WO2024016815A1 - 移动式空调及其控制方法 - Google Patents

移动式空调及其控制方法 Download PDF

Info

Publication number
WO2024016815A1
WO2024016815A1 PCT/CN2023/095048 CN2023095048W WO2024016815A1 WO 2024016815 A1 WO2024016815 A1 WO 2024016815A1 CN 2023095048 W CN2023095048 W CN 2023095048W WO 2024016815 A1 WO2024016815 A1 WO 2024016815A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
compressor
preset
air conditioner
speed
Prior art date
Application number
PCT/CN2023/095048
Other languages
English (en)
French (fr)
Inventor
汪亚东
张龙
Original Assignee
青岛海尔空调器有限总公司
青岛海尔空调电子有限公司
海尔智家股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 青岛海尔空调器有限总公司, 青岛海尔空调电子有限公司, 海尔智家股份有限公司 filed Critical 青岛海尔空调器有限总公司
Publication of WO2024016815A1 publication Critical patent/WO2024016815A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/02Self-contained room units for air-conditioning, i.e. with all apparatus for treatment installed in a common casing
    • F24F1/03Self-contained room units for air-conditioning, i.e. with all apparatus for treatment installed in a common casing characterised by mounting arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • F24F11/63Electronic processing
    • F24F11/64Electronic processing using pre-stored data
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/72Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure
    • F24F11/74Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure for controlling air flow rate or air velocity
    • F24F11/77Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure for controlling air flow rate or air velocity by controlling the speed of ventilators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F13/00Details common to, or for air-conditioning, air-humidification, ventilation or use of air currents for screening
    • F24F13/22Means for preventing condensation or evacuating condensate
    • F24F13/222Means for preventing condensation or evacuating condensate for evacuating condensate
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F13/00Details common to, or for air-conditioning, air-humidification, ventilation or use of air currents for screening
    • F24F13/24Means for preventing or suppressing noise
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F13/00Details common to, or for air-conditioning, air-humidification, ventilation or use of air currents for screening
    • F24F13/32Supports for air-conditioning, air-humidification or ventilation units
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • F25B49/022Compressor control arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F13/00Details common to, or for air-conditioning, air-humidification, ventilation or use of air currents for screening
    • F24F13/24Means for preventing or suppressing noise
    • F24F2013/247Active noise-suppression
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Definitions

