WO2022138645A1 - Ni-based alloy and heat treatment furnace component formed of same - Google Patents

Ni-based alloy and heat treatment furnace component formed of same Download PDF

Info

Publication number
WO2022138645A1
WO2022138645A1 PCT/JP2021/047332 JP2021047332W WO2022138645A1 WO 2022138645 A1 WO2022138645 A1 WO 2022138645A1 JP 2021047332 W JP2021047332 W JP 2021047332W WO 2022138645 A1 WO2022138645 A1 WO 2022138645A1
Authority
WO
WIPO (PCT)
Prior art keywords
phase
based alloy
weldability
corrosion resistance
heat treatment
Prior art date
Application number
PCT/JP2021/047332
Other languages
French (fr)
Japanese (ja)
Inventor
嘉之 小川
彩乃 上辻
壮一 浅野
暢平 遠城
国秀 橋本
Original Assignee
株式会社クボタ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社クボタ filed Critical 株式会社クボタ
Publication of WO2022138645A1 publication Critical patent/WO2022138645A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/02Making non-ferrous alloys by melting
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel

Definitions

  • the present invention relates to a Ni-based alloy having excellent alkali corrosion resistance and weldability, and a heat treatment furnace component made of the Ni-based alloy.
  • Patent Document 1 contains Al: 2.0 to 5.0% by weight, Cr: 0.8% to 4.0%, and other Si, Mn, B, and Zr. Ni-based alloys with the balance Ni and unavoidable impurities have been proposed.
  • the positive electrode material of these batteries is manufactured by using a firing furnace such as a roller herskilln or a rotary kiln. Since the positive electrode material is a strongly alkaline material, excellent alkali corrosion resistance is required for heat treatment furnace parts such as retorts that are used in firing furnaces and come into direct contact with the positive electrode material.
  • heat treatment furnace parts require excellent weldability because the members need to be joined or repaired.
  • An object of the present invention is to provide a Ni-based alloy having excellent alkali corrosion resistance and weldability, and a component for a heat treatment furnace made of the nickel-based alloy.
  • the Ni-based alloy of the present invention which has excellent alkali corrosion resistance and weldability, is By mass% Al: 8.0% to 16.0%, Zr: 0.01% or more, B: 0.001% or more and The balance consists of Ni and unavoidable impurities. Al: Except for more than 12.0% and less than 13.5% The total amount of Zr and B is 3.0% or less.
  • Zr 0.68% or more and 2.999% or less
  • B 0.001% or more and 0.033% or less.
  • the Al content is preferably 9.5% to 11.5% in terms of mass%.
  • At least one of the Ni 3 Al phase and the Ni phase, the NiAl phase, or the NiZr compound phase is precipitated on the surface.
  • the area ratio of the precipitated Ni 3 Al phase, Ni phase, NiAl phase, and NiZr compound phase is 0.2 ⁇ (Ni phase + NiAl phase + NiZr compound phase) / Ni 3 Al phase ⁇ 2.0 can be set.
  • the Ni-based alloy can be configured so as not to contain Cr.
  • the parts for the heat treatment furnace of the present invention are A part for a heat treatment furnace used in the manufacture of electrode materials. It is made of the above-mentioned Ni-based alloy.
  • the parts for the heat treatment furnace of the present invention are A part for a heat treatment furnace used in the manufacture of electrode materials.
  • the pipes made of the Ni-based alloy described above are welded and connected to each other.
  • the Ni-based alloy of the present invention has excellent alkali corrosion resistance and weldability. Further, since it does not contain a material that chemically reacts with a positive electrode material such as a lithium ion battery or a solid-state battery, it is suitable as a part for a heat treatment furnace such as a retort used for manufacturing a positive electrode material as an electrode material.
  • a heat treatment furnace such as a retort used for manufacturing a positive electrode material as an electrode material.
  • FIG. 1 is an explanatory diagram showing a criterion for a bead placement test.
  • FIG. 2A is a post-PT photograph of Invention Example 2
  • FIG. 2B shows Invention Example 3
  • FIG. 2C shows Comparative Example 6.
  • the present invention provides a Ni-based alloy having excellent alkali corrosion resistance and weldability, and parts for a heat treatment furnace such as a retort made of the Ni-based alloy.
  • the inventors can adjust the content of the Ni phase and the intermetallic compound, the Ni 3 Al phase and the Ni Al phase, and the precipitation amount of the NiAl phase. It is possible to adjust a NiZr compound (Ni 5 Zr, Ni 7 Zr 2 , etc.) which is an intermetallic compound of Zr and Ni, and obtain a Ni-based alloy having alkali corrosion resistance and weldability. I found it.
  • Ni 3 Al phases there are the better the alkali corrosion resistance, but the lower the weldability.
  • the amount of Ni phase or NiAl phase is large, the alkali corrosion resistance is lowered, but the weldability is improved. Therefore, in the presence of Zr and B, by setting the Al content within a predetermined range, the precipitation amounts of the Ni phase, Ni 3 Al phase, NiAl phase, and NiZr compound phase are adjusted to provide alkali corrosion resistance.
  • Zr and B by setting the Al content within a predetermined range, the precipitation amounts of the Ni phase, Ni 3 Al phase, NiAl phase, and NiZr compound phase are adjusted to provide alkali corrosion resistance.
  • the area ratio of the Ni 3 Al phase, Ni phase, NiAl phase, and NiZr compound phase precipitated on the surface of the Ni-based alloy is 0.2 ⁇ .
  • (Ni phase + NiAl phase + NiZr compound phase) / Ni 3 Al phase ⁇ 2.0 can provide alkali corrosion resistance and weldability.
  • the upper limit of the (Ni phase + NiAl phase + NiZr compound phase) / Ni 3 Al phase is less than 1.5, and the lower limit is 0.23 or more.
  • the Ni-based alloy of the present invention can be used in the production of various structural members, for example, as a cast alloy, depending on the desired product form, and is particularly suitable for applications requiring alkali corrosion resistance and weldability. .. Further, the Ni-based alloy of the present invention has little change in characteristics even in a high oxygen atmosphere of 800 to 1000 ° C. and a high alkaline corrosion environment, and the reaction with the materials used can be suppressed. It is suitable for parts for heat treatment furnaces such as materials, particularly parts for heat treatment furnaces such as retorts that come into contact with positive electrode materials such as lithium ion batteries and solid batteries. Since the Ni-based alloy of the present invention has excellent weldability, when applied to heat treatment furnace parts, members (for example, the form of a pipe body) can be joined or repaired by welding.
  • members for example, the form of a pipe body
  • the Ni-based alloy of the present invention and parts for heat treatment furnaces made of this can be manufactured by casting methods such as centrifugal casting and static sand casting, and various manufacturing methods such as overlaying and thermal spraying. Further, the present invention is not limited to this example, and can be applied to various heat-resistant and corrosion-resistant parts and aluminum molten metal parts used in firing devices (for example, firing trays, firing rollers) to which ceramic has been applied. Note that these examples do not limit the application of the Ni-based alloy of the present invention.
  • the Ni-based alloy of the present invention and parts for a heat treatment furnace made of the same are preferably produced by a casting method such as centrifugal casting or static casting.
  • a casting method such as centrifugal casting or static casting.
  • the cooling rate is a measurement of the temperature of the surface of the molten metal.
  • the temperature of the molten metal surface can be measured using a radiation thermometer.
  • the radiation thermometer can measure the surface temperature of the part used as a product that is slightly inside from the band on the side opposite to the molten metal injection side. In the case of static casting, the thermocouple may be inserted into the molten metal for measurement. It should be understood that these measurement methods are examples.
  • the cooling rate can be calculated by (casting temperature ⁇ 1000 ° C.) / (time from the start of casting to 1000 ° C.: minutes). The cooling rate up to 1000 ° C is because the impurity unavoidable elements contained in the Ni-based alloy solidify at around 1000 ° C, and by defining the temperature drop up to this point, compounds that adversely affect weldability are pressed. It can be moved to the hot water part or the part to be cut.
  • the cooling rate is 30 ° C./min or more.
  • the cooling rate from the casting temperature at the time of casting to 1000 ° C. is 35 ° C./min or more, and most preferably 40 ° C./min.
  • the main structure of the Ni-based alloy of the present invention is Ni 3 Al, and when the cooling rate is slower than the above, the Ni 3 Al phase becomes bloated and becomes larger than other structures. As a result, the phase ratio of the above-mentioned (Ni phase + NiAl phase + NiZr compound phase) / Ni 3 Al phase becomes small, and the weldability deteriorates.
  • the cooling rate be within the above range.
  • the Ni-based alloy of the present invention contains the following composition. Unless otherwise specified, "%" is mass%.
  • Al 8.0% to 16.0%, except for more than 12.0% and less than 13.5% Al is the precipitation of the Ni phase contained in the Ni-based alloy, and Ni 3 which is an intermetallic compound. Contributes to the precipitation of Al phase and NiAl phase.
  • Ni 3 Al phase in order to improve the alkali corrosion resistance, it is necessary to precipitate a large amount of Ni 3 Al phase, and Al is contained in a range of at least 8.0% or more and 16.0% or less. Desirably, Al is 9.0% or more.
  • the weldability is deteriorated. In order to prevent this deterioration of weldability, it is necessary to deposit the Ni phase or the NiAl phase in the Ni-based alloy.
  • the Al content is set to 12.0% or less, more preferably 11.5% or less, in order to precipitate a Ni phase having weldability while ensuring alkali corrosion resistance. Further, the Al content is set to 13.5% or more in order to precipitate a NiAl phase having weldability while ensuring alkali corrosion resistance. That is, in order to preferably precipitate the Ni phase, Ni 3 Al phase, and Ni Al phase from the viewpoint of alkali corrosion resistance and weldability, the Al content is 8.0% or more and 16.0% or less, however. The range excludes more than 12.0% and less than 13.5%.
  • the lower limit of Al is preferably 9.0%, more preferably 9.5%.
  • the upper limit of Al is preferably 15.6%, preferably 15.0%, and more preferably 14.5%.
  • the lower limit of the range excluding Al is preferably 12.0%, preferably 11.4%, and more preferably 11.0%.
  • the upper limit of the range excluding Al is preferably 13.8%, preferably 14.0%, and more preferably 14.2%.
  • Al also has the effect of improving the oxidation resistance by forming an oxide film on the surface of the material.
  • Ni Remaining Ni is a basic element of Ni-based alloys having high high-temperature ductility. Ni combines with Al to form the intermetallic compound Ni 3Al , which contributes to the improvement of alkali corrosion resistance at high temperatures. Further, the Ni phase and the NiAl phase contribute to the improvement of weldability.
  • Zr 0.01% or more Zr contains 0.01% or more in order to improve the weld crack sensitivity of the Ni-based alloy. Since Zr is distributed at the grain boundaries of the Ni-based alloy, it is possible to reduce the crack sensitivity at the grain boundaries. Further, Zr enhances alkali corrosion resistance and improves high temperature strength and ductility by the combined addition with Ni. On the other hand, even if the content of Zr is excessively increased, the effect of improving the welding crack sensitivity is saturated, so that the upper limit is 3.0% or less in total with B described below.
  • the upper limit of Zr is preferably 2.0% or less.
  • the lower limit of Zr is 0.68%, 0.8%, 1.0%, 1.2%, 1.5%, and the upper limit is 2.5%, 2.2%, 2.13%, 2.0%. Is preferable. Desirably, the upper limit of Zr is 1.8%.
  • B 0.001% or more B is distributed at the grain boundaries and is selectively contained in order to improve ductility and creep rupture strength at high temperature. Since these effects can be obtained even with a small amount of B, 0.001% or more is contained.
  • the content of B is 3.0% or less, preferably 2.0% or less in the total amount of Zr.
  • the content of B is more preferably 0.003% or more, preferably 0.01% or more.
  • the upper limit of B is preferably 0.1%, preferably 0.025%, more preferably 0.02%, and most preferably 0.033%.
  • Ni-based alloy of the present invention is used for a heat treatment furnace component such as a retort that comes into contact with a positive electrode material as an electrode material, addition of Cr that chemically reacts with the positive electrode material is not allowed. That is, it is desirable that the Ni-based alloy of the present invention has a structure containing no Cr.
  • Heat-resistant / corrosion-resistant parts and parts for heat treatment furnaces can be manufactured by static casting or the like by blending component elements so as to have the above composition range.
  • various manufacturing methods such as casting methods such as centrifugal casting and static casting, overlaying, and thermal spraying can be adopted.
  • the casting method it is desirable to adjust the cooling rate of the Ni-based alloy as described above by using centrifugal casting of the mold or static casting of the mold.
  • a Ni-based alloy test piece having the alloy composition shown in Table 1 was prepared by the following manufacturing method.
  • Example 1 the precipitation phase of a Ni-based intermetallic compound or the like was identified, and the phase ratio was calculated. Further, in Example 2, the manufacturability, weldability test and alkali corrosion resistance test were carried out for each test piece.
  • the test examples are Invention Examples 1 to 20 and Comparative Examples 1 to 8, and each component is shown in Table 1.
  • Invention Examples 1 to 20 are Ni-based alloys included in the scope of the present invention.
  • Comparative Example 1 shows Al outside the range of the present invention (Al: 8.0% or more), and Comparative Examples 2 to 4 show that the total amount of Zr + B exceeds the range of the present invention (Zr + B: 3.0% or less).
  • Al is out of the range of the present invention (Al: more than 12.0% to less than 13.5%), and in Comparative Example 8, Al is in the range of the present invention (Al: 16.0%). Below).
  • each component is indicated by “mass%”, and unavoidable impurities other than the components described in “Other components” are omitted.
  • Ni-based intermetallic compounds Ni 3 Al phase, Ni Al phase, Ni 5 Zr, Ni 7 Zr 2 and other Ni Zr compound phases deposited on the surface of the test piece and the precipitated phase of the Ni phase were identified.
  • Ni phase means the entire Ni phase matrix in which compounds such as Ni 3 Al phase, Ni Al phase, and Ni Zr compound phase are not precipitated. Impurities that do not inhibit the formation of the structure may be dissolved in each phase, including the Ni phase.
  • the specific identification method is as follows. First, a micro image of a predetermined region of the alloy structure is taken, and the contrast of the taken micro image is adjusted. As a result, the Ni 3 Al phase is white, the defective phase is black, and the Ni phase, NiAl phase, and NiZr compound phase are visually recognized as intermediate colors. Therefore, binarization is performed so that only the defective phase becomes black, the area and area ratio of the black portion are measured, and " ⁇ : area ratio of the defective phase" is identified.
  • the contrast of the micro image is adjusted again, and the binarization process is performed so that the areas other than the Ni 3 Al phase are black. Then, by measuring the area and the area ratio of the black portion, " ⁇ : Ni phase + NiAl phase + NiZr compound phase + area ratio of the defective phase", that is, the area ratio other than the Ni 3 Al phase is identified.
  • a reflected electron composition image (COMPO image: gray scale) in the same region is photographed.
  • COMPO image the heavy tissue is photographed whitish, and the light tissue is photographed blackish. Therefore, the obtained COMPO image is binarized. Since Zr has a larger atomic weight than Ni and Al, the NiZr compound phase is observed to be whitish. Therefore, the COMPO image is binarized and the area and area ratio of the white portion are measured to identify the " ⁇ : NiZr compound phase area ratio".
  • the ratio of the total amount of the Ni phase, the NiAl phase, and the NiZr compound phase to the Ni 3 Al phase was calculated. The results are shown in Table 2.
  • Table 2 the area ratio of each phase is shown in “Ni phase”, “Ni 3 Al phase”, “NiAl phase”, and “NiZr compound phase”, and the unit is area%.
  • the ratio of the total amount of the Ni phase, the NiAl phase, and the NiZr compound phase to the Ni 3 Al phase is shown in "(Ni + NiAl + NiZr compound) / Ni 3 Al".
  • invention examples 1 to 5, 7, 9 to 11, 15, 17 to 220 are 0.2 ⁇ (Ni phase + NiAl phase + NiZr) / Ni 3 Al phase ⁇ 2.0. rice field.
  • Ni phase 41.0 area%
  • NiAl phase 0.0 area%
  • NiZr compound phase 3.7 area%
  • Ni 3 Al phase 55.0 area%
  • Defect phase (remaining) 0.3 area%.
  • the comparative examples other than Comparative Example 8 the (Ni phase + NiAl phase + NiZr compound phase) / Ni 3 Al phase was 0.2 or less or 2.0 or more.
  • the castability score is set to "5".
  • “Castability (score)” in Table 3 only Comparative Example 8 has a castability score of "5", and the other invention examples and comparative examples all have a castability score of "1" or "2". There was no problem with casting quality. The reason why the castability of Comparative Example 8 is poor is that Al is excessive.
  • Manufacturability evaluation was evaluated from the above-mentioned points of castability and workability.
  • the points of castability and workability are added, and the one whose sum is “2" is evaluated as “ ⁇ (excellent)", “3” or “4" is evaluated as “ ⁇ (good)”.
  • the sum of "5" or more was evaluated as “x (bad)”.
  • the results are shown in “Evaluation” of "Manufacturability” in Table 3.
  • Weldability was determined by a bead placement test.
  • the bead placement test was carried out by machining the test surface of the test piece with a grinder, forming a bead by TIG welding using a welding rod of Ni 90.0% or more, and observing the surface condition thereof.
  • the bead is a straight bead, and the bead length is 50 to 100 mm.
  • Preheating and presence / absence of preheating> In the bead placement test, welding is possible without preheating and preheating, but preheating and preheating show better weldability.
  • Table 3 shows the preheating temperature and the presence or absence of prognosis heat.
  • the preheating temperature "30 ° C.” is no preheating (room temperature), and those having a preheating temperature exceeding 30 ° C. are preheated.
  • the prognosis heat was applied after the bead formation.
  • ⁇ Welding: Welding test> A penetrant inspection (PT: liquid Penetrant Testing) was conducted on each test piece on which a bead was formed. Then, the welding test results were obtained and scored according to the presence or absence of the penetrant (instruction) exuding from the bead and the heat-affected zone, and the position thereof. Specifically, as shown in FIG. 1A, the weldability score was set to "1" for the beads 10 and those having no punctate defects or cracks in the portions other than the beads 10. Further, as shown in FIG.
  • FIG. 2A is a post-PT photograph of Invention Example 2
  • FIG. 2B is a post-PT photograph of Invention Example 3
  • FIG. 2C is a post-PT photograph of Comparative Example 6.
  • the weldability score is "1”
  • the invention example 3 is partially in the crater 11 portion on the left end and the right side of the bead 10.
  • the seepage liquid (instruction) 20 which is a punctate defect 12 is observed, no other punctate defect or crack instruction is observed, so the weldability score was “2”.
  • the weldability of the invention example and the comparative example was determined based on "presence or absence of preheating and prognosis heat” and "weldability score".
  • the weldability is " ⁇ (excellent)", “preheat, with prognosis heat”, but the weldability score is "1” or "2". If there is, it is “ ⁇ (good)”, and if the weldability score is "5" regardless of the presence or absence of preheating and prognosis heat, it is rated as “x (bad)”.
  • the results are shown in “Evaluation” of Table 3 "Welding".
  • the evaluation of weldability was “ ⁇ (excellent)” or “ ⁇ (good)”.
  • the invention examples 2, 4 and 5 exhibited excellent weldability even with “ ⁇ (excellent)”, that is, “preheating, no prognostic heat”.
  • the weldability score was "1" or "2”, so that the weldability was " ⁇ (good)” in both cases.
  • the weldability referring to Table 1, it can be seen that the larger the precipitation amount of the Ni phase or the precipitation amount of the NiAl phase, the better.
  • Invention Examples 13 and 14 it can be seen that the Ni 3 Al phase and the Ni Al phase are precipitated, and the Ni phase is not precipitated. That is, Invention Example 2 in which Al is 12.0% or less is in the composition range in which a large amount of Ni phase is deposited, and the weldability is improved by suppressing the Ni 3 Al phase and precipitating a large amount of Ni phase.
  • Invention Examples 12 and 13 although the NiAl phase having excellent weldability is precipitated, the weldability is slightly inferior to that of Invention Example 2 because more Ni 3 Al phases are precipitated (Ni phase + NiAl phase + NiZr). Compound phase) / Ni 3 Al phase is also considered to be 0.2 or less.
  • Invention Example 2 and Invention Examples 13 and 14 are substantially the same, at least the Al content is different, so that the phase to be precipitated is different, and Invention Example 2 is weldable. It has excellent characteristics and satisfies the formula: 0.2 ⁇ (Ni phase + NiAl phase + NiZr compound phase) / Ni 3 Al phase ⁇ 2.0, but Invention Examples 13 and 14 have slightly weldability as compared with Invention Example 2. As a result, the same formula was not satisfied.
  • Comparative Examples 1 and 2 were " ⁇ (excellent)".
  • the weldability of Comparative Example 1 was “ ⁇ (excellent)” because a large amount of Ni phase having a low Al content and excellent weldability was precipitated (see also Table 1 for the phase below).
  • Comparative Example 2 and Comparative Example 3 differ in whether the method for manufacturing the test piece is die centrifugal or sand mold static casting, but Comparative Example 3 has a weldability score of "5" and is welded. The sex was "x (bad)”.
  • the reason why the Ni-based alloy of Comparative Example 2 is excellent in weldability is that the cooling rate is as fast as 100.0 ° C./min due to the centrifuge of the mold, the precipitation of the Ni 3 Al phase can be suppressed, and the Ni 3 Al phase is excellent in weldability. This is because many phases were deposited.
  • the weldability of Comparative Example 8 was " ⁇ (good)". This is because, as a result of the Al content exceeding 16.0%, a large amount of NiAl phase having excellent weldability was precipitated. In Comparative Examples 2 to 7, the score of the welding test result was "5" and the weldability was "x (bad)".
  • the alkali corrosion resistance test was carried out as follows. First, two plate-shaped observation test pieces having a length of 10 mm, a width of 40 mm, and a thickness of 10 mm were prepared from each test piece, and the test surface was polished with # 40 abrasive paper. Then, each test piece on which the alkaline corrosion test powder such as an alkali metal salt mainly composed of a lithium compound was placed on the test surface was fired at 900 ° C. for 5 hours under an oxygen atmosphere of 90% or more. A new alkaline corrosive powder was placed on the test surface each time, and this firing was repeated 10 times.
  • the alkaline corrosion test powder such as an alkali metal salt mainly composed of a lithium compound
  • each observation test piece was cut, the cut surface was mirror-polished, and the cut surface was etched by electrolysis in an oxalic acid bath.
  • the etched cut surface was degreased with ethanol and dried.
  • the cut surface is observed with a digital microscope (manufactured by Keyence Co., Ltd.), and the total of the thinning amount and the grain boundary insertion corrosion length is measured as the corrosion depth as the alkaline corrosion trace extending from the test surface in the thickness direction. , Scored. When the corrosion depth was less than 1.0 mm, the score was "1". When the corrosion depth was 1.0 mm or more and less than 1.5 mm, the score was "2".
  • the alkaline corrosion test score is "5". ".
  • corrosion depth (mm) it is shown by “score” in the column of "alkali corrosion resistance” in Table 3. The numerical value of this test is an example, and the numerical value (mm) of the corrosion depth varies depending on the difference in firing conditions, the type of powder for the alkaline corrosion test, and the like, but the same tendency can be obtained.
  • Alkaline corrosion resistance was evaluated based on the obtained corrosion depth and scores. In the evaluation, those with a score of "1" were evaluated as “ ⁇ (excellent)”, those with a score of "2” were evaluated as “ ⁇ (good)”, and those with a score of "5" were evaluated as “ ⁇ (bad)”.
  • Comparative Example 4 Al is included in the range of the present invention, but as a result of the amount of Zr being larger than the range of the present invention, the Ni 7 Zr 2 phase, which is a NiZr compound, is excessively precipitated, which adversely affects the alkali corrosion resistance. Therefore, the alkali corrosion resistance was lowered.
  • Ni-based alloy having the composition specified in the present invention is excellent in both weldability and alkali corrosion resistance.
  • the Ni-based alloy having the composition specified in the present invention or having a phase ratio with the composition is excellent in manufacturability, weldability and alkali corrosion resistance.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Sealing Battery Cases Or Jackets (AREA)

Abstract

The present invention provides: a nickel-based alloy which has excellent alkali corrosion resistance and excellent weldability; and a heat treatment furnace component which is formed of this Ni-based alloy. This Ni-based alloy, which has excellent alkali corrosion resistance and excellent weldability, contains from 8.0% by mass to 16.0% by mass of Al, 0.01% by mass or more of Zr and 0.001% by mass or more of B, with the balance being made up of Ni and unavoidable impurities, while excluding the cases where Al is more than 12.0% by mass but less than 13.5% by mass. Meanwhile, the total amount of Zr and B is 3.0% by mass or less. With respect to this Ni-based alloy, at least an Ni3Al phase and one of an Ni phase, an NiAl phase and an NiZr compound phase are precipitated in the surface; and the area ratios of the precipitated Ni3Al phase, Ni phase, NiAl phase and NiZr compound phase satisfy 0.2 < (Ni phase + NiAl phase + NiZr compound phase)/(Ni3Al phase) < 2.0.

