WO2022134557A1 - 风冷冰箱风机控制方法、装置和风冷冰箱 - Google Patents

风冷冰箱风机控制方法、装置和风冷冰箱 Download PDF

Info

Publication number
WO2022134557A1
WO2022134557A1 PCT/CN2021/106994 CN2021106994W WO2022134557A1 WO 2022134557 A1 WO2022134557 A1 WO 2022134557A1 CN 2021106994 W CN2021106994 W CN 2021106994W WO 2022134557 A1 WO2022134557 A1 WO 2022134557A1
Authority
WO
WIPO (PCT)
Prior art keywords
fan
air
cooled refrigerator
preset
controlling
Prior art date
Application number
PCT/CN2021/106994
Other languages
English (en)
French (fr)
Inventor
樊炳国
曹洁
于帮兴
Original Assignee
Tcl家用电器(合肥)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tcl家用电器(合肥)有限公司 filed Critical Tcl家用电器(合肥)有限公司
Publication of WO2022134557A1 publication Critical patent/WO2022134557A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D27/00Control, e.g. regulation, of pumps, pumping installations or pumping systems specially adapted for elastic fluids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D17/00Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces
    • F25D17/04Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection
    • F25D17/06Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection by forced circulation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D29/00Arrangement or mounting of control or safety devices

Definitions

  • the present application relates to the technical field of electrical equipment control, and in particular, to a method and device for controlling a fan of an air-cooled refrigerator and an air-cooled refrigerator.
  • Air-cooled refrigerators use air for refrigeration and reduce the temperature of the refrigerator through continuous circulation.
  • the air-cooled refrigerator will be equipped with a refrigerating fan.
  • the traditional air-cooled refrigerator refrigerating fan control method is driven by a fixed power supply voltage, that is, the refrigerating fan rotates when the voltage is supplied, and the refrigerating fan does not rotate if the voltage is not supplied.
  • the refrigerating fan rotates when the voltage is supplied, and the refrigerating fan does not rotate if the voltage is not supplied.
  • the present application provides a method and device for controlling a fan of an air-cooled refrigerator, and an air-cooled refrigerator, which improve the problem of low control reliability of a traditional air-cooled refrigerator refrigerating fan control method.
  • the present application provides a method for controlling a fan of an air-cooled refrigerator, including:
  • the fan of the air-cooled refrigerator is controlled to start;
  • the fan is controlled to cycle on and off to restart the fan.
  • controlling the fan to cycle on and off to restart the fan includes: controlling the fan to continue to cycle on and off until it is detected that the fan is running.
  • the method further includes:
  • the blower When the operation state of the blower is normal operation, after controlling the blower to cycle on and off for a preset number of times, the blower is controlled to operate at a preset maximum rotational speed.
  • the method when the operation state of the fan is normal operation, after controlling the fan to cycle on and off for a preset number of times, and then controlling the fan to operate at a preset maximum speed, The method also includes: after controlling the fan to run for a preset duration at a preset maximum rotational speed, controlling the fan to run according to a preset operation program.
  • the controlling the operation of the fan according to a preset operation program includes:
  • the air-cooled refrigerator is in a preset operation mode, adjusting the rotational speed of the fan according to the detected ambient temperature; or,
  • the fan is controlled to run at a preset maximum speed.
  • the adjusting the rotational speed of the fan according to the detected ambient temperature includes:
  • the duty cycle of the pulse width signal output to the voltage regulation circuit is adjusted according to the target voltage; wherein, the pulse width signal is used to control the voltage regulation circuit to supply power to the fan at the target voltage, thereby regulating the fan speed.
  • determining the target voltage according to the detected ambient temperature and the corresponding relationship between the preset temperature range and the voltage includes:
  • the voltage value corresponding to the temperature interval in which the ambient temperature is located is extracted as the target voltage.
  • determining the target voltage according to the detected ambient temperature and the corresponding relationship between the preset temperature range and the voltage further includes:
  • the preset voltage value is used as the target voltage.
  • the present application further provides a fan control device for an air-cooled refrigerator, and the fan control device for an air-cooled refrigerator includes:
  • the start-up control module is used to control the start-up of the fan of the air-cooled refrigerator when the demand for fan-on is detected;
  • a signal analysis module configured to obtain a feedback signal of the fan, and analyze the operation state of the fan according to the feedback signal
  • the fan restarting module is configured to control the fan to cycle on and off to restart the fan when the running state of the fan is not in normal operation.
  • the fan restarting module is further configured to control the fan to continuously cycle on and off until it is detected that the fan is running.
  • the fan restart module is further configured to control the fan to run at a preset maximum speed after controlling the fan to cycle on and off for a preset number of times when the fan is in normal operation.
  • the fan restart module is further configured to control the fan to operate according to a preset operation program after controlling the fan to operate for a preset duration at a preset maximum rotational speed.
  • the present application further provides an air-cooled refrigerator
  • the air-cooled refrigerator includes a controller, a voltage regulation circuit and a fan
  • the controller is connected to the voltage regulation circuit
  • the voltage regulation circuit is connected to the fan
  • the controller is used for fan control according to the following steps:
  • the fan of the air-cooled refrigerator is controlled to start;
  • the fan is controlled to cycle on and off to restart the fan.
  • the controller is specifically configured to control the fan to continuously cycle on and off until it is detected that the fan is running.
  • the controller is further configured to control the fan at a preset maximum rotational speed after controlling the fan to cycle on and off for a preset number of times when the fan is in normal operation.
  • the fan is running.
  • the controller is further configured to control the fan to operate according to a preset operation program after controlling the fan to operate for a preset period of time at a preset maximum rotational speed.
  • the controller is specifically configured to adjust the rotational speed of the fan according to the detected ambient temperature if the air-cooled refrigerator is in a preset operation mode; or,
  • the fan is controlled to run at a preset maximum speed.
  • the controller is specifically configured to determine the target voltage according to the detected ambient temperature and the corresponding relationship between the preset temperature range and the voltage;
  • the duty cycle of the pulse width signal output to the voltage regulation circuit is adjusted according to the target voltage; wherein, the pulse width signal is used to control the voltage regulation circuit to supply power to the fan at the target voltage, thereby regulating the fan speed.
  • the controller is specifically configured to acquire a temperature range in which the ambient temperature is located according to a preset temperature range
  • the voltage value corresponding to the temperature interval in which the ambient temperature is located is extracted as the target voltage.
  • the controller is further specifically configured to use the preset voltage value as the target voltage if the temperature sensor for detecting the ambient temperature fails.
  • the method and device for controlling the fan of the air-cooled refrigerator and the air-cooled refrigerator provided by the present application control the fan to start and obtain the feedback signal of the fan to analyze the operation state of the fan when it is detected that the fan needs to be turned on.
  • the fan cycle start and stop operation control to restart the fan can improve the ability of the fan to start in adverse environments such as blocked rotors and icing, so that the fan can be in a better operation and improve the control reliability of the fan.
  • FIG. 1 is a flowchart of a method for controlling a fan of an air-cooled refrigerator in one embodiment
  • FIG. 2 is a flowchart of a method for controlling a fan of an air-cooled refrigerator in another embodiment
  • FIG. 3 is a flow chart of controlling the operation of a fan according to a preset operation program in an embodiment
  • FIG. 4 is a flow chart of adjusting the rotational speed of the fan according to the detected ambient temperature in an embodiment
  • FIG. 5 is a structural block diagram of a fan control device for an air-cooled refrigerator in an embodiment
  • FIG. 6 is a schematic structural diagram of a voltage regulation circuit in an embodiment
  • FIG. 7 is a flow chart of fan control of an air-cooled refrigerator in an embodiment.
  • a method for controlling a fan of an air-cooled refrigerator including:
  • Step S100 when the demand for turning on the fan is detected, the fan of the air-cooled refrigerator is controlled to start.
  • the main control board of the refrigerator can monitor the state of the refrigerator in real time, analyze whether the fan needs to be turned on, and correspondingly modify the state of the fan flag. For example, when the fan flag is 1, it can be considered that there is a need to turn on the fan; when the fan flag is 0, it can be considered that there is no need to turn on the fan.
  • the voltage regulation circuit can be connected through the controller, and the voltage regulation circuit is connected to the fan, and the controller is used to output control signals to the voltage regulation circuit, and the output voltage of the voltage regulation circuit can be adjusted to control the fan on, off and speed.
  • the controller can use a single-chip microcomputer, and the control signal can use PWM (Pulse Width Modulation, pulse width modulation) square wave signal, the controller adjusts the output voltage of the voltage regulation circuit by changing the duty cycle of the PWM square wave.
  • PWM Pulse Width Modulation, pulse width modulation
  • the PPG Process Pulse Generator, programmable pulse generator
  • the PPG output control signal to adjust the output voltage of the voltage regulation circuit, so as to control the operation of the fan.
  • Step S200 Obtain the feedback signal of the fan, and analyze the operation state of the fan according to the feedback signal.
  • the corresponding feedback signal can be generated to the controller through the voltage regulation circuit.
  • the fan does not have abnormal conditions such as locked rotor and icing, it can start normally after power-on, and the voltage regulation circuit generates a feedback signal indicating normal start to the controller; on the contrary, if the fan is abnormal, it cannot start normally, and the voltage regulation circuit Generates a feedback signal to the controller that indicates failure to start properly.
  • 1 means high level
  • 0 means low level
  • the voltage regulation circuit sends a low level 0 as a feedback signal to the controller; if the fan fails to run normally, the voltage regulation circuit will high power Level 1 is sent to the controller as a feedback signal.
  • Step S300 when the operation state of the fan is not operating normally, control the fan to cycle on and off to restart the fan.
  • the controller changes the output control signal to make the fan cycle start and stop to restart the fan, and start repeatedly.
  • the fan tries to overcome the bad situation to keep the fan running normally. It can be understood that if the feedback signal received by the controller is a low level of 0, it means that the fan can operate normally, and the controller can control the fan to operate according to a preset operation program at this time.
  • controlling the fan to cycle on and off to restart the fan includes: controlling the fan to continue to cycle on and off until it is detected that the fan is running. Specifically, the controller controls the output PWM square wave, so that the fan always runs in the mode of stopping for N seconds for M seconds. After trying to shake off the ice slag or eliminate the stalled rotor and restart the operation, the controller can also return to step S200 to obtain the fan again.
  • the feedback signal analyzes the operation status of the fan.
  • the specific values of M and N are not unique, and can be set according to actual conditions.
  • the controller can also set the duration threshold in advance. After the control cycle starts and stops continuously reaching the duration threshold, the fan still cannot run normally, which means that the adverse situation cannot be overcome by controlling the fan cycle to run normally. At this time, the controller also Reminder information can be output through the interactive device of the air-cooled refrigerator to remind the user to repair in time, so as to avoid the long-term abnormality of the fan from affecting the normal use of the refrigerator.
  • the above air-cooled refrigerator fan control method when it is detected that the fan needs to be turned on, the fan is controlled to start and the feedback signal of the fan is obtained to analyze the operation status of the fan. If the fan fails to operate normally, the fan cycle is controlled to restart the fan. , which can improve the ability of the fan to start in adverse environments such as blocked rotor and icing, so that the fan can be better in a benign operation and improve the control reliability of the fan.
  • the method further includes step S400 : when the operation state of the fan is normal operation, after controlling the fan to cycle on and off for a preset number of times, rotate the fan at a preset maximum speed. Control the fan operation.
  • the controller can continue to adjust the output PWM square wave to make the fan run for a preset number of times in the manner of M seconds and N seconds, and after waiting for the set time, control the fan to run at the maximum speed, and try Throw off the moisture on the fan, prevent the refrigerator from freezing after cooling, and improve the reliability of the refrigerator.
  • the specific values of the preset number of times and the set duration are not unique. In this embodiment, the preset number of times can be set to 5 times, and the set duration can be set to 1 minute.
  • the method may further include step S500 : after controlling the fan to run for a preset duration at a preset maximum rotational speed, control the fan to run according to a preset operation program.
  • the value of the preset duration may also be set according to actual needs. In this embodiment, the preset duration is set to 1 minute.
  • the controller controls the fan to run at the maximum speed for a preset period of time to blow away the moisture
  • the controller controls the fan to run according to the preset operation program.
  • the preset operation procedure may be to control the fan to run at a constant speed, or it may be to adjust the fan speed correspondingly according to the actual environmental state, so that the fan's operation is more in line with the actual situation. For example, according to the operation mode of the air-cooled refrigerator, the corresponding rotation speed of the control fan is different, or according to the different ambient temperature of the air-cooled refrigerator, the corresponding rotation speed of the control fan is different.
  • step S500 the operation of the fan is controlled according to a preset operation program in step S500, including step S510 and/or step S520.
