WO2022137617A1 - 二次電池 - Google Patents

二次電池 Download PDF

Info

Publication number
WO2022137617A1
WO2022137617A1 PCT/JP2021/027137 JP2021027137W WO2022137617A1 WO 2022137617 A1 WO2022137617 A1 WO 2022137617A1 JP 2021027137 W JP2021027137 W JP 2021027137W WO 2022137617 A1 WO2022137617 A1 WO 2022137617A1
Authority
WO
WIPO (PCT)
Prior art keywords
negative electrode
positive electrode
secondary battery
current collector
active material
Prior art date
Application number
PCT/JP2021/027137
Other languages
English (en)
French (fr)
Inventor
ハルシユ ジヤガード
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Publication of WO2022137617A1 publication Critical patent/WO2022137617A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0585Construction or manufacture of accumulators having only flat construction elements, i.e. flat positive electrodes, flat negative electrodes and flat separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/102Primary casings; Jackets or wrappings characterised by their shape or physical structure
    • H01M50/109Primary casings; Jackets or wrappings characterised by their shape or physical structure of button or coin shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/531Electrode connections inside a battery casing
    • H01M50/54Connection of several leads or tabs of plate-like electrode stacks, e.g. electrode pole straps or bridges
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/543Terminals
    • H01M50/552Terminals characterised by their shape
    • H01M50/559Terminals adapted for cells having curved cross-section, e.g. round, elliptic or button cells
    • H01M50/56Cup shaped terminals
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • This technology is related to secondary batteries.
  • the secondary battery includes a positive electrode, a negative electrode, and a separator, and the positive electrode and the negative electrode are laminated with each other via a separator.
  • a plurality of positive electrode wirings connected to each positive electrode are joined to each other, a plurality of negative electrode wirings connected to each negative electrode are joined to each other, and the positive electrode wiring is one of the storage members.
  • the negative electrode wiring is connected to the other storage member (see, for example, Patent Documents 1 and 2).
  • Each of the positive electrode and the negative electrode has a substantially circular planar shape, and each of the positive electrode and the negative electrode has two tapered portions (see, for example, Patent Document 3).
  • Each of the positive electrode and the negative electrode has a substantially octagonal planar shape (see, for example, Patent Document 4).
  • the secondary battery of one embodiment of the present technology includes a first electrode and a second electrode that are laminated to each other via a separator.
  • the first electrode includes a first current collector and a first active material layer provided on the first current collector.
  • the second electrode includes a second current collector and a second active material layer provided on the second current collector.
  • the first electrode is arranged at the first position, the first recessed portion in which the first current collector is partially recessed toward the inside of the first current collector, and the second recessed portion different from the first position. Arranged at a position, it has a first exposed portion in which the first active material layer is partially recessed toward the inside of the first active material layer and the first current collector is partially exposed.
  • the second electrode is arranged at the first position, and the second active material layer is partially recessed toward the inside of the second active material layer and the second current collector is partially exposed. It has two exposed portions and a second recessed portion that is arranged at a second position and the second current collector is partially recessed toward the inside of the second current collector.
  • the first electrode and the second electrode are laminated with each other via a separator, and the first electrode is in the first position in the first recess and the second position. Since it has a first exposed portion and its second electrode has a second exposed portion at the first position and a second recessed portion at the second position, it has excellent battery capacity characteristics while ensuring safety. Can be obtained.
  • the effect of this technique is not necessarily limited to the effect described here, and may be any of a series of effects related to this technique described later.
  • FIG. 3 is an enlarged cross-sectional view showing the configuration of the main part of the secondary battery shown in FIG. 1.
  • It is a top view which shows the structure of the positive electrode shown in FIG. It is a top view which shows the structure of the negative electrode shown in FIG.
  • FIG. 7 shows the structure of the negative electrode shown in FIG. 7.
  • the secondary battery described here has a flat and columnar three-dimensional shape, and is a small secondary battery called a so-called coin type or button type.
  • This secondary battery has a pair of bottom portions facing each other and a side wall portion located between the pair of bottom portions, and the height of the secondary battery is smaller than the outer diameter of the secondary battery.
  • the "outer diameter” is the diameter (maximum diameter) of each of the pair of bottoms, and the “height” is the distance (maximum distance) from one bottom to the other bottom.
  • the charging / discharging principle of the secondary battery is not particularly limited, but the case where the battery capacity can be obtained by using the occlusion / discharge of the electrode reactant will be described below.
  • This secondary battery includes an electrolyte together with the positive electrode and the negative electrode, and the charge capacity of the negative electrode is preferably larger than the discharge capacity of the positive electrode. That is, it is preferable that the electrochemical capacity per unit area of the negative electrode is larger than the electrochemical capacity per unit area of the positive electrode. This is to prevent the electrode reactant from precipitating on the surface of the negative electrode during charging.
  • the type of electrode reactant is not particularly limited, but specifically, it is a light metal such as an alkali metal and an alkaline earth metal.
  • Alkali metals are lithium, sodium and potassium and the like, and alkaline earth metals are beryllium, magnesium and calcium and the like.
  • a secondary battery whose battery capacity can be obtained by utilizing the occlusion and release of lithium is a so-called lithium ion secondary battery.
  • lithium ion secondary battery lithium is occluded and released in an ionic state.
  • FIG. 1 shows a cross-sectional configuration of a secondary battery.
  • FIG. 2 shows the perspective configuration of the secondary battery shown in FIG.
  • FIG. 3 is an enlargement of the cross-sectional structure of the main part of the secondary battery shown in FIG.
  • FIG. 4 shows the planar configuration of the positive electrode 31 shown in FIG.
  • FIG. 5 shows the planar configuration of the negative electrode 32 shown in FIG.
  • FIG. 6 shows the planar configuration of the separator 33 shown in FIG.
  • FIG. 2 shows a state in which the series of components are separated from each other in order to make it easier to see the positional relationship of the series of components of the secondary battery described later.
  • FIG. 3 shows a battery element 30, a positive electrode tab 40, and a negative electrode tab 50 as the main parts of the secondary battery.
  • position P1 the position on the left side of the secondary battery in each of FIGS. 1 to 6 is referred to as "position P1", and the position on the right side of the secondary battery is referred to as "position P2".
  • position P1 is a position opposite to the position P2, that is, a position facing the position P2.
  • the secondary battery described here has a three-dimensional shape in which the height H (vertical dimension) is smaller than the outer diameter D (horizontal dimension), that is, a flat and columnar three-dimensional shape. It has a shape.
  • the three-dimensional shape of the secondary battery is flat and cylindrical.
  • the ratio (D / H) of the outer diameter D to the height H is larger than 1.
  • the upper limit of the ratio (D / H) is not particularly limited, but for example, the ratio (D / H) is preferably 25 or less.
  • this secondary battery includes an outer can 10, a gasket 20, a battery element 30, a positive electrode tab 40, and a negative electrode tab 50.
  • the outer can 10 is a storage member for accommodating the battery element 30, the positive electrode tab 40, the negative electrode tab 50, and the like.
  • the outer can 10 has a flat and columnar three-dimensional shape according to the three-dimensional shape of the secondary battery which is flat and columnar.
  • the outer can 10 includes a pair of outer containers 11 and 12 having one end open and the other end closed, i.e. each of the outer containers 11 and 12 has a bottom and a side wall. It is a container-shaped member.
  • the outer container 11 is a first storage portion having an inner diameter larger than the outer diameter of the outer container 12, and has an opening 11K on the side facing the outer container 12.
  • the outer container 12 is a second storage portion having an outer diameter smaller than the inner diameter of the outer container 11, and has an opening 12K on the side facing the outer container 11.
  • the outer containers 11 and 12 are separated from each other and are insulated from each other via the gasket 20.
  • Each of the outer containers 11 and 12 has conductivity. As a result, since the outer container 11 is connected to the battery element 30 (positive electrode 31) via the positive electrode tab 40, it functions as an external connection terminal for the positive electrode 31. On the other hand, since the outer container 12 is connected to the battery element 30 (negative electrode 32) via the negative electrode tab 50, it functions as an external connection terminal for the negative electrode 32. This is because the secondary battery does not have to be provided with the external connection terminal of the positive electrode 31 and the external connection terminal of the negative electrode 32 separately from the outer containers 11 and 12. As a result, the element space volume increases, so that the energy density per unit volume of the secondary battery increases.
  • the "element space volume” is the volume (effective volume) of the internal space of the outer can 10 that can be used to house the battery element 30.
  • each of the outer containers 11 and 12 contains one or more of conductive materials such as metal materials and alloy materials, and the conductive materials are iron, copper, and the like.
  • conductive materials such as metal materials and alloy materials
  • the conductive materials are iron, copper, and the like.
  • the type of stainless steel is not particularly limited, but specifically, SUS304, SUS316, and the like.
  • the forming material of the outer container 11 and the forming material of the outer container 12 may be the same or different from each other.
  • the outer containers 11 and 12 are arranged so that the openings 11K and 12K face each other, and the outer containers 12 are added to each other via the gasket 20 in a state where the outer container 12 is inserted inside the outer container 11. It is tightened. Therefore, the outer can 10 is a can formed by crimping, and is a so-called crimp can.
  • the gasket 20 is an insulating member interposed between the outer containers 11 and 12. As described above, since the outer containers 11 and 12 are crimped to each other via the gasket 20, the gasket 20 is held by the outer containers 11 and 12. In FIG. 2, the gasket 20 is not shown.
  • the gasket 20 contains any one or more of the insulating materials such as an insulating polymer compound, and the insulating materials are polypropylene, polyethylene and the like.
  • the battery element 30 is a power generation element that promotes a charge / discharge reaction, and is housed inside the outer can 10.
  • the battery element 30 contains an electrolytic solution (not shown) which is a liquid electrolyte together with a positive electrode 31, a negative electrode 32, and a separator 33. Therefore, the positive electrode 31, the negative electrode 32, and the separator 33 are housed inside the outer can 10.
  • the battery element 30 is schematically shown for simplification of the illustrated contents.
  • the battery element 30 is a so-called laminated electrode body. That is, in the battery element 30, since the positive electrode 31 and the negative electrode 32 are laminated with each other via the separator 33, the positive electrode 31 and the negative electrode 32 face each other via the separator 33.
  • the direction in which the positive electrode 31 and the negative electrode 32 are laminated with each other via the separator 33 is referred to as “stacking direction S”. As shown in FIGS. 2 and 3, the stacking direction S is the vertical direction of the secondary battery.
  • the battery element 30 includes a plurality of positive electrodes 31, a plurality of negative electrodes 32, and a plurality of separators 33. Therefore, the plurality of positive electrodes 31 and the plurality of negative electrodes 32 are alternately laminated via the plurality of separators 33 in the stacking direction S.
  • the numbers of the positive electrode 31, the negative electrode 32 and the separator 33 are not particularly limited, they can be set arbitrarily. That is, the number of each of the positive electrode 31, the negative electrode 32, and the separator 33 may be only one, or may be two or more as described above.
  • FIG. 2 shows a case where the battery element 30 includes two positive electrodes 31, two negative electrodes 32, and four separators 33 in order to simplify the illustration. In this case, the separator 33 is arranged on the lowermost side, and the negative electrode 32 is arranged on the uppermost side.
  • the battery element 30 Since the battery element 30 has a three-dimensional shape similar to the three-dimensional shape of the outer can 10, it has a flat and columnar three-dimensional shape. Compared with the case where the battery element 30 has a three-dimensional shape different from the three-dimensional shape of the outer can 10, when the battery element 30 is housed inside the outer can 10, a dead space (outer can 10) is used. This is because the internal space of the outer can 10 is effectively used because the gap between the battery element 30 and the battery element 30 is less likely to occur. As a result, the element space volume increases, so that the energy density per unit volume of the secondary battery increases.
  • the positive electrode 31 is a first electrode used for advancing the charge / discharge reaction, and includes a positive electrode current collector 31A and a positive electrode active material layer 31B as shown in FIGS. 2 to 4. In each of FIGS. 2 and 4, the positive electrode current collector 31A is lightly shaded, and the positive electrode active material layer 31B is darkly shaded.
  • the positive electrode current collector 31A is a first current collector that supports the positive electrode active material layer 31B, and has a pair of surfaces on which the positive electrode active material layer 31B is provided.
  • the positive electrode current collector 31A contains a conductive material such as a metal material, and the metal material is aluminum or the like.
  • the positive electrode active material layer 31B is a first active material layer provided on the positive electrode current collector 31A, and contains any one or more of the positive electrode active materials capable of occluding and releasing lithium. I'm out.
  • the positive electrode active material layer 31B is provided on both sides of the positive electrode current collector 31A.
  • the positive electrode active material layer 31B may be provided on only one side of the positive electrode current collector 31A on the side where the positive electrode 31 faces the negative electrode 32.
  • the positive electrode active material layer 31B may further contain any one or more of other materials such as a positive electrode binder and a positive electrode conductive agent.
  • the method for forming the positive electrode active material layer 31B is not particularly limited, but specifically, it is a coating method or the like.
  • the positive electrode active material contains a lithium compound.
  • This lithium compound is a general term for compounds containing lithium as a constituent element, and more specifically, a compound containing one or more kinds of transition metal elements as a constituent element together with lithium. This is because a high energy density can be obtained.
  • the lithium compound may further contain any one or more of the other elements (elements other than lithium and the transition metal element) as constituent elements.
  • the type of the lithium compound is not particularly limited, but specific examples thereof include oxides, phosphoric acid compounds, silicic acid compounds and boric acid compounds. Specific examples of oxides are LiNiO 2 , LiCoO 2 and LiMn 2 O 4 , and specific examples of phosphoric acid compounds are LiFePO 4 and LiMnPO 4 .
  • the positive electrode binder contains any one or more of synthetic rubber and polymer compounds.
  • the synthetic rubber is styrene-butadiene rubber or the like, and the polymer compound is polyvinylidene fluoride or the like.
  • the positive electrode conductive agent contains any one or more of the conductive materials such as carbon material, and the carbon material is graphite, carbon black, acetylene black, ketjen black and the like.
  • the conductive material may be a metal material, a polymer compound, or the like.
  • the positive electrode 31 has a recessed portion 31X and an exposed portion 31Y.
  • the recessed portion 31X is arranged at the position P1, and when the positive electrode current collector 31A looks inside the positive electrode current collector 31A (when the positive electrode 31 (positive electrode current collector 31A) is viewed from the stacking direction S, the positive electrode 31). This is the first recessed portion that is partially recessed toward the center of the). As described above, the recessed portion 31X is a portion in which the positive electrode current collector 31A is partially recessed, and is therefore different from the tapered portion 31M (see FIG. 8) described later. Since the positive electrode current collector 31A does not exist in the recessed portion 31X, the positive electrode active material layer 31B also does not exist.
  • the positive electrode 31 has a circular planar shape except for the recessed portion 31X, that is, has a substantially circular planar shape that is partially recessed in the recessed portion 31X. This is because when the outer can 10 has a flat and columnar three-dimensional shape, dead space due to the planar shape of the positive electrode 31 is less likely to occur.
  • the recessed portion 31X has an arcuate planar shape curved along the outer edge (circumference) of the circle corresponding to the planar shape of the positive electrode 31. This is because the area of the recessed portion 31X, which is the space through the negative electrode tab 50, is secured, and the area of the recessed portion 31X is sufficiently small.
  • the circle corresponding to the planar shape of the positive electrode 31 is shown by a broken line.
  • the exposed portion 31Y is arranged at a position P2 different from the position P1, and the positive electrode active material layer 31B is inside the positive electrode active material layer 31B (when the positive electrode 31 (positive electrode active material layer 31B) is viewed from the stacking direction S).
  • the positive electrode current collector 31A is partially exposed while being partially recessed toward the center of the positive electrode 31). That is, in the exposed portion 31Y, since the positive electrode current collector 31A is not covered with the positive electrode active material layer 31B, the positive electrode current collector 31A is exposed. In this exposed portion 31Y, the positive electrode current collector 31A is present, but the positive electrode active material layer 31B is not present.
  • the positive electrode 31 has a substantially circular planar shape as described above.
  • the exposed portion 31Y has a planar shape similar to the planar shape of the recessed portion 31X, that is, an arc shape curved along the outer edge (circumference) of the circle corresponding to the planar shape of the positive electrode 31. It preferably has a planar shape. This is because the area of the exposed portion 31Y, which is the connection point with the positive electrode tab 40, is secured, and the area of the exposed portion 31Y is sufficiently small.
  • the exposed portion 31Y of the positive electrode current collector 31A protrudes toward the position P2 so as to be connectable to the positive electrode tab 40.
  • the positive electrode current collector 31A is retracted toward the position P2 in the recessed portion 31X so as to be inaccessible to the negative electrode tab 50.
  • the dimensional parameters that define the planar shapes of the recessed portion 31X and the exposed portion 31Y are not particularly limited and can be arbitrarily set.
  • the width W31X which is the receding distance of the positive electrode current collector 31A in the recessed portion 31X, can be arbitrarily set, and the angle ⁇ 31X that determines the bending distance (the length of the arc) of the recessed portion 31X is set. , Can be set arbitrarily.
  • the width W31Y which is the receding distance of the positive electrode active material layer 31B in the exposed portion 31Y
  • the angle ⁇ 31Y which determines the bending distance (length of the arc) of the exposed portion 31Y, can be arbitrarily set. It is configurable.
  • the negative electrode 32 is a second electrode used for advancing the charge / discharge reaction, and includes a negative electrode current collector 32A and a negative electrode active material layer 32B as shown in FIGS. 2, 3 and 5. In each of FIGS. 2 and 5, the negative electrode current collector 32A is lightly shaded, and the negative electrode active material layer 32B is darkly shaded.
  • the negative electrode current collector 32A is a second current collector that supports the negative electrode active material layer 32B, and has a pair of surfaces on which the negative electrode active material layer 32B is provided.
  • the negative electrode current collector 32A contains a conductive material such as a metal material, and the metal material is copper or the like.
  • the negative electrode active material layer 32B is a second active material layer provided on the negative electrode current collector 32A, and contains any one or more of the negative electrode active materials capable of occluding and discharging lithium. I'm out.
  • the negative electrode active material layer 32B is provided on both sides of the negative electrode current collector 32A.
  • the negative electrode active material layer 32B may be provided on only one side of the negative electrode current collector 32A on the side where the negative electrode 32 faces the positive electrode 31.
  • the negative electrode active material layer 32B may further contain any one or more of other materials such as a negative electrode binder and a negative electrode conductive agent.
  • the details regarding the negative electrode binder and the negative electrode conductive agent are the same as the details regarding the positive electrode binder and the positive electrode conductive agent, respectively.
  • the method for forming the negative electrode active material layer 32B is not particularly limited, but specifically, any one of a coating method, a gas phase method, a liquid phase method, a thermal spraying method, a firing method (sintering method), and the like, or There are two or more types.
  • the negative electrode active material contains one or both of a carbon material and a metallic material. This is because a high energy density can be obtained.
  • the carbon material is any one or more of graphitizable carbon, non-graphitizable carbon and graphite (natural graphite and artificial graphite).
  • the metal-based material is a material containing one or more of metal elements and semi-metal elements capable of forming an alloy with lithium as constituent elements, and the metal elements and semi-metal elements are silicon and semi-metal elements. One or both of the tin.
  • the metal-based material may be a simple substance, an alloy, a compound, a mixture of two or more of them, or a material containing two or more of these phases.
  • Specific examples of the metallic material are TiSi 2 and SiO x (0 ⁇ x ⁇ 2, 0.2 ⁇ x ⁇ 1.4) and the like.
  • the negative electrode 32 has the same configuration as that of the positive electrode 31 except that the left and right sides are reversed, and more specifically, it has a recessed portion 32X and an exposed portion 32Y.
  • the recessed portion 32X is arranged at a position P2 opposite to the position P1 where the recessed portion 31X is arranged, and the negative electrode current collector 32A is inside the negative electrode current collector 32A (from the stacking direction S to the negative electrode 32).
  • the recessed portion 32X is a second recessed portion that is partially recessed toward (the side toward the center of the negative electrode 32).
  • the recessed portion 32X is a portion in which the negative electrode current collector 32A is partially recessed, and is therefore different from the tapered portion 32M (see FIG. 9) described later. In this recessed portion 32X, since the negative electrode current collector 32A does not exist, the negative electrode active material layer 32B also does not exist.
  • the negative electrode 32 has a circular planar shape except for the recessed portion 32X, that is, has a substantially circular planar shape that is partially recessed in the recessed portion 32X, like the positive electrode 31. .. This is because when the outer can 10 has a flat and columnar three-dimensional shape, dead space due to the planar shape of the negative electrode 32 is less likely to occur.
  • the recessed portion 32X has an arcuate planar shape curved along the outer edge (circumference) of the circle corresponding to the planar shape of the negative electrode 32, similarly to the recessed portion 31X. This is because the area of the recessed portion 32X, which is the space through the positive electrode tab 40, is secured, and the area of the recessed portion 32X is sufficiently small.
  • the circle corresponding to the planar shape of the negative electrode 32 is shown by a broken line.
  • the exposed portion 32Y is arranged at a position P1 opposite to the position P2 where the exposed portion 31Y is arranged, and the negative electrode active material layer 32B is inside the negative electrode active material layer 32B (from the stacking direction S to the negative electrode 32).
  • the negative electrode active material layer 32B When looking at (negative electrode active material layer 32B), in the second exposed portion where the negative electrode current collector 32A is partially exposed while being partially recessed toward (the side toward the center of the negative electrode 32). be. That is, in the exposed portion 32Y, since the negative electrode current collector 32A is not covered with the negative electrode active material layer 32B, the negative electrode current collector 32A is exposed. In this exposed portion 32Y, the negative electrode current collector 32A is present, but the negative electrode active material layer 32B is not present.
  • the negative electrode 32 has a substantially circular planar shape as described above.
  • the exposed portion 32Y has a planar shape similar to the planar shape of the recessed portion 32X, that is, an arc shape curved along the outer edge (circumference) of the circle corresponding to the planar shape of the negative electrode 32. It preferably has a planar shape. This is because the area of the exposed portion 32Y, which is the connection point with the negative electrode tab 50, is secured, and the area of the exposed portion 32Y is sufficiently small.
  • the exposed portion 32Y of the negative electrode current collector 32A protrudes toward the position P1 so as to be connectable to the negative electrode tab 50.
  • the negative electrode current collector 32A is retracted toward the position P1 in the recessed portion 32X so as to be inaccessible to the positive electrode tab 40.
  • the dimensional parameters that define the planar shapes of the recessed portion 32X and the exposed portion 32Y are not particularly limited and can be arbitrarily set.
  • the width W32X which is the receding distance of the negative electrode current collector 32A in the recessed portion 32X, can be arbitrarily set, and the angle ⁇ 32X that determines the bending distance (length of the arc) of the recessed portion 32X is set. , Can be set arbitrarily.
  • the width W32Y which is the receding distance of the negative electrode active material layer 32B in the exposed portion 32Y
  • the angle ⁇ 32Y which determines the bending distance (length of the arc) of the exposed portion 32Y, can be arbitrarily set. It is configurable.
  • the outer diameter of the negative electrode 32 may be larger than the outer diameter of the positive electrode 31. That is, the negative electrode 32 may protrude toward the periphery from the positive electrode 31. This is to prevent lithium released from the positive electrode 31 from precipitating at the negative electrode 32.
  • the separator 33 is an insulating porous film arranged between the positive electrode 31 and the negative electrode 32, and short-circuits the positive electrode 31 and the negative electrode 32. Allows lithium ions to pass through while preventing.
  • the separator 33 contains a polymer compound such as polyethylene.
  • the separator 33 has recesses 33X1, 33X2.
  • the recessed portion 33X1 is arranged at a position P1 corresponding to each of the recessed portion 31X and the exposed portion 32Y, and the separator 33 is inside the separator 33 (when the separator 33 is viewed from the stacking direction S, the separator 33 It is a third recess that is partially recessed toward the center).
  • the recessed portion 33X1 is a portion in which the separator 33 is partially recessed, and is therefore different from the tapered portion 33M1 (see FIG. 10) described later.
  • the separator 33 does not exist in the recessed portion 33X1.
  • the recessed portion 33X2 is arranged at a position P2 corresponding to each of the exposed portion 31Y and the recessed portion 32X, and the separator 33 is inside the separator 33 (when the separator 33 is viewed from the stacking direction S, the separator 33 It is a fourth recess that is partially recessed toward the center).
  • the recessed portion 33X2 is a portion in which the separator 33 is partially recessed, and is therefore different from the tapered portion 33M2 (see FIG. 10) described later.
  • the separator 33 does not exist in the recessed portion 33X2.
  • the separator 33 has a circular planar shape except for each of the recessed portions 33X1, 33X2, that is, has a substantially circular planar shape that is partially recessed in each of the recessed portions 33X1, 33X2. ing. This is because when the outer can 10 has a flat and columnar three-dimensional shape, dead space due to the planar shape of the separator 33 is less likely to occur.
  • each of the recesses 33X1 and 33X2 has an arcuate planar shape curved along the outer edge (circumference) of the circle corresponding to the planar shape of the separator 33. This is because the short circuit between the positive electrode 31 and the negative electrode 32 is prevented while the area of the recessed portion 33X2 serving as the transit space of the positive electrode tab 40 and the area of the recessed portion 33X1 serving as the transit space of the negative electrode tab 50 are secured.
  • the circle corresponding to the planar shape of the separator 33 is shown by a broken line.
  • the separator 33 is retracted toward the position P2 in the recessed portion 33X1, and the separator 33 is retracted toward the position P1 in the recessed portion 33X2.
  • the dimensional parameters that define the planar shapes of the recesses 33X1 and 33X2 are not particularly limited and can be arbitrarily set.
  • the width W33X1 which is the receding distance of the separator 33 in the recessed portion 33X1 can be arbitrarily set, and the angle ⁇ 33X1 for determining the bending distance (arc length) of the recessed portion 33X1 can be arbitrarily set. It is configurable.
  • the width W33X2 which is the receding distance of the separator 33 in the recessed portion 33X2 can be arbitrarily set, and the angle ⁇ 33X2 for determining the bending distance (length of the arc) of the recessed portion 33X2 can be arbitrarily set. be.
  • the outer diameter of the separator 33 may be larger than the outer diameter of the negative electrode 32. That is, the separator 33 may protrude toward the periphery from the negative electrode 32. This is because the separator 33 is used to insulate the positive electrode tab 40 from the negative electrode 32.
