WO2021083055A1 - 一种天线组件及通信设备 - Google Patents

一种天线组件及通信设备 Download PDF

Info

Publication number
WO2021083055A1
WO2021083055A1 PCT/CN2020/123337 CN2020123337W WO2021083055A1 WO 2021083055 A1 WO2021083055 A1 WO 2021083055A1 CN 2020123337 W CN2020123337 W CN 2020123337W WO 2021083055 A1 WO2021083055 A1 WO 2021083055A1
Authority
WO
WIPO (PCT)
Prior art keywords
radiator
antenna
dielectric substrate
antenna assembly
main radiating
Prior art date
Application number
PCT/CN2020/123337
Other languages
English (en)
French (fr)
Inventor
郭景丽
崔伦
张琛
李堃
李肖峰
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2021083055A1 publication Critical patent/WO2021083055A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/24Supports; Mounting means by structural association with other equipment or articles with receiving set
    • H01Q1/241Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM
    • H01Q1/246Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for base stations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/24Supports; Mounting means by structural association with other equipment or articles with receiving set
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • H01Q1/38Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith formed by a conductive layer on an insulating support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/50Structural association of antennas with earthing switches, lead-in devices or lightning protectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems

Definitions

  • This application relates to the field of communication technology, and in particular to an antenna assembly and communication equipment.
  • the present application provides an antenna assembly and a communication device to increase the bandwidth of the antenna assembly and improve the performance of the communication device.
  • the present application provides an antenna assembly, which is used in communication devices such as micro base stations and CPE (Customer Premise Equipment) for wireless communication with external devices.
  • the antenna assembly includes: a first antenna and two second antennas, each of the two second antennas is a dipole antenna, and the two second antennas are placed orthogonally to form a dual-polarized antenna, It is helpful to overcome the problem of multipath fading effect, and can improve the channel capacity of the antenna assembly; each second antenna includes a second feeder and a second radiator, in each second antenna, the second feeder and The second radiator is coupled and used to feed the second radiator, so that the second antenna is used to radiate the signal of the second frequency band outward;
  • the first antenna includes a first feeding part and a first radiator, In each first antenna, the second feeder and the second radiator of the two second antennas serve as at least a part of the first feeder, and the second radiator and the first radiator of the two second antennas
  • the body is electrically coupled and used to feed power to the first radiator, so that the first antenna is
  • each second radiator includes two sheet-shaped main radiating parts, and thinner structures such as metal films may be used in the main radiating parts. Therefore, the antenna assembly provided in this application also includes a first dielectric substrate, Each main radiating part extends along the first dielectric substrate, and the first dielectric substrate provides support for the main radiating part.
  • the two main radiating parts of each second antenna are respectively arranged on two opposite surfaces of the first dielectric substrate in a one-to-one correspondence.
  • each second antenna there may be multiple ways to use the second feeder to couple and feed the two main radiating parts respectively.
  • the line distribution is chaotic, and the two main radiating parts in the second antenna can be fed in the following way: each second antenna also includes a microstrip, and in each second antenna, the microstrip line and one of the main radiating parts Part is connected to and extends to a position opposite to the other main radiating part, the position of the first dielectric substrate opposite to each microstrip line has a via; in a second antenna, the second feeding part and The other main radiating part is coupled and coupled to the microstrip line through the corresponding via hole without bypassing the first dielectric substrate to be coupled to the microstrip line.
  • the second power feeding portion may include a coaxial cable, wherein, in each second antenna, the outer skin of the coaxial cable is coupled to the other main radiating portion, The inner core of the coaxial cable is coupled to the microstrip line through the corresponding via hole.
  • a larger balun is needed to cover a wider bandwidth, and the coaxial cable does not need If the size is too large, it is sufficient to feed power in a wider range of bandwidth.
  • the microstrip lines in the two second antennas are respectively arranged on two opposite surfaces of the first dielectric substrate in a one-to-one correspondence, so as to avoid contact between the two microstrip lines and cause a short circuit.
  • each second radiator the current At least one side edge of the main radiating part extends along a stepped path, which is beneficial to extend the current path length of the main radiating part without occupying additional usage area to ensure a sufficiently wide bandwidth for the second antenna At the same time, it is also conducive to adjusting impedance matching.
  • the number of steps in the side of the main radiating portion extending along the stepped path is greater than or equal to 2 and less than or equal to 16, while taking into account the difficulty of production, bandwidth, and impedance matching.
  • the orthographic projection of each first radiator on the installation surface of the first dielectric substrate is located on a pair of adjacent two The gap between the second main radiating parts is in the orthographic projection on the installation surface.
  • the antenna assembly further includes an extension along the edge of the first dielectric substrate.
  • the second dielectric substrate wherein the included angle between each second dielectric substrate and the first dielectric substrate is less than 180°
  • each second radiator further includes an extended radiating part, and each extended radiating part is sheet-shaped and runs along the first
  • the surface of the two dielectric substrates is extended, and each extended radiating part is connected to the corresponding main radiating part, and is flat with respect to the second dielectric substrate and the first dielectric substrate, so that the second dielectric substrate can continue to be added without occupying additional usage area.
  • the current path length of the radiator is not limited to the included angle between each second dielectric substrate and the first dielectric substrate.
  • the first dielectric substrate is square, and each main radiating part is separated from each other.
  • the middle part of the first dielectric substrate extends along a diagonal line of the first dielectric substrate to a corner of the first dielectric substrate.
  • the first radiator is installed on the inner side wall of the second dielectric substrate. In this way, the first radiator does not occupy additional space outside the second dielectric substrate, which facilitates miniaturization of the antenna assembly, and , No other accessories are needed.
  • the first radiator has a sheet-like structure, and one side of each first radiator is parallel to all the first radiators.
  • the setting surface of the first dielectric substrate is not limited to the first radiators.
  • the circumference of each first radiator is greater than 0.5 times the wavelength corresponding to the lowest frequency in the first frequency band
  • the equivalent current path length of each second radiator is greater than or equal to 0.20 times the wavelength corresponding to the lowest frequency in the second frequency band and less than or equal to 0.30 times the wavelength corresponding to the lowest frequency in the second frequency band.
  • the equivalent current path length of the current on the main radiator is greater than or equal to the equivalent current path length on the second radiator 50% of and less than 100% of the equivalent current path length on the second radiator.
  • the vertical distance between the main radiator and the first radiator is greater than or equal to 1 mm and less than or equal to 4 mm.
  • the present application also provides a communication device, which includes the antenna assembly described in the above technical solution.
  • Each of the two second antennas is a dipole antenna, and the two second antennas are placed orthogonally to form a dual-polarized antenna, which is beneficial to overcome the problem of multipath fading effect and can improve the antenna assembly Channel capacity;
  • the second feeder is coupled to the second radiator and is used to feed the second radiator, so that the second antenna is used to radiate signals in the second frequency band outward;
  • the second feeder and the second radiator of the two second antennas serve as at least a part of the first feeder, and the second radiator and the first radiator of the two second antennas
  • the body is electrically coupled and used to feed power to the first radiator, so that the first antenna is used to radiate signals in the first frequency band, and the signal frequency of the second frequency band is lower than the signal frequency of the first frequency band, through the first antenna
  • the antenna assembly has a wider bandwidth covering the first frequency band and the second frequency band.
  • FIG. 1 is an exemplary schematic diagram of an antenna assembly provided by an embodiment of the application
  • Fig. 2 is a view from another angle of the antenna assembly shown in Fig. 1;
  • FIG. 3 is a schematic diagram of a main radiating part 101c in FIG. 1;
  • FIG. 4 is a schematic diagram of the cooperation of a first radiator 201a and a second dielectric substrate 200a in an antenna assembly provided by an embodiment of the application;
  • FIG. 5 is a curve diagram of scattering parameters corresponding to an example of an antenna assembly provided by an embodiment of the application.
  • FIG. 6 is an antenna efficiency curve diagram corresponding to an example of an antenna assembly provided by an embodiment of the application.
  • the antenna assembly can be used in communication equipment such as micro base stations and CPE (Customer Premise Equipment) to communicate with external equipment. Perform wireless communication.
  • the existing antenna assembly can only cover a communication frequency band with a smaller bandwidth, and cannot adapt to a network environment of different frequency bands.
  • an embodiment of the present application provides an antenna assembly.
  • Fig. 1 shows an exemplary schematic diagram of the antenna assembly provided by the embodiment of the present application
  • Fig. 2 shows a view from another angle of the schematic diagram of the antenna assembly shown in Fig. 1.
  • the antenna assembly provided by the embodiment includes a first dielectric substrate 100, a second dielectric substrate 200, a first antenna, and two second antennas.
  • the first antenna is used to radiate signals in the first frequency band
  • the second antenna is used to The signal in the second frequency band is radiated outward, and the signal frequency in the second frequency band is lower than the signal frequency in the first frequency band.
  • the first frequency band covers (for example, happens to be) a frequency band greater than or equal to 3.3 GHz and less than or equal to 5.0 GHz. It can cover the NR frequency band of the 5G communication standard; the second frequency band covers (for example, happens to be) a frequency band greater than or equal to 690MHz and less than or equal to 2690MHz, and this frequency band can cover the low frequency bands and mid-high frequency bands of 2G, 3G and 4G communication standards.
  • the combination of the first frequency band and the second frequency band can meet the current 2G, 3G and 4G communication standards and the NR frequency band of the 5G communication standard;
  • the material of the first dielectric substrate 100 can be a material commonly used in the communication field, such as polytetrafluoroethylene glass fiber, etc.
  • the range of the dielectric constant is exemplarily greater than or equal to 2.0 and less than or equal to 2.5, such as 2.0, 2.2, 2.4, or 2.5.
  • the first dielectric substrate 100 has two opposite surfaces, and the two surfaces are respectively the first surface. (One side surface in the negative direction of the Z axis) and the second surface (one side surface in the positive direction of the Z axis).
  • the first surface and the second surface are parallel to each other, and the first surface is used as the installation surface.
  • the first dielectric substrate 100 is exemplarily square, the second dielectric substrates (200a, 200b, 200c, and 200d) extend along the edge of the first dielectric substrate 100, and the second dielectric substrates (200a, 200b, 200c, and 200d) and the second dielectric substrates (200a, 200b, 200c, and 200d) extend along the edge of the first dielectric substrate 100.
  • a dielectric substrate 100 encloses a groove-like structure, in which the second dielectric substrate (200a, 200b, 200c, and 200d) serves as a side wall, the first dielectric substrate 100 serves as a bottom wall, and the second dielectric substrate (200a, 200b, 200c, and 200d)
  • the included angle between each of the first dielectric substrate 100 and the first dielectric substrate 100 is less than 180° (for example, the included angle ranges from 75° to 105°, more specifically, the included angle is 90°).
  • the two dielectric substrates are connected to each other, and the second dielectric substrates (200a, 200b, 200c, and 200d) are located on the same side of the first dielectric substrate 100.
  • each second antenna is a dipole antenna, and includes a second feeder and two second radiators.
  • a second radiator includes a main radiating portion 101c and an extended radiating portion 202c
  • the main radiating portion 101c and the extended radiating portion 202c are also conductive sheets
  • the conductive sheet can be made of gold or silver , Copper or aluminum and other metal materials, or graphene and other non-metallic conductive materials
  • the main radiating portion 101c is attached to the first surface of the first dielectric substrate 100
  • the main radiating portion 101c is formed from the middle of the first dielectric substrate 100 (for example, geometric The center) extends along a diagonal line of the first dielectric substrate 100 (the diagonal line where the main radiating portion 101a is located) to the other corner of the first dielectric substrate 100, and the corner is connected to the second dielectric substrate 200c and the second dielectric substrate.
  • the substrates 200d are adjacent to each other, and the extended radiating portion 202c is attached to the surface of the angle structure formed by the second dielectric substrate 200c and the second dielectric substrate 200d.
  • the main radiating portion 101c and the extended radiating portion 202c are connected to each other;
  • the second dielectric substrate 200c bends and extends relative to the main radiating portion 101c. Without increasing the plane area where the main radiating portion 101c extends, the size of the second radiator corresponding to the main radiating portion 101c is increased, thereby ensuring the antenna Under the premise of miniaturization of the component, increasing the current path length of the second radiator is beneficial to increase the bandwidth of the second radiator.
  • the extension radiating portion 202c can also be eliminated;
  • the second radiator composed of the radiating portion 101c and the extended radiating portion 202c can cover the bandwidth of the second frequency band, and the equivalent current path length of the second radiator is greater than the wavelength corresponding to the lowest frequency (such as 690MHz) in the second frequency band. 0.20 times and less than or equal to 0.30 times the wavelength corresponding to the lowest frequency in the second frequency band.
  • the equivalent current path length of the second radiator is equal to 0.20 times, 0.23 times, and the wavelength corresponding to the lowest frequency in the second frequency band.
  • the equivalent current path length of the current on the main radiator 101c is greater than or equal to 50% of the total current path length of the current on the second radiator and less than the first 100% of the total current path length of the current on the second radiator, and if the equivalent current path length of the current on the main radiator 101c is less than 50% of the total current path length of the current on the second radiator, then the second radiator
  • the gain direction of the pattern of the second radiator mainly depends on the extension radiating part 202c, and the antenna has poor directional radiation performance.
  • the extension radiating portion 202c does not achieve the purpose of increasing the current path length of the second radiator on the basis of the main radiating portion 101c.
  • the main radiating portion 101c is close to the main radiator.
  • One end of the part 101a has a microstrip line 102a, and the equivalent current path length of the current on the main radiating part 101c is approximately equal to that of the main radiating part.
  • the length of the connection line from the end point of 101c connected to the microstrip line 102a to the end point of the main radiating part 101c at the corner of the first dielectric substrate 100, and the total current path length of the current on the second radiator Approximately the length of the line between the end of the main radiating portion 101c and the microstrip line 102a connected to the end of the main radiating portion 101c at the corner of the first dielectric substrate 100 plus the extension of the radiating portion 202c in the Z-axis direction
  • the length of the connection line from the end of the main radiating part 101c connected to the microstrip line 102a to the end of the main radiating part 101c at the corner of the first dielectric substrate 100 can be adjusted appropriately. And the ratio of the size of the extended radiating portion 202c in the Z-axis direction.
  • the other second radiator includes a main radiating part 101a and an extended radiating part 202a.
  • the main radiating part 101a is attached to the second surface of the first dielectric substrate 100.
  • the main radiating part 101a is formed by the middle part of the first dielectric substrate 100 (for example, The geometric center) extends along the other diagonal of the first dielectric substrate 100 to a corner of the first dielectric substrate 100, the corner is adjacent to the second dielectric substrate 200a and the second dielectric substrate 200b, and the extension radiating portion 202a is attached Attached to the surface of the angle structure formed by the second dielectric substrate 200a and the second dielectric substrate 200b, the main radiating portion 101a and the extending radiating portion 202a are connected to each other.
  • the parameters such as the shape, size, and material of the main radiating portion 101a may refer to the main radiating portion 101c, and the parameters such as the material of the extending radiating portion 202a may refer to the extending radiating portion 202c.
  • the microstrip line 102a extends along the first surface of the first dielectric substrate 100 to a position opposite to the main radiating portion 101a.
  • the first dielectric substrate 100 is provided with a via hole opposite to the microstrip line 102a, and the second power feeding portion includes one A coaxial cable, the outer sheath of the coaxial cable is electrically connected to the main radiating portion 101a for feeding power to the main radiating portion 101a, and the core of the coaxial cable is penetrated by the second surface of the first dielectric substrate 100
  • the first surface of the first dielectric substrate 100 through the via hole is coupled to the microstrip line 102a and used to feed the microstrip line 102a.
  • the coaxial cable does not need a larger size It is possible to feed power within a larger bandwidth; in addition, because the microstrip line 102a is used to guide a feed point of the main radiating part 101c to a position opposite to the main radiating part 101a, it is placed on the first dielectric substrate 100 A via hole is opened at the position corresponding to the microstrip line 102a, the inner core of the coaxial cable does not need to cross the first dielectric substrate from the side, and the inner core of the coaxial cable is still located in the outer sheath, and the connection between the main radiating part 101c and the main
  • the feeding of the radiating portion 101a; the coaxial cable can also be replaced with other forms of feeding structure, as long as the feeding structure is coupled to the main radiating portion 101c and used to couple to the main radiating portion 101c and pass through the A corresponding via on the dielectric substrate 100 and the microstrip line 102a, the positive and negative electrodes of the feed structure do not need to be separated too far,
  • Figure 3 shows a schematic diagram of the structure of the main radiating portion 101c.
  • the opposite sides of the main radiating portion 101c extend along a stepped path (refer to Steps 011, 012 and 013 in FIG. 3), on the one hand, without increasing the area of the plane where the main radiating portion 101c occupies the surface of the first dielectric substrate 100, increasing the current path length of the medium current of the main radiating portion 101c,
  • it is more conducive to adjusting impedance matching.
  • the number of steps on the side of the main radiating portion 101c extending along the stepped path is greater than or equal to 2 and less than or equal to 16.
  • the number of steps is 2, 3, 4, 5, 6, 7, 8, 9, 10, 13, and 16.
  • the bandwidth of the main radiator 101c does not increase significantly, and the impedance matching is poor.
  • the number of steps on the side is greater than or equal to 3 and When it is less than or equal to 5, the antenna assembly has better bandwidth and impedance matching effect.
  • the main radiating part 101c can also only have one side edge extending along a stepped path, or the main The side of the radiating portion 101c extending along the stepped path may also be replaced with other non-linear extending shapes such as a curve.
  • the main radiating portion 101a and the main radiating portion 101c are respectively located on two opposite sides of the first dielectric substrate 100, the main radiating portion 101a and the main radiating portion 101c have better electrical isolation, preventing the main radiating portion 101a and the main radiating portion 101a from being electrically isolated from each other. If other measures are taken to ensure electrical isolation between the main radiating section 101a and the main radiating section 101c, the main radiating section 101a and the main radiating section 101c may also be provided on the same surface of the first dielectric substrate 100.
  • a second radiator includes a main radiating portion 101b and an extended radiating portion 202b, the main radiating portion 101b is located on the second surface of the first dielectric substrate 100, and the main radiating portion 101b is formed by the first
  • the middle portion (for example, geometric center) of the dielectric substrate 100 extends to a corner of the first dielectric substrate 100 along a diagonal line (the diagonal line perpendicular to the diagonal line where the main radiation portion 101a is located) of the first dielectric substrate 100, The corner is adjacent to the second dielectric substrate 200b and the second dielectric substrate 200c, the extension radiating portion 202a is attached to the surface of the angle structure formed by the second dielectric substrate 200b and the second dielectric substrate 200c, the main radiating portion 101b and the extension
  • the radiating portions 202b are connected to each other; the other second radiator includes a main radiating portion 101d and an extended radiating portion 202d, the main radiating portion 101d is located on the first surface of the first dielectric substrate 100, and the main
  • the second feeder The way that the electric part feeds the microstrip line 102b and the main radiating part 101d can refer to the way of feeding the microstrip line 102a and the main radiating part 101a, which will not be repeated here; among them, referring to Fig. 1 and Fig. 2, it can be seen that the microstrip line 102a and the main radiating part 101a are fed.
  • the strip line 102a and the microstrip line 102b are respectively arranged on two opposite sides of the first dielectric substrate 100, which is beneficial to avoid short circuit of the microstrip line 102a and the microstrip line 102b.
  • the lines 102b may be arranged on the same side surface of the first dielectric substrate 100, and in this case, the main radiation portions 101a, 101b, 101c, and 101d are all located on the same side surface of the first dielectric substrate.
  • the parameters such as the shape and material of the main radiating portion (101b and 101d) can refer to the main radiating portion 101c, and the parameters of the material and shape of the extending radiating portion (202b and 202d) can refer to the extending radiating portion 202c.
  • Parameters such as the shape and material of the main radiating parts (101b and 101d) can refer to the main radiating part 101c, and the parameters of the material and other parameters of the extending radiating parts (202b and 202d) can refer to the extending radiating part 202c.
  • the square shape of the first dielectric substrate 100 is merely exemplary.
  • the first dielectric substrate 100 may also be circular, elliptical, trapezoidal, etc., and the main radiation portions (101a, 101b, 101c, and 101d) Distributed along each diagonal of the first dielectric substrate 100. Since the diagonal of the square is longer than other paths, the surface area of the first dielectric substrate 100 can be fully utilized, and only a smaller area of the first dielectric substrate is needed. 100 is enough, which is conducive to miniaturization of the antenna assembly.
  • the main radiating part (101a, 101b, 101c, and 101d) is not easy to make full use of its surface area, which is not conducive to implementation. Miniaturization of antenna components.
  • the above two second antennas are placed orthogonally to form a dual-polarized antenna, which is beneficial to overcome the problem of multipath fading effects and can increase the channel capacity of the antenna assembly.
  • the first antenna includes a first feeder and a first radiator (201a, 201b, 201c, and 201d), where the first radiator 201a is exemplarily in a sheet structure, and the first radiator
  • the material of the body 201a can refer to the main radiating part 101c.
  • the first radiator 201a is mounted on the inner side wall of the second dielectric substrate 200a, and the first radiator 201a is at least electrically coupled with the main radiating parts (101a and 101d), respectively.
  • the corresponding second power feeders of the radiating parts (101a and 101d) and the main radiating parts (101a and 101d) serve as at least a part of the first power feeding part.
  • the main radiator (101a and 101d) feeds power to the first radiator 201a through coupling, and then the first radiator 201a radiates electromagnetic waves outward, so that the electromagnetic waves radiated by the first radiator 201a can cover the first radiator 201a.
  • the circumference of each first radiator 201a is greater than 0.5 times the wavelength corresponding to the lowest frequency (such as 3.3 GHz) in the first frequency band.
  • the circumference of each first radiator 201a is equal to the first radiator.
  • the lowest frequency (such as 3.3 GHz) in the frequency band corresponds to 0.55 times, 0.58 times, 0.6 times, 0.62 times, or 0.65 times the wavelength corresponding to the wavelength; the first radiator 201a is installed on the inner side wall of the second dielectric substrate 200a to make the first radiation
  • the body 201a is located in the ring structure enclosed by the second dielectric substrates (200a, 200b, 200c, and 200d).
  • the second dielectric substrates (200a, 200b, 200c, and 200c) may not be additionally occupied.
  • the space other than 200d) is also conducive to miniaturization of the antenna assembly.
  • the first radiator 201a can also be fixed by using an insulating support member such as a dielectric column fixed on the first dielectric substrate 100 or the second dielectric substrate 200a.
  • a radiator 201a is mounted on the inner side wall of the second dielectric substrate 200a without adding additional structures such as dielectric insulating pillars.
  • One side surface of the first radiator 201a (which may be the surface in the positive direction of the Z-axis) is exemplarily parallel to the first surface of the first dielectric substrate 100, which is beneficial to increase the main radiator (101a and 101d) and the first radiator
  • the shape of the first radiator 201a can be the rectangle shown in Figs. 1 and 2 (for example, 25mm in length and 10mm in width). As shown in Fig.
  • the first radiator 201a has a "convex" shape.
  • the vertical distance between the first radiator 201a and the main radiator (101a and 101d) (this vertical distance can be exemplarily understood as the first radiator).
  • the distance between the side surface in the positive direction of the Z-axis of 201a and the side surface in the negative direction of the Z-axis of the main radiation portion 101a in the Z-axis direction) is greater than or equal to 1mm and less than or equal to 4mm, such as 1mm, 2mm, 3mm or 4mm, If the vertical distance between the first radiator 201a and the main radiator (101a and 101d) is less than 1mm, the first antenna cannot have good impedance matching.
  • the coupling effect between the first radiator 201a and the main radiator (101a and 101d) is poor; while the main radiator (101a and 101d) is on the first dielectric substrate 100
  • the orthographic projection on the surface and the orthographic projection of the first radiator 201a on the first surface of the first dielectric substrate 100 do not overlap, that is, the gap between the stepped sides where the main radiating portion 101a and the main radiating portion 101d are close to each other
  • the orthographic projection on the first surface of the first dielectric substrate 100 can cover the orthographic projection of the first radiator 201a on the first surface of the first dielectric substrate 100, which helps to prevent the main radiator (101a and 101d) from opposing the first surface.
  • An electromagnetic wave radiated by a radiator 201a is shielded.
  • the parameters such as the shape, material and position of the first radiator (201b, 201c, and 201d) may refer to the first radiator 201a.
  • Fig. 5 shows an exemplary corresponding scattering parameter curve diagram of the antenna assembly provided by the embodiment of the present application, where the abscissa represents the operating frequency, the ordinate represents the scattering parameter modulus, and the curve Sim.
  • represents the test result of the reflection coefficient curve of the first input port in the second antenna
  • represents the second input port in the second antenna
  • represents the test result of the reflection coefficient curve of the second input port in the second antenna
  • represents the first input port and the second input in the second antenna
  • represents the test result of the transmission coefficient curve between the first input port and the second input port in the second antenna; 6 shows that the embodiment of the application provides An exemplary corresponding efficiency test chart of the
  • the antenna assembly provided by the embodiment of the present application can cover the frequency bands of 2G, 3G and 4G communication standards and the NR frequency band of 5G communication standards, through the first antenna With the interaction of the second antenna, the antenna assembly has a wider bandwidth as a whole.
  • the first dielectric substrate 100 has a supporting effect on the main radiating portion (101a, 101b, 101c, and 101d), and the second dielectric substrate has a supporting effect on the extended radiating portion and the first radiator. Supporting function.
  • the main radiating parts (101a, 101b, 101c, and 101d) and the extended radiating parts have a certain rigidity and the first radiator is fixed by other means, the first dielectric substrate 100 and each second dielectric substrate can also be used. Not set.
  • an embodiment of the present application also provides a communication device, which includes the antenna assembly provided in the above-mentioned embodiment.
  • the above-mentioned antenna assembly is provided in the communication device, wherein:
  • Each of the two second antennas is a dipole antenna, and the two second antennas are placed orthogonally to form a dual-polarized antenna, which is beneficial to overcome the problem of multipath fading effect and can improve the antenna assembly Channel capacity;
  • the second feeder is coupled to the second radiator and is used to feed the second radiator, so that the second antenna is used to radiate signals in the second frequency band outward;
  • the second feeder and the second radiator of the two second antennas serve as at least a part of the first feeder, and the second radiator and the first radiator of the two second antennas
  • the body is electrically coupled and used to feed power to the first radiator, so that the first antenna is used to radiate signals in the first frequency band, and the signal frequency of the second frequency band is lower than the signal frequency

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)
  • Details Of Aerials (AREA)

Abstract

本申请提供了一种天线组件及通信设备,该天线组件可应用于微基站和CPE等通信设备中。在该天线组件中:两个第二天线均为偶极子天线且正交放置;每个第二天线包括第二馈电部和第二辐射体,在每个第二天线中,第二馈电部与第二辐射体耦接、并用于向第二辐射体馈电,以使第二天线能向外辐射第二频段的信号;第一天线包括第一馈电部和第一辐射体,在每个第一天线中,两个第二天线中的第二馈电部和第二辐射体作为第一馈电部的至少一部分,以与第一辐射体电耦合连接、并用于向第一辐射体馈电,第一天线可向外辐射第一频段的信号,第二频段的信号频率低于第一频段的信号频率,通过第一天线和第二天线的配合,天线组件具有较宽的带宽。

Description

一种天线组件及通信设备
相关申请的交叉引用
本申请要求在2019年10月31日提交中国专利局、申请号为201911054766.7、申请名称为“一种天线组件及通信设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及到通信技术领域,尤其涉及到一种天线组件及通信设备。
背景技术
随着通信技术的发展,对于终端通信设备中天线的带宽要求越来越高,例如,随着5G(5th Generation Mobile Networks,第五代移动通信技术)等新一代通信技术的出现,无线通信速率越来越快,出现了更高的无线通信频段应用,而2G、3G和4G通信标准仍然具有很重要的应用,因此,微基站等终端通信设备需要具有较高的带宽才能够在上述各通信标准的频段下进行通信,而现有的终端通信设备通常只具有较窄的带宽,不能够满足该场景下对于带宽的需求。
发明内容
本申请提供了一种天线组件及通信设备,以增加天线组件的带宽,提升通信设备性能。
第一方面,本申请提供了一种天线组件,该天线组件应用于微基站和CPE(Customer Premise Equipment,用户端设备)等通信设备中,以用于与外界设备进行无线通信。该天线组件包括:第一天线和两个第二天线,该两个第二天线中每个第二天线均为偶极子天线,且两个第二天线正交放置,组成双极化天线,有利于克服多径衰落效应的问题,并且能够提高天线组件的信道容量;每个第二天线包括第二馈电部和第二辐射体,在每个第二天线中,第二馈电部与第二辐射体耦接、并用于向第二辐射体馈电,从而,第二天线用于向外辐射第二频段的信号;所述第一天线包括第一馈电部和第一辐射体,在每个第一天线中,两个第二天线中的第二馈电部和第二辐射体作为第一馈电部的至少一部分,两个第二天线中的第二辐射体与第一辐射体电耦合连接、并用于向第一辐射体馈电,从而,第一天线用于向外辐射第一频段的信号,第二频段的信号频率低于第一频段的信号频率,通过第一天线和第二天线的配合,天线组件具有覆盖第一频段和第二频段的较宽的带宽。
在具体设置时,每个第二辐射体包括两个片状的主辐射部,在主辐射部可能会采用金属薄膜等较薄结构,因此,本申请提供的天线组件还包括第一介质基板,每个主辐射部沿第一介质基板延伸,第一介质基板给主辐射部提供支撑。
而为了避免每个第二天线的两个主辐射部之间发生短路现象,每个第二天线中的两个主辐射部分别一一对应地设置在所述第一介质基板相对的两个表面。
在每个第二天线中,可以具有多种方式利用第二馈电部分别对两个主辐射部耦接并馈电,为了避免将第二馈电部的正负极分离开来,造成的线路分布混乱,可以采用以下方式 对第二天线中的两个主辐射部馈电:每个第二天线还包括一个微带,且在每个第二天线中,微带线与其中一个主辐射部连接、并延伸至与另一个主辐射部相对的位置,所述第一介质基板与每个微带线相对的位置具有过孔;在一个第二天线中,所述第二馈电部与另一个主辐射部耦接,并穿过对应的过孔与微带线耦接,而无需绕过第一介质基板与微带线耦接。
在一个较为具体的实施方式中,所述第二馈电部可以包括同轴线缆,其中,在每个第二天线中,同轴线缆的外皮与所述另一个主辐射部耦接,同轴线缆的内芯穿过对应过孔与微带线耦接,相对于采用巴伦方式馈电时,需要采用尺寸较大的巴伦才能够覆盖较宽的带宽,同轴线缆无需过大尺寸就能够满足在较大范围的带宽内进行馈电。
在具体设置时,所述两个第二天线中的微带线分别一一对应地设置在所述第一介质基板相对的两个表面,以避免两个微带线之间接触导致短路。
天线组件应用在微基站和CPE(Customer Premise Equipment,用户端设备)等通信设备时,往往可利用空间十分有限,因此,在一个具体的实施方式中,在每个第二辐射体中,沿电流的流动方向,所述主辐射部的至少一个侧边沿阶梯状路径延伸,这样有利于在不额外占用使用面积的情况下,延长主辐射部的电流路径长度,以确保第二天线足够宽的带宽,同时,还有利于调节阻抗匹配。
在具体实施时,对于主辐射部的沿阶梯状路径延伸的侧边中阶梯数有一定要求,如上述阶梯数大于等于2且小于等于16,同时兼顾制作难度、带宽和阻抗匹配度。
此外,为了避免第一辐射体辐射出的电磁波被遮挡,在一个具体的实施方式中,每个第一辐射体在第一介质基板的设置面上的正投影均位于一对相邻的两个第二主辐射部之间的间隙在所述设置面上的正投影中。
为了在实现小型化的基础上增加带宽,除了对主辐射部采用阶梯状侧边外还可以采用以下方式,在一个具体的实施方式中,所述天线组件还包括沿第一介质基板边缘延伸的第二介质基板,其中,每个第二介质基板与第一介质基板之间的夹角小于180°,每个第二辐射体还包括延伸辐射部,每个延伸辐射部呈片状且沿第二介质基板的表面延伸,且每个延伸辐射部与对应的主辐射部相互连接,相对于第二介质基板与第一介质基板持平,能够在不占用额外使用面积的情况下,继续增加第二辐射体的电流路径长度。
为了充分利用第一介质基板表面面积布置各主辐射部,从而,达到天线组件小型化的目的,在一个具体的实施方式中,所述第一介质基板呈正方形,每个主辐射部分别由所述第一介质基板的中部沿所述第一介质基板的一条对角线延伸至所述第一介质基板的一个角部。
在具体实施时,所述第一辐射体安装于所述第二介质基板的内侧壁上,这样,第一辐射体不额外占用第二介质基板以外的空间,有利于实现天线组件小型化,并且,无需其他辅助部件。
为了增加第一辐射体和第二辐射体的耦合面积,进而提升耦合效果,在一个具体的实施方式中,第一辐射体呈片状结构,且每个第一辐射体的一侧面平行于所述第一介质基板的设置面。
为了确保第一辐射体和第二辐射体能够辐射足够宽带宽的信号,在一个具体的实施方式中,每个第一辐射体的周长大于第一频段中的最低频率对应的波长的0.5倍,每个第二辐射体的等效电流路径长度大于等于第二频段中的最低频率对应的波长的0.20倍且小于等于第二频段中的最低频率对应的波长的0.30倍。
在具体实施时,为了确保天线组件的定向增益性能,在每个第二辐射体中,主辐射部上的电流的等效电流路径长度大于等于所述第二辐射体上的等效电流路径长度的50%且小于所述第二辐射体上的等效电流路径长度的100%。
此外,在一个具体的实施方式中,所述主辐射部和所述第一辐射体之间的垂直距离大于等于1mm且小于等于4mm。
第二方面,本申请还提供了一种通信设备,该通信设备包括上述技术方案所述的天线组件。两个第二天线中每个第二天线均为偶极子天线,且两个第二天线正交放置,组成双极化天线,有利于克服多径衰落效应的问题,并且能够提高天线组件的信道容量;在每个第二天线中,第二馈电部与第二辐射体耦接、并用于向第二辐射体馈电,从而,第二天线用于向外辐射第二频段的信号;在每个第一天线中,两个第二天线中的第二馈电部和第二辐射体作为第一馈电部的至少一部分,两个第二天线中的第二辐射体与第一辐射体电耦合连接、并用于向第一辐射体馈电,从而,第一天线用于向外辐射第一频段的信号,第二频段的信号频率低于第一频段的信号频率,通过第一天线和第二天线的配合,天线组件具有覆盖第一频段和第二频段的较宽的带宽。
附图说明
图1为本申请实施例提供的天线组件的一种示例性的示意图;
图2为图1所示天线组件的另一个角度的视图;
图3为图1中一个主辐射部101c的示意图;
图4为本申请实施例提供的天线组件中一个第一辐射体201a与一个第二介质基板200a配合的示意图;
图5为本申请实施例提供的天线组件的一种示例对应的散射参数曲线图;
图6为本申请实施例提供的天线组件的一种示例对应的天线效率曲线图。
具体实施方式
为了使本申请的目的、技术方案和优点更加清楚,下面将结合附图对本申请作进一步地详细描述。
