WO2022142249A1 - 一种增材制造金属材料中裂纹的消除方法 - Google Patents
一种增材制造金属材料中裂纹的消除方法 Download PDFInfo
- Publication number
- WO2022142249A1 WO2022142249A1 PCT/CN2021/104751 CN2021104751W WO2022142249A1 WO 2022142249 A1 WO2022142249 A1 WO 2022142249A1 CN 2021104751 W CN2021104751 W CN 2021104751W WO 2022142249 A1 WO2022142249 A1 WO 2022142249A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- temperature
- metal material
- cooling
- isostatic pressing
- elimination method
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 59
- 239000007769 metal material Substances 0.000 title claims abstract description 34
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 26
- 239000000654 additive Substances 0.000 title claims abstract description 23
- 230000000996 additive effect Effects 0.000 title claims abstract description 23
- 238000010438 heat treatment Methods 0.000 claims abstract description 23
- 238000000462 isostatic pressing Methods 0.000 claims abstract description 19
- 239000000463 material Substances 0.000 claims abstract description 8
- 229910045601 alloy Inorganic materials 0.000 claims description 25
- 239000000956 alloy Substances 0.000 claims description 25
- 238000001816 cooling Methods 0.000 claims description 22
- 230000008030 elimination Effects 0.000 claims description 22
- 238000003379 elimination reaction Methods 0.000 claims description 22
- 230000008569 process Effects 0.000 claims description 17
- 238000009413 insulation Methods 0.000 claims description 6
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 4
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims description 4
- 229910000531 Co alloy Inorganic materials 0.000 claims description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 2
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims description 2
- 229910052782 aluminium Inorganic materials 0.000 claims description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 2
- 229910052802 copper Inorganic materials 0.000 claims description 2
- 239000010949 copper Substances 0.000 claims description 2
- 238000011534 incubation Methods 0.000 claims description 2
- 229910052742 iron Inorganic materials 0.000 claims description 2
- 229910052759 nickel Inorganic materials 0.000 claims description 2
- 239000010936 titanium Substances 0.000 claims description 2
- 229910052719 titanium Inorganic materials 0.000 claims description 2
- 230000007547 defect Effects 0.000 description 13
- 238000005516 engineering process Methods 0.000 description 11
- 229910052751 metal Inorganic materials 0.000 description 9
- 239000002184 metal Substances 0.000 description 9
- 238000012360 testing method Methods 0.000 description 9
- 239000007788 liquid Substances 0.000 description 8
- 238000007711 solidification Methods 0.000 description 8
- 230000008023 solidification Effects 0.000 description 8
- 239000012071 phase Substances 0.000 description 6
- 238000010998 test method Methods 0.000 description 6
- 230000008646 thermal stress Effects 0.000 description 6
- 238000009826 distribution Methods 0.000 description 5
- 230000035876 healing Effects 0.000 description 5
- 238000001513 hot isostatic pressing Methods 0.000 description 5
- 239000000843 powder Substances 0.000 description 5
- 238000004321 preservation Methods 0.000 description 5
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 238000002844 melting Methods 0.000 description 4
- 230000008018 melting Effects 0.000 description 4
- 238000012545 processing Methods 0.000 description 4
- 238000005336 cracking Methods 0.000 description 3
- 239000007791 liquid phase Substances 0.000 description 3
- 229910000601 superalloy Inorganic materials 0.000 description 3
- 229910052786 argon Inorganic materials 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 238000000280 densification Methods 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 238000011065 in-situ storage Methods 0.000 description 2
- 238000010309 melting process Methods 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 230000003647 oxidation Effects 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 230000009471 action Effects 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000005253 cladding Methods 0.000 description 1
- 238000005056 compaction Methods 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 230000005489 elastic deformation Effects 0.000 description 1
- 230000005496 eutectics Effects 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 238000012805 post-processing Methods 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 238000001953 recrystallisation Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 102220042174 rs141655687 Human genes 0.000 description 1
- 102220076495 rs200649587 Human genes 0.000 description 1
- 102220043159 rs587780996 Human genes 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 238000010583 slow cooling Methods 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000002490 spark plasma sintering Methods 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 238000005728 strengthening Methods 0.000 description 1
- 230000035882 stress Effects 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 238000009864 tensile test Methods 0.000 description 1
- 238000004227 thermal cracking Methods 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F3/00—Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
- B22F3/24—After-treatment of workpieces or articles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F3/00—Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
- B22F3/12—Both compacting and sintering
- B22F3/14—Both compacting and sintering simultaneously
- B22F3/15—Hot isostatic pressing
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B33—ADDITIVE MANUFACTURING TECHNOLOGY
- B33Y—ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
- B33Y40/00—Auxiliary operations or equipment, e.g. for material handling
- B33Y40/20—Post-treatment, e.g. curing, coating or polishing
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F3/00—Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
- B22F3/24—After-treatment of workpieces or articles
- B22F2003/248—Thermal after-treatment
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P10/00—Technologies related to metal processing
- Y02P10/25—Process efficiency
Definitions
- the present application belongs to the field of defect elimination, and relates to a method for eliminating cracks in additively manufactured metal materials.
