WO2022134449A1 - 一种电磁成形线圈轴向加固方法及装置 - Google Patents

一种电磁成形线圈轴向加固方法及装置 Download PDF

Info

Publication number
WO2022134449A1
WO2022134449A1 PCT/CN2021/095451 CN2021095451W WO2022134449A1 WO 2022134449 A1 WO2022134449 A1 WO 2022134449A1 CN 2021095451 W CN2021095451 W CN 2021095451W WO 2022134449 A1 WO2022134449 A1 WO 2022134449A1
Authority
WO
WIPO (PCT)
Prior art keywords
fibers
coil
axial
electromagnetic forming
axial reinforcement
Prior art date
Application number
PCT/CN2021/095451
Other languages
English (en)
French (fr)
Inventor
李亮
郑宇�
赖智鹏
曹全梁
韩小涛
徐巍
李顺强
Original Assignee
华中科技大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华中科技大学 filed Critical 华中科技大学
Publication of WO2022134449A1 publication Critical patent/WO2022134449A1/zh
Priority to ZA2023/07264A priority Critical patent/ZA202307264B/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D26/00Shaping without cutting otherwise than using rigid devices or tools or yieldable or resilient pads, i.e. applying fluid pressure or magnetic forces
    • B21D26/14Shaping without cutting otherwise than using rigid devices or tools or yieldable or resilient pads, i.e. applying fluid pressure or magnetic forces applying magnetic forces
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/04Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing coils

