WO2015072746A1 - 반도체 발광소자 - Google Patents

반도체 발광소자 Download PDF

Info

Publication number
WO2015072746A1
WO2015072746A1 PCT/KR2014/010858 KR2014010858W WO2015072746A1 WO 2015072746 A1 WO2015072746 A1 WO 2015072746A1 KR 2014010858 W KR2014010858 W KR 2014010858W WO 2015072746 A1 WO2015072746 A1 WO 2015072746A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
semiconductor
burst
reflective layer
thickness
Prior art date
Application number
PCT/KR2014/010858
Other languages
English (en)
French (fr)
Inventor
전수근
Original Assignee
주식회사 세미콘라이트
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 세미콘라이트 filed Critical 주식회사 세미콘라이트
Priority to US15/036,134 priority Critical patent/US9748447B2/en
Publication of WO2015072746A1 publication Critical patent/WO2015072746A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/10Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a light reflecting structure, e.g. semiconductor Bragg reflector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/36Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes
    • H01L33/38Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes with a particular shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/36Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/36Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes
    • H01L33/40Materials therefor
    • H01L33/405Reflective materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/44Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the coatings, e.g. passivation layer or anti-reflective coating
    • H01L33/46Reflective coating, e.g. dielectