WO2017152313A1 - 一种采用自动控制技术的风力发电机 - Google Patents

一种采用自动控制技术的风力发电机 Download PDF

Info

Publication number
WO2017152313A1
WO2017152313A1 PCT/CN2016/075725 CN2016075725W WO2017152313A1 WO 2017152313 A1 WO2017152313 A1 WO 2017152313A1 CN 2016075725 W CN2016075725 W CN 2016075725W WO 2017152313 A1 WO2017152313 A1 WO 2017152313A1
Authority
WO
WIPO (PCT)
Prior art keywords
wind
piston
module
tower
liquid pipe
Prior art date
Application number
PCT/CN2016/075725
Other languages
English (en)
French (fr)
Inventor
马骏
Original Assignee
马骏
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 马骏 filed Critical 马骏
Priority to PCT/CN2016/075725 priority Critical patent/WO2017152313A1/zh
Publication of WO2017152313A1 publication Critical patent/WO2017152313A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D7/00Controlling wind motors 
    • F03D7/02Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor
    • F03D7/04Automatic control; Regulation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D9/00Adaptations of wind motors for special use; Combinations of wind motors with apparatus driven thereby; Wind motors specially adapted for installation in particular locations
    • F03D9/20Wind motors characterised by the driven apparatus
    • F03D9/25Wind motors characterised by the driven apparatus the apparatus being an electrical generator
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction

Definitions

  • the invention relates to a wind power generator using automatic control technology.
  • the technical problem to be solved by the present invention is to provide an automatic control technology that can adjust the height of the wind turbine according to the weather conditions and control the rotation speed of the wind blade in order to overcome the defects of the prior art that the wind power generator is easily damaged due to strong wind weather. Wind Turbines.
  • a wind power generator adopting automatic control technology, comprising a plurality of blades, a gear box, a tower, a base, a lifting device and a hub 0, wherein the blades are circumferentially uniform Distributed on the outer circumference of the hub, the hub is drivingly connected to the gear box, the gear box is disposed at the top of the tower, the tower is disposed on the base, and the base is disposed on the lifting device;
  • the lifting device comprises a pallet, a telescopic frame, a sliding pin, a sliding plate, a bottom plate, a fixing pin, a pipe, a pressure pump and a hydraulic jack, wherein the pallet is connected with the base, and the pallet is arranged at the top of the telescopic frame.
  • One side of the bottom end of the telescopic frame is fixedly connected to the bottom plate by a fixing pin, and the other side of the bottom end of the telescopic frame is slidably connected to the bottom plate through a sliding plate, and the telescopic frame is connected to the bottom plate through a hydraulic jack, and the pressure pump passes through the pipe.
  • a hydraulic jack Connected to a hydraulic jack;
  • the gear box is provided with a fan speed governing device, and the fan blade speed regulating device comprises a motor, a bar gear, a circular gear, a support rod, a lever, a first piston, a first liquid pipe, a conduit, a second liquid pipe, a second piston, a first brake pad, a second brake pad, and a rotating shaft fixed to the motor, the circular gear meshing with the bar gear, the bar gear being fixed at one end of the lever, and the other end of the lever Connected to the first piston, the support rod is disposed on a side of the lever adjacent to the first piston, the first piston is connected to the first liquid pipe, and the second piston is connected to the second liquid pipe, the first liquid The tube is connected to the second liquid pipe through a conduit, the diameter of the first piston is 9 times the diameter of the second piston, the first brake pad is fixedly disposed at the top end of the second piston, the first brake pad and the first The two brake pads are parallel, and the second brake pad is fixedly coupled to the rotating shaft, and the
  • the first liquid pipe, the conduit and the second liquid pipe are filled with oil.
  • the gear box is provided with a wind vane and an anemometer.
  • the tower is internally provided with a battery and an operation room, the operation room is disposed at the bottom of the tower, and the battery is disposed on the operation room.
  • the pressure pump is a hydraulic pump in order to ensure the tightness of the pressure transmission.
  • the tower is provided with a central control device, which includes a central control system, a wind measurement module connected to the central control system, a working power module, and wind speed regulation. a module, a communication module and a lifting drive module, wherein the wind vane is electrically connected to the wind measurement module, the anemometer is electrically connected to the wind measurement module, the battery and the working power source The module is electrically connected, the motor is electrically connected to the wind speed regulation module, the operation room is electrically connected to the communication module, and the pressure pump is electrically connected to the elevation drive module.
  • the utility model has the beneficial effects that the wind power generator adopting the automatic control technology is measured by an anemometer, and when encountering strong wind weather, the central control device is notified to control the lifting device to perform the lowering operation, the height of the wind power generator is lowered, and the use of the wind turbine is ensured, At the same time, the primary amplification of the lever in the wind speed governing device and the secondary amplification of the hydraulic transmission between the first liquid pipe and the second liquid pipe are controlled, the braking force is greatly improved, the rotor speed is reduced, and the service life of the blade is prolonged.
  • Figure 1 is a front elevational view of a wind turbine employing the automatic control technique of the present invention
  • Figure 2 is a left side view of the wind power generator of the present invention using automatic control technology
  • FIG. 3 is a schematic structural view of a lifting device of a wind power generator using an automatic control technology of the present invention
  • FIG. 4 is a schematic structural view of a wind speed governing device for a wind power generator using an automatic control technology according to the present invention
  • Figure 5 is a system structural diagram of a wind power generator using the automatic control technology of the present invention.
  • a wind power generator adopting an automatic control technology includes a plurality of blades 1, a gear box 2, a tower 5, a base 6, a lifting device 7, and a hub 10, wherein the blades are circumferentially oriented. Evenly distributed on the outer circumference of the hub 10, the hub 10 is drivingly connected to the gear box 2, the gear box 2 is disposed at the top end of the tower 5, the tower 5 is disposed on the base 6, and the base 6 is disposed on the lifting device 7 on;