Description

Ni基合金及びこれからなる熱処理炉用部品Ni-based alloy and heat treatment furnace parts made of it
 本発明は、耐アルカリ腐食性と溶接性にすぐれるNi基合金、及び、当該Ni基合金からなる熱処理炉用部品に関するものである。 The present invention relates to a Ni-based alloy having excellent alkali corrosion resistance and weldability, and a heat treatment furnace component made of the Ni-based alloy.
 焼成炉等の熱処理炉では、熱や腐食雰囲気に曝される部品に、耐熱性はもちろん、耐アルカリ腐食性が要求される。このような部品に用いられる合金として、特許文献1では、Al:2.0~5.0重量%、Cr:0.8%~4.0%、その他Si、Mn、B、Zrを含み、残部Ni及び不可避不純物としたNi基合金が提案されている。 In heat treatment furnaces such as firing furnaces, parts exposed to heat and corrosive atmosphere are required to have not only heat resistance but also alkali corrosion resistance. As an alloy used for such a component, Patent Document 1 contains Al: 2.0 to 5.0% by weight, Cr: 0.8% to 4.0%, and other Si, Mn, B, and Zr. Ni-based alloys with the balance Ni and unavoidable impurities have been proposed.
 近年、電動車両用等に用いられるリチウムイオン電池や固体電池などの電池市場が急速に拡大している。これら電池の正極材料は、ローラーハースキルンやロータリーキルンなどの焼成炉を用いて製造される。正極材料は、強アルカリ性材料であるから、焼成炉で使用され、正極材料と直接接触するレトルトの如き熱処理炉用部品には、すぐれた耐アルカリ腐食性が要求される。 In recent years, the battery market for lithium-ion batteries and solid-state batteries used for electric vehicles has been expanding rapidly. The positive electrode material of these batteries is manufactured by using a firing furnace such as a roller herskilln or a rotary kiln. Since the positive electrode material is a strongly alkaline material, excellent alkali corrosion resistance is required for heat treatment furnace parts such as retorts that are used in firing furnaces and come into direct contact with the positive electrode material.
特開2014-80675号公報Japanese Unexamined Patent Publication No. 2014-80675
 正極材料と直接接触する熱処理炉用部品には、正極材料と化学反応する物質の添加が好まれない。たとえば、Crは正極材料と化学反応するため、この種の熱処理炉用部品には使用できない。 The addition of substances that chemically react with the positive electrode material is not preferred for heat treatment furnace parts that come into direct contact with the positive electrode material. For example, Cr chemically reacts with the positive electrode material and cannot be used for this type of heat treatment furnace component.
 一方で、熱処理炉用部品は、部材どうしを接合、或いは、補修等が必要になるから、すぐれた溶接性が要求される。 On the other hand, heat treatment furnace parts require excellent weldability because the members need to be joined or repaired.
 本発明の目的は、耐アルカリ腐食性と溶接性にすぐれるNi基合金、及び、当該ニッケル基合金からなる熱処理炉用部品を提供することである。 An object of the present invention is to provide a Ni-based alloy having excellent alkali corrosion resistance and weldability, and a component for a heat treatment furnace made of the nickel-based alloy.
 本発明の耐アルカリ腐食性と溶接性にすぐれるNi基合金は、
 質量%にて、
 Al:8.0%~16.0%、
 Zr:0.01%以上、
 B:0.001%以上、及び、
 残部Ni及び不可避的不純物からなり、
 Al:12.0%超~13.5%未満を除き、
 ZrとBは合計量で3.0%以下である。
The Ni-based alloy of the present invention, which has excellent alkali corrosion resistance and weldability, is
By mass%
Al: 8.0% to 16.0%,
Zr: 0.01% or more,
B: 0.001% or more and
The balance consists of Ni and unavoidable impurities.
Al: Except for more than 12.0% and less than 13.5%
The total amount of Zr and B is 3.0% or less.
 望ましくは、
 Zr:0.68%以上2.999%以下、
 B:0.001%以上0.033%以下である。
Desirably
Zr: 0.68% or more and 2.999% or less,
B: 0.001% or more and 0.033% or less.
 Alの含有量は、質量%にて、9.5%~11.5%とすることが好ましい。 The Al content is preferably 9.5% to 11.5% in terms of mass%.
 表面に少なくともNiAl相と、Ni相、NiAl相、又は、NiZr化合物相の何れかが析出しており、
 析出したNiAl相、Ni相、NiAl相、NiZr化合物相の面積率は、
 0.2<(Ni相+NiAl相+NiZr化合物相)/NiAl相<2.0とすることができる。
At least one of the Ni 3 Al phase and the Ni phase, the NiAl phase, or the NiZr compound phase is precipitated on the surface.
The area ratio of the precipitated Ni 3 Al phase, Ni phase, NiAl phase, and NiZr compound phase is
0.2 <(Ni phase + NiAl phase + NiZr compound phase) / Ni 3 Al phase <2.0 can be set.
 また、Ni基合金は、Crを含まない構成とすることができる。 Further, the Ni-based alloy can be configured so as not to contain Cr.
 また、本発明の熱処理炉用部品は、
 電極材の製造に用いられる熱処理炉用部品であって、
 上記記載のNi基合金からなる。
Further, the parts for the heat treatment furnace of the present invention are
A part for a heat treatment furnace used in the manufacture of electrode materials.
It is made of the above-mentioned Ni-based alloy.
 また、本発明の熱処理炉用部品は、
 電極材の製造に用いられる熱処理炉用部品であって、
 上記記載のNi基合金からなる管体どうしを溶接接続してなる。
Further, the parts for the heat treatment furnace of the present invention are
A part for a heat treatment furnace used in the manufacture of electrode materials.
The pipes made of the Ni-based alloy described above are welded and connected to each other.
 本発明のNi基合金は、耐アルカリ腐食性と溶接性にすぐれる。また、リチウムイオン電池や固体電池などの電極材である正極材料と化学反応する材料を含んでいないから、電極材である正極材料の製造に用いられるレトルトの如き熱処理炉用部品として好適である。 The Ni-based alloy of the present invention has excellent alkali corrosion resistance and weldability. Further, since it does not contain a material that chemically reacts with a positive electrode material such as a lithium ion battery or a solid-state battery, it is suitable as a part for a heat treatment furnace such as a retort used for manufacturing a positive electrode material as an electrode material.
図1は、ビード置き試験の判定基準を示す説明図である。FIG. 1 is an explanatory diagram showing a criterion for a bead placement test. 図2(a)は、発明例2のPT後写真であって、(b)は発明例3、(c)は比較例6を示している。FIG. 2A is a post-PT photograph of Invention Example 2, FIG. 2B shows Invention Example 3, and FIG. 2C shows Comparative Example 6.
 本発明は、耐アルカリ腐食性と溶接性にすぐれたNi基合金、及び、当該Ni基合金からなるレトルト等の熱処理炉用部品を提供するものである。 The present invention provides a Ni-based alloy having excellent alkali corrosion resistance and weldability, and parts for a heat treatment furnace such as a retort made of the Ni-based alloy.
 発明者等は、Ni基合金にZrとBを含有する条件下、Alの含有量を調整することで、Ni相及び金属間化合物である、NiAl相、NiAl相の析出量、また、ZrとNiの金属間化合物であるNiZr化合物(NiZrやNiZrなど)を調整することができ、耐アルカリ腐食性を具備し、溶接性も具備するNi基合金が得られることを見いだした。 By adjusting the Al content under the condition that the Ni-based alloy contains Zr and B, the inventors can adjust the content of the Ni phase and the intermetallic compound, the Ni 3 Al phase and the Ni Al phase, and the precipitation amount of the NiAl phase. It is possible to adjust a NiZr compound (Ni 5 Zr, Ni 7 Zr 2 , etc.) which is an intermetallic compound of Zr and Ni, and obtain a Ni-based alloy having alkali corrosion resistance and weldability. I found it.
 より詳細には、NiAl相が多いほど、耐アルカリ腐食性は向上するが、溶接性は低下する。一方で、Ni相又はNiAl相が多いと耐アルカリ腐食性は低下するが、溶接性は向上することがわかった。そこで、ZrとBの存在下、Alの含有量を所定の範囲とすることで、Ni相、NiAl相、NiAl相、NiZr化合物相の析出量を調整して、耐アルカリ腐食性を具備しつつ、溶接性にすぐれたNi基合金を得ることができた。 More specifically, the more Ni 3 Al phases there are, the better the alkali corrosion resistance, but the lower the weldability. On the other hand, it was found that when the amount of Ni phase or NiAl phase is large, the alkali corrosion resistance is lowered, but the weldability is improved. Therefore, in the presence of Zr and B, by setting the Al content within a predetermined range, the precipitation amounts of the Ni phase, Ni 3 Al phase, NiAl phase, and NiZr compound phase are adjusted to provide alkali corrosion resistance. However, it was possible to obtain a Ni-based alloy with excellent weldability.
 望ましくは、NiAlと、Ni、NiAl、又は、NiZr化合物の範囲は、Ni基合金の表面に析出したNiAl相、Ni相、NiAl相、NiZr化合物相の面積率が0.2<(Ni相+NiAl相+NiZr化合物相)/NiAl相<2.0となることで、耐アルカリ腐食性と溶接性を具備できる。より望ましくは(Ni相+NiAl相+NiZr化合物相)/NiAl相の上限は1.5未満、下限は0.23以上である。 Desirably, in the range of Ni 3 Al and Ni, NiAl, or NiZr compound, the area ratio of the Ni 3 Al phase, Ni phase, NiAl phase, and NiZr compound phase precipitated on the surface of the Ni-based alloy is 0.2 <. (Ni phase + NiAl phase + NiZr compound phase) / Ni 3 Al phase <2.0 can provide alkali corrosion resistance and weldability. More preferably, the upper limit of the (Ni phase + NiAl phase + NiZr compound phase) / Ni 3 Al phase is less than 1.5, and the lower limit is 0.23 or more.
 本発明のNi基合金は、所望の製品形態に応じて、たとえば鋳造合金として様々な構造部材の製造に使用でき、とくに耐アルカリ腐食性と溶接性の要求される用途への適用に好適である。また、本発明のNi基合金は、800~1000℃の高酸素雰囲気や、高いアルカリ腐食環境においても特性変化が少なく、また、使用される材料との反応も抑えられるから、ロータリーキルンの炉心管の材料などの熱処理炉用の部品、とくにリチウムイオン電池や固体電池などの電極材である正極材料と接触するレトルトなどの熱処理炉用部品に好適である。本発明のNi基合金は、溶接性にすぐれるから、熱処理炉用部品に適用した場合、部材(たとえば管体の形態)どうしを溶接により接合、或いは、補修等することができる。 The Ni-based alloy of the present invention can be used in the production of various structural members, for example, as a cast alloy, depending on the desired product form, and is particularly suitable for applications requiring alkali corrosion resistance and weldability. .. Further, the Ni-based alloy of the present invention has little change in characteristics even in a high oxygen atmosphere of 800 to 1000 ° C. and a high alkaline corrosion environment, and the reaction with the materials used can be suppressed. It is suitable for parts for heat treatment furnaces such as materials, particularly parts for heat treatment furnaces such as retorts that come into contact with positive electrode materials such as lithium ion batteries and solid batteries. Since the Ni-based alloy of the present invention has excellent weldability, when applied to heat treatment furnace parts, members (for example, the form of a pipe body) can be joined or repaired by welding.
 本発明のNi基合金及びこれからなる熱処理炉用部品は、遠心鋳造や砂型静置鋳造などの鋳造法、肉盛、溶射などの様々な製法によって作製できる。さらに、この例示に限定されず、これまでセラミックが適用されてきた焼成装置(たとえば焼成トレイ、焼成ローラー)などに用いられる様々な耐熱・耐食部品やアルミ溶湯部品にも適用できる。なお、これらの例示は、本発明のNi基合金の適用を限定するものではない。 The Ni-based alloy of the present invention and parts for heat treatment furnaces made of this can be manufactured by casting methods such as centrifugal casting and static sand casting, and various manufacturing methods such as overlaying and thermal spraying. Further, the present invention is not limited to this example, and can be applied to various heat-resistant and corrosion-resistant parts and aluminum molten metal parts used in firing devices (for example, firing trays, firing rollers) to which ceramic has been applied. Note that these examples do not limit the application of the Ni-based alloy of the present invention.
