*3.5mm。值得注意的是,第二二极管跨接在第二缝隙,是指第二二极管的的两端分别连接在第二缝隙的两端,从而与第二缝隙两端的第二反射器的导体连接。参见图13,可以在单极子贴片221两侧各设置一个第二反射器222,该第二反射器222设有一个第二缝隙,每个第二缝隙上跨接一第二二极管226。第二二极管226与第二偏置线225电连接,第二偏置线225通过金属化通孔连接天线板4与垂直极化天线之间的插针。参见图15,可以在第四介质板背面的中线的两侧各设置一个第二反射器311,该第二反射器311设有一个第二缝隙,每个第二缝隙上跨接一第二二极管312。第二偏置线为垂直极化天线第四介质板上的第二二极管312提供偏置电压,通过偏置电压的改变控制第二二极管312的接通或断开。在一实施方式中,在第二偏置线与第二二极管之间还可以连接有电容元件。可以理解的是,采用馈电贴片对单极子天线221进行馈电只是对馈电方式作示例性地说明,并不构成对电控波束扫描双极化可重构天线的具体限定,只要能够实现对所述单极子天线进行馈电的目的即可。同样可以理解的是,馈电贴片和第二反射器的尺寸和第二偏置线的设置方式也只是示例性地说明,并不构成对电控波束扫描双极化可重构天线的具体限定。其中单极子贴片的形状有多种选择,可以采用矩形、梯形、圆锥形、圆环形等形状。其中第二反射器分段数量有多种选择,不同的分段数量可获得不同的天线增益。第二反射器的尺寸参数有多种选择,不同的尺寸参数可获得不同的天线增益。
图16是本申请实施例中垂直极化天线的二极管设置示意图,参见图16,垂直极化天线每个第二反射器的第四缝隙上分别跨接有一第二二极管,四个第二二极管分别为二极管D5、二极管D6、二极管D7和二极管D8,当二极管加正向电压时处于导通状态置为1,否则处于断开状态置为0。表2给出了垂直极化天线波束切换控制方法,包括9种编码状态0000、0010、0011、0001、1001、1000、1100、0100、0110及其产生的方向图特征,产生的方向图特征包括1种全向波束和8种定向波束。当4个第二二极管都为断开状态,垂直极化天线辐射全向波束,产生垂直极化辐射波并覆盖360度;当4个第二二极管中相邻的2个为断开状态,另外2个为接通状态,垂直极化天线辐射定向波束;当四个第二二极管中的3个为断开状态,另外1个为接通状态,垂直极化天线辐射定向波束。
表2
Figure PCTCN2022105526-appb-000002
图17是本申请可重构天线的垂直极化天线9种辐射状态下的S参数(包括S22和S12)曲线图。图18是本申请可重构天线的垂直极化天线9种辐射状态下的增益方向图。从图17与图18中可知,本申请设计的水平极化天线2.4GHz到2.825GHz的反射系数均低于-10dB,并且实现了全向波束与8种定向波束之间的切换。图19是本申请可重构天线的垂直极化天线9种辐射状态下的仿真主瓣增益示意图。从图19中可知,在2.44GHz下测试的各个波束的主瓣增益均大于3.1dBi,峰值增益为3.8dBi。
