WO2022134519A1 - 传动系统以及风力发电机组 - Google Patents

传动系统以及风力发电机组 Download PDF

Info

Publication number
WO2022134519A1
WO2022134519A1 PCT/CN2021/102881 CN2021102881W WO2022134519A1 WO 2022134519 A1 WO2022134519 A1 WO 2022134519A1 CN 2021102881 W CN2021102881 W CN 2021102881W WO 2022134519 A1 WO2022134519 A1 WO 2022134519A1
Authority
WO
WIPO (PCT)
Prior art keywords
moving shaft
loading
transmission system
bearing
adapter
Prior art date
Application number
PCT/CN2021/102881
Other languages
English (en)
French (fr)
Inventor
李会勋
马加伟
Original Assignee
北京金风科创风电设备有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京金风科创风电设备有限公司 filed Critical 北京金风科创风电设备有限公司
Publication of WO2022134519A1 publication Critical patent/WO2022134519A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D15/00Transmission of mechanical power
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D1/00Wind motors with rotation axis substantially parallel to the air flow entering the rotor 
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D15/00Transmission of mechanical power
    • F03D15/20Gearless transmission, i.e. direct-drive
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D17/00Monitoring or testing of wind motors, e.g. diagnostics
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D7/00Controlling wind motors 
    • F03D7/02Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D80/00Details, components or accessories not provided for in groups F03D1/00 - F03D17/00
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D80/00Details, components or accessories not provided for in groups F03D1/00 - F03D17/00
    • F03D80/70Bearing or lubricating arrangements
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction

Definitions

  • the present application relates to the technical field of wind power, and in particular, to a transmission system and a wind turbine.
  • Wind turbines can convert natural wind energy into usable electrical energy, and are widely used.
  • Wind turbines mainly include direct-drive wind turbines and double-fed wind turbines.
  • Direct-drive wind turbines have no gearbox, which reduces transmission losses and improves power generation efficiency, especially in low wind speed environments, the effect is more significant .
  • the direct-drive wind turbine omits the gearbox and its accessories, simplifies the transmission structure, improves the overall reliability of the wind turbine, and can effectively reduce maintenance costs, so it is widely used in the field of wind power.
  • the impeller and the base of the nacelle are directly connected through the transmission system. Since the impeller has a large weight and the load caused by wind energy, its weight and the load it bears will act on the inside of the transmission system.
  • the bearing group of the bearing group is not conducive to the load on each bearing of the bearing group, especially the bearing near the impeller side, which affects the overall life of the transmission system.
  • the embodiments of the present application provide a new transmission system and a wind turbine.
  • the embodiment of the present application provides a transmission system and a wind turbine.
  • the transmission system can meet the transfer of kinetic energy, ensure the power generation requirements of the wind turbine, reduce damage to its own bearing group, and improve the overall service life of the transmission system.
  • a transmission system including: a shafting structure, including a moving shaft, a fixed shaft and a bearing group, the moving shaft and the fixed shaft are coaxially arranged and are rotatably connected through the bearing group; a loading structure, set At one end of the moving shaft on its own axial direction and being rotatably connected with the moving shaft, the loading structure is used to apply a force to the moving shaft, and the direction of applying the force intersects with the axial direction.
  • the magnitude of the force applied by the loading structure to the moving shaft is adjustable.
  • the loading structure includes an adapter and a loading member.
  • the adapter is connected to the moving shaft and has a connecting portion that can rotate around the axis of the moving shaft.
  • the loading member is connected to the connecting portion and provides force.
  • the adapter includes a rotatably matched adapter inner ring and an adapter outer ring, the adapter inner ring is connected to the moving shaft, and the adapter outer ring forms a connection portion and is hinged with the loading member.
  • the adapter further includes an extension portion extending axially for a predetermined length, the adapter inner ring is disposed on a side of the extension portion away from the moving shaft, and the adapter inner ring is connected to the moving shaft through the extension portion .
  • the loading member includes a telescopic cylinder and a first driver, one of the cylinder block and the cylinder rod of the telescopic cylinder is connected with the adapter, and the other of the cylinder block and the cylinder rod is used for connecting with the external member
  • the first driver is configured to adjust the telescopic amount of the telescopic cylinder.
  • the loading member includes a loading container and a second driver
  • the loading container has a accommodating cavity
  • the second driver is configured to adjust the volume of the liquid contained in the accommodating cavity.
  • the bearing set includes a first bearing and a second bearing, and the first bearing and the second bearing are spaced apart in the axial direction.
  • a wind turbine generator set including: a nacelle, including a base; the above-mentioned transmission system, the fixed axis is connected to the base, and the loading structure is at least arranged on the base; the generator includes a rotor and a stator, and the rotor It is connected to the moving shaft, and the stator is connected to the fixed shaft; the impeller is connected to the end of the moving shaft that is away from the loading structure.
  • the wind turbine further includes a detector and a controller, the detector is configured to detect load information borne by the impeller, and the controller is configured to control the loading structure to apply a predetermined amount to the moving shaft according to the load information Numerical force.
  • the loading structure is at least partially hinged to the base.
  • the transmission system includes a shafting structure and a loading structure, and the rotor and stator of the generator can be connected through the shafting structure, and the impeller can be connected with the base of the nacelle to ensure power generation requirements.
  • the corresponding loading structure can apply a force in the direction intersecting the axial direction of the moving shaft itself to the moving shaft, balance the weight of the impeller and the load it bears, reduce the damage to the bearing group in the shafting structure, and improve the bearing group and the bearing group. The overall service life of the drive system.
  • FIG. 1 is a schematic diagram of the overall structure of a wind turbine according to an embodiment of the present application.
  • FIG. 2 is a schematic diagram of a partial structure of a wind turbine according to an embodiment of the present application
  • FIG. 3 is a schematic structural diagram of a transmission system according to an embodiment of the present application.
  • FIG. 4 is a schematic structural diagram of a transmission system according to another embodiment of the present application.
  • FIG. 5 is a control flow chart of a wind turbine according to an embodiment of the present application.
  • 2-nacelle 201-base; 202-support frame; 3-generator; 301-rotor; 302-stator; 4-impeller; 401-hub; 402-blade; 5-tower; 6-detector; 7- controller.
  • orientation words appearing in the following description are all the directions shown in the figures, and are not intended to limit the specific structure of the transmission system and the wind power generator set of the present application.
  • the terms “installation” and “connection” should be understood in a broad sense, for example, it may be a fixed connection or a detachable connection, or Connected integrally; either directly or indirectly.
  • the specific meanings of the above terms in the present application can be understood according to specific circumstances.
  • an embodiment of the present application provides a wind power generator set, including a tower 5 , a nacelle 2 , a generator 3 , a shafting structure 10 and an impeller 4 .
  • the tower 5 is connected to the foundation of the wind turbine, and the nacelle 2 is arranged on the top of the tower 5 .
  • the nacelle 2 includes a base 201 , and the nacelle 2 can be connected to the tower 5 and the shafting structure 10 through the base 201 .
  • the generator 3 is provided in the nacelle 2 , and in some examples, the generator 3 may be located outside the nacelle 2 .
  • the impeller 4 includes a hub 401 and a plurality of blades 402 connected to the hub 401 .
  • the generator 3 includes a rotatably matched rotor 301 and a stator 302 .
  • the rotor 301 can be connected to the hub 401 through the shafting structure 10
  • the stator 302 can be connected to the base 201 of the nacelle 2 through the shafting structure 10 .
  • the blades 402 drive the hub 401 to rotate
  • the hub 401 drives the rotor 301 of the generator 3 to rotate relative to the stator 302 through the shafting structure 10 to meet the power generation requirements of the wind turbine.
  • the wind power generator set provided in the embodiment of the present application may be a direct-drive wind power generator set.
  • the impeller 4 and the nacelle 2 are directly connected through the transmission system 1, because the impeller 4 has a large weight and The load of wind energy, its weight and the load it bears will act on the bearing group 13 inside the transmission system 1, which is unfavorable for the bearings of the bearing group 13, especially the bearings on the side close to the impeller 4, and affects the overall performance of the transmission system 1. life.
  • the embodiments of the present application provide a new transmission system, which can be produced and used as an independent component, and of course can also be used in the wind turbines provided by the above embodiments and used as components of the wind turbines.
  • the transmission system 1 includes a shafting structure 10 and a loading structure 20 .
  • the shafting structure 10 includes a moving shaft 11 , a fixed shaft 12 and a bearing group 13 .
  • the moving shaft 11 and The fixed shaft 12 is arranged coaxially and is rotatably connected through the bearing group 13 .
  • the loading structure 20 is disposed at one end of the moving shaft 11 in its own axial direction and is rotatably connected to the moving shaft 11 .
  • the transmission system 1 when used in a wind turbine, can connect the moving shaft 11 to the rotor 301 and the hub 401 of the generator 3 , and connect the fixed shaft 12 to the stator 302 of the generator 3 and the nacelle 2 .
  • the base 201 is connected so that the impeller 4 can drive the moving shaft 11 to rotate relative to the fixed shaft 12 when the impeller 4 rotates under the action of wind energy, thereby realizing the relative rotation between the rotor 301 and the stator 302, and realizing the conversion of wind energy to electric energy.
  • the shafting structure 10 provided in the embodiment of the present application further includes a loading structure 20, and the loading structure 20 is used to apply a force intersecting the axial direction of the moving shaft 11 to the moving shaft 11, so as to balance the impeller 4
  • the weight of the impeller 4 and the load it bears can reduce or avoid the damage to the bearing group 13 in the shafting structure 10, and improve the service life of the bearing group 13 and the entire transmission system 1, thereby ensuring the wind turbine generator set. power generation efficiency.
  • the movable shaft 11 of the shaft system may be located inside the fixed shaft 12 and arranged coaxially with the fixed shaft 12 .
  • the bearing set 13 includes a first bearing 131 and a second bearing 132 , the first bearing 131 and the second bearing 132 are spaced apart in the axial direction of the fixed shaft 12 , and both the first bearing 131 and the second bearing 132 are sleeved
  • the moving shaft 11 and the fixed shaft 12 are rotatably connected to each other through the first bearing 131 and the second bearing 132 .
  • the first bearing 131 may be located on a side away from the loading structure 20, and the second bearing 132 may be located on a side close to the loading structure 20, that is, when used in a wind turbine, the first bearing 131 is closer to the impeller 4 set up.
  • the force exerted by the loading structure 20 on the moving shaft 11 is adjustable. By making the force exerted by the loading structure 20 on the moving shaft 11 adjustable, an appropriate amount of force can be loaded on the moving shaft 11 according to the weight of the impeller 4 and the different loads it bears, so as to reasonably balance the weight of the impeller 4 and the load it bears. load.
  • the force exerted by the loading structure 20 on the moving shaft 11 may be a pushing force, or of course a pulling force.
  • the loading structure 20 includes an adapter 21 and a loading member 22 .
  • the adapter 21 is connected to the moving shaft 11 and has a connecting portion that can rotate around the axis of the moving shaft 11 .