  • Step S510 If the air-cooled refrigerator is in the preset operation mode, adjust the rotational speed of the fan according to the detected ambient temperature.
  • the preset operation mode may be a default normal mode of the air-cooled refrigerator, such as a refrigeration mode and the like.
  • the air-cooled refrigerator is in the preset operation mode, it can be considered that the refrigerator does not have a particularly large cooling demand, and the fan speed can be adjusted according to the ambient temperature detected by the temperature sensor, so that the refrigeration efficiency of the refrigerator matches the environment in which it is located.
  • Step S520 If the air-cooled refrigerator is in the quick-cooling mode or the quick-freezing mode, control the fan to run at a preset maximum rotational speed. If the air-cooled refrigerator is in the quick-cooling mode or the quick-freezing mode, it can be considered that the refrigerator has a large cooling demand, and the fan is controlled to run at the maximum speed to meet the cooling demand of the refrigerator.
  • the speed of the fan is adjusted correspondingly in combination with the actual operation mode of the refrigerator, so that the operation of the fan is more in line with the actual situation and the refrigeration efficiency of the refrigerator is improved.
  • step S510 the rotational speed of the fan is adjusted according to the detected ambient temperature, including steps S511 and S512.
  • Step S511 Determine the target voltage according to the detected ambient temperature and the corresponding relationship between the preset temperature range and the voltage.
  • the ambient temperature of the air-cooled refrigerator can be detected by a temperature sensor and uploaded to the controller.
  • the controller can store the corresponding relationship with different voltages in advance. After obtaining the current actual ambient temperature of the air-cooled refrigerator, obtain the temperature at which the actual ambient temperature is located. The voltage value corresponding to the range interval is used as the target voltage.
  • Step S512 Adjust the duty ratio of the pulse width signal output to the voltage adjustment circuit according to the target voltage.
  • the pulse width signal is used to control the voltage regulation circuit to supply power to the fan with the target voltage, so as to adjust the speed of the fan.
  • the controller can also pre-debug and save the relationship between the duty cycle of the pulse width signal, the target voltage and the fan speed. After the target voltage is determined, the duty ratio of the pulse width signal output to the voltage regulation circuit is adjusted correspondingly, so that the voltage regulation circuit supplies power to the fan according to the target voltage, so as to adjust the speed of the fan.
  • step S511 includes: acquiring a temperature interval in which the ambient temperature is located according to a preset temperature range; and extracting a voltage value corresponding to the temperature interval in which the ambient temperature is located, as the target voltage.
  • the preset temperature range may include two temperature intervals, or may include more than two temperature intervals, and each temperature interval corresponds to a voltage value. Analyze which temperature range the ambient temperature is in, and obtain the voltage value corresponding to the temperature range as the target voltage. Specifically, the first preset temperature, the second preset temperature and the third preset temperature can be used to divide and obtain four temperature intervals, and each temperature interval corresponds to the first voltage value, the second voltage value, the third voltage value and the fourth voltage value.
  • the first voltage value is used as the target voltage; if the ambient temperature is greater than the first preset temperature and less than or equal to the second preset temperature, the second voltage value is used as the target voltage ; if the ambient temperature is greater than the second preset temperature and less than or equal to the third preset temperature, the third voltage value is used as the target voltage; if the ambient temperature is greater than the third preset temperature, the fourth voltage value is used as the target voltage. It can be understood that, in other embodiments, more temperature intervals may be further divided, and voltage adjustment is performed correspondingly according to the temperature interval in which the ambient temperature is located.
  • the first preset temperature is less than the second preset temperature
  • the second preset temperature is less than the third preset temperature.
  • the first voltage value is smaller than the second voltage value
  • the second voltage value is smaller than the third voltage value
  • the third voltage value is smaller than the fourth voltage value. It can be understood that the values of the first preset temperature, the second preset temperature and the third preset temperature are not unique.
  • the first preset temperature is 20 degrees Celsius
  • the second preset temperature is 28 degrees Celsius.
  • the third preset temperature is 35 degrees Celsius.
  • the specific values of the first voltage value, the second voltage value, the third voltage value and the fourth voltage value are not unique. The smaller the target voltage output by the controller in the control voltage regulation circuit, the smaller the speed of the fan. .
  • the target voltage is automatically adjusted according to the ambient temperature of the air-cooled refrigerator to change the fan speed, and the speed is faster when the temperature is higher, which improves the refrigeration effect of the refrigerator and reduces unnecessary energy waste.
  • step S511 further includes: if the temperature sensor for detecting the ambient temperature fails, setting the preset voltage value as the target voltage.
  • the preset voltage value is the third voltage value. Specifically, if the controller does not receive the temperature signal sent by the temperature sensor, it can be considered that the temperature sensor is faulty. At this time, the controller controls the speed of the fan with the target voltage corresponding to the range of 28 degrees Celsius to 35 degrees Celsius, which can also ensure air cooling. The cooling effect of the refrigerator.
  • an apparatus for controlling a fan of an air-cooled refrigerator including a startup control module 100 , a signal analysis module 200 and a fan restart module 300 .
  • the start-up control module 100 is used to control the start-up of the fan of the air-cooled refrigerator when it is detected that the fan needs to be turned on;
  • the signal analysis module 200 is used to obtain the feedback signal of the fan, and analyze the operation state of the fan according to the feedback signal;
  • the fan restart module 300 is used for When the running state of the fan is not running normally, control the fan to cycle on and off to restart the fan.
  • the fan restarting module 300 controls the fan to continue to cycle on and off until it is detected that the fan is running.
  • the fan restart module 300 is further configured to control the fan to operate at a preset maximum speed after controlling the fan to cycle on and off for a preset number of times when the fan's operating state is normal operation.
  • the fan restarting module 300 is further configured to control the fan to operate according to a preset operation program after controlling the fan to operate for a preset period of time at a preset maximum rotational speed.
  • the fan restart module 300 is configured to adjust the rotation speed of the fan according to the detected ambient temperature if the air-cooled refrigerator is in the preset operation mode; or, if the air-cooled refrigerator is in the quick-cooling mode or the quick-freezing mode, control the The fan runs at the preset maximum speed.
  • the fan restart module 300 is configured to determine the target voltage according to the detected ambient temperature and the corresponding relationship between the preset temperature range and the voltage; and adjust the duty cycle of the pulse width signal output to the voltage adjustment circuit according to the target voltage .
  • the fan restart module 300 is configured to obtain the temperature range in which the ambient temperature is located according to the preset temperature range; and extract the voltage value corresponding to the temperature range in which the ambient temperature is located, as the target voltage.
  • the fan restart module 300 is further configured to use the preset voltage value as the target voltage if the temperature sensor for detecting the ambient temperature fails.
  • each module in the fan control device for an air-cooled refrigerator can be implemented by software, hardware, or a combination thereof.
  • the above modules can be embedded in or independent of the processor in the computer device in the form of hardware, or stored in the memory in the computer device in the form of software, so that the processor can call and execute the operations corresponding to the above modules.
  • the above air-cooled refrigerator fan control device when it is detected that the fan needs to be turned on, controls the fan to start and obtains the feedback signal of the fan to analyze the operation status of the fan. If the fan fails to operate normally, the fan cycle starts and stops to restart the fan. , which can improve the ability of the fan to start in adverse environments such as blocked rotor and icing, so that the fan can be better in a benign operation and improve the control reliability of the fan.
  • an air-cooled refrigerator including a controller, a voltage regulation circuit and a fan, the controller is connected to the voltage regulation circuit, the voltage regulation circuit is connected to the fan, and the controller is used to control the fan according to the above method.
  • the controller may adopt a single-chip microcomputer.
  • the air-cooled refrigerator also includes a temperature sensor connected to the controller.
  • the voltage regulation circuit includes a transistor Q7, a transistor Q8, a transistor Q9, a resistor R39, a resistor R40, a resistor R41, a resistor R42, Resistor R43, Resistor R44, Resistor R45, Resistor R46, Capacitor C24, Inductor L4, Diode D14 and Diode D15.
  • One end of the resistor R39 is connected to the controller, the other end is connected to the base of the transistor Q7, the base of the transistor Q7 is grounded through the resistor R40, the collector of the transistor Q7 is connected to the +12V power supply terminal through the resistor R41, and is connected to the base of the transistor Q8 through the resistor R42 , the emitter of transistor Q7 is grounded.
  • the emitter of the transistor Q8 is connected to the +12V power supply terminal, the collector of the transistor Q8 is connected to one end of the inductor L4, the other end of the inductor L4 is connected to the motor through the port CN9, and is grounded through the capacitor C24.
  • the cathode of the diode D14 is connected to the +12V power supply terminal, the anode of the diode D14 is connected to the collector of the transistor Q8 and the cathode of the diode D15, and the anode of the diode D15 is grounded.
  • One end of the resistor R44 is connected to the motor through the port CN9, and is connected to the +12V power terminal through the resistor R43.
  • the other end of the resistor R44 is connected to the base of the transistor Q9, and the collector of the transistor Q9 is connected to the +5V power terminal through the resistor R45, and through the resistor R46
  • the controller outputs the PWM signal to the voltage regulation circuit through the port LDDJ, and receives the feedback signal through the port LDDJFK.
  • the above air-cooled refrigerator when it is detected that the fan needs to be turned on, controls the fan to start and obtains the feedback signal of the fan to analyze the operation status of the fan.
  • the ability of the fan to start in adverse environments such as locked rotor and icing can make the fan in a better operation and improve the control reliability of the fan.
  • the fan control solution for an air-cooled refrigerator provided in this application is suitable for a fan with feedback. Therefore, the feedback can be collected in the circuit and the software can determine whether the fan is stalled.
  • a special start-stop control is used to try to restart the fan, and the wind speed of the fan is controlled by outputting different PWM waves. Therefore, when the fan is blocked, icing and other abnormal conditions, try to restart the fan by starting and stopping, and control the wind speed of the fan to make the fan suitable for more situations.
  • the structure of the voltage regulation circuit is shown in Figure 6.
  • the IO port of the single-chip microcomputer sends out a PWM square wave with a fixed frequency but different duty ratios to realize the control of the fan on and off and the speed.
  • the control process is shown in Figure 7. If the fan flag is not 1, the PPG output will be turned off. When it is detected that the fan flag is 1, that is, when the fan needs to be turned on, the PPG output is turned on, and the single-chip microcomputer outputs a PWM square wave to energize the fan.
  • the controller detects the feedback signal. If the feedback signal is 1, the fan is not running normally, and the fan may be blocked due to icing.
  • the feedback signal is not 1, it can be operated, then control the fan to open for M seconds and stop for N seconds, and run at the highest speed after one minute, try to shake off the moisture on the fan to prevent freezing after cooling, and then follow the normal procedure. Control the fan to run at the required speed.
  • the fan speed control is shown in Table 1. Under different ambient temperatures, the fan speed is different. The speed is controlled by changing the duty cycle of the input PWM square wave. When the refrigerator is in fast cooling or fast freezing mode, the fan runs at maximum speed regardless of the ambient temperature.
  • the adjustable range of the F1 parameter is 0 ⁇ 9, and the corresponding relationship of the theoretical value is shown in Table 2. That is, the parameter F1 corresponding to each temperature interval in Table 1 can be selected from 0-9 in Table 2. After the parameter F1 corresponding to each temperature interval is determined, the voltage value corresponding to each temperature interval is also determined.
  • the ability of the fan to start in a bad start-up environment can be improved. Through this way of starting and stopping, the fan can be better in a benign operation.
  • the fan can have more speed options, high-speed operation can improve cooling efficiency when high-speed operation is required, and a lower speed can be selected to reduce energy consumption and reduce energy consumption when high-speed operation is not required. Noise reduction.