  • the electrolytic solution is impregnated in each of the positive electrode 31, the negative electrode 32 and the separator 33, and contains a solvent and an electrolyte salt.
  • the solvent contains any one or more of non-aqueous solvents (organic solvents) such as carbonic acid ester compounds, carboxylic acid ester compounds and lactone-based compounds, and contains the non-aqueous solvent.
  • the electrolytic solution is a so-called non-aqueous electrolytic solution.
  • the electrolyte salt contains any one or more of light metal salts such as lithium salts.
  • the positive electrode tab 40 is the first wiring connected to each of the positive electrode 31 (positive electrode current collector 31A) and the outer container 11, and is housed inside the outer can 10. ing.
  • the positive electrode tab 40 extends so as to pass through each of the recesses 32X and 33X2 in the stacking direction S, and more specifically, extends downward in order to be connected to the outer container 11. is doing. As a result, the positive electrode tab 40 extends in the stacking direction S (downward), but does not come into contact with each of the plurality of negative electrodes 32, and each of the plurality of positive electrodes 31 (positive electrode current collector 31A) ( It is connected to the exposed portion 31Y).
  • the positive electrode tab 40 since the tip portion of the positive electrode tab 40 is bent in the middle, the positive electrode tab 40 includes the tab portions 40A and 40B.
  • the tab portion 40A extends in the stacking direction S (downward).
  • the tab portion 40B extends in a direction intersecting the stacking direction S and is connected to the tab portion 40A.
  • the tab portion 40A is connected to the exposed portion 31Y, and the tab portion 40B is connected to the inner bottom surface of the outer container 11. This is because the contact area between the positive electrode tab 40 and the outer container 11 increases, so that the electrical conductivity between the positive electrode tab 40 and the outer container 11 is improved.
  • the details regarding the forming material of the positive electrode tab 40 are the same as the details regarding the forming material of the positive electrode current collector 31A. However, the material for forming the positive electrode tab 40 and the material for forming the positive electrode current collector 31A may be the same or different from each other.
  • the negative electrode tab 50 is a second wiring connected to each of the negative electrode 32 (negative electrode current collector 32A) and the outer container 12, and is housed inside the outer can 10. ing.
  • the negative electrode tab 50 extends so as to pass through each of the recesses 31X and 33X1 in the stacking direction S, and more specifically, extends upward to be connected to the outer container 12. is doing. That is, the positive electrode tab 40 and the negative electrode tab 50 extend in different directions from each other, and more specifically, extend in opposite directions to each other. As a result, the negative electrode tab 50 extends in the stacking direction S (upward direction), but does not come into contact with each of the plurality of positive electrodes 31, and each of the plurality of negative electrodes 32 (negative electrode current collector 32A) ( It is connected to the exposed portion 32Y).
  • the negative electrode tab 50 since the tip portion of the negative electrode tab 50 is bent in the middle, the negative electrode tab 50 includes the tab portions 50A and 50B.
  • the tab portion 50A extends in the stacking direction S (upward direction).
  • the tab portion 50B extends in a direction intersecting the stacking direction S and is connected to the tab portion 50A.
  • the tab portion 50A is connected to the exposed portion 32Y, and the tab portion 50B is connected to the inner bottom surface of the outer container 12. This is because the contact area between the negative electrode tab 50 and the outer container 12 increases, so that the electrical conductivity between the negative electrode tab 50 and the outer container 12 is improved.
  • the details regarding the forming material of the negative electrode tab 50 are the same as the details regarding the forming material of the negative electrode current collector 32A. However, the material for forming the negative electrode tab 50 and the material for forming the negative electrode current collector 32A may be the same or different from each other.
  • each of the positive electrode 31 and the negative electrode 32 is prepared and an electrolytic solution is prepared by the procedure described below, and then the secondary battery is used together with the positive electrode 31 and the negative electrode 32. To make. In the following description, FIGS. 1 to 6 already described will be referred to from time to time.
  • the positive electrode active material and, if necessary, a positive electrode binder, a positive electrode conductive agent, and the like are mixed with each other to obtain a positive electrode mixture.
  • the positive electrode mixture is added to the solvent to prepare a paste-like positive electrode mixture slurry.
  • This solvent may be an aqueous solvent or a non-aqueous solvent (organic solvent).
  • the positive electrode active material layer 31B is formed by applying the positive electrode mixture slurry on both sides of the positive electrode current collector 31A having the recessed portion 31X.
  • the exposed portion 31Y is formed by adjusting the coating range so that the positive electrode mixture slurry is not coated on a part of the positive electrode current collector 31A.
  • the positive electrode active material layer 31B is compression-molded using a roll press machine or the like.
  • the positive electrode active material layer 31B may be heated and compression molding may be repeated a plurality of times.
  • the positive electrode active material layers 31B are formed on both sides of the positive electrode current collector 31A, so that the positive electrode 31 is manufactured.
  • the negative electrode 32 is manufactured by the same procedure as the procedure for manufacturing the positive electrode 31. Specifically, the negative electrode active material and, if necessary, the negative electrode binder, the negative electrode conductive agent, and the like are mixed with each other to form a negative electrode mixture, and then the negative electrode mixture is added to the solvent to make a paste. Prepare a negative electrode mixture slurry in the form of a negative electrode. Details regarding the solvent are as described above.
  • the negative electrode active material layer 32B is formed by applying the negative electrode mixture slurry on both sides of the negative electrode current collector 32A having the recessed portion 32X.
  • the exposed portion 32Y is formed by adjusting the coating range so that the negative electrode mixture slurry is not coated on a part of the negative electrode current collector 32A.
  • the negative electrode active material layer 32B is compression-molded using a roll press machine or the like. The details regarding compression molding are as described above. As a result, the negative electrode active material layers 32B are formed on both sides of the negative electrode current collector 32A, so that the negative electrode 32 is manufactured.
  • the positive electrode 31 and the negative electrode 32 are alternately laminated via a separator 33 having recesses 33X1 and 33X2 and impregnated with an electrolytic solution.
  • the positive electrode 31 and the negative electrode are arranged so that the recessed portions 31X, 33X1 and the exposed portion 32Y are arranged at the position P1 and the recessed portions 32X, 33X2 and the exposed portion 31Y are arranged at the position P2.
  • the orientations of 32 and the separator 33 are adjusted respectively.
  • a part of the electrolytic solution impregnated in the separator 33 is impregnated in each of the positive electrode 31 and the negative electrode 32, so that the battery element 30 is manufactured.
  • the positive electrode tab 40 (tab portion 40A) is connected to each positive electrode 31 (exposed portion 31Y of the positive electrode current collector 31A) using a welding method, and each negative electrode 32 (negative electrode current collection) is connected using a welding method.
  • the negative electrode tab 50 (tab portion 50A) is connected to the exposed portion 32Y of the body 32A.
  • the outer containers 11 and 12 face each other via the battery element 30.
  • the outer container 12 is inserted into the outer container 11 via the gasket 20, and then the outer containers 11 and 12 are inserted through the gasket 20. Cramp each other.
  • the outer can 10 is formed, so that the battery element 30 is housed inside the outer can 10.
  • the positive electrode tab 40 (tab portion 40B) is connected to the outer container 11 by a welding method
  • the negative electrode tab 50 (tab portion 50B) is connected to the outer container 12 by a welding method.
  • the positive electrode 31 is connected to the outer container 11 via the positive electrode tab 40
  • the negative electrode 32 is connected to the outer container 12 via the negative electrode tab 50, so that the secondary battery is assembled.
  • the positive electrode 31 and the negative electrode 32 are laminated with each other via the separator 33, and the positive electrode 31 has a recessed portion 31X at position P1 and an exposed portion 31Y at position P2, and the negative electrode thereof is provided.
  • 32 has an exposed portion 32Y at position P1 and a recessed portion 32X at position P2. Therefore, for the reason described below, excellent battery capacity characteristics can be obtained while ensuring safety.
  • FIG. 7 shows the cross-sectional configuration of the secondary battery of the comparative example, and corresponds to FIG. 8 to 10 each represent the planar configurations of the positive electrode 31, the negative electrode 32, and the separator 33 shown in FIG. 7, and correspond to each of FIGS. 4 to 6.
  • the secondary battery of the comparative example includes the battery element 130 instead of the battery element 30, and does not include the positive electrode tab 40 and the negative electrode tab 50. It has the same configuration as the configuration of the secondary battery of the present embodiment shown in FIGS. 3 to 6.
  • the specific configuration of the secondary battery of the comparative example is as described below.
  • the battery element 130 has the same configuration as that of the battery element 30 except as described below.
  • the positive electrode 31 has a tapered portion 31M and a protruding portion 31N.
  • the tapered portion 31M is arranged at the position P1 and is a portion where the positive electrode current collector 31A retracts inward in a tapered shape.
  • the protruding portion 31N is arranged at the position P2, and the positive electrode current collector 31A partially protrudes toward the position P2 due to the positive electrode active material layer 31B retracting inward in a tapered shape. This is the part that is being used.
  • the taper distance L31M which is the receding distance of the positive electrode current collector 31A in the tapered portion 31M, can be arbitrarily set, and the protruding distance L31N of the positive electrode current collector 31A in the protruding portion 31N can be arbitrarily set.
  • the negative electrode 32 has a tapered portion 32M and a protruding portion 32N.
  • the tapered portion 32M is arranged at the position P2, and is a portion where the negative electrode current collector 32A is retracted inward in a tapered shape.
  • the protruding portion 32N is arranged at the position P1, and the negative electrode current collector 32A partially protrudes toward the position P1 due to the negative electrode active material layer 32B retracting inward in a tapered shape. This is the part that is being used.
  • the taper distance L32M which is the receding distance of the negative electrode current collector 32A in the tapered portion 32M, can be arbitrarily set, and the protruding distance L32N of the negative electrode current collector 32A in the protruding portion 32N can be arbitrarily set.
  • the separator 33 has tapered portions 33M1 and 33M2.
  • the tapered portion 33M1 is arranged at the position P1 and is a portion where the separator 33 is tapered inward.
  • the tapered portion 33M2 is arranged at the position P2, and is a portion where the separator 33 is retracted inward in a tapered shape.
  • the taper distance L33M1 which is the retreat distance of the separator 33 in the taper portion 33M1 can be arbitrarily set, and the taper distance L33M2 which is the retreat distance of the separator 33 in the taper portion 33M2 can be arbitrarily set.
  • the plurality of protruding portions 31N are extended toward the outer container 11 via the tapered portions 32M and 33M2, and are joined so as to overlap each other by a welding method or the like. As a result, since the plurality of protruding portions 31N joined to each other are connected to the outer container 11, they perform the same function as the positive electrode tab 40.
  • the plurality of protruding portions 32N are extended toward the outer container 12 via the tapered portions 31M and 33M1 and are joined so as to overlap each other by a welding method or the like. As a result, the plurality of protruding portions 32N joined to each other are connected to the outer container 12, and thus perform the same function as the negative electrode tab 50.
  • the negative electrode 32 since the negative electrode 32 has the tapered portion 32M, a plurality of protruding portions 31N extend through the tapered portion 32M. As a result, even if the plurality of protrusions 31N are extended in the stacking direction S (downward) in order to connect to the outer container 11, the plurality of protrusions 31N do not come into contact with the negative electrode 32. Therefore, since the positive electrode 31 (protruding portion 31N) and the negative electrode 32 do not come into contact with each other, the occurrence of a short circuit is prevented.
  • the plurality of protrusions 31N are joined so as to overlap each other. As a result, the total thickness of the plurality of projecting portions 31N increases, so that the projecting distance L31N increases.
  • the protrusion distance L31N increases, the formation area of the positive electrode active material layer 31B decreases, so that the battery capacity decreases.
  • the taper distance L32M increases, the forming area of the negative electrode active material layer 32B decreases, so that the battery capacity decreases.
  • the positive electrode 31 has the tapered portion 31M, the plurality of protruding portions 32N extend through the tapered portion 31M. As a result, even if the plurality of protrusions 32N are extended in the stacking direction S (upward) in order to connect to the outer container 12, the plurality of protrusions 32N do not come into contact with the positive electrode 31. Therefore, since the negative electrode 32 (protruding portion 32N) and the positive electrode 31 do not come into contact with each other, the occurrence of a short circuit is prevented.
  • the plurality of protrusions 32N are joined so as to overlap each other. As a result, the total thickness of the plurality of projecting portions 32N increases, so that the projecting distance L32N increases.
  • the protrusion distance L32N increases, the formation area of the negative electrode active material layer 32B decreases, so that the battery capacity decreases.
  • the taper distance L31M increases, the forming area of the positive electrode active material layer 31B decreases, so that the battery capacity decreases.
  • the positive electrode tab 40 and the negative electrode tab 50 are unnecessary, but it is difficult to prevent the occurrence of a short circuit and increase the battery capacity at the same time. Therefore, it is not possible to obtain excellent battery capacity characteristics while ensuring safety.
  • the negative electrode 32 has a recessed portion 32X.
  • the positive electrode tab 40 is used, even if the positive electrode tab 40 is extended in the stacking direction S (downward) while passing through the recessed portion 32X in order to connect to the outer container 11, the positive electrode tab 40 is the negative electrode. Does not contact 32. Therefore, since the positive electrode 31 (exposed portion 31Y) and the negative electrode 32 do not come into contact with each other, the occurrence of a short circuit is prevented.
  • the positive electrode tab 40 only needs to be able to be connected to the exposed portion 31Y.
  • the area of the exposed portion 31Y can be small, so that the width W31Y is reduced.
  • the width W31Y decreases, the forming area of the positive electrode active material layer 31B increases, so that the battery capacity increases.
  • the thickness of the positive electrode tab 40 may be thin as long as the positive electrode tab 40 and the outer container 11 can be electrically connected to each other.
  • the width W32X may be small in order to secure the guiding space for the positive electrode tab 40.
  • the width W32X becomes smaller, the forming area of the negative electrode active material layer 32B increases, so that the battery capacity increases.
  • the positive electrode 31 has a recessed portion 31X.
  • the negative electrode tab 50 is used, even if the negative electrode tab 50 is extended in the stacking direction S (upward direction) while passing through the recessed portion 31X in order to connect to the outer container 12, the negative electrode tab 50 is the positive electrode. Does not contact 31. Therefore, since the negative electrode 32 (exposed portion 32Y) and the positive electrode 31 do not come into contact with each other, the occurrence of a short circuit is prevented.
  • the negative electrode tab 50 only needs to be able to be connected to the exposed portion 32Y.
  • the area of the exposed portion 32Y can be small, so that the width W32Y is reduced.
  • the width W32Y decreases, the forming area of the negative electrode active material layer 32B increases, so that the battery capacity increases.
  • the thickness of the negative electrode tab 50 may be thin as long as the negative electrode tab 50 and the outer container 12 can conduct with each other.
  • the width W31X may be small in order to secure the induction space of the negative electrode tab 50.
  • the width W31X becomes smaller, the forming area of the positive electrode active material layer 31B increases, so that the battery capacity increases.
  • the battery capacity can be sufficiently increased.
  • the contact area between the exposed portion 31Y and the positive electrode tab 40 is secured so as to be sufficiently conductive with each other, the area of the exposed portion 31Y can be minimized, so that the formed area of the positive electrode active material layer 31B becomes large. Increase sufficiently.
  • the contact area between the exposed portion 32Y and the negative electrode tab 50 is secured so as to be sufficiently conductive with each other, the area of the exposed portion 32Y can be minimized, so that the formation area of the negative electrode active material layer 32B is sufficient. Is sufficiently increased. Therefore, the battery capacity can be sufficiently increased.
  • the separator 33 has a recessed portion 33X1 at position P1 and a recessed portion 33X2 at position P2, the positive electrode 31 and the negative electrode 32 are separated from each other via the separator 33, and even if the separator 33 is used, the positive electrode is used. Since the space through the tab 40 and the space through the negative electrode tab 50 are secured, a higher effect can be obtained.
  • the secondary battery includes the positive electrode tab 40 and the negative electrode tab 50, as described above, even if the positive electrode tab 40 and the negative electrode tab 50 are used, the element space volume is secured without being excessively reduced. , Each of the formation area of the positive electrode active material layer 31B and the formation area of the negative electrode active material layer 32B increases. Therefore, even if the positive electrode tab 40 and the negative electrode tab 50 are used, the battery capacity is sufficiently increased, so that a higher effect can be obtained.
  • the positive electrode tab 40 and the negative electrode tab 50 extend in different directions, the positive electrode tab 40 guides the outer container 11 toward the outer container 11 when the outer containers 11 and 12 are insulated from each other. At the same time, the negative electrode tab 50 is guided toward the outer container 12.
  • the positive electrode tab 40 is easily connected to the outer container 11, and the negative electrode tab 50 is easily connected to the outer container 12, so that the outer container 11 can easily function as an external connection terminal for the positive electrode 31.
  • the outer container 12 can easily function as an external connection terminal for the negative electrode 32. Therefore, even if the outer container 11 is used as the external connection terminal of the positive electrode 31 and the outer container 12 is used as the external connection terminal of the negative electrode 32, the battery capacity is sufficiently increased, so that a higher effect can be obtained.
  • the outer cans 10 include outer containers 11 and 12 that are insulated from each other, the positive electrode tab 40 is connected to the outer container 11, and the negative electrode tab 50 is connected to the outer container 12, the exterior thereof.
  • the container 12 functions as an external connection terminal for the positive electrode 31, and the outer container 11 functions as an external connection terminal for the negative electrode 32.
  • the secondary battery does not have to have the external connection terminal of the positive electrode 31 and the external connection terminal of the negative electrode 32 separately from the outer containers 11 and 12, so that the element space volume increases. Therefore, since the energy density per unit volume of the secondary battery increases, a higher effect can be obtained.
  • the secondary battery is flat and columnar.
  • the element space volume increases. Therefore, since the energy density per unit volume of the secondary battery increases, a higher effect can be obtained.
  • each of the recessed portion 31X and the exposed portion 31Y has an arcuate planar shape
  • each of the recessed portion 32X and the exposed portion 32Y has an arcuate planar shape
  • the recessed portion 31X and the exposed portion 32Y have an arcuate planar shape. Since the areas of the recessed portions 31X and 32X and the exposed portions 31Y and 32Y are minimized, the formed area of the positive electrode active material layer 31B and the formed area of the negative negative active material layer 32B are further increased. Therefore, since the battery capacity is further increased, a higher effect can be obtained.
  • the secondary battery includes a plurality of positive electrodes 31, a plurality of negative electrodes 32, and a plurality of separators 33, and the plurality of positive electrodes 31 and the plurality of negative electrodes 32 are alternately laminated via the plurality of separators 33.
  • the facing area between the positive electrode 31 and the negative electrode 32 increases while preventing the occurrence of a short circuit. Therefore, since the battery capacity is further increased, a higher effect can be obtained.
  • the secondary battery is flat and columnar, that is, if the secondary battery is a coin-type or button-type secondary battery, even a small secondary battery with large restrictions in terms of size can prevent short circuits from occurring and the battery. Since the increase in capacity is compatible with each other, a higher effect can be obtained.
  • the secondary battery is a lithium ion secondary battery, a sufficient battery capacity can be stably obtained by utilizing the occlusion and release of lithium, so that a higher effect can be obtained.
  • charge / discharge reaction area (mm 2 )
  • charge / discharge reaction area (mm 2 )
  • Table 1 The value of the charge / discharge reaction area is a value rounded off to the third decimal place.
  • the “embodiment” represents the secondary battery of the present embodiment (with the positive electrode tab 40 and the negative electrode tab 50), and the “comparative example” is the secondary battery of the comparative example (positive electrode tab 40). None, Negative electrode tab 50 None).
  • the taper distances L31M and L32M 1.15 mm
  • the protrusion distances L31N and L32N 1.15 mm
  • the thicknesses of the protrusions 31N and 32N were 0.01 mm, respectively.
  • the charge / discharge reaction area of the secondary battery of this embodiment is larger than the charge / discharge reaction area of the secondary battery of the comparative example.
  • the charge / discharge reaction area that is, the formation area of one positive electrode active material layer 31B or one negative electrode active material layer is compared with the secondary battery of the comparative example.
  • the formation area of 32B increased by about 4.8%.
  • the rate of increase in the formation area of one positive electrode active material layer 31B or one negative electrode active material layer 32B, which is the charge / discharge reaction area is determined. It is calculated.
  • the "one positive electrode active material layer 31B” means the positive electrode active material layer 31B provided on one side of the positive electrode current collector 31A, and the "one negative electrode active material layer 32B” is used.
  • the positive electrode active material layers 31B are provided on both sides of the positive electrode current collector 31A, and the negative electrode active material layers 32B are provided on both sides of the negative electrode current collector 32A. Further, in the battery element 30, a plurality of positive electrodes 31 and a plurality of negative electrodes 32 are alternately laminated. Therefore, even if the increase rate of the charge / discharge reaction area is small, the increase rate of the charge / discharge reaction area in the entire battery element 30 increases remarkably as the numbers of the positive electrode 31 and the negative electrode 32 increase.
  • the increase in charge / discharge reaction area by about 8% in a coin-type or button-type secondary battery means that the battery capacity is significantly increased in a small secondary battery, which is highly restricted in terms of size. ..
  • each of the recessed portion 31X and the exposed portion 31Y has an arcuate planar shape.
  • the positive electrode current collector 31A is partially recessed in the recessed portion 31X and the positive electrode active material layer 31B is partially recessed in the exposed portion 31Y.
  • the planar shape of the recessed portion 31X and the planar shape of the exposed portion 31Y may be the same or different from each other.
  • the positive electrode tab 40 can be connected to the exposed portion 31Y and the negative electrode tab 50 can pass through the recessed portion 31X, the prevention of short circuit and the increase in battery capacity can be achieved at the same time. The effect can be obtained.
  • the planar shapes of the recessed portion 31X and the exposed portion 31Y is the same for the planar shapes of the recessed portion 32X and the exposed portion 32Y shown in FIG. That is, since the negative electrode 32 has a circular planar shape except for the recessed portion 32X, each of the recessed portion 32X and the exposed portion 32Y has an arcuate planar shape. However, in the planar shapes of the recessed portion 32X and the exposed portion 32Y, the negative electrode current collector 32A is partially recessed in the recessed portion 32X and the negative electrode active material layer 32B is partially recessed in the exposed portion 32Y. However, it is not particularly limited. Even in this case, if the negative electrode tab 50 can be connected to the exposed portion 32Y and the positive electrode tab 40 can pass through the recessed portion 32X, the prevention of short circuit and the increase in battery capacity can be achieved at the same time. The effect can be obtained.
  • the positive electrode 31 has a circular planar shape excluding the recessed portion 31X, but the planar shape of the positive electrode 31 excluding the recessed portion 31X is not particularly limited, and therefore other shapes such as a polygon. But it may be. Even in this case, if the positive electrode current collector 31A is partially recessed in the recessed portion 31X and the positive electrode active material layer 31B is partially recessed in the exposed portion 31Y, the positive electrode tab 40 can be connected to the exposed portion 31Y. At the same time, the negative electrode tab 50 can pass through the recessed portion 31X. Therefore, the same effect can be obtained because the prevention of the occurrence of a short circuit and the increase in the battery capacity are compatible with each other.
  • the planar shape of the positive electrode 31 is the same for the planar shape of the negative electrode 32 shown in FIG. That is, the negative electrode 32 has a circular planar shape excluding the recessed portion 32X, but the planar shape of the negative electrode 32 excluding the recessed portion 32X is not particularly limited, and may be another shape such as a polygon. .. Even in this case, if the negative electrode current collector 32A is partially recessed in the recessed portion 32X and the negative electrode active material layer 32B is partially recessed in the exposed portion 32Y, the negative electrode tab 50 can be connected to the exposed portion 32Y. At the same time, the positive electrode tab 40 can pass through the recessed portion 32X. Therefore, the same effect can be obtained because the prevention of the occurrence of a short circuit and the increase in the battery capacity are compatible with each other.
  • planar shape of the positive electrode 31 is the same for the planar shape of the separator 33 shown in FIG.
  • the positive electrode tab 40 can be connected to the exposed portion 31Y and the negative electrode tab 50 can pass through the recessed portion 31X, the prevention of short circuit and the increase in battery capacity can be achieved at the same time. The effect can be obtained.
  • the description regarding the respective positions of the recessed portion 31X and the exposed portion 31Y is the same for the respective positions of the recessed portion 32X and the exposed portion 32Y shown in FIG. That is, since the positions P1 and P2 face each other, the recessed portion 32X and the exposed portion 32Y are arranged at positions symmetrical with respect to the center of the negative electrode 32. However, since the positions P1 and P2 do not face each other, the recessed portion 32X and the exposed portion 32Y may be arranged at positions asymmetrical with respect to the center of the negative electrode 32. Even in this case, if the negative electrode tab 50 can be connected to the exposed portion 32Y and the positive electrode tab 40 can pass through the recessed portion 32X, the prevention of short circuit and the increase in battery capacity can be achieved at the same time. The effect can be obtained.
  • the secondary battery includes two or more positive electrode tabs 40 and two or more negative electrode tabs 50
  • the positive electrode 31 has two or more recessed portions 31X and two or more exposed portions 31Y. May be good.
  • the secondary battery since the secondary battery includes one positive electrode tab 40 and two or more negative electrode tabs 50, even if the positive electrode 31 has two or more recessed portions 31X and one exposed portion 31Y. good. Further, since the secondary battery includes two or more positive electrode tabs 40 and one negative electrode tab 50, the positive electrode 31 may have one recessed portion 31X and two or more exposed portions 31Y. ..
  • the description regarding the respective numbers of the recessed portion 31X and the exposed portion 31Y is the same for the respective numbers of the recessed portion 32X and the exposed portion 32Y shown in FIGS. 2 and 5. That is, since the secondary battery includes one positive electrode tab 40 and one negative electrode tab 50, the negative electrode 32 has one recessed portion 32X and one exposed portion 32Y. However, since the secondary battery includes two or more positive electrode tabs 40 and two or more negative electrode tabs 50, the negative electrode 32 has two or more recessed portions 32X and two or more exposed portions 32Y. May be good.
  • the secondary battery since the secondary battery includes one positive electrode tab 40 and two or more negative electrode tabs 50, even if the negative electrode 32 has one recessed portion 31X and two or more exposed portions 31Y. good. Further, since the secondary battery includes two or more positive electrode tabs 40 and one negative electrode tab 50, the negative electrode 32 may have two or more recessed portions 31X and one exposed portion 31Y. ..
  • the electrode reactant is lithium
  • the electrode reactant is not particularly limited. Therefore, as described above, the electrode reactant may be another alkali metal such as sodium and potassium, or an alkaline earth metal such as beryllium, magnesium and calcium. In addition, the electrode reactant may be another light metal such as aluminum.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Secondary Cells (AREA)

