WO2022131457A1 - 반도체 발광소자 - Google Patents

반도체 발광소자 Download PDF

Info

Publication number
WO2022131457A1
WO2022131457A1 PCT/KR2021/006397 KR2021006397W WO2022131457A1 WO 2022131457 A1 WO2022131457 A1 WO 2022131457A1 KR 2021006397 W KR2021006397 W KR 2021006397W WO 2022131457 A1 WO2022131457 A1 WO 2022131457A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
semiconductor
semiconductor layer
emitting device
light emitting
Prior art date
Application number
PCT/KR2021/006397
Other languages
English (en)
French (fr)
Inventor
김태현
이성규
Original Assignee
주식회사 에스엘바이오닉스
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 에스엘바이오닉스 filed Critical 주식회사 에스엘바이오닉스
Publication of WO2022131457A1 publication Critical patent/WO2022131457A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/0004Devices characterised by their operation
    • H01L33/0008Devices characterised by their operation having p-n or hi-lo junctions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/36Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes
    • H01L33/38Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes with a particular shape

Definitions

  • the present disclosure relates to a semiconductor light emitting device as a whole, and more particularly, to a semiconductor light emitting device in which a second connection electrode is blocked by a protective layer and a second ohmic electrode and does not directly contact the second semiconductor layer.
  • the semiconductor light emitting device means a semiconductor optical device that generates light through recombination of electrons and holes, for example, a group III nitride semiconductor light emitting device.
  • the group III nitride semiconductor is composed of a compound of Al(x)Ga(y)In(1-x-y)N (0 ⁇ x ⁇ 1, 0 ⁇ y ⁇ 1, 0 ⁇ x+y ⁇ 1).
  • a GaAs-based semiconductor light emitting device used for red light emission may be exemplified.
  • FIG. 1 is a view showing an example of a conventional semiconductor light emitting device.
  • the semiconductor light emitting device includes a growth substrate 10 (eg, a sapphire substrate), a buffer layer 20 as a plurality of semiconductor layers on the growth substrate 10, and a first semiconductor layer 30 having a first conductivity (eg, an n-type GaN layer). ), an active layer 40 that generates light through recombination of electrons and holes (eg, INGaN/(In)GaN MQWs), and a second semiconductor layer 50 having a second conductivity different from the first conductivity (eg, p-type GaN) layers) are sequentially deposited.
  • the buffer layer 20 may be omitted.
  • a light-transmitting conductive film 60 for current diffusion and an electrode 70 serving as a bonding pad are formed thereon, and an electrode 80 serving as a bonding pad is formed on the exposed first semiconductor layer 14 by etching: Yes : Cr/Ni/Au laminated metal pad) is formed.
  • the semiconductor light emitting device of the form shown in FIG. 1 is referred to as a lateral chip.
  • the growth substrate 10 side is electrically connected to the outside, it becomes a mounting surface.
  • FIG. 2 is a view showing another example of the semiconductor light emitting device presented in US Patent No. 7,262,436. Drawing symbols have been changed for convenience of explanation.
  • the semiconductor light emitting device includes a growth substrate 10, a first semiconductor layer 30 having a first conductivity on the growth substrate 10, an active layer 40 that generates light through recombination of electrons and holes, a first conductivity and A second semiconductor layer 50 having a different second conductivity is sequentially deposited, and three-layered electrode films 90 , 91 , 92 for reflecting light toward the growth substrate 10 are formed thereon.
  • the first electrode film 90 may be an Ag reflective film
  • the second electrode film 91 may be a Ni diffusion barrier film
  • the third electrode film 92 may be an Au bonding layer.
  • An electrode 80 functioning as a bonding pad is formed on the etched and exposed first semiconductor layer 30 .
  • the semiconductor light emitting device chip of the form shown in FIG. 2 is referred to as a flip chip.
  • the electrode 80 formed on the first semiconductor layer 30 is at a lower height than the electrode films 90 , 91 , and 92 formed on the second semiconductor layer, but may be formed at the same height. you can also make it
  • the reference height may be the height from the growth substrate 10 .
  • the semiconductor light emitting device includes a vertical chip in addition to a lateral chip or a flip chip.
  • FIG. 3 is a view showing another example of the semiconductor light emitting device described in Korean Patent Application Laid-Open No. 2015-0055390. For convenience of explanation, some reference numerals have been changed.
  • the semiconductor light emitting device is a flip chip, a growth substrate 10 (eg, a sapphire substrate), a plurality of semiconductor layers on the growth substrate 10, a buffer layer 20, and a first semiconductor layer 30 having a first conductivity (eg: n-type semiconductor layer), an active layer 40 that generates light through recombination of electrons and holes (eg, INGaN/(In)GaN MQWs), and a second semiconductor layer 50 having a second conductivity different from the first conductivity (eg, INGaN/(In)GaN MQWs) : p-type semiconductor layer) is sequentially deposited.
  • the buffer layer 20 may be omitted.
  • a light-transmitting conductive film 60 for current diffusion and an electrode 70 serving as a bonding pad are formed thereon, and an electrode 80 serving as a bonding pad is formed on the exposed first semiconductor layer 30 by etching: Yes : Cr/Ni/Au laminated metal pad) is formed.
  • the first ohmic electrode 51 formed on the first semiconductor layer (n-type semiconductor layer) and the second ohmic electrode formed on the second semiconductor layer (p-type semiconductor layer) are electrode structures for lowering the operating voltage of the semiconductor light emitting device.
  • An electrode 52 is included.
  • a plurality of semiconductor layers included in a semiconductor light emitting device that emits ultraviolet light is different from conventional semiconductor light emitting devices that emit light in the visible region such as blue light, aluminum gallium. It is based on a nitride (AlGaN) material.
  • AlGaN nitride
  • the second ohmic electrode formed on the second semiconductor layer (p-type semiconductor layer) and the second connection electrode serving as a probe electrode in the second connection electrode are the second In case of direct contact with the semiconductor layer (p-type semiconductor layer), there is a problem such as an increase in operating voltage.
  • FIG. 1 is a view showing an example of a conventional semiconductor light emitting device.
  • FIG. 2 is a view showing another example of the semiconductor light emitting device disclosed in US Patent No. 7,262,436.
  • FIG. 3 is a view showing another example of the semiconductor light emitting device described in Korean Patent Application Laid-Open No. 2015-0055390.