Abstract

本申请涉及一种风冷冰箱风机控制方法、装置和风冷冰箱,该方法包括:当检测到风机开启需求时,控制风冷冰箱的风机启动;获取风机的反馈信号,并根据反馈信号分析风机的运转状态;当风机的运转状态为未正常运转时,控制风机循环开停运行以重启风机。

Description

风冷冰箱风机控制方法、装置和风冷冰箱
本申请要求于2020年12月24日提交中国专利局、申请号为202011556491.X、发明名称为“风冷冰箱风机控制方法、装置和风冷冰箱”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及电器设备控制技术领域,特别是涉及一种风冷冰箱风机控制方法、装置和风冷冰箱。
背景技术
随着科技的发展和社会的不断进步,各种类型的智能电器在人们的日常生活和工作中起着越来越重要的作用。现在风冷冰箱已经普及,风冷冰箱利用空气进行制冷,通过不断的循环方式来降低冰箱的温度。
风冷冰箱会配有冷冻风机,传统的风冷冰箱冷冻风机控制方式是以固定的供电电压驱动,即给电压时冷冻风机转动,不给电压冷冻风机就不转动。当冷冻风机出现结冰等特别情况时,无法通过驱动控制来解决,存在控制可靠性低的缺点。
技术问题
本申请提供一种风冷冰箱风机控制方法、装置和风冷冰箱,改善了传统的风冷冰箱冷冻风机控制方式控制可靠性低的问题。
技术解决方案
第一方面,本申请提供了一种风冷冰箱风机控制方法,包括:
当检测到风机开启需求时,控制风冷冰箱的风机启动;
获取所述风机的反馈信号,并根据所述反馈信号分析所述风机的运转状态;
当所述风机的运转状态为未正常运转时,控制所述风机循环开停运行以重启所述风机。
在本申请的一种实施例中,所述控制所述风机循环开停运行以重启所述风机,包括:控制所述风机持续循环开停运行,直至检测到所述风机运转。
在本申请的一种实施例中,获取所述风机的反馈信号,并根据所述反馈信号分析所述风机的运转状态之后,还包括:
当所述风机的运转状态为正常运转时,控制所述风机循环开停运行预设次数后,以预设的最大转速控制所述风机运转。
在本申请的一种实施例中,所述当所述风机的运转状态为正常运转时,控制所述风机循环开停运行预设次数后,以预设的最大转速控制所述风机运转之后,还包括:以预设的最大转速控制所述风机运转预设时长后,根据预设运行程序控制所述风机运转。
在本申请的一种实施例中,所述根据预设运行程序控制所述风机运转,包括:
若风冷冰箱处于预设运行模式,则根据检测到的环境温度调节所述风机的转速;或,
若风冷冰箱处于速冷模式或速冻模式,则控制所述风机以预设的最大转速运转。
在本申请的一种实施例中,所述根据检测到的环境温度调节所述风机的转速,包括:
根据检测到的环境温度以及预设温度范围与电压的对应关系,确定目标电压;
根据所述目标电压调节输出至电压调节电路的脉宽信号的占空比;其中,所述脉宽信号用于控制所述电压调节电路以所述目标电压为所述风机供电,从而调节所述风机的转速。
在本申请的一种实施例中,所述根据检测到的环境温度以及预设温度范围与电压的对应关系,确定目标电压,包括:
根据预设温度范围获取所述环境温度所处的温度区间;
提取所述环境温度所处的温度区间所对应的电压值,作为目标电压。
在本申请的一种实施例中,所述根据检测到的环境温度以及预设温度范围与电压的对应关系,确定目标电压,还包括:
若检测环境温度的温度传感器出现故障,则将预设电压值作为目标电压。
第二方面,本申请还提供一种风冷冰箱风机控制装置,所述风冷冰箱风机控制装置包括:
启动控制模块,用于当检测到风机开启需求时,控制风冷冰箱的风机启动;
信号分析模块,用于获取所述风机的反馈信号,并根据所述反馈信号分析所述风机的运转状态;
风机重启模块,用于当所述风机的运转状态为未正常运转时,控制所述风机循环开停运行以重启所述风机。
在本申请的一种实施例中,所述风机重启模块还用于控制风机持续循环开停运行,直至检测到风机运转。
在本申请的一种实施例中,所述风机重启模块还用于当风机的运转状态为正常运转时,控制风机循环开停运行预设次数后,以预设的最大转速控制风机运转。
在本申请的一种实施例中,所述风机重启模块还用于以预设的最大转速控制风机运转预设时长后,根据预设运行程序控制风机运转。
第三方面,本申请还提供一种风冷冰箱,所述风冷冰箱包括控制器、电压调节电路和风机,所述控制器连接所述电压调节电路,所述电压调节电路连接所述风机,所述控制器用于根据以下步骤进行风机控制:
当检测到风机开启需求时,控制风冷冰箱的风机启动;
获取所述风机的反馈信号,并根据所述反馈信号分析所述风机的运转状态;
当所述风机的运转状态为未正常运转时,控制所述风机循环开停运行以重启所述风机。
在本申请的一种实施例中,所述控制器具体用于控制所述风机持续循环开停运行,直至检测到所述风机运转。
在本申请的一种实施例中,所述控制器还用于当所述风机的运转状态为正常运转时,控制所述风机循环开停运行预设次数后,以预设的最大转速控制所述风机运转。
在本申请的一种实施例中,所述控制器还用于以预设的最大转速控制所述风机运转预设时长后,根据预设运行程序控制所述风机运转。
在本申请的一种实施例中,所述控制器具体用于若风冷冰箱处于预设运行模式,则根据检测到的环境温度调节所述风机的转速;或,
若风冷冰箱处于速冷模式或速冻模式,则控制所述风机以预设的最大转速运转。
在本申请的一种实施例中,所述控制器具体用于根据检测到的环境温度以及预设温度范围与电压的对应关系,确定目标电压;
根据所述目标电压调节输出至电压调节电路的脉宽信号的占空比;其中,所述脉宽信号用于控制所述电压调节电路以所述目标电压为所述风机供电,从而调节所述风机的转速。
在本申请的一种实施例中,所述控制器具体用于根据预设温度范围获取所述环境温度所处的温度区间;
提取所述环境温度所处的温度区间所对应的电压值,作为目标电压。
在本申请的一种实施例中,所述控制器还具体用于若检测环境温度的温度传感器出现故障,则将预设电压值作为目标电压。
有益效果
本申请提供的风冷冰箱风机控制方法、装置和风冷冰箱,在检测到存在风机开启需求时,控制风机启动并获取风机的反馈信号分析风机的运转状态,如果风机未能正常运转,则进行风机循环开停运行控制来重启风机,可提高风机在堵转、结冰等不良环境中启动的能力,能使风机更好的处于良性运转中,提高了风机的控制可靠性。
附图说明
图1为一实施例中风冷冰箱风机控制方法的流程图;
图2为另一实施例中风冷冰箱风机控制方法的流程图;
图3为一实施例中根据预设运行程序控制风机运转的流程图;
图4为一实施例中根据检测到的环境温度调节风机的转速的流程图;
图5为一实施例中风冷冰箱风机控制装置的结构框图;
图6为一实施例中电压调节电路的结构原理图;
图7为一实施例中风冷冰箱的风机控制流程图。
本发明的实施方式
为了使本申请的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本申请进行进一步详细说明。应当理解,此处描述的具体实施例仅仅用以解释本申请,并不用于限定本申请。
在一个实施例中,如图1所示,提供了一种风冷冰箱风机控制方法,包括:
步骤S100:当检测到风机开启需求时,控制风冷冰箱的风机启动。
其中,检测是否存在风机开启需求的具体并不是唯一的,可以是在检测到冰箱开启认为存在风机开启需求,可以是在接收到开启指令后认为存在风机开启需求,还可以是根据保存的风机标志位的状态确定是否存在风机开启需求。具体地,可通过冰箱主控板实时监测冰箱状态并分析是否需要开启风机,以及对应修改风机标志位的状态。例如,当风机标志位为1时,则可认为有风机开启需求时;当风机标志位为0时,可认为没有风机开启需求。