 本発明のNi基合金及びこれからなる熱処理炉用部品は、好ましくは、遠心鋳造や静置鋳造などの鋳造法により作製する。鋳造は、金型遠心鋳造や金型静置鋳造を採用し、溶湯を冷却しながら鋳込みを行なうことが好適である。冷却は、鋳造時の鋳込み温度から1000℃までの冷却速度が20℃/min以上となるように施すことが好適である。冷却速度は、溶湯表面の温度を測定したものである。具体的には、遠心鋳造の場合、溶湯表面の温度は放射温度計を用いて測定することができる。放射温度計では、溶湯投入側とは逆側のバンドから少し内側に入った製品として使用される部分の表面温度を測定することができる。静置鋳造の場合、熱電対を溶湯に挿入して測定すればよい。これら測定方法は一例であることは理解されるべきである。冷却速度は、(鋳込み温度-1000℃)/(鋳込み開始から1000℃までの時間:分)で算出できる。1000℃までの冷却速度としたのは、1000℃付近でNi基合金に含まれる不純物不可避元素が凝固するためであり、ここまでの温度低下を規定することで溶接性に悪影響を及ぼす化合物を押湯部分や切削予定部分に移動させることができる。 The Ni-based alloy of the present invention and parts for a heat treatment furnace made of the same are preferably produced by a casting method such as centrifugal casting or static casting. For casting, it is preferable to employ centrifugal casting of the mold or static casting of the mold, and to perform casting while cooling the molten metal. It is preferable to perform cooling so that the cooling rate from the casting temperature at the time of casting to 1000 ° C. is 20 ° C./min or more. The cooling rate is a measurement of the temperature of the surface of the molten metal. Specifically, in the case of centrifugal casting, the temperature of the molten metal surface can be measured using a radiation thermometer. The radiation thermometer can measure the surface temperature of the part used as a product that is slightly inside from the band on the side opposite to the molten metal injection side. In the case of static casting, the thermocouple may be inserted into the molten metal for measurement. It should be understood that these measurement methods are examples. The cooling rate can be calculated by (casting temperature −1000 ° C.) / (time from the start of casting to 1000 ° C.: minutes). The cooling rate up to 1000 ° C is because the impurity unavoidable elements contained in the Ni-based alloy solidify at around 1000 ° C, and by defining the temperature drop up to this point, compounds that adversely affect weldability are pressed. It can be moved to the hot water part or the part to be cut.
 冷却速度は、30℃/min以上とすることがより好適である。望ましくは、鋳造時の鋳込み温度から1000℃までの冷却速度は35℃/min以上であり、最も望ましくは40℃/minである。 It is more preferable that the cooling rate is 30 ° C./min or more. Desirably, the cooling rate from the casting temperature at the time of casting to 1000 ° C. is 35 ° C./min or more, and most preferably 40 ° C./min.
 冷却速度を上記のように設定することで、組織の肥大化を抑え、各組織間の粒界を小さくすることができる。粒界には、微量ではあるが不純物不可避元素からなる低融点化合物が存在し、これらが溶接性に悪影響を及ぼすことになるが、粒界を小さくできたことで、低融点化合物の発生を抑え、溶接性の向上を図ることができる。 By setting the cooling rate as described above, it is possible to suppress the enlargement of the tissues and reduce the grain boundaries between the tissues. Low melting point compounds consisting of impurities unavoidable elements are present at the grain boundaries, which adversely affect weldability.However, by reducing the grain boundaries, the generation of low melting point compounds is suppressed. , It is possible to improve the weldability.
 また、本発明のNi基合金の主たる組織はNiAlであり、冷却速度が上記よりも遅い場合には、NiAl相が肥大化し、他組織と比べて多くなる。その結果、上記した(Ni相+NiAl相+NiZr化合物相)/NiAl相の相比が小さくなり、溶接性が低下する。 Further, the main structure of the Ni-based alloy of the present invention is Ni 3 Al, and when the cooling rate is slower than the above, the Ni 3 Al phase becomes bloated and becomes larger than other structures. As a result, the phase ratio of the above-mentioned (Ni phase + NiAl phase + NiZr compound phase) / Ni 3 Al phase becomes small, and the weldability deteriorates.
 従って、鋳造法を採用する場合、冷却速度は上記範囲とすることが望ましい。 Therefore, when adopting the casting method, it is desirable that the cooling rate be within the above range.
<成分限定理由>
 上記を達成するため、本発明のNi基合金は、以下の組成を含有する。なお、特に明示しない限り、「%」は質量%である。
<Reason for limiting ingredients>
In order to achieve the above, the Ni-based alloy of the present invention contains the following composition. Unless otherwise specified, "%" is mass%.
Al:8.0%~16.0%、ただし、12.0%超~13.5%未満を除く
 Alは、Ni基合金に含まれるNi相の析出、また、金属間化合物であるNiAl相やNiAl相の析出に寄与する。上記のとおり、耐アルカリ腐食性を向上させるためには、NiAl相を多く析出させる必要があり、Alは、少なくとも8.0%以上、16.0%以下の範囲で含有させる。望ましくは、Alは9.0%以上である。一方で、NiAl相が多く析出すると、溶接性は低下する。この溶接性の低下を防止するために、Ni基合金にNi相又はNiAl相を析出させる必要がある。しかしながら、過度のNi相又はNiAl相の析出は耐アルカリ腐食性を低下させる。そこで、耐アルカリ腐食性を確保しつつ、溶接性を具備する程度のNi相を析出させるために、Alの含有量は12.0%以下、より望ましくは11.5%以下とする。また、耐アルカリ腐食性を確保しつつ、溶接性を具備する程度のNiAl相を析出させるために、Alの含有量は13.5%以上とする。すなわち、耐アルカリ腐食性と溶接性の観点から、好適にNi相、NiAl相、NiAl相を析出するために、Alの含有量は、8.0%以上、16.0%以下、ただし、12.0%超~13.5%未満を除く範囲とする。Alの下限は好適には9.0%であり、より望ましくは9.5%である。Alの上限は好適には15.6%であり、望ましくは15.0%、より望ましくは14.5%である。Alを除く範囲の下限は好適には12.0%、望ましくは11.4%、より望ましくは11.0%である。Alを除く範囲の上限は好適には13.8%、望ましくは14.0%、より望ましくは14.2%である。
Al: 8.0% to 16.0%, except for more than 12.0% and less than 13.5% Al is the precipitation of the Ni phase contained in the Ni-based alloy, and Ni 3 which is an intermetallic compound. Contributes to the precipitation of Al phase and NiAl phase. As described above, in order to improve the alkali corrosion resistance, it is necessary to precipitate a large amount of Ni 3 Al phase, and Al is contained in a range of at least 8.0% or more and 16.0% or less. Desirably, Al is 9.0% or more. On the other hand, if a large amount of Ni 3 Al phase is deposited, the weldability is deteriorated. In order to prevent this deterioration of weldability, it is necessary to deposit the Ni phase or the NiAl phase in the Ni-based alloy. However, excessive precipitation of Ni phase or NiAl phase reduces alkali corrosion resistance. Therefore, the Al content is set to 12.0% or less, more preferably 11.5% or less, in order to precipitate a Ni phase having weldability while ensuring alkali corrosion resistance. Further, the Al content is set to 13.5% or more in order to precipitate a NiAl phase having weldability while ensuring alkali corrosion resistance. That is, in order to preferably precipitate the Ni phase, Ni 3 Al phase, and Ni Al phase from the viewpoint of alkali corrosion resistance and weldability, the Al content is 8.0% or more and 16.0% or less, however. The range excludes more than 12.0% and less than 13.5%. The lower limit of Al is preferably 9.0%, more preferably 9.5%. The upper limit of Al is preferably 15.6%, preferably 15.0%, and more preferably 14.5%. The lower limit of the range excluding Al is preferably 12.0%, preferably 11.4%, and more preferably 11.0%. The upper limit of the range excluding Al is preferably 13.8%, preferably 14.0%, and more preferably 14.2%.
 その他、Alは、材料表面に酸化被膜を生成することにより耐酸化性を向上させる効果もある。 In addition, Al also has the effect of improving the oxidation resistance by forming an oxide film on the surface of the material.
Ni:残部
 Niは、高い高温延性を具備するNi基合金の基本元素である。Niは、Alと結合して金属間化合物NiAlを生成させて、高温における耐アルカリ腐食性の向上に寄与する。また、Ni相やNiAl相は溶接性の向上に寄与する。
Ni: Remaining Ni is a basic element of Ni-based alloys having high high-temperature ductility. Ni combines with Al to form the intermetallic compound Ni 3Al , which contributes to the improvement of alkali corrosion resistance at high temperatures. Further, the Ni phase and the NiAl phase contribute to the improvement of weldability.
Zr:0.01%以上
 Zrは、Ni基合金の溶接割れ感受性を改善するため、0.01%以上を含有する。Zrは、Ni基合金の粒界に分布するため、結晶粒界における割れ感受性を低下させることができる。また、Zrは、Niとの複合添加により、耐アルカリ腐食性を高め、また、高温強度や延性を向上させる。一方で、Zrの含有量を過度に多くしても、溶接割れ感受性の改善効果は飽和するため、上限は次に説明するBとの合計量で3.0%以下である。Zrの上限は、望ましくは2.0%以下とする。Zrの下限は0.68%、0.8%、1.0%、1.2%、1.5%、上限は2.5%、2.2%、2.13%、2.0%が好適である。望ましくは、Zrの上限は1.8%である。
Zr: 0.01% or more Zr contains 0.01% or more in order to improve the weld crack sensitivity of the Ni-based alloy. Since Zr is distributed at the grain boundaries of the Ni-based alloy, it is possible to reduce the crack sensitivity at the grain boundaries. Further, Zr enhances alkali corrosion resistance and improves high temperature strength and ductility by the combined addition with Ni. On the other hand, even if the content of Zr is excessively increased, the effect of improving the welding crack sensitivity is saturated, so that the upper limit is 3.0% or less in total with B described below. The upper limit of Zr is preferably 2.0% or less. The lower limit of Zr is 0.68%, 0.8%, 1.0%, 1.2%, 1.5%, and the upper limit is 2.5%, 2.2%, 2.13%, 2.0%. Is preferable. Desirably, the upper limit of Zr is 1.8%.
B:0.001%以上
 Bは、粒界に分布して、延性を高めると共に、高温でのクリープ破断強度を向上させるため、選択的に含有させる。これらの効果は、Bが微量であっても得られるため、0.001%以上含有させる。Bの含有量は、上記Zrの合計量で3.0%以下、望ましくは2.0%以下とする。Bの含有量は、より好適には0.003%以上、望ましくは0.01%以上とする。Bの上限は0.1%が好適であり、望ましくは0.025%、より望ましくは0.02%、最も望ましくは0.033%である。
B: 0.001% or more B is distributed at the grain boundaries and is selectively contained in order to improve ductility and creep rupture strength at high temperature. Since these effects can be obtained even with a small amount of B, 0.001% or more is contained. The content of B is 3.0% or less, preferably 2.0% or less in the total amount of Zr. The content of B is more preferably 0.003% or more, preferably 0.01% or more. The upper limit of B is preferably 0.1%, preferably 0.025%, more preferably 0.02%, and most preferably 0.033%.
不可避的不純物
 不可避的不純物として、通常の溶製技術上不可避的に混入する元素として、Ti、Ta、W、Si、Mn、Fe、S、Mg、Cu、Zn、O、P、N、Hを例示できる。これらの元素は、特性に影響を与えない範囲で、夫々最大0.5%以下、望ましくは合計量で0.5%以下であれば、その含有が許容される。一方で、本発明のNi基合金を電極材である正極材料と接触するレトルトの如き熱処理炉用部品に用いる場合、正極材料と化学反応するCrの添加は許容されない。すなわち、本発明のNi基合金はCrを含まない構成とすることが望ましい。
Inevitable Impurities As unavoidable impurities, Ti, Ta, W, Si, Mn, Fe, S, Mg, Cu, Zn, O, P, N, H are used as elements that are inevitably mixed in with ordinary melting techniques. It can be exemplified. The content of these elements is permissible as long as they do not affect the properties and are up to 0.5% or less, preferably 0.5% or less in total. On the other hand, when the Ni-based alloy of the present invention is used for a heat treatment furnace component such as a retort that comes into contact with a positive electrode material as an electrode material, addition of Cr that chemically reacts with the positive electrode material is not allowed. That is, it is desirable that the Ni-based alloy of the present invention has a structure containing no Cr.
 耐熱・耐食部品や熱処理炉用部品は、上記組成範囲となるように成分元素を配合し、静置鋳造等により作製することができる。もちろん、製造方法は、遠心鋳造や静置鋳造の如き鋳造法、肉盛、溶射などの様々な製法を採用できる。鋳造法の場合、金型遠心鋳造や金型静置鋳造を用い、Ni基合金の冷却速度を上記したとおりに調整することが望ましい。 Heat-resistant / corrosion-resistant parts and parts for heat treatment furnaces can be manufactured by static casting or the like by blending component elements so as to have the above composition range. Of course, as a manufacturing method, various manufacturing methods such as casting methods such as centrifugal casting and static casting, overlaying, and thermal spraying can be adopted. In the case of the casting method, it is desirable to adjust the cooling rate of the Ni-based alloy as described above by using centrifugal casting of the mold or static casting of the mold.