  • the loading member 22 is connected with the connecting part and provides force. Since the shafting structure 10 is used in the wind turbine, the moving shaft 11 rotates with the impeller 4 , by making the loading structure 20 include the adapter 21 and make it have a connection that can rotate with the axis of the moving shaft 11 as the centerline so that when the loading member 22 exerts a force on the moving shaft 11, the moving shaft 11 can rotate normally without affecting the operation of the moving shaft 11, so as to ensure the transmission demand of the moving shaft 11 to the impeller 4 kinetic energy.
  • the adapter 21 may include an adapter inner ring 211a and an adapter outer ring 211b that are rotatably fitted, and the adapter inner ring 211a and the moving shaft 11
  • the adapter outer ring 211b forms a connection portion and is hinged with the loading member 22 to each other.
  • the adapter 21 adopts the above-mentioned form, and has a simple structure and can meet the loading requirement of the force acting on the moving shaft 11 by the loading member 22 .
  • the loading direction of the loading member 22 can be adjusted so that the direction of the force applied by the loading member 22 can be perpendicular to the axis of the shafting structure 10, and the force exerted by the loading member 22 can be optimized. Effect.
  • a protruding portion may be provided on the adapter outer ring 211b, and a hinge hole may be provided on the protruding portion, so that the loading member 22 can be hinged with the protruding portion through a pin.
  • the adapter 21 may include an adapter bearing 211 coaxially disposed with the first bearing 131 and the second bearing 132 , and the adapter bearing 211 includes the above-mentioned adapter inner ring 211a and the adapter
  • the outer ring 211b is connected to meet the connection relationship with the moving shaft 11 and the loading part 2, and is easy to purchase, easy to maintain and replace.
  • the adapter 21 further includes an extension portion 212 extending along the axial direction of the moving shaft 11 by a predetermined length, and the adapter inner ring 211a is disposed in the extension portion 212 is away from the side of the moving shaft 11 and the transfer inner ring 211a is connected to the moving shaft 11 through the extension portion 212.
  • the shafting structure 10 provided in the embodiment of the present application can extend the loading member 22 to act on the bearing set by providing the extension portion 212. 13 of the first bearing 131 and the moment arm of the second bearing 132 to optimize the loading effect of the loading member 22 .
  • the extension portion 212 may be a cylindrical structure with a predetermined length, and the extension portion 212 and the moving shaft 11 are coaxially disposed with each other. One end of the extension portion 212 is abutted with the moving shaft 11 , and one end away from the moving shaft 11 can be cantilevered and used to install the transfer bearing 211 .
  • the adapter inner ring 211a and the extension part 212 may adopt an integrated structure, which can ensure the connection strength between the adapter 21 and the extension part 212 and reliably ensure the connection between the two and the moving shaft 11. of coaxiality.
  • the loading structure 20 and the shafting structure 10 are detachably connected to each other. Maintenance and replacement of the loading structure 20 is facilitated.
  • the extension portion 212 of the loading structure 20 can be detachably connected to the moving shaft 11 through fasteners.
  • the loading member 22 includes a telescopic cylinder 221 and a first driver 222 , one of the cylinder block and the cylinder rod of the telescopic cylinder 221 is connected to the adapter 21 , and the other of the cylinder block and the cylinder rod is connected to the adapter 21 .
  • the first driver 222 is configured to adjust the telescopic amount of the telescopic cylinder 221 .
  • the loading member 22 is in the form of a telescopic cylinder 221 , which is easy to control and can meet the force requirement for providing the shafting structure 10 .
  • the cylinder rod of the telescopic cylinder 221 can be connected to the adapter 21, optionally hinged to each other, and the cylinder body of the telescopic cylinder 221 can be connected to an external component other than the transmission system 1, for example, can be connected with The base 201 of the nacelle 2 is connected.
  • the first driver 222 includes a hydraulic station, the hydraulic station is connected to the telescopic cylinder 221 through a pipeline, and the hydraulic station is used to control the ratio of oil in the telescopic cylinder 221 in the rod cavity and the rodless cavity to achieve The telescopic amount of the telescopic cylinder 221 is adjusted, thereby adjusting the force applied to the moving shaft 11 .
  • the loading member 22 in the form of the telescopic cylinder 221 and the first driver 222 is only an optional implementation.
  • the loading member 22 may also include a loading container 223 and a second driver 224 , the loading container 223 has a accommodating cavity, and the second driver 224 is configured to adjust the liquid contained in the accommodating cavity. volume. Adjusting the liquid volume in the accommodating cavity through the second driver 224 can also adjust the force provided by the loading member 22 to the moving shaft 11.
  • the second driver 224 may include a load adjustment requirement.
  • the loading container 223 may be hinged with the adapter 21, and the hinged manner is the same as that in the above-mentioned embodiment, and details are not repeated here.
  • the second driver 224 may include a driving pump 224a and a spare holding tank 224b, the spare holding tank 224b is used for holding liquid, and the driving pump 224a is used to adjust the liquid in the loading container 223 and the spare holding tank 224b.
  • the proportion of the liquid in the loading container 223 can be adjusted so as to satisfy the adjustment of the force exerted by the loading member 22 .
  • the loading structure 20 when used in a wind turbine, may be integrally disposed inside the base 201 of the nacelle 2 , and at least part of the loading structure 20 may be connected to the base 201 through the shafting structure 10 .
  • the rotor 301 and the stator 302 of the generator 3 can be connected, and the impeller 4 can be connected with the base 201 of the nacelle 2 to ensure the demand for power generation.
  • the correspondingly arranged loading structure 20 can apply a force to the moving shaft 11 in the direction intersecting the axial direction of the moving shaft 11, balance the weight of the impeller 4 and the load it bears, and reduce the load on the bearing group 13 in the shafting structure 10. damage, and improve the service life of the bearing group 13 and the entire transmission system 1 .
  • the loading structure 20 can be hinged with the base 201 of the nacelle 2, and optionally, the loading member 22 can be hinged with the base 201 of the nacelle 2 to ensure that the loading direction of the loading member 22 can be Adjust it so that it can be perpendicular or close to the axis of the moving shaft 11 to optimize the loading effect.
  • the wind power generator set provided by the implementation of the present invention may further include a support frame 202 .
  • the support frame 202 is arranged on the base 201 and connected to the base 201 , and the loading structure 20 is indirectly connected between the support frame 202 and the base 201 .
  • the wind turbine generator set provided in this embodiment of the present application further includes a detector 6 and a controller 7, the detector 6 is configured to detect the load information borne by the impeller 4, and the controller 7 is configured to The loading structure 20 is controlled to apply a predetermined amount of force to the moving shaft 11 according to the load information.
  • the loading timing of the loading structure 20 and the value of the applied force can be better controlled, thereby improving the service life of the bearing set 13 .
  • the controller 7 may also be configured to control the loading device to provide an initial force to the moving shaft 11 according to the wind parameters tested in the wind field, and the loading value of the initial force is Fc , and calculate and obtain the initial life of the first bearing 131 and the second bearing 132 when the loading value of the initial force is Fc.
  • the controller 7 is configured to receive load information of the impeller 4 detected by the detector 6, the load information including the bending moment My of the blade root of the blade in the Y direction (vertical direction), the bending moment My in the X direction (horizontal direction). ) and the Z direction (the axial direction of the shafting structure 10), and obtain the bending moment My of the center of the hub 401 in the Y direction (vertical direction), in the X direction (horizontal direction) and in the Z direction (axis) according to the load information
  • the forces Fx and Fz in the axial direction of the frame 10 according to My, Fz, Fx in the center of the hub 401, the distance L1 between the support point of the first bearing 131 and the center of the hub 401, the support point of the first bearing 131 and the second
  • the distance L2 from the support point of the bearing 132, the distance between the second bearing 132 and the loading point applied by the loading structure 20 is L3, and the loading value Fc of the initial force is obtained to obtain the load F1r
  • the load F1r borne by the first bearing 131 can be obtained according to formula (1).
  • the load F2r borne by the second bearing 132 can be obtained according to formula (2).
  • the controller 7 is configured to obtain the actual life of the first bearing 131 when the initial load value is Fc according to the load F1r borne by the first bearing 131, and adjust the load if the actual life is less than the initial life.
  • the force applied by the structure 20 to the moving shaft 11 until the actual life of the first bearing 131 is within the preset threshold range.
  • the controller 7 is further configured to obtain the actual life of the second bearing 132 when the load value of the initial force is Fc by the second bearing 132 according to the load F2r borne by the second bearing 132, if the actual life is less than the preset value. If the threshold is set, the force applied by the loading structure 20 to the moving shaft 11 is adjusted until the actual service life of the second bearing 132 is within the preset threshold range.
  • the controller 7 is configured to obtain the actual life of the first bearing 131 when the initial load value is Fc according to the load F1r borne by the first bearing 131 and the bearing life calculation formula L10.
  • the controller 7 is configured to obtain the actual life of the second bearing 132 when the initial load value of the second bearing 132 is Fc according to the load F2r borne by the second bearing 132 and the bearing life calculation formula L10.
  • the value of the acting force can be increased or decreased according to a preset gradient, and the actual life of the corresponding bearing is compared with the preset life after each loading, until the actual life of the bearing is no longer than the actual life. Less than the preset life stop loading adjustment.
  • the wind turbine generator set provided in the embodiments of the present application includes the transmission system 1 provided in the above embodiments, a load can be applied to the moving shaft 11 through the loading structure 20 to balance the weight of the impeller 4 and the impeller borne by the moving shaft 11 4.
  • the wind load borne by the bearing group 13 increases the service life of each bearing of the bearing group 13, and can improve the safety performance and power generation efficiency of the wind turbine generator group.