本申请实施例中,可重构天线还包括天线板。图20本申请实施例中可重构天线的天线板4的正面结构示意图,图21本申请实施例中可重构天线的天线板4的背面结构示意图。其中天线板的第五介质板401为厚度为1mm的FR-4介质板,其尺寸为20mm*20mm。如图20所示,第五介质板401顶层除挖孔与开槽部分外均敷有第一导体板,该第一导体板可以采用铜箔411;第二同轴电缆的外导体焊接在该铜箔411上。参见图20-21,天线板上设有4组对称第一插针孔412为空气通孔,每组第一插针孔有两个空气通孔,其中的两个插针一个用于连接第一偏置线,另一个用于连接第二偏置线;4个第二插针孔413为金属通孔,每个插针孔413用于连接第一偏置线;其中空气通孔和金属通孔的直径可以为1mm。第一插针孔412和第二二插针孔413旁边的矩形槽用于插接垂直极化天线的第三介质板和第四介质板。第三插针孔414用于对扼流板5与图3中天线板4的第三插针51连接。第三插针孔旁边的矩形槽用于插接扼流板5。同样可以理解的是,第五介质板和第一导体板的材质、尺寸和形状的设置方式和其中各通孔的尺寸和位置的设置方式也只是示例性地说明,并不构成对电控波束扫描双极化可重构天线的具体限定。
本申请实施例中,为了抵消为水平极化天线馈电的第一同轴电缆表面电流产生的二次辐射,可重构天线还包括扼流板。图22本申请实施例中可重构天线扼流板的正面结构示意图,图23本申请实施例中可重构天线扼流板的背面结构示意图。参见图22-23,其中扼流板包括第六介质板501,第六介质板为厚度为1mm的FR-4介质板,第六介质板501的顶层敷有第二导体板,该第二导体板可以采用铜箔511,铜箔511上刻蚀了 一对L型缝隙512;第六介质板501背面的焊盘521用于焊接第三插针51。同样可以理解的是,第六介质板和第二导体板的材质、尺寸和形状的设置方式和其中缝隙512形状、位置的设置方式也只是示例性地说明,并不构成对电控波束扫描双极化可重构天线的具体限定。
本申请实施例实现了一种工作在WLAN2.4GHz的电控波束扫描双极化天线,并给出相应的波束控制方法,实现了360°的定向波束扫描以及全向波束与定向波束切换,同时具备双极化和高增益的特点,抗干扰度高,稳定性良好,适应于无线局域网系统。本申请实例中电控波束扫描双极化天线的应用使得WLAN无线通信系统的信息传输更加可靠,进一步提高吞吐率、降低功耗并增强环境适应性。可以同时发射或接收水平极化波以及垂直极化波,所以信息的发射和接收可以获得更高的可靠性;本申请中实施例中的水平极化天线以及垂直极化天线均具有全向波束与定向波束切换的功能,可以根据使用场景人员密度分布以及环境变化而灵活改变天线的辐射波束,进而实现提高吞吐率、降低功耗并增强环境适应性的功能。
本申请实施例中的电控波束扫描双极化可重构天线可以搭载于5GHz无线路由器,可搭建更加可靠且灵活的无线局域网,可在人流密度较大的车站、机场、校园、体育场、写字楼以及其它城市公共场所,结合特定的天线选择算法提供更好的企业级无线网络解决办法。
本申请的实施例中,提供一种电控波束扫描双极化可重构天线的控制方法,应用于本申请实施例中的电控波束扫描双极化可重构天线,包括以下步骤:
接收波束切换信号;
根据该波束切换信号控制偏置电压;
根据该偏置电压控制水平极化天线的第一二极管的接通或断开,第一二极管的接通或断开改变水平极化天线第一反射器的电流分布变化,电流分布的变化使水平极化天线在全向波束和多种定向波束之间切换;和/或