Abstract

二次電池は、セパレータを介して互いに積層されている第1電極および第2電極を備える。第1電極は、第1集電体と、その第1集電体の上に設けられた第1活物質層とを含む。第2電極は、第2集電体と、その第2集電体の上に設けられた第2活物質層とを含む。第1電極は、第1位置に配置され、第1集電体がその第1集電体の内側に向かって部分的に窪んでいる第1窪み部と、その第1位置とは異なる第2位置に配置され、第1活物質層がその第1活物質層の内側に向かって部分的に窪んでいると共に第1集電体が部分的に露出している第1露出部とを有する。第2電極は、第1位置に配置され、第2活物質層がその第2活物質層の内側に向かって部分的に窪んでいると共に第2集電体が部分的に露出している第2露出部と、第2位置に配置され、第2集電体がその第2集電体の内側に向かって部分的に窪んでいる第2窪み部とを有する。

Description

二次電池
 本技術は、二次電池に関する。
 携帯電話機などの多様な電子機器が普及しているため、小型かつ軽量であると共に高エネルギー密度が得られる電源として二次電池の開発が進められている。この二次電池は、正極、負極およびセパレータを備えており、その正極および負極は、セパレータを介して互いに積層されている。
 二次電池の構成に関しては、様々な検討がなされている。具体的には、各正極に接続されている複数の正極配線が互いに接合されており、各負極に接続されている複数の負極配線が互いに接合されていると共に、その正極配線が一方の収納部材に接続されており、その負極配線が他方の収納部材に接続されている(例えば、特許文献1,2参照。)。正極および負極のそれぞれが略円形の平面形状を有しており、その正極および負極のそれぞれが2箇所にテーパ部を有している(例えば、特許文献3参照。)。正極および負極のそれぞれが略八角形の平面形状を有している(例えば、特許文献4参照。)。
米国特許第8802269号明細書 中国特許第104620412号明細書 中国特許第205680741号明細書 米国特許第6312848号明細書
 二次電池の電池特性を改善するために様々な検討がなされているが、その二次電池の安全性および電池容量特性は未だ十分でないため、改善の余地がある。
 よって、安全性を担保しながら優れた電池容量特性を得ることが可能である二次電池が望まれている。
 本技術の一実施形態の二次電池は、セパレータを介して互いに積層されている第1電極および第2電極を備えたものである。第1電極は、第1集電体と、その第1集電体の上に設けられた第1活物質層とを含む。第2電極は、第2集電体と、その第2集電体の上に設けられた第2活物質層とを含む。第1電極は、第1位置に配置され、第1集電体がその第1集電体の内側に向かって部分的に窪んでいる第1窪み部と、その第1位置とは異なる第2位置に配置され、第1活物質層がその第1活物質層の内側に向かって部分的に窪んでいると共に第1集電体が部分的に露出している第1露出部とを有する。第2電極は、第1位置に配置され、第2活物質層がその第2活物質層の内側に向かって部分的に窪んでいると共に第2集電体が部分的に露出している第2露出部と、第2位置に配置され、第2集電体がその第2集電体の内側に向かって部分的に窪んでいる第2窪み部とを有する。
 本技術の一実施形態の二次電池によれば、第1電極および第2電極がセパレータを介して互いに積層されており、その第1電極が第1位置に第1窪み部および第2位置に第1露出部を有しており、その第2電極が第1位置に第2露出部および第2位置に第2窪み部を有しているので、安全性を担保しながら優れた電池容量特性を得ることができる。
 なお、本技術の効果は、必ずしもここで説明された効果に限定されるわけではなく、後述する本技術に関連する一連の効果のうちのいずれの効果でもよい。
本技術の一実施形態における二次電池の構成を表す断面図である。 図1に示した二次電池の構成を表す斜視図である。 図1に示した二次電池の主要部の構成を拡大して表す断面図である。 図2に示した正極の構成を表す平面図である。 図2に示した負極の構成を表す平面図である。 図2に示したセパレータの構成を表す平面図である。 比較例の二次電池の主要部の構成を拡大して表す断面図である。 図7に示した正極の構成を表す平面図である。 図7に示した負極の構成を表す平面図である。 図7に示したセパレータの構成を表す平面図である。
 以下、本技術の一実施形態に関して、図面を参照しながら詳細に説明する。なお、説明する順序は、下記の通りである。

