WO2022142395A1 - 电子级硫酸的生产方法 - Google Patents

电子级硫酸的生产方法 Download PDF

Info

Publication number
WO2022142395A1
WO2022142395A1 PCT/CN2021/114046 CN2021114046W WO2022142395A1 WO 2022142395 A1 WO2022142395 A1 WO 2022142395A1 CN 2021114046 W CN2021114046 W CN 2021114046W WO 2022142395 A1 WO2022142395 A1 WO 2022142395A1
Authority
WO
WIPO (PCT)
Prior art keywords
sulfuric acid
temperature
absorption
electronic grade
sulfur trioxide
Prior art date
Application number
PCT/CN2021/114046
Other languages
English (en)
French (fr)
Inventor
林益兴
王琴
Original Assignee
联仕(昆山)化学材料有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 联仕(昆山)化学材料有限公司 filed Critical 联仕(昆山)化学材料有限公司
Publication of WO2022142395A1 publication Critical patent/WO2022142395A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B17/00Sulfur; Compounds thereof
    • C01B17/69Sulfur trioxide; Sulfuric acid
    • C01B17/74Preparation
    • C01B17/76Preparation by contact processes
    • C01B17/765Multi-stage SO3-conversion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D1/00Evaporating
    • B01D1/0011Heating features
    • B01D1/0041Use of fluids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D1/00Evaporating
    • B01D1/02Evaporators with heating coils
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D1/00Evaporating
    • B01D1/06Evaporators with vertical tubes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D1/00Evaporating
    • B01D1/30Accessories for evaporators ; Constructional details thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D3/00Distillation or related exchange processes in which liquids are contacted with gaseous media, e.g. stripping
    • B01D3/10Vacuum distillation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
    • B01D53/1456Removing acid components
    • B01D53/1481Removing sulfur dioxide or sulfur trioxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
    • B01D53/18Absorbing units; Liquid distributors therefor
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B17/00Sulfur; Compounds thereof
    • C01B17/69Sulfur trioxide; Sulfuric acid
    • C01B17/74Preparation
    • C01B17/76Preparation by contact processes
    • C01B17/80Apparatus
    • C01B17/806Absorbers; Heat exchangers
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B17/00Sulfur; Compounds thereof
    • C01B17/69Sulfur trioxide; Sulfuric acid
    • C01B17/90Separation; Purification
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2252/00Absorbents, i.e. solvents and liquid materials for gas absorption
    • B01D2252/10Inorganic absorbents

Definitions

  • the invention relates to a production method of sulfuric acid, in particular to a production method of electronic grade sulfuric acid, and belongs to the technical field of electronic chemical production.
  • Electronic grade sulfuric acid also known as ultra-pure sulfuric acid
  • ultra-pure sulfuric acid is an ultra-clean and high-purity reagent. It is the most widely used wet electronic chemical in the industry. It is mainly used for cleaning, lithography, corrosion of silicon wafers, and corrosion and cleaning of printed circuit boards. , which can effectively remove particulate impurities, inorganic residues and carbon deposits from wafers and printed circuit boards.
  • the preparation process of electronic grade sulfuric acid mainly includes rectification method and gas absorption method.
  • the rectification method is a distillation method that uses reflux to obtain high-purity separation of liquid mixtures.
  • industrial grade sulfuric acid is subjected to strong oxidation treatment and then added to a quartz rectification tower for rectification, and then filtered through a microporous membrane to form an electronic grade.
  • the sulfuric acid can be subpackaged; the above-mentioned rectification method has high energy consumption and high cost, and some impurities are difficult to remove, and the generated waste gas and acid mist are harmful to the human body, which is not conducive to environmental protection, and is only suitable for small-scale production.
  • the gas absorption method is to directly absorb the purified sulfur trioxide with ultrapure water or ultrapure sulfuric acid, in which the purification of sulfur trioxide is the key to the product reaching the standard; the gas absorption method is suitable for large-scale industrial production, and the impurity removal rate is high.
  • the product quality is stable and the energy consumption is low, which can fully meet the needs of the semiconductor industry.
  • the preparation process flow of electronic-grade sulfuric acid in the current prior art is shown in Figure 1, and the process is as follows: the sulfur-containing substances such as pyrite and sulfur are subjected to boiling roasting in a boiling furnace, and the generated furnace gas mainly contains sulfur dioxide, oxygen, Nitrogen, water vapor, compounds such as arsenic, selenium, and mineral dust; the above furnace gas is sequentially subjected to dry dust removal, wet purification and drying to form furnace gas mainly containing sulfur dioxide, oxygen and nitrogen; the furnace gas enters The sulfur dioxide gas in the contact chamber is catalytically oxidized into sulfur trioxide gas by the action of a catalyst.
  • the gas coming out of the contact chamber is mainly sulfur trioxide, nitrogen and the remaining unreacted oxygen and sulfur dioxide; the mass fraction of the gas is used. 98.3% sulfuric acid is used as the absorbent to absorb the sulfur trioxide, and the nitrogen, unreacted oxygen and a small amount of sulfur dioxide that are exported from the upper part of the absorption tower are dried again and passed into the contact chamber for secondary conversion and oxidation. Enter the absorption tower for absorption.
  • sulfuric acid absorbs sulfur trioxide gas to form industrial-grade liquid sulfur trioxide, oleum and sulfuric acid products, and the technical-grade liquid sulfur trioxide in the above-mentioned products is distilled and purified by using a kettle evaporator and selecting steam as a medium, Then, after the sulfur trioxide purified by distillation is absorbed and degassed at normal temperature in sequence, the electronic grade sulfuric acid product is obtained by filtration.
  • the present invention provides a production method of electronic grade sulfuric acid. Quality electronic grade sulfuric acid and guarantee the safety of operation while guaranteeing the output and efficiency.
  • a production method of electronic grade sulfuric acid comprising the steps:
  • step S1 the furnace gas from the contacting chamber is passed into the first absorption tower to absorb with concentrated sulfuric acid, wherein the sulfur trioxide gas contained in the furnace gas is completely absorbed by the concentrated sulfuric acid to obtain oleum, and then the fuming is obtained.
  • step S2 the liquid product obtained in step S1 is added to the evaporation and purification device of the low-temperature evaporation purification absorption device alone or together with the purchased industrial-grade liquid sulfur trioxide, and is subjected to negative pressure and low temperature evaporation. Sulfur trioxide gas flows out from the top;
  • step S3 the sulfur trioxide gas obtained by the treatment in step S2 is passed into the second absorption tower, and the ultrapure sulfuric acid with a mass percentage concentration of 98% is used as the parent acid for low-temperature absorption to obtain sulfuric acid liquid;
  • step S4 the sulfuric acid obtained by the treatment in step S3 is heated and degassed to remove the insoluble gas contained in the liquid;
  • step S5 the liquid obtained by the treatment in step S4 is filtered to obtain electronic grade sulfuric acid.
  • step S1 the mass percentage concentration of concentrated sulfuric acid used for absorption is 98-99%, and the mass percentage concentration of sulfuric acid in the formed oleum is 50-70%.
  • the mass percentage concentration of the hydrogen peroxide aqueous solution used in the step S1 and the step S3 is 10-31%, and the consumption of the hydrogen peroxide aqueous solution is 0.01-0.2% of the total mass of the oleum.
  • step S2 the blending mass ratio when the liquid product obtained in step S1 is blended with the purchased industrial-grade liquid sulfur trioxide is (3-5):1.