 以下の製造方法により表1に掲げる合金組成のNi基合金のテストピースを作製した。実施例1では、Ni系金属間化合物などの析出相の同定を実施し、相比を算出した。また、実施例2では、各テストピースについて、製造性、溶接性試験と耐アルカリ腐食性試験を実施した。また、供試例は、発明例1~20と比較例1~8であり、各成分を表1に示す。 A Ni-based alloy test piece having the alloy composition shown in Table 1 was prepared by the following manufacturing method. In Example 1, the precipitation phase of a Ni-based intermetallic compound or the like was identified, and the phase ratio was calculated. Further, in Example 2, the manufacturability, weldability test and alkali corrosion resistance test were carried out for each test piece. The test examples are Invention Examples 1 to 20 and Comparative Examples 1 to 8, and each component is shown in Table 1.
<テストピースの成分の説明>
 表1に示すとおり、発明例1~20は、本発明範囲に含まれるNi基合金である。比較例1はAlが本発明範囲(Al:8.0%以上)から外れるもの、比較例2~4はZr+Bの合計量が本発明範囲(Zr+B:3.0%以下)を超えるもの、比較例5~7はAlが本発明範囲(Al:12.0%超~13.5%未満を除く)から外れるもの、さらに、比較例8は、Alが本発明範囲(Al:16.0%以下)を超えるものである。
<Explanation of the components of the test piece>
As shown in Table 1, Invention Examples 1 to 20 are Ni-based alloys included in the scope of the present invention. Comparative Example 1 shows Al outside the range of the present invention (Al: 8.0% or more), and Comparative Examples 2 to 4 show that the total amount of Zr + B exceeds the range of the present invention (Zr + B: 3.0% or less). In Examples 5 to 7, Al is out of the range of the present invention (Al: more than 12.0% to less than 13.5%), and in Comparative Example 8, Al is in the range of the present invention (Al: 16.0%). Below).
<テストピースの製造方法>
 各々の成分元素が後述する表1に掲げる含有量となるように、各々の成分元素の原材料を配合した。配合された原材料をアルミナ製るつぼ(内径185mm×高さ330mm)に入れ、高周波溶解炉にてアルゴンシールを行なった状態で溶解した。溶解温度は、たとえば1600~1720℃とした。次に、Ni基合金の溶湯を取鍋に移し、大気雰囲気下で金型遠心鋳造(表1中「金型遠心」)、または、砂型を用いた静置鋳造(同「砂型静置鋳造」)を行なってNi基合金のインゴットを作製した。得られたインゴットから各種試験用のテストピースを作製した。
<Manufacturing method of test piece>
The raw materials of each component element were blended so that each component element had the content listed in Table 1 described later. The blended raw materials were placed in an alumina crucible (inner diameter 185 mm × height 330 mm) and melted in a high-frequency melting furnace with argon sealing. The melting temperature was, for example, 1600 to 1720 ° C. Next, the molten metal of the Ni-based alloy is transferred to a ladle, and the mold is centrifugally cast (“mold centrifugal” in Table 1) or static casting using a sand mold (“sand mold static casting”” in the air atmosphere. ) Was carried out to prepare an ingot of a Ni-based alloy. Test pieces for various tests were prepared from the obtained ingots.
 金型遠心、砂型静置鋳造時の冷却速度は、(鋳込み温度-1000℃)/(鋳込み開始から1000℃までの時間:分)が表1中「冷却速度」の欄に示す速度となるように夫々調整した。 As for the cooling rate during mold centrifugation and static casting of sand mold, (casting temperature -1000 ° C) / (time from the start of casting to 1000 ° C: minutes) should be the rate shown in the "Cooling rate" column in Table 1. Adjusted to each.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 なお、表1中、各成分は「質量%」で示しており、「その他成分」に記載した成分以外の不可避的不純物は記載を省略している。 In Table 1, each component is indicated by "mass%", and unavoidable impurities other than the components described in "Other components" are omitted.
<析出相の同定>
 テストピースの表面に析出するNi系金属間化合物(NiAl相、NiAl相、NiZr、NiZrなどNiZr化合物相)およびNi相の析出相を同定した。
<Identification of precipitation phase>
The Ni-based intermetallic compounds (Ni 3 Al phase, Ni Al phase, Ni 5 Zr, Ni 7 Zr 2 and other Ni Zr compound phases) deposited on the surface of the test piece and the precipitated phase of the Ni phase were identified.
 なお、「Ni相」は、NiAl相、NiAl相、NiZr化合物相等の化合物が析出していないNi相マトリックス全体を意味する。Ni相を含め、各相には、組織の形成を阻害しない程度の不純物が固溶している可能性がある。 The "Ni phase" means the entire Ni phase matrix in which compounds such as Ni 3 Al phase, Ni Al phase, and Ni Zr compound phase are not precipitated. Impurities that do not inhibit the formation of the structure may be dissolved in each phase, including the Ni phase.
 具体的な同定方法は、次のとおりである。まず、合金組織の所定領域のミクロ画像を撮影し、撮影されたミクロ画像のコントラストを調整する。その結果、NiAl相は白色、欠陥相は黒色、Ni相、NiAl相、NiZr化合物相はその中間色として視認される。そこで、欠陥相のみが黒色となるように2値化処理を行ない、黒色部分の面積及び面積率を測定し、「α:欠陥相の面積率」を同定する。 The specific identification method is as follows. First, a micro image of a predetermined region of the alloy structure is taken, and the contrast of the taken micro image is adjusted. As a result, the Ni 3 Al phase is white, the defective phase is black, and the Ni phase, NiAl phase, and NiZr compound phase are visually recognized as intermediate colors. Therefore, binarization is performed so that only the defective phase becomes black, the area and area ratio of the black portion are measured, and "α: area ratio of the defective phase" is identified.
 次に、同ミクロ画像のコントラストを再度調整し、NiAl相以外が黒色となるように2値化処理を行なう。そして、黒色部分の面積及び面積率を測定することで、「β:Ni相+NiAl相+NiZr化合物相+欠陥相の面積率」、すなわち、NiAl相以外の面積率が同定される。 Next, the contrast of the micro image is adjusted again, and the binarization process is performed so that the areas other than the Ni 3 Al phase are black. Then, by measuring the area and the area ratio of the black portion, "β: Ni phase + NiAl phase + NiZr compound phase + area ratio of the defective phase", that is, the area ratio other than the Ni 3 Al phase is identified.
 続いて、同じ領域の反射電子組成像(COMPO像:グレースケール)を撮影する。COMPO像では、重量が重い組織は白っぽく、また、重量が軽い組織は黒っぽく撮影されるから、得られたCOMPO像に2値化処理を行なう。ZrはNiやAlに比べて原子量が大きいから、NiZr化合物相は白っぽく観察される。そこで、COMPO像を2値化処理し、白色部分の面積及び面積率を測定することで、「γ:NiZr化合物相の面積率」を同定する。 Subsequently, a reflected electron composition image (COMPO image: gray scale) in the same region is photographed. In the COMPO image, the heavy tissue is photographed whitish, and the light tissue is photographed blackish. Therefore, the obtained COMPO image is binarized. Since Zr has a larger atomic weight than Ni and Al, the NiZr compound phase is observed to be whitish. Therefore, the COMPO image is binarized and the area and area ratio of the white portion are measured to identify the "γ: NiZr compound phase area ratio".
 上記得られたα、β、γの面積率に対し、「β-(α+γ)」を算出することで、「δ:Ni相+NiAl相の面積率」が算出され、「100-β」を算出することで、「ε:NiAl相の面積率」が同定できる。 By calculating "β- (α + γ)" for the area ratios of α, β, and γ obtained above, "δ: area ratio of Ni phase + NiAl phase" is calculated, and "100-β" is calculated. By doing so, "ε: Ni 3 Al phase area ratio" can be identified.
 析出した各相の面積率について、NiAl相に対するNi相、NiAl相、NiZr化合物相の合計量の割合を算出した。結果を表2に示す。表2中、各相の面積率は「Ni相」、「NiAl相」、「NiAl相」、「NiZr化合物相」に示しており、単位は面積%である。また、NiAl相に対するNi相、NiAl相、NiZr化合物相の合計量の割合は、「(Ni+NiAl+NiZr化合物)/NiAl」に示す。 For the area ratio of each of the precipitated phases, the ratio of the total amount of the Ni phase, the NiAl phase, and the NiZr compound phase to the Ni 3 Al phase was calculated. The results are shown in Table 2. In Table 2, the area ratio of each phase is shown in "Ni phase", "Ni 3 Al phase", "NiAl phase", and "NiZr compound phase", and the unit is area%. The ratio of the total amount of the Ni phase, the NiAl phase, and the NiZr compound phase to the Ni 3 Al phase is shown in "(Ni + NiAl + NiZr compound) / Ni 3 Al".
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表2を参照すると、発明例は、発明例1~5、7、9~11、15、17~220が0.2<(Ni相+NiAl相+NiZr)/NiAl相<2.0であった。具体的には、発明例2の場合、Ni相:41.0面積%、NiAl相:0.0面積%、NiZr化合物相:3.7面積%、NiAl相:55.0面積%、欠陥相(残部となる):0.3面積%であった。一方、その他の発明例と、比較例8以外の比較例は、(Ni相+NiAl相+NiZr化合物相)/NiAl相が0.2以下又は2.0以上であった。 Referring to Table 2, in the invention examples, invention examples 1 to 5, 7, 9 to 11, 15, 17 to 220 are 0.2 <(Ni phase + NiAl phase + NiZr) / Ni 3 Al phase <2.0. rice field. Specifically, in the case of Invention Example 2, Ni phase: 41.0 area%, NiAl phase: 0.0 area%, NiZr compound phase: 3.7 area%, Ni 3 Al phase: 55.0 area%, Defect phase (remaining): 0.3 area%. On the other hand, in the other invention examples and the comparative examples other than Comparative Example 8, the (Ni phase + NiAl phase + NiZr compound phase) / Ni 3 Al phase was 0.2 or less or 2.0 or more.
<製造性>
 得られたインゴットの製造性を、鋳造性と加工性で評価した。先に結果を表3に示す。
<Manufacturability>
The manufacturability of the obtained ingot was evaluated by castability and processability. The results are shown in Table 3 first.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
<製造性:鋳造性>
 鋳造性は、得られた試験片の表面状態を観察することで評価した。鋳造性は「1」、「2」、「5」で点数化した。点数は低いものほど鋳造性にすぐれることを意味し、点数「5」は実製品として使用が困難な供試例である。具体的には、鋳造時に異物噛みや引け巣等が発生するが、加工等で除去可能な場合、鋳造性の点数を「1」とした。一方、鋳造時に異物噛みや引け巣、偏析等が発生するが、加工等で除去可能な場合、鋳造性の点数を「2」、鋳造時に異物噛み、引け巣および偏析等の鋳造不良が発生し易く、肉厚中央部にもこれらが存在して加工等で除去できない場合、鋳造性の点数は「5」とした。表3中「鋳造性(点数)」に示すように、比較例8のみ鋳造性が点数「5」であり、その他の発明例、比較例は何れも鋳造性の点数が「1」又は「2」であり、鋳造品質の問題はなかった。比較例8の鋳造性が悪いのは、Alが過多のためである。
<Manufacturability: Castability>
Castability was evaluated by observing the surface condition of the obtained test piece. Castability was scored as "1", "2", and "5". The lower the score, the better the castability, and the score "5" is a test example that is difficult to use as an actual product. Specifically, when foreign matter bites, shrinkage cavities, etc. occur during casting, but can be removed by processing or the like, the castability score was set to "1". On the other hand, foreign matter biting, shrinkage cavities, segregation, etc. occur during casting, but if it can be removed by processing, the castability score is "2", and casting defects such as foreign matter biting, shrinkage cavities, and segregation occur during casting. If it is easy and these are also present in the central part of the wall thickness and cannot be removed by processing or the like, the castability score is set to "5". As shown in "Castability (score)" in Table 3, only Comparative Example 8 has a castability score of "5", and the other invention examples and comparative examples all have a castability score of "1" or "2". There was no problem with casting quality. The reason why the castability of Comparative Example 8 is poor is that Al is excessive.
<製造性:加工性>
 加工性は、得られたインゴットに切削加工を施し、加工時間又は加工ツールの消耗状況で評価した。加工性も「1」、「2」、「5」で点数化した。点数は低いものほど鋳造性にすぐれることを意味し、点数「5」は実製品として使用が困難な供試例である。具体的には、加工に時間が掛からず、加工ツールの消耗もない場合、加工性の点数を「1」とした。一方、加工に時間が掛かり、加工ツールの消耗が激しいが加工可能な場合、加工性の点数を「2」、加工ツールの消耗が激しく、加工が不能な場合、加工性の点数を「5」とした。表3中「加工性(点数)」に示すように、比較例8のみ加工性の点数が「5」であった。その他の発明例、比較例は何れも加工性の点数が「1」又は「2」であり、加工性に問題はなかった。
<Manufacturability: Workability>
The workability was evaluated by cutting the obtained ingot and evaluating the processing time or the consumption status of the processing tool. Workability was also scored with "1", "2", and "5". The lower the score, the better the castability, and the score "5" is a test example that is difficult to use as an actual product. Specifically, when the processing does not take time and the processing tool is not consumed, the processability score is set to "1". On the other hand, if it takes a long time to process and the processing tool is heavily consumed but can be processed, the workability score is "2". If the processing tool is heavily consumed and processing is not possible, the processability score is "5". And said. As shown in "Workability (score)" in Table 3, the processability score was "5" only in Comparative Example 8. In each of the other invention examples and comparative examples, the workability score was "1" or "2", and there was no problem in workability.