可通过控制器连接电压调节电路,电压调节电路连接风机,利用控制器输出控制信号至电压调节电路,调节电压调节电路的输出电压从而对风机进行开启、关闭和调速控制。控制器具体可采用单片机,控制信号可以采用PWM(Pulse Width Modulation,脉冲宽度调制)方波信号,控制器通过改变PWM方波的占空比来调节电压调节电路的输出电压。控制器在检测到风机标志位为1,即有风机开启需求时,输出PWM方波为风机通电,控制风机启动。可以理解,若风机标志位为0,则控制器关闭PWM方波输出,风机不工作。
此外,在其他实施例中,也可以是通过控制PPG(Programme Pulse Generator,可编程脉冲发生器)输出控制信号调节电压调节电路的输出电压,从而控制风机运转。
步骤S200:获取风机的反馈信号,并根据反馈信号分析风机的运转状态。
根据风机的运转状态不同,可通过电压调节电路生成相应的反馈信号给控制器。如果风机没有出现堵转、结冰等异常情况,则在通电后可正常启动,电压调节电路生成表征正常启动的反馈信号至控制器;反之,如果风机出现异常,则无法正常启动,电压调节电路生成表征无法正常启动的反馈信号至控制器。例如,以1表示高电平,0表示低电平,当风机正常运转后,电压调节电路将低电平0作为反馈信号发送至控制器;若风机无法正常运转,则电压调节电路将高电平1作为反馈信号发送至控制器。
步骤S300:当风机的运转状态为未正常运转时,控制风机循环开停运行以重启风机。
对应地,若控制器接收到的反馈信号为高电平1,则说明风机的运转状态为未正常运转,控制器通过改变输出的控制信号,使得风机循环开停运行对风机进行重启,反复启动风机尝试克服不良情况让风机正常运转。可以理解,如果控制器接收到的反馈信号为低电平0,则说明风机能正常运转,此时控制器可以是根据预设运行程序控制风机运行。
进一步地,控制风机循环开停运行以重启风机的方式也不是唯一的,可以是一直控制风机循环开停直至接收到的反馈信号为低电平0,即风机已经正常运转。在一个实施例中,步骤S300中控制风机循环开停运行以重启风机,包括:控制风机持续循环开停运行,直至检测到风机运转。具体地,控制器通过控制输出的PWM方波,使得风机一直按照M秒停N秒的方式运行,尝试让风机抖掉冰渣或消除堵转重新运转后,还可返回步骤S200,再次获取风机的反馈信号分析风机的运转状态。其中,M和N的具体取值并不是唯一的,可根据实际情况进行设置。
此外,控制器也可以是预先设置时长阈值,在控制循环开停持续达到时长阈值后风机仍不能正常运转,则说明通过控制风机循环开停无法克服不良情况让风机正常运转,此时控制器还可以通过风冷冰箱的交互装置输出提醒信息,提醒用户及时检修,避免风机的长时间异常影响冰箱的正常使用。
上述风冷冰箱风机控制方法,在检测到存在风机开启需求时,控制风机启动并获取风机的反馈信号分析风机的运转状态,如果风机未能正常运转,则进行风机循环开停运行控制来重启风机,可提高风机在堵转、结冰等不良环境中启动的能力,能使风机更好的处于良性运转中,提高了风机的控制可靠性。
在一个实施例中,如图2所示,步骤S300之后,该方法还包括步骤S400:当风机的运转状态为正常运转时,控制风机循环开停运行预设次数后,以预设的最大转速控制风机运转。
具体地,在风机正常运转后,控制器还可继续通过调节输出的PWM方波,使风机按照M秒停N秒的方式运行预设次数,等待设定时长后控制风机以最大转速运转,尝试将风机上的水分甩掉,防止冰箱制冷后结冰,提高冰箱的使用可靠性。其中,预设次数和设定时长的具体取值也并不唯一,本实施例中,预设次数可设置为5次,设定时长可设置为1分钟。
在一个实施例中,继续参照图2,步骤S400之后,该方法还可包括步骤S500:以预设的最大转速控制风机运转预设时长后,根据预设运行程序控制风机运转。
预设时长的取值也可以是根据实际需求进行设置,本实施例中,预设时长设置为1分钟。控制器在控制风机以最大转速运转预设时长吹走水分后,再按照预设运行程序控制风机运转。具体地,预设运行程序可以是控制风机以恒定转速运转,也可以是根据实际环境状态对应调节风机转速,使得风机运转更符合实际情况。例如,根据风冷冰箱的运行模式不同,控制风机的转速对应有所不同,或者根据风冷冰箱所处环境温度不同,控制风机的转速对应有所不同等。
在一个实施例中,如图3所示,步骤S500中根据预设运行程序控制风机运转,包括步骤S510和/或步骤S520。
步骤S510:若风冷冰箱处于预设运行模式,则根据检测到的环境温度调节风机的转速。预设运行模式可以是风冷冰箱默认的常规模式,例如冷藏模式等。当风冷冰箱处于预设运行模式时,则可认为冰箱没有特别大的制冷需求,可通过温度传感器检测到的环境温度对应调节风机转速,以使得冰箱制冷效率与所处环境相匹配。
步骤S520:若风冷冰箱处于速冷模式或速冻模式,则控制风机以预设的最大转速运转。如果风冷冰箱处于速冷模式或速冻模式,则可认为冰箱有较大的制冷需求,控制风机以最大转速运转,满足冰箱的制冷需求。
本实施例中,在成功启动风机正常转后,还结合冰箱的实际运行模式对应进行风机转速调节,以使得风机运行更符合实际情况,提高冰箱的制冷效率。
在一个实施例中,如图4所示,步骤S510中根据检测到的环境温度调节风机的转速,包括步骤S511和步骤S512。
步骤S511:根据检测到的环境温度以及预设温度范围与电压的对应关系,确定目标电压。
具体地,可通过温度传感器检测风冷冰箱的环境温度并上传至控制器,控制器可预先保存与不同电压的对应关系,在得到风冷冰箱当前的实际环境温度后,获取实际环境温度所在温度范围区间所对应的电压值,作为目标电压。
步骤S512:根据目标电压调节输出至电压调节电路的脉宽信号的占空比。
其中,脉宽信号用于控制电压调节电路以目标电压为风机供电,从而调节风机的转速。控制器还可预先进行调试并保存脉宽信号的占空比、目标电压与风机转速三者之间的关系。在确定目标电压后,对应调节输出至电压调节电路的脉宽信号的占空比,以使电压调节电路按照目标电压给风机供电,实现对风机转速的调节。
可以理解,根据实际需求不同,在当前环境温度下的目标电压,以及对应的风机转速也是可以进行调整的。在其中一个实施例中,步骤S511包括:根据预设温度范围获取环境温度所处的温度区间;提取环境温度所处的温度区间所对应的电压值,作为目标电压。
预设温度范围可包括两个温度区间,也可以是包括两个以上的温度区间,每个温度区间对应一个电压值。分析环境温度位于哪一个温度区间内,并获取所处温度区间所对应的电压值作为目标电压。具体地,可利用第一预设温度、第二预设温度和第三预设温度划分得到四个温度区间,每个温度区间分别对应第一电压值、第二电压值、第三电压值和第四电压值。若环境温度小于或等于第一预设温度,则将第一电压值作为目标电压;若环境温度大于第一预设温度且小于或等于第二预设温度,则将第二电压值作为目标电压;若环境温度大于第二预设温度且小于或等于第三预设温度,则将第三电压值作为目标电压;若环境温度大第三预设温度,则将第四电压值作为目标电压。可以理解,在其他实施例中,还可以划分更多的温度区间,根据环境温度所处温度区间对应进行电压调节。
其中,第一预设温度小于第二预设温度,第二预设温度小于第三预设温度。第一电压值小于第二电压值,第二电压值小于第三电压值,第三电压值小于第四电压值。可以理解,第一预设温度、第二预设温度和第三预设温度的取值并不唯一,本实施例中,第一预设温度为20摄氏度,第二预设温度为28摄氏度,第三预设温度为35摄氏度。进一步地,第一电压值、第二电压值、第三电压值和第四电压值的具体取值也不是唯一的,控制器在控制电压调节电路输出的目标电压越小时,风机的转速越小。