  • the present invention relates to the field of mobile air conditioners, and specifically provides a mobile air conditioner and a control method thereof.
  • mobile air conditioners switch between cooling and heating in a short period of time, which will generate a large amount of condensed water.
  • Split air conditioners can drain condensate directly to the outdoors through drain pipes.
  • the mobile air conditioner will be equipped with a water receiving tank for collecting condensed water, and the water pump will be used to drain the condensed water. Pump out the water from the catchment tank.
  • foreign objects will appear in the water tank. The foreign objects will block the drain outlet, reduce the capacity of the water tank, and even affect the normal use of the water pump and water pumping motor. There is room for improvement.
  • Chinese patent (CN114353189A) discloses a mobile air conditioner and its control method. It improves the situation of foreign objects in the water tank to a certain extent and needs to be cleaned. However, when the condensed water in the water tank is increased during the cleaning process, the lower part of If the fan stops running, the condenser will be unable to dissipate heat, and the condenser heat will not be dissipated. After throttling and reducing pressure, the evaporator temperature will be very high, causing the evaporator to produce little or no condensed water.
  • the present invention aims to solve the above technical problems, that is, to solve the problem of little or even no generation of condensed water during the cleaning process of existing mobile air conditioners.
  • the present invention provides an air conditioning control method.
  • the mobile air conditioner includes a compressor, a condenser and an evaporator arranged in sequence on a refrigerant circuit.
  • the mobile air conditioner also includes a downdraft fan and an updraft fan. The lower fan is used to supply air to the condenser, and the upper fan is used to supply air to the evaporator;
  • control methods include:
  • the operating frequency of the compressor, the rotation speed of the downwind fan and the rotation speed of the upwind fan are controlled to increase the generation amount of condensed water.
  • the compressor If the exhaust temperature of the compressor is lower than the first preset temperature, the compressor operates at an increased frequency, the downwind fan operates at a first preset speed, and the upwind fan runs at a speed not lower than the fourth preset speed. Run at RPM.
  • the compressor keeps running at the current frequency and the downdraft fan runs at the second preset speed,
  • the second preset rotation speed is greater than the first preset rotation speed, and the upper fan operates at a rotation speed not lower than the fourth preset rotation speed.
  • the compressor operates at a reduced frequency, and the downdraft fan operates at a third preset speed, and the third preset speed is greater than the third preset speed. Two preset speeds, the upper fan operates at a speed not lower than the fourth preset speed.
  • the mobile air conditioner further includes a water receiving tank, a water pump, a water pumping motor and a first water level switch.
  • the water receiving tank is used to receive the condensed water generated by the evaporator.
  • the water pump is used to discharge the water in the water receiving tank.
  • the water pumping motor is used to pump the water in the water receiving tank to the condenser and at the same time stir the water in the water receiving tank.
  • the first water level switch is used to detect the condensed water in the water receiving tank. Whether the high water level is reached,
  • the control method also includes:
  • the water pumping motor After receiving the cleaning command, the water pumping motor runs at the first preset water pumping speed, and then determines whether the water level of the water receiving tank reaches the high water level;
  • the operation of the water pump and the water pumping motor is controlled according to the judgment result.
  • the step of "controlling the operation of the water pump and the water pumping motor according to the judgment result" includes:
  • the water pump is started, and the water pumping motor runs at a second preset water pumping speed, wherein the second preset water pumping speed is higher than the first preset water pumping speed. Set the water pumping speed.
  • the step of "controlling the operation of the water pump and the water pumping motor according to the judgment result" also includes:
  • the mobile air conditioner further includes a second water level switch, and the second water level switch is used to detect whether the condensed water in the water receiving tank is low to a low level, so
  • the above control methods also include:
  • the water pump After starting the water pump, if the water level in the water receiving tank is low to a low water level, the water pump is turned off.
  • control method further includes:
  • the water pump and the water pumping motor After starting the water pump, if the water pumping motor does not reach the low water level, the water pump and the water pumping motor keep running in their current state.
  • the present invention provides a mobile air conditioner, which includes a controller configured to perform the control method as described above.
  • the operation of the downdraft fan of the present invention can dissipate heat from the condenser, prevent the heat generated by the condenser from flowing to the evaporator, affect the generation of condensed water by the evaporator, and increase the amount of condensed water generated by the evaporator.
  • the upper fan When the upper fan is running, it can send water to the evaporator The evaporator absorbs the heat from the wind, causing more condensed water to be produced at the evaporator.
  • the exhaust temperature When the exhaust temperature is low, the exhaust temperature is not high and the condenser temperature is not high. The condenser does not need to dissipate excessive heat. At this time, the down fan runs at a low speed, which can reduce the power of the down fan and reduce power consumption. When the exhaust temperature is neither high nor low, the condenser temperature is neither high nor low, and the condenser needs a certain degree of heat dissipation. At this time, the down blower runs at a middle speed, which can ensure the heat dissipation of the condenser and ensure that the power of the down blower is not high. will be too high, reducing power consumption.
  • the operation of the downdraft fan can dissipate heat from the condenser and prevent the heat generated by the condenser from flowing to the evaporator and affecting the evaporator's generation of condensed water.
  • the frequency of the compressor must be reduced. If the exhaust temperature is too high, the condenser temperature will be too high, and the condenser needs to be quickly dissipated. At this time, the lower fan runs at high speed, which can quickly dissipate heat from the condenser, which can prevent the heat generated by the condenser from flowing to the evaporator. Affects the evaporator to generate condensed water.
  • the upper fan runs at no less than the fourth preset speed.
  • the upper fan can supply air to the evaporator, and the evaporator absorbs the heat of the supplied air, causing more condensed water to be generated at the evaporator.
  • the downdraft fan operates at a speed not lower than the first preset speed, so that the heat generated by the condenser will not flow to the evaporator and will not affect the evaporator's generation of condensed water. This ensures an increase in the amount of condensed water and enables the cleaning mode. normal operation.
  • Figure 1 is a schematic structural diagram of a mobile air conditioner
  • Figure 2 is a flow chart of the main steps of the control method of the mobile air conditioner provided by the present invention.
  • FIG. 3 is a detailed step flow of the control method of the mobile air conditioner provided by the present invention.
  • this embodiment discloses a mobile air conditioner.
  • the mobile air conditioner includes a compressor, a condenser 200, an expansion element and an evaporator 100 that are arranged in sequence on a condensation circuit.
  • the mobile air conditioner also includes a downdraft fan 500. , upper fan 300, water pump, water receiving tank 400, water pumping motor, first water level switch, second water level switch, temperature detection part and controller.
  • the downdraft fan 500 is provided corresponding to the condenser 200 and is used to supply air to the condenser 200. Specifically, the outside air flows through the condenser 200 to adjust the temperature of the condenser 200, mainly to dissipate heat from the condenser 200.
  • the upper fan 300 is provided corresponding to the evaporator 100 and is used to supply air to the evaporator 100. Specifically, the upper fan 300 can cause external air to flow through the evaporator 100 and adjust the temperature of the evaporator 100.
  • the lower fan 500 is electrically connected to the controller, and the controller can control the rotation speed of the lower fan 500.
  • the compressor is electrically connected to the controller, and the controller can control the operating frequency of the compressor to reduce or increase the frequency of the compressor.
  • the water receiving tank 400 is used to receive the condensed water generated by the evaporator 100.
  • the first water level switch and the second water level switch are both arranged in the water receiving tank 400.
  • Both the first water level switch and the second water level switch are water level sensors. In other embodiments It can also be a water level monitor, etc.
  • the first water level switch is used to detect whether the condensed water in the water receiving tank 400 reaches a high water level
  • the second water level switch is used to detect whether the condensed water in the water receiving tank 400 is low to a low water level.
  • Both the first water level switch and the second water level switch Electrically connected to the controller, the detected data can be fed back to the controller.