  • FIG. 4 is a diagram illustrating an example of a semiconductor light emitting device according to the present disclosure.
  • FIG. 5 is a diagram illustrating another example of a semiconductor light emitting device according to the present disclosure.
  • FIG. 6 is a diagram illustrating another example of a semiconductor light emitting device according to the present disclosure.
  • FIG. 4 is a diagram illustrating an example of a semiconductor light emitting device according to the present disclosure.
  • FIG. 5 is a diagram illustrating another example of a semiconductor light emitting device according to the present disclosure.
  • FIG. 6 is a diagram illustrating another example of a semiconductor light emitting device according to the present disclosure.
  • the semiconductor light emitting device 100 includes a plurality of semiconductor layers 130 , 140 , 150 , a protective layer 160 , ohmic electrodes 131 and 151 , and a connection electrode ( 132, 152).
  • the plurality of semiconductor layers 130 , 140 , and 150 are sequentially deposited on the growth substrate 110 .
  • the growth substrate 110 sapphire, SiC, Si, GaN, or the like is mainly used, and the growth substrate 110 may be finally removed.
  • the buffer layer 120 is grown on the growth substrate 110 , and a plurality of semiconductor layers 130 , 140 , 150 may be deposited thereon. may contain layers of
  • the plurality of semiconductor layers 130 , 140 , and 150 include a first semiconductor layer 130 having a first conductivity grown on the growth substrate 110 (eg, an n-type semiconductor layer) and a second conductivity different from the first conductivity.
  • the active layer 140 is interposed between the second semiconductor layer 150 (eg, a p-type semiconductor layer) and the first semiconductor layer 130 and the second semiconductor layer 150 and generates light through recombination of electrons and holes.
  • the plurality of semiconductor layers 130 , 140 , and 150 may be configured based on an aluminum gallium nitride (AlGaN) material so that the semiconductor light emitting device 100 can emit ultraviolet rays. In particular, it is possible to emit ultraviolet rays having a short wavelength of 300 nm or less.
  • AlGaN aluminum gallium nitride
  • the protective layer 160 is formed on the second semiconductor layer 150 to cover the second semiconductor layer 150 , and has an opening 161 exposing the second semiconductor layer 150 .
  • the protective layer 160 is preferably formed in a single-layer structure, but is not limited thereto and may be formed in a multi-layer structure.
  • the protective layer 160 is configured to cover the side surface of the second semiconductor layer 150 and the side surface of the active layer 140 toward the etched first semiconductor layer 130 .
  • the protective layer 160 is configured to cover the side of the second semiconductor layer 150 and the side surface of the second semiconductor layer 150 and the side surface of the active layer 140 toward the etched first semiconductor layer 130 .
  • the protective layer 160 may be configured to cover a portion of the first semiconductor layer 130 .
  • the protective layer 160 is a second semiconductor layer 150 , and a side surface of the second semiconductor layer 150 and a side surface of the active layer 140 facing the etched first semiconductor layer 130 , and the first It may be configured to cover a portion of the semiconductor layer 130 .
  • the protective layer 160 may be made of an insulating material such as SiO 2 , TiO 2 , SiN x , or the like.
  • the passivation layer 160 is formed to cover the second semiconductor layer 150 using plasma enhanced chemical vapor deposition (PECVD), low pressure chemical vapor deposition (LPCVD), sputtering, E-beam evaporation, thermal evaporation, or the like. do.
  • PECVD plasma enhanced chemical vapor deposition
  • LPCVD low pressure chemical vapor deposition
  • sputtering E-beam evaporation
  • thermal evaporation thermal evaporation
  • the ohmic electrode may include a first ohmic electrode 131 and a second ohmic electrode 151 .
  • the first ohmic electrode 131 may be formed on the first semiconductor layer 130 to cover the first semiconductor layer 130 .
  • the second ohmic electrode 151 may be electrically connected to the second semiconductor layer 150 through the opening 161 and may be configured to cover the protective layer 160 .
  • the first ohmic electrode 131 may be formed of a combination of Cr, Ti, Al, Ag, Ni, Pt, W, Au, Rh, or the like.
  • the first ohmic electrode 131 may include sequentially stacked ohmic contact layers (eg, Cr, Ti, Ni, etc.)/reflective metal layers (eg, Al, Ag, Rh, etc.)/first barrier layer (eg: Ni, Cr, Ti, W, Pt, TiW, etc.)/Anti-oxide layer (eg, Au, Pt, etc.)/second barrier layer (eg, Cr, Ti, Ni, Pt, Al, etc.).
  • the ohmic contact layer is made of a metal having a small work function and is in ohmic contact with the first semiconductor layer 130 .
  • the reflective metal layer reflects light to reduce absorption loss.
  • the first barrier layer prevents diffusion between the reflective metal layer and the anti-oxidation layer.
  • the anti-oxidation layer may prevent oxidation of the first barrier layer or the like.
  • a pad electrode may be formed on the first ohmic electrode 131 , and in this case, the pad electrode and the first ohmic electrode 131 may make good electrical contact.
  • the ohmic contact layer may have a thickness of 5 ⁇ to 500 ⁇
  • the reflective metal layer may have a thickness of 500 ⁇ to 10000 ⁇
  • the first barrier layer may have a thickness of 100 ⁇ to 5000 ⁇
  • the anti-oxidation layer may have a thickness of 100 ⁇ to 5000 ⁇ . It may have a thickness of about 10 ⁇ to about 1000 ⁇
  • the second barrier layer may have a thickness of about 10 ⁇ to 1000 ⁇ .
  • some layers may be omitted or a new layer may be added as needed.
  • the second ohmic electrode 151 may be formed of a multi-layered combination of Cr, Ti, Al, Ag, Ni, Pt, W, Au, Rh, or the like.
  • the second ohmic electrode 151 does not have to have the same structure as the first ohmic electrode 131 , but may have a similar multilayer structure.
  • the second ohmic electrode 151 may include a sequentially stacked contact layer/reflective metal layer/first barrier layer/anti-oxide layer/second barrier layer.
  • the second ohmic electrode 151 preferably includes a reflective layer in order to improve light extraction efficiency.
  • a pad electrode may be formed on the second ohmic electrode 151 as necessary.
  • a light-transmitting conductive layer may be formed between the second ohmic electrode 151 and the second semiconductor layer 150 .
  • the second semiconductor layer 150 is made of p-type aluminum gallium nitride (AlGaN)
  • AlGaN p-type aluminum gallium nitride
  • the driving voltage is increased.
  • the light-transmitting conductive layer is formed too thickly, light extraction efficiency may be reduced due to light absorption.