本实施例中,根据风冷冰箱所处环境温度自动调整目标电压以改变风机转速,且在温度越高时转速越快,提高冰箱的制冷效果,同时还能减少不必要的能源浪费。
进一步地,在一个实施例中,步骤S511还包括:若检测环境温度的温度传感器出现故障,则将预设电压值作为目标电压。
本实施例中,预设电压值为第三电压值。具体地,如果控制器未接收到温度传感器发送的温度信号,则可认为温度传感器出现故障,此时控制器以28摄氏度至35摄氏度范围所对应的目标电压控制风机的转速,同样可确保风冷冰箱的制冷效果。
在一个实施例中,如图5所示,还提供了一种风冷冰箱风机控制装置,包括启动控制模块100、信号分析模块200和风机重启模块300。
启动控制模块100用于当检测到风机开启需求时,控制风冷冰箱的风机启动;信号分析模块200用于获取风机的反馈信号,并根据反馈信号分析风机的运转状态;风机重启模块300用于当风机的运转状态为未正常运转时,控制风机循环开停运行以重启风机。
在一个实施例中,风机重启模块300控制风机持续循环开停运行,直至检测到风机运转。
在一个实施例中,风机重启模块300还用于当风机的运转状态为正常运转时,控制风机循环开停运行预设次数后,以预设的最大转速控制风机运转。
在一个实施例中,风机重启模块300还用于以预设的最大转速控制风机运转预设时长后,根据预设运行程序控制风机运转。
在一个实施例中,风机重启模块300用于若风冷冰箱处于预设运行模式,则根据检测到的环境温度调节风机的转速;或,若风冷冰箱处于速冷模式或速冻模式,则控制风机以预设的最大转速运转。
在一个实施例中,风机重启模块300用于根据检测到的环境温度以及预设温度范围与电压的对应关系,确定目标电压;根据目标电压调节输出至电压调节电路的脉宽信号的占空比。
在一个实施例中,风机重启模块300用于根据预设温度范围获取环境温度所处的温度区间;提取环境温度所处的温度区间所对应的电压值,作为目标电压。
进一步地,在一个实施例中,风机重启模块300还用于若检测环境温度的温度传感器出现故障,则将预设电压值作为目标电压。
关于风冷冰箱风机控制装置的具体限定可以参见上文中对于风冷冰箱风机控制方法的限定,在此不再赘述。上述风冷冰箱风机控制装置中的各个模块可全部或部分通过软件、硬件及其组合来实现。上述各模块可以硬件形式内嵌于或独立于计算机设备中的处理器中,也可以以软件形式存储于计算机设备中的存储器中,以便于处理器调用执行以上各个模块对应的操作。
上述风冷冰箱风机控制装置,在检测到存在风机开启需求时,控制风机启动并获取风机的反馈信号分析风机的运转状态,如果风机未能正常运转,则进行风机循环开停运行控制来重启风机,可提高风机在堵转、结冰等不良环境中启动的能力,能使风机更好的处于良性运转中,提高了风机的控制可靠性。
在一个实施例中,还提供了一种风冷冰箱,包括控制器、电压调节电路和风机,控制器连接电压调节电路,电压调节电路连接风机,控制器用于根据上述的方法进行风机控制。控制器具体可采用单片机,此外,风冷冰箱还包括连接控制器的温度传感器。
其中,电压调节电路的具体结构并不是唯一的,在一个实施例中,如图6所示,电压调节电路包括三极管Q7、三极管Q8、三极管Q9、电阻R39、电阻R40、电阻R41、电阻R42、电阻R43、电阻R44、电阻R45、电阻R46、电容C24、电感L4、二极管D14和二极管D15。电阻R39一端连接控制器,另一端连接三极管Q7的基极,三极管Q7的基极通过电阻R40接地,三极管Q7的集电极通过电阻R41连接+12V电源端,并通过电阻R42连接三极管Q8的基极,三极管Q7的发射极接地。三极管Q8的发射极连接+12V电源端,三极管Q8的集电极连接电感L4的一端,电感L4的另一端通过端口CN9连接电机,并通过电容C24接地。二极管D14的阴极连接+12V电源端,二极管D14的阳极连接三极管Q8的集电极和二极管D15的阴极,二极管D15的阳极接地。电阻R44的一端通过端口CN9连接电机,并通过电阻R43连接+12V电源端,电阻R44的另一端连接三极管Q9的基极,三极管Q9的集电极通过电阻R45连接+5V电源端,并通过电阻R46连接控制器,三极管Q9的发射极接地。其中,控制器通过端口LDDJ输出PWM信号至电压调节电路,并通过端口LDDJFK接收反馈信号。
上述风冷冰箱,在检测到存在风机开启需求时,控制风机启动并获取风机的反馈信号分析风机的运转状态,如果风机未能正常运转,则进行风机循环开停运行控制来重启风机,可提高风机在堵转、结冰等不良环境中启动的能力,能使风机更好的处于良性运转中,提高了风机的控制可靠性。
为便于更好地理解上述风冷冰箱风机控制方法、装置和风冷冰箱,下面结合具体实施例进行详细解释说明。
本申请提供的风冷冰箱风机控制方案适用于带有反馈的风机。因此,电路中可以采集反馈并由软件判断是否出现风机堵转的情况,当检测到反馈异常,采用特殊的开停控制,尝试重启风机,并且通过输出不同的PWM波对风机风速进行控制。从而在风机堵转、结冰等异常情况下,尝试通过开停重启风机,以及通过对风机风速的控制,使风机适用于更多情况。
电压调节电路的结构如图6所示,单片机的IO端口发出固定频率但占空比不同的PWM方波,来实现对风机开停及转速的控制。控制流程方式如图7所示,若风机标志位不是1,则关闭PPG输出。当检测到风机标志位为1,即有风机开启需求时,开启PPG输出,单片机输出PWM方波使风机通电。控制器检测反馈信号,若反馈信号为1,则风机未正常运转,可能因为结冰导致风机堵转,控制风机一直按照开M秒停N秒的方式运行,尝试抖掉冰渣重新运转。若反馈信号不为1,即可以运转,则控制风机进行5次开M秒停N秒,一分钟后以最高速度运转,尝试将风机上的水分甩掉防止制冷后结冰,之后按照正常程序控制风机在需要的转速下运转。
风机转速控制如表1所示,在不同的环境温度下,风机转速不同。通过改变输入PWM方波的占空比来控制转速。当冰箱处于速冷或速冻的模式下,无论环温如何,风机以最大转速运转。
表 1
Figure dest_path_image001
F1参数可调范围为0~9,理论值对应关系如表2。即,表1中各个温度区间所对应的参数F1可从表2中的0-9中选择,当每个温度区间所对应的参数F1确定后,各温度区间所对应的电压值也便确定。
表 2
F1参数值 0 1 2 3 4 5 6 7 8 9
电压值 (V) 7.5 8.0 8.5 9.0 9.5 10.0 10.5 11.0 11.5 12
转速(rpm) 1050 1100 1150 1200 1250 1300 1350 1400 1450 1500
当环温传感器故障时,控制风机按照“28℃<AT≤35℃”运行。
通过以上控制风机的方法,可提高风机在不良启动环境中启动的能力。通过这种开停方式,能使风机更好的处于良性运转中。此外,通过可变的电压控制,可以使风机有更多的转速选择,在需要高速运转的情况下高速运转提高制冷效率,不需要高速运转的情况下选择一个较低转速实现能耗的降低和噪音的降低。
以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本申请的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本申请构思的前提下,还可以做出若干变形和改进,这些都属于本申请的保护范围。因此,本申请专利的保护范围应以所附权利要求为准。