<製造性評価>
 上記した鋳造性と加工性の点数から製造性を評価した。製造性評価は、鋳造性と加工性の点数を加算し、その和が「2」のものを評価「◎(excellent)」、「3」又は「4」のものを評価「○(good)」、和が「5」以上を評価「×(bad)」とした。結果を表3中、「製造性」の「評価」に示す。
<Manufacturability evaluation>
Manufacturability was evaluated from the above-mentioned points of castability and workability. In the manufacturability evaluation, the points of castability and workability are added, and the one whose sum is "2" is evaluated as "◎ (excellent)", "3" or "4" is evaluated as "○ (good)". , The sum of "5" or more was evaluated as "x (bad)". The results are shown in "Evaluation" of "Manufacturability" in Table 3.
 表3を参照すると、発明例、比較例は何れも比較例8を除き、「◎(excellent)」又は「○(good)」であり、製造性に問題はなかった。比較例8の製造性が悪いのは、Alが過多のためである。 Referring to Table 3, both the invention example and the comparative example were "◎ (excellent)" or "○ (good)" except for Comparative Example 8, and there was no problem in manufacturability. The poor manufacturability of Comparative Example 8 is due to the excess of Al.
<溶接性>
 溶接性は、ビード置き試験により判定した。ビード置き試験は、テストピースの供試面にグラインダーにより機械加工を施し、Ni90.0%以上の溶接棒を用いたTIG溶接によりビードを形成し、その表面状態を観察することで実施した。ビードはストレートビード、ビード長は50~100mmである。
<Welding property>
Weldability was determined by a bead placement test. The bead placement test was carried out by machining the test surface of the test piece with a grinder, forming a bead by TIG welding using a welding rod of Ni 90.0% or more, and observing the surface condition thereof. The bead is a straight bead, and the bead length is 50 to 100 mm.
<溶接性:予熱及び予後熱有無>
 なお、ビード置き試験に際し、予熱、予後熱なしでも溶接は可能であるが、予熱、予後熱を施した方が良好な溶接性を示す。予熱温度と予後熱の有無を表3に示す。予熱温度「30℃」は予熱なし(室温)であり、予熱温度が30℃超のものは、予熱を行なっている。また、予熱を行なった発明例と比較例については、ビード形成の後、予後熱を加えた。
<Welding: Preheating and presence / absence of preheating>
In the bead placement test, welding is possible without preheating and preheating, but preheating and preheating show better weldability. Table 3 shows the preheating temperature and the presence or absence of prognosis heat. The preheating temperature "30 ° C." is no preheating (room temperature), and those having a preheating temperature exceeding 30 ° C. are preheated. In addition, for the invention example and the comparative example in which the preheating was performed, the prognosis heat was applied after the bead formation.
<溶接性:溶接試験>
 ビードが形成された各テストピースに浸透探傷試験(PT:liquid Penetrant Testing)を実施した。そして、ビード及び熱影響部から浸み出す浸透液(指示)の有無、また、その位置により溶接試験結果を得て点数化した。具体的には、図1(a)に示すように、ビード10及びビード10以外の部分に点状欠陥や割れがないものは溶接性の点数を「1」とした。また、図1(b)に示すように、点状欠陥12があっても、ビード10の最終位置であるクレータ11にのみ存在する場合、または、ビード10の横のみに存在する場合は、溶接性の点数を「2」とした。一方で、図1(c)に示すように、クレータ11以外の部分に割れ13が存在する場合は許容されないため、溶接性の点数を「5」とした。
<Welding: Welding test>
A penetrant inspection (PT: liquid Penetrant Testing) was conducted on each test piece on which a bead was formed. Then, the welding test results were obtained and scored according to the presence or absence of the penetrant (instruction) exuding from the bead and the heat-affected zone, and the position thereof. Specifically, as shown in FIG. 1A, the weldability score was set to "1" for the beads 10 and those having no punctate defects or cracks in the portions other than the beads 10. Further, as shown in FIG. 1 (b), even if there is a point defect 12, if it is present only in the crater 11 which is the final position of the bead 10, or if it is present only in the side of the bead 10, welding is performed. The sex score was set to "2". On the other hand, as shown in FIG. 1 (c), when the crack 13 is present in a portion other than the crater 11, it is not allowed, so the weldability score is set to "5".
 図2(a)は発明例2のPT後写真、図2(b)は発明例3のPT後写真、図2(c)は比較例6のPT後写真である。図を参照すると、発明例2はビード上およびビード周辺にほとんど指示は見られないため、溶接性の点数は「1」、発明例3はビード10の左端と右側のクレータ11部分に一部に点状欠陥12である浸透液の浸み出し(指示)20が見られるが、その他の点状欠陥や割れの指示は見られないため、溶接性の点数は「2」であった。一方、比較例6はビード10上、ビード10の外周及びNi基合金30の熱影響部に全面的な浸透液の浸み出し(指示)20が見られるため溶接性の点数は「5」であった。 FIG. 2A is a post-PT photograph of Invention Example 2, FIG. 2B is a post-PT photograph of Invention Example 3, and FIG. 2C is a post-PT photograph of Comparative Example 6. Referring to the figure, since the instruction is hardly seen on the bead and around the bead in the invention example 2, the weldability score is "1", and the invention example 3 is partially in the crater 11 portion on the left end and the right side of the bead 10. Although the seepage liquid (instruction) 20 which is a punctate defect 12 is observed, no other punctate defect or crack instruction is observed, so the weldability score was “2”. On the other hand, in Comparative Example 6, the weldability score is "5" because the seepage liquid (instruction) 20 is seen on the entire bead 10, the outer circumference of the bead 10 and the heat-affected zone of the Ni-based alloy 30. there were.
 「予熱及び予後熱の有無」と、「溶接性の点数」に基づいて、発明例と比較例の溶接性を判定した。「予熱、予後熱なし」且つ溶接の点数が「1」の場合、溶接性「◎(excellent)」、「予熱、予後熱あり」ではあるが溶接性の点数が「1」又は「2」であれば「○(good)」、予熱、予後熱の有無に拘わらず、溶接性の点数が「5」であれば「×(bad)」とした。結果を表3「溶接性」の「評価」に示す。 The weldability of the invention example and the comparative example was determined based on "presence or absence of preheating and prognosis heat" and "weldability score". When "preheat, no prognosis heat" and the welding score is "1", the weldability is "◎ (excellent)", "preheat, with prognosis heat", but the weldability score is "1" or "2". If there is, it is "○ (good)", and if the weldability score is "5" regardless of the presence or absence of preheating and prognosis heat, it is rated as "x (bad)". The results are shown in "Evaluation" of Table 3 "Welding".
 表3を参照すると、発明例は何れも溶接性の評価は「◎(excellent)」または「○(good)」であった。具体的には、発明例について、発明例2、4及び5は、「◎(excellent)」、すなわち、「予熱、予後熱なし」でもすぐれた溶接性を呈していた。その他発明例は、予熱と予後熱は必要であるが溶接性の点数が「1」又は「2」であったため、何れも溶接性「○(good)」であった。溶接性については、表1を参照すると、Ni相の析出量、或いは、NiAl相の析出量が多いほどすぐれることがわかる。 With reference to Table 3, in all of the invention examples, the evaluation of weldability was "◎ (excellent)" or "○ (good)". Specifically, regarding the invention examples, the invention examples 2, 4 and 5 exhibited excellent weldability even with “⊚ (excellent)”, that is, “preheating, no prognostic heat”. In the other invention examples, although preheating and prognosis heat were required, the weldability score was "1" or "2", so that the weldability was "○ (good)" in both cases. Regarding the weldability, referring to Table 1, it can be seen that the larger the precipitation amount of the Ni phase or the precipitation amount of the NiAl phase, the better.
 発明例2、13、14の溶接性を比較すると、発明例2は溶接性の評価が「◎(excellent)」であるのに対し、発明例13、14の溶接性の評価は「○(good)」である。この理由は、発明例のAlの含有量に起因する。すなわち、発明例2はAl:9.0%、発明例13はAl:13.5%、発明例14はAl:14.2%である。表1、2を参照すると、Alが12.0%以下の場合(発明例2)、Ni相とNiAl相が主として析出し、NiAl相は析出しないが、Alが13.5%を越えると(発明例13、14)、NiAl相とNiAl相が析出し、Ni相は析出しないことがわかる。すなわち、Alが12.0%以下の発明例2は、Ni相が多く析出する組成範囲であり、NiAl相を抑えてNi相が多く析出したことで、溶接性が向上する。一方、発明例12、13は、溶接性にすぐれるNiAl相は析出するものの、NiAl相がより多く析出したため、溶接性は発明例2よりも若干劣る結果となり、(Ni相+NiAl相+NiZr化合物相)/NiAl相も0.2以下になったと考えられる。つまり、発明例2と、発明例13、14は、製造方法及び冷却速度は略一致しているが、少なくともAl含有量が異なるから、析出する相に違いが生じ、発明例2は溶接性にすぐれる特性を具備し、式:0.2<(Ni相+NiAl相+NiZr化合物相)/NiAl相<2.0を満たすが、発明例13、14は発明例2に比べて若干溶接性に劣るため、同式を満たさない結果となった。 Comparing the weldability of Invention Examples 2, 13 and 14, the evaluation of weldability of Invention Example 2 is "◎ (excellent)", while the evaluation of weldability of Invention Examples 13 and 14 is "○ (good)". ) ”. The reason for this is due to the Al content of the invention example. That is, Invention Example 2 has Al: 9.0%, Invention Example 13 has Al: 13.5%, and Invention Example 14 has Al: 14.2%. Referring to Tables 1 and 2, when Al is 12.0% or less (Invention Example 2), the Ni phase and the Ni 3 Al phase are mainly precipitated, and the NiAl phase is not precipitated, but the Al exceeds 13.5%. (Invention Examples 13 and 14), it can be seen that the Ni 3 Al phase and the Ni Al phase are precipitated, and the Ni phase is not precipitated. That is, Invention Example 2 in which Al is 12.0% or less is in the composition range in which a large amount of Ni phase is deposited, and the weldability is improved by suppressing the Ni 3 Al phase and precipitating a large amount of Ni phase. On the other hand, in Invention Examples 12 and 13, although the NiAl phase having excellent weldability is precipitated, the weldability is slightly inferior to that of Invention Example 2 because more Ni 3 Al phases are precipitated (Ni phase + NiAl phase + NiZr). Compound phase) / Ni 3 Al phase is also considered to be 0.2 or less. That is, although the production method and the cooling rate of Invention Example 2 and Invention Examples 13 and 14 are substantially the same, at least the Al content is different, so that the phase to be precipitated is different, and Invention Example 2 is weldable. It has excellent characteristics and satisfies the formula: 0.2 <(Ni phase + NiAl phase + NiZr compound phase) / Ni 3 Al phase <2.0, but Invention Examples 13 and 14 have slightly weldability as compared with Invention Example 2. As a result, the same formula was not satisfied.