 1.二次電池
  1-1.構成
  1-2.動作
  1-3.製造方法
  1-4.作用および効果
  1-5.電池容量の比較
 2.変形例
<1.二次電池>
 まず、本技術の一実施形態の二次電池に関して説明する。
 ここで説明する二次電池は、扁平かつ柱状の立体的形状を有しており、いわゆるコイン型またはボタン型などと呼称される小型の二次電池である。この二次電池は、互いに対向する一対の底部と、その一対の底部の間に位置する側壁部とを有しており、その二次電池では、外径よりも高さが小さくなっている。この「外径」とは、一対の底部のそれぞれの直径(最大直径)であると共に、「高さ」とは、一方の底部から他方の底部までの距離(最大距離)である。
 二次電池の充放電原理は、特に限定されないが、以下では、電極反応物質の吸蔵放出を利用して電池容量が得られる場合に関して説明する。この二次電池は、正極および負極と共に電解質を備えており、負極の充電容量は、正極の放電容量よりも大きいことが好ましい。すなわち、負極の単位面積当たりの電気化学容量は、正極の単位面積当たりの電気化学容量よりも大きいことが好ましい。充電途中において負極の表面に電極反応物質が析出することを防止するためである。
 電極反応物質の種類は、特に限定されないが、具体的には、アルカリ金属およびアルカリ土類金属などの軽金属である。アルカリ金属は、リチウム、ナトリウムおよびカリウムなどであると共に、アルカリ土類金属は、ベリリウム、マグネシウムおよびカルシウムなどである。
 以下では、電極反応物質がリチウムである場合を例に挙げる。リチウムの吸蔵放出を利用して電池容量が得られる二次電池は、いわゆるリチウムイオン二次電池である。このリチウムイオン二次電池では、リチウムがイオン状態で吸蔵放出される。
<1-1.構成>
 図1は、二次電池の断面構成を表している。図2は、図1に示した二次電池の斜視構成を表している。図3は、図1に示した二次電池の主要部の断面構成を拡大している。
 図4は、図2に示した正極31の平面構成を表している。図5は、図2に示した負極32の平面構成を表している。図6は、図2に示したセパレータ33の平面構成を表している。
 ただし、図2では、後述する二次電池の一連の構成要素の位置関係を見やすくするために、その一連の構成要素が互いに離隔された状態を示している。図3では、二次電池の主要部として、電池素子30、正極タブ40および負極タブ50を示している。
 以下の説明では、便宜上、図1~図6のそれぞれにおける二次電池の左側の位置を「位置P1」とすると共に、その二次電池の右側の位置を「位置P2」とする。ここでは、位置P1は、位置P2とは反対側の位置であり、すなわち位置P2と正対する位置である。
 ここで説明する二次電池は、図1に示したように、外径D(横方向の寸法)よりも高さH(縦方向の寸法)が小さい立体的形状、すなわち扁平かつ柱状の立体的形状を有している。ここでは、二次電池の立体的形状は、扁平かつ円筒(円柱)状である。
 二次電池の寸法は、特に限定されないが、一例を挙げると、外径D=3mm~30mm、高さH=0.5mm~70mmである。ただし、高さHに対する外径Dの比(D/H)は、1よりも大きい。比(D/H)の上限値は、特に限定されないが、一例を挙げると、比(D/H)は25以下であることが好ましい。
 この二次電池は、図1~図6に示したように、外装缶10と、ガスケット20と、電池素子30と、正極タブ40と、負極タブ50とを備えている。
[外装缶]
 外装缶10は、図1および図2に示したように、電池素子30、正極タブ40および負極タブ50などを収納する収納部材である。
 ここでは、外装缶10は、扁平かつ円柱状である二次電池の立体的形状に応じて、扁平かつ円柱状である立体的形状を有している。この外装缶10は、一端部が開放されていると共に他端部が閉塞されている一対の外装容器11,12を含んでおり、すなわち外装容器11,12のそれぞれは、底部および側壁部を有する器状の部材である。
 外装容器11は、外装容器12の外径よりも大きい内径を有する第1収納部であり、その外装容器12に対向する側に開口部11Kを有している。外装容器12は、外装容器11の内径よりも小さい外径を有する第2収納部であり、その外装容器11に対向する側に開口部12Kを有している。外装容器11,12は、互いに分離されていると共に、ガスケット20を介して互いに絶縁されている。
 外装容器11,12のそれぞれは、導電性を有している。これにより、外装容器11は、正極タブ40を介して電池素子30(正極31)に接続されているため、その正極31の外部接続用端子として機能する。一方、外装容器12は、負極タブ50を介して電池素子30(負極32)に接続されているため、その負極32の外部接続用端子として機能する。二次電池が外装容器11,12とは別個に正極31の外部接続用端子および負極32の外部接続用端子を備えていなくてもよいからである。これにより、素子空間体積が増加するため、二次電池の単位体積当たりのエネルギー密度が増加する。この「素子空間体積」とは、電池素子30を収納するために利用可能である外装缶10の内部空間の体積(有効体積)である。
 具体的には、外装容器11,12のそれぞれは、金属材料および合金材料などの導電性材料のうちのいずれか1種類または2種類以上を含んでおり、その導電性材料は、鉄、銅、ニッケル、ステンレス、鉄合金、銅合金およびニッケル合金などである。ステンレスの種類は、特に限定されないが、具体的には、SUS304およびSUS316などである。ただし、外装容器11の形成材料と外装容器12の形成材料とは、互いに同じでもよいし、互いに異なってもよい。
 なお、外装容器11,12は、開口部11K,12Kが互いに対向するように配置されていると共に、その外装容器11の内部に外装容器12が挿入された状態において、ガスケット20を介して互いに加締められている。このため、外装缶10は、加締め加工を用いて形成された缶であり、いわゆるクリンプ缶である。
[ガスケット]
 ガスケット20は、図1に示したように、外装容器11,12の間に介在している絶縁部材である。上記したように、外装容器11,12は、ガスケット20を介して互いに加締められているため、そのガスケット20は、外装容器11,12により保持されている。図2では、ガスケット20の図示を省略している。
 このガスケット20は、絶縁性の高分子化合物などの絶縁性材料のうちのいずれか1種類または2種類以上を含んでおり、その絶縁性材料は、ポリプロピレンおよびポリエチレンなどである。
[電池素子]
 電池素子30は、図1~図6に示したように、充放電反応を進行させる発電素子であり、外装缶10の内部に収納されている。この電池素子30は、正極31、負極32およびセパレータ33と共に、液状の電解質である電解液(図示せず)を含んでいる。このため、正極31、負極32およびセパレータ33は、外装缶10の内部に収納されている。図1では、図示内容を簡略化するために、電池素子30を模式的に示している。
 この電池素子30は、いわゆる積層電極体である。すなわち、電池素子30では、正極31および負極32がセパレータ33を介して互いに積層されているため、その正極31および負極32がセパレータ33を介して互いに対向している。以下では、正極31および負極32がセパレータ33を介して互いに積層されている方向を「積層方向S」とする。この積層方向Sは、図2および図3に示したように、二次電池の上下方向である。
 ここでは、電池素子30は、複数の正極31、複数の負極32および複数のセパレータ33を含んでいる。このため、複数の正極31および複数の負極32は、積層方向Sにおいて複数のセパレータ33を介して交互に積層されている。
 なお、正極31、負極32およびセパレータ33のそれぞれの数は、特に限定されないため、任意に設定可能である。すなわち、正極31、負極32およびセパレータ33のそれぞれの数は、1個だけでもよいし、上記したように、2個以上でもよい。図2では、図示内容を簡略化するために、電池素子30が2個の正極31、2個の負極32および4個のセパレータ33を含んでいる場合を示している。この場合には、最も下側にセパレータ33が配置されていると共に、最も上側に負極32が配置されている。
 この電池素子30は、外装缶10の立体的形状と同様の立体的形状を有しているため、扁平かつ円柱状の立体的形状を有している。電池素子30が外装缶10の立体的形状とは異なる立体的形状を有している場合と比較して、その外装缶10の内部に電池素子30が収納された際にデッドスペース(外装缶10と電池素子30との間の隙間)が発生しにくくなるため、その外装缶10の内部空間が有効に利用されるからである。これにより、素子空間体積が増加するため、二次電池の単位体積当たりのエネルギー密度が増加する。
(正極)
 正極31は、充放電反応を進行させるために用いられる第1電極であり、図2~図4に示したように、正極集電体31Aおよび正極活物質層31Bを含んでいる。図2および図4のそれぞれでは、正極集電体31Aに淡い網掛けを施していると共に、正極活物質層31Bに濃い網掛けを施している。
 正極集電体31Aは、正極活物質層31Bを支持する第1集電体であり、その正極活物質層31Bが設けられる一対の面を有している。この正極集電体31Aは、金属材料などの導電性材料を含んでおり、その金属材料は、アルミニウムなどである。
 正極活物質層31Bは、正極集電体31Aの上に設けられている第1活物質層であり、リチウムを吸蔵放出可能である正極活物質のうちのいずれか1種類または2種類以上を含んでいる。ここでは、正極活物質層31Bは、正極集電体31Aの両面に設けられている。ただし、正極活物質層31Bは、正極31が負極32に対向する側において正極集電体31Aの片面だけに設けられていてもよい。また、正極活物質層31Bは、さらに、正極結着剤および正極導電剤などの他の材料のうちのいずれか1種類または2種類以上を含んでいてもよい。正極活物質層31Bの形成方法は、特に限定されないが、具体的には、塗布法などである。
 正極活物質は、リチウム化合物を含んでいる。このリチウム化合物は、リチウムを構成元素として含む化合物の総称であり、より具体的には、リチウムと共に1種類または2種類以上の遷移金属元素を構成元素として含む化合物などである。高いエネルギー密度が得られるからである。ただし、リチウム化合物は、さらに、他元素(リチウムおよび遷移金属元素のそれぞれ以外の元素)のうちのいずれか1種類または2種類以上を構成元素として含んでいてもよい。リチウム化合物の種類は、特に限定されないが、具体的には、酸化物、リン酸化合物、ケイ酸化合物およびホウ酸化合物などである。酸化物の具体例は、LiNiO、LiCoOおよびLiMnなどであると共に、リン酸化合物の具体例は、LiFePOおよびLiMnPOなどである。
 正極結着剤は、合成ゴムおよび高分子化合物などのうちのいずれか1種類または2種類以上を含んでいる。合成ゴムは、スチレンブタジエン系ゴムなどであると共に、高分子化合物は、ポリフッ化ビニリデンなどである。正極導電剤は、炭素材料などの導電性材料のうちのいずれか1種類または2種類以上を含んでおり、その炭素材料は、黒鉛、カーボンブラック、アセチレンブラックおよびケッチェンブラックなどである。ただし、導電性材料は、金属材料および高分子化合物などでもよい。
 ここで、正極31は、窪み部31Xおよび露出部31Yを有している。
 窪み部31Xは、位置P1に配置されており、正極集電体31Aがその正極集電体31Aの内側(積層方向Sから正極31(正極集電体31A)を見た場合において、その正極31の中心に向かう側)に向かって部分的に窪んでいる第1窪み部である。この窪み部31Xは、上記したように、正極集電体31Aが部分的に窪んでいる部分であるため、後述するテーパ部31M(図8参照)とは異なっている。この窪み部31Xでは、正極集電体31Aが存在していないため、正極活物質層31Bも存在していない。
 ここでは、正極31は、窪み部31Xを除いて円形の平面形状を有しており、すなわち窪み部31Xにおいて部分的に窪んでいる略円形の平面形状を有している。外装缶10が扁平かつ円柱状の立体的形状を有している場合において、正極31の平面形状に起因するデッドスペースが発生しにくくなるからである。
 上記した円形の「円」とは、真円に限られず、楕円でもよい。ここで説明した円形(円)に関する詳細(定義)は、以降においても同様である。
 この場合において、窪み部31Xは、正極31の平面形状に対応する円の外縁(円周)に沿って湾曲した円弧型の平面形状を有していることが好ましい。負極タブ50の経由スペースとなる窪み部31Xの面積が担保されながら、その窪み部31Xの面積が十分に小さくなるからである。図2および図4のそれぞれでは、正極31の平面形状に対応する円を破線で示している。
 露出部31Yは、位置P1とは異なる位置P2に配置されており、正極活物質層31Bがその正極活物質層31Bの内側(積層方向Sから正極31(正極活物質層31B)を見た場合において、その正極31の中心に向かう側)に向かって部分的に窪んでいると共に正極集電体31Aが部分的に露出している第1露出部である。すなわち、露出部31Yでは、正極集電体31Aが正極活物質層31Bにより被覆されていないため、その正極集電体31Aが露出している。この露出部31Yでは、正極集電体31Aは存在しているが、正極活物質層31Bは存在していない。
 ここでは、正極31は、上記したように、略円形の平面形状を有している。この場合において、露出部31Yは、窪み部31Xの平面形状と同様の平面形状を有しており、すなわち正極31の平面形状に対応する円の外縁(円周)に沿って湾曲した円弧型の平面形状を有していることが好ましい。正極タブ40との接続箇所となる露出部31Yの面積が担保されながら、その露出部31Yの面積が十分に小さくなるからである。
 これにより、正極31では、図3に示したように、正極集電体31Aのうちの露出部31Yが正極タブ40と接続可能となるように位置P2に向かって突出しているのに対して、その正極集電体31Aが負極タブ50と接触不能となるように窪み部31Xにおいて位置P2に向かって後退している。
 図4に示したように、窪み部31Xおよび露出部31Yのそれぞれの平面形状を規定する寸法パラメータは、特に限定されないため、任意に設定可能である。具体的には、窪み部31Xにおける正極集電体31Aの後退距離である幅W31Xは、任意に設定可能であると共に、その窪み部31Xの湾曲距離(円弧の長さ)を決定する角度θ31Xは、任意に設定可能である。また、露出部31Yにおける正極活物質層31Bの後退距離である幅W31Yは、任意に設定可能であると共に、その露出部31Yの湾曲距離(円弧の長さ)を決定する角度θ31Yは、任意に設定可能である。
(負極)
 負極32は、充放電反応を進行させるために用いられる第2電極であり、図2、図3および図5に示したように、負極集電体32Aおよび負極活物質層32Bを含んでいる。図2および図5のそれぞれでは、負極集電体32Aに淡い網掛けを施していると共に、負極活物質層32Bに濃い網掛けを施している。
 負極集電体32Aは、負極活物質層32Bを支持する第2集電体であり、その負極活物質層32Bが設けられる一対の面を有している。この負極集電体32Aは、金属材料などの導電性材料を含んでおり、その金属材料は、銅などである。
 負極活物質層32Bは、負極集電体32Aの上に設けられている第2活物質層であり、リチウムを吸蔵放出可能である負極活物質のうちのいずれか1種類または2種類以上を含んでいる。ここでは、負極活物質層32Bは、負極集電体32Aの両面に設けられている。ただし、負極活物質層32Bは、負極32が正極31に対向する側において負極集電体32Aの片面だけに設けられていてもよい。また、負極活物質層32Bは、さらに、負極結着剤および負極導電剤などの他の材料のうちのいずれか1種類または2種類以上を含んでいてもよい。負極結着剤および負極導電剤のそれぞれに関する詳細は、正極結着剤および正極導電剤のそれぞれに関する詳細と同様である。負極活物質層32Bの形成方法は、特に限定されないが、具体的には、塗布法、気相法、液相法、溶射法および焼成法(焼結法)などのうちのいずれか1種類または2種類以上である。
 負極活物質は、炭素材料および金属系材料のうちの一方または双方を含んでいる。高いエネルギー密度が得られるからである。炭素材料は、易黒鉛化性炭素、難黒鉛化性炭素および黒鉛(天然黒鉛および人造黒鉛)などのうちのいずれか1種類または2種類以上である。金属系材料は、リチウムと合金を形成可能である金属元素および半金属元素のうちのいずれか1種類または2種類以上を構成元素として含む材料であり、その金属元素および半金属元素は、ケイ素およびスズのうちの一方または双方などである。ただし、金属系材料は、単体でもよいし、合金でもよいし、化合物でもよいし、それらの2種類以上の混合物でもよい、それらの2種類以上の相を含む材料でもよい。金属系材料の具体例は、TiSiおよびSiO(0<x≦2、または0.2<x<1.4)などである。
 ここで、負極32は、左右が反転していることを除いて正極31の構成と同様の構成を有しており、より具体的には、窪み部32Xおよび露出部32Yを有している。
 窪み部32Xは、窪み部31Xが配置されている位置P1とは反対側である位置P2に配置されており、負極集電体32Aがその負極集電体32Aの内側(積層方向Sから負極32(負極集電体32A)を見た場合において、その負極32の中心に向かう側)に向かって部分的に窪んでいる第2窪み部である。この窪み部32Xは、上記したように、負極集電体32Aが部分的に窪んでいる部分であるため、後述するテーパ部32M(図9参照)とは異なっている。この窪み部32Xでは、負極集電体32Aが存在していないため、負極活物質層32Bも存在していない。
 ここでは、負極32は、正極31と同様に、窪み部32Xを除いて円形の平面形状を有しており、すなわち窪み部32Xにおいて部分的に窪んでいる略円形の平面形状を有している。外装缶10が扁平かつ円柱状の立体的形状を有している場合において、負極32の平面形状に起因するデッドスペースが発生しにくくなるからである。
 この場合において、窪み部32Xは、窪み部31Xと同様に、負極32の平面形状に対応する円の外縁(円周)に沿って湾曲した円弧型の平面形状を有していることが好ましい。正極タブ40の経由スペースとなる窪み部32Xの面積が担保されながら、その窪み部32Xの面積が十分に小さくなるからである。図2および図5のそれぞれでは、負極32の平面形状に対応する円を破線で示している。
 露出部32Yは、露出部31Yが配置されている位置P2とは反対側である位置P1に配置されており、負極活物質層32Bがその負極活物質層32Bの内側(積層方向Sから負極32(負極活物質層32B)を見た場合において、その負極32の中心に向かう側)に向かって部分的に窪んでいると共に負極集電体32Aが部分的に露出している第2露出部である。すなわち、露出部32Yでは、負極集電体32Aが負極活物質層32Bにより被覆されていないため、その負極集電体32Aが露出している。この露出部32Yでは、負極集電体32Aは存在しているが、負極活物質層32Bは存在していない。