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Wind Motors (AREA)

Abstract

一种传动系统以及风力发电机组,传动系统(1)包括轴系结构(10)和加载结构(20),轴系结构(10)包括动轴(11)、定轴(12)以及轴承组(13),动轴(11)与定轴(12)同轴设置并通过轴承组(13)转动连接,加载结构(20)设置于动轴(11)在自身轴向上的一端并与动轴(11)转动连接,加载结构(20)用于向动轴(11)施加作用力,作用力的施加方向与轴向相交;风力发电机组包括机舱(2)、传动系统(1)、发电机(3)和叶轮(4);传动系统(1)能够动能传递,保证风力发电机组的发电需求,同时能够减小对轴承组(13)的损伤,提高传动系统(1)整体的使用寿命。

Description

传动系统以及风力发电机组
相关申请的交叉引用
本申请要求享有于2020年12月23日提交的名称为“传动系统以及风力发电机组”的中国专利申请202011536441.5的优先权,该申请的全部内容通过引用并入本文中。
技术领域
本申请涉及风电技术领域,特别是涉及一种传动系统以及风力发电机组。
背景技术
风力发电机组可以将自然界的风能转换为可被利用电能,应用十分广泛。风力发电机组主要包括直驱式风力发电机组以及双馈式风力发电机组,直驱式风力发电机组没有齿轮箱,减少了传动损耗,提高了发电效率,尤其是在低风速环境下,效果更加显著。并且,直驱式风力发电机组省去了齿轮箱及其附件,简化了传动结构,提高了风力发电机组整体的可靠性且能够有效的降低维护成本,因此在风电领域应用较为广泛。
然而,已有的直驱式风力发电机组,其叶轮以及机舱的底座通过传动系统直接连接,由于叶轮具有较大的重量以及风能作用的载荷,其重量以及所承受的载荷将作用于传动系统内部的轴承组,对轴承组的各轴承尤其是靠近叶轮一侧的轴承受载不利,影响传动系统整体的寿命。
因此,本申请实施例提供一种新的传动系统以及风力发电机组。
发明内容
本申请实施例提供一种传动系统以及风力发电机组,传动系统能够满足动能传递,保证风力发电机组的发电需求,同时能够减小对其自身轴承 组的损伤,提高传动系统整体的使用寿命。
一方面,根据本申请实施例提出了一种传动系统,包括:轴系结构,包括动轴、定轴以及轴承组,动轴与定轴同轴设置并通过轴承组转动连接;加载结构,设置于动轴在自身轴向上的一端并与动轴转动连接,加载结构用于向动轴施加作用力,作用力的施加方向与轴向相交。
根据本申请实施例的一个方面,加载结构向动轴施加的作用力的大小可调。
根据本申请实施例的一个方面,加载结构包括转接件以及加载件,转接件与动轴连接且具有能够以动轴的轴线为中心线转动的连接部,加载件与连接部连接并提供作用力。
根据本申请实施例的一个方面,转接件包括转动配合的转接内圈以及转接外圈,转接内圈与动轴连接,转接外圈形成连接部并与加载件相互铰接。
根据本申请实施例的一个方面,转接件还包括沿轴向延伸预定长度的延伸部,转接内圈设置于延伸部背离动轴的一侧且转接内圈通过延伸部与动轴连接。
根据本申请实施例的一个方面,加载件包括伸缩缸以及第一驱动器,伸缩缸的缸体以及缸杆的一者与转接件连接,缸体以及缸杆的另一者用于与外部构件连接,第一驱动器被配置为调节伸缩缸的伸缩量。
根据本申请实施例的一个方面,加载件包括加载容器以及第二驱动器,加载容器具有容纳腔,第二驱动器被配置为调节容纳腔内所容纳液体的体积。
根据本申请实施例的一个方面,轴承组包括第一轴承以及第二轴承,第一轴承以及第二轴承在轴向上间隔分布。
另一方面,根据本申请实施例提供一种风力发电机组,包括:机舱,包括底座;上述的传动系统,定轴连接于底座,加载结构至少设置于底座;发电机,包括转子以及定子,转子连接于动轴,定子连接于定轴;叶轮,连接于动轴背离加载结构的一端。
根据本申请实施例的另一个方面,风力发电机组还包括检测器以及控 制器,检测器被配置为检测叶轮所承受的载荷信息,控制器被配置为根据载荷信息控制加载结构向动轴施加预定数值的作用力。
根据本申请实施例的另一个方面,加载结构至少部分与底座铰接。
根据本申请实施例提供的传动系统以及风力发电机组,传动系统包括轴系结构以及加载结构,通过轴系结构能够连接发电机的转子以及定子,并能够将叶轮与机舱的底座连接,保证发电需求。并且,相应设置的加载结构能够向动轴施加与动轴自身轴向相交方向上的作用力,平衡叶轮的重量以及所承受的载荷,降低对轴系结构内轴承组的损伤,提高轴承组以及传动系统整体的使用寿命。
附图说明
图1是本申请一个实施例的风力发电机组的整体结构示意图;
图2是本申请一个实施例的风力发电机组的局部结构示意图;
图3是本申请一个实施例的传动系统的结构示意图;
图4是本申请另一个实施例的传动系统的结构示意图;
图5是本申请一个实施例的风力发电机组的控制流程图。
1-传动系统;10-轴系结构;11-动轴;12-定轴;13-轴承组;131-第一轴承;132-第二轴承;20-加载结构;21-转接件;211-转接轴承;211a-转接内圈;211b-转接外圈;212-延伸部;22-加载件;221-伸缩缸;222-第一驱动器;223-加载容器;224-第二驱动器;224a-驱动泵;224b-备用容纳箱;
2-机舱;201-底座;202-支撑架;3-发电机;301-转子;302-定子;4-叶轮;401-轮毂;402-叶片;5-塔架;6-检测器;7-控制器。
在附图中,相同的部件使用相同的附图标记。附图并未按照实际的比例绘制。
具体实施方式
下面将详细描述本申请的各个方面的特征和示例性实施例。在下面的详细描述中,提出了许多具体细节,以便提供对本申请的全面理解。但 是,对于本领域技术人员来说很明显的是,本申请可以在不需要这些具体细节中的一些细节的情况下实施。下面对实施例的描述仅仅是为了通过示出本申请的示例来提供对本申请的更好的理解。在附图和下面的描述中,至少部分的公知结构和技术没有被示出,以便避免对本申请造成不必要的模糊;并且,为了清晰,可能夸大了部分结构的尺寸。此外,下文中所描述的特征、结构或特性可以以任何合适的方式结合在一个或更多实施例中。