Definitions

  • the invention belongs to the technical field of metal forming and manufacturing, and more particularly, relates to a method and device for axial reinforcement of electromagnetic forming coils.
  • the use of lightweight alloy materials provides an effective way to achieve lightweight industrial production in the fields of automobiles and aerospace.
  • the lightweight components represented by aluminum alloys have poor formability under the traditional stamping/hydraulic quasi-static process, and are prone to problems such as wrinkling, cracking, and severe springback.
  • High-speed forming can effectively improve the formability of light alloys at room temperature.
  • Electromagnetic forming as a technology that uses Lorentz force to form metal materials at high speed, is an important supplement to the existing aluminum alloy forming technology, and it is an important way to achieve light weight. effective means of manufacture.
  • Electromagnetic forming technology is an industrial application of pulsed magnets. Compared with the design of pulsed strong magnetic field coils, there are new problems to be considered in the design process of electromagnetic forming coils.
  • the pulsed strong magnetic field coil When the pulsed strong magnetic field coil is in use, the inside of the magnet can be regarded as only affected by its own electromagnetic force. Due to the symmetry, the pulsed magnet has zero force in the axial direction.
  • a metal plate is placed at the end of the coil, and the plate is deformed by the pulsed electromagnetic force in the axial direction.
  • the outermost layer reinforcement and the layered reinforcement of the traditional reinforcement methods can only solve the stress problem of the coil in the radial direction and the hoop direction, and the coil end also needs to be fully restrained in the axial direction.
  • the inner conductor is prone to displacement in the axial direction, and even part of it collapses, causing the magnet to be damaged, which seriously affects the safe and effective forming.
  • the purpose of the present invention is to provide an axial reinforcement method for electromagnetic forming coils, which aims to solve the problem that in the prior art, the conductors are easily generated in the axial direction because the coil ends are not sufficiently restrained in the axial direction. Displacement leads to the destruction of magnets and affects the safety of forming.
  • the invention provides a method for axial reinforcement of electromagnetic forming coils, comprising the following steps:
  • the curing glue can be epoxy resin glue.
  • the fiber material is used to evenly wind the outer side of the conductor, and the curing glue is evenly applied during the winding process to make the fiber fully impregnated;
  • the electromagnetic forming coil axial reinforcement method provided by the present invention forms sufficient constraints on the electromagnetic forming coil in the axial direction by applying axial reinforcement in the axial direction of the coil after the electromagnetic forming coil is reinforced in the radial direction. , prevent the displacement of the coil conductor in the axial direction, and improve the service life of the electromagnetic forming coil.
  • the present invention also provides an electromagnetic forming coil reinforcing device, comprising: axial reinforcing fibers, a coil bobbin, a metal conductor, a radial reinforcing layer, a female die, and a power supply system; the metal conductor is wound on-line On the center column of the bobbin; the radial reinforcement layer is wound on the outside of the driving coil: the axial reinforcement fiber is wound and tightened along the radius through the center hole of the bobbin; the workpiece is placed above the die; the driving coil is placed after the reinforcement is completed. Above the deformation area of the workpiece; the power system is used to drive the coil to supply power.
  • the axial reinforcement fibers are directly wound along the diameter, which can also restrain the displacement of the conductor in the axial direction, and play the effect of axial reinforcement of the electromagnetic forming coil.
  • the axial reinforcement fibers are wound on the electromagnetic forming coil, a certain number of groups should be ensured, and they should be evenly distributed in the ring direction, so that the electromagnetic forming coil is uniformly stressed and the effect of axial reinforcement is ensured.
  • the reinforcing fiber material includes but is not limited to Zylon fiber, carbon fiber, glass fiber and other high-strength fiber materials.
  • the scope of application of the present invention includes, but is not limited to, electromagnetic forming of plates, electromagnetic flanging and other electromagnetic forming devices that are subjected to axial force.
  • the above technical solution conceived by the present invention provides effective restraint in the axial direction of the electromagnetic forming coil by applying axial reinforcement to the electromagnetic forming coil, and solves the problem of the existing electromagnetic forming coil.
  • the inner conductor is easily displaced in the axial direction, which affects the service life of the coil, which can effectively improve the service life of the electromagnetic forming coil.
  • FIG. 1 is a schematic diagram of an electromagnetic forming device for an axially reinforced coil plate according to a first embodiment of the present invention
  • FIG. 2 is a schematic diagram of a coil bobbin with a through hole according to the first embodiment of the present invention
  • FIG. 3 is a schematic diagram of a method for axially reinforcing a skeleton with a through-hole electromagnetically formed coil according to the first embodiment of the present invention
  • FIG. 4 is a schematic diagram of a coil bobbin without through holes according to a second embodiment of the present invention.
  • FIG. 5 is a schematic diagram of a method for axially reinforcing a skeleton without a through-hole electromagnetic forming coil according to a second embodiment of the present invention
  • FIG. 6 is a schematic diagram of a coil current waveform provided by a capacitor energy storage type power supply system in an embodiment of the present invention.
  • 1 is axial reinforcement fiber
  • 2 is coil bobbin
  • 3 is metal conductor
  • 4 is radial reinforcement layer
  • 5 is workpiece
  • 6 is the die
  • 7 is the power supply system.
  • the present invention provides a method for axial reinforcement of electromagnetically formed coils. Its application scenario takes electromagnetic forming of a plate as an example, as shown in FIG. 1 , including: axial reinforcement fibers 1 , coil bobbins 2 , metal conductors 3 , radial reinforcement Layer 4, female die 6 and power supply system 7; wherein, the axial reinforcement fiber 1 provides axial reinforcement for the coil; the radial reinforcement layer 4 is located outside the metal conductor 3 to provide radial and circumferential reinforcement for the coil; the workpiece 5 is placed in Above the die 6, the die 6 is used to constrain the deformation area of the workpiece 5; a rapidly changing current is generated in the coil metal conductor 3, and the discharge energy is transferred to the surface of the workpiece 5 through electromagnetic induction, and a huge Loran is induced on the workpiece 5.
  • the coil is also subjected to a Lorentz force of equal magnitude and opposite direction;
  • the power supply system 7 is used to supply power to the driving coil, and the type of power supply is not limited. It can be a capacitor-type power supply or a battery.
  • a group pulse power supply, etc., a capacitor group power supply is used in the embodiment of the present invention, and the specific current waveform is shown in FIG. 6 .
  • the pressure device that restricts the vertical displacement of the coil and provides the blank holder force is omitted from the figure.
  • FIG. 2 a cross-sectional view and a top view of the coil bobbin 2 in the first embodiment are shown.
  • the cross-section is in a T-shaped structure, and a hole is opened in the center of the coil bobbin.
  • the first embodiment of the present invention provides an axial reinforcement method for an electromagnetic forming coil with a skeleton with a through hole, which is used to limit the displacement of the coil conductor in the axial direction and improve the service life of the electromagnetic forming coil.
  • the electromagnetic forming coil axial reinforcement method includes the following steps:
  • the fiber material is used to evenly wind the outer side of the conductor, and the curing glue is evenly applied during the winding process to make the fiber fully impregnated;
  • the axial reinforcement fibers are wound.
  • the curing glue is evenly spread on the surface of the fibers to fully impregnate the fibers. After the epoxy resin is fully cured, the axial reinforcement of the electromagnetic forming coil is completed.
  • FIG. 4 a cross-sectional view and a top view of the coil bobbin 2 without through-holes in the second embodiment are shown, and the cross-section is in a T-shaped structure with no through-holes in the center.
  • the second embodiment of the present invention provides an axial reinforcement method for electromagnetic forming coils without through-holes, which is also used to limit the displacement of coil conductors in the axial direction and improve the service life of electromagnetic forming coils.
  • the electromagnetic forming coil axial reinforcement method includes the following steps:
  • the fiber material is used to evenly wind the outer side of the conductor, and the curing glue is evenly applied during the winding process to make the fiber fully impregnated;
  • the axial reinforcement fibers are wound.
  • the curing glue is evenly spread on the surface of the fibers to fully impregnate the fibers. After the epoxy resin is fully cured, the axial reinforcement of the electromagnetic forming coil is completed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Shaping Metal By Deep-Drawing, Or The Like (AREA)
  • Electromagnets (AREA)