  • the lifting device 7 comprises a pallet 17, a telescopic frame 16, a sliding pin 19, a sliding plate 11, a bottom plate 12, a fixing pin 13, a pipe 14, a pressure pump 15, and a hydraulic jack 18, and the pallet 17 is connected to the base 6.
  • the supporting plate 17 is disposed at the top end of the telescopic frame 16 , and one side of the bottom end of the telescopic frame 16 is fixedly connected to the bottom plate 12 by a fixing pin 13 , and the other side of the bottom end of the telescopic frame 16 is slidably connected to the bottom plate 12 through the sliding plate 11 .
  • the telescopic frame 16 is drivingly connected to the bottom plate 12 via a hydraulic jack 18, and the pressure pump 15 is connected to the hydraulic jack 18 through a pipe 14;
  • the gear box 2 is provided with a fan speed regulating device including a motor 20, a bar gear 21, a circular gear 22, a support rod 23, a lever 31, a first piston 30, and a first liquid pipe 29 a conduit 28, a second liquid tube 27, a second piston 32, a first brake pad 26, a second brake pad 25 and a rotating shaft 24, the circular gear 22 being fixed to the motor 20, the circular gear 22 and the bar gear 21 meshing, the strip gear 21 is fixed at one end of the lever 31, the other end of the lever 31 is connected to the first piston 30, and the support rod 23 is disposed on a side of the lever 31 close to the first piston 30, the first The piston 30 is connected to the first liquid pipe 29, the second piston 32 is connected to the second liquid pipe 27, and the first liquid pipe 29 is connected to the second liquid pipe 27 through the conduit 28, the diameter of the first piston 30 9 times the diameter of the second piston, the first brake pad 26 is fixedly disposed at the top end of the second piston 32, and the first brake pad 26 is parallel to the second brake pad 25, and the second brake pad 25
  • the first liquid tube 29, the conduit 28 and the second The liquid pipe 27 is filled with oil.
  • the gear box 2 is provided with a wind vane 3 and an anemometer 4.
  • the tower 5 is internally provided with a battery 8 and an operation room 9, the operation room 9 is disposed at the bottom of the tower 5, and the battery 8 is disposed at On the operating room 9.
  • the pressure pump 15 is a hydraulic pump in order to ensure the tightness of the pressure transmission.
  • the tower 5 is provided with a central control device including a central control system 37, a wind measurement module 36 connected to the central control system 37, and a working power supply module. 33.
  • the wind speed control module 34, the communication module 38 and the lifting drive module 35, the wind vane 3 is electrically connected to the wind measurement module 36, and the anemometer 4 is electrically connected to the wind measurement module 36, the battery 8 and the working power module 33 is electrically connected, the motor 20 is electrically connected to the wind speed control module 34, the operation room 9 is electrically connected to the communication module 38, and the pressure pump 15 is electrically connected to the elevation drive module 35.
  • the wind speed measurement is performed by the anemometer 4, and the wind speed information is transmitted to the central control device.
  • the central control device simultaneously sends commands to the lifting device 7 and the wind speed regulating device, and the lifting device 7
  • the pressure pump 15 starts to work, adjusts the internal pressure, and transmits the hydraulic pressure to the hydraulic jack 18 through the pipe 14, and the pressure of the hydraulic jack 18 is reduced, so that the telescopic frame 16 fixedly connected with the hydraulic jack 18 starts to contract, and the shrink frame is located at this time.
  • the pallet 17 on the 16 is lowered in height, thereby reducing the height of the wind turbine and protecting the tower 15 of the wind turbine from strong wind damage.
  • the motor 20 rotates to drive the circular gear 22 fixed on the motor 20 to rotate, and the bar gear 21 meshed with the circular gear 22 rises, and the lever 31 is used.
  • the position of a piston 30 is lowered, since the support rod 23 is located near one of the first pistons 30.
  • the lever 31 can amplify the downward force of the bar gear 21 and hydraulically drive the second piston 32 to rise. Since the size of the first piston 30 is smaller than the size of the second piston 32, the second piston 32 rises according to the hydraulic transmission law.
  • the first brake pad 26 that drives the top end of the second piston 32 is brought into contact with the second brake pad 25 to generate friction, and the rotational speed of the rotating shaft 24 connected to the second brake pad 25 is lowered, thereby realizing the blade speed control.
  • the central control device can be operated through the operation room 9, and the lifting device 7 and the blade speed regulating device are respectively issued with the command to restore the original fan height and stop the speed regulation, and the working mode and the previous lifting device 7 and the blade speed regulation
  • the device works in the opposite way. After the adjustment is completed, the wind turbine power generation work can be continued.
  • the wind turbine adopting the automatic control technology is measured by the anemometer 4, and when the wind is met, the central control device is notified to control the lifting device 7 to perform the lowering operation, thereby reducing the height of the wind turbine and ensuring the use of the wind turbine.
  • Safety at the same time controlling the primary amplification of the lever 31 in the fan speed governing device and the secondary amplification of the hydraulic transmission between the first liquid pipe 29 and the second liquid pipe 27, greatly increasing the braking force, reducing the rotational speed of the blade 1 and prolonging the wind The service life of the leaf 1.