- additive manufacturing technology is a digital manufacturing technology that realizes mold-free forming of components by adding and stacking materials layer by layer. It organically integrates "material preparation/precise forming", and discretely manufactures three-dimensional complex-shaped parts into a layer-by-layer superposition of simple two-dimensional plane shapes. free manufacturing.
- Metal laser additive manufacturing technology integrates the advantages of low cost, short process, high performance, and "shape control/controllability" integration, which can provide a new and effective solution for the preparation of difficult-to-machine metal components by traditional processes. It has very broad application prospects in the fields of high value-added metal components such as aerospace, major weapons and equipment, and automobiles.
- Crack is one of the main failure modes of laser additive manufacturing components, and it is the main factor restricting the application of high-performance metals, especially alloys with high crack sensitivity.
- the forms of cracks generated in the laser additive manufacturing process mainly include solidification cracks and liquefaction cracks.
- the low melting point eutectic phase between the crystals in the heat affected zone is remelted to form a liquid film, which is then torn apart under the action of thermal stress.
- CN110918992A discloses a superalloy additive manufacturing method.
- the cracking tendency in the superalloy additive manufacturing process is eliminated, and the micro-cracks in the workpiece are eliminated; however, through the composition
- the method of adjusting to improve the hot cracking susceptibility of the alloy will change the alloy composition, which will also affect the properties of the alloy, so only some alloy systems are suitable for this method.
- CN206028732U discloses a metal additive manufacturing powder bed preheating device, which adopts microwave to preheat the metal powder bed, solves the problem of limited heating temperature of the existing additive manufacturing equipment, and reduces the forming process by increasing the powder bed preheating temperature The temperature gradient in the alloy, thereby reducing the thermal stress to improve the cracking tendency of the alloy.
- CN208513642U discloses a laser additive manufacturing device with a preheating function and slow cooling function, which can effectively reduce the temperature gradient in the cladding process, reduce thermal stress, and inhibit the generation of crack defects.
- this method will greatly increase the cost of printing equipment, and at the same time, the scope of space for preheating the substrate is limited, and it is mostly suitable for smaller-sized printed parts.
- CN105562694A discloses a three-control hot isostatic pressing method suitable for additive manufacturing parts. According to the materials and defect conditions of different printing parts, the temperature is kept in a high temperature area lower than the alloy solidus temperature for 2-4 hours. A static pressure of 120-200MPa is applied during the process to ensure the shape and dimensional accuracy of the additively manufactured parts, obtain the appropriate phase and structure, and improve the performance of the parts. Hot isostatic pressing technology is an effective measure to eliminate defects such as holes and cracks in metal components. However, this technology has high process cost and cannot heal holes and cracks on the surface of components.
- CN108994304A discloses a method for eliminating cracks in metal material additive manufacturing and improving mechanical properties.
- the method adopts spark plasma sintering technology to heat metal additive manufacturing blocks to 0.8-0.9 times the recrystallization temperature, and simultaneously adopts the method of mechanical supercharging Apply 30-50MPa pressure to achieve print crack healing.
- the principle of this technique is similar to that of hot isostatic pressing, that is, applying pressure in the solid high temperature region of the metal to achieve crack healing.
- this method requires mechanical pressurization of the mold to achieve the compaction of the block, so it can only deal with rules such as blocks or cylinders.
- the ability to manufacture complex-shaped components is the core advantage of additive manufacturing technology.
- the purpose of the present application is to provide a method for eliminating cracks in additively manufactured metal materials, by remelting a small amount of areas near the cracks, backfilling the cracks by means of solid-liquid phase volumetric expansion, and then remelting the cracks by controlling The solidification process completely eliminates the thermal cracking of the original print, while also improving the comprehensive mechanical properties of the component.
- the present application provides a method for eliminating cracks in an additively manufactured metal material.
- the method for eliminating cracks includes the steps of: heating and maintaining a cracked additively manufactured metal material, and then performing isostatic pressing at the temperature for maintaining the temperature. processing and cooling to obtain an additively manufactured metal material with eliminated cracks; the pressure of the isostatic pressing is less than or equal to 10MPa.
- the elimination method provided by this application adopts the method of micro-remelting to form an intercrystalline liquid film, backfills the cracks to form a state where solid-liquid two phases coexist, and then controls the resolidification rate to achieve uniform solidification and shrinkage of the material, and isostatic pressure can be applied during the process. , inhibit the generation of shrinkage cavities, and finally realize the healing of cracks and the densification of components, and at the same time, the comprehensive mechanical properties of components can be improved. This is because whether the liquid film at the end of solidification is torn by thermal stress, or the low melting point phase in the heat-affected zone is torn by thermal stress after secondary melting, the location of the crack is the location of the grain boundary where the molten pool finally solidifies.
- the grain boundaries are remelted in a small amount. Due to the solid-liquid phase transition, the volume of the generated liquid phase expands to backfill the cracks to achieve crack healing. The components shrink evenly to avoid cracks from occurring again. During the secondary solidification process, a certain isostatic pressure is applied to suppress the generation of shrinkage cavities through uniform elastic deformation.