 ここでは、負極32は、上記したように、略円形の平面形状を有している。この場合において、露出部32Yは、窪み部32Xの平面形状と同様の平面形状を有しており、すなわち負極32の平面形状に対応する円の外縁(円周)に沿って湾曲した円弧型の平面形状を有していることが好ましい。負極タブ50との接続箇所となる露出部32Yの面積が担保されながら、その露出部32Yの面積が十分に小さくなるからである。
 これにより、負極32では、図3に示したように、負極集電体32Aのうちの露出部32Yが負極タブ50と接続可能となるように位置P1に向かって突出しているのに対して、その負極集電体32Aが正極タブ40と接触不能となるように窪み部32Xにおいて位置P1に向かって後退している。
 図5に示したように、窪み部32Xおよび露出部32Yのそれぞれの平面形状を規定する寸法パラメータは、特に限定されないため、任意に設定可能である。具体的には、窪み部32Xにおける負極集電体32Aの後退距離である幅W32Xは、任意に設定可能であると共に、その窪み部32Xの湾曲距離(円弧の長さ)を決定する角度θ32Xは、任意に設定可能である。また、露出部32Yにおける負極活物質層32Bの後退距離である幅W32Yは、任意に設定可能であると共に、その露出部32Yの湾曲距離(円弧の長さ)を決定する角度θ32Yは、任意に設定可能である。
 なお、負極32の外径は、正極31の外径より大きくてもよい。すなわち、負極32は、正極31よりも周囲に向かって突出していてもよい。正極31から放出されたリチウムが負極32において析出することを防止するためである。
(セパレータ)
 セパレータ33は、図2、図3および図6に示したように、正極31と負極32との間に配置されている絶縁性の多孔質膜であり、その正極31と負極32との短絡を防止しながらリチウムイオンを通過させる。このセパレータ33は、ポリエチレンなどの高分子化合物を含んでいる。
 ここで、セパレータ33は、窪み部33X1,33X2を有している。
 窪み部33X1は、窪み部31Xおよび露出部32Yのそれぞれに対応する位置P1に配置されており、セパレータ33がそのセパレータ33の内側(積層方向Sからセパレータ33を見た場合において、そのセパレータ33の中心に向かう側)に向かって部分的に窪んでいる第3窪み部である。この窪み部33X1は、上記したように、セパレータ33が部分的に窪んでいる部分であるため、後述するテーパ部33M1(図10参照)とは異なっている。この窪み部33X1では、セパレータ33が存在していない。
 窪み部33X2は、露出部31Yおよび窪み部32Xのそれぞれに対応する位置P2に配置されており、セパレータ33がそのセパレータ33の内側(積層方向Sからセパレータ33を見た場合において、そのセパレータ33の中心に向かう側)に向かって部分的に窪んでいる第4窪み部である。この窪み部33X2は、上記したように、セパレータ33が部分的に窪んでいる部分であるため、後述するテーパ部33M2(図10参照)とは異なっている。この窪み部33X2では、セパレータ33が存在していない。
 ここでは、セパレータ33は、窪み部33X1,33X2のそれぞれを除いて円形の平面形状を有しており、すなわち窪み部33X1,33X2のそれぞれにおいて部分的に窪んでいる略円形の平面形状を有している。外装缶10が扁平かつ円柱状の立体的形状を有している場合において、セパレータ33の平面形状に起因するデッドスペースが発生しにくくなるからである。
 この場合において、窪み部33X1,33X2のそれぞれは、セパレータ33の平面形状に対応する円の外縁(円周)に沿って湾曲した円弧型の平面形状を有していることが好ましい。正極タブ40の経由スペースとなる窪み部33X2の面積および負極タブ50の経由スペースとなる窪み部33X1の面積のそれぞれが担保されながら、正極31と負極32との短絡が防止されるからである。図2および図6のそれぞれでは、セパレータ33の平面形状に対応する円を破線で示している。
 これにより、図3に示したように、セパレータ33が窪み部33X1において位置P2に向かって後退していると共に、そのセパレータ33が窪み部33X2において位置P1に向かって後退している。
 図6に示したように、窪み部33X1,33X2のそれぞれの平面形状を規定する寸法パラメータは、特に限定されないため、任意に設定可能である。具体的には、窪み部33X1におけるセパレータ33の後退距離である幅W33X1は、任意に設定可能であると共に、その窪み部33X1の湾曲距離(円弧の長さ)を決定する角度θ33X1は、任意に設定可能である。また、窪み部33X2におけるセパレータ33の後退距離である幅W33X2は、任意に設定可能であると共に、その窪み部33X2の湾曲距離(円弧の長さ)を決定する角度θ33X2は、任意に設定可能である。
 なお、セパレータ33の外径は、負極32の外径より大きくてもよい。すなわち、セパレータ33は、負極32よりも周囲に向かって突出していてもよい。セパレータ33を利用して正極タブ40を負極32から絶縁するためである。
(電解液)
 電解液は、正極31、負極32およびセパレータ33のそれぞれに含浸されており、溶媒および電解質塩を含んでいる。溶媒は、炭酸エステル系化合物、カルボン酸エステル系化合物およびラクトン系化合物などの非水溶媒(有機溶剤)のうちのいずれか1種類または2種類以上を含んでおり、その非水溶媒を含んでいる電解液は、いわゆる非水電解液である。電解質塩は、リチウム塩などの軽金属塩のうちのいずれか1種類または2種類以上を含んでいる。
[正極タブ]
 正極タブ40は、図1~図3に示したように、正極31(正極集電体31A)および外装容器11のそれぞれに接続されている第1配線であり、外装缶10の内部に収納されている。
 この正極タブ40は、積層方向Sにおいて窪み部32X,33X2のそれぞれを経由するように延在しており、より具体的には、外装容器11に接続されるために下方向に向かって延在している。これにより、正極タブ40は、積層方向S(下方向)に延在していながら、複数の負極32のそれぞれに接触しておらずに、複数の正極31(正極集電体31A)のそれぞれ(露出部31Y)に接続されている。
 ここでは、正極タブ40の先端部は、途中で折れ曲がっているため、その正極タブ40は、タブ部40A,40Bを含んでいる。タブ部40Aは、積層方向S(下方向)に延在している。タブ部40Bは、積層方向Sと交差する方向に延在していると共に、タブ部40Aに連結されている。これにより、正極タブ40では、タブ部40Aが露出部31Yに接続されていると共に、タブ部40Bが外装容器11の内側底面に接続されている。正極タブ40と外装容器11との接触面積が増加するため、正極タブ40と外装容器11との電気的導通性が向上するからである。
 正極タブ40の形成材料に関する詳細は、正極集電体31Aの形成材料に関する詳細と同様である。ただし、正極タブ40の形成材料と正極集電体31Aの形成材料とは、互いに同じでもよいし、互いに異なってもよい。
[負極タブ]
 負極タブ50は、図1~図3に示したように、負極32(負極集電体32A)および外装容器12のそれぞれに接続されている第2配線であり、外装缶10の内部に収納されている。
 この負極タブ50は、積層方向Sにおいて窪み部31X,33X1のそれぞれを経由するように延在しており、より具体的には、外装容器12に接続されるために上方向に向かって延在している。すなわち、正極タブ40および負極タブ50は、互いに異なる方向に延在しており、より具体的には、互いに反対の方向に延在している。これにより、負極タブ50は、積層方向S(上方向)に延在していながら、複数の正極31のそれぞれに接触しておらずに、複数の負極32(負極集電体32A)のそれぞれ(露出部32Y)に接続されている。
 ここでは、負極タブ50の先端部は、途中で折れ曲がっているため、その負極タブ50は、タブ部50A,50Bを含んでいる。タブ部50Aは、積層方向S(上方向)に延在している。タブ部50Bは、積層方向Sと交差する方向に延在していると共に、タブ部50Aに連結されている。これにより、負極タブ50では、タブ部50Aが露出部32Yに接続されていると共に、タブ部50Bが外装容器12の内側底面に接続されている。負極タブ50と外装容器12との接触面積が増加するため、負極タブ50と外装容器12との電気的導通性が向上するからである。
 負極タブ50の形成材料に関する詳細は、負極集電体32Aの形成材料に関する詳細と同様である。ただし、負極タブ50の形成材料と負極集電体32Aの形成材料とは、互いに同じでもよいし、互いに異なってもよい。
<1-2.動作>
 二次電池の充電時には、電池素子30において、正極31からリチウムが放出されると共に、そのリチウムが電解液を介して負極32に吸蔵される。一方、二次電池の放電時には、電池素子30において、負極32からリチウムが放出されると共に、そのリチウムが電解液を介して正極31に吸蔵される。これらの充放電時には、リチウムがイオン状態で吸蔵放出される。
<1-3.製造方法>
 二次電池を製造する場合には、以下で説明する手順により、正極31および負極32のそれぞれを作製すると共に電解液を調製したのち、その正極31および負極32と共に電解液を用いて二次電池を作製する。以下の説明では、随時、既に説明した図1~図6を参照する。
[正極の作製]
 最初に、正極活物質と、必要に応じて正極結着剤および正極導電剤などとを互いに混合させることにより、正極合剤とする。続いて、溶媒に正極合剤を投入することにより、ペースト状の正極合剤スラリーを調製する。この溶媒は、水性溶媒でもよいし、非水溶媒(有機溶剤)でもよい。
 続いて、窪み部31Xを有する正極集電体31Aの両面に正極合剤スラリーを塗布することにより、正極活物質層31Bを形成する。この場合には、正極集電体31Aの一部に正極合剤スラリーが塗布されないように塗布範囲を調整することにより、露出部31Yを形成する。
 最後に、ロールプレス機などを用いて正極活物質層31Bを圧縮成型する。この場合には、正極活物質層31Bを加熱してもよいと共に、圧縮成型を複数回繰り返してもよい。これにより、正極集電体31Aの両面に正極活物質層31Bが形成されるため、正極31が作製される。
[負極の作製]
 正極31の作製手順と同様の手順により、負極32を作製する。具体的には、負極活物質と、必要に応じて負極結着剤および負極導電剤などとを互いに混合させることにより、負極合剤としたのち、溶媒に負極合剤を投入することにより、ペースト状の負極合剤スラリーを調製する。溶媒に関する詳細は、上記した通りである。
 続いて、窪み部32Xを有する負極集電体32Aの両面に負極合剤スラリーを塗布することにより、負極活物質層32Bを形成する。この場合には、負極集電体32Aの一部に負極合剤スラリーが塗布されないように塗布範囲を調整することにより、露出部32Yを形成する。
 最後に、ロールプレス機などを用いて負極活物質層32Bを圧縮成型する。圧縮成型に関する詳細は、上記した通りである。これにより、負極集電体32Aの両面に負極活物質層32Bが形成されるため、負極32が作製される。
[電解液の調製]
 溶媒に電解質塩を投入する。これにより、溶媒中において電解質塩が分散または溶解されるため、電解液が調製される。
[二次電池の組み立て]
 最初に、窪み部33X1,33X2を有すると共に電解液が含浸されているセパレータ33を介して、正極31および負極32を交互に積層させる。この場合には、窪み部31X,33X1および露出部32Yのそれぞれが位置P1に配置されると共に、窪み部32X,33X2および露出部31Yのそれぞれが位置P2に配置されるように、正極31、負極32およびセパレータ33のそれぞれの向きを調整する。これにより、セパレータ33に含浸されている電解液の一部が正極31および負極32のそれぞれに含浸されるため、電池素子30が作製される。
 続いて、溶接法を用いて各正極31(正極集電体31Aのうちの露出部31Y)に正極タブ40(タブ部40A)を接続させると共に、溶接法を用いて各負極32(負極集電体32Aのうちの露出部32Y)に負極タブ50(タブ部50A)を接続させる。
 続いて、開口部11K,12Kが互いに対向するように外装容器11,12を配置することにより、電池素子30を介して外装容器11,12を互いに対向させる。続いて、外装容器11,12により電池素子30が挟まれた状態において、その外装容器11の内部にガスケット20を介して外装容器12を挿入したのち、そのガスケット20を介して外装容器11,12を互いに加締める。これにより、外装缶10が形成されるため、その外装缶10の内部に電池素子30が収納される。
 最後に、溶接法を用いて正極タブ40(タブ部40B)を外装容器11に接続させると共に、溶接法を用いて負極タブ50(タブ部50B)を外装容器12に接続させる。これにより、正極31が正極タブ40を介して外装容器11に接続されると共に、負極32が負極タブ50を介して外装容器12に接続されるため、二次電池が組み立てられる。
[二次電池の安定化]
 組み立て後の二次電池を充放電させる。環境温度、充放電回数(サイクル数)および充放電条件などの各種条件は、任意に設定可能である。これにより、負極32などの表面に被膜が形成されるため、二次電池の状態が電気化学的に安定化する。よって、二次電池が完成する。
<1-4.作用および効果>
 この二次電池によれば、正極31および負極32がセパレータ33を介して互いに積層されており、その正極31が位置P1に窪み部31Xおよび位置P2に露出部31Yを有しており、その負極32が位置P1に露出部32Yおよび位置P2に窪み部32Xを有している。よって、以下で説明する理由により、安全性を担保しながら優れた電池容量特性を得ることができる。
 図7は、比較例の二次電池の断面構成を表しており、図3に対応している。図8~図10のそれぞれは、図7に示した正極31、負極32およびセパレータ33のそれぞれの平面構成を表しており、図4~図6のそれぞれに対応している。
 比較例の二次電池は、図7~図10に示したように、電池素子30の代わりに電池素子130を備えていると共に、正極タブ40および負極タブ50を備えていないことを除いて、図3~図6に示した本実施形態の二次電池の構成と同様の構成を有している。比較例の二次電池の具体的な構成は、以下で説明する通りである。
 電池素子130は、以下で説明することを除いて、電池素子30の構成と同様の構成を有している。
 正極31は、テーパ部31Mおよび突出部31Nを有している。テーパ部31Mは、位置P1に配置されており、正極集電体31Aが内側に向かってテーパ状に後退している部分である。突出部31Nは、位置P2に配置されており、正極活物質層31Bが内側に向かってテーパ状に後退していることに起因して正極集電体31Aが位置P2に向かって部分的に突出している部分である。テーパ部31Mにおける正極集電体31Aの後退距離であるテーパ距離L31Mは、任意に設定可能であると共に、突出部31Nにおける正極集電体31Aの突出距離L31Nは、任意に設定可能である。
 負極32は、テーパ部32Mおよび突出部32Nを有している。テーパ部32Mは、位置P2に配置されており、負極集電体32Aが内側に向かってテーパ状に後退している部分である。突出部32Nは、位置P1に配置されており、負極活物質層32Bが内側に向かってテーパ状に後退していることに起因して負極集電体32Aが位置P1に向かって部分的に突出している部分である。テーパ部32Mにおける負極集電体32Aの後退距離であるテーパ距離L32Mは、任意に設定可能であると共に、突出部32Nにおける負極集電体32Aの突出距離L32Nは、任意に設定可能である。
 セパレータ33は、テーパ部33M1,33M2を有している。テーパ部33M1は、位置P1に配置されており、セパレータ33が内側に向かってテーパ状に後退している部分である。テーパ部33M2は、位置P2に配置されており、セパレータ33が内側に向かってテーパ状に後退している部分である。テーパ部33M1におけるセパレータ33の後退距離であるテーパ距離L33M1は、任意に設定可能であると共に、テーパ部33M2におけるセパレータ33の後退距離であるテーパ距離L33M2は、任意に設定可能である。
 複数の突出部31Nは、テーパ部32M,33M2を経由しながら外装容器11に向かって延長されていると共に、溶接法などを用いて互いに重なり合うように接合されている。これにより、互いに接合された複数の突出部31Nは、外装容器11に接続されているため、正極タブ40と同様の機能を果たしている。
 また、複数の突出部32Nは、テーパ部31M,33M1を経由しながら外装容器12に向かって延長されていると共に、溶接法などを用いて互いに重なり合うように接合されている。これにより、互いに接合された複数の突出部32Nは、外装容器12に接続されているため、負極タブ50と同様の機能を果たしている。
 比較例の二次電池では、負極32がテーパ部32Mを有しているため、複数の突出部31Nがテーパ部32Mを経由しながら延在している。これにより、外装容器11に接続させるために複数の突出部31Nを積層方向S(下方向)に延在させても、その複数の突出部31Nが負極32に接触しない。よって、正極31(突出部31N)と負極32とが互いに接触しないため、短絡の発生が防止される。
 しかしながら、複数の突出部31Nが互いに重なり合うように接合されている。これにより、複数の突出部31Nの総厚が増加するため、突出距離L31Nが増加する。突出距離L31Nが増加すると、正極活物質層31Bの形成面積が減少するため、電池容量が減少する。また、テーパ部32Mを経由しながら外装容器11まで複数の突出部31Nを誘導するためには、その複数の突出部31Nの誘導スペースを確保するためにテーパ距離L32Mを増加させる必要がある。テーパ距離L32Mが増加すると、負極活物質層32Bの形成面積が減少するため、電池容量が減少する。
 ここで説明した正極31の突出部31Nおよび負極32のテーパ部32Mに起因する問題は、正極31のテーパ部31Mおよび負極32の突出部32Nに関しても同様である。
 すなわち、正極31がテーパ部31Mを有しているため、複数の突出部32Nがテーパ部31Mを経由しながら延在している。これにより、外装容器12に接続させるために複数の突出部32Nを積層方向S(上方向)に延在させても、その複数の突出部32Nが正極31に接触しない。よって、負極32(突出部32N)と正極31とが互いに接触しないため、短絡の発生が防止される。
 しかしながら、複数の突出部32Nが互いに重なり合うように接合されている。これにより、複数の突出部32Nの総厚が増加するため、突出距離L32Nが増加する。突出距離L32Nが増加すると、負極活物質層32Bの形成面積が減少するため、電池容量が減少する。また、テーパ部31Mを経由しながら外装容器12まで複数の突出部32Nを誘導するためには、その複数の突出部32Nの誘導スペースを確保するためにテーパ距離L31Mを増加させる必要がある。テーパ距離L31Mが増加すると、正極活物質層31Bの形成面積が減少するため、電池容量が減少する。
 これらのことから、比較例の二次電池では、正極タブ40および負極タブ50が不要である反面、短絡の発生防止と電池容量の増加とを両立させることが困難である。よって、安全性を担保しながら優れた電池容量特性を得ることができない。
 これに対して、本実施形態の二次電池では、図3~図6に示したように、負極32が窪み部32Xを有している。これにより、正極タブ40を用いる場合において、外装容器11に接続させるために窪み部32Xを経由しながら正極タブ40を積層方向S(下方向)に延在させても、その正極タブ40が負極32に接触しない。よって、正極31(露出部31Y)と負極32とが互いに接触しないため、短絡の発生が防止される。