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Wind Motors (AREA)

Abstract

一种采用自动控制技术的风力发电机,包括若干风叶(1)、齿轮箱(2)、塔架(5)、底座(6)、升降装置(7)和轮毂(10),所述风叶(1)周向均匀分布在轮毂(10)外周,所述轮毂(10)与齿轮箱(2)传动连接,所述齿轮箱(2)设置在塔架(5)顶端,所述塔架(5)设置在底座(6)上,所述底座(6)设置在升降装置(7)上,所述齿轮箱(2)设有风叶调速装置。该采用自动控制技术的风力发电机通过风速计(4)测量,遭遇强风天气时,通知中央控制装置控制升降装置(7)进行下降操作,降低风力发电机高度,保证了风力发电机的使用安全,同时控制风叶调速装置降低风叶(1)转速,延长了风叶(1)的使用寿命。

Description

一种采用自动控制技术的风力发电机 技术领域
本发明涉及一种采用自动控制技术的风力发电机。
背景技术
伴随经济的发展和人口的膨胀,能源的需求量变得越来越大,因此而带来的能源缺口以及环境污染问题日渐急迫。现在世界各国都在大力发展清洁能源,而风力发电是新能源发电技术中最成熟、最具大规模开发和最有发展前景的发电方式,以其安全性和清洁性近年来在国内外得以迅速发展,风力发电得到广泛应用。
为了获得更强的风力,人们通常将风力发电机建设在高处无遮挡处,这样做虽然提高了风力发电机的发电能力,但遭遇强风甚至飓风天气时,由于塔架的细长特点风机极易发生摇摆甚至倒塌,同时因为惯性和离心力的影响易产生风叶损坏和脱落的情况,造成安全事故。
发明内容
本发明要解决的技术问题是:为了克服现有技术中风力发电机遭遇强风天气时容易损坏造成事故的缺陷,提供一种可根据天气情况进行高度调节并控制风叶转速的采用自动控制技术的风力发电机。
本发明解决其技术问题所采用的技术方案是:一种采用自动控制技术的风力发电机,包括若干风叶、齿轮箱、塔架、底座、升降装置和轮毂0,所述风叶周向均匀分布在轮毂外周,所述轮毂与齿轮箱传动连接,所述齿轮箱设置在塔架顶端,所述塔架设置在底座上,所述底座设置在升降装置上;
所述升降装置包括托板、伸缩架、滑动销、滑动板、底板、固定销、管道、压力泵和液压千斤顶,所述托板与底座连接,所述托板设置在伸缩架顶端,所 述伸缩架底端的一侧通过固定销与底板固定连接,所述伸缩架底端的另一侧通过滑动板与底板滑动连接,所述伸缩架通过液压千斤顶与底板传动连接,所述压力泵通过管道与液压千斤顶连接;
所述齿轮箱设有风叶调速装置,所述风叶调速装置包括电机、条形齿轮、圆齿轮、支撑杆、杠杆、第一活塞、第一液管、导管、第二液管、第二活塞、第一刹车片、第二刹车片和转轴,所述圆齿轮固定在电机上,所述圆齿轮与条形齿轮啮合,所述条形齿轮固定在杠杆一端,所述杠杆另一端与第一活塞连接,所述支撑杆设置在杠杆靠近第一活塞的一侧,所述第一活塞与第一液管连接,所述第二活塞与第二液管连接,所述第一液管通过导管与第二液管连接,所述第一活塞的直径是第二活塞的直径的9倍,所述第一刹车片固定设置在第二活塞的顶端,所述第一刹车片与第二刹车片相平行,所述第二刹车片与转轴固定连接,所述转轴与轮毂连接。
作为优选,为了保证压力传输的密封性,所述第一液管、导管和第二液管内充满油。
作为优选,为了实时掌握风力情况,所述齿轮箱上设有风向标和风速计。