  • the transmissive conductive layer may be formed as a transmissive conductive layer using ITO, ZnO, or Ni and Au, or alternatively may be formed as a reflective conductive layer using Ag.
  • the second ohmic electrode 151 including the reflective layer it is preferable to form the second ohmic electrode 151 including the reflective layer to cover most of the second semiconductor layer 150 rather than forming the transmissive conductive layer.
  • the second ohmic electrode 151 covers the upper surface of the second semiconductor layer 150 by 90% or more.
  • connection electrodes 132 and 152 are formed on the ohmic electrodes 131 and 151, respectively.
  • the connection electrodes 132 and 152 may be formed using Cr, Ti, Ni, or an alloy thereof for stable electrical contact, and may include a reflective metal layer such as Al or Ag.
  • the first connection electrode 132 may be formed on the first ohmic electrode 131 to cover the first ohmic electrode 131 .
  • the first connection electrode 132 may also be configured to directly contact the first semiconductor layer 130 .
  • the first connection electrode 132 may also be formed to cover the protective layer 160 .
  • the second connection electrode 152 may be formed on the protective layer 160 and the second ohmic electrode 151 to cover the protective layer 160 and the second ohmic electrode 151 . Accordingly, the second connection electrode 152 may be blocked by the protective layer 160 and the second ohmic electrode 151 to prevent direct contact with the second semiconductor layer 150 .
  • a first semiconductor layer 130 , an active layer 140 , and a second semiconductor layer 150 are sequentially formed on the growth substrate 110 , and then the second semiconductor layer 150 and the active layer 140 are formed in a mesa. ) to expose the first semiconductor layer 130 .
  • a dry etching method for example, Inductively Coupled Plasma (ICP) may be used.
  • ICP Inductively Coupled Plasma
  • a process of etching a portion of the semiconductor layers 130 , 140 , and 150 is a well-known technique and is well known to those skilled in the art.
  • a protective layer 160 is formed on the exposed first semiconductor layer 130 and the second semiconductor layer 150 .
  • the protective layer 160 is preferably formed in a single-layer structure, but is not limited thereto and may be formed in a multi-layer structure.
  • the protective layer 160 may be made of an insulating material such as SiO 2 , TiO 2 and SiN x .
  • the protective layer 160 may remain only on the second semiconductor layer 150 (see FIG. 4 ), and not only on the second semiconductor layer 150 , but also on the side surfaces and active layers of the second semiconductor layer 150 ( Among the side surfaces of 140 , it may be allowed to remain up to the side facing the etched first semiconductor layer 130 (refer to FIG. 5 ), or to continue to remain up to a portion of the upper portion of the first semiconductor layer 130 ( FIG. 5 ). 6).
  • an opening 161 is formed on the second semiconductor layer 150 .
  • a first ohmic electrode 131 is formed on the first semiconductor layer 130 .
  • the second ohmic electrode 152 is electrically connected to the second semiconductor layer 150 through the opening 161 and covers the protective layer 160 .
  • the ohmic electrodes 131 and 151 may be formed using a sputtering method, an electron beam evaporation method, a thermal evaporation method, or the like.
  • connection electrodes 132 and 152 are formed.
  • the first connection electrode 132 is formed to cover the first ohmic electrode 131 .
  • the first connection electrode 132 may be formed to directly contact the first semiconductor layer 130 .
  • the first connection electrode 132 may be formed to cover the protective layer 160 .
  • the second connection electrode 152 is formed to cover the protective layer 160 and the second ohmic electrode 151 . At this time, the second connection electrode 152 is blocked by the protective layer 160 and the second ohmic electrode 151 to prevent direct contact with the second semiconductor layer 150 .
  • an insulating layer 170 covering the first connection electrode 132 and the second connection electrode 152 is formed.
  • a representative material of the insulating layer 170 is SiO 2 , but is not limited thereto, and SiN, TiO 2 , Al 2 O 3 , Su-8, or the like may be used.
  • openings 171 and 172 are formed in the insulating layer 170 .
  • the openings 171 and 172 are formed at appropriate positions for electrical connection between the first electrode 181 and the first connection electrode 132 , and the second electrode 182 and the second connection electrode 152 .
  • the first electrode 181 and the second electrode 182 may be deposited on the insulating layer 170 using sputtering equipment, E-beam equipment, or the like.
  • the first electrode 181 is connected to the first connection electrode 132 through the first opening 171
  • the second electrode 182 is connected to the second connection electrode 152 through the second opening 172 . do.
  • the first electrode 181 and the second electrode 182 may be electrically connected to electrodes provided outside (package, COB, submount, etc.) by a method such as stud bump, conductive paste, or eutectic bonding. In the case of eutectic bonding, it is important that the height difference between the first electrode 181 and the second electrode 182 does not increase significantly.
  • the semiconductor light emitting device since the first electrode 181 and the second electrode 182 can be formed on the insulating layer 170 by the same process, there is little difference in height between the electrodes. Thus, it has an advantage in the case of eutectic bonding.
  • the semiconductor light emitting device is electrically connected to the outside through eutectic bonding, the uppermost portions of the first electrode 181 and the second electrode 182 are eutectic bonding such as Au/Sn alloy or Au/Sn/Cu alloy. It may be formed of a material.
  • the second semiconductor layer is a p-type semiconductor layer, a semiconductor light emitting device.
  • the first semiconductor layer is an n-type semiconductor layer, a semiconductor light emitting device.
  • the protective layer covers the side surface of the second semiconductor layer and the side surface of the active layer toward the etched first semiconductor layer, a semiconductor light emitting device.
  • the protective layer covers a part of the first semiconductor layer, a semiconductor light emitting device.
  • (6) a first ohmic electrode covering the first semiconductor layer; and a first connection electrode covering the first ohmic electrode, wherein the first connection electrode is in direct contact with the first semiconductor layer.
  • the first connection electrode further covers the protective layer, a semiconductor light emitting device.
  • the protective layer is made of at least one of SiO 2 , TiO 2 and SiN x , a semiconductor light emitting device.
  • a semiconductor light emitting device wherein the active layer emits ultraviolet light.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Led Devices (AREA)