为了方便理解本申请实施例提供的天线组件,首先说明一下其应用的场景,该天线组件可以应用于微基站和CPE(Customer Premise Equipment,用户端设备)等通信设备中,以用于与外界设备进行无线通信。现有的天线组件只能够覆盖较小带宽的通信频段,无法适应不同频段的网络环境,为了克服这一问题,本申请实施例提供了一种天线组件。
图1表示出了本申请实施例提供的天线组件的一种示例性地示意图,图2表示出了图1所示天线组件示意图的另一个角度的视图,请结合图1和图2,本申请实施例提供的天线组件包括第一介质基板100、第二介质基板200、第一天线和两个第二天线,其中,第一天线用于向外辐射第一频段的信号,第二天线用于向外辐射第二频段的信号,第二频段的信号频率低于第一频段的信号频率,例如,第一频段覆盖(例如,恰好为)大于等于3.3GHz且小于等于5.0GHz的频段,此频段能够覆盖5G通信标准的NR频段;第二频段覆盖(例如,恰好为)大于等于690MHz且小于等于2690MHz的频段,该频段范围能够覆盖2G、3G和4G通信标准的低频段和中高频段,第一频段和第二频段组合能够满足当前2G、3G 和4G通信标准和5G通信标准的NR频段;第一介质基板100的材料可以是通信领域中常用的材料,如聚四氟乙烯玻璃纤维等,介电常数范围示例性地为大于等于2.0且小于等于2.5,例如可以为2.0、2.2、2.4或2.5等,第一介质基板100具有相对而置的两个表面,两个表面分别是第一表面(Z轴的负方向上的一侧表面)和第二表面(Z轴正方向上的一侧表面),第一表面和第二表面相互平行,以第一表面作为设置面。该第一介质基板100示例性地为正方形,第二介质基板(200a、200b、200c和200d)沿第一介质基板100的边缘延伸,第二介质基板(200a、200b、200c和200d)和第一介质基板100围成一个槽状结构,其中,第二介质基板(200a、200b、200c和200d)作为侧壁,第一介质基板100作为底壁,第二介质基板(200a、200b、200c和200d)均与第一介质基板100之间的夹角小于180°(例如,夹角范围在75°至105°之间,更具体地,该夹角为90°),每相邻两个第二介质基板相互连接,且第二介质基板(200a、200b、200c和200d)位于第一介质基板100的同一侧。
继续参考图1和图2,每个第二天线均为偶极子天线,并且包括第二馈电部和两个第二辐射体。对于其中一个第二天线:一个第二辐射体包括一个主辐射部101c和一个延伸辐射部202c,主辐射部101c和延伸辐射部202c也均为导电片,该导电片的材质可以为金、银、铜或铝等金属材质,或者,石墨烯等非金属导电材质,主辐射部101c贴附于第一介质基板100的第一表面,主辐射部101c由第一介质基板100的中部(例如几何中心)沿第一介质基板100的一条对角线(主辐射部101a所在的对角线)延伸至第一介质基板100的另一个角部,该角部与第二介质基板200c和第二介质基板200d相邻,延伸辐射部202c贴附在第二介质基板200c和第二介质基板200d形成的夹角结构的表面,主辐射部101c和延伸辐射部202c相互连接;由于延伸辐射部202c沿着第二介质基板200c相对于主辐射部101c弯折延伸,在不额外增加主辐射部101c延伸方向所在平面面积的情况下,增加主辐射部101c对应的第二辐射体的尺寸,从而,保证天线组件小型化的前提下增加该第二辐射体的电流路径长度,有利于增加第二辐射体的带宽范围,在天线组件的安装空间足够的情况下,也可以取消延伸辐射部202c;为确保主辐射部101c和延伸辐射部202c连接组成的第二辐射体能够覆盖第二频段的带宽,该第二辐射体的等效电流路径长度大于第二频段中的最低频率(如690MHz)对应的波长的0.20倍且小于等于第二频段中的最低频率对应的波长的0.30倍,例如,该第二辐射体的等效电流路径长度等于第二频段中的最低频率对应的波长的0.20倍、0.23倍、0.25倍、0.26倍、0.27倍、0.28倍或者0.30倍;主辐射部101c上的电流的等效电流路径长度大于等于该第二辐射体上电流的总的电流路径长度的50%且小于该第二辐射体上电流的总的电流路径长度的100%,主辐射部101c上的电流的等效电流路径长度若小于该第二辐射体上电流的总的电流路径长度的50%,则该第二辐射体的方向图的增益方向主要取决于延伸辐射部202c,天线定向辐射性能较差,若主辐射部101c上的电流的等效电流路径长度等于第二辐射体上电流的总的电流路径长度的100%,则延伸辐射部202c没有达到增加在主辐射部101c的基础上增加该第二辐射体电流路径长度的目的,例如,在图1和图2中,主辐射部101c靠近主辐射部101a的一端具有微带线102a,主辐射部101c上的电流的等效电流路径长度约等于主辐射部101c与微带线102a连接的一端的端点至主辐射部101c位于第一介质基板100的角部处的端点之间的连线的长度,该第二辐射体上的电流的总的电流路径长度约为主辐射部101c与微带线102a连接的一端的端点至主辐射部101c位于第一介质基板100的角部处的端点之间的连线的长度加上延伸辐射部 202c在Z轴方向上的尺寸,为达到上述要求,可以适当调整主辐射部101c与微带线102a连接的一端的端点至主辐射部101c位于第一介质基板100的角部处的端点之间的连线的长度和延伸辐射部202c在Z轴方向上的尺寸之间的比值。
另一个第二辐射体包括一个主辐射部101a和一个延伸辐射部202a,主辐射部101a贴附于第一介质基板100的第二表面,主辐射部101a由第一介质基板100的中部(例如几何中心)沿第一介质基板100的另一条对角线延伸至第一介质基板100的一个角部,该角部与第二介质基板200a和第二介质基板200b相邻,延伸辐射部202a贴附在第二介质基板200a和第二介质基板200b形成的夹角结构的表面,主辐射部101a和延伸辐射部202a相互连接。主辐射部101a的形状、尺寸和材质等参数可以参考主辐射部101c,延伸辐射部202a的材质等参数可以参考延伸辐射部202c。
微带线102a沿第一介质基板100的第一表面延伸至与主辐射部101a相对的位置,第一介质基板100与微带线102a相对的位置开设有过孔,第二馈电部包括一条同轴线缆,同轴线缆的外皮与主辐射部101a电连接以用于向该主辐射部101a馈电,而该同轴线缆的缆芯由第一介质基板100的第二表面穿过该过孔至第一介质基板100的第一表面与微带线102a耦接并用于向该微带线102a馈电,相对于巴伦馈电的方式,同轴线缆无需较大的尺寸就能够在较大的带宽范围内进行馈电;此外,由于利用微带线102a将主辐射部101c的一个馈电点引到与主辐射部101a相对的位置,并在第一介质基板100的与微带线102a对应位置开设过孔,同轴线缆的内芯无需从侧面跨过第一介质基板,同轴线缆的内芯仍然位于外皮中,即可完成对主辐射部101c和主辐射部101a的馈电;同轴线缆也可以替换为其他形式的馈电结构,只要该馈电结构与主辐射部101c耦接、并用于向该主辐射部101c耦接,且穿过第一介质基板100上对应的过孔与微带线102a,该馈电结构的正负极就无需分离过远,避免了馈电线分布混乱的情况。
图3表示出了主辐射部101c的结构示意图,沿电流的整体流动方向(大致可以参考图3中的G方向),主辐射部101c的两侧相对的侧边均沿阶梯状路径延伸(参考图3中的阶梯011、012和013),一方面,在不增加主辐射部101c占用第一介质基板100表面所在平面的面积的情况下,增加主辐射部101c的中电流的电流路径长度,另一方面,相对于曲线等其他非直线状侧边更有利于调节阻抗匹配,示例性地,主辐射部101c沿阶梯状路径延伸的侧边上阶梯的阶数大于等于2且小于等于16,例如,阶数是2、3、4、5、6、7、8、9、10、13和16,当阶梯数小于2时,主辐射部101c带宽增加不明显,且阻抗匹配较差,当阶梯数大于16时,不仅不会对主辐射部101c的带宽带来明显增加,反而会增加制作难度,其中,当主辐射部101c沿阶梯状路径延伸的侧边上阶梯的阶数大于等于3且小于等于5时,天线组件具有较好的带宽和阻抗匹配效果,除此之外,根据具体需求,沿G方向,主辐射部101c也可以仅其中的一条侧边沿阶梯状路径延伸,或者,主辐射部101c沿阶梯状路径延伸的侧边也可以替换为曲线等其他非直线延伸的形状。
其中,由于主辐射部101a和主辐射部101c分别位于第一介质基板100相对的两侧面,主辐射部101a和主辐射部101c之间具有较好的电隔离,防止主辐射部101a和主辐射部101c之间短路,在采取其他措施确保主辐射部101a和主辐射部101c之间电隔离的情况下,主辐射部101a和主辐射部101c也可以设置于第一介质基板100的同一表面。