作为优选,为了提高风力发电机的可持续工作能力和方便操作,所述塔架内部设有蓄电池和操作室,所述操作室设置在塔架底部,所述蓄电池设置在操作室上。
作为优选,为了保证压力传输的密封性,所述压力泵为液压泵。
作为优选,为了提高风力发电机的智能化,所述塔架中设有中央控制装置,所述中央控制装置包括中央控制系统、与中央控制系统连接的风力测量模块、工作电源模块、风力调速模块、通讯模块和升降驱动模块,所述风向标与风力测量模块电连接,所述风速计与风力测量模块电连接,所述蓄电池与工作电源 模块电连接,所述电机与风力调速模块电连接,所述操作室与通讯模块电连接,所述压力泵与升降驱动模块电连接。
本发明的有益效果是,该采用自动控制技术的风力发电机通过风速计测量,遭遇强风天气时,通知中央控制装置控制升降装置进行下降操作,降低风力发电机高度,保证了风机的使用安全,同时控制风叶调速装置中杠杆的一次放大和第一液管与第二液管间液压传输的二次放大,大幅度提高制动力,降低风叶转速,延长了风叶的使用寿命。
附图说明
下面结合附图和实施例对本发明进一步说明。
图1是本发明的采用自动控制技术的风力发电机的主视图;
图2是本发明的采用自动控制技术的风力发电机的左视图;
图3是本发明的采用自动控制技术的风力发电机的升降装置的结构示意图;
图4是本发明的采用自动控制技术的风力发电机的风叶调速装置的结构示意图;
图5是本发明的采用自动控制技术的风力发电机的系统结构图;
图中:1.风叶,2.齿轮箱,3.风向标,4.风速计,5.塔架,6.底座,7.升降装置,8.蓄电池,9.操作室,10.轮毂,11.滑动板,12.底板,13.固定销,14.管道,15.压力泵,16.伸缩架,17.托板,18.液压千斤顶,19.滑动销,20.电机,21.条形齿轮,22.圆齿轮,23.支撑杆,24.转轴,25.第二刹车片,26.第一刹车片,27.第二液管,28.导管,29.第一液管,30.第一活塞,31.杠杆,32.第二活塞,33.工作电源模块,34.风力调速模块,35.升降驱动模块,36.风力测量模块,37.中央控制系统,38.通讯模块。
具体实施方式
现在结合附图对本发明作进一步详细的说明。这些附图均为简化的示意图,仅以示意方式说明本发明的基本结构,因此其仅显示与本发明有关的构成。
如图1-5所示,一种采用自动控制技术的风力发电机,包括若干风叶1、齿轮箱2、塔架5、底座6、升降装置7和轮毂10,所述风叶1周向均匀分布在轮毂10外周,所述轮毂10与齿轮箱2传动连接,所述齿轮箱2设置在塔架5顶端,所述塔架5设置在底座6上,所述底座6设置在升降装置7上;
所述升降装置7包括托板17、伸缩架16、滑动销19、滑动板11、底板12、固定销13、管道14、压力泵15和液压千斤顶18,所述托板17与底座6连接,所述托板17设置在伸缩架16顶端,所述伸缩架16底端的一侧通过固定销13与底板12固定连接,所述伸缩架16底端的另一侧通过滑动板11与底板12滑动连接,所述伸缩架16通过液压千斤顶18与底板12传动连接,所述压力泵15通过管道14与液压千斤顶18连接;