Abstract

본 개시(Disclosure)는 전체적으로 반도체 발광소자에 관한 것으로, 더욱 상세하게는 제2 연결전극이 보호층과 제2 오믹 전극에 의해 차단되어 제2 반도체층과 직접 접촉하지 않는 반도체 발광소자에 관한 것이다. 본 개시에 따른 하나의 반도체 발광소자에 의하면, 제2 연결전극과 제2 반도체층의 직접 접촉을 차단하여 신뢰성 특성을 개선하고 잠재적인 신뢰성 불량을 방지할 수 있다.

Description

반도체 발광소자
본 개시(Disclosure)는 전체적으로 반도체 발광소자에 관한 것으로, 더욱 상세하게는 제2 연결전극이 보호층과 제2 오믹 전극에 의해 차단되어 제2 반도체층과 직접 접촉하지 않는 반도체 발광소자에 관한 것이다.
여기서, 반도체 발광소자는 전자와 정공의 재결합을 통해 빛을 생성하는 반도체 광소자를 의미하며, 3족 질화물 반도체 발광소자를 예로 들 수 있다. 3족 질화물 반도체는 Al(x)Ga(y)In(1-x-y)N (0≤x≤1, 0≤y≤1, 0≤x+y≤1)로 된 화합물로 이루어진다. 이외에도 적색 발광에 사용되는 GaAs계 반도체 발광소자 등을 예로 들 수 있다.
여기서는, 본 개시에 관한 배경기술이 제공되며, 이들이 반드시 공지기술을 의미하는 것은 아니다(This section provides background information related to the present disclosure which is not necessarily prior art).
또한 본 명세서에서 상측/하측, 위/아래 등과 같은 방향 표시는 도면을 기준으로 한다.
도 1은 종래의 반도체 발광소자의 일 예를 보여주는 도면이다.
반도체 발광소자는 성장기판(10; 예: 사파이어 기판), 성장기판(10) 위에, 복수의 반도체층으로 버퍼층(20), 제1 도전성을 가지는 제1 반도체층(30; 예: n형 GaN층), 전자와 정공의 재결합을 통해 빛을 생성하는 활성층(40; 예; INGaN/(In)GaN MQWs), 제1 도전성과 다른 제2 도전성을 가지는 제2 반도체층(50; 예: p형 GaN층)이 순차로 증착되어 있다. 버퍼층(20)은 생략될 수 있다. 그 위에 전류 확산을 위한 투광성 전도막(60)과, 본딩 패드로 역할하는 전극(70)이 형성되어 있고, 식각되어 노출된 제1 반도체층(14) 위에 본딩 패드로 역할하는 전극(80: 예: Cr/Ni/Au 적층 금속 패드)이 형성되어 있다. 도 1과 같은 형태의 반도체 발광소자를 특히 레터럴 칩(Lateral Chip)이라고 한다. 여기서, 성장기판(10) 측이 외부와 전기적으로 연결될 때 장착면이 된다.
도 2는 미국 등록특허공보 제7,262,436호에 제시된 반도체 발광소자의 다른 예를 보여주는 도면이다. 설명의 편의를 위해 도면기호를 변경하였다.
반도체 발광소자는 성장기판(10), 성장기판(10) 위에, 제1 도전성을 가지는 제1 반도체층(30), 전자와 정공의 재결합을 통해 빛을 생성하는 활성층(40), 제1 도전성과 다른 제2 도전성을 가지는 제2 반도체층(50)이 순차로 증착되어 있으며, 그 위에 성장기판(10) 측으로 빛을 반사시키기 위한 3층으로 된 전극막(90, 91, 92)이 형성되어 있다. 제1 전극막(90)은 Ag 반사막, 제2 전극막(91)은 Ni 확산 방지막, 제3 전극막(92)은 Au 본딩층일 수 있다. 식각되어 노출된 제1 반도체층(30) 위에 본딩 패드로 기능하는 전극(80)이 형성되어 있다. 여기서, 전극막(92) 측이 외부와 전기적으로 연결될 때 장착면이 된다. 도 2와 같은 형태의 반도체 발광소자 칩을 특히 플립칩(Flip Chip)이라고 한다. 도 2에 도시된 플립 칩의 경우 제1 반도체층(30) 위에 형성된 전극(80)이 제2 반도체층 위에 형성된 전극막(90, 91, 92)보다 낮은 높이에 있지만, 동일한 높이에 형성될 수 있도록 할 수도 있다. 여기서 높이의 기준은 성장기판(10)으로부터의 높이일 수 있다. 반도체 발광소자에는 래터럴 칩 또는 플립 칩 이외에 수직 칩 등이 있다.
도 3은 한국 공개특허공보 제2015-0055390호에 기재된 반도체 발광소자의 다른 일 예를 보여주는 도면이다. 설명의 편의를 위해 도면기호를 일부 변경하였다.
반도체 발광소자는 플립 칩으로, 성장기판(10; 예: 사파이어 기판), 성장기판(10) 위에 복수의 반도체층으로, 버퍼층(20), 제1 도전성을 가지는 제1 반도체층(30; 예: n형 반도체층), 전자와 정공의 재결합을 통해 빛을 생성하는 활성층(40; 예; INGaN/(In)GaN MQWs), 제1 도전성과 다른 제2 도전성을 가지는 제2 반도체층(50; 예: p형 반도체층)이 순차로 증착되어 있다. 버퍼층(20)은 생략될 수 있다. 그 위에 전류 확산을 위한 투광성 전도막(60)과, 본딩 패드로 역할하는 전극(70)이 형성되어 있고, 식각되어 노출된 제1 반도체층(30) 위에 본딩 패드로 역할하는 전극(80: 예: Cr/Ni/Au 적층 금속 패드)이 형성되어 있다. 또한 반도체 발광소자의 동작 전압을 낮추기 위한 전극 구조로 제1 반도체층(n형 반도체층)에 형성되는 제1 오믹 전극(51) 및 제2 반도체층(p형 반도체층)에 형성되는 제2 오믹전극(52)을 포함하고 있다.
최근에는 자외선을 발광하는 반도체 발광소자에 대한 개발이 활발히 이루어지고 있으나, 자외선을 발광하는 반도체 발광소자에 포함된 복수의 반도체층은 종래 청색광 등 가시광 영역의 빛을 발광하는 반도체 발광소자와 다르게 알루미늄갈륨 질화물(AlGaN) 물질을 기반으로 하고 있다. AlGaN 물질을 기반으로 하는 자외선을 발광하는 반도체 발광소자에서 제2 반도체층(p형 반도체층)에 형성되는 제2 오믹 전극 및 제2 연결전극에 있어서 프로브 전극 역할을 하는 제2 연결전극이 제2 반도체층(p형 반도체층)에 직접 접촉하는 경우 동작 전압의 상승 등의 문제점이 있다.
이에 대하여 '발명을 실시하기 위한 구체적인 내용'의 후단에 기술한다.
여기서는, 본 개시의 전체적인 요약(Summary)이 제공되며, 이것이 본 개시의 외연을 제한하는 것으로 이해되어서는 아니된다(This section provides a general summary of the disclosure and is not a comprehensive disclosure of its full scope or all of its features).
본 개시에 따른 일 태양에 의하면(According to one aspect of the present disclosure), 반도체 발광소자에 있어서, 제1 도전성을 갖는 제1 반도체층, 제1 도전성과 다른 제2 도전성을 갖는 제2 반도체층 및 제1 반도체층과 제2 반도체층 사이에 개재되며 전자와 정공의 재결합을 통해 빛을 생성하는 활성층을 포함하는 복수의 반도체층; 제2 반도체층을 노출하는 개구를 포함하며 제2 반도체층을 덮는 보호층; 개구를 통하여 제2 반도체층과 전기적으로 연결되며 보호층을 덮는 제2 오믹 전극; 및 보호층과 제2 오믹 전극을 덮는 제2 연결전극;을 포함하며, 제2 연결전극은 보호층과 제2 오믹 전극에 의해 차단되어 제2 반도체층과 직접 접촉하지 않는, 반도체 발광소자가 제공된다.
이에 대하여 '발명의 실시를 위한 구체적인 내용'의 후단에 기술한다.
도 1은 종래의 반도체 발광소자의 일 예를 보여주는 도면이다.
도 2는 미국 등록특허공보 제7,262,436호에 제시된 반도체 발광소자의 다른 예를 보여주는 도면이다.