根据该偏置电压控制垂直极化天线中的第二二极管的接通或断开,第二二极管的接通或断开改变垂直极化天线的第二反射器电尺寸变化,发射器电尺寸的变化使垂直极化天线在全向波束和多种定向波束之间切换。
通过使用该电控波束扫描双极化可重构天线的控制方法,可以实现与本申请实施例中的电控波束扫描双极化可重构天线相同的技术效果。
本申请的实施例中,提供一种路由器,其中路由器包括本申请实施例中的可重构天线。通过使用该路由器,可以实现与本申请实施例中的可重构天线相同的技术效果。
本申请的实施例中,提供一种信号收发设备,其中信号收发设备包括本申请实施例中的可重构天线。通过使用该路由器,可以实现与本申请实施例中的可重构天线相同的技术效果。
本申请的有益效果包括:本申请实施例中的可重构天线,包括水平极化天线、垂直极化天线和天线板,通过控制所述水平极化天线上的多个第一二极管的接通或断开控制所述水平极化天线辐射全向波束和多种水平极化定向波束之间的切换,通过控制所述垂直极化天线上的多个第二二极管的接通或断开控制所述垂直极化天线辐射全向波束和多种垂直极化定向波束之间的切换,该天线可以通过控制同时产生水平极化与垂直极化方式的电磁波,提高天线的可靠性与灵活性,所述垂直极化天线与水平极化天线产生的定向波束均可以覆盖周向,实现良好的电磁波覆盖。
需要说明的是,如无特殊说明,当某一特征被称为“固定”、“连接”在另一个特征,它可以直接固定、连接在另一个特征上,也可以间接地固定、连接在另一个特征上。此外,本公开中所使用的上、下、左、右等描述仅仅是相对于附图中本公开各组成部分的相互位置关系来说的。在本公开中所使用的单数形式的“一种”、“所述”和“该”也旨在包括多数形式,除非上下文清楚地表示其他含义。此外,除非另有定义,本实施例所使用的所有的技术和科学术语与本技术领域的技术人员通常理解的含义相同。本实施例说明书中所使用的术语只是为了描述具体的实施例,而不是为了限制本申请。本实施例所使用的术语“和/或”包括一个或多个相关的所列项目的任意的组合。
应当理解,尽管在本公开可能采用术语第一、第二、第三等来描述各种元件,但这些元件不应限于这些术语。这些术语仅用来将同一类型的元件彼此区分开。例如,在不脱离本公开范围的情况下,第一元件也可以被称为第二元件,类似地,第二元件也可以被称为第一元件。本实施例所提供的任何以及所有实例或示例性语言(“例如”、“如”等)的使用仅意图更好地说明本申请的实施例,并且除非另外要求,否则不会对本申请的范围施加限制。
本领域普通技术人员可以理解,上文中所公开方法中的全部或某些步骤、系统可以被实施为软件、固件、硬件及其适当的组合。某些物理组件或所有物理组件可以被实施为由处理器,如中央处理器、数字信号处理器或微处理器执行的软件,或者被实施为硬件,或者被实施为集成电路,如专用集成电路。
以上所述,只是本申请的若干实施例而已,本申请并不局限于上述实施方式,只要其以相同的手段达到本申请的技术效果,凡在本申请的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本申请保护的范围之内。在本申请的保护范围内其技术方案和/或实施方式可以有各种不同的修改和变化。