Abstract

一种电磁成形线圈轴向加固方法,该方法包括如下步骤:将金属导体(3)绕制在线圈骨架(2)上,同时均匀涂抹固化胶;出线完毕后,使用纤维材料在导体外侧均匀缠绕,同时均匀涂抹固化胶,使纤维充分浸渍;充分固化后缠绕轴向加固纤维(1),每组轴向加固纤维通过中心孔沿半径反复缠绕并拉至紧固;绕制完毕后,在纤维表面涂抹固化胶至纤维充分浸渍,待充分固化后轴向加固完成。以及一种电磁成形线圈轴向加固装置。该方法和装置对电磁成形线圈施加轴向加固,在线圈轴向上提供了有效约束,有效提高了电磁成形线圈的使用寿命。

Description

一种电磁成形线圈轴向加固方法及装置 【技术领域】
本发明属于金属成形制造技术领域,更具体地,涉及一种电磁成形线圈轴向加固方法及装置。
【背景技术】
轻质合金材料的使用为汽车、航空航天等领域的工业生产轻量化提供了有效的实现途径。而以铝合金为代表的轻质构件在传统的冲压/液压准静态工艺下成形性能较差,易出现起皱、破裂、回弹严重等问题。研究表明高速成形能有效改善轻质合金在室温下的成形性能,电磁成形作为一种利用洛伦兹力使金属材料高速成形的技术,是现有铝合金成形技术的重要补充,是实现轻量化制造的有效手段。
电磁成形技术是脉冲磁体的一项工业应用,相对于脉冲强磁场线圈的设计,电磁成形线圈的设计过程中有新的问题需要考虑。脉冲强磁场线圈在使用时,磁体内部可看作仅受自身电磁力的作用,由于对称性,脉冲磁体在轴向上受力为零。在板材的电磁成形中,线圈端部放置有金属板材,板材在轴向上受到脉冲电磁力作用发生变形,反过来线圈也会受到一个大小相等方向相反的轴向脉冲电磁力。
而传统的加固方式最外层加固和分层加固都只能解决线圈在径向和环向上的应力问题,在轴向上还需要给予线圈端部充分的约束。没有轴向加固的线圈,在长期使用之后,内部导体轴向上容易产生位移,甚至部分崩出导致磁体破坏,严重影响成形安全有效进行。
【发明内容】
针对现有技术的缺陷,本发明的目的在于提供一种电磁成形线圈轴向加固方法,旨在解决现有技术中由于没有在轴向上给予线圈端部充分约束 使得导体在轴向上容易产生位移导致磁体破坏、影响成形安全的问题。
本发明提供了一种电磁成形线圈轴向加固方法,包括下述步骤:
(1)将金属导体绕制在线圈骨架上,并在绕制过程中同时均匀涂抹固化胶;其中,固化胶可以为环氧树脂胶。
(2)当出线完毕时使用纤维材料在导体外侧均匀缠绕,并在绕制过程中同时均匀涂抹固化胶,使纤维充分浸渍;
(3)当环氧树脂固化后在轴向缠绕多组加固纤维,且每组加固纤维均反复缠绕并拉至紧固;
(4)当轴向加固纤维全部绕制完毕时将固化胶均匀涂抹在纤维表面,并使纤维充分浸渍,待环氧树脂充分固化后电磁成形线圈轴向加固完成。
本发明提供了的电磁成形线圈轴向加固方法,通过对电磁成形线圈在缠绕径向加固之后,另外在线圈轴向上施加轴向加固的方式,对电磁成形线圈轴向方向上形成充分的约束,阻止线圈导体轴向方向上的位移产生,提高电磁成形线圈的使用寿命。
按照本发明的另一个方面,本发明还提供了一种电磁成形线圈加固装置,包括:轴向加固纤维、线圈骨架、金属导体、径向加固层、凹模、电源系统;金属导体绕制在线圈骨架的中柱上;径向加固层绕制在驱动线圈外侧:轴向加固纤维穿过线圈骨架中心孔沿半径绕制并拉紧;工件置于凹模上方;加固完成之后的驱动线圈置于工件变形区域上方;电源系统用于驱动线圈供电。
更进一步地,对于中心无法打通孔的线圈骨架,轴向加固纤维直接沿直径进行绕制,同样可以约束导体在轴向方向上的位移,起到对电磁成形线圈进行轴向加固的效果。
更进一步地,轴向加固纤维绕制在电磁成形线圈上时应当保证有一定的组数,并在环向上均匀分布,以使电磁成形线圈整体受力均匀,保证轴向加固的效果。
更进一步地,加固纤维材料包括并不限于Zylon纤维,碳纤维,玻璃纤维等高强度纤维材料。
更进一步地,本发明的适用范围包括但不限于板件电磁成形,电磁翻边等轴向受力的电磁成形装置。