도 3은 한국 공개특허공보 제2015-0055390호에 기재된 반도체 발광소자의 다른 일 예를 보여주는 도면이다.
도 4는 본 개시에 따른 반도체 발광소자의 일 예를 보여주는 도면이다.
도 5는 본 개시에 따른 반도체 발광소자의 또 다른 일 예를 보여주는 도면이다.
도 6은 본 개시에 따른 반도체 발광소자의 또 다른 일 예를 보여주는 도면이다.
이하, 본 개시를 첨부된 도면을 참고로 하여 자세하게 설명한다(The present disclosure will now be described in detail with reference to the accompanying drawing(s)).
도 4는 본 개시에 따른 반도체 발광소자의 일 예를 보여주는 도면이다.
도 5는 본 개시에 따른 반도체 발광소자의 또 다른 일 예를 보여주는 도면이다.
도 6은 본 개시에 따른 반도체 발광소자의 또 다른 일 예를 보여주는 도면이다.
도 4 내지 도 6을 참조하면, 본 개시에 따른 반도체 발광소자(100)는 복수의 반도체층(130, 140, 150), 보호층(160), 오믹 전극(131, 151), 및 연결전극(132, 152)을 포함한다.
복수의 반도체층(130, 140, 150)은 성장기판(110) 위에 순차적으로 증착된다. 성장기판(110)은 주로 사파이어, SiC, Si, GaN 등이 이용되며, 성장기판(110)은 최종적으로 제거될 수 있다.
한편 성장기판(110) 위에 버퍼층(120)이 성장되고, 그 위에 복수의 반도체층(130, 140, 150)이 증착될 수 있으며, 버퍼층(120)은 생략될 수 있으며 도시하지는 않았지만 필요에 따라 추가의 층들을 포함할 수 있다.
복수의 반도체층(130, 140, 150)은 성장기판(110)에서 성장하는 제1 도전성을 가지는 제1 반도체층(130; 예 : n형 반도체층), 제1 도전성과 다른 제2 도전성을 가지는 제2 반도체층(150; 예 : p형 반도체층) 및 제1 반도체층(130)과 제2 반도체층(150) 사이에 개재되며 전자와 정공의 재결합을 통해 빛을 생성하는 활성층(140)을 포함한다. 복수의 반도체층(130, 140, 150)은 알루미늄갈륨 질화물(AlGaN) 물질을 기반으로 하여 반도체 발광소자(100)가 자외선을 방출할 수 있도록 구성될 수 있다. 특히 300nm 이하의 단파장을 갖는 자외선을 방출할 수 있다.
도 4를 참조하면, 보호층(160)은 제2 반도체층(150) 상부에 형성되어 제2 반도체층(150)을 덮도록 구성되며 제2 반도체층(150)을 노출하는 개구(161)를 포함할 수 있다. 보호층(160)은 단일층 구조로 형성되는 것이 바람직하지만, 이에 한정하지 않고 다층 구조로 형성될 수도 있다.
도 5를 참조하면, 또 다른 실시예에서 보호층(160)은 제2 반도체층(150)의 측면 및 활성층(140)의 측면 중 식각된 제1 반도체층(130)을 향하는 측면을 덮도록 구성될 수 있다. 이 경우 보호층(160)은 제2 반도체층(150), 그리고 제2 반도체층(150)의 측면 및 활성층(140)의 측면 중 식각된 제1 반도체층(130)을 향하는 측면을 덮도록 구성될 수 있다.
도 6을 참조하면, 또 다른 실시예에서 보호층(160)은 제1 반도체층(130)의 일부를 덮도록 구성될 수 있다. 이 경우 보호층(160)은 제2 반도체층(150), 그리고 제2 반도체층(150)의 측면 및 활성층(140)의 측면 중 식각된 제1 반도체층(130)을 향하는 측면, 및 제1 반도체층(130)의 일부를 덮도록 구성될 수 있다.
보호층(160)은 SiO2, TiO2, SiNx 등과 같은 절연물질로 이루어질 수 있다.
이와 같은 보호층(160)은 PECVD(Plasma Enhanced Chemical Vapor Deposition), LPCVD(Low Pressure Chemical Vapor Deposition), sputtering, E-beam evaporation, thermal evaportation 등을 이용하여 제2 반도체층(150)을 덮도록 형성된다.
오믹 전극은 제1 오믹 전극(131) 및 제2 오믹 전극(151)을 포함할 수 있다.
제1 오믹 전극(131)은 제1 반도체층(130) 위에 형성되어 제1 반도체층(130)을 덮도록 구성될 수 있다.
제2 오믹 전극(151)은 개구(161)를 통하여 제2 반도체층(150)과 전기적으로 연결되며 보호층(160)을 덮도록 구성될 수 있다.
제1 오믹 전극(131)은 Cr, Ti, Al, Ag, Ni, Pt, W, Au, Rh 등의 조합으로 이루어질 수 있다. 예를 들어, 제1 오믹 전극(131)은 순차로 적층된 오믹 접촉층(예: Cr, Ti, Ni 등)/반사 금속층(예: Al, Ag, Rh 등)/제1 장벽층(예: Ni, Cr, Ti, W, Pt, TiW 등)/산화반지층(예: Au, Pt 등)/제2 장벽층(예: Cr, Ti, Ni, Pt, Al 등)을 포함할 수 있다. 오믹 접촉층은 일함수가 작은 금속으로 이루어져 제1 반도체층(130)과 오믹 접촉을 이룬다. 반사 금속층은 빛을 반사하여 흡수손실을 줄인다. 제1 장벽층은 반사 금속층과 산화 방지층 간에 확산을 방지한다. 산화 방지층은 제1 장벽층 등의 산화를 방지할 수 있다. 도시 하지는 않았지만 제1 오믹 전극(131) 위에 패드 전극을 형성할 수 있으며 이 경우 패드 전극과 제1 오믹 전극(131)은 좋은 전기적 접촉을 이룰 수 있다. 오믹 접촉층은 5Å~500Å의 두께를 가질 수 있고, 반사 금속층은 500Å~10000Å 정도의 두께를 가질 수 있고, 제1 장벽층은 100Å ~ 5000Å 정도의 두께를 가질 수 있고, 산화방지층은 100Å ~ 5000Å 정도의 두께를 가질 수 있고, 제2 장벽층은 10Å ~ 1000Å 정도의 두께를 가질 수 있다. 이와 같은 다층 구조의 제1 오믹 전극(131)은 필요에 따라 일부의 층이 생략되거나 새로운 층이 추가될 수도 있다.
제2 오믹 전극(151)은 Cr, Ti, Al, Ag, Ni, Pt, W, Au, Rh 등의 조합으로 다층으로 이루어질 수 있다. 제2 오믹 전극(151)이 제1 오믹 전극(131)과 동일한 구조를 가질 필요는 없지만 비슷한 다층 구조를 가질 수 있다. 예를 들어, 제2 오믹 전극(151)은 순차로 적층된 접촉층/반사 금속층/제1 장벽층/산화반지층/제2 장벽층을 포함할 수 있다. 다만 반도체 발광소자가 플립 칩인 경우 광추출 효율 향상을 위해 제2 오믹 전극(151)은 반사층을 포함하는 것이 바람직하다. 도시하지는 않았지만 필요에 따라 제2 오믹 전극(151) 위에도 패드 전극이 형성될 수 있다.
또한 도시하지는 않았지만 제2 오믹 전극(151)과 제2 반도체층(150) 사이에는 투광성 도전막이 형성될 수 있다. 특히, 제2 반도체층(150)이 p형 알루미늄갈륨질화물(AlGaN)로 이루어지는 경우 전류 확산 능력이 떨어지므로, 투광성 도전막이 형성되는 것이 바람직하다. 투광성 도전막이 너무 얇게 형성되는 경우 전류 확산에 불리하여 구동 전압이 높아지고, 너무 두껍게 형성되는 경우 빛 흡수로 인해 광추출 효율이 감소될 수 있다. 예를 들어, 투광성 도전막은 ITO, ZnO 또는 Ni 및 Au를 사용하여 투광성 도전막으로 형성되거나, 이와 달리 Ag를 사용하여 반사형 도전막으로도 형성될 수 있다. 다만 파장대가 짧아지는 경우 투광성 도전막에 의한 자외선 흡수 문제가 커지기 때문에 투광성 도전막을 형성하는 것보다는 반사층을 포함한 제2 오믹 전극(151)이 제2 반도체층(150)을 대부분 덮어 형성하는 것이 좋다. 바람직하게는 제2 오믹 전극(151)이 제2 반도체층(150)의 상면을 90% 이상 덮고 있는 것이 좋다.