下述描述中出现的方位词均为图中示出的方向,并不是对本申请的传动系统以及风力发电机组的具体结构进行限定。在本申请的描述中,还需要说明的是,除非另有明确的规定和限定,术语“安装”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是直接相连,也可以间接相连。对于本领域的普通技术人员而言,可视具体情况理解上述术语在本申请中的具体含义。
为了更好地理解本申请,下面结合图1至图5根据本申请实施例的传动系统1以及风力发电机组进行详细描述。
请参阅图1以及图2,本申请实施例提供一种风力发电机组,包括塔架5、机舱2、发电机3、轴系结构10以及叶轮4。塔架5连接于风机基础,机舱2设置于塔架5的顶端,机舱2包括底座201,机舱2能够通过底座201与塔架5以及轴系结构10连接。发电机3设置于机舱2,一些示例中,发电机3可以位于机舱2的外部。叶轮4包括轮毂401以及连接于轮毂401上的多个叶片402。发电机3包括转动配合的转子301以及定子302,转子301可以通过轴系结构10与轮毂401连接,定子302可以通过轴系结构10与机舱2的底座201连接。当风力作用于叶片402时,叶片402带动轮毂401转动,轮毂401通过轴系结构10带动发电机3的转子301相对定子302转动,实现风力发电机组的发电需求。
本申请实施例提供的风力发电机组可以为直驱式风力发电机组,现有的直驱式风力发电机组,其叶轮4以及机舱2通过传动系统1直接连接,由于叶轮4具有较大的重量以及风能作用的载荷,其重量以及所承受的载荷将作用于传动系统1内部的轴承组13,对轴承组13的各轴承尤其是靠近叶轮4一侧的轴承受载不利,影响传动系统1整体的寿命。
基于上述技术问题,本申请实施例提供一种新的传动系统,其可以作为独立的构件生产及使用,当然也可以用于上述实施例提供的风力发电机组并作为风力发电机组的组成部分。
如图2以及图3所示,本申请实施例提供的传动系统1,包括轴系结构10以及加载结构20,轴系结构10包括动轴11、定轴12以及轴承组13,动轴11与定轴12同轴设置并通过轴承组13转动连接。加载结构20设置于动轴11在自身轴向上的一端并与动轴11转动连接,加载结构20用于向动轴11施加作用力,作用力的施加方向与轴向相交。
本申请实施例提供的传动系统1,在用于风力发电机组时,可以将动轴11与发电机3的转子301以及轮毂401连接,将定轴12与发电机3的定子302以及机舱2的底座201连接,使得叶轮4在风能的作用下转动时能够带动动轴11相对于定轴12转动,进而实现转子301与定子302之间的相对转动,实现风能至电能的转换。并且,本申请实施例提供的轴系结构10,还包括有加载结构20,且加载结构20用于向动轴11施加与动轴11的轴向相交的作用力,以用于平衡叶轮4的重力和承受的载荷,减小或者避免叶轮4的重量以及其所承受的载荷对轴系结构10内轴承组13的损伤,提高轴承组13以及传动系统1整体的使用寿命,进而保证风力发电机组的发电效益。
作为一种可选地实施方式,本申请实施例提供的轴系结构10,其动轴11可以位于定轴12的内部并与定轴12同轴设置。可选地,轴承组13包括第一轴承131以及第二轴承132,第一轴承131以及第二轴承132在定轴12的轴向上间隔分布,第一轴承131以及第二轴承132均套设于动轴11的外周表面并位于动轴11以及定轴12之间,动轴11以及定轴12通过第一轴承131以及第二轴承132彼此转动连接。可选地,第一轴承131可以位于远离加载结构20的一侧,第二轴承132可以位于靠近加载结构20的一侧,即,在用于风力发电机组时,第一轴承131更靠近叶轮4设置。
在一些可选地实施例中,本申请实施例提供的轴系结构10,加载结构20向动轴11施加的作用力可调。通过使得加载结构20向动轴11施加的作用力可调,可以根据叶轮4重量以及所承受的不同载荷选择向动轴11 加载适当大小的作用力,合理的平衡叶轮4的重量以及所承受的载荷。
作为一种可选地实施方式,本申请实施例提供的轴系结构10,加载结构20向动轴11施加的作用力可以为推力,当然也可以为拉力,具体可以根据加载结构20所处的位置确定。
在一些可选地实施例中,加载结构20包括转接件21以及加载件22,转接件21与动轴11连接且具有能够以动轴11的轴线为中心线转动的连接部,加载件22与连接部连接并提供作用力。由于轴系结构10在用于风力发电机组时,动轴11是随叶轮4转动的,通过使得加载结构20包括转接件21并使其具有能够以动轴11的轴线为中心线转动的连接部,使得加载件22在向动轴11施加作用力时,动轴11可以正常转动,不会对动轴11的运行产生影响,保证动轴11对叶轮4动能的传递需求。
作为一种可选地实施方式,本申请实施例提供的轴系结构10,转接件21可以包括转动配合的转接内圈211a以及转接外圈211b,转接内圈211a与动轴11连接,转接外圈211b形成连接部并与加载件22相互铰接。转接件21采用上述形式,结构简单且能够满足加载件22对动轴11作用力的加载需求。并且,将加载件22与转接外圈211b相互铰接,能够调节加载件22的加载方向,使其所施加的力的方向可以与轴系结构10的轴线相垂直,优化加载件22的施力效果。
一些可选地实施例中,可以在转接外圈211b上设置有凸出部,并在凸出部上设置有铰接孔,使得加载件22可以通过销轴与凸出部铰接。
在一些可选地实施例中,转接件21可以包括与第一轴承131以及第二轴承132同轴设置的转接轴承211,转接轴承211包括上述提及的转接内圈211a以及转接外圈211b,满足与动轴11以及加载件2之间的连接关系,且易于采购,便于维护及更换。
作为一种可选地实施方式,本申请实施例提供的轴系结构10,转接件21还包括沿动轴11的轴向延伸预定长度的延伸部212,转接内圈211a设置于延伸部212背离动轴11的一侧且转接内圈211a通过延伸部212与动轴11连接,本申请实施例提供的轴系结构10,通过设置延伸部212,能够延长加载件22作用于轴承组13的第一轴承131以及第二轴承132的力 臂,优化加载件22的加载效果。
在一些可选地实施例中,延伸部212可以为具有预定长度的筒状结构,延伸部212与动轴11彼此同轴设置。延伸部212的一端与动轴11对接,且远离动轴11的一端可以采用悬臂设置方式并用于安装转接轴承211。
一些可选地实施例中,转接内圈211a与延伸部212可以采用一体式结构,能够保证转接件21与延伸部212之间的连接强度并可靠的保证二者与动轴11之间的同轴度。