 しかも、正極タブ40は、露出部31Yに接続できさえすればよい。これにより、露出部31Yの面積が小さくて済むため、幅W31Yが減少する。幅W31Yが減少すると、正極活物質層31Bの形成面積が増加するため、電池容量が増加する。また、正極タブ40の厚さは、その正極タブ40と外装容器11とが互いに導通可能であれば薄くてよい。これにより、窪み部32Xを経由しながら外装容器11まで正極タブ40を誘導するためには、その正極タブ40の誘導スペースを確保するために幅W32Xが小さくてよい。幅W32Xが小さくなると、負極活物質層32Bの形成面積が増加するため、電池容量が増加する。
 ここで説明した正極31の露出部31Yおよび負極32の窪み部32Xに起因する利点は、正極31の窪み部31Xおよび負極32の露出部32Yに関しても同様である。
 すなわち、正極31が窪み部31Xを有している。これにより、負極タブ50を用いる場合において、外装容器12に接続させるために窪み部31Xを経由しながら負極タブ50を積層方向S(上方向)に延在させても、その負極タブ50が正極31に接触しない。よって、負極32(露出部32Y)と正極31とが互いに接触しないため、短絡の発生が防止される。
 しかも、負極タブ50は、露出部32Yに接続できさえすればよい。これにより、露出部32Yの面積が小さくて済むため、幅W32Yが減少する。幅W32Yが減少すると、負極活物質層32Bの形成面積が増加するため、電池容量が増加する。また、負極タブ50の厚さは、その負極タブ50と外装容器12とが互いに導通可能であれば薄くてよい。これにより、窪み部31Xを経由しながら外装容器12まで負極タブ50を誘導するためには、その負極タブ50の誘導スペースを確保するために幅W31Xが小さくてよい。幅W31Xが小さくなると、正極活物質層31Bの形成面積が増加するため、電池容量が増加する。
 これらのことから、本実施形態の二次電池では、正極タブ40および負極タブ50を用いても、短絡の発生防止と電池容量の増加とが両立される。よって、安全性を担保しながら優れた電池容量特性を得ることができる
 この場合には、負極タブ50の厚さを十分に薄くすれば、窪み部31Xの面積が最小限で済むため、正極活物質層31Bの形成面積が十分に増加する。同様に、正極タブ40の厚さを十分に薄くすれば、窪み部32Xの面積が最小限で済むため、負極活物質層32Bの形成面積が十分に増加する。よって、電池容量を十分に増加させることができる。
 また、互いに十分に導通可能となるように露出部31Yと正極タブ40との接触面積が確保されれば、その露出部31Yの面積が最小限で済むため、正極活物質層31Bの形成面積が十分に増加する。同様に、互いに十分に導通可能となるように露出部32Yと負極タブ50との接触面積が確保されれば、その露出部32Yの面積が最小限で済むため、負極活物質層32Bの形成面積が十分に増加する。よって、電池容量を十分に増加させることができる。
 特に、セパレータ33が位置P1に窪み部33X1および位置P2に窪み部33X2を有していれば、そのセパレータ33を介して正極31および負極32が互いに離隔されながら、そのセパレータ33を用いても正極タブ40の経由スペースおよび負極タブ50の経由スペースが確保されるため、より高い効果を得ることができる。
 また、二次電池が正極タブ40および負極タブ50を備えていれば、上記したように、その正極タブ40および負極タブ50を用いても素子空間体積が過剰に減少せずに担保されるため、正極活物質層31Bの形成面積および負極活物質層32Bの形成面積のそれぞれが増加する。よって、正極タブ40および負極タブ50を用いても電池容量が十分に増加するため、より高い効果を得ることができる。
 この場合には、正極タブ40および負極タブ50が互いに異なる方向に延在していれば、外装容器11,12が互いに絶縁されている場合において、その正極タブ40が外装容器11に向かって誘導されると共に、その負極タブ50が外装容器12に向かって誘導される。これにより、正極タブ40が外装容器11に接続されやすくなると共に、負極タブ50が外装容器12に接続されやすくなるため、その外装容器11が正極31の外部接続用端子として機能しやすくなると共に、その外装容器12が負極32の外部接続用端子として機能しやすくなる。よって、正極31の外部接続用端子として外装容器11を用いると共に負極32の外部接続用端子として外装容器12を用いても電池容量が十分に増加するため、より高い効果を得ることができる。
 また、外装缶10が互いに絶縁されている外装容器11,12を含んでおり、正極タブ40が外装容器11に接続されており、負極タブ50が外装容器12に接続されていれば、その外装容器12が正極31の外部接続用端子として機能すると共に、その外装容器11が負極32の外部接続用端子として機能する。これにより、二次電池が外装容器11,12とは別個に正極31の外部接続用端子および負極32の外部接続用端子を備えていなくてもよいため、素子空間体積が増加する。よって、二次電池の単位体積当たりのエネルギー密度が増加するため、より高い効果を得ることができる。
 また、正極31が窪み部31Xを除いて円形の平面形状を有していると共に、負極32が窪み部32Xを除いて円形の平面形状を有していれば、二次電池が扁平かつ円柱状の立体的形状を有してる場合において、素子空間体積が増加する。よって、二次電池の単位体積当たりのエネルギー密度が増加するため、より高い効果を得ることができる。
 この場合には、窪み部31Xおよび露出部31Yのそれぞれが円弧型の平面形状を有していると共に、窪み部32Xおよび露出部32Yのそれぞれが円弧型の平面形状を有していれば、その窪み部31X,32Xおよび露出部31Y,32Yのそれぞれの面積が最小限で済むため、正極活物質層31Bの形成面積および負極活物質層32Bの形成面積のそれぞれがより増加する。よって、電池容量がより増加するため、さらに高い効果を得ることができる。
 また、二次電池が複数の正極31、複数の負極32および複数のセパレータ33を備えており、その複数の正極31および複数の負極32が複数のセパレータ33を介して交互に積層されていれば、短絡の発生が防止されながら、正極31と負極32との対向面積が増加する。よって、電池容量がより増加するため、より高い効果を得ることができる。
 また、二次電池が扁平かつ柱状であり、すなわち二次電池がコイン型またはボタン型の二次電池であれば、サイズの観点において制約が大きい小型の二次電池においても短絡の発生防止と電池容量の増加とが両立されるため、より高い効果を得ることができる。
 また、二次電池がリチウムイオン二次電池であれば、リチウムの吸蔵放出を利用して十分な電池容量が安定に得られるため、より高い効果を得ることができる。
<1-5.電池容量の比較>
 二次電池の平面モデルに関するシミュレーション(演算処理)を用いて、図3~図6に示した本実施形態の二次電池の電池容量特性と、図7~図10に示した比較例の二次電池の電池容量特性とを互いに比較した。
 ここでは、電池容量に影響を及ぼす1個の正極活物質層31Bの形成面積または1個の負極活物質層32Bの形成面積(以下、「充放電反応面積(mm)」と呼称する。)を算出することにより、その充放電反応面積を比較したところ、表1に示した結果が得られた。なお、充放電反応面積の値は、小数点第三位の値を四捨五入した値である。
 表1において、「実施形態」は、本実施形態の二次電池(正極タブ40あり,負極タブ50あり)を表していると共に、「比較例」は、比較例の二次電池(正極タブ40なし,負極タブ50なし)を表している。
 充放電反応面積を算出する場合には、本実施形態の二次電池および比較例の二次電池のそれぞれにおいて、外装缶10および電池素子30のそれぞれの平面形状を円形(真円)とすることにより、その外装缶10および電池素子30のそれぞれの寸法を一定にした。具体的には、外装缶10の材質=SUS316、外装缶10の外径=14.1mm、外装缶10の内径=13.8mm、外装缶10の厚さ=150μm、セパレータ33の外径と負極32の外径との差(セパレータ33の外径>負極32の外径)=0.2mm、負極32の外径と正極31の外径との差(負極32の外径>正極31の外径)=0.4mm、クリアランス(外装缶10と電池素子30との間の距離)=0.4mmとすることにより、その外装缶10の内部の素子空間体積を決定する有効半径=6.65mmとした。
 この他、本実施形態の二次電池では、幅W31X,W31Y,W32X,W32Y=1.15mm、角度θ31X,θ31Y,θ32X,θ32Y2=25°とした。
 また、比較例の二次電池では、テーパ距離L31M,L32M=1.15mm、突出距離L31N,L32N=1.15mm、突出部31N,32Nのそれぞれの厚さ=0.01mmとした。
Figure JPOXMLDOC01-appb-T000001
 表1に示したように、本実施形態の二次電池の充放電反応面積は、比較例の二次電池の充放電反応面積よりも増加した。具体的には、本実施形態の二次電池では、比較例の二次電池と比較して、充放電反応面積、すなわち1個の正極活物質層31Bの形成面積または1個の負極活物質層32Bの形成面積が約4.8%増加した。
 ここでは、上記したように、二次電池の平面モデルを用いているため、充放電反応面積である1個の正極活物質層31Bまたは1個の負極活物質層32Bの形成面積の増加割合を算出している。この「1個の正極活物質層31B」とは、正極集電体31Aの片面に設けられている正極活物質層31Bを意味していると共に、「1個の負極活物質層32B」とは、負極活物質層32Bの片面に設けられている負極活物質層32Bを意味している。このため、本実施形態の二次電池における充放電反応面積の増加割合は、約0.1%にすぎない。
 しかしながら、電池素子30では、正極集電体31Aの両面に正極活物質層31Bが設けられていると共に、負極集電体32Aの両面に負極活物質層32Bが設けられている。また、電池素子30では、複数の正極31および複数の負極32が交互に積層されている。このため、充放電反応面積の増加割合が小さくても、電池素子30の全体における充放電反応面積の増加割合は、正極31および負極32のそれぞれの数が増加するにしたがって著しく増加する。
 一例を挙げると、正極31の数=20個、負極32の数=20個とすると、本実施形態の二次電池では、約0.1%×2×(20+20)=約8%増加する。コイン型またはボタン型の二次電池において充放電反応面積が約8%増加するということは、サイズの観点において制約が大きい小型の二次電池において電池容量が大幅に増加することを意味している。
<2.変形例>
 上記した二次電池の構成は、以下で説明するように、適宜、変更可能である。ただし、以下で説明する一連の変形例のうちの任意の2種類以上は、互いに組み合わされてもよい。
[変形例1]
 図4では、正極31が窪み部31Xを除いて円形の平面形状を有しているため、その窪み部31Xおよび露出部31Yのそれぞれが円弧型の平面形状を有している。しかしながら、窪み部31Xおよび露出部31Yのそれぞれの平面形状は、その窪み部31Xにおいて正極集電体31Aが部分的に窪んでいると共に露出部31Yにおいて正極活物質層31Bが部分的に窪んでいれば、特に限定されない。もちろん、窪み部31Xの平面形状と露出部31Yの平面形状とは、互いに同じでもよいし、互いに異なってもよい。
 この場合においても、正極タブ40が露出部31Yに接続可能であると共に負極タブ50が窪み部31Xを経由可能であれば、短絡の発生防止と電池容量の増加とが両立されるため、同様の効果を得ることができる。
 ここで窪み部31Xおよび露出部31Yのそれぞれの平面形状に関して説明したことは、図5に示した窪み部32Xおよび露出部32Yのそれぞれの平面形状に関しても同様である。すなわち、負極32が窪み部32Xを除いて円形の平面形状を有しているため、その窪み部32Xおよび露出部32Yのそれぞれが円弧型の平面形状を有している。しかしながら、窪み部32Xおよび露出部32Yのそれぞれの平面形状は、その窪み部32Xにおいて負極集電体32Aが部分的に窪んでいると共に露出部32Yにおいて負極活物質層32Bが部分的に窪んでいれば、特に限定されない。この場合においても、負極タブ50が露出部32Yに接続可能であると共に正極タブ40が窪み部32Xを経由可能であれば、短絡の発生防止と電池容量の増加とが両立されるため、同様の効果を得ることができる。
 もちろん、窪み部31Xおよび露出部31Yのそれぞれの平面形状に関して説明したことは、図6に示した窪み部33X1,33X2のそれぞれの平面形状に関しても同様である。
[変形例2]
 図4では、正極31が窪み部31Xを除いて円形の平面形状を有しているが、その窪み部31Xを除いた正極31の平面形状は、特に限定されないため、多角形などの他の形状でもよい。この場合においても、窪み部31Xにおいて正極集電体31Aが部分的に窪んでいると共に露出部31Yにおいて正極活物質層31Bが部分的に窪んでいれば、正極タブ40が露出部31Yに接続可能になると共に負極タブ50が窪み部31Xを経由可能になる。よって、短絡の発生防止と電池容量の増加とが両立されるため、同様の効果を得ることができる。
 ここで正極31の平面形状に関して説明したことは、図5に示した負極32の平面形状に関しても同様である。すなわち、負極32が窪み部32Xを除いて円形の平面形状を有しているが、その窪み部32Xを除いた負極32の平面形状は、特に限定されないため、多角形などの他の形状でもよい。この場合においても、窪み部32Xにおいて負極集電体32Aが部分的に窪んでいると共に露出部32Yにおいて負極活物質層32Bが部分的に窪んでいれば、負極タブ50が露出部32Yに接続可能になると共に正極タブ40が窪み部32Xを経由可能になる。よって、短絡の発生防止と電池容量の増加とが両立されるため、同様の効果を得ることができる。
 もちろん、正極31の平面形状に関して説明したことは、図6に示したセパレータ33の平面形状に関しても同様である。
[変形例3]
 図4では、位置P1,P2が互いに正対しているため、窪み部31Xおよび露出部31Yが正極31の中心に対して左右対称な位置に配置されている。しかしながら、位置P1,P2が互いに正対していないため、窪み部31Xおよび露出部31Yが正極31の中心に対して左右非対称な位置に配置されていてもよい。
 この場合においても、正極タブ40が露出部31Yに接続可能であると共に負極タブ50が窪み部31Xを経由可能であれば、短絡の発生防止と電池容量の増加とが両立されるため、同様の効果を得ることができる。
 ここで窪み部31Xおよび露出部31Yのそれぞれの位置に関して説明したことは、図5に示した窪み部32Xおよび露出部32Yのそれぞれの位置に関しても同様である。すなわち、位置P1,P2が互いに正対しているため、窪み部32Xおよび露出部32Yが負極32の中心に対して左右対称な位置に配置されている。しかしながら、位置P1,P2が互いに正対していないため、窪み部32Xおよび露出部32Yが負極32の中心に対して左右非対称な位置に配置されていてもよい。この場合においても、負極タブ50が露出部32Yに接続可能であると共に正極タブ40が窪み部32Xを経由可能であれば、短絡の発生防止と電池容量の増加とが両立されるため、同様の効果を得ることができる。
 もちろん、窪み部31Xおよび露出部31Yのそれぞれの位置に関して説明したことは、図6に示した窪み部33X1,33X2のそれぞれの位置に関しても同様である。
[変形例4]
 図2および図4では、二次電池が1個の正極タブ40および1個の負極タブ50を備えているため、正極31が1個の窪み部31Xおよび1個の露出部31Yを有している。
 しかしながら、二次電池が2個以上の正極タブ40および2個以上の負極タブ50を備えているため、正極31が2個以上の窪み部31Xおよび2個以上の露出部31Yを有していてもよい。
 この場合においても、2個以上の正極タブ40が露出部31Yに接続可能であると共に2個以上の負極タブ50が窪み部31Xを経由可能であれば、短絡の発生防止と電池容量の増加とが両立されるため、同様の効果を得ることができる。この場合には、特に、正極タブ40の数が増加すると、正極31の電気抵抗が減少すると共に、負極タブ50の数が増加すると、負極32の電気抵抗が減少するため、より高い効果を得ることができる。ただし、窪み部31Xおよび露出部31Yのそれぞれの数が増加すると、正極活物質層31Bの形成面積が減少するため、電池容量が減少することに留意する必要がある。
 この他、二次電池が1個の正極タブ40および2個以上の負極タブ50を備えているため、正極31が2個以上の窪み部31Xおよび1個の露出部31Yを有していてもよい。また、二次電池が2個以上の正極タブ40および1個の負極タブ50を備えているため、正極31が1個の窪み部31Xおよび2個以上の露出部31Yを有していてもよい。
 ここで窪み部31Xおよび露出部31Yのそれぞれの数に関して説明したことは、図2および図5に示した窪み部32Xおよび露出部32Yのそれぞれの数に関しても同様である。すなわち、二次電池が1個の正極タブ40および1個の負極タブ50を備えているため、負極32が1個の窪み部32Xおよび1個の露出部32Yを有している。しかしながら、二次電池が2個以上の正極タブ40および2個以上の負極タブ50を備えているため、負極32が2個以上の窪み部32Xおよび2個以上の露出部32Yを有していてもよい。この場合においても、2個以上の負極タブ50が露出部32Yに接続可能であると共に2個以上の正極タブ40が窪み部32Xを経由可能であれば、短絡の発生防止と電池容量の増加とが両立されるため、同様の効果を得ることができる。ただし、窪み部32Xおよび露出部32Yのそれぞれの数が増加すると、負極活物質層32Bの形成面積が減少するため、電池容量が減少することに留意する必要がある。
 この他、二次電池が1個の正極タブ40および2個以上の負極タブ50を備えているため、負極32が1個の窪み部31Xおよび2個以上の露出部31Yを有していてもよい。また、二次電池が2個以上の正極タブ40および1個の負極タブ50を備えているため、負極32が2個以上の窪み部31Xおよび1個の露出部31Yを有していてもよい。
 もちろん、窪み部31X,32Xのそれぞれの数に関して説明したことは、図6に示した窪み部33X1,33X2のそれぞれの数に関しても同様である。
 以上、一実施形態および実施例を挙げながら本技術に関して説明したが、その本技術の構成は、一実施形態および実施例において説明された構成に限定されないため、種々に変形可能である。
 具体的には、電極反応物質がリチウムである場合に関して説明したが、その電極反応物質は、特に限定されない。このため、電極反応物質は、上記したように、ナトリウムおよびカリウムなどの他のアルカリ金属でもよいし、ベリリウム、マグネシウムおよびカルシウムなどのアルカリ土類金属でもよい。この他、電極反応物質は、アルミニウムなどの他の軽金属でもよい。
 本明細書中に記載された効果は、あくまで例示であるため、本技術の効果は、本明細書中に記載された効果に限定されない。よって、本技術に関して、他の効果が得られてもよい。