  • step S2 the temperature of the hot water entering the heating zone in the evaporation and purification device is 40-45°C, and the temperature of the hot water flowing out of the heating zone of the evaporation and purification device is 25-30°C.
  • the negative pressure in the first heat exchange tube and the second heat exchange tube in the evaporation and purification device in step S2 is 0.01-0.08MPa.
  • step S3 the low temperature absorption temperature is 40-55°C.
  • step S4 the sulfuric acid obtained by the treatment in step S3 is heated to 40-65° C. for degassing.
  • step S5 the filtration is performed by using a membrane filter with a membrane pore size of 0.05-0.1 ⁇ m.
  • the evaporation and purification device in the low-temperature evaporation and purification absorption device is used to carry out negative pressure and low-temperature evaporation, so that the liquid can use the low-temperature hot water introduced into the heating zone in the device to ensure that the liquid does not boil.
  • evaporating sulfur trioxide gas it can control the safety at the optimal level through a small liquid processing volume on the basis of ensuring the evaporation efficiency and output;
  • the present invention adopts a low-temperature absorption method in the absorption stage. Compared with the normal temperature absorption method commonly used in the prior art, the overall temperature of the liquid during the absorption process can be controlled at a lower level, which can ensure the safety of operation;
  • the sulfuric acid is degassed by means of increasing temperature and degassing to remove the insoluble gas contained in the liquid. Compared with the general normal temperature degassing method in the prior art, the degassing effect is better. .
  • Fig. 1 is prior art electronic sulfuric acid preparation process flow chart
  • Fig. 2 is the flow chart of the electronic sulfuric acid preparation process of the present invention.
  • Sulfur-containing substances such as pyrite and sulfur are boiled and roasted in a boiling furnace, and the generated furnace gas mainly contains sulfur dioxide, oxygen, nitrogen, water vapor, compounds such as arsenic, selenium, etc. and mineral dust.
  • a furnace gas mainly containing sulfur dioxide, oxygen and nitrogen is formed; the furnace gas enters the contact chamber and is catalytically oxidized to sulfur trioxide gas by the action of a catalyst, and comes out of the contact chamber.
  • the gases are mainly sulfur trioxide, nitrogen and the remaining unreacted oxygen and sulfur dioxide. Refer to the following for the subsequent treatment process.
  • step S1 the furnace gas from the contacting chamber is passed into the first absorption tower to absorb with concentrated sulfuric acid, wherein the sulfur trioxide gas contained in the furnace gas is completely absorbed by the concentrated sulfuric acid to obtain oleum, and then the fuming is obtained.
  • step S2 the liquid product obtained in step S1 is added to the evaporation and purification device of the low-temperature evaporation purification absorption device alone or together with the purchased industrial-grade liquid sulfur trioxide, and is subjected to negative pressure and low temperature evaporation. Sulfur trioxide gas flows out from the top;
  • step S3 the sulfur trioxide gas obtained by the treatment in step S2 is passed into the second absorption tower, and the ultrapure sulfuric acid with a mass percentage concentration of 98% is used as the parent acid for low-temperature absorption to obtain sulfuric acid liquid;
  • step S4 the sulfuric acid obtained by the treatment in step S3 is heated and degassed to remove the insoluble gas contained in the liquid;
  • step S5 the liquid obtained by the treatment in step S4 is filtered to obtain electronic grade sulfuric acid.
  • the concentration of concentrated sulfuric acid for absorption in step S1 is 98-99%, preferably the concentration of sulfuric acid for industrial use is 98.3%; and the concentration of sulfuric acid in the formed oleum is 50%. -70%.
  • the mass percentage concentration of the aqueous hydrogen peroxide solution used in steps S1 and S3 is 10-31%, and the amount of the aqueous hydrogen peroxide solution used is 0.01-0.2% of the total mass of the oleum.
  • the blending mass ratio is (3-5):1.
  • the temperature of the hot water entering the heating zone in the evaporation and purification device in step S2 is 40-45°C, preferably 40°C; and the temperature of the hot water flowing out of the heating zone of the evaporation and purification device is 25-30°C °C, preferably 30 °C.
  • the negative pressure in the first heat exchange tube and the second heat exchange tube in the evaporation and purification device in step S2 is 0.01-0.08MPa.
  • the low temperature absorption temperature in step S3 is 40-55°C.
  • step S4 the sulfuric acid obtained by the treatment in step S3 is heated to 40-65° C. for degassing.
  • the temperature at which the temperature-increasing degassing is performed in step S4 is higher than the temperature at which the low-temperature absorption is performed in step S3.
  • the filtration in step S5 is performed by using a membrane filter with a membrane pore size of 0.05-0.1 ⁇ m.
  • the concentration of metal ions in the electronic grade sulfuric acid produced by the above production method is lower than 10ppt, the concentration of anion is lower than 15ppb, the concentration of easy oxides is lower than 1ppm, and the mass percentage concentration of sulfuric acid is more than 99.5%.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Treating Waste Gases (AREA)
  • Gas Separation By Absorption (AREA)