总体而言,通过本发明所构思的以上技术方案与现有技术相比,通过对电磁成形线圈施加轴向加固的方式,在线圈轴向上提供了有效约束,解决了现有的电磁成形线圈在长期使用过程中内部导体轴向上容易产生位移,进而影响线圈使用寿命的问题,能够有效提高电磁成形线圈的使用寿命。
【附图说明】
图1为根据本发明第一实施例的轴向加固线圈板件电磁成形装置示意图;
图2为根据本发明第一实施例的带通孔线圈骨架示意图;
图3为根据本发明第一实施例的骨架带通孔电磁成形线圈轴向加固方法示意图;
图4为根据本发明第二实施例的不带通孔线圈骨架示意图;
图5为根据本发明第二实施例的骨架不带通孔电磁成形线圈轴向加固方法示意图;
图6是本发明实施例中采用电容储能型电源系统提供的线圈电流波形示意图。
在所有附图中,相同的附图标记用来表示相同的元件或结构,其中:1为轴向加固纤维、2为线圈骨架、3为金属导体、4为径向加固层、5为工件、6为凹模、7为电源系统。
【具体实施方式】
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图 及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
本发明提供了一种电磁成形线圈轴向加固方法,其应用场景以板件电磁成形为例,如图1所示,包括:轴向加固纤维1、线圈骨架2、金属导体3、径向加固层4、凹模6和电源系统7;其中,轴向加固纤维1为线圈提供轴向加固;径向加固层4位于金属导体3外侧,为线圈提供径向和环向加固;工件5置于凹模6上方,凹模6用于约束工件5的变形区域;线圈金属导体3中产生快速变化的电流,通过电磁感应将放电能量传递到工件5表面,在工件5上感应出巨大的洛伦兹力,驱动工件5变形,同时线圈也会受到一个大小相等方向相反的洛伦兹力;电源系统7用于为驱动线圈供电,电源类型不受限制,可以采用电容器型电源,也可采用蓄电池组脉冲电源等,本发明实施例中采用电容器组电源,具体电流波形如图6所示。限制线圈垂直方向位移以及提供压边力的压力装置在图中予以省略。
如图2所示,展示了第一实施例中的线圈骨架2的剖视图和俯视图,截面呈T型结构,线圈骨架中心开通孔。
如图3所示,本发明第一实施例提供了一种骨架带通孔电磁成形线圈轴向加固方法,用于限制线圈导体在轴向方向上的位移,提高电磁成形线圈使用寿命。
该电磁成形线圈轴向加固方法包括以下步骤:
(1)将绝缘良好的金属导体绕制在线圈骨架上,绕制过程中同时均匀涂抹固化胶;
(2)出线完毕后,使用纤维材料在导体外侧均匀缠绕,绕制过程中同时均匀涂抹固化胶,使纤维充分浸渍;
(3)待环氧树脂充分固化后缠绕轴向加固纤维,本实施例中沿环向均匀分布轴向加固纤维共有12组,纤维材料具体分布如图3所示,每组通过中心通孔反复缠绕并拉至紧固。
(4)轴向加固纤维全部绕制完毕后,将固化胶均匀涂抹在纤维表面,使纤维充分浸渍,待环氧树脂充分固化,电磁成形线圈轴向加固完成。
如图4所示,展示了第二实施例中的无通孔的线圈骨架2剖视图和俯视图,截面呈T型结构,中心无通孔。
如图5所示,本发明第二实施例提供了一种骨架不带通孔电磁成形线圈轴向加固方法,同样用于限制线圈导体在轴向方向上的位移,提高电磁成形线圈使用寿命。
该电磁成形线圈轴向加固方法包括以下步骤:
(1)将绝缘良好的金属导体绕制在线圈骨架上,绕制过程中同时均匀涂抹固化胶;
(2)出线完毕后,使用纤维材料在导体外侧均匀缠绕,绕制过程中同时均匀涂抹固化胶,使纤维充分浸渍;
(3)待环氧树脂充分固化后缠绕轴向加固纤维,本实施例中沿环向均匀分布轴向加固纤维共有6组,纤维材料具体分布如图5所示,每组沿直径方向反复缠绕并拉至紧固。
(4)轴向加固纤维全部绕制完毕后,将固化胶均匀涂抹在纤维表面,使纤维充分浸渍,待环氧树脂充分固化,电磁成形线圈轴向加固完成。
本领域的技术人员容易理解,以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (9)