  • the water pump is used to drain water from the docking tank 400.
  • the water pump is electrically connected to the controller, and the controller can control the start and stop of the water pump.
  • the temperature detection component is arranged on the outlet side of the compressor and is used to detect the exhaust temperature of the compressor.
  • the temperature detection component is specifically a temperature sensor. In other embodiments, it can also be a thermometer.
  • the temperature detection component is electrically connected to the controller and can feed back the detected temperature of the gas discharged from the compressor to the sensor.
  • the water pumping motor is connected to the water receiving tank 400 and is used to transport the water in the water receiving tank 400 to the condenser 200 to dissipate heat of the condenser 200 .
  • the water pumping motor is also used to stir the condensed water in the water receiving tank 400.
  • the water pumping motor is electrically connected to the controller, and the controller is used to control the start and stop of the water pumping motor and the speed of the water pumping motor.
  • this embodiment also discloses a control method for a mobile air conditioner.
  • the controller of the above-mentioned mobile air conditioner is configured to be able to execute the control method, and the control method includes the following steps:
  • Step S20 According to the exhaust temperature of the compressor, control the operating frequency of the compressor, the speed of the down fan 500 and the speed of the up fan 300 to increase the generation of condensed water, where the speed of the down fan 500 is not lower than the first preset Rotating speed.
  • Step S20 specifically includes:
  • the compressor operates at an increased frequency, the downdraft fan 500 runs at the first preset speed, and the upwind fan 300 runs at no less than the fourth preset speed.
  • the compressor keeps running at the current frequency, and the downdraft fan 500 operates at the second preset temperature.
  • Two preset rotation speeds are operated, the second preset rotation speed is greater than the first preset rotation speed, and the upper fan 300 operates at no less than the fourth preset rotation speed.
  • the compressor operates at reduced frequency, the downwind fan 500 runs at the third preset speed, and the third preset speed is greater than the second preset speed, and the upwind fan 300 runs at Run at no lower than the fourth preset speed.
  • This control method also includes:
  • the water pumping motor After receiving the cleaning command, the water pumping motor runs at the first preset water pumping speed, and then determines whether the water level of the water receiving tank 400 reaches the high water level;
  • the water pump is started, and the water pumping motor runs at a second preset water pumping speed, wherein the second preset water pumping speed is higher than the first preset water pumping speed.
  • the water pump After starting the water pump, if the water level in the water receiving tank 400 is as low as the low water level, the water pump is turned off.
  • control method specifically includes the following steps:
  • step S2 After receiving the cleaning instruction, proceed to step S3; specifically, the controller receives the cleaning instruction.
  • the water pumping motor runs at the first preset water pumping speed. Specifically, the controller controls the water pumping motor to run at a first preset water pumping speed.
  • the first water pumping speed is a low speed, which can stir the condensed water in the water receiving tank 400, but will not remove a large amount of condensation water in the water receiving tank 400.
  • the water is drained to condenser 200.
  • step S4 determines whether the water level of the water receiving tank 400 reaches the high water level. If yes, proceed to step S5. If not, proceed to step S6. Specifically, the controller detects and determines based on the first water level switch.
  • step S5. Start the water pump, run the water pumping motor at the second preset water pumping speed, and then proceed to step S7.
  • the second preset water pumping speed is a high speed.
  • the water pumping motor running at a high speed can stir the water in the water receiving tank 400 to a large extent, so that the dirt in the water receiving tank 400 and the condensed water are discharged by the water pump together.
  • the controller controls the operation of the water pump and water pumping motor.
  • Step S6 specifically includes:
  • step S60 After obtaining the exhaust temperature of the compressor, proceed to step S61.
  • step S61 Determine whether the exhaust temperature is lower than the first preset temperature. If yes, proceed to step S62. If not, proceed to step S63. Specifically, the controller determines whether the exhaust temperature is lower than the first preset temperature.
  • a preset temperature may specifically be 40°C-50°C. Further, the first preset temperature may be 45°C.
  • the compressor frequency is increased, and the lower fan 500 runs at the first preset speed, and the upper fan 300 runs at a speed not lower than the fourth preset speed, and then proceeds to step S4.
  • the upper fan 300 specifically operates at a fourth preset speed, the fourth preset speed is a low speed, and the first preset speed is a low speed.
  • the controller controls the operation of the compressor, the upper fan 300 and the lower fan 500.
  • the upper fan 300 operates at a low speed and can supply air to the evaporator 100.
  • the evaporator 100 absorbs the heat of the supplied air to generate condensed water at the evaporator 100. At this time, the exhaust temperature is not high, and the temperature of the condenser 200 is not high either.
  • the condenser 200 does not need to dissipate excessive heat.
  • the down blower fan 500 operates at a low speed, which can reduce the power of the down blower fan 500 and reduce power consumption.
  • the operation of the downdraft fan 500 can dissipate heat from the condenser 200 and prevent the heat generated by the condenser 200 from flowing to the evaporator 100 and affecting the evaporator 100 to generate condensed water.
  • step S63 Determine whether the exhaust gas temperature is lower than the second preset temperature. If yes, proceed to step S64. If not, proceed to step S65, where the first preset temperature is lower than the second preset temperature. Specifically, the controller determines whether the exhaust gas temperature is lower than the second preset temperature.
  • the second preset temperature may be 80°C-90°C. Further, the second preset temperature may be 85°C.
  • the compressor keeps running at the current frequency, the lower fan 500 runs at the second preset speed, and the upper fan 300 runs at a speed not lower than the fourth preset speed, and then proceeds to step S4.
  • the upper fan 300 specifically operates at a fourth preset speed, the second preset speed is greater than the first preset speed, and the second preset speed is a middle speed.
  • the upper fan 300 operates at a low speed and can supply air to the evaporator 100.
  • the evaporator 100 absorbs the heat of the supplied air to generate condensed water at the evaporator 100.
  • the exhaust temperature is neither high nor low, and the temperature of the condenser 200 is neither high nor low.
  • the condenser 200 needs a certain degree of heat dissipation.
  • the lower fan 500 runs at a centered speed, which can ensure the heat dissipation of the condenser 200 and ensure The power of the down blower 500 will not be too high, reducing power consumption.
  • the operation of the downdraft fan 500 can dissipate heat from the condenser 200 and prevent the heat generated by the condenser 200 from flowing to the evaporator 100 and affecting the evaporator 100 to generate condensed water.
  • the compressor operates at a reduced frequency, the lower fan 500 operates at the third preset speed, and the upper fan 300 operates at a speed not lower than the fourth preset speed, and then proceeds to step S4.
  • the upper fan 300 specifically operates at a fourth preset speed, the third preset speed is greater than the second preset speed, and the third preset speed is the high speed of the lower fan 500 .
  • the upper fan 300 operates at a low speed and can supply air to the evaporator 100.
  • the evaporator 100 absorbs the heat of the supplied air to generate condensed water at the evaporator 100. At this time, the exhaust temperature is too high.
  • the frequency of the compressor must be reduced.
  • the lower fan 500 runs at a high speed, which can quickly dissipate heat to the condenser 200, which can prevent the heat generated by the condenser 200 from flowing. to the evaporator 100, influencing the evaporator 100 to generate condensed water.
  • step S7 Determine whether the water level of the water receiving tank 400 is low to the low water level. If yes, proceed to step S8. If not, proceed to step S9. Specifically, the controller determines according to the second water level switch. It is detected and judged that when the water level in the water receiving tank 400 is low, the water pump needs to be shut down.
  • the upper fan 300 operates at a rotation speed not lower than the fourth preset rotation speed, and the lower fan 500 can supply air to the evaporator 100.
  • the evaporator 100 absorbs the heat of the supplied air to generate more energy at the evaporator 100. A lot of condensation water.
  • the downdraft fan 500 operates at a speed not lower than the first preset speed, so that the heat generated by the condenser 200 will not flow to the evaporator 100, and will not affect the evaporator 100 to generate condensed water, ensuring an increase in the amount of condensed water. Cleaning mode can be made to work properly.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Signal Processing (AREA)
  • Fluid Mechanics (AREA)
  • Thermal Sciences (AREA)
  • Fuzzy Systems (AREA)
  • Mathematical Physics (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