所述齿轮箱2设有风叶调速装置,所述风叶调速装置包括电机20、条形齿轮21、圆齿轮22、支撑杆23、杠杆31、第一活塞30、第一液管29、导管28、第二液管27、第二活塞32、第一刹车片26、第二刹车片25和转轴24,所述圆齿轮22固定在电机20上,所述圆齿轮22与条形齿轮21啮合,所述条形齿轮21固定在杠杆31一端,所述杠杆31另一端与第一活塞30连接,所述支撑杆23设置在杠杆31靠近第一活塞30的一侧,所述第一活塞30与第一液管29连接,所述第二活塞32与第二液管27连接,所述第一液管29通过导管28与第二液管27连接,所述第一活塞30的直径是第二活塞的直径的9倍,所述第一刹车片26固定设置在第二活塞32的顶端,所述第一刹车片26与第二刹车片25相平行,所述第二刹车片25与转轴24固定连接,所述转轴24与轮毂10连接。
作为优选,为了保证压力传输的密封性,所述第一液管29、导管28和第二 液管27内充满油。
作为优选,为了实时掌握风力情况,所述齿轮箱2上设有风向标3和风速计4。
作为优选,为了提高风力发电机的可持续工作能力和方便操作,所述塔架5内部设有蓄电池8和操作室9,所述操作室9设置在塔架5底部,所述蓄电池8设置在操作室9上。
作为优选,为了保证压力传输的密封性,所述压力泵15为液压泵。
作为优选,为了提高风力发电机的智能化,所述塔架5中设有中央控制装置,所述中央控制装置包括中央控制系统37、与中央控制系统37连接的风力测量模块36、工作电源模块33、风力调速模块34、通讯模块38和升降驱动模块35,所述风向标3与风力测量模块36电连接,所述风速计4与风力测量模块36电连接,所述蓄电池8与工作电源模块33电连接,所述电机20与风力调速模块34电连接,所述操作室9与通讯模块38电连接,所述压力泵15与升降驱动模块35电连接。
风力发电机在运行时,通过风速计4进行风速测量,并将风速信息传递给中央控制装置,当风速过大时,中央控制装置同时发送命令给升降装置7和风力调速装置,升降装置7中的压力泵15开始工作,调节内部压力,通过管道14将液压传递给液压千斤顶18,液压千斤顶18的压力减小,导致与液压千斤顶18固定连接的伸缩架16开始收缩,此时位于收缩架16上的托板17高度下架,从而实现降低风力发电机的高度,保护风力发电机的塔架15免受强风破坏。
在风力发电机下降的同时,风叶转速过快,此时通过电机20转动,带动固定在电机20上的圆齿轮22转动,与圆齿轮22啮合的条形齿轮21上升,通过杠杆31将第一活塞30的位置下降,由于支撑杆23位于靠近第一活塞30的一 侧,杠杆31可将条形齿轮21下降力放大,通过液压方式带动第二活塞32上升,由于第一活塞30的尺寸小于第二活塞32的尺寸,根据液压的传递规律第二活塞32上升力将放大,带动第二活塞32顶端的第一刹车片26与第二刹车片25接触产生摩擦,与第二刹车片25连接的转轴24转速下降,从而实现风叶调速控制。
当强风天气过后,可通过操作室9对中央控制装置进行操作,分别对升降装置7和风叶调速装置发出恢复原来风机高度和停止调速的命令,工作方式与之前升降装置7和风叶调速装置的工作方式相反,调整完成后,即可继续实现风力发电机发电工作。
与现有技术相比,该采用自动控制技术的风力发电机通过风速计4测量,遭遇强风天气时,通知中央控制装置控制升降装置7进行下降操作,降低风力发电机高度,保证了风机的使用安全,同时控制风叶调速装置中杠杆31的一次放大和第一液管29与第二液管27间液压传输的二次放大,大幅度提高制动力,降低风叶1转速,延长了风叶1的使用寿命。
以上述依据本发明的理想实施例为启示,通过上述的说明内容,相关工作人员完全可以在不偏离本项发明技术思想的范围内,进行多样的变更以及修改。本项发明的技术性范围并不局限于说明书上的内容,必须要根据权利要求范围来确定其技术性范围。