- the pressure of the isostatic pressing is ⁇ 10MPa, for example, it can be 10MPa, 9MPa, 8MPa, 7MPa, 6MPa, 5MPa, 4MPa, 3MPa, 2MPa, 1MPa or 0MPa, etc., but not limited to the listed values, the The same applies to other non-recited values in the range.
- the pressure of the hot isostatic pressing when the pressure of the hot isostatic pressing is 0 MPa, it means that the temperature can be directly lowered after the heat preservation treatment in the process.
- the additively manufactured metal material includes one of nickel-based alloys, cobalt-based alloys, aluminum-based alloys, iron-based alloys, titanium-based alloys, and copper-based alloys.
- the end temperature of the heating is that the temperature of the metal material is 5-60°C above the alloy solidus temperature, for example, it can be 5°C, 10°C, 15°C, 20°C, 25°C °C, 30 °C, 35 °C, 40 °C, 45 °C, 50 °C, 55 °C or 60 °C, etc., but not limited to the listed values, and other unlisted values within the range are also applicable.
- the heating rate is 10-100°C/min, such as 10°C/min, 20°C/min, 30°C/min, 40°C/min, 50°C/min , 60°C/min, 70°C/min, 80°C/min, 90°C/min or 100°C/min, but not limited to the listed values, other unlisted values within this range are also applicable, optional 10- 30°C/min.
- the heat preservation temperature of the heat preservation is the end temperature of the heating.
- the time of the incubation is 5-60min, such as 5min, 10min, 15min, 20min, 25min, 30min, 35min, 40min, 45min, 50min, 55min or 60min, etc., but not limited to the listed values, The same applies to other non-recited values within this range.
- the pressurization rate in the isostatic pressing process is 1-5MPa/min, for example, it can be 1MPa/min, 1.5MPa/min, 2MPa/min, 2.5MPa/min, 3MPa/min min, 3.5MPa/min, 4MPa/min, 4.5MPa/min or 5MPa/min, etc., but not limited to the listed values, other unlisted values within this range are also applicable, and can be 2-3MPa/min.
- the cooling rate of the cooling is 1-10°C/min, such as 1°C/min, 2°C/min, 3°C/min, 4°C/min, 5°C/min , 6°C/min, 7°C/min, 8°C/min, 9°C/min or 10°C/min, etc., but not limited to the listed values, other values not listed in this range are also applicable, and can be selected as 1 -3°C/min.
- the end temperature of the cooling is that the metal material after isostatic pressing is cooled to 20-30°C below the solidus temperature, for example, it can be 20°C, 21°C, 22°C, 23°C °C, 24 °C, 25 °C, 26 °C, 27 °C, 28 °C, 29 °C or 30 °C, etc., but not limited to the listed values, and other unlisted values within the range are also applicable.
- the cooling with the furnace is performed after the cooling reaches the terminal temperature.
- the elimination method includes the following steps: heating and heat preservation of the additively manufactured metal material containing cracks, then isostatic pressing at the heat preservation temperature, and cooling to obtain an increase in crack elimination. material to manufacture metal materials;
- the end temperature of the heating is that the temperature of the metal material is 5-60°C above the solidus temperature of the alloy, and the heating rate is 10-100°C/min;
- the insulation temperature of the insulation is the end point temperature of the heating, and the insulation time is 5-60min;
- the pressure of the isostatic pressing is less than or equal to 10MPa, and the pressurization rate in the isostatic pressing is 1-5MPa/min;
- the cooling rate of the cooling is 1-10°C/min, and the end temperature of the cooling is that the metal material after isostatic pressing is cooled to 20-30°C below the solidus temperature.
- the present application at least has the following beneficial effects:
- the elimination method provided by this application adopts the method of micro-remelting to form an intercrystalline liquid film, and backfills the cracks to form a state of coexistence of solid-liquid two phases.
- the resolidification rate uniform solidification shrinkage of the material is realized.
- Isostatic pressure can inhibit the generation of shrinkage cavities, and finally realize the healing of cracks and the densification of additive manufacturing components, and also improve the comprehensive mechanical properties of additive manufacturing components.
- Figure 1 is a schematic view of the microstructure of the additively manufactured metal material sample used in this application;
- Fig. 2 is the density comparison diagram before and after the sample treatment in Example 1 of the present application;
- Example 3 is a schematic diagram of the distribution of internal defects before and after sample processing in Example 1 of the present application.
- Fig. 4 is the density comparison diagram before and after the sample treatment in Example 2 of the present application.
- Example 5 is a schematic diagram of the distribution of internal defects before and after sample processing in Example 2 of the present application.
- Additive metal materials are obtained by the following methods:
- the IN738LC alloy block was prepared by the selective laser melting process.
- the selective laser melting process parameters laser power 250w, scanning speed 1000mm/s, scanning spacing 90 ⁇ m, layer thickness 30 ⁇ m;
- sample A was tested by the Archimedes density test method, and the relative density of the block was calculated to be 99.15%; the internal defects of sample B were analyzed by x-CT test technology, and the crack volume ratio was measured to be 0.826% ;
- the Archimedes density test method to test the density value of the sample C, the density is calculated to be 99.09%; using the x-CT test technology to analyze the spatial distribution of the internal defects of the sample D, the measured volume ratio of the crack is 0.889% ;
- This embodiment provides a method for eliminating cracks in additively manufactured metal materials, and processes samples A and B;
- the samples A and B into the heat treatment furnace, evacuate the furnace body and pass high-purity argon gas to inhibit the oxidation of the samples.
- the samples are heated to 1285 °C with the furnace, and the heating rate is 10 °C/min, and the temperature is raised to the target temperature.
- the tensile properties of the products before and after treatment were tested, and the sample size and test method followed the ASTM E8 standard.
- the test results show that the untreated IN738LC has a tensile strength of 400MPa and an elongation of 4.5% at 850°C, and after elimination treatment, its tensile strength is 770MPa and an elongation of 6.7%.
- This embodiment provides a method for eliminating cracks in additively manufactured metal materials, and processes samples C and D;
- the samples C and D into the heat treatment furnace, evacuate the furnace body and pass high-purity argon gas to inhibit the oxidation of the samples.
- the samples are heated to 1285 °C with the furnace, and the heating rate is 10 °C/min, and the temperature is kept at the target temperature.
- the furnace body was pressurized by air pressure, the isostatic pressure was 7MPa, and the pressurization rate was 2.5MPa/min. Then keep the pressure constant and cool to 1200°C at a rate of 2°C/min, then cool to room temperature with the furnace, release the pressure, and take out the sample;
- the tensile properties of the products before and after treatment were tested, and the sample size and test method followed the ASTM E8 standard.
- the test results show that the untreated IN738LC has a tensile strength of 400MPa and an elongation of 4.5% at 850°C, and after elimination treatment, its tensile strength is 860MPa and an elongation of 9.8%.
Landscapes
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Mechanical Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Materials Engineering (AREA)
- Powder Metallurgy (AREA)
Abstract
一种增材制造金属材料中裂纹的消除方法,包括如下步骤:将含裂纹的增材制造金属材料进行加热并保温,之后在所述保温温度下进行等静压处理,降温得到裂纹消除的增材制造金属材料。
Description
本申请属于缺陷消除领域,涉及一种增材制造金属材料中裂纹的消除方法。
目前,增材制造技术是一种通过材料逐层添加堆积、实现构件无模成形的数字化制造技术。它将“材料制备/精确成形”有机融为一体、并将三维复杂形状零件制造离散为简单的二维平面形状的逐层叠加,克服传统工艺难以加工或无法加工的局限,可实现真正意义上的自由制造。金属激光增材制造技术集低成本、短流程、高性能、“控形/控性”一体化等优点于一体,可为传统工艺难加工金属构件的制备提供一个全新的、有效的解决思路,在航空航天、重大武器装备、汽车等高附加值金属构件领域具有非常广阔的应用前景。
裂纹是激光增材制造构件主要的失效方式之一,是制约高性能金属,尤其是裂纹敏感性高的合金激光增材制造技术应用的主要因素。激光增材制造过程中产生的裂纹形式主要包括凝固裂纹和液化裂纹,凝固裂纹主要是熔池凝固后期晶间的液膜被热应力拉开所致;而液化裂纹主要是在凝固热作用下,热影响区晶间的低熔点共晶相被重新熔化形成液膜,进而在热应力的作用下被撕开而形成的。基于对打印裂纹的形式和形成机理的分析可知,激光增材制造中裂纹产生有两个必备条件:凝固后期或热影响区低熔点相液化以致在晶界位置上形成连续或半连续的液膜;液膜附近有足够大的拉伸应力。
当前国内外对于打印裂纹的控制方法多集中于在线调控这两个因素。CN110918992A公开了一种高温合金增材制造方法,通过控制合金粉末中C、B 等元素成分比例范围,以消除高温合金增材制造过程中的开裂倾向,消除制件中的微裂纹;然而通过成分调整以改善合金热裂敏感性的方法将改变合金成分,进而也会影响到合金的性能,因此仅部分合金体系适合此种方法。
CN206028732U公开了一种金属增材制造粉末床预热装置,采用微波预热金属粉末床,解决了现有增材制造设备加热温度受限的问题,通过提高粉末床预热温度来减小成形过程中的温度梯度,进而减小热应力以改善合金开裂倾向。