类似地,对于另一个第二天线:一个第二辐射体包括一个主辐射部101b和一个延伸辐射部202b,主辐射部101b位于第一介质基板100的第二表面,主辐射部101b由第一介 质基板100的中部(例如几何中心)沿第一介质基板100的一条对角线(与主辐射部101a所在的对角线垂直的对角线)延伸至第一介质基板100的一个角部,该角部与第二介质基板200b和第二介质基板200c相邻,延伸辐射部202a贴附在第二介质基板200b和第二介质基板200c形成的夹角结构的表面,主辐射部101b和延伸辐射部202b相互连接;另一个第二辐射体包括一个主辐射部101d和一个延伸辐射部202d,主辐射部101d位于第一介质基板100的第一表面,主辐射部101d由第一介质基板100的中部(例如几何中心)沿第一介质基板100的一条对角线(与主辐射部101c所在的对角线垂直的对角线)延伸至第一介质基板100的一个角部,该角部与第二介质基板200a和第二介质基板200d相邻,延伸辐射部202d贴附在第二介质基板200a和第二介质基板200d形成的夹角结构的表面,主辐射部101b和延伸辐射部202b相互连接;主辐射部101b靠近主辐射部101d的一端连接有微带线102b,微带线102b沿第一介质基板的第二表面延伸至于主辐射部101d相对的位置,此处,第二馈电部给微带线102b和主辐射部101d馈电的方式可以参考给微带线102a和主辐射部101a馈电的方式,在此不再赘述;其中,参考图1和图2可知,微带线102a和微带线102b分别设置于第一介质基板100相对的两侧面,有利于避免微带线102a和微带线102b短路,在采用跳线或者其他方式使微带线102a和微带线102b可以设置在第一介质基板100的同一侧面,此时主辐射部101a、101b、101c和101d均位于第一介质基板的同一侧面。主辐射部(101b和101d)形状和材质等参数可以参考主辐射部101c,和延伸辐射部(202b和202d)的材质和形状等参数可以参考延伸辐射部202c。主辐射部(101b和101d)的形状和材质等参数可以参考主辐射部101c,延伸辐射部(202b和202d)的材质等参数可以参考延伸辐射部202c。
需要说明的是,第一介质基板100呈正方形仅仅是示例性地,同时,第一介质基板100也可以是圆形、椭圆形和梯形等形状,主辐射部(101a、101b、101c和101d)沿第一介质基板100的各个对角线分布,由于正方形的对角线相对于其他路径长度更大,可以充分利用第一介质基板100表面的面积,只需要采用较小面积的第一介质基板100即可,有利于实现天线组件的小型化,而对于圆形等其他形状的第一介质基板100,主辐射部(101a、101b、101c和101d)不容易充分利用其表面面积,不利于实现天线组件的小型化。
上述两个第二天线正交放置,组成双极化天线,有利于克服多径衰落效应的问题,并且能够提高天线组件的信道容量。
继续参考图1和图2,第一天线包括第一馈电部和第一辐射体(201a、201b、201c和201d),其中,第一辐射体201a示例性地呈片状结构,第一辐射体201a的材质可以参考主辐射部101c,第一辐射体201a安装于第二介质基板200a的内侧壁上,且第一辐射体201a至少分别与主辐射部(101a和101d)电耦合,而主辐射部(101a和101d)和主辐射部(101a和101d)的对应的第二馈电部作为第一馈电部的至少一部分,当第二馈电部分别对主辐射部(101a和101d)馈电时,主辐射部(101a和101d)通过耦合的方式向第一辐射体201a馈电,进而第一辐射体201a向外辐射电磁波,为了使第一辐射体201a辐射出的电磁波能够覆盖第一频段的带宽,每个第一辐射体201a的周长大于第一频段中的最低频率(如3.3GHz)对应的波长的0.5倍,例如,每个第一辐射体201a的周长等于第一频段中的最低频率(如3.3GHz)对应的波长的0.55倍、0.58倍、0.6倍、0.62倍或者0.65倍;第一辐射体201a安装于第二介质基板200a的内侧壁上,使第一辐射体201a位于第二介质基板(200a、200b、200c和200d)围成的环形结构内,相对于将第一辐射体201a放置于其他位置可以 不额外占用第二介质基板(200a、200b、200c和200d)以外的空间,也有利于将天线组件小型化,还可以通过采用固定于第一介质基板100或者第二介质基板200a上的介质柱等绝缘支撑部件将第一辐射体201a固定,但第一辐射体201a安装于第二介质基板200a的内侧壁上无需额外增加介质绝缘柱等附加结构。第一辐射体201a的一侧表面(可以是Z轴正方向的表面)示例性地平行于第一介质基板100的第一表面,有利于增加主辐射部(101a和101d)和第一辐射体201a之间的耦合效果,第一辐射体201a的形状可以是图1和图2中的矩形(尺寸例如长25mm宽10mm),再如图4所示,第一辐射体201a呈“凸”字型,除此之外,还可以是梯形、三角形或者其他图形;第一辐射体201a和主辐射部(101a和101d)之间的垂直距离(该垂直距离示例性地可以理解为第一辐射体201a的Z轴正方向上的一侧表面和主辐射部101a的Z轴负方向上的一侧表面沿Z轴方向上距离)大于等于1mm且小于等于4mm,例如是1mm、2mm、3mm或者4mm,如果第一辐射体201a和主辐射部(101a和101d)之间的垂直距离小于1mm,则该第一天线无法具有较好的阻抗匹配,若第一辐射体201a和主辐射部(101a和101d)之间的垂直距离大于4mm,则第一辐射体201a和主辐射部(101a和101d)之间的耦合效果较差;而主辐射部(101a和101d)在第一介质基板100的第一表面上的正投影与第一辐射体201a在第一介质基板100的第一表面上的正投影不重叠,也就是主辐射部101a和主辐射部101d相互靠近的阶梯型侧边之间的间隙在第一介质基板100的第一表面上的正投影能够覆盖第一辐射体201a在第一介质基板100的第一表面上的正投影,这样有利于避免主辐射部(101a和101d)对第一辐射体201a辐射出的电磁波的遮挡。第一辐射体(201b、201c和201d)的形状、材质和位置等参数可以参考第一辐射体201a。
图5表示出了本申请实施例提供的天线组件的示例性对应的散射参数曲线图,其中,横坐标表示工作频率,纵坐标表示散射参数模值,曲线Sim.|S11|表示第二天线中第一输入端口的反射系数曲线的仿真结果,曲线Mea.|S11|表示第二天线中第一输入端口的反射系数曲线的测试结果,曲线Sim.|S22|表示第二天线中第二输入端口的反射系数曲线的仿真结果,曲线Mea.|S22|表示第二天线中第二输入端口的反射系数曲线的测试结果,曲线Sim.|S12|表示第二天线中第一输入端口和第二输入端口之间的传输系数曲线的仿真结果,曲线Mea.|S12|表示第二天线中第一输入端口和第二输入端口之间的传输系数曲线的测试结果;6表示出了本申请实施例提供的天线组件的一种示例性对应的效率测试图,其中,横坐标表示工作频率,纵坐标表示天线效率,P1曲线表示第二天线中第一输入端口的测试效率曲线,P2曲线表示第二天线中第二输入端口的测试效率曲线;,结合图5和图6可知,本申请实施例提供的天线组件能够覆盖2G、3G和4G通信标准的频段和5G通信标准的NR频段,通过第一天线和第二天线的相互作用,天线组件整体具有较宽的带宽。
此外,在本申请实施例提供的上述天线组件中,第一介质基板100对于主辐射部(101a、101b、101c和101d)具有支撑作用,第二介质基板对延伸辐射部和第一辐射体具有支撑作用,当主辐射部(101a、101b、101c和101d)和各延伸辐射部采用具有一定刚度,并且通过其他方式将第一辐射体固定时,第一介质基板100和各第二介质基板也可以不设置。
基于相同的发明构思,本申请实施例还提供了一种通信设备,该通信设备包括上述实施例提供的天线组件,参考图1至图6,通过在该通信设备中设置上述天线组件,其中,两个第二天线中每个第二天线均为偶极子天线,且两个第二天线正交放置,组成双极化天线,有利于克服多径衰落效应的问题,并且能够提高天线组件的信道容量;在每个第二天 线中,第二馈电部与第二辐射体耦接、并用于向第二辐射体馈电,从而,第二天线用于向外辐射第二频段的信号;在每个第一天线中,两个第二天线中的第二馈电部和第二辐射体作为第一馈电部的至少一部分,两个第二天线中的第二辐射体与第一辐射体电耦合连接、并用于向第一辐射体馈电,从而,第一天线用于向外辐射第一频段的信号,第二频段的信号频率低于第一频段的信号频率,通过第一天线和第二天线的配合,天线组件具有覆盖第一频段和第二频段的较宽的带宽。
以上,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以权利要求的保护范围为准。