本发明涉及移动式空调领域,具体提供一种移动式空调及其控制方法,旨在决现有移动式空调清洁过程中冷凝水产生量少甚至不产生冷凝水的问题。为此目的,在本发明的移动式空调的控制方法中,移动式空调包括依次设置在冷媒回路上的压缩机、冷凝器和蒸发器,移动式空调还包括下风机和上风机,下风机用于对冷凝器送风,上风机用于对所述蒸发器送风;控制方法包括:根据压缩机的排气温度,控制压缩机的运行频率、下风机和上风机的转速,以增加冷凝水的生成量。下风机运行可以对冷凝器进行散热,防止冷凝器产生的热量流至蒸发器处,影响蒸发器生成冷凝水,增加了蒸发器冷凝水的生成量。

Description

移动式空调及其控制方法
本申请要求2022年07月20日提交的、发明名称为“移动式空调及其控制方法”的中国专利申请CN 202210861220.8的优先权,上述中国专利申请的全部内容通过引用并入本申请中。
技术领域
本发明涉及移动式空调领域,具体提供一种移动式空调及其控制方法。
背景技术
相关技术中,移动空调短时间制冷制热切换,会产生大量冷凝水。分体式空调可以通过排水管将冷凝水直接排到室外。然而,由于移动空调内外机均装在同一外壳内且一般设于室内,无法通过排水管将冷凝水排到室外,因此,移动空调中会设有用于接冷凝水的接水槽,并通过水泵将接水槽内的水抽出。然而,移动空调长时间运行后,接水槽内会出现异物,异物会堵塞排水口、且导致接水槽的容量变低,甚至会影响水泵、打水电机的正常使用,存在改进空间。
中国专利(CN114353189A)公开了一种移动空调及其控制方法,其在一定程度上改善了接水槽存在异物的情况,需要进行清洁,但是在清洁过程中增加接水槽内的冷凝水时,其中下部风机停止运行,会导致冷凝器无法散热,冷凝器热量散不出去,节流降压后,蒸发器温度就会很高,导致蒸发器产生很少的冷凝水甚至没有冷凝水产生。
因此,相关领域亟需一种移动式空调及其控制方法来解决上述技术问题。
发明内容
本发明旨在解决上述技术问题,即,解决现有移动式空调清洁过程中冷凝水产生量少甚至不产生冷凝水的问题。
在第一方面,本发明提供一种空调控制方法,所述移动式空调包括依次设置在冷媒回路上的压缩机、冷凝器和蒸发器,所述移动式空调还包括下风机和上风机,所述下风机用于对所述冷凝器送风,所述上风机用于对所述蒸发器送风;
所述控制方法包括:
获取所述压缩机的排气温度;
根据所述压缩机的排气温度,控制所述压缩机的运行频率、所述下风机的转速和所述上风机的转速,以增加冷凝水的生成量。
在上述移动式空调的控制方法的具体实施方式中,“根据所述压缩机的排气温度,控制所述压缩机的运行频率、所述下风机的转速和所述上风机的转速,以增加冷凝水的生成量”包括:
如果所述压缩机的排气温度低于第一预设温度,则所述压缩机升频运行,所述下风机以第一预设转速运行,所述上风机以不低于第四预设转速的转速运行。
在上述移动式空调的控制方法的具体实施方式中,“根据所述压缩机的排气温度,控制所述压缩机的运行频率、所述下风机的转速和所述上风机的转速,以增加冷凝水的生成量”还包括:
如果所述压缩机的排气温度不低于第一预设温度但低于所述第二预设温度,则所述压缩机保持当前频率运行,所述下风机以第二预设转速运行,所述第二预设转速大于所述第一预设转速,所述上风机以不低于第四预设转速的转速运行。
在上述移动式空调的控制方法的具体实施方式中,“根据所述压缩机的排气温度,控制所述压缩机的运行频率、所述下风机的转速和所述上风机的转速,以增加冷凝水的生成量”还包括:
如果所述压缩机的排气温度不低于第二预设温度,则所述压缩机降频运行,所述下风机以第三预设转速运行,所述第三预设转速大于所述第二预设转速,所述上风机以不低于第四预设转速的转速运行。
在上述移动式空调的控制方法的具体实施方式中,所述移动式空调还包括接水槽、水泵、打水电机和第一水位开关,所述接水槽用于承接所述蒸发器生成的冷凝水,所述水泵用于排出所述接水槽内的水, 所述打水电机用于将所述接水槽内的水打至所述冷凝器,同时能够搅动所述接水槽内的水,所述第一水位开关用于检测所述接水槽内的冷凝水是否达到高水位,
所述控制方法还包括:
接收到清洁指令后,所述打水电机以第一预设打水转速运行,然后判断所述接水槽的水位是否达到高水位;
根据判断结果控制所述水泵和所述打水电机的运行。
在上述移动式空调的控制方法的具体实施方式中,“根据判断结果控制所述水泵和所述打水电机的运行”的步骤包括:
如果所述接水槽的水位达到高水位,则启动所述水泵,同时所述打水电机以第二预设打水转速运行,其中所述第二预设打水转速高于所述第一预设打水转速。
在上述移动式空调的控制方法的具体实施方式中,“根据判断结果控制所述水泵和所述打水电机的运行”的步骤还包括:
如果所述接水槽的水位未达到高水位,则执行增加冷凝水的生成量的操作,直至所述接水槽的水位达到高水位。
在上述移动式空调的控制方法的具体实施方式中,所述移动式空调还包括第二水位开关,所述第二水位开关用于检测所述接水槽内的冷凝水是否低至低水位,所述控制方法还包括:
启动所述水泵之后,如果所述接水槽的水位低至低水位,则关闭所述水泵。
在上述移动式空调的控制方法的具体实施方式中,所述控制方法还包括:
启动所述水泵之后,如果所述打水电机未低至低水位,则所述水泵和所述打水电机保持当前状态运行。