CN208513642U公开了一种具有预热功能和缓冷功能的激光增材制造装置,能够有效降低熔覆过程中的温度梯度,减小热应力,抑制裂纹缺陷产生。然而该方法将极大的增加打印装备的成本,同时预热基板作用的空间范围有限,多适用于较小尺寸的打印件。
前述研究方法均是在打印过程中在线调控合金的凝固行为或通过预热基体材料以减小热应力,进而抑制裂纹的产生。也有研究表明对有微裂纹的打印件进行后处理也可有效消除打印裂纹。CN105562694A公开了一种适用于增材制造零部件的热等静压三控方法,针对不同打印零部件材质及缺陷状况,在低于合金固相线温度的高温区域保温2-4小时,处理过程中施加120-200MPa的静压力,保证增材制造零部件的形状及尺寸精度,获得合适的相及组织,提高零件性能。热等静压技术是消除金属构件内部孔洞、裂纹等缺陷的有效措施,然而该技术工艺成本高,且无法愈合构件表面孔洞及裂纹。
CN108994304A公开了一种消除金属材料增材制造裂纹提高力学性能的方法,该方法采用放电等离子烧结技术将金属增材制造块体加热至0.8-0.9倍再结晶温度,并同时采用机械增压的方法施加30-50MPa压力,实现打印裂纹愈合。该技术原理和热等静压相似,即在金属固态高温区施加压力实现裂纹愈合,然 而该方法需通过对模具进行机械增压实现块体的密实,因此仅可处理块体或柱体等规则的结构,无法处理复杂结构的打印件,而可制造复杂形状构件正是增材制造技术的核心优势。
发明内容
鉴于现有技术中存在的问题,本申请的目的在于提供一种增材制造金属材料中裂纹的消除方法,将裂纹附近区域微量重熔,借助固液相变体积膨胀回填裂纹,然后通过控制再凝固过程完全消除原始打印热裂纹,同时还可以提高构件的综合力学性能。
为达此目的,本申请采用以下技术方案:
本申请提供了一种增材制造金属材料中裂纹的消除方法,所述消除方法包括如下步骤:将含裂纹的增材制造金属材料进行加热并保温,之后在所述保温温度下进行等静压处理,降温得到裂纹消除的增材制造金属材料;所述等静压处理的压力≤10MPa。
本申请提供的消除方法,采用微量重熔的方法形成晶间液膜,将裂纹回填形成固液两相共存的状态,然后控制再凝固速率,实现材料均匀凝固收缩,过程中可施加等静压力,抑制缩孔的产生,最终实现裂纹的愈合及构件致密化,同时还可以提高构件的综合力学性能。这是因为无论是凝固末期的液膜被热应力撕裂,或者是热影响区低熔点相二次熔化后被热应力撕裂,裂纹产生的位置均是熔池最后凝固的晶界位置。通过采用微量重熔的方法,晶界被少量重熔,由于固液相转变,所生成的液相体积膨胀回填裂纹实现裂纹愈合,而后通过控制凝固速率即降温速率调控再次凝固的热应力并实现构件均匀收缩,避免裂纹再次产生。二次凝固过程中施加一定的等静压力,通过均匀弹性变形抑制缩孔 的产生
本申请中,所述等静压处理的压力≤10MPa,例如可以是10MPa、9MPa、8MPa、7MPa、6MPa、5MPa、4MPa、3MPa、2MPa、1MPa或0MPa等,但不限于所列举的数值,该范围内其他未列举的数值同样适用。
本申请中,当热等静压处理的压力为0MPa时,即指该过程中保温处理后直接进行降温即可。
作为本申请可选的技术方案,所述增材制造金属材料包括镍基合金、钴基合金、铝基合金、铁基合金、钛基合金和铜基合金中的1种。
作为本申请可选的技术方案,所述加热的终点温度为所述金属材料温度在合金固相线温度之上5-60℃,例如可以是5℃、10℃、15℃、20℃、25℃、30℃、35℃、40℃、45℃、50℃、55℃或60℃等,但不限于所列举的数值,该范围内其他未列举的数值同样适用。
作为本申请可选的技术方案,所述加热的升温速率为10-100℃/min,例如可以是10℃/min、20℃/min、30℃/min、40℃/min、50℃/min、60℃/min、70℃/min、80℃/min、90℃/min或100℃/min,但不限于所列举的数值,该范围内其他未列举的数值同样适用,可选为10-30℃/min。
作为本申请可选的技术方案,所述保温的保温温度为所述加热的终点温度。
可选地,所述保温的时间为5-60min,例如可以是5min、10min、15min、20min、25min、30min、35min、40min、45min、50min、55min或60min等,但不限于所列举的数值,该范围内其他未列举的数值同样适用。
作为本申请可选的技术方案,所述等静压处理中的增压速率为1-5MPa/min,例如可以是1MPa/min、1.5MPa/min、2MPa/min、2.5MPa/min、3MPa/min、 3.5MPa/min、4MPa/min、4.5MPa/min或5MPa/min等,但不限于所列举的数值,该范围内其他未列举的数值同样适用,可选为2-3MPa/min。
作为本申请可选的技术方案,所述降温的降温速率为1-10℃/min,例如可以是1℃/min、2℃/min、3℃/min、4℃/min、5℃/min、6℃/min、7℃/min、8℃/min、9℃/min或10℃/min等,但不限于所列举的数值,该范围内其他未列举的数值同样适用,可选为1-3℃/min。
作为本申请可选的技术方案,所述降温的终点温度为等静压处理后的金属材料冷却至固相线温度之下20-30℃,例如可以是20℃、21℃、22℃、23℃、24℃、25℃、26℃、27℃、28℃、29℃或30℃等,但不限于所列举的数值,该范围内其他未列举的数值同样适用。
作为本申请可选的技术方案,所述降温达到终点温度后进行随炉冷却。
作为本申请可选的技术方案,所述消除方法包括如下步骤:将含裂纹的增材制造金属材料进行加热并保温,之后在所述保温温度下进行等静压处理,降温得到裂纹消除的增材制造金属材料;
所述加热的终点温度为所述金属材料温度在合金固相线温度之上5-60℃,加热的升温速率为10-100℃/min;
所述保温的保温温度为所述加热的终点温度,保温的时间为5-60min;
所述等静压处理的压力≤10MPa,所述等静压处理中的增压速率为1-5MPa/min;
所述降温的降温速率为1-10℃/min,所述降温的终点温度为等静压处理后的金属材料冷却至固相线温度之下20-30℃。
与现有技术方案相比,本申请至少具有以下有益效果:
(1)本申请提供的消除方法,采用微量重熔的方法形成晶间液膜,将裂纹回填形成固液两相共存的状态,通过控制再凝固速率,实现材料均匀凝固收缩,过程中同时施加等静压力,抑制缩孔的产生,最终实现裂纹的愈合及增材制造构件致密化,同时也提高了增材制造构件的综合力学性能。
(2)经本申请提供的消除方法,带裂纹的增材制造金属材料进行处理后其孔隙率降低至0.0009%以下,处理后的金属材料的抗拉强度和延伸率显著提升。
图1是本申请所用增材制造金属材料样品的微观组织示意图;
图2是本申请实施例1中样品处理前后致密度对比图;
图3是本申请实施例1中样品处理前后内部缺陷分布示意图;
图4是本申请实施例2中样品处理前后致密度对比图;
图5是本申请实施例2中样品处理前后内部缺陷分布示意图。
下面对本申请进一步详细说明。但下述的实例仅仅是本申请的简易例子,并不代表或限制本申请的权利保护范围,本申请的保护范围以权利要求书为准。
为更好地说明本申请,便于理解本申请的技术方案,本申请的典型但非限制性的实施例如下:
增材金属材料通过下述方法得到:
①选取材料IN738LC沉淀强化高温合金的球形粉末,D10=20.5μm,D50=30.8μm,D90=40μm。采用选区激光熔化工艺制备IN738LC合金块体,选区激光熔化工艺参数:激光功率250w,扫描速度1000mm/s,扫描间距90μm, 分层厚度30μm;
②零件成形后,分析打印件微观组织,结果如图1所示,表明在这一工艺下打印缺陷以裂纹的形式存在;
③分别制备试样A(15mm*15mm*15mm立方试块)、试样B(3mm*3mm*3mm立方试块)、C(15mm*15mm*15mm立方试块)和试样D(3mm*3mm*3mm立方试块)各1块;及力学性能测试的拉伸试样;
④采用阿基米德密度测试方法测试试样A的密度值,计算出块体相对致密度为99.15%;采用x-CT测试技术分析试样B内部缺陷,测得其裂纹体积比为0.826%;采用阿基米德密度测试方法测试试样C的密度值,计算出其致密度为99.09%;采用x-CT测试技术分析试样D内部缺陷空间分布,测得其裂纹体积比为0.889%;
实施例1
本实施例提供一种增材制造金属材料中裂纹的消除方法,对样品A和B进行处理;
将试样A、B放入热处理炉中,对炉体抽真空后通入高纯氩气抑制试样氧化,试样随炉升温至1285℃,升温速率为10℃/min,升至目标温度后保温5min,而后以2℃/min的速率进行冷却至1200℃,即此时热等静压处理的压力为0MPa,最后随炉冷却至室温,取出样品;
采用阿基米德密度测试方法测试试样A(处理后)的密度值,此时其致密度提升至99.86%。图2对比了试样A处理前后的致密度。
采用x-CT测试技术分析试样B(处理后)内部缺陷空间测得其孔隙率降低为0.144%。图3原位对比了试样B处理前后的内部缺陷分布。
对处理前后的产品进行拉伸性能测试,试样尺寸及测试方法遵循ASTM E8标准。测试结果表明,未经处理的IN738LC在850℃条件下的抗拉强度为400MPa,延伸率为4.5%,经消除处理后,其抗拉强度为770MPa,延伸率为6.7%。
实施例2
本实施例提供一种增材制造金属材料中裂纹的消除方法,对样品C和D进行处理;
将试样C和D放入热处理炉中,对炉体抽真空后通入高纯氩气抑制试样氧化,试样随炉升温至1285℃,升温速率为10℃/min,于目标温度保温5min后开始通过气压对炉体进行增压,等静压力为7MPa,增压速率为2.5MPa/min。而后保持压力恒定并以2℃/min的速率进行冷却至1200℃,然后随炉冷却至室温,卸压,取出样品;
采用阿基米德密度测试方法测试试样C(处理后)的密度值,此时其致密度提升至99.99%。图4对比了试样C处理前后的致密度。
采用x-CT测试技术分析试样D(处理后)内部缺陷空间测得其孔隙率降低为0.0009%。图5原位对比了试样D处理前后的内部缺陷分布。
对处理前后的产品进行拉伸性能测试,试样尺寸及测试方法遵循ASTM E8标准。测试结果表明,未经处理的IN738LC在850℃条件下的抗拉强度为400MPa,延伸率为4.5%,经消除处理后,其抗拉强度为860MPa,延伸率为9.8%。
通过上述实施例的结果可以知道,本申请中通过采用在合理的温度范围内控制升温速度和降温速度实现了增材制造的金属材料中裂纹的消除,同时通过进一步地热等静压处理可进一步强化裂纹的消除,同时也使得拉伸强度和伸长率进一步提升。
申请人声明,本申请通过上述实施例来说明本申请的详细结构特征,但本申请并不局限于上述详细结构特征,即不意味着本申请必须依赖上述详细结构特征才能实施。所属技术领域的技术人员应该明了,对本申请的任何改进,对本申请所选用部件的等效替换以及辅助部件的增加、具体方式的选择等,均落在本申请的保护范围和公开范围之内。
以上详细描述了本申请的可选实施方式,但是,本申请并不限于上述实施方式中的具体细节,在本申请的技术构思范围内,可以对本申请的技术方案进行多种简单变型,这些简单变型均属于本申请的保护范围。
另外需要说明的是,在上述具体实施方式中所描述的各个具体技术特征,在不矛盾的情况下,可以通过任何合适的方式进行组合,为了避免不必要的重复,本申请对各种可能的组合方式不再另行说明。
Claims (11)
- 一种增材制造金属材料中裂纹的消除方法,其包括如下步骤:将含裂纹的增材制造金属材料进行加热并保温,之后在所述保温温度下进行等静压处理,降温得到裂纹消除的增材制造金属材料;所述等静压处理的压力≤10MPa。
- 如权利要求1所述的消除方法,其中,所述加热的终点温度为所述金属材料温度在合金固相线温度之上5-60℃。
- 如权利要求1或2所述的消除方法,其中,所述降温的降温速率为1-10℃/min。
- 如权利要求3所述的消除方法,其中,所述降温的降温速率为1-3℃/min。
- 如权利要求1-4任一项所述的消除方法,其中,所述增材制造金属材料包括镍基合金、钴基合金、铝基合金、铁基合金、钛基合金和铜基合金中的1种。
- 如权利要求1-5任一项所述的消除方法,其中,所述加热的升温速率为10-100℃/min,可选为10-30℃/min。
- 如权利要求1-6任一项所述的消除方法,其中,所述保温的保温温度为所述加热的终点温度;可选地,所述保温的时间为5-60min。
- 如权利要求1-7任一项所述的消除方法,其中,所述等静压处理中的增压速率为1-5MPa/min,可选为2-3MPa/min。