Claims (17)

  1. 一种天线组件,其特征在于,包括:第一天线和两个第二天线,每个第二天线为偶极子天线,且所述两个第二天线正交放置;
    所述第一天线用于辐射第一频段的信号,所述第二天线用于辐射第二频段的信号,且所述第二频段的信号频率低于所述第一频段的信号频率;
    所述第一天线包括第一馈电部和第一辐射体,每个所述第二天线包括第二馈电部和第二辐射体,所述第二馈电部与所述第二辐射体耦接、并用于向所述第二辐射体馈电;
    其中,所述第一馈电部包括所述两个第二天线中的第二馈电部和第二辐射体,所述第二辐射体与所述第一辐射体电耦合连接、并用于向所述第一辐射体馈电。
  2. 根据权利要求1所述的天线组件,其特征在于,所述天线组件还包括第一介质基板;
    每个第二辐射体包括两个片状的主辐射部,且每个主辐射部沿第一介质基板延伸。
  3. 根据权利要求2所述的天线组件,其特征在于,每个第二天线中的两个主辐射部分别一一对应地设置在所述第一介质基板相对的两个表面。
  4. 根据权利要求3所述的天线组件,其特征在于,每个第二天线还包括一个微带线;
    在每个第二天线中,微带线与其中一个主辐射部连接、并延伸至与另一个主辐射部相对的位置;
    所述第一介质基板与每个微带线相对的位置具有过孔;
    在一个第二天线中,所述第二馈电部与另一个主辐射部耦接,并穿过对应的过孔与微带线耦接。
  5. 根据权利要求4所述的天线组件,其特征在于,所述第二馈电部包括同轴线缆,其中,在每个第二天线中,同轴线缆的外皮与所述另一个主辐射部耦接,同轴线缆的内芯穿过对应过孔与微带线耦接。
  6. 根据权利要求4或5所述的天线组件,其特征在于,所述两个第二天线中的微带线分别一一对应地设置在所述第一介质基板相对的两个表面。
  7. 根据权利要求6所述的天线组件,其特征在于,在每个第二辐射体中,沿电流的流动方向,所述主辐射部的至少一个侧边沿阶梯状路径延伸。
  8. 根据权利要求7所述的天线组件,其特征在于,所述主辐射部的沿阶梯状路径延伸的侧边中阶梯数大于等于2且小于等于16。
  9. 根据权利要求7或8所述的天线组件,其特征在于,每个第一辐射体在第一介质基板的设置面上的正投影均位于一对相邻的两个第二主辐射部之间的间隙在所述设置面上的正投影中。
  10. 根据权利要求2至9任一项所述的天线组件,其特征在于,所述天线组件还包括沿第一介质基板边缘延伸的第二介质基板,其中,每个第二介质基板与第一介质基板之间的夹角小于180°;
    每个第二辐射体还包括延伸辐射部,每个延伸辐射部呈片状且沿第二介质基板的表面延伸,且每个延伸辐射部与对应的主辐射部相互连接。
  11. 根据权利要求10所述的天线组件,其特征在于,所述第一介质基板呈正方形,每个主辐射部分别由所述第一介质基板的中部沿所述第一介质基板的一条对角线延伸至所 述第一介质基板的一个角部。
  12. 根据权利要求11所述的天线组件,其特征在于,所述第一辐射体安装于所述第二介质基板的内侧壁上。
  13. 根据权利要求12所述的天线组件,其特征在于,所述第一辐射体呈片状结构,且每个第一辐射体的一侧面平行于所述第一介质基板的设置面。
  14. 根据权利要求13所述的天线组件,其特征在于,每个第一辐射体的周长大于第一频段中的最低频率对应的波长的0.5倍,每个第二辐射体的等效电流路径长度大于等于第二频段中的最低频率对应的波长的0.20倍且小于等于第二频段中的最低频率对应的波长的0.30倍。
  15. 根据权利要求14所述的天线组件,其特征在于,在每个第二辐射体中,主辐射部上的电流的等效电流路径长度大于等于所述第二辐射体上的等效电流路径长度的50%且小于所述第二辐射体上的等效电流路径长度的100%。
  16. 根据权利要求13所述的天线组件,其特征在于,所述主辐射部和所述第一辐射体之间的垂直距离大于等于1mm且小于等于4mm。
  17. 一种通信设备,其特征在于,包括权利要求1至16任一项所述的天线组件。
PCT/CN2020/123337 2019-10-31 2020-10-23 一种天线组件及通信设备 WO2021083055A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911054766.7 2019-10-31
CN201911054766.7A CN112751158B (zh) 2019-10-31 2019-10-31 一种天线组件及通信设备