 一方、比較例は、比較例1と2が「◎(excellent)」であった。比較例1の溶接性が「◎(excellent)」であったのは、Al含有量が低く、溶接性にすぐれるNi相が多く析出したためである(以下、相については表1も参照)。比較例2と比較例3は、テストピースの製造方法が金型遠心であるか、砂型静置鋳造であるかの違いであるが、比較例3は溶接性の点数が「5」であり溶接性は「×(bad)」であった。比較例2のNi基合金が溶接性にすぐれるのは、金型遠心により冷却速度が100.0℃/minと速く、NiAl相の析出を抑えることができ、溶接性にすぐれるNi相が多く析出したためである。また、比較例8の溶接性は「○(good)」であった。これは、Al含有量16.0%を超えた結果、溶接性にすぐれるNiAl相が多く析出したためである。比較例2~7は、溶接試験結果の点数が「5」であり、溶接性は「×(bad)」であった。比較例3と4は、Zr+Bの合計量が本発明の範囲(3.0%以下)を超えていること、また、テストピースの製造方法が砂型静置鋳造であって、その冷却速度が8.0℃/minと遅く、溶接性に劣るNiAl相が多く析出したことで、溶接性が「×(bad)」となった。比較例5~7は、Al含有量が本発明の範囲(Al:12.0%超~13.5%未満を除く)から外れた結果、溶接性に劣るNiAl相が多く析出し、溶接性が「×(bad)」となった。 On the other hand, in Comparative Examples, Comparative Examples 1 and 2 were "◎ (excellent)". The weldability of Comparative Example 1 was "◎ (excellent)" because a large amount of Ni phase having a low Al content and excellent weldability was precipitated (see also Table 1 for the phase below). Comparative Example 2 and Comparative Example 3 differ in whether the method for manufacturing the test piece is die centrifugal or sand mold static casting, but Comparative Example 3 has a weldability score of "5" and is welded. The sex was "x (bad)". The reason why the Ni-based alloy of Comparative Example 2 is excellent in weldability is that the cooling rate is as fast as 100.0 ° C./min due to the centrifuge of the mold, the precipitation of the Ni 3 Al phase can be suppressed, and the Ni 3 Al phase is excellent in weldability. This is because many phases were deposited. The weldability of Comparative Example 8 was "○ (good)". This is because, as a result of the Al content exceeding 16.0%, a large amount of NiAl phase having excellent weldability was precipitated. In Comparative Examples 2 to 7, the score of the welding test result was "5" and the weldability was "x (bad)". In Comparative Examples 3 and 4, the total amount of Zr + B exceeds the range of the present invention (3.0% or less), the test piece is manufactured by sand mold static casting, and the cooling rate is 8. The weldability became "x (bad)" due to the precipitation of a large amount of Ni 3 Al phase, which was slow at 0.0 ° C./min and was inferior in weldability. In Comparative Examples 5 to 7, as a result of the Al content being out of the range of the present invention (excluding Al: more than 12.0% to less than 13.5%), a large amount of Ni 3 Al phase having poor weldability was precipitated. The weldability became "x (bad)".
<耐アルカリ腐食性試験>
 耐アルカリ腐食性試験は、次の要領で実施した。まず、各々のテストピースから、縦幅10mm×横幅40mm×厚さ10mmの板状の観察試験片を2個ずつ作製し、試験面を#40の研磨紙で研磨した。そして、リチウム化合物を主体とするアルカリ金属塩などのアルカリ腐食試験用粉末を試験面に載せた各々のテストピースを90%以上の酸素雰囲気下、900℃で5時間焼成した。試験面に新たなアルカリ腐食性の粉末を毎回載せ替えて、この焼成を10回繰り返した。すべての焼成終了後、各々の観察試験片の中央部を切断して、切断面を鏡面研磨し、シュウ酸浴中で電解することによりエッチングした。エッチングした切断面は、エタノールで脱脂して乾燥させた。その後、デジタルマイクロスコープ(株式会社キーエンス製)で切断面を観察し、試験面から厚さ方向に伸びるアルカリ腐食跡として減肉量及び粒界差込腐食長さの合計を腐食深さとして測定し、点数化した。腐食深さが1.0mm未満である場合を点数「1」とした。また、腐食深さが1.0mm以上且つ1.5mm未満である場合は点数「2」とした。一方、アルカリ腐食跡の程度が著しくて腐食深さの測定が不可能である場合、又は、腐食深さが1.5mm以上である場合、実製品として使用できないためアルカリ腐食試験の点数を「5」とした。「腐食深さ(mm)」と共に、表3に「耐アルカリ腐食性」の欄に「点数」で示す。なお、本試験数値は一例であり、焼成条件の違いやアルカリ腐食試験用粉末の種類等により腐食深さの数値(mm)にバラつきは発生するが、同様の傾向が得られる。
<Alkaline corrosion resistance test>
The alkali corrosion resistance test was carried out as follows. First, two plate-shaped observation test pieces having a length of 10 mm, a width of 40 mm, and a thickness of 10 mm were prepared from each test piece, and the test surface was polished with # 40 abrasive paper. Then, each test piece on which the alkaline corrosion test powder such as an alkali metal salt mainly composed of a lithium compound was placed on the test surface was fired at 900 ° C. for 5 hours under an oxygen atmosphere of 90% or more. A new alkaline corrosive powder was placed on the test surface each time, and this firing was repeated 10 times. After the completion of all firing, the central portion of each observation test piece was cut, the cut surface was mirror-polished, and the cut surface was etched by electrolysis in an oxalic acid bath. The etched cut surface was degreased with ethanol and dried. After that, the cut surface is observed with a digital microscope (manufactured by Keyence Co., Ltd.), and the total of the thinning amount and the grain boundary insertion corrosion length is measured as the corrosion depth as the alkaline corrosion trace extending from the test surface in the thickness direction. , Scored. When the corrosion depth was less than 1.0 mm, the score was "1". When the corrosion depth was 1.0 mm or more and less than 1.5 mm, the score was "2". On the other hand, if the degree of alkaline corrosion marks is so great that the corrosion depth cannot be measured, or if the corrosion depth is 1.5 mm or more, it cannot be used as an actual product, so the alkaline corrosion test score is "5". ". Along with "corrosion depth (mm)", it is shown by "score" in the column of "alkali corrosion resistance" in Table 3. The numerical value of this test is an example, and the numerical value (mm) of the corrosion depth varies depending on the difference in firing conditions, the type of powder for the alkaline corrosion test, and the like, but the same tendency can be obtained.
 得られた腐食深さと点数に基づき、耐アルカリ腐食性評価を行なった。評価は、点数が「1」のものを評価「◎(excellent)」、点数「2」を評価「○(good)」、点数「5」を評価「×(bad)」とした。 Alkaline corrosion resistance was evaluated based on the obtained corrosion depth and scores. In the evaluation, those with a score of "1" were evaluated as "◎ (excellent)", those with a score of "2" were evaluated as "○ (good)", and those with a score of "5" were evaluated as "× (bad)".
 表3「耐アルカリ腐食性」の「評価」に示すように、発明例は何れも評価「◎(excellent)」または「○(good)」であった。一方で、溶接性の評価が「◎(excellent)」であった。これらより、NiAl相の析出量が多いほど、耐アルカリ腐食性が向上していることがわかる。一方、比較例1、2は、耐アルカリ腐食性評価が「×(bad)」であった。これは、耐アルカリ腐食性にすぐれるNiAl相が少なかったことによる。また、その他の比較例のうち、比較例5~7は「◎(excellent)」比較例3と8は「○(good)」、比較例4は「×(bad)」であった。比較例4は、Alは本発明範囲に含まれるが、Zrが本発明範囲よりも多くなった結果、NiZr化合物であるNiZr相が過多に析出し、耐アルカリ腐食性に悪影響を与えため、耐アルカリ腐食性が低下した。 As shown in "Evaluation" of Table 3 "Alkaline corrosion resistance", all of the invention examples were evaluated as "◎ (excellent)" or "○ (good)". On the other hand, the evaluation of weldability was "◎ (excellent)". From these, it can be seen that the larger the precipitation amount of the Ni 3 Al phase, the better the alkali corrosion resistance. On the other hand, in Comparative Examples 1 and 2, the alkali corrosion resistance evaluation was "x (bad)". This is because there were few Ni 3 Al phases with excellent alkali corrosion resistance. Among the other comparative examples, Comparative Examples 5 to 7 were "◎ (excellent)", Comparative Examples 3 and 8 were "○ (good)", and Comparative Example 4 was "× (bad)". In Comparative Example 4, Al is included in the range of the present invention, but as a result of the amount of Zr being larger than the range of the present invention, the Ni 7 Zr 2 phase, which is a NiZr compound, is excessively precipitated, which adversely affects the alkali corrosion resistance. Therefore, the alkali corrosion resistance was lowered.
<溶接性と耐アルカリ腐食性の合計評価>
 実施例2で実施した「溶接性」と「耐アルカリ腐食性」の試験について、合計評価を行なった。表3を参照すると、「溶接性」と「耐アルカリ腐食性」の評価が共に「◎(excellent)」のものはなかった。そこで、溶接性試験結果の点数と、耐アルカリ腐食性試験の点数を合計し、その合計が「3」以下の場合を合計評価「◎(excellent)」、合計が「4」の場合を合計評価「○(good)」、合計が「5」以上の場合を合計評価「×(bad)」とした。結果を表4中、合計評価(溶接性+耐アルカリ腐食性)に示す。
<Total evaluation of weldability and alkali corrosion resistance>
A total evaluation was performed on the "weldability" and "alkali corrosion resistance" tests carried out in Example 2. Referring to Table 3, none of the evaluations of "weldability" and "alkali corrosion resistance" were "◎ (excellent)". Therefore, the score of the weldability test result and the score of the alkali corrosion resistance test are totaled, and the total evaluation is "◎ (excellent)" when the total is "3" or less, and the total evaluation is when the total is "4". When "○ (good)" and the total was "5" or more, the total evaluation was "x (bad)". The results are shown in the total evaluation (weldability + alkali corrosion resistance) in Table 4.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 表4を参照すると発明例は何れも評価「◎(excellent)」または「○(good)」であり、「溶接性」と「耐アルカリ腐食性」の両方にすぐれていた。一方、比較例は、比較例8が「○(good)」であるが、その他はすべて「×(bad)」であった。なお、比較例8は、「製造性」の評価が「×(bad)」であるから、鋳造性や加工性に劣り、実製品への使用は適当でないことがわかる。 With reference to Table 4, all of the invention examples were evaluated as "◎ (excellent)" or "○ (good)", and were excellent in both "weldability" and "alkali corrosion resistance". On the other hand, in the comparative example, comparative example 8 was "○ (good)", but all others were "x (bad)". In Comparative Example 8, since the evaluation of "manufacturability" is "x (bad)", it is inferior in castability and workability, and it can be seen that it is not suitable for use in an actual product.
 本発明に規定した組成のNi基合金は、溶接性と耐アルカリ腐食性の両方にすぐれることがわかる。 It can be seen that the Ni-based alloy having the composition specified in the present invention is excellent in both weldability and alkali corrosion resistance.
<総合評価>
 上記した「溶接性と耐アルカリ腐食性」の「合計評価」に加え、「製造性」を含めた総合評価を行なった。総合評価は、「溶接性」、「耐アルカリ腐食性」、「製造性」で夫々数値化した点数の合計で評価した。具体的には、点数の合計が「5」以下の場合を総合評価「◎(excellent)」、合計が「6」または「7」の場合を総合評価「○(good)」、合計が「8」以上を総合評価「×(bad)」とした。結果を表4中「総合評価」に示す。
<Comprehensive evaluation>
In addition to the "total evaluation" of "weldability and alkali corrosion resistance" mentioned above, a comprehensive evaluation including "manufacturability" was performed. The comprehensive evaluation was based on the total of the points quantified for "weldability", "alkali corrosion resistance", and "manufacturability". Specifically, when the total score is "5" or less, the overall evaluation is "◎ (excellent)", when the total is "6" or "7", the overall evaluation is "○ (good)", and the total is "8". The above is the overall evaluation "x (bad)". The results are shown in "Comprehensive evaluation" in Table 4.
 表4を参照すると、発明例は何れも評価「◎(excellent)」または「○(good)」であり、溶接性、耐アルカリ腐食性だけでなく製造性にもすぐれていた。一方、比較例は、製造性、溶接性、耐アルカリ腐食性の何れかで実製品として使用に不向きな点数「5」が含まれた結果、合計点数が「8」以上となり、総合評価「×(bad)」であった。 With reference to Table 4, all of the invention examples were evaluated as "◎ (excellent)" or "○ (good)", and were excellent not only in weldability and alkali corrosion resistance but also in manufacturability. On the other hand, in the comparative example, as a result of including a score "5" which is unsuitable for use as an actual product due to any of manufacturability, weldability, and alkali corrosion resistance, the total score is "8" or more, and the comprehensive evaluation "x". (Bad) ".
 上記より、本発明で規定する組成、或いは、組成と相比を有するNi基合金は、製造性、溶接性及び耐アルカリ腐食性にすぐれることがわかる。 From the above, it can be seen that the Ni-based alloy having the composition specified in the present invention or having a phase ratio with the composition is excellent in manufacturability, weldability and alkali corrosion resistance.
 上記説明は、本発明を説明するためのものであって、特許請求の範囲に記載の発明を限定し、或いは範囲を限縮するように解すべきではない。また、本発明の各部構成は、上記実施形態に限らず、特許請求の範囲に記載の技術的範囲内で種々の変形が可能であることは勿論である。 The above description is for explaining the present invention, and should not be understood to limit or limit the scope of the invention described in the claims. In addition, each part of the present invention is not limited to the above embodiment, and it goes without saying that various modifications can be made within the technical scope described in the claims.
10 ビード
11 クレータ
12 点状欠陥
13 割れ(クレータ以外)
20 浸透液の浸み出し
30 Ni基合金
10 Beads 11 Craters 12 Dot defects 13 Cracks (other than craters)
20 Penetrant seepage 30 Ni-based alloy