Claims (16)

  1. 一种可重构天线,包括:
    水平极化天线,包括设置在第一介质板上表面的贴片结构和设置在所述第一介质板下表面的第一反射器,所述第一反射器上设有多个第一缝隙,所述第一反射器在每个所述第一缝隙处与位于所述第一介质板上表面的一第一二极管电连接,通过多个所述第一二极管的接通或断开控制所述水平极化天线辐射全向波束或多种定向波束;
    垂直极化天线,设置在所述水平极化天线的下方,包括垂直于所述第一介质板的第三介质板和第四介质板,所述第三介质板和所述第四介质板沿垂直于所述第一介质板的卡接线进行卡接从而组合为一体;所述第三介质板背面在所述卡接线处设置有辐射贴片,所述辐射贴片两侧各设置一个或一个以上第二反射器;所述第四介质板背面在所述卡接线的两侧各设置一个或一个以上第二反射器;每个所述第二反射器设有一个或一个以上第二缝隙,所述第二缝隙跨接一第二二极管;通过多个所述第二二极管的接通或断开控制所述垂直极化天线辐射全向波束或多种定向波束;
    天线板,包括第五介质板,所述第三介质板和所述第四介质板插接在所述第五介质板上,所述第五介质板的上表面设有第一导体板。
  2. 根据权利要求1所述的可重构天线,其中,所述贴片结构包括多个分立设置的阿尔福特天线环,所述阿尔福特天线环的尾部切去一段环形切角,所述阿尔福特天线环的头部通过阻抗变换器与馈电点连接。
  3. 根据权利要求1或2所述的可重构天线,其中,所述第一反射器设有4个所述第一缝隙,所述第二反射器连接有4个所述第一二极管,其中4个所述第一二极管两两相邻;
    当4个第一二极管都为断开状态,所述水平极化天线辐射全向波束;或
    当4个第一二极管中相邻的2个为断开状态,另外2个为接通状态,所述水平极化天线辐射定向波束。
  4. 根据权利要求1所述的可重构天线,其中,所述可重构天线还包括设置在所述第一介质板、所述第三介质板和所述第四介质板上的多组第一偏置线,每组所述第一偏置线用于对多个所述第一二极管施加偏置电压,所述偏置电压控制多个所述第一二极管的接通或断开。
  5. 根据权利要求4所述的可重构天线,其中,所述可重构天线还包括设置在所述第三介质板或所述第四介质板的多组第二偏置线,所述第二偏置线用于对多个所述第二二极管施加偏置电压,所述偏置电压控制多个所述第二二极管的接通或断开。
  6. 根据权利要求5所述的可重构天线,其中,所述第一偏置线或第二偏置线包括2段或2段以上间隔设置的偏置短线,两个所述偏置短线之间的间隔处跨接有扼流电感元件。
  7. 根据权利要求5所述的可重构天线,其中,在所述第一偏置线与所述第一二极管之间还连接有第一电容元件;和/或在所述第二偏置线与所述第二二极管之间还连接有第二电容元件。
  8. 根据权利要求1或2所述的可重构天线,其中,所述水平极化天线还包括第二介质板,所述第二介质板设置在所述第一反射器的下表面,所述第二介质板的下表面设置有环形金属贴片,沿所述环形金属贴片的半径刻蚀有多个第三缝隙。
  9. 根据权利要求1所述的可重构天线,其中,所述第三介质板背面设置2个第二反射器,所述第四介质板背面设置2个第二反射器,每个所述第二反射器设有一个所述第二缝隙,4个所述第二缝隙上跨接的4个所述第二二极管两两相邻;
    当4个所述第二二极管都为断开状态,所述垂直极化天线辐射全向波束;或
    当4个第一二极管中的相邻的其中2个为断开状态,另外2个为接通状态,所述垂直极化天线辐射定向波束;或
    当4个第一二极管中的其中3个为断开状态,另外1个为接通状态,所述垂直极化天线辐射定向波束。
  10. 根据权利要求1所述的可重构天线,其中,所述第三介质板正面的所述中线处设置有馈电贴片,用于对所述辐射贴片耦合馈电。
  11. 根据权利要求1所述的可重构天线,其中,所述辐射贴片为单极子贴片,所述单极子贴片上设有第四缝隙。
  12. 根据权利要求1所述的可重构天线,其中,所述可重构天线还包括插接在所述天线板上的扼流板,用于抵消第一同轴电缆表面电流的二次辐射,所述第一同轴电缆用于为所述水平极化天线馈电。
  13. 根据权利要求12所述的可重构天线,其中,所述扼流板包括第六介质板和设于所述第六介质板顶层的第二导体板,所述第二导体板上设有一对第五缝隙。
  14. 一种可重构天线的控制方法,其中,所述可重构天线为权利要求1-13任一项所述的可重构天线,包括以下步骤:
    接收波束切换信号;
    根据所述波束切换信号控制偏置电压;
    根据所述偏置电压控制所述第一二极管的接通或断开,所述第一二极管的接通或断开改变控制所述水平极化天线在全向波束和多种定向波束之间切换;
    根据所述偏置电压控制所述第二二极管的接通或断开,所述第二二极管的接通或断开控制所述垂直极化天线在全向波束和多种定向波束之间切换。
  15. 一种路由器,包括如权利要求1至13任一项所述的可重构天线。
  16. 一种信号收发设备,包括如权利要求1至13任一项所述的可重构天线。
PCT/CN2022/105526 2021-08-13 2022-07-13 一种可重构天线及其控制方法、路由器和信号收发设备 WO2023016180A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP22855163.6A EP4386988A1 (en) 2021-08-13 2022-07-13 Reconfigurable antenna and control method therefor, and router and signal transceiving device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110928285.5A CN115911867A (zh) 2021-08-13 2021-08-13 一种可重构天线及其控制方法、路由器和信号收发设备
CN202110928285.5 2021-08-13