Claims (6)

  1. 一种采用自动控制技术的风力发电机,其特征在于,包括若干风叶(1)、齿轮箱(2)、塔架(5)、底座(6)、升降装置(7)和轮毂(10),所述风叶(1)周向均匀分布在轮毂(10)外周,所述轮毂(10)与齿轮箱(2)传动连接,所述齿轮箱(2)设置在塔架(5)顶端,所述塔架(5)设置在底座(6)上,所述底座(6)设置在升降装置(7)上;
    所述升降装置(7)包括托板(17)、伸缩架(16)、滑动销(19)、滑动板(11)、底板(12)、固定销(13)、管道(14)、压力泵(15)和液压千斤顶(18),所述托板(17)与底座(6)连接,所述托板(17)设置在伸缩架(16)顶端,所述伸缩架(16)底端的一侧通过固定销(13)与底板(12)固定连接,所述伸缩架(16)底端的另一侧通过滑动板(11)与底板(12)滑动连接,所述伸缩架(16)通过液压千斤顶(18)与底板(12)传动连接,所述压力泵(15)通过管道(14)与液压千斤顶(18)连接;
    所述齿轮箱(2)设有风叶调速装置,所述风叶调速装置包括电机(20)、条形齿轮(21)、圆齿轮(22)、支撑杆(23)、杠杆(31)、第一活塞(30)、第一液管(29)、导管(28)、第二液管(27)、第二活塞(32)、第一刹车片(26)、第二刹车片(25)和转轴(24),所述圆齿轮(22)固定在电机(20)上,所述圆齿轮(22)与条形齿轮(21)啮合,所述条形齿轮(21)固定在杠杆(31)一端,所述杠杆(31)另一端与第一活塞(30)连接,所述支撑杆(23)设置在杠杆(31)靠近第一活塞(30)的一侧,所述第一活塞(30)与第一液管(29)连接,所述第二活塞(32)与第二液管(27)连接,所述第一液管(29)通过导管(28)与第二液管(27)连接,所述第一活塞(30)的直径是第二活塞的直径的9倍,所述第一刹车片(26)固定设置在第二活塞(32)的顶端,所述第一刹车片(26)与第二刹车片(25)相平行,所述第二刹车片(25)与转轴 (24)固定连接,所述转轴(24)与轮毂(10)连接。
  2. 如权利要求1所述的采用自动控制技术的风力发电机,其特征在于,所述第一液管(29)、导管(28)和第二液管(27)内充满油。
  3. 如权利要求1所述的采用自动控制技术的风力发电机,其特征在于,所述齿轮箱(2)上设有风向标(3)和风速计(4)。
  4. 如权利要求1所述的采用自动控制技术的风力发电机,其特征在于,所述塔架(5)内部设有蓄电池(8)和操作室(9),所述操作室(9)设置在塔架(5)底部,所述蓄电池(8)设置在操作室(9)上。
  5. 如权利要求1所述的采用自动控制技术的风力发电机,其特征在于,所述压力泵(15)为液压泵。
  6. 如权利要求1所述的采用自动控制技术的风力发电机,其特征在于,所述塔架(5)中设有中央控制装置,所述中央控制装置包括中央控制系统(37)、与中央控制系统(37)连接的风力测量模块(36)、工作电源模块(33)、风力调速模块(34)、通讯模块(38)和升降驱动模块(35),所述风向标(3)与风力测量模块(36)电连接,所述风速计(4)与风力测量模块(36)电连接,所述蓄电池(8)与工作电源模块(33)电连接,所述电机(20)与风力调速模块(34)电连接,所述操作室(9)与通讯模块(38)电连接,所述压力泵(15)与升降驱动模块(35)电连接。
PCT/CN2016/075725 2016-03-05 2016-03-05 一种采用自动控制技术的风力发电机 WO2017152313A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/075725 WO2017152313A1 (zh) 2016-03-05 2016-03-05 一种采用自动控制技术的风力发电机

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/075725 WO2017152313A1 (zh) 2016-03-05 2016-03-05 一种采用自动控制技术的风力发电机

Publications (1)

Publication Number Publication Date
WO2017152313A1 true WO2017152313A1 (zh) 2017-09-14

Family

ID=59788945

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/075725 WO2017152313A1 (zh) 2016-03-05 2016-03-05 一种采用自动控制技术的风力发电机

Country Status (1)