Claims (7)

  1.  質量%にて、
     Al:8.0%~16.0%、
     Zr:0.01%以上、
     B:0.001%以上、及び、
     残部Ni及び不可避的不純物からなり、
     Al:12.0%超~13.5%未満を除き、
     ZrとBは合計量で3.0%以下である、
     耐アルカリ腐食性と溶接性にすぐれるNi基合金。
    By mass%
    Al: 8.0% to 16.0%,
    Zr: 0.01% or more,
    B: 0.001% or more and
    The balance consists of Ni and unavoidable impurities.
    Al: Except for more than 12.0% and less than 13.5%
    Zr and B total less than 3.0%,
    Ni-based alloy with excellent alkali corrosion resistance and weldability.
  2.  Zr:0.68%以上2.999%以下、
     B:0.001%以上0.033%以下である。
     請求項1に記載のNi基合金。
    Zr: 0.68% or more and 2.999% or less,
    B: 0.001% or more and 0.033% or less.
    The Ni-based alloy according to claim 1.
  3.  Alの含有量は、質量%にて、9.5%~11.5%である、
     請求項1又は請求項2に記載のNi基合金。
    The Al content is 9.5% to 11.5% by mass.
    The Ni-based alloy according to claim 1 or 2.
  4.  表面に少なくともNiAl相と、Ni相、NiAl相、又は、NiZr化合物相の何れかが析出しており、
     析出したNiAl相、Ni相、NiAl相、NiZr化合物相の面積率は、
     0.2<(Ni相+NiAl相+NiZr化合物相)/NiAl相<2.0である、
     請求項1乃至請求項3の何れかに記載のNi基合金。
    At least one of the Ni 3 Al phase and the Ni phase, the NiAl phase, or the NiZr compound phase is precipitated on the surface.
    The area ratio of the precipitated Ni 3 Al phase, Ni phase, NiAl phase, and NiZr compound phase is
    0.2 <(Ni phase + NiAl phase + NiZr compound phase) / Ni 3 Al phase <2.0,
    The Ni-based alloy according to any one of claims 1 to 3.
  5.  Crを含まない、
     請求項1乃至請求項4の何れかに記載のNi基合金。
    Does not contain Cr,
    The Ni-based alloy according to any one of claims 1 to 4.
  6.  電極材の製造に用いられる熱処理炉用部品であって、
     請求項1乃至請求項5の何れかのNi基合金からなる、
     熱処理炉用部品。
    A part for a heat treatment furnace used in the manufacture of electrode materials.
    It is made of the Ni-based alloy according to any one of claims 1 to 5.
    Parts for heat treatment furnace.
  7.  電極材の製造に用いられる熱処理炉用部品であって、
     請求項1乃至請求項5の何れかのNi基合金からなる管体どうしを溶接接続してなる、
     熱処理炉用部品。
    A part for a heat treatment furnace used in the manufacture of electrode materials.
    A pipe body made of the Ni-based alloy according to any one of claims 1 to 5 is welded and connected to each other.
    Parts for heat treatment furnace.
PCT/JP2021/047332 2020-12-24 2021-12-21 Ni-based alloy and heat treatment furnace component formed of same WO2022138645A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2020214786 2020-12-24
JP2020-214786 2020-12-24
JP2021-108302 2021-06-30
JP2021108302A JP7073563B1 (en) 2020-12-24 2021-06-30 Ni-based alloy and heat treatment furnace parts made of it