作为一种可选地实施方式,加载结构20与轴系结构10彼此可拆卸连接。便于加载结构20的维修以及更换。可选地,可以使得加载结构20的延伸部212与动轴11通过紧固件可拆卸连接。
在一些可选地实施例中,加载件22包括伸缩缸221以及第一驱动器222,伸缩缸221的缸体以及缸杆的一者与转接件21连接,缸体以及缸杆的另一者用于与外部构件连接,第一驱动器222被配置为调节伸缩缸221的伸缩量。加载件22采用伸缩缸221的形式,易于控制,且能够满足向提供轴系结构10的作用力需求。
在一些可选地实施例中,可以使得伸缩缸221的缸杆与转接件21连接,可选相互铰接,伸缩缸221的缸体可以与传动系统1以外的外部构件连接,例如,可以与机舱2的底座201连接。
作为一种可选地实施方式,第一驱动器222包括液压站,液压站通过管路与伸缩缸221连接,利用液压站控制伸缩缸221在有杆腔以及无杆腔内油液的配比来调节伸缩缸221的伸缩量,进而调节对动轴11所施加的作用力。
可以理解的是,加载件22采用伸缩缸221以及第一驱动器222的形式只是一种可选地实施方式。如图4所示,在有些实施例中,也可以使得加载件22包括加载容器223以及第二驱动器224,加载容器223具有容纳腔,第二驱动器224被配置为调节容纳腔内所容纳液体的体积。通过第二驱动器224调节容纳腔内的液体体积同样能够调节加载件22向动轴11提供的作用力第二驱动器224可以包括,满足载荷调节需求。
可选地,加载容器223可以与转接件21之间铰接,铰接方式同上述实施例,在此不重复赘述。
作为一种可选地实施方式,第二驱动器224可以包括驱动泵224a以及备用容纳箱224b,备用容纳箱224b用于承装液体,利用驱动泵224a调节加载容器223以及备用容纳箱224b中液体的比例,以调节加载容器223内的液体体积,进而满足加载件22所施加作用力的调节。
本申请实施例提供的传动系统1,在用于风力发电机组时,可以将加载结构20整体设置于机舱2的底座201内部,加载结构20的至少部分可以连接于底座201,通过轴系结构10能够连接发电机3的转子301以及定子302,并能够将叶轮4与机舱2的底座201连接,保证发电需求。并且,相应设置的加载结构20能够向动轴11施加与动轴11自身轴向相交方向上的作用力,平衡叶轮4的重量以及所承受的载荷,降低对轴系结构10内轴承组13的损伤,提高轴承组13以及传动系统1整体的使用寿命。
一些可选地实施例中,可以使得加载结构20与机舱2的底座201之间相铰接,可选地,可以使得加载件22与机舱2的底座201相铰接,保证加载件22的加载方向能够调节,使其可与动轴11的轴线相垂直或者接近垂直状态,优化加载效果。
如图2至图4所示,作为一种可选地实施方式,本发发明实施提供的风力发电机组,还可以包括支撑架202,支撑架202设置于底座201并与底座201连接,加载结构20通过支撑架202与底座201之间间接连接。
作为一种可选地实施方式,本申请实施例提供的风力发电机组,还包括检测器6以及控制器7,检测器6被配置为检测叶轮4所承受的载荷信息,控制器7被配置为根据载荷信息控制加载结构20向动轴11施加预定数值的作用力。通过设置检测器6以及控制器7,能够更好的控制加载结构20的加载时机以及所施加作用力的数值,提高轴承组13的使用寿命。
如图5所示,作为一种可选地实施方式,控制器7还可以被配置为根据风场测试风参数控制加载装置向动轴11提供提初始作用力,初始作用力的加载值为Fc,并计算获取第一轴承131以及第二轴承132在初始作用力的加载值为Fc时的初始寿命。
可选地,控制器7被配置为接收检测器6所检测叶轮4的载荷信息,载荷信息包括叶片的叶根部的在Y方向(竖直方向)上的弯矩My、在X方向(水平方向)以及与Z方向(轴系结构10的轴向),并根据载荷信息获取轮毂401中心在Y方向(竖直方向)上的弯矩My、在X方向(水平方向)以及与Z方向(轴系结构10的轴向)上的受力Fx与Fz,根据轮毂401中心的My、Fz、Fx、第一轴承131的支撑点距离轮毂401中心距离L1、第一轴承131的支撑点和第二轴承132的支撑点距离L2、第二轴承132与加载结构20施加的加载点的距离为L3以及初始作用力的加载值Fc获得第一轴承131所承受的载荷F1r以及第二轴承132所承受的载荷F2r。
可选地,可以根据式(1)获取第一轴承131所承受的载荷F1r。
Figure PCTCN2021102881-appb-000001
可选地,可以根据式(2)获取第二轴承132所承受的载荷F2r。
Figure PCTCN2021102881-appb-000002
可选地,控制器7被配置为根据第一轴承131所承受的载荷F1r获得第一轴承131在初始加载值为Fc时第一轴承131的实际寿命,若实际寿命小于初始寿命,则调节加载结构20向动轴11的施加的作用力,直至第一轴承131的实际寿命在预设阈值范围内。
可选地,控制器7还被配置为根据第二轴承132所承受的载荷F2r获得第二轴承132在初始作用力的加载值为Fc时第二轴承132的实际寿命,若实际寿命小于预设阈值,则调节加载结构20向动轴11的施加的作用力,直至第二轴承132的实际寿命在预设阈值范围内。
可选地,控制器7被配置为根据第一轴承131所承受的载荷F1r以及轴承寿命计算公式L10获得第一轴承131在初始加载值为Fc时第一轴承131的实际寿命。可选地,控制器7被配置为根据第二轴承132所承受的载荷F2r以及轴承寿命计算公式L10获得第二轴承132在初始加载值为Fc 时第二轴承132的实际寿命。
可选地,当调节加载结构20的载荷时,可以根据预设的梯度增加或者减小作用力的值,并且在每次加载后比较相应轴承的实际寿命与预设寿命,直至其实际寿命不小于预设寿命停止加载调节。
本申请实施例提供的风力发电机组,因其包括上述各实施例提供的传动系统1,因此能够通过加载结构20向动轴11施加载荷,以平衡动轴11所承受的叶轮4的重量以及叶轮4所承受的风载荷,提高轴承组13各轴承的使用寿命,并且能够风力发电机组的安全性能以及发电效益。
虽然已经参考优选实施例对本申请进行了描述,但在不脱离本申请的范围的情况下,可以对其进行各种改进并且可以用等效物替换其中的部件。尤其是,只要不存在结构冲突,各个实施例中所提到的各项技术特征均可以任意方式组合起来。本申请并不局限于文中公开的特定实施例,而是包括落入权利要求的范围内的所有技术方案。