Claims (20)

  1. 一种风冷冰箱风机控制方法,所述风冷冰箱风机控制方法包括:
    当检测到风机开启需求时,控制风冷冰箱的风机启动;
    获取所述风机的反馈信号,并根据所述反馈信号分析所述风机的运转状态;
    当所述风机的运转状态为未正常运转时,控制所述风机循环开停运行以重启所述风机。
  2. 根据权利要求1所述的风冷冰箱风机控制方法,其中,所述控制所述风机循环开停运行以重启所述风机,包括:控制所述风机持续循环开停运行,直至检测到所述风机运转。
  3. 根据权利要求1所述的风冷冰箱风机控制方法,其中,获取所述风机的反馈信号,并根据所述反馈信号分析所述风机的运转状态之后,还包括:
    当所述风机的运转状态为正常运转时,控制所述风机循环开停运行预设次数后,以预设的最大转速控制所述风机运转。
  4. 根据权利要求3所述的风冷冰箱风机控制方法,其中,所述当所述风机的运转状态为正常运转时,控制所述风机循环开停运行预设次数后,以预设的最大转速控制所述风机运转之后,还包括:以预设的最大转速控制所述风机运转预设时长后,根据预设运行程序控制所述风机运转。
  5. 根据权利要求4所述的风冷冰箱风机控制方法,其中,所述根据预设运行程序控制所述风机运转,包括:
    若风冷冰箱处于预设运行模式,则根据检测到的环境温度调节所述风机的转速;或,
    若风冷冰箱处于速冷模式或速冻模式,则控制所述风机以预设的最大转速运转。
  6. 根据权利要求5所述的风冷冰箱风机控制方法,其中,所述根据检测到的环境温度调节所述风机的转速,包括:
    根据检测到的环境温度以及预设温度范围与电压的对应关系,确定目标电压;
    根据所述目标电压调节输出至电压调节电路的脉宽信号的占空比;其中,所述脉宽信号用于控制所述电压调节电路以所述目标电压为所述风机供电,从而调节所述风机的转速。
  7. 根据权利要求6所述的风冷冰箱风机控制方法,其中,所述根据检测到的环境温度以及预设温度范围与电压的对应关系,确定目标电压,包括:
    根据预设温度范围获取所述环境温度所处的温度区间;
    提取所述环境温度所处的温度区间所对应的电压值,作为目标电压。
  8. 根据权利要求6所述的风冷冰箱风机控制方法,其中,所述根据检测到的环境温度以及预设温度范围与电压的对应关系,确定目标电压,还包括:
    若检测环境温度的温度传感器出现故障,则将预设电压值作为目标电压。
  9. 一种风冷冰箱风机控制装置,所述风冷冰箱风机控制装置包括:
    启动控制模块,用于当检测到风机开启需求时,控制风冷冰箱的风机启动;
    信号分析模块,用于获取所述风机的反馈信号,并根据所述反馈信号分析所述风机的运转状态;
    风机重启模块,用于当所述风机的运转状态为未正常运转时,控制所述风机循环开停运行以重启所述风机。
  10. 根据权利要求9所述的风冷冰箱风机控制装置,其中,所述风机重启模块还用于控制风机持续循环开停运行,直至检测到风机运转。
  11. 根据权利要求9所述的风冷冰箱风机控制装置,其中,所述风机重启模块还用于当风机的运转状态为正常运转时,控制风机循环开停运行预设次数后,以预设的最大转速控制风机运转。
  12. 根据权利要求11所述的风冷冰箱风机控制装置,其中,所述风机重启模块还用于以预设的最大转速控制风机运转预设时长后,根据预设运行程序控制风机运转。
  13. 一种风冷冰箱,所述风冷冰箱包括控制器、电压调节电路和风机,所述控制器连接所述电压调节电路,所述电压调节电路连接所述风机,所述控制器用于根据以下步骤进行风机控制:
    当检测到风机开启需求时,控制风冷冰箱的风机启动;
    获取所述风机的反馈信号,并根据所述反馈信号分析所述风机的运转状态;
    当所述风机的运转状态为未正常运转时,控制所述风机循环开停运行以重启所述风机。
  14. 根据权利要求13所述的风冷冰箱,其中,所述控制器具体用于控制所述风机持续循环开停运行,直至检测到所述风机运转。
  15. 根据权利要求13所述的风冷冰箱,其中,所述控制器还用于当所述风机的运转状态为正常运转时,控制所述风机循环开停运行预设次数后,以预设的最大转速控制所述风机运转。
  16. 根据权利要求15所述的风冷冰箱,其中,所述控制器还用于以预设的最大转速控制所述风机运转预设时长后,根据预设运行程序控制所述风机运转。
  17. 根据权利要求16所述的风冷冰箱,其中,所述控制器具体用于若风冷冰箱处于预设运行模式,则根据检测到的环境温度调节所述风机的转速;或,
    若风冷冰箱处于速冷模式或速冻模式,则控制所述风机以预设的最大转速运转。
  18. 根据权利要求17所述的风冷冰箱,其中,所述控制器具体用于根据检测到的环境温度以及预设温度范围与电压的对应关系,确定目标电压;
    根据所述目标电压调节输出至电压调节电路的脉宽信号的占空比;其中,所述脉宽信号用于控制所述电压调节电路以所述目标电压为所述风机供电,从而调节所述风机的转速。
  19. 根据权利要求18所述的风冷冰箱,其中,所述控制器具体用于根据预设温度范围获取所述环境温度所处的温度区间;
    提取所述环境温度所处的温度区间所对应的电压值,作为目标电压。
  20. 根据权利要求18所述的风冷冰箱,其中,所述控制器还具体用于若检测环境温度的温度传感器出现故障,则将预设电压值作为目标电压。
PCT/CN2021/106994 2020-12-24 2021-07-19 风冷冰箱风机控制方法、装置和风冷冰箱 WO2022134557A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011556491.XA CN112665280B (zh) 2020-12-24 2020-12-24 风冷冰箱风机控制方法、装置和风冷冰箱
CN202011556491.X 2020-12-24