- 如权利要求1-8任一项所述的消除方法,其中,所述降温的终点温度为等静压处理后的金属材料冷却至固相线温度之下20-30℃。
- 如权利要求1-9任一项所述的消除方法,其中,所述降温达到终点温度后进行随炉冷却。
- 如权利要求1-10任一项所述的消除方法,其中,所述消除方法包括如下步骤:将含裂纹的增材制造金属材料进行加热并保温,之后在所述保温温度下进行等静压处理,降温得到裂纹消除的增材制造金属材料;所述加热的终点温度为所述金属材料温度在合金固相线温度之上5-60℃,加热的升温速率为10-100℃/min;所述保温的保温温度为所述加热的终点温度,保温的时间为5-60min;所述等静压处理的压力≤10MPa,所述等静压处理中的增压速率为1-5MPa/min;所述降温的降温速率为1-10℃/min,所述降温的终点温度为等静压处理后的金属材料冷却至固相线温度之下20-30℃。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202011613587.5A CN112846233B (zh) | 2020-12-30 | 2020-12-30 | 一种增材制造金属材料中裂纹的消除方法 |
CN202011613587.5 | 2020-12-30 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022142249A1 true WO2022142249A1 (zh) | 2022-07-07 |
Family
ID=75998646
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2021/104751 WO2022142249A1 (zh) | 2020-12-30 | 2021-07-06 | 一种增材制造金属材料中裂纹的消除方法 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN112846233B (zh) |
WO (1) | WO2022142249A1 (zh) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112846233B (zh) * | 2020-12-30 | 2023-06-09 | 南方科技大学 | 一种增材制造金属材料中裂纹的消除方法 |
CN113733554A (zh) * | 2021-08-23 | 2021-12-03 | 华中科技大学 | 一种微波与红外辐射复合成形高分子零件的方法与装置 |
CN114734055B (zh) * | 2022-01-20 | 2023-07-11 | 航发优材(镇江)增材制造有限公司 | 一种发动机扩压器凸台结构激光金属沉积制备方法 |
CN117286440A (zh) * | 2023-09-19 | 2023-12-26 | 广东省科学院新材料研究所 | 一种增材制造镍钛合金的热处理方法及其应用 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2014051830A1 (en) * | 2012-09-28 | 2014-04-03 | United Technologies Corporation | Repair of casting defects |
CN105562694A (zh) * | 2015-12-31 | 2016-05-11 | 中国钢研科技集团有限公司 | 一种适用于增材制造零部件的热等静压三控方法 |
CN106956079A (zh) * | 2017-04-17 | 2017-07-18 | 江苏大学 | 一种激光微熔凝弥合金属表面微裂纹的方法 |
CN107971491A (zh) * | 2017-11-28 | 2018-05-01 | 北京航空航天大学 | 一种消除电子束选区熔化增材制造镍基高温合金零部件微裂纹的方法 |
CN108070709A (zh) * | 2016-11-18 | 2018-05-25 | 诺沃皮尼奥内技术股份有限公司 | 通过混合热等静压(hip)过程来修复涡轮机的热部件上的缺陷的方法 |
EP3575018A1 (en) * | 2018-05-30 | 2019-12-04 | Rolls-Royce plc | Crack reduction for additive layer manufacturing |
CN112846233A (zh) * | 2020-12-30 | 2021-05-28 | 南方科技大学 | 一种增材制造金属材料中裂纹的消除方法 |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000190064A (ja) * | 1998-12-22 | 2000-07-11 | Daido Steel Co Ltd | 鋳塊の改質方法 |
US10056541B2 (en) * | 2014-04-30 | 2018-08-21 | Apple Inc. | Metallic glass meshes, actuators, sensors, and methods for constructing the same |
CN109550957B (zh) * | 2019-01-11 | 2020-01-21 | 中南大学 | 一种用3d打印制备粉末冶金拉伸共晶高熵合金的方法 |
-
2020
- 2020-12-30 CN CN202011613587.5A patent/CN112846233B/zh active Active
-
2021
- 2021-07-06 WO PCT/CN2021/104751 patent/WO2022142249A1/zh active Application Filing
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2014051830A1 (en) * | 2012-09-28 | 2014-04-03 | United Technologies Corporation | Repair of casting defects |