  1. 一种电磁成形线圈轴向加固方法,其特征在于,包括下述步骤:
    (1)将金属导体绕制在线圈骨架上,并在绕制过程中同时均匀涂抹固化胶;
    (2)当出线完毕时使用纤维材料在导体外侧均匀缠绕,并在绕制过程中同时均匀涂抹固化胶,使纤维充分浸渍;
    (3)当环氧树脂固化后在轴向缠绕多组加固纤维,且每组加固纤维均反复缠绕并拉至紧固;
    (4)当轴向加固纤维全部绕制完毕时将固化胶均匀涂抹在纤维表面,并使纤维充分浸渍,待环氧树脂充分固化后电磁成形线圈轴向加固完成。
  2. 如权利要求1所述的电磁成形线圈轴向加固方法,其特征在于,在步骤(3)中,每组加固纤维均通过中心通孔反复缠绕并拉至紧固。
  3. 如权利要求1所述的电磁成形线圈轴向加固方法,其特征在于,在步骤(3)中,每组加固纤维均沿着直径方向反复缠绕并拉至紧固。
  4. 如权利要求1所述的电磁成形线圈轴向加固方法,其特征在于,所述加固纤维包括Zylon纤维,碳纤维或玻璃纤维。
  5. 一种电磁成形线圈轴向加固装置,其特征在于,包括:轴向加固纤维(1)、线圈骨架(2)、金属导体(3)、径向加固层(4)、凹模(6)和电源系统(7);
    所述轴向加固纤维(1)用于为线圈提供轴向加固;
    所述径向加固层(4)位于所述金属导体(3)外侧,用于为线圈提供径向和环向加固;
    所述凹模(6)用于约束工件的变形区域;
    所述电源系统(7)用于为驱动线圈供电;
    工作时,所述金属导体(3)中产生快速变化的电流,通过电磁感应将 放电能量传递到工件表面,在工件上感应出巨大的洛伦兹力并驱动工件变形,同时线圈受到一个大小相等方向相反的洛伦兹力。
  6. 如权利要求5所述的电磁成形线圈轴向加固装置,其特征在于,所述轴向加固纤维(1)为多组,每组均反复缠绕为线圈提供轴向加固。
  7. 如权利要求6所述的电磁成形线圈轴向加固装置,其特征在于,每组轴向加固纤维(1)均沿着直径方向反复缠绕。
  8. 如权利要求6所述的电磁成形线圈轴向加固装置,其特征在于,每组轴向加固纤维(1)均通过中心通孔反复缠绕。
  9. 如权利要求5-8任一项所述的电磁成形线圈轴向加固装置,其特征在于,所述轴向加固纤维(1)包括Zylon纤维,碳纤维或玻璃纤维。
PCT/CN2021/095451 2020-12-23 2021-05-24 一种电磁成形线圈轴向加固方法及装置 WO2022134449A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
ZA2023/07264A ZA202307264B (en) 2020-12-23 2023-07-20 Method and device for axially reinforcing electromagnetic forming coil