在第二方面,本发明提供一种移动式空调,该移动式空调包括控制器,所述控制器被配置成能够执行如上所述的控制方法。
在采用上述技术方案的情况下,本发明的下风机运行可以对冷凝器进行散热,防止冷凝器产生的热量流至蒸发器处,影响蒸发器生成冷凝水,增加了蒸发器冷凝水的生成量。上风机运行可以向蒸发器送 风,蒸发器吸收所送的风的热量,使蒸发器处产生更多的冷凝水。
排气温度较低时,此时排气温度并不高,冷凝器温度也不高,冷凝器不需要过度散热,这时下风机以低转速运行,可以降低下风机的功率,减少耗电量。排气温度不高不低时,冷凝器温度也不高不低,冷凝器需要一定程度的散热,这时下风机以居中转速运行,可以保证对冷凝器的散热,也可以保证下风机的功率不会过高,减少耗电量。下风机运行可以对冷凝器进行散热,防止冷凝器产生的热量流至蒸发器处,影响蒸发器生成冷凝水。排气温度过高时,为了保护压缩机,防止压缩机跳机,要对压缩机进行降频。排气温度过高,会导致冷凝器温度过高,需要对冷凝器快速的散热,这时下风机高速运行,可以快速地对冷凝器散热,其可以防止冷凝器产生的热量流至蒸发器处,影响蒸发器生成冷凝水。
特别地,在清洁过程中,上风机以不低于第四预设转速运行,上风机可以向蒸发器送风,蒸发器吸收所送的风的热量,使蒸发器处产生更多的冷凝水。下风机以不低于第一预设转速的转速运转,可以使冷凝器产生的热量不会流至蒸发器处,不会影响蒸发器生成冷凝水,保证冷凝水的增加量,可以使清洁模式正常运转。
附图说明
下面结合附图来描述本发明的优选实施方式,附图中:
图1是移动式空调的结构示意图;
图2是本发明提供的移动式空调的控制方法的主要步骤流程图;
图3是本发明提供的移动式空调的控制方法的详细步骤流程。
附图标记列表:100、蒸发器;200、冷凝器;300、上风机;400、接水槽;500、下风机。
具体实施方式
为了解决现有移动式空调清洁过程中冷凝水产生量少甚至 不产生冷凝水的问题。
如图1所示,本实施例公开了一种移动式空调,移动式空调包括依次设置在冷凝回路上的压缩机、冷凝器200、膨胀元件和蒸发器100,移动式空调还包括下风机500、上风机300、水泵、接水槽400、打水电机、第一水位开关、第二水位开关、温度检测件和控制器。
其中,下风机500对应冷凝器200设置,用于对冷凝器200送风,具体使外部空气流经冷凝器200,调节冷凝器200的温度,主要是对冷凝器200进行散热。上风机300对应蒸发器100设置,其用于对蒸发器100送风,具体可以使外部空气流经蒸发器100,调节蒸发器100的温度。
下风机500与控制器电连接,控制能够控制下风机500的转速,压缩机与控制器电连接,控制器能够控制压缩机的运行频率,以对压缩机进行降频或升频。
接水槽400用于承接蒸发器100生成的冷凝水,第一水位开关和第二水位开关均设置在接水槽400内,第一水位开关和第二水位开关均为水位传感器,在其它实施例中也可以为水位监测仪等。第一水位开关用于检测接水槽400内的冷凝水是否达到了高水位,第二水位开关用于检测接水槽400内的冷凝水是否低至低水位,第一水位开关和第二水位开关均与控制器电连接,可以将检测的数据反馈至控制器。
水泵用于对接水槽400排水,水泵与控制器电连接,控制器可以控制水泵的启停。
温度检测件设置在压缩机出口侧,用于检测压缩机的排气温度。温度检测件具体为温度传感器,在其它实施例中也可以温度计等,温度检测件与控制器电连接,可以将检测的压缩机排出的气体的温度反馈至传感器。
打水电机连接于接水槽400,用于将接水槽400内的水输送至冷凝器200处,以对冷凝器200进行散热。打水电机还用于搅拌接水槽400内的冷凝水。打水电机与控制器电连接,控制器用于控制打水电机的启停以及打水电机的转速。
如图2所示,本实施例还公开了一种移动式空调的控制方 法,上述移动式空调的控制器被配置为能够执行该控制方法,该控制方法包括如下步骤:
S10、获取压缩机的排气温度;
S20、根据压缩机的排气温度,控制压缩机的运行频率、下风机500的转速和上风机300的转速,以增加冷凝水的生成量,其中下风机500的转速不低于第一预设转速。其中步骤S20具体包括:
如果压缩机的排气温度低于第一预设温度时,压缩机升频运行,下风机500以第一预设转速运行,上风机300以不低于第四预设转速运行。
如果压缩机的排气温度不低于第一预设温度,且低于第二预设温度时,第一预设温度小于第二预设温度,压缩机保持当前频率运行,下风机500以第二预设转速运行,第二预设转速大于第一预设转速,上风机300以不低于第四预设转速运行。
如果压缩机的排气温度不低于第二预设温度时,压缩机降频运行,下风机500以第三预设转速运行,第三预设转速大于第二预设转速,上风机300以不低于第四预设转速运行。
该控制方法还包括:
接收到清洁指令后,打水电机以第一预设打水转速运行,然后判断接水槽400的水位是否达到高水位;
根据判断结果控制水泵和打水电机的运行。其具体包括:
如果接水槽400的水位达到高水位,则启动水泵,同时打水电机以第二预设打水转速运行,其中第二预设打水转速高于第一预设打水转速。
如果接水槽400的水位未达到高水位,则执行增加冷凝水的生成量的操作,直至接水槽400的水位达到高水位。