CN105562694A (zh) * | 2015-12-31 | 2016-05-11 | 中国钢研科技集团有限公司 | 一种适用于增材制造零部件的热等静压三控方法 |
CN108070709A (zh) * | 2016-11-18 | 2018-05-25 | 诺沃皮尼奥内技术股份有限公司 | 通过混合热等静压(hip)过程来修复涡轮机的热部件上的缺陷的方法 |
CN106956079A (zh) * | 2017-04-17 | 2017-07-18 | 江苏大学 | 一种激光微熔凝弥合金属表面微裂纹的方法 |
CN107971491A (zh) * | 2017-11-28 | 2018-05-01 | 北京航空航天大学 | 一种消除电子束选区熔化增材制造镍基高温合金零部件微裂纹的方法 |
EP3575018A1 (en) * | 2018-05-30 | 2019-12-04 | Rolls-Royce plc | Crack reduction for additive layer manufacturing |
CN112846233A (zh) * | 2020-12-30 | 2021-05-28 | 南方科技大学 | 一种增材制造金属材料中裂纹的消除方法 |
Also Published As
Publication number | Publication date |
---|---|
CN112846233B (zh) | 2023-06-09 |
CN112846233A (zh) | 2021-05-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2022142249A1 (zh) | 一种增材制造金属材料中裂纹的消除方法 | |
Ren et al. | Preparation and mechanical properties of selective laser melted H13 steel | |
Liu et al. | A study on the residual stress during selective laser melting (SLM) of metallic powder | |
CN105562694B (zh) | 一种适用于增材制造零部件的热等静压三控方法 | |
CN110666175B (zh) | 一种镍基高温合金粉末的热等静压成型方法 | |
CN113996812B (zh) | 一种提高激光选区熔化α-β型钛合金疲劳性能的热处理方法 | |
CN112008079A (zh) | 一种原位热处理提高3d打印镍基高温合金力学性能的方法 | |
CN104498748A (zh) | 一种高性能粉末冶金高铌TiAl系金属间化合物的制备方法 | |
CN110355363A (zh) | 一种氧化铝铬锆铜复合材料的制备方法 | |
CN115740494A (zh) | 一种TiAl合金叶片及其制造方法 | |
Hu et al. | Achieving high-performance pure tungsten by additive manufacturing: Processing, microstructural evolution and mechanical properties | |
CN103469135B (zh) | 一种高铌TiAl系金属间化合物的制备方法 | |
CN113414406B (zh) | 提高激光选区熔化增材制造镁/镁合金零件致密度的方法 | |
CN113953517B (zh) | 一种高致密硬质合金块材的3d打印制备方法 | |
WO2022160457A1 (zh) | 一种铝、镁铸态合金的热处理强化工艺及其应用 | |
Wang et al. | Application research progress of hot isostatic pressing technology in nickel-based single crystal superalloy | |
Shi et al. | Pure Tungsten Fabricated by Laser Powder Bed Fusion with Subsequent Hot Isostatic Pressing: Microstructural Evolution, Mechanical Properties, and Thermal Conductivity | |
CN114799216B (zh) | 钛合金的热处理方法 | |
CN108165780B (zh) | 一种Ni-Cr-Al-Fe系高温合金的制备方法 | |
CN114273676B (zh) | 一种难熔钨钽合金复杂结构件及其增材制造成形方法 | |
CN113649571B (zh) | 一种高硬度粉末高熵合金的制备方法 | |
CN114737083A (zh) | 一种用于激光增材制造的gh3536原料粉末及其制备方法及其合金的制备方法 | |
CN115488342A (zh) | 异种金属整体叶盘增等材短流程制备方法 | |
CN114855030A (zh) | 适应选区激光熔化成形的Ni-Cr-W基高温合金及制备方法 | |
CN113953529B (zh) | 一种高强高塑增材制造铝硅合金制件的制备方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21913002 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 21913002 Country of ref document: EP Kind code of ref document: A1 |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 21913002 Country of ref document: EP Kind code of ref document: A1 |