Claims (18)

  1. 一种传动系统(1),包括:
    轴系结构(10),包括动轴(11)、定轴(12)以及轴承组(13),所述动轴(11)与所述定轴(12)同轴设置并通过所述轴承组(13)转动连接;
    加载结构(20),设置于所述动轴(11)在自身轴向上的一端并与所述动轴(11)转动连接,所述加载结构(20)用于向所述动轴(11)施加作用力,所述作用力的施加方向与所述轴向相交。
  2. 根据权利要求1所述的传动系统(1),其中,所述加载结构(20)向所述动轴(11)施加的所述作用力的大小可调。
  3. 根据权利要求1所述的传动系统(1),其中,所述加载结构(20)包括转接件(21)以及加载件(22),所述转接件(21)与所述动轴(11)连接且具有能够以所述动轴(11)的轴线为中心线转动的连接部,所述加载件(22)与所述连接部连接并提供所述作用力。
  4. 根据权利要求3所述的传动系统(1),其中,所述转接件(21)包括转动配合的转接内圈(211a)以及转接外圈(211b),所述转接内圈(211a)与所述动轴(11)连接,所述转接外圈(211b)形成所述连接部并与所述加载件(22)相互铰接。
  5. 根据权利要求4所述的传动系统(1),其中,所述转接外圈(211b)上设置有凸出部,所述凸出部上设置有铰接孔,所述加载件(22)通过销轴与所述凸出部铰接。
  6. 根据权利要求4所述的传动系统(1),其中,所述转接件(21)还包括沿所述轴向延伸预定长度的延伸部(212),所述转接内圈(211a)设置于所述延伸部(212)背离所述动轴(11)的一侧且所述转接内圈(211a)通过所述延伸部(212)与所述动轴(11)连接。
  7. 根据权利要求6所述的传动系统(1),其中,所述延伸部 (212)为具有预定长度的筒状结构,所述延伸部(212)与所述动轴(11)彼此同轴设置。
  8. 根据权利要求3所述的传动系统(1),其中,所述转接内圈(211a)与所述延伸部(212)采用一体式结构。
  9. 根据权利要求3所述的传动系统(1),其中,所述加载件(22)包括伸缩缸(221)以及第一驱动器(222),所述伸缩缸(221)的缸体以及缸杆的一者与所述转接件(21)连接,所述缸体以及所述缸杆的另一者用于与外部构件连接,所述第一驱动器(222)被配置为调节所述伸缩缸(221)的伸缩量。
  10. 根据权利要求9所述的传动系统(1),其中,所述第一驱动器(222)包括液压站,所述液压站通过管路与所述伸缩缸(221)连接。
  11. 根据权利要求3所述的传动系统(1),其中,所述加载件(22)包括加载容器(223)以及第二驱动器(224),所述加载容器(223)具有容纳腔,所述第二驱动器(224)被配置为调节所述容纳腔内所容纳液体的体积。
  12. 根据权利要求11所述的传动系统(1),其中,所述第二驱动器(224)包括驱动泵(224a)以及备用容纳箱(224b),所述备用容纳箱(224b)用于承装液体,所述驱动泵(224a)用于调节所述加载容器(223)以及所述备用容纳箱(224b)中所述液体的比例。
  13. 根据权利要求1所述的传动系统(1),其中,所述加载结构(20)与所述轴系结构(10)彼此可拆卸连接。
  14. 根据权利要求1所述的传动系统(1),其中,所述轴承组(13)包括第一轴承(131)以及第二轴承(132),所述第一轴承(131)以及所述第二轴承(132)在所述轴向上间隔分布。
  15. 一种风力发电机组,其中,包括:
    机舱(2),包括底座(201);
    如权利要求1至14任意一项所述的传动系统(1),所述定轴(12)连接于所述底座(201),所述加载结构(20)至少部分设置于所述底座(201);
    发电机(3),包括转子(301)以及定子(302),所述转子(301)连接于所述动轴(11),所述定子(302)连接于所述定轴(12);
    叶轮(4),连接于所述动轴(11)背离所述加载结构(20)的一端。
  16. 根据权利要求15所述的风力发电机组,其中,所述风力发电机组还包括检测器(6)以及控制器(7),所述检测器(6)被配置为检测所述叶轮(4)所承受的载荷信息,所述控制器(7)被配置为根据所述载荷信息控制所述加载结构(20)向所述动轴(11)施加预定数值的所述作用力。
  17. 根据权利要求15所述的风力发电机组,其中,所述加载结构(20)至少部分与所述底座(201)铰接。
  18. 根据权利要求15所述的风力发电机组,其中,所述风力发电机组还包括支撑架(202),所述支撑架(202)设置于所述底座(201)并与所述底座(201)连接,所述加载结构(20)通过所述支撑架(202)与所述底座(201)连接。
PCT/CN2021/102881 2020-12-23 2021-06-28 传动系统以及风力发电机组 WO2022134519A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011536441.5A CN114658610A (zh) 2020-12-23 2020-12-23 传动系统以及风力发电机组
CN202011536441.5 2020-12-23