연결전극(132, 152)은 각각 오믹 전극(131, 151) 위에 형성된다. 연결전극(132, 152)은 안정적 전기적 접촉을 위해 Cr, Ti, Ni 또는 이들의 합금을 사용하여 형성될 수 있으며, Al 또는 Ag와 같은 반사 금속층을 포함할 수도 있다.
도 4 및 도 5를 참조하면, 제1 연결전극(132)은 제1 오믹 전극(131) 위에 형성되어 제1 오믹 전극(131)을 덮도록 구성될 수 있다. 제1 연결전극(132)은 또한 제1 반도체층(130)과 직접 접촉하도록 구성될 수 있다.
도 6을 참조하면, 제1 연결전극(132)은 또한 보호층(160)을 덮도록 형성될 수 있다.
제2 연결전극(152)은 보호층(160)과 제2 오믹 전극(151)에 위에 형성되어 보호층(160)과 제2 오믹 전극(151)을 덮도록 구성될 수 있다. 따라서 제2 연결전극(152)은 보호층(160)과 제2 오믹 전극(151)에 의해 차단되어 제2 반도체층(150)과 직접 접촉하지 않도록 구성될 수 있다.
이하 본 개시에 따른 반도체 발광소자의 제조방법의 일 예를 설명한다.
우선 성장기판(110) 위에 제1 반도체층(130), 활성층(140) 및 제2 반도체층(150)을 순차적으로 형성한 후, 제2 반도체층(150) 및 활성층(140)을 메사(mesa) 식각하여 제1 반도체층(130)이 노출되도록 한다. 여러 개의 반도체층을 제거하는 방법으로 건식 식각 방법, 예를 들어 ICP(Inductively Coupled Plasma)가 사용될 수 있다. 반도체층(130, 140, 150)의 일부를 식각하는 공정은 공지된 기술로서 당업자에게 잘 알려져 있다.
다음으로, 노출된 제1 반도체층(130) 및 제2 반도체층(150) 위에 보호층(160)을 형성한다. 보호층(160)은 단일층 구조로 형성되는 것이 바람직하지만, 이에 한정하지 않고 다층 구조로 형성될 수도 있다. 보호층(160)은 전술한 바와 같이 SiO2, TiO2 및 SiNx 등과 같은 절연물질로 이루어질 수 있다.
다음으로, 보호층(160)의 일부를 제거한다. 이때, 제2 반도체층(150) 상부에만 보호층(160)이 잔류하도록 할 수도 있고(도 4 참조), 제2 반도체층(150) 상부뿐만 아니라 제2 반도체층(150)의 측면 및 활성층(140)의 측면 중 식각된 제1 반도체층(130)을 향하는 측면까지 잔류하도록 할 수도 있고(도 5 참조), 또한 계속하여 제1 반도체층(130)의 일부분 상부까지 잔류하도록 할 수도 있다(도 6 참조).
보호층(160)의 일부를 제거할 때 제2 반도체층(150) 상부에 개구(161)를 형성한다.
다음으로, 제1 오믹 전극(131)을 제1 반도체층(130)에 위에 형성한다.
한편, 개구(161)를 통하여 제2 반도체층(150)과 전기적으로 연결되며 보호층(160)을 덮도록 제2 오믹 전극(152)을 형성한다. 오믹 전극(131, 151)은 스퍼터링(Sputtering)법, 전자빔 증착법(Ebeam Evaporation), 열 증착법 등의 방법을 이용하여 형성될 수 있다.
다음으로, 연결전극(132, 152)을 형성한다.
제1 오믹 전극(131)을 덮도록 제1 연결전극(132)을 형성된다. 일 예에서, 제1 반도체층(130)과 직접 접촉하도록 제1 연결전극(132)을 형성할 수 있다. 또 다른 일 예에서, 보호층(160)을 덮도록 제1 연결전극(132)을 형성할 수 있다.
제2 연결전극(152)을 보호층(160)과 제2 오믹 전극(151)을 덮도록 형성한다. 이때 제2 연결전극(152)은 보호층(160)과 제2 오믹 전극(151)에 의해 차단되어 제2 반도체층(150)과 직접 접촉하지 않도록 형성된다.
다음으로 제1 연결전극(132) 및 제2 연결전극(152)을 덮는 절연층(170)을 형성한다. 절연층(170)의 대표적인 물질은 SiO2이며, 이에 제한되지 않고 SiN, TiO2, Al2O3, Su-8 등이 사용될 수 있다.
이후, 절연층(170)에 개구(171, 172)를 형성한다. 개구(171, 172)는 제1 전극(181)과 제1 연결 전극(132), 그리고 제2 전극(182)과 제2 연결전극(152)의 전기적 연결을 위해 적절한 위치에 형성된다.
다음으로, 스퍼터링 장비, E-빔 장비 등을 이용하여 절연층(170) 위에 제1 전극(181) 및 제2 전극(182)이 증착될 수 있다. 제1 전극(181)은 제1 개구(171)를 통해 제1 연결 전극(132)에 연결되며, 제2 전극(182)은 제2 개구(172)를 통해 제2 연결 전극(152)에 연결된다. 제1 전극(181) 및 제2 전극(182)은 스터드 범프, 도전성 페이스트, 유테틱 본딩 등의 방법으로 외부(패키지, COB, 서브마운트 등)에 마련된 전극과 전기적으로 연결될 수 있다. 유테틱 본딩의 경우에, 제1 전극(181) 및 제2 전극(182)의 높이 차가 크게 나지 않는 것이 중요하다. 본 예에 따른 반도체 발광소자에 의하면 제1 전극(181) 및 제2 전극(182)이 절연층(170) 위에 동일한 공정에 의해 형성될 수 있으므로 양 전극의 높이 차가 거의 없다. 따라서 유테틱 본딩의 경우에 이점을 가진다. 반도체 발광소자가 유테틱 본딩을 통해 외부와 전기적으로 연결되는 경우에, 제1 전극(181) 및 제2 전극(182)의 최상부는 Au/Sn 합금, Au/Sn/Cu 합금과 같은 유테틱 본딩 물질로 형성될 수 있다.
이하 본 개시의 다양한 실시 형태에 대하여 설명한다.
(1) 반도체 발광소자에 있어서, 제1 도전성을 갖는 제1 반도체층, 제1 도전성과 다른 제2 도전성을 갖는 제2 반도체층 및 제1 반도체층과 제2 반도체층 사이에 개재되며 전자와 정공의 재결합을 통해 빛을 생성하는 활성층을 포함하는 복수의 반도체층; 제2 반도체층을 노출하는 개구를 포함하며 제2 반도체층을 덮는 보호층; 개구를 통하여 제2 반도체층과 전기적으로 연결되며 보호층을 덮는 제2 오믹 전극; 및 보호층과 제2 오믹 전극을 덮는 제2 연결전극;을 포함하며, 제2 연결전극은 보호층과 제2 오믹 전극에 의해 차단되어 제2 반도체층과 직접 접촉하지 않는, 반도체 발광소자.
(2) 제2 반도체층은 p형 반도체층인, 반도체 발광소자.
(3) 제1 반도체층은 n형 반도체층인, 반도체 발광소자.
(4) 보호층은 제2 반도체층의 측면 및 활성층의 측면 중 식각된 제1 반도체층을 향하는 측면을 덮는, 반도체 발광소자.
(5) 보호층은 제1 반도체층의 일부를 덮는, 반도체 발광소자.
(6) 제1 반도체층을 덮는 제1 오믹 전극; 및 제1 오믹 전극을 덮는 제1 연결전극;을 더욱 포함하며, 제1 연결전극은 제1 반도체층과 직접 접촉하는, 반도체 발광소자.
(7) 제1 연결전극은 보호층을 더욱 덮는, 반도체 발광소자.
(8) 보호층은 SiO2, TiO2 및 SiNx 중 적어도 하나로 이루어진, 반도체 발광소자.
(9) 활성층은 자외선을 발광하는, 반도체 발광소자.
본 개시에 따른 하나의 반도체 발광소자에 의하면, 제2 연결전극과 제2 반도체층의 직접 접촉을 차단하여 신뢰성 특성을 개선하고 잠재적인 신뢰성 불량을 방지할 수 있다.