Claims (10)

  1.  セパレータを介して互いに積層されている第1電極および第2電極を備え、
     前記第1電極は、
     第1集電体と、
     前記第1集電体の上に設けられた第1活物質層と
     を含み、
     前記第2電極は、
     第2集電体と、
     前記第2集電体の上に設けられた第2活物質層と
     を含み、
     前記第1電極は、
     第1位置に配置され、前記第1集電体が前記第1集電体の内側に向かって部分的に窪んでいる第1窪み部と、
     前記第1位置とは異なる第2位置に配置され、前記第1活物質層が前記第1活物質層の内側に向かって部分的に窪んでいると共に前記第1集電体が部分的に露出している第1露出部と
     を有し、
     前記第2電極は、
     前記第1位置に配置され、前記第2活物質層が前記第2活物質層の内側に向かって部分的に窪んでいると共に前記第2集電体が部分的に露出している第2露出部と、
     前記第2位置に配置され、前記第2集電体が前記第2集電体の内側に向かって部分的に窪んでいる第2窪み部と
     を有する、二次電池。
  2.  前記セパレータは、
     前記第1位置に配置され、前記セパレータが前記セパレータの内側に向かって部分的に窪んでいる第3窪み部と、
     前記第2位置に配置され、前記セパレータが前記セパレータの内側に向かって部分的に窪んでいる第4窪み部と
     を有する、請求項1記載の二次電池。
  3.  さらに、
     前記第1電極および前記第2電極が前記セパレータを介して互いに積層されている積層方向において前記第2窪み部を経由するように延在し、前記第1露出部に接続された第1配線と、
     前記積層方向において前記第1窪み部を経由するように延在し、前記第2露出部に接続された第2配線と
     を備えた、請求項1または請求項2に記載の二次電池。
  4.  前記第1配線および前記第2配線のそれぞれは、互いに異なる方向に延在している、
     請求項3記載の二次電池。
  5.  さらに、前記第1電極、前記第2電極、前記セパレータ、前記第1配線および前記第2配線を収納する収納部材を備え、
     前記収納部材は、互いに絶縁された第1収納部および第2収納部を含み、
     前記第1配線は、前記第1収納部に接続されており、
     前記第2配線は、前記第2収納部に接続されている、
     請求項3または請求項4に記載の二次電池。
  6.  前記第1電極は、前記第1窪み部を除いて円形の平面形状を有し、
     前記第2電極は、前記第2窪み部を除いて円形の平面形状を有する、
     請求項1ないし請求項5のいずれか1項に記載の二次電池。
  7.  前記第1窪み部および前記第1露出部のそれぞれは、前記第1電極の平面形状に対応する円の外縁に沿うように湾曲した円弧型の平面形状を有し、
     前記第2露出部および前記第2窪み部のそれぞれは、前記第2電極の平面形状に対応する円の外縁に沿うように湾曲した円弧型の平面形状を有する、
     請求項6記載の二次電池。
  8.  複数の前記第1電極、複数の前記第2電極および複数の前記セパレータを備え、
     前記複数の第1電極および前記複数の第2電極は、前記複数のセパレータを介して交互に積層されている、
     請求項1ないし請求項7のいずれか1項に記載の二次電池。
  9.  扁平かつ柱状の二次電池である、
     請求項1ないし請求項8のいずれか1項に記載の二次電池。
  10.  リチウムイオン二次電池である、
     請求項1ないし請求項9のいずれか1項に記載の二次電池。
PCT/JP2021/027137 2020-12-24 2021-07-20 二次電池 WO2022137617A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-215706 2020-12-24
JP2020215706 2020-12-24