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011532213.0A CN112792203B (zh) 2020-12-23 2020-12-23 一种电磁成形线圈轴向加固方法及装置
CN202011532213.0 2020-12-23

Publications (1)

Publication Number Publication Date
WO2022134449A1 true WO2022134449A1 (zh) 2022-06-30

Family

ID=75807285

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/095451 WO2022134449A1 (zh) 2020-12-23 2021-05-24 一种电磁成形线圈轴向加固方法及装置

Country Status (3)

Country Link
CN (1) CN112792203B (zh)
WO (1) WO2022134449A1 (zh)
ZA (1) ZA202307264B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112792203B (zh) * 2020-12-23 2021-11-09 华中科技大学 一种电磁成形线圈轴向加固方法及装置

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES428482A1 (es) * 1973-10-23 1976-12-16 Controls Co Of America Perfeccionamientos introducidos en un conjunto de bobina.
JPS6151811A (ja) * 1984-08-22 1986-03-14 Hitachi Ltd 樹脂モ−ルドコイル
CN106252020A (zh) * 2016-07-29 2016-12-21 中国原子能科学研究院 一种用于超导回旋加速器的超导线圈及其绕制浸渍方法
CN106807824A (zh) * 2017-03-23 2017-06-09 华中科技大学 一种匀压力电磁成形的装置、匀压力线圈及其获取方法
CN109802505A (zh) * 2017-11-17 2019-05-24 浙江盾安禾田金属有限公司 一种电磁线圈及其制造方法
CN109817433A (zh) * 2017-11-22 2019-05-28 特变电工智能电气有限责任公司 一种长圆形线圈的制造方法、长圆形线圈及配电变压器
CN110993248A (zh) * 2019-12-10 2020-04-10 广东电网有限责任公司 一种高温超导线圈及其固化方法
CN112792203A (zh) * 2020-12-23 2021-05-14 华中科技大学 一种电磁成形线圈轴向加固方法及装置