Publications (1)

Publication Number Publication Date
WO2022134557A1 true WO2022134557A1 (zh) 2022-06-30

Family

ID=75408665

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/106994 WO2022134557A1 (zh) 2020-12-24 2021-07-19 风冷冰箱风机控制方法、装置和风冷冰箱

Country Status (2)

Country Link
CN (1) CN112665280B (zh)
WO (1) WO2022134557A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115143726A (zh) * 2022-07-26 2022-10-04 长虹美菱股份有限公司 一种冰箱及风机转速控制方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112665280B (zh) * 2020-12-24 2022-06-10 Tcl家用电器(合肥)有限公司 风冷冰箱风机控制方法、装置和风冷冰箱
CN115406175B (zh) * 2021-05-26 2024-03-29 海信容声(广东)冰箱有限公司 一种冰箱及其控制方法
CN114739104B (zh) * 2022-04-22 2024-04-02 Tcl家用电器(合肥)有限公司 冰箱风机的控制方法和冰箱

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006262551A (ja) * 2005-03-15 2006-09-28 Sanyo Electric Co Ltd モータ駆動回路
CN102853625A (zh) * 2012-09-21 2013-01-02 合肥美菱股份有限公司 一种风冷冰箱直流无刷电机的启动方法
CN104236250A (zh) * 2014-10-14 2014-12-24 合肥美的电冰箱有限公司 冰箱的控制方法和冰箱的控制装置
CN105180563A (zh) * 2015-09-29 2015-12-23 青岛海尔股份有限公司 冰箱及其控制方法
CN108088144A (zh) * 2017-11-21 2018-05-29 广州美的华凌冰箱有限公司 风机运行控制方法、控制装置、制冷设备和存储介质
CN112665280A (zh) * 2020-12-24 2021-04-16 Tcl家用电器(合肥)有限公司 风冷冰箱风机控制方法、装置和风冷冰箱

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5463874A (en) * 1993-10-04 1995-11-07 Tecumseh Products Company Inductively activated control and protection circuit for refrigeration systems
JP4497369B2 (ja) * 2005-05-12 2010-07-07 ホシザキ電機株式会社 冷却貯蔵庫
CN102269173B (zh) * 2011-06-10 2016-06-08 海信(山东)冰箱有限公司 一种冰箱用直流风机的控制装置及其方法
CN109708394B (zh) * 2018-12-06 2020-10-30 青岛海尔股份有限公司 用于冰箱的散热风机的控制方法及控制系统

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006262551A (ja) * 2005-03-15 2006-09-28 Sanyo Electric Co Ltd モータ駆動回路
CN102853625A (zh) * 2012-09-21 2013-01-02 合肥美菱股份有限公司 一种风冷冰箱直流无刷电机的启动方法
CN104236250A (zh) * 2014-10-14 2014-12-24 合肥美的电冰箱有限公司 冰箱的控制方法和冰箱的控制装置
CN105180563A (zh) * 2015-09-29 2015-12-23 青岛海尔股份有限公司 冰箱及其控制方法
CN108088144A (zh) * 2017-11-21 2018-05-29 广州美的华凌冰箱有限公司 风机运行控制方法、控制装置、制冷设备和存储介质
CN112665280A (zh) * 2020-12-24 2021-04-16 Tcl家用电器(合肥)有限公司 风冷冰箱风机控制方法、装置和风冷冰箱

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115143726A (zh) * 2022-07-26 2022-10-04 长虹美菱股份有限公司 一种冰箱及风机转速控制方法

Also Published As

Publication number Publication date
CN112665280B (zh) 2022-06-10
CN112665280A (zh) 2021-04-16

Similar Documents

Publication Publication Date Title
WO2022134557A1 (zh) 风冷冰箱风机控制方法、装置和风冷冰箱
US7793509B2 (en) System and method for capacity control in a multiple compressor chiller system
JP4482028B2 (ja) 複数圧縮機冷却システムの起動制御システムおよび方法
JP2007532861A (ja) 複数圧縮機冷却システムの容量制御用システムおよび方法
CN104729193A (zh) 一种控制风冷冰箱中风机稳速工作的方法及装置
KR20080081256A (ko) 다단 압축기 냉동시스템의 용량 제어 시스템 및 방법
CN115234989A (zh) 移动式空调及其控制方法
CN113701326B (zh) 一种热泵用室外风机调速控制装置及系统
WO2024016815A1 (zh) 移动式空调及其控制方法
US20170328584A1 (en) Air-conditioner control system and control method for air conditioner
WO2023226361A1 (zh) 房间面积获取方法、空调外机控制方法、装置及空调系统
CN111765715A (zh) 一种冰箱间室温度控制方法、电路及冰箱
KR100301827B1 (ko) 센서없는무정류자(bldc)모터가설치된압축기의운전방법
KR100719241B1 (ko) 인버터 냉장고의 운전 제어방법
KR100377761B1 (ko) 직냉식 김치냉장고의 냉각속도 향상을 위한 제어방법
JPH09126618A (ja) 冷蔵庫
JPH062918A (ja) 空気調和機の制御装置
CN202978799U (zh) 风冷冰箱及其蒸发电机调速控制电路
CN215637873U (zh) 一种热泵用室外风机调速控制装置
KR0177691B1 (ko) 인버터 공기조화기의 압축기 운전 제어방법
CN218210223U (zh) 一种电冰箱三变频制冷系统
KR100665737B1 (ko) 인버터 에어컨의 압축기 회전수 제어 방법
JPH04190050A (ja) 凝縮器冷却用ファンの制御装置
JPH0787786A (ja) モータ制御装置
JP5914899B1 (ja) 簡易インバータ制御型冷蔵庫及び冷蔵庫用インバータ制御ユニットとそれを用いたインバータ圧縮機

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21908562

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21908562

Country of ref document: EP

Kind code of ref document: A1