Abstract

本发明公开了一种电子级硫酸的生产方法,属于电子化学品生产技术领域。该生产方法包括常温吸收转化、负压低温蒸发、低温吸收和增温脱气步骤,其中常温吸收转化为将炉气中的三氧化硫通过浓硫酸吸收得发烟硫酸,然后将发烟硫酸用过氧化氢水溶液氧化转化;其中负压低温蒸发为利用蒸发纯化装置在低于50℃的低温热水为加热介质的情况下,使三氧化硫气体在液体不吐沸的情况下蒸发出来;其中低温吸收为在低温下用超纯水或超纯硫酸吸收;增温脱气为在稍高于常温的温度下脱除液体内气体的过程。该生产方法能够在得到高品质电子级硫酸并保证产量和效率的同时,保证操作的安全性。

Description

电子级硫酸的生产方法 技术领域
本发明涉及一种硫酸的生产方法,尤其涉及一种电子级硫酸的生产方法,属于电子化学品生产技术领域。
背景技术
电子级硫酸又称超纯硫酸,属于超净高纯试剂,是工业上用量最大的湿电子化学品,主要用于硅晶片的清洗、光刻、腐蚀等,以及印刷电路板的腐蚀和清洗等,可有效去除晶片和印刷电路板上的颗粒杂质、无机残留物和碳沉积物等。
电子级硫酸的制备工艺主要包括精馏法和气体吸收法。精馏法是利用回流使液体混合物得到高纯度分离的蒸馏方法,具体的是将工业级硫酸经过强氧化处理后再加入石英精馏塔内进行精馏后,经微孔滤膜过滤形成电子级硫酸后分装即可;上述精馏法的能耗较大,成本高,且有些杂质难以去除,产生的废气、酸雾对人体有害,不利于环境保护,仅适合小规模生产。气体吸收法是将纯化后的三氧化硫直接用超纯水或超纯硫酸吸收,其中三氧化硫的纯化是产品达标的关键;该气体吸收法适合大规模工业化生产,杂质去除率较高,产品质量稳定,能耗低,能充分满足半导体工业的需求。
目前现有技术中电子级硫酸的制备工艺流程参见图1中所示,过程如下:将硫铁矿和硫磺等含硫物质在沸腾炉中经过沸腾焙烧,所产生的炉气主要含有二氧化硫、氧气、氮气、水蒸气以及如砷、硒等的化合物和矿尘等;上述炉气依次经干法除尘、湿法净化和干燥处理后,形成主要含有二氧化硫、氧气和氮气的炉气;该炉气进入接触室内经催化剂作用将其中的二氧化硫气体催化氧化为三氧化硫气体,从接触室内出来的气体主要是三氧化硫、氮气以及剩余的未起反应的氧气和二氧化硫;对该出来的气体使用质量分数为98.3%的硫酸作为吸收剂将其中的三氧化硫吸收掉,从吸收塔上部导出的氮气、没起反应的氧气和少量二氧化硫再次经干燥后通入接触室,进行二次转化氧化,然后再进入吸收塔进行吸收。98.3%的硫酸吸收三氧化硫气体后形成工业级液体三氧化硫、发 烟硫酸以及硫酸产品,对上述产物中的工业级液体三氧化硫采用釜式蒸发器并选用蒸汽作为介质进行蒸馏纯化,再将经蒸馏纯化的三氧化硫依次采用常温吸收和常温脱气后,经过滤得到电子级硫酸产品。
上述现有技术的制备工艺中,蒸馏纯化阶段采用蒸汽进行蒸馏纯化,且吸收阶段为常温吸收,其操作温度均较高,因此安全性较低;同时现有技术中脱气阶段也均采用常温脱气方式,液体中所含的气体难以有效的脱除干净。
发明内容
为解决上述背景技术中提出的技术问题,本发明提供了一种电子级硫酸的生产方法,该方法对工业级液体三氧化硫进行低温蒸发纯化、低温吸收和增温脱气,能够在得到高品质电子级硫酸并保证产量和效率的同时,保证操作的安全性。
本发明的技术方案是:
一种电子级硫酸的生产方法,包括如下步骤:
步骤S1,将从接触室内出来的炉气通入第一吸收塔内用浓硫酸进行吸收,其中炉气内所含有的三氧化硫气体完全被浓硫酸吸收得到发烟硫酸,然后向该发烟硫酸中添加过氧化氢水溶液使溶解在发烟硫酸中的少量二氧化硫氧化为三氧化硫;其中从第一吸收塔顶部流出的气体再次经干燥后通入接触室,进行二次转化氧化,然后再进入第一吸收塔内用浓硫酸进行吸收实现尾气循环吸收;
步骤S2,将步骤S1所得液体产物单独或与外购工业级液体三氧化硫一起加入到低温蒸发纯化吸收装置的蒸发纯化装置中进行负压低温蒸发,经负压低温蒸发后从蒸发纯化装置的顶部流出三氧化硫气体;
步骤S3,将经步骤S2处理所得三氧化硫气体通入第二吸收塔中用质量百分浓度为98%的超纯硫酸作为母酸进行低温吸收,得到硫酸液体;再向该得到的硫酸液体中添加过氧化氢水溶液使溶解在作为母酸的超纯硫酸中的少量二氧化硫氧化为三氧化硫;
步骤S4,将经步骤S3处理所得硫酸进行增温脱气,去除液体中所含有的不溶性气体;
步骤S5,将经步骤S4处理所得液体进行过滤,得到电子级硫酸。
其进一步的技术方案是:
步骤S1中吸收用浓硫酸的质量百分浓度为98-99%,且所形成的发烟硫酸中硫酸的质量百分浓度为50-70%。
其进一步的技术方案是:
步骤S1和步骤S3中所使用的过氧化氢水溶液的质量百分浓度为10-31%,且该过氧化氢水溶液的用量为发烟硫酸总质量的0.01-0.2%。
其进一步的技术方案是:
步骤S2中当步骤S1所得液体产物与外购工业级液体三氧化硫进行共混时的共混质量比为(3-5):1。
其进一步的技术方案是:
步骤S2中所述蒸发纯化装置中进入加热区的热水温度为40-45℃,且从蒸发纯化装置的加热区中流出的热水温度为25-30℃。
其进一步的技术方案是:
步骤S2中所述蒸发纯化装置中的第一换热管和第二换热管内的负压为0.01-0.08MPa。
其进一步的技术方案是:
步骤S3中低温吸收温度为40-55℃。
其进一步的技术方案是:
步骤S4中将经步骤S3处理所得硫酸增温至40-65℃进行脱气。
其进一步的技术方案是:
步骤S5中过滤采用滤膜孔径为0.05-0.1μm的膜过滤器进行过滤。
本发明的有益技术效果是:
1、本发明中在蒸发纯化阶段前使用过氧化氢对溶解在发烟硫酸中的少量二氧化硫进行氧化,使其转化为三氧化硫;同时将第一吸收塔内流出的气体回流至接触室进行二次转化,能够充分利用尾气中的二氧化硫,提高其利用率;
2、本发明中在蒸发纯化阶段利用低温蒸发纯化吸收装置中的蒸发纯化装置进行负压低温蒸发,能够使液体在该装置中利用加热区内通入的低温热水,在 保证液体不吐沸的情况下将三氧化硫气体蒸发出来,其能够在保证蒸发效率和产量的基础上,通过较小的液体处理量,将安全性控制在最优水平;
3、本发明在吸收阶段采用低温吸收方式,与现有技术中通用的常温吸收方式相比,在吸收过程中液体的总体温度能够控制在较低水平,能够保证操作的安全性;
4、本发明在脱气阶段采用增温脱气的方式对硫酸进行脱气,去除液体中所含有的不溶性气体,与现有技术中通用的常温脱气方式相比,其脱气效果更好。
附图说明
图1是现有技术电子硫酸制备工艺流程图;
图2是本发明电子硫酸制备工艺流程图。
具体实施方式
为了能够更清楚了解本发明的技术手段,并可依照说明书的内容予以实施,下面结合附图和实施例,对本发明的具体实施方式作进一步详细描述,以下实施例用于说明本发明,但不用来限制本发明的范围。