Claims (9)

  1. 반도체 발광소자에 있어서,
    제1 도전성을 갖는 제1 반도체층, 제1 도전성과 다른 제2 도전성을 갖는 제2 반도체층 및 제1 반도체층과 제2 반도체층 사이에 개재되며 전자와 정공의 재결합을 통해 빛을 생성하는 활성층을 포함하는 복수의 반도체층;
    제2 반도체층을 노출하는 개구를 포함하며 제2 반도체층을 덮는 보호층;
    개구를 통하여 제2 반도체층과 전기적으로 연결되며 보호층을 덮는 제2 오믹 전극; 및
    보호층과 제2 오믹 전극을 덮는 제2 연결전극;
    을 포함하며,
    제2 연결전극은 보호층과 제2 오믹 전극에 의해 차단되어 제2 반도체층과 직접 접촉하지 않는, 반도체 발광소자.
  2. 청구항 1에 있어서,
    제2 반도체층은 p형 반도체층인, 반도체 발광소자.
  3. 청구항 2에 있어서,
    제1 반도체층은 n형 반도체층인, 반도체 발광소자.
  4. 청구항 2에 있어서,
    보호층은 제2 반도체층의 측면 및 활성층의 측면 중 식각된 제1 반도체층을 향하는 측면을 덮는, 반도체 발광소자.
  5. 청구항 4에 있어서,
    보호층은 제1 반도체층의 일부를 덮는, 반도체 발광소자.
  6. 청구항 5에 있어서,
    제1 반도체층을 덮는 제1 오믹 전극; 및
    제1 오믹 전극을 덮는 제1 연결전극;
    을 더욱 포함하며,
    제1 연결전극은 제1 반도체층과 직접 접촉하는, 반도체 발광소자.
  7. 청구항 6에 있어서,
    제1 연결전극은 보호층을 더욱 덮는, 반도체 발광소자.
  8. 청구항 1에 있어서,
    보호층은 SiO2, TiO2 및 SiNx 중 적어도 하나로 이루어진, 반도체 발광소자.
  9. 청구항 1에 있어서,
    활성층은 자외선을 발광하는, 반도체 발광소자.
PCT/KR2021/006397 2020-12-16 2021-05-24 반도체 발광소자 WO2022131457A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2020-0176364 2020-12-16
KR1020200176364A KR20220086167A (ko) 2020-12-16 2020-12-16 반도체 발광소자