Publications (1)

Publication Number Publication Date
WO2021083055A1 true WO2021083055A1 (zh) 2021-05-06

Family

ID=75645518

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/123337 WO2021083055A1 (zh) 2019-10-31 2020-10-23 一种天线组件及通信设备

Country Status (2)

Country Link
CN (1) CN112751158B (zh)
WO (1) WO2021083055A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113437521A (zh) * 2021-06-30 2021-09-24 Oppo广东移动通信有限公司 天线模组及通信设备
CN114172537A (zh) * 2021-12-20 2022-03-11 Oppo广东移动通信有限公司 天线切换方法、装置、电子设备及存储介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7450081B1 (en) * 2007-03-12 2008-11-11 Sandia Corporation Compact low frequency radio antenna
CN108321517A (zh) * 2018-01-18 2018-07-24 广州瀚信通信科技股份有限公司 一种正交双极化宽频段mimo贴片天线及其制作方法
CN208111675U (zh) * 2018-04-04 2018-11-16 深圳国人通信股份有限公司 宽频辐射单元及应用该宽频辐射单元的天线阵列
CN109586020A (zh) * 2018-12-05 2019-04-05 广东工业大学 一种圆极化贴片天线

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7233722B2 (en) * 2005-08-15 2007-06-19 General Display, Ltd. System and method for fiber optics based direct view giant screen flat panel display
CN202839949U (zh) * 2012-08-13 2013-03-27 佛山市健博通电讯实业有限公司 一种lte宽带双极化天线振子
JP5769899B2 (ja) * 2013-03-05 2015-08-26 三菱電機株式会社 アンテナ装置の設置方法及びアンテナ装置
US20170062940A1 (en) * 2015-08-28 2017-03-02 Amphenol Corporation Compact wideband dual polarized dipole
US20170085009A1 (en) * 2015-09-18 2017-03-23 Paul Robert Watson Low-profile, broad-bandwidth, dual-polarization dipole radiating element
US10374315B2 (en) * 2015-10-28 2019-08-06 Rogers Corporation Broadband multiple layer dielectric resonator antenna and method of making the same
CN105514598A (zh) * 2016-01-15 2016-04-20 天津大学 一种小型的共面波导馈电的宽带天线
CN106654557B (zh) * 2016-12-16 2023-09-29 淮阴工学院 一种双频点宽频带偶极子天线
US11205847B2 (en) * 2017-02-01 2021-12-21 Taoglas Group Holdings Limited 5-6 GHz wideband dual-polarized massive MIMO antenna arrays
CN107317099A (zh) * 2017-03-27 2017-11-03 广东顺德中山大学卡内基梅隆大学国际联合研究院 一种多频带圆极化宽频交叉偶极子天线
CN107240769B (zh) * 2017-05-03 2020-02-11 广东通宇通讯股份有限公司 低剖面双频超宽带天线
CN107508037A (zh) * 2017-07-11 2017-12-22 上海安费诺永亿通讯电子有限公司 基站天线单元及基站天线
CN108091993A (zh) * 2017-12-08 2018-05-29 苏明 一种低剖面双极化天线
CN108183313B (zh) * 2017-12-22 2020-07-03 华南理工大学 超宽带双极化天线辐射单元及基站天线
CN108110409A (zh) * 2018-01-30 2018-06-01 京信通信系统(中国)有限公司 宽频双极化天线及其辐射装置
CN108365331A (zh) * 2018-03-06 2018-08-03 中国科学技术大学 一种面向5g应用的高隔离双极化基站天线单元
CN108539438B (zh) * 2018-05-24 2020-11-13 广东曼克维通信科技有限公司 Uhf双极化天线
CN109687135A (zh) * 2019-01-16 2019-04-26 重庆邮电大学 一种适用于4g/5g移动通信的宽带双极化基站天线单元
CN109742533B (zh) * 2019-02-18 2023-11-03 华南理工大学 一种差分馈电双极化方向图可重构天线

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7450081B1 (en) * 2007-03-12 2008-11-11 Sandia Corporation Compact low frequency radio antenna
CN108321517A (zh) * 2018-01-18 2018-07-24 广州瀚信通信科技股份有限公司 一种正交双极化宽频段mimo贴片天线及其制作方法
CN208111675U (zh) * 2018-04-04 2018-11-16 深圳国人通信股份有限公司 宽频辐射单元及应用该宽频辐射单元的天线阵列
CN109586020A (zh) * 2018-12-05 2019-04-05 广东工业大学 一种圆极化贴片天线

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113437521A (zh) * 2021-06-30 2021-09-24 Oppo广东移动通信有限公司 天线模组及通信设备
CN113437521B (zh) * 2021-06-30 2023-05-26 Oppo广东移动通信有限公司 天线模组及通信设备
CN114172537A (zh) * 2021-12-20 2022-03-11 Oppo广东移动通信有限公司 天线切换方法、装置、电子设备及存储介质

Also Published As

Publication number Publication date
CN112751158A (zh) 2021-05-04
CN112751158B (zh) 2022-05-17

Similar Documents

Publication Publication Date Title
EP3098903B1 (en) Dual-polarized antenna and antenna array
CN109004337B (zh) 适用于5g通信的双极化毫米波天线系统及移动终端
US11355853B2 (en) Antenna structure and wireless communication device using the same
US11757171B2 (en) MIMO antenna system, wireless device, and wireless communication system
EP4057447A1 (en) Antenna and electronic device
WO2021083055A1 (zh) 一种天线组件及通信设备
WO2021244158A1 (zh) 双极化天线及客户前置设备
WO2021203939A1 (zh) 一种电子设备
WO2019223318A1 (zh) 室内基站及其pifa天线
WO2022088863A1 (zh) 天线、天线模组和电子设备
US11411321B2 (en) Broadband antenna system
Karthikeya et al. CPW fed conformal folded dipole with pattern diversity for 5G mobile terminals
WO2023005739A1 (zh) 天线和通信设备
US6222488B1 (en) Antenna structure for communication
CN2924811Y (zh) 印刷电路板天线
CN113054423B (zh) 天线组件
JP5626130B2 (ja) ループアンテナ
CN112821069B (zh) 贴片辐射单元及基站天线
WO2021147438A1 (zh) 具有高隔离度和低交叉极化电平的天线、基站和终端
WO2021083213A1 (zh) 天线单元及电子设备
WO2021083218A1 (zh) 天线单元及电子设备
JP2004289371A (ja) アンテナ装置および無線装置
TW201419653A (zh) 多頻天線
CN114883788B (zh) 天线、射频前端模组和通讯设备
CN110323551A (zh) 一种贴片辐射单元

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20881686

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20881686

Country of ref document: EP

Kind code of ref document: A1