本具体实施例前端制备工艺与现有技术一致,如下所述:
将硫铁矿和硫磺等含硫物质在沸腾炉中经过沸腾焙烧,所产生的炉气主要含有二氧化硫、氧气、氮气、水蒸气以及如砷、硒等的化合物和矿尘等;上述炉气依次经干法除尘、湿法净化和干燥处理后,形成主要含有二氧化硫、氧气和氮气的炉气;该炉气进入接触室内经催化剂作用将其中的二氧化硫气体催化氧化为三氧化硫气体,从接触室内出来的气体主要是三氧化硫、氮气以及剩余的未起反应的氧气和二氧化硫。后续处理工艺参见下述内容。
下述具体实施例详细记载了一种电子级硫酸的生产方法,该生产方法包括如下步骤:
步骤S1,将从接触室内出来的炉气通入第一吸收塔内用浓硫酸进行吸收,其中炉气内所含有的三氧化硫气体完全被浓硫酸吸收得到发烟硫酸,然后向该发烟硫酸中添加过氧化氢水溶液使溶解在发烟硫酸中的少量二氧化硫氧化为三氧化硫;其中从第一吸收塔顶部流出的气体再次经干燥后通入接触室,进行二 次转化氧化,然后再进入第一吸收塔内用浓硫酸进行吸收实现尾气循环吸收;
步骤S2,将步骤S1所得液体产物单独或与外购工业级液体三氧化硫一起加入到低温蒸发纯化吸收装置的蒸发纯化装置中进行负压低温蒸发,经负压低温蒸发后从蒸发纯化装置的顶部流出三氧化硫气体;
步骤S3,将经步骤S2处理所得三氧化硫气体通入第二吸收塔中用质量百分浓度为98%的超纯硫酸作为母酸进行低温吸收,得到硫酸液体;再向该得到的硫酸液体中添加过氧化氢水溶液使溶解在作为母酸的超纯硫酸中的少量二氧化硫氧化为三氧化硫;
步骤S4,将经步骤S3处理所得硫酸进行增温脱气,去除液体中所含有的不溶性气体;
步骤S5,将经步骤S4处理所得液体进行过滤,得到电子级硫酸。
优选的,步骤S1中吸收用浓硫酸的质量百分浓度为98-99%,优选工业用质量百分浓度为98.3%的硫酸;且所形成的发烟硫酸中硫酸的质量百分浓度为50-70%。
优选的,步骤S1和步骤S3中所使用的过氧化氢水溶液的质量百分浓度为10-31%,且该过氧化氢水溶液的用量为发烟硫酸总质量的0.01-0.2%。
优选的,步骤S2中当步骤S1所得液体产物与外购工业级液体三氧化硫进行共混时的共混质量比为(3-5):1。
优选的,步骤S2中所述蒸发纯化装置中进入加热区的热水温度为40-45℃,优选为40℃热水;且从蒸发纯化装置的加热区中流出的热水温度为25-30℃,优选为30℃。
优选的,步骤S2中所述蒸发纯化装置中的第一换热管和第二换热管内的负压为0.01-0.08MPa。
优选的,步骤S3中低温吸收温度为40-55℃。
优选的,步骤S4中将经步骤S3处理所得硫酸增温至40-65℃进行脱气。在具体操作时,步骤S4进行增温脱气的温度高于步骤S3中低温吸收的温度。
优选的,步骤S5中过滤采用滤膜孔径为0.05-0.1μm的膜过滤器进行过滤。
经由上述生产方法生产所得的电子级硫酸中金属离子的浓度低于10ppt,阴 离子浓度低于15ppb、易氧化物浓度低于1ppm,且硫酸质量百分浓度为99.5%以上。
以上所述仅是本发明的优选实施方式,并不用于限制本发明,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明技术原理的前提下,还可以做出若干改进和变型,这些改进和变型也应视为本发明的保护范围。