启动水泵之后,如果接水槽400的水位低至低水位,则关闭水泵。
启动水泵之后,如果打水电机未低至低水位,则水泵和打水电机保持当前状态运行。
如图3所示,该控制方法具体包括如下步骤:
S1、移动空调制冷运行;
S2、当接收到清洁指令后,进行步骤S3;具体地,由控制器接收清洁指令。
S3、打水电机以第一预设打水转速运行。具体由控制器控制打水电机以第一预设打水转速运行,第一打水转速为低转速,其可以搅动接水槽400内的冷凝水,但是不会大量的将接水槽400内的冷凝水排至冷凝器200。
S4判断接水槽400的水位是否达到高水位,如果是,则进行步骤S5,如果否,则进行步骤S6。具体由控制器根据第一水位开关来检测判断。
S5、启动水泵,打水电机以第二预设打水转速运行,然后进行步骤S7。其中,第二预设打水转速为高转速,打水电机以高转速运转可以较大程度上地搅动接水槽400内的水,使接水槽400内的污物同冷凝水被水泵一同排出。具体由控制器来控制水泵和打水电机的运转。
S6、获取压缩机的排气温度,然后根据压缩机的排气温度,控制压缩机的运行频率、下风机500的转速和上风机300的转速,以增加冷凝水的生成量,直至接水槽400的水位达到高水位。
步骤S6具体包括:
S60、获取压缩机的排气温度之后,进行步骤S61。
S61、判断排气温度是否低于第一预设温度,如果是,则进行步骤S62,如果否,则进行步骤S63;具体由控制器来判断排气温度是否低于第一预设温度,第一预设温度具体可以为40℃-50℃,进一步地,第一预设温度可以为45℃。
S62、压缩机升频,且下风机500以第一预设转速运行,上风机300以不低于第四预设转速的转速运行,然后进行步骤S4。其中,上风机300具体以第四预设转速的转速运行,第四预设转速为低转速,第一预设转速为低转速。具体由控制器控制压缩机、上风机300和下风机500的运行。其中上风机300以低速运转,可以向蒸发器100送风,蒸发器100吸收所送的风的热量,使蒸发器100处产生冷凝水。此时排气温度并不高,冷凝器200温度也不高,冷凝器200不需要过度散热, 这时下风机500以低转速运行,可以降低下风机500的功率,减少耗电量。下风机500运行可以对冷凝器200进行散热,防止冷凝器200产生的热量流至蒸发器100处,影响蒸发器100生成冷凝水。
S63、判断排气温度是否低于第二预设温度,如果是,则进行步骤S64,如果否,则进行步骤S65,其中第一预设温度小于第二预设温度。具体由控制器判断排气温度是否低于第二预设温度。第二预设温度可以为80℃-90℃,进一步地,第二预设温度可以为85℃。
S64、压缩机保持当前频率运行,下风机500以第二预设转速运行,上风机300以不低于第四预设转速的转速运行,然后进行步骤S4。其中,上风机300具体以第四预设转速的转速运行,第二预设转速大于第一预设转速,第二预设转速为居中的转速。其中上风机300以低速运转,可以向蒸发器100送风,蒸发器100吸收所送的风的热量,使蒸发器100处产生冷凝水。此时排气温度不高不低,冷凝器200温度也不高不低,冷凝器200需要一定程度的散热,这时下风机500以居中转速运行,可以保证对冷凝器200的散热,也可以保证下风机500的功率不会过高,减少耗电量。下风机500运行可以对冷凝器200进行散热,防止冷凝器200产生的热量流至蒸发器100处,影响蒸发器100生成冷凝水。
S65、压缩机降频运行,下风机500以第三预设转速运行,上风机300以不低于第四预设转速的转速运行,然后进行步骤S4。其中,上风机300具体以第四预设转速运行,第三预设转速大于第二预设转速,第三预设转速为下风机500的高转速。其中上风机300以低速运转,可以向蒸发器100送风,蒸发器100吸收所送的风的热量,使蒸发器100处产生冷凝水。此时排气温度过高,为了保护压缩机,防止压缩机跳机,要对压缩机进行降频。排气温度过高,会导致冷凝器200温度过高,需要对冷凝器200快速的散热,这时下风机500高速运行,可以快速地对冷凝器200散热,其可以防止冷凝器200产生的热量流至蒸发器100处,影响蒸发器100生成冷凝水。
S7、判断接水槽400的水位是否低至低水位,如果是,则进行步骤S8,如果否,则进行步骤S9。具体由控制器根据第二水位开关来 检测判断,接水槽400的水位低至低水位时,需要关闭水泵。
S8、计时器开始计时,计时之后关闭水泵和打水电机。
S9、水泵和打水电机保持当前状态运行,然后进行步骤S7。
在清洁过程中,上风机300以不低于第四预设转速的转速运行,下风机500可以向蒸发器100送风,蒸发器100吸收所送的风的热量,使蒸发器100处产生更多的冷凝水。下风机500以不低于第一预设转速的转速运转,可以使冷凝器200产生的热量不会流至蒸发器100处,不会影响蒸发器100生成冷凝水,保证冷凝水的增加量,可以使清洁模式正常运转。
至此,已经结合附图所示的优选实施方式描述了本发明的技术方案,但是,本领域技术人员容易理解的是,本发明的保护范围显然不局限于这些具体实施方式。在不偏离本发明的原理的前提下,本领域技术人员可以对相关技术特征作出等同的更改或替换,这些更改或替换之后的技术方案都将落入本发明的保护范围之内。