Publications (1)

Publication Number Publication Date
WO2022131457A1 true WO2022131457A1 (ko) 2022-06-23

Family

ID=82057721

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2021/006397 WO2022131457A1 (ko) 2020-12-16 2021-05-24 반도체 발광소자

Country Status (2)

Country Link
KR (1) KR20220086167A (ko)
WO (1) WO2022131457A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116435445A (zh) * 2023-06-13 2023-07-14 山西中科潞安紫外光电科技有限公司 具有高推力值的发光二极管芯片及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120107874A (ko) * 2011-03-22 2012-10-04 서울옵토디바이스주식회사 발광 다이오드 패키지 및 그의 제조 방법
KR20120132212A (ko) * 2011-05-27 2012-12-05 엘지이노텍 주식회사 발광소자, 발광 모듈 및 발광 소자 제조방법
US20160141470A1 (en) * 2014-11-18 2016-05-19 PlayNitride Inc. Light emitting device
KR20170124048A (ko) * 2016-04-29 2017-11-09 엘지이노텍 주식회사 발광소자 및 이를 포함하는 표시장치
KR101895227B1 (ko) * 2016-12-22 2018-09-07 주식회사 세미콘라이트 반도체 발광소자

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6194743B1 (en) 1997-12-15 2001-02-27 Agilent Technologies, Inc. Nitride semiconductor light emitting device having a silver p-contact
KR20150055390A (ko) 2013-11-13 2015-05-21 주식회사 세미콘라이트 반도체 발광소자

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120107874A (ko) * 2011-03-22 2012-10-04 서울옵토디바이스주식회사 발광 다이오드 패키지 및 그의 제조 방법
KR20120132212A (ko) * 2011-05-27 2012-12-05 엘지이노텍 주식회사 발광소자, 발광 모듈 및 발광 소자 제조방법
US20160141470A1 (en) * 2014-11-18 2016-05-19 PlayNitride Inc. Light emitting device
KR20170124048A (ko) * 2016-04-29 2017-11-09 엘지이노텍 주식회사 발광소자 및 이를 포함하는 표시장치
KR101895227B1 (ko) * 2016-12-22 2018-09-07 주식회사 세미콘라이트 반도체 발광소자

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116435445A (zh) * 2023-06-13 2023-07-14 山西中科潞安紫外光电科技有限公司 具有高推力值的发光二极管芯片及其制备方法

Also Published As

Publication number Publication date
KR20220086167A (ko) 2022-06-23

Similar Documents

Publication Publication Date Title
WO2014081251A1 (ko) 전류 분산 효과가 우수한 발광소자 및 그 제조 방법
WO2014178651A1 (ko) 반도체 발광소자
US7700960B2 (en) Light emitting diode with ITO layer and method for fabricating the same
US7846755B2 (en) Light emitting diode having plurality of light emitting cells and method of fabricating the same
WO2014178583A1 (ko) 솔더 페이스트를 통해 접착된 발광 다이오드를 갖는 발광 다이오드 모듈 및 발광 다이오드
WO2011126248A2 (en) Light emitting diode and method of fabricating the same
WO2009145502A2 (ko) 발광 소자
WO2013105834A1 (ko) 반도체 발광소자
WO2014088322A1 (ko) 반도체 발광소자 및 이를 제조하는 방법
WO2016047932A1 (en) Method of fabricating lighting emitting device and lighting emitting device fabricated by the same
WO2022131457A1 (ko) 반도체 발광소자
WO2018174425A1 (ko) 분포 브래그 반사기 적층체를 구비하는 발광 다이오드
WO2014035205A2 (ko) 발광 분포가 우수한 반도체 발광소자
WO2015072746A1 (ko) 반도체 발광소자
KR20170000893A (ko) 반도체 발광소자
WO2013187723A1 (ko) 반도체 발광소자 및 이의 제조 방법
WO2012067428A2 (ko) 3족 질화물 반도체 발광소자
KR101928309B1 (ko) 반도체 발광소자의 제조 방법
KR101863543B1 (ko) 반도체 발광소자
KR101591966B1 (ko) 반도체 발광소자 및 이의 제조방법
WO2020149531A1 (ko) 심자외선 발광 다이오드
KR101858540B1 (ko) 반도체 발광소자
WO2021194315A1 (ko) 반도체 발광소자
KR102557328B1 (ko) 반도체 발광소자
WO2022102890A1 (ko) 반도체 발광소자

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21906762

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21906762

Country of ref document: EP

Kind code of ref document: A1