Publications (1)

Publication Number Publication Date
WO2022134519A1 true WO2022134519A1 (zh) 2022-06-30

Family

ID=82024432

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/102881 WO2022134519A1 (zh) 2020-12-23 2021-06-28 传动系统以及风力发电机组

Country Status (2)

Country Link
CN (1) CN114658610A (zh)
WO (1) WO2022134519A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4357613A1 (en) * 2022-10-17 2024-04-24 General Electric Renovables España S.L. Drive train assemblies for wind turbines

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102168646A (zh) * 2006-06-19 2011-08-31 通用电气公司 用于平衡转子的方法和装置
CN102374135A (zh) * 2010-08-11 2012-03-14 通用电气公司 齿轮箱支承系统
CN103069158A (zh) * 2010-08-06 2013-04-24 阿尔斯通风力有限个人公司 直接驱动风力涡轮机和用于控制气隙的方法
DE102011118137A1 (de) * 2011-11-10 2013-05-16 Robert Bosch Gmbh Welle
US20160123304A1 (en) * 2013-06-07 2016-05-05 Statoil Petroleum As Wind turbine control
US20190017496A1 (en) * 2017-07-14 2019-01-17 General Electric Company Compound main bearing arrangement for a wind turbine
CN110792565A (zh) * 2019-10-17 2020-02-14 崔平 一种用于风力发电的无主轴直驱发电机
CN210977770U (zh) * 2017-01-23 2020-07-10 西门子股份公司 定子支架、定子、风力发电机、轴承单元和风力发电设备

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102168646A (zh) * 2006-06-19 2011-08-31 通用电气公司 用于平衡转子的方法和装置
CN103069158A (zh) * 2010-08-06 2013-04-24 阿尔斯通风力有限个人公司 直接驱动风力涡轮机和用于控制气隙的方法
CN102374135A (zh) * 2010-08-11 2012-03-14 通用电气公司 齿轮箱支承系统
DE102011118137A1 (de) * 2011-11-10 2013-05-16 Robert Bosch Gmbh Welle
US20160123304A1 (en) * 2013-06-07 2016-05-05 Statoil Petroleum As Wind turbine control
CN210977770U (zh) * 2017-01-23 2020-07-10 西门子股份公司 定子支架、定子、风力发电机、轴承单元和风力发电设备
US20190017496A1 (en) * 2017-07-14 2019-01-17 General Electric Company Compound main bearing arrangement for a wind turbine
CN110792565A (zh) * 2019-10-17 2020-02-14 崔平 一种用于风力发电的无主轴直驱发电机

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4357613A1 (en) * 2022-10-17 2024-04-24 General Electric Renovables España S.L. Drive train assemblies for wind turbines

Also Published As

Publication number Publication date
CN114658610A (zh) 2022-06-24

Similar Documents

Publication Publication Date Title
US7789624B2 (en) Methods and devices for improving efficiency of wind turbines in low speed sites
US4435646A (en) Wind turbine rotor control system
JP4468751B2 (ja) 水平軸風車およびその待機方法
JP5704464B2 (ja) モータトルクが補償される風力タービン
US20090243295A1 (en) System and method for reducing rotor loads in a wind turbine upon detection of blade-pitch failure and loss of counter-torque
WO2017096645A1 (zh) 一种基于倾斜铰接叶片的前端支撑可调变桨装置
CN102348889A (zh) 折叠叶片涡轮机
US20130106109A1 (en) Wind power installation and method for adjusting the rotor rotation axis
WO2016173304A1 (zh) 一种新型风力机联动变桨系统
US20150159628A1 (en) Offshore contra rotor wind turbine system
AU2017245383A1 (en) Vertical axis wind turbine
US20230027223A1 (en) Vertical wind turbine with controlled tip-speed ratio behavior, kit for same, and method for operating same
KR100832053B1 (ko) 유체 토크 컨버터를 이용한 풍력 발전 시스템
CN103256181B (zh) 离心调速折尾偏航式风力发电机
CN110892153A (zh) 具有同轴的变桨马达的立式风力发电设备以及其安装套件和其运行方法
CN202250621U (zh) 一种垂直轴风力发电设备
CN102439294A (zh) 用于水平轴风力涡轮(hawt)的自动节距控制系统
WO2022134519A1 (zh) 传动系统以及风力发电机组
WO2012032547A2 (en) Mechanism for blade pitch control for wind turbine
US9537371B2 (en) Contra rotor wind turbine system using a hydraulic power transmission device
CN110892154A (zh) 具有承载转子叶片的变桨马达的立式风力发电设备以及用于其的安装套件和用于其运行的方法
CN202402210U (zh) 一种用于海上大功率风电机组的变桨系统
CN102734057A (zh) 具有自动调速的风力发电和风力空气压缩双用机
CN202187867U (zh) 对开叶片垂直轴风力发电机
WO2017152313A1 (zh) 一种采用自动控制技术的风力发电机

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21908524

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21908524

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 21/11/2023)

122 Ep: pct application non-entry in european phase

Ref document number: 21908524

Country of ref document: EP

Kind code of ref document: A1