Claims (9)

  1. 一种电子级硫酸的生产方法,其特征在于,包括如下步骤:
    步骤S1,将从接触室内出来的炉气通入第一吸收塔内用浓硫酸进行吸收,其中炉气内所含有的三氧化硫气体完全被浓硫酸吸收得到发烟硫酸,然后向该发烟硫酸中添加过氧化氢水溶液使溶解在发烟硫酸中的少量二氧化硫氧化为三氧化硫;其中从第一吸收塔顶部流出的气体再次经干燥后通入接触室,进行二次转化氧化,然后再进入第一吸收塔内用浓硫酸进行吸收实现尾气循环吸收;
    步骤S2,将步骤S1所得液体产物单独或与外购工业级液体三氧化硫一起加入到低温蒸发纯化吸收装置的蒸发纯化装置中进行负压低温蒸发,经负压低温蒸发后从蒸发纯化装置的顶部流出三氧化硫气体;
    步骤S3,将经步骤S2处理所得三氧化硫气体通入第二吸收塔中用质量百分浓度为98%的超纯硫酸作为母酸进行低温吸收,得到硫酸液体;再向该得到的硫酸液体中添加过氧化氢水溶液使溶解在作为母酸的超纯硫酸中的少量二氧化硫氧化为三氧化硫;
    步骤S4,将经步骤S3处理所得硫酸进行增温脱气,去除液体中所含有的不溶性气体;
    步骤S5,将经步骤S4处理所得液体进行过滤,得到电子级硫酸。
  2. 根据权利要求1所述的电子级硫酸的生产方法,其特征在于:步骤S1中吸收用浓硫酸的质量百分浓度为98-99%,且所形成的发烟硫酸中硫酸的质量百分浓度为50-70%。
  3. 根据权利要求1所述的电子级硫酸的生产方法,其特征在于:步骤S1和步骤S3中所使用的过氧化氢水溶液的质量百分浓度为10-31%,且该过氧化氢水溶液的用量为发烟硫酸总质量的0.01-0.2%。
  4. 根据权利要求1所述的电子级硫酸的生产方法,其特征在于:步骤S2中当步骤S1所得液体产物与外购工业级液体三氧化硫进行共混时的共混质量比为(3-5):1。
  5. 根据权利要求1所述的电子级硫酸的生产方法,其特征在于:步骤S2中所述蒸发纯化装置中进入加热区的热水温度为40-45℃,且从蒸发纯化装置的加热区中流出的热水温度为25-30℃。
  6. 根据权利要求1所述的电子级硫酸的生产方法,其特征在于:步骤S2中所述蒸发纯化装置中的第一换热管和第二换热管内的负压为0.01-0.08MPa。
  7. 根据权利要求1所述的电子级硫酸的生产方法,其特征在于:步骤S3中低温吸收温度为40-55℃。
  8. 根据权利要求1所述的电子级硫酸的生产方法,其特征在于:步骤S4中将经步骤S3处理所得硫酸增温至40-65℃进行脱气。
  9. 根据权利要求1所述的电子级硫酸的生产方法,其特征在于:步骤S5中过滤采用滤膜孔径为0.05-0.1μm的膜过滤器进行过滤。
PCT/CN2021/114046 2021-01-04 2021-08-23 电子级硫酸的生产方法 WO2022142395A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110000684.5 2021-01-04
CN202110000684.5A CN112320768B (zh) 2021-01-04 2021-01-04 电子级硫酸的生产方法

Publications (1)

Publication Number Publication Date
WO2022142395A1 true WO2022142395A1 (zh) 2022-07-07

Family

ID=74302450

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/114046 WO2022142395A1 (zh) 2021-01-04 2021-08-23 电子级硫酸的生产方法

Country Status (2)

Country Link
CN (1) CN112320768B (zh)
WO (1) WO2022142395A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116101982A (zh) * 2023-01-09 2023-05-12 江苏吉华化工有限公司 一种硫磺制酸系统及制酸方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112320768B (zh) * 2021-01-04 2021-03-30 联仕(昆山)化学材料有限公司 电子级硫酸的生产方法
TWI765711B (zh) * 2021-05-19 2022-05-21 綠升國際股份有限公司 以廢硫酸溶液製備高純度電子級硫酸的方法
CN114275743B (zh) * 2021-12-10 2023-04-28 湖北兴福电子材料股份有限公司 一种电子级硫酸用高纯液体三氧化硫生产的方法
CN115057415A (zh) * 2022-06-13 2022-09-16 湖北龙祥磷化有限公司 一种高纯度电子酸生产工艺