Claims (10)

  1. 一种移动式空调的控制方法,所述移动式空调包括依次设置在冷媒回路上的压缩机、冷凝器(200)和蒸发器(100),所述移动式空调还包括下风机(500)和上风机(300),所述下风机(500)用于对所述冷凝器(200)送风,所述上风机(300)用于对所述蒸发器(100)送风;
    其特征在于,所述控制方法包括:
    获取所述压缩机的排气温度;
    根据所述压缩机的排气温度,控制所述压缩机的运行频率、所述下风机(500)的转速和所述上风机(300)的转速,以增加冷凝水的生成量。
  2. 根据权利要求1所述的移动式空调的控制方法,其特征在于,“根据所述压缩机的排气温度,控制所述压缩机的运行频率、所述下风机(500)的转速和所述上风机(300)的转速,以增加冷凝水的生成量”包括:
    如果所述压缩机的排气温度低于第一预设温度,则所述压缩机升频运行,所述下风机(500)以第一预设转速运行,所述上风机(300)以不低于第四预设转速的转速运行。
  3. 根据权利要求2所述的移动式空调的控制方法,其特征在于,“根据所述压缩机的排气温度,控制所述压缩机的运行频率、所述下风机(500)的转速和所述上风机(300)的转速,以增加冷凝水的生成量”还包括:
    如果所述压缩机的排气温度不低于第一预设温度但低于所述第二预设温度,则所述压缩机保持当前频率运行,所述下风机(500)以第二预设转速运行,所述第二预设转速大于所述第一预设转速,所述上风机(300)以不低于第四预设转速的转速运行。
  4. 根据权利要求3所述的移动式空调的控制方法,其特征在于,“根 据所述压缩机的排气温度,控制所述压缩机的运行频率、所述下风机(500)的转速和所述上风机(300)的转速,以增加冷凝水的生成量”还包括:
    如果所述压缩机的排气温度不低于第二预设温度,则所述压缩机降频运行,所述下风机(500)以第三预设转速运行,所述第三预设转速大于所述第二预设转速,所述上风机(300)以不低于第四预设转速的转速运行。
  5. 根据权利要求1至4中任一项所述的移动式空调的控制方法,其特征在于,所述移动式空调还包括接水槽(400)、水泵、打水电机和第一水位开关,所述接水槽(400)用于承接所述蒸发器(100)生成的冷凝水,所述水泵用于排出所述接水槽(400)内的水,所述打水电机用于将所述接水槽(400)内的水打至所述冷凝器(200),同时能够搅动所述接水槽(400)内的水,所述第一水位开关用于检测所述接水槽(400)内的冷凝水是否达到高水位,
    所述控制方法还包括:
    接收到清洁指令后,所述打水电机以第一预设打水转速运行,然后判断所述接水槽(400)的水位是否达到高水位;
    根据判断结果控制所述水泵和所述打水电机的运行。
  6. 根据权利要求5所述的移动式空调的控制方法,其特征在于,“根据判断结果控制所述水泵和所述打水电机的运行”的步骤包括:
    如果所述接水槽(400)的水位达到高水位,则启动所述水泵,同时所述打水电机以第二预设打水转速运行,其中所述第二预设打水转速高于所述第一预设打水转速。
  7. 根据权利要求5所述的移动式空调的控制方法,其特征在于,“根据判断结果控制所述水泵和所述打水电机的运行”的步骤还包括:
    如果所述接水槽(400)的水位未达到高水位,则执行增加冷凝水的生成量的操作,直至所述接水槽(400)的水位达到高水位。
  8. 根据权利要求6所述的移动式空调的控制方法,其特征在于,所述移动式空调还包括第二水位开关,所述第二水位开关用于检测所述接水槽(400)内的冷凝水是否低至低水位,所述控制方法还包括:
    启动所述水泵之后,如果所述接水槽(400)的水位低至低水位,则关闭所述水泵。
  9. 根据权利要求6所述的移动式空调的控制方法,其特征在于,所述控制方法还包括:
    启动所述水泵之后,如果所述打水电机未低至低水位,则所述水泵和所述打水电机保持当前状态运行。
  10. 一种移动式空调,包括控制器,其特征在于,所述控制器被配置成能够执行权利要求1-9中任一项所述的控制方法。
PCT/CN2023/095048 2022-07-20 2023-05-18 移动式空调及其控制方法 WO2024016815A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210861220.8A CN115234990A (zh) 2022-07-20 2022-07-20 移动式空调及其控制方法
CN202210861220.8 2022-07-20