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1658343A (zh) * 2004-02-16 2005-08-24 特变电工股份有限公司 高温超导线圈的加固装置及加固方法
CN101075495B (zh) * 2007-04-20 2011-01-12 中国科学院电工研究所 一种大型饼式高温超导磁体的承力装置
CN101590501B (zh) * 2009-07-03 2011-05-11 武汉理工大学 镁合金板材温热电磁成形方法
CN102522194B (zh) * 2011-12-12 2013-09-11 陕西宝成航空仪表有限责任公司 变压器式传感器线圈的阶梯绕制方法
CN106710777B (zh) * 2017-03-15 2018-05-04 福州大学 一种电磁成形线圈结构及其制作方法
CN209118862U (zh) * 2018-11-30 2019-07-16 上海联影医疗科技有限公司 超导磁体线圈
CN110193546B (zh) * 2019-06-24 2020-07-10 华中科技大学 一种单电源单线圈电磁吸引力成形金属板件的装置及方法
CN110277236B (zh) * 2019-07-23 2021-03-16 湖北紫电电气设备有限公司 一种提高抗短路能力的油浸式配电变压器制造方法
CN210575472U (zh) * 2019-09-29 2020-05-19 海南威特电力设备有限公司 一种抗短路线圈及油浸式非晶合金变压器
CN111029113A (zh) * 2019-12-30 2020-04-17 孙崇山 一种变压器绕组抗短路电动力的新型工艺结构和绑扎方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES428482A1 (es) * 1973-10-23 1976-12-16 Controls Co Of America Perfeccionamientos introducidos en un conjunto de bobina.
JPS6151811A (ja) * 1984-08-22 1986-03-14 Hitachi Ltd 樹脂モ−ルドコイル
CN106252020A (zh) * 2016-07-29 2016-12-21 中国原子能科学研究院 一种用于超导回旋加速器的超导线圈及其绕制浸渍方法
CN106807824A (zh) * 2017-03-23 2017-06-09 华中科技大学 一种匀压力电磁成形的装置、匀压力线圈及其获取方法
CN109802505A (zh) * 2017-11-17 2019-05-24 浙江盾安禾田金属有限公司 一种电磁线圈及其制造方法
CN109817433A (zh) * 2017-11-22 2019-05-28 特变电工智能电气有限责任公司 一种长圆形线圈的制造方法、长圆形线圈及配电变压器
CN110993248A (zh) * 2019-12-10 2020-04-10 广东电网有限责任公司 一种高温超导线圈及其固化方法
CN112792203A (zh) * 2020-12-23 2021-05-14 华中科技大学 一种电磁成形线圈轴向加固方法及装置

Also Published As

Publication number Publication date
ZA202307264B (en) 2024-02-28
CN112792203B (zh) 2021-11-09
CN112792203A (zh) 2021-05-14

Similar Documents

Publication Publication Date Title
WO2022134449A1 (zh) 一种电磁成形线圈轴向加固方法及装置
US9953764B2 (en) Adhesively bonded cylindrical magnets comprising annular coils, and method of manufacture thereof
CN111515291B (zh) 一种金属管件的电磁成形装置及方法
CN109967593B (zh) 一种采用径向恒定磁场与感应涡流实现管件电磁胀形轴向压缩的装置及方法
GB2480637A (en) Electromagnet arrangement with supported outer coils
CN109545539B (zh) 一种无骨架铌三锡超导线圈制作方法
CN104505976A (zh) 一种分层固化储能飞轮及其制造方法
CN103887035A (zh) 用于核磁共振成像系统的超导磁体结构
CN203908554U (zh) 一种用于光纤陀螺的无骨架线圈的绕制工装
CN202855468U (zh) 一种用于磁共振系统的超导磁体线圈组件及磁共振系统
CN113188929B (zh) 一种用于测试金属焊接管件接头冲击强度的方法
JPH09250247A (ja) 複合材補強コンクリート構造体
GB2444507A (en) Method for production of magnet end coil
CN109215950B (zh) 一种提高变压器抗短路能力的支撑结构及实现方法
CN111916269A (zh) 一种脉冲磁体线圈的端部加固结构
CN111180196A (zh) 一种椭圆线圈的绕制模具和绕制方法
CN201364791Y (zh) 铝箔式电抗器
CN106653282A (zh) 一种线圈可调式聚焦螺线管磁铁
GB2489126A (en) Method of forming coils for an electromagnet arrangement with supported outer coils
CN206116168U (zh) 一种x型排列抗短路变压器
CN111152477A (zh) 一种框架式筒体缠绕成型模具
CN217780544U (zh) 中心柱吊运工装
CN216311589U (zh) 铁芯内撑架
CN113340730A (zh) 一种适用于金属管件单向拉伸试验的脉冲力加载方法
CN206471183U (zh) 一种线圈可调式聚焦螺线管磁铁

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21908460

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21908460

Country of ref document: EP

Kind code of ref document: A1