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5622608A (en) * 1979-07-30 1981-03-03 Nissan Chem Ind Ltd Manufacture of high purity sulfuric acid
US20020192144A1 (en) * 1999-12-28 2002-12-19 Martin Hostalek Method for producing high-purity sulphuric acid
CN103407972A (zh) * 2013-08-06 2013-11-27 上海正帆科技有限公司 电子级硫酸生产方法
CN205730408U (zh) * 2016-05-17 2016-11-30 常州泰特环境设备工程有限公司 一种含过氧化物和双氧水的稀硫酸废液浓缩装置
CN112320768A (zh) * 2021-01-04 2021-02-05 联仕(昆山)化学材料有限公司 电子级硫酸的生产方法
CN112441567A (zh) * 2021-01-04 2021-03-05 联仕(昆山)化学材料有限公司 电子级硫酸的生产工艺及生产用低温蒸发纯化吸收装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2149586A5 (fr) * 1971-08-13 1973-03-30 Ugine Kuhlmann Perfectionnement a la fabrication de l'acide sulfurique
JPS5911524B2 (ja) * 1978-03-09 1984-03-16 日立造船株式会社 負荷変更に対し転化器群の入口ガス温度調整を不要とする転化工程を有する硫酸の製造法
WO2008064698A1 (en) * 2006-11-29 2008-06-05 Haldor Topsøe A/S Process for the production of sulfuric acid
CN105947994B (zh) * 2016-04-29 2018-10-09 上海京藤化工有限公司 一种微电子用mos级硫酸的生产装置及生产方法
CN111533091A (zh) * 2020-05-08 2020-08-14 上海六谦工程科技有限公司 一种el级硫酸的生产装置及其生产工艺

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5622608A (en) * 1979-07-30 1981-03-03 Nissan Chem Ind Ltd Manufacture of high purity sulfuric acid
US20020192144A1 (en) * 1999-12-28 2002-12-19 Martin Hostalek Method for producing high-purity sulphuric acid
CN103407972A (zh) * 2013-08-06 2013-11-27 上海正帆科技有限公司 电子级硫酸生产方法
CN205730408U (zh) * 2016-05-17 2016-11-30 常州泰特环境设备工程有限公司 一种含过氧化物和双氧水的稀硫酸废液浓缩装置
CN112320768A (zh) * 2021-01-04 2021-02-05 联仕(昆山)化学材料有限公司 电子级硫酸的生产方法
CN112441567A (zh) * 2021-01-04 2021-03-05 联仕(昆山)化学材料有限公司 电子级硫酸的生产工艺及生产用低温蒸发纯化吸收装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116101982A (zh) * 2023-01-09 2023-05-12 江苏吉华化工有限公司 一种硫磺制酸系统及制酸方法

Also Published As

Publication number Publication date
CN112320768A (zh) 2021-02-05
CN112320768B (zh) 2021-03-30

Similar Documents

Publication Publication Date Title
WO2022142395A1 (zh) 电子级硫酸的生产方法
CN112441567B (zh) 电子级硫酸的生产工艺及生产用低温蒸发纯化吸收装置
CN109264674B (zh) 一种利用冶炼烟气制取硫酸的工艺及系统
KR100892892B1 (ko) 폐기산의 농축방법
CN211521596U (zh) 冶炼烟气制备分析纯硫酸的系统
CN105565281A (zh) 一种超纯硫酸的制备方法
CN111186820A (zh) 一种高纯硫酸生产工艺及生产系统
JPH01203027A (ja) 煙道ガスの浄化方法
JP4202451B2 (ja) 硫酸を濃縮する方法
CN110155955B (zh) 一种利用有色冶炼烟气制取电子级硫酸的生产方法
CN110282606A (zh) 含水硫膏和脱硫废液的湿法处理系统和工艺
CN211871381U (zh) 一种高纯硫酸生产系统
WO2022227349A1 (zh) 电子级氢氟酸的生产工艺及生产用装置
CN111115587A (zh) 冶炼烟气制备分析纯硫酸的方法及系统
CN112279220B (zh) 一种高纯硫酸的连续生产方法
CN109012110A (zh) 一种利用氢氧化钠及碳酸钠捕集二氧化碳的方法
CN110371933A (zh) 一种废酸的提纯方法
CN216946224U (zh) 一种从硫铁矿直接生产电子级硫酸的装置
CN114275743B (zh) 一种电子级硫酸用高纯液体三氧化硫生产的方法
CN105498504B (zh) 铁球团烧结尾气净化装置及其净化方法和应用
CN115057415A (zh) 一种高纯度电子酸生产工艺
CN108083231A (zh) 一种含氟硫酸分离氢氟酸的方法
CN113800524A (zh) 一种氟硅酸的浓缩方法
CN114590782A (zh) 一种从硫铁矿直接生产电子级硫酸的装置及方法
CN112675669A (zh) 一种脱除高湿度烟气中硫氧化物的装置及方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21913142

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21913142

Country of ref document: EP

Kind code of ref document: A1