Country Link
WO (1) WO2017152313A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108386320A (zh) * 2017-12-27 2018-08-10 佛山杰致信息科技有限公司 一种高效率风能利用设备
CN112362921A (zh) * 2020-11-19 2021-02-12 国家电网有限公司 一种室外电力设备检测装置
CN116659397A (zh) * 2023-08-02 2023-08-29 北京工业大学 一种强风下输电导线状态偏差测量实验平台及测量方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001289149A (ja) * 2000-04-10 2001-10-19 Mitsubishi Heavy Ind Ltd 風力発電装置のヨー旋回駆動装置および風力発電装置のヨー旋回駆動制御方法
CN201031774Y (zh) * 2007-05-22 2008-03-05 王瑞发 一种风力发电机
CN102865197A (zh) * 2012-09-21 2013-01-09 东北电力大学 直线风力发电机
CN102906446A (zh) * 2010-06-14 2013-01-30 品驰布本泽尔有限责任公司 自增力制动器
CN204458203U (zh) * 2015-01-21 2015-07-08 张万军 一种plc控制的风力发电系统
CN204532715U (zh) * 2015-01-04 2015-08-05 浙江大学 一种车载可折叠风力风电设备
CN105697237A (zh) * 2016-03-05 2016-06-22 马骏 一种采用自动控制技术的风力发电机

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001289149A (ja) * 2000-04-10 2001-10-19 Mitsubishi Heavy Ind Ltd 風力発電装置のヨー旋回駆動装置および風力発電装置のヨー旋回駆動制御方法
CN201031774Y (zh) * 2007-05-22 2008-03-05 王瑞发 一种风力发电机
CN102906446A (zh) * 2010-06-14 2013-01-30 品驰布本泽尔有限责任公司 自增力制动器
CN102865197A (zh) * 2012-09-21 2013-01-09 东北电力大学 直线风力发电机
CN204532715U (zh) * 2015-01-04 2015-08-05 浙江大学 一种车载可折叠风力风电设备
CN204458203U (zh) * 2015-01-21 2015-07-08 张万军 一种plc控制的风力发电系统
CN105697237A (zh) * 2016-03-05 2016-06-22 马骏 一种采用自动控制技术的风力发电机

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108386320A (zh) * 2017-12-27 2018-08-10 佛山杰致信息科技有限公司 一种高效率风能利用设备
CN112362921A (zh) * 2020-11-19 2021-02-12 国家电网有限公司 一种室外电力设备检测装置
CN116659397A (zh) * 2023-08-02 2023-08-29 北京工业大学 一种强风下输电导线状态偏差测量实验平台及测量方法
CN116659397B (zh) * 2023-08-02 2023-10-24 北京工业大学 一种强风下输电导线状态偏差测量实验平台及测量方法

Similar Documents

Publication Publication Date Title
CN105697237A (zh) 一种采用自动控制技术的风力发电机
WO2017152313A1 (zh) 一种采用自动控制技术的风力发电机
WO2013093056A1 (en) A wind power plant
CN104131952A (zh) 一种垂直轴风力发电机
CN104564530A (zh) 升阻结合型垂直轴风力发电机
CN101839212A (zh) 垂直轴风力发电装置
CN103511183A (zh) 一种垂直轴风力发电机
CN114233577B (zh) 一种可升降风力发电装置
CN109441728A (zh) 一种方向易调节的风力发电塔
CN110905722A (zh) 一种新能源风力发电机的调节机构及其调节方法
CN202228272U (zh) 一种变桨装置及风力发电机
CN213144660U (zh) 一种大功率垂直轴风电机组
CN107956644B (zh) 无电控涡轮式中型离网风力发电机
WO2011104506A2 (en) Improved wind turbine with adaptable rotor
CN101004167A (zh) 花瓣状风叶垂直轴高效风力发电机
CN202579047U (zh) 一种垂直轴风力发电机
WO2022134519A1 (zh) 传动系统以及风力发电机组
CN202988583U (zh) 一种无线控操控可调式风机叶片安装工装
CN201723389U (zh) 分体式风力发电机
CN206309528U (zh) 一种新型可调式风力发电装置
CN201486772U (zh) 垂直轴大功率风力发电机
CN104481812A (zh) 风力发电机
CN204493078U (zh) 升阻结合型垂直轴风力发电机
CN102817785A (zh) 一种垂直轴风力发电机
CN113090465A (zh) 一种转速自调节的风力发电机

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16892965

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 13.11.2018)

122 Ep: pct application non-entry in european phase

Ref document number: 16892965

Country of ref document: EP

Kind code of ref document: A1