Publications (1)

Publication Number Publication Date
WO2022138645A1 true WO2022138645A1 (en) 2022-06-30

Family

ID=81707807

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/047332 WO2022138645A1 (en) 2020-12-24 2021-12-21 Ni-based alloy and heat treatment furnace component formed of same

Country Status (2)

Country Link
JP (1) JP7073563B1 (en)
WO (1) WO2022138645A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62274040A (en) * 1986-05-22 1987-11-28 Mitsubishi Heavy Ind Ltd Ni alloy
JPS62274042A (en) * 1986-05-22 1987-11-28 Mitsubishi Heavy Ind Ltd Sliding member
JPS63225722A (en) * 1986-09-30 1988-09-20 Mitsubishi Heavy Ind Ltd Sliding member
WO2021132350A1 (en) * 2019-12-27 2021-07-01 株式会社クボタ Nickel-base alloy, heat-resistant and corrosion resistant component, and component for heat-treatment furnace

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55110748A (en) * 1979-02-16 1980-08-26 Osamu Izumi Nickel-aluminum series super heat-resistant alloy ductile at room temperature
JPS5669342A (en) * 1979-11-12 1981-06-10 Osamu Izumi Ni3al alloy with superior oxidation resistance, sulfurization resistance and ductility
JPS62225722A (en) * 1986-03-28 1987-10-03 Mazda Motor Corp Exhaust gas reflux amount control device for engine
US7814772B2 (en) * 2007-11-29 2010-10-19 Metso Minerals, Inc. Method for manufacturing a coiler drum and a coiler drum
EP2823074A4 (en) * 2012-03-09 2016-01-13 Indian Inst Scient Nickel- aluminium- zirconium alloys

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62274040A (en) * 1986-05-22 1987-11-28 Mitsubishi Heavy Ind Ltd Ni alloy
JPS62274042A (en) * 1986-05-22 1987-11-28 Mitsubishi Heavy Ind Ltd Sliding member
JPS63225722A (en) * 1986-09-30 1988-09-20 Mitsubishi Heavy Ind Ltd Sliding member
WO2021132350A1 (en) * 2019-12-27 2021-07-01 株式会社クボタ Nickel-base alloy, heat-resistant and corrosion resistant component, and component for heat-treatment furnace

Also Published As

Publication number Publication date
JP2022101434A (en) 2022-07-06
JP7073563B1 (en) 2022-05-23

Similar Documents

Publication Publication Date Title
JP5852580B2 (en) Flame retardant magnesium alloy having excellent mechanical properties and method for producing the same
JP6206322B2 (en) Aluminum alloy fin material for heat exchanger excellent in brazing and sag resistance and method for producing the same
WO2014142089A1 (en) HEAT-RESISTANT Ni-BASED ALLOY AND METHOD FOR MANUFACTURING SAME
JP6033437B2 (en) Use of nickel-chromium-iron-aluminum alloy with good workability
JP5109115B2 (en) Nickel-base superalloy and manufacturing method thereof
JP5555135B2 (en) Copper alloy with improved hot and cold workability, method for producing the same, and copper alloy strip or alloy foil obtained from the copper alloy
US20230011769A1 (en) Ni-BASED ALLOY, HEAT-RESISTANT AND CORROSION-RESISTANT COMPONENT, AND HEAT TREATMENT FURNACE COMPONENT
KR101832654B1 (en) Ni-Ir-BASED HEAT-RESISTANT ALLOY AND PROCESS FOR PRODUCING SAME
JP2008274314A (en) Gas turbine blade and manufacturing method thereof
JP2018104729A (en) Ni-based heat-resistant alloy
JP4905680B2 (en) Magnesium casting alloy and compressor impeller using the same
WO2022138645A1 (en) Ni-based alloy and heat treatment furnace component formed of same
JP6155575B2 (en) Electrode material, spark plug electrode, and spark plug
JP3912815B2 (en) High temperature sulfidation corrosion resistant Ni-base alloy
CN115609185A (en) Corrosion-resistant Al-Mg-Er-Zr alloy welding wire and preparation method thereof
JP5792696B2 (en) High strength copper alloy tube
JP4360229B2 (en) Pharmaceutical manufacturing plant components
JP2006257507A (en) Alloy for nonferrous molten metal
JP2018197391A (en) Ferritic stainless steel for plating bath
RU2596535C2 (en) Solder for soldering aluminium and alloys thereof
JP2005144488A (en) Build-up welding material for continuous casting roll and roll using it
JPS5953340B2 (en) Creep-resistant cobalt-based alloy
JP6179325B2 (en) Mold material for continuous casting
JP4001368B2 (en) High hardness aluminum alloy extruded material with excellent brazeability and machinability and its manufacturing method
JPH0820846A (en) High chromium high nickel alloy excellent in molten carbonate corrosion resistance

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21910787

Country of ref document: EP

Kind code of ref document: A1

DPE2 Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21910787

Country of ref document: EP

Kind code of ref document: A1