Publications (1)

Publication Number Publication Date
WO2024016815A1 true WO2024016815A1 (zh) 2024-01-25

Family

ID=83676147

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/095048 WO2024016815A1 (zh) 2022-07-20 2023-05-18 移动式空调及其控制方法

Country Status (2)

Country Link
CN (1) CN115234990A (zh)
WO (1) WO2024016815A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115234990A (zh) * 2022-07-20 2022-10-25 青岛海尔空调器有限总公司 移动式空调及其控制方法

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040106012A (ko) * 2003-06-10 2004-12-17 삼성전자주식회사 수냉식 공기조화기 및 그 제어방법
CN109084439A (zh) * 2018-09-21 2018-12-25 奥克斯空调股份有限公司 一种移动空调自动清洗装置、方法及空调器
CN112032962A (zh) * 2020-08-14 2020-12-04 海信(山东)空调有限公司 移动空调控制方法和具有其的移动空调
CN113587347A (zh) * 2021-07-26 2021-11-02 海信(广东)空调有限公司 空调器的水位控制方法
CN114353189A (zh) * 2022-02-28 2022-04-15 海信(广东)空调有限公司 移动空调及其控制方法
CN114353188A (zh) * 2022-02-28 2022-04-15 海信(广东)空调有限公司 移动空调及其控制方法
CN115234990A (zh) * 2022-07-20 2022-10-25 青岛海尔空调器有限总公司 移动式空调及其控制方法
CN115234991A (zh) * 2022-07-20 2022-10-25 青岛海尔空调器有限总公司 移动式空调及其控制方法
CN115234989A (zh) * 2022-07-20 2022-10-25 青岛海尔空调器有限总公司 移动式空调及其控制方法
CN115234988A (zh) * 2022-07-20 2022-10-25 青岛海尔空调器有限总公司 移动式空调及其控制方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040106012A (ko) * 2003-06-10 2004-12-17 삼성전자주식회사 수냉식 공기조화기 및 그 제어방법
CN109084439A (zh) * 2018-09-21 2018-12-25 奥克斯空调股份有限公司 一种移动空调自动清洗装置、方法及空调器
CN112032962A (zh) * 2020-08-14 2020-12-04 海信(山东)空调有限公司 移动空调控制方法和具有其的移动空调
CN113587347A (zh) * 2021-07-26 2021-11-02 海信(广东)空调有限公司 空调器的水位控制方法
CN114353189A (zh) * 2022-02-28 2022-04-15 海信(广东)空调有限公司 移动空调及其控制方法
CN114353188A (zh) * 2022-02-28 2022-04-15 海信(广东)空调有限公司 移动空调及其控制方法
CN115234990A (zh) * 2022-07-20 2022-10-25 青岛海尔空调器有限总公司 移动式空调及其控制方法
CN115234991A (zh) * 2022-07-20 2022-10-25 青岛海尔空调器有限总公司 移动式空调及其控制方法
CN115234989A (zh) * 2022-07-20 2022-10-25 青岛海尔空调器有限总公司 移动式空调及其控制方法
CN115234988A (zh) * 2022-07-20 2022-10-25 青岛海尔空调器有限总公司 移动式空调及其控制方法

Also Published As

Publication number Publication date
CN115234990A (zh) 2022-10-25

Similar Documents

Publication Publication Date Title
WO2024016817A1 (zh) 移动式空调及其控制方法
WO2024016818A1 (zh) 移动式空调及其控制方法
WO2024016816A1 (zh) 移动式空调及其控制方法
WO2024016815A1 (zh) 移动式空调及其控制方法
JP5071063B2 (ja) 空気調和機
CN109556247B (zh) 空调室内机的控制方法、控制装置及空调室内机
JP5455338B2 (ja) 冷却塔及び熱源機システム
CN114216201B (zh) 定频空调的控制方法及定频空调
JP2006118732A (ja) 空気調和機
JP3676327B2 (ja) 空気調和機及び当該空気調和機の室内熱交換器フロスト防止方法
CN112682875B (zh) 一种空调的控制方法、装置、空调、存储介质及处理器
CN114837946B (zh) 一种节能型双级螺旋式空气压缩机控制系统
JP2011196647A (ja) ヒートポンプ給湯機
JPH0719617A (ja) 凝縮器用送風機の速度調整装置
JP3462551B2 (ja) 凝縮器用送風機の速調装置
JPH09210427A (ja) 空気調和機
JP3908668B2 (ja) ヒートポンプ式給湯機
JP2008138998A (ja) 空気温調装置
CN115854528A (zh) 空调器和空调器的控制方法
JP2006153320A (ja) 空気調和装置の室外機
JP3819523B2 (ja) 冷凍装置
JPH10292943A (ja) クリーンルームの空調制御方法
CN115682369A (zh) 一种空调的控制方法、装置、空调和存储介质
JP3072761U (ja) 空気調和機の運転制御装置
JPH01302057A (ja) 空気調和機の運転制御装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23841884

Country of ref document: EP

Kind code of ref document: A1