Publications (1)

Publication Number Publication Date
WO2023016180A1 true WO2023016180A1 (zh) 2023-02-16

Family

ID=85200542

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/105526 WO2023016180A1 (zh) 2021-08-13 2022-07-13 一种可重构天线及其控制方法、路由器和信号收发设备

Country Status (3)

Country Link
EP (1) EP4386988A1 (zh)
CN (1) CN115911867A (zh)
WO (1) WO2023016180A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116154468A (zh) * 2023-04-19 2023-05-23 湖南大学 一种宽带双极化反射单元及可编程反射天线
CN117394032A (zh) * 2023-12-12 2024-01-12 微网优联科技(成都)有限公司 一种基于互补原理的定向和全向方向图可重构天线

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116130949B (zh) * 2023-04-17 2023-07-18 尊湃通讯科技(南京)有限公司 一种wlan应用频率和波束混合可重构天线

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160211580A1 (en) * 2015-01-21 2016-07-21 Wistron Neweb Corporation Microstrip Antenna Transceiver
CN106299724A (zh) * 2016-08-16 2017-01-04 康凯科技(杭州)有限公司 智能双频天线系统
CN106450797A (zh) * 2015-08-06 2017-02-22 启碁科技股份有限公司 天线系统
CN110277651A (zh) * 2018-03-16 2019-09-24 启碁科技股份有限公司 智能型天线装置
CN111180874A (zh) * 2018-11-09 2020-05-19 华为技术有限公司 一种天线系统及控制信号传输方法
CN114267944A (zh) * 2020-09-16 2022-04-01 中兴通讯股份有限公司 天线结构、波束切换的方法及网络设备

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160211580A1 (en) * 2015-01-21 2016-07-21 Wistron Neweb Corporation Microstrip Antenna Transceiver
CN106450797A (zh) * 2015-08-06 2017-02-22 启碁科技股份有限公司 天线系统
CN106299724A (zh) * 2016-08-16 2017-01-04 康凯科技(杭州)有限公司 智能双频天线系统
CN110277651A (zh) * 2018-03-16 2019-09-24 启碁科技股份有限公司 智能型天线装置
CN111180874A (zh) * 2018-11-09 2020-05-19 华为技术有限公司 一种天线系统及控制信号传输方法
CN114267944A (zh) * 2020-09-16 2022-04-01 中兴通讯股份有限公司 天线结构、波束切换的方法及网络设备

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116154468A (zh) * 2023-04-19 2023-05-23 湖南大学 一种宽带双极化反射单元及可编程反射天线
CN116154468B (zh) * 2023-04-19 2023-06-16 湖南大学 一种宽带双极化反射单元及可编程反射天线
CN117394032A (zh) * 2023-12-12 2024-01-12 微网优联科技(成都)有限公司 一种基于互补原理的定向和全向方向图可重构天线
CN117394032B (zh) * 2023-12-12 2024-02-06 微网优联科技(成都)有限公司 一种基于互补原理的定向和全向方向图可重构天线

Also Published As

Publication number Publication date
CN115911867A (zh) 2023-04-04
EP4386988A1 (en) 2024-06-19

Similar Documents

Publication Publication Date Title
WO2023016180A1 (zh) 一种可重构天线及其控制方法、路由器和信号收发设备
US5767809A (en) OMNI-directional horizontally polarized Alford loop strip antenna
JP3420532B2 (ja) コリニアアレイアンテナ用の位相遅延線路
US8854270B2 (en) Hybrid multi-antenna system and wireless communication apparatus using the same
US6606067B2 (en) Apparatus for wideband directional antenna
EP2887456A1 (en) Antenna unit, antenna assembly, multi-antenna assembly, and wireless connection device
US20130069837A1 (en) Directive antenna with isolation feature
WO2014206111A1 (zh) 多天线系统及移动终端
US11264730B2 (en) Quad-port radiating element
CN109863645A (zh) 超宽带宽低频带辐射元件
WO2016127893A1 (zh) 辐射单元及双极化天线
CN114976665B (zh) 一种加载频率选择表面辐射稳定的宽带双极化偶极子天线
US20220263252A1 (en) Omnidirectional Dual-Polarized Antenna and Communications Device
US6879296B2 (en) Horizontally polarized slot antenna with omni-directional and sectorial radiation patterns
CN212303896U (zh) 一种基站mimo天线单元
WO2017022224A1 (ja) アンテナ及び無線通信装置
CN108666742A (zh) 多频天线及通信设备
WO2023005739A1 (zh) 天线和通信设备
CN211789478U (zh) 多通道无线信号收发设备
CN212342814U (zh) 印刷天线及电子设备
CN114267944A (zh) 天线结构、波束切换的方法及网络设备
CN111864345A (zh) 一种基站mimo天线单元
TWI464962B (zh) 複合式多天線系統及其無線通訊裝置
Sethi et al. State-of-the-art antenna technology for cloud radio access networks (C-RANs)
CN212676470U (zh) 全向圆极化天线及电子设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22855163

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2022855163

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022855163

Country of ref document: EP

Effective date: 20240311