Publications (1)

Publication Number Publication Date
WO2022137617A1 true WO2022137617A1 (ja) 2022-06-30

Family

ID=82158913

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/027137 WO2022137617A1 (ja) 2020-12-24 2021-07-20 二次電池

Country Status (1)

Country Link
WO (1) WO2022137617A1 (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1027602A (ja) * 1996-07-12 1998-01-27 Yuasa Corp 電極及び積層形電池
JP2011159491A (ja) * 2010-02-01 2011-08-18 Hitachi Maxell Energy Ltd 扁平形非水二次電池
JP2012018795A (ja) * 2010-07-07 2012-01-26 Nec Energy Devices Ltd ラミネート型の電池および電池モジュール
JP2013089604A (ja) * 2011-10-21 2013-05-13 Research In Motion Ltd 高密度エネルギー薄型バッテリのためのはめ込まれたタブ
JP2017069207A (ja) * 2015-09-30 2017-04-06 積水化学工業株式会社 リチウムイオン二次電池及びその製造方法
CN109037501A (zh) * 2018-08-30 2018-12-18 深圳市能锐创新科技有限公司 扣式锂离子电池壳体及扣式叠片锂离子电池
CN111224054A (zh) * 2020-01-19 2020-06-02 深圳市言九电子科技有限公司 一种快充型高容量纽扣电池

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1027602A (ja) * 1996-07-12 1998-01-27 Yuasa Corp 電極及び積層形電池
JP2011159491A (ja) * 2010-02-01 2011-08-18 Hitachi Maxell Energy Ltd 扁平形非水二次電池
JP2012018795A (ja) * 2010-07-07 2012-01-26 Nec Energy Devices Ltd ラミネート型の電池および電池モジュール
JP2013089604A (ja) * 2011-10-21 2013-05-13 Research In Motion Ltd 高密度エネルギー薄型バッテリのためのはめ込まれたタブ
JP2017069207A (ja) * 2015-09-30 2017-04-06 積水化学工業株式会社 リチウムイオン二次電池及びその製造方法
CN109037501A (zh) * 2018-08-30 2018-12-18 深圳市能锐创新科技有限公司 扣式锂离子电池壳体及扣式叠片锂离子电池
CN111224054A (zh) * 2020-01-19 2020-06-02 深圳市言九电子科技有限公司 一种快充型高容量纽扣电池

Similar Documents

Publication Publication Date Title
JP3737729B2 (ja) 非水電解液電池および非水電解液
US20220181725A1 (en) Secondary battery
EP2302717A1 (en) Electrode assembly for a rechargeable battery
WO2021229846A1 (ja) 二次電池
JP2001015146A (ja) 電 池
JP2024036693A (ja) 二次電池
JPH06181069A (ja) 非水電解質二次電池
JPH11219694A (ja) 捲回式円筒形電池
JP7082589B2 (ja) 二次電池用電極とその製造方法、二次電池
JP6468191B2 (ja) 非水電解質二次電池
WO2022137617A1 (ja) 二次電池
US20220200110A1 (en) Secondary battery
WO2022044628A1 (ja) 二次電池
WO2022149392A1 (ja) 電池
WO2022059337A1 (ja) 二次電池
CN219553699U (zh) 二次电池
US20220231384A1 (en) Secondary battery
US20220216545A1 (en) Flat secondary battery
WO2022149393A1 (ja) 蓄電素子
WO2023026959A1 (ja) 二次電池
WO2023063223A1 (ja) 二次電池
WO2023002807A1 (ja) 二次電池
WO2023276263A1 (ja) 二次電池
WO2022059338A1 (ja) 二次電池
JP2003297429A (ja) 非水電解質二次電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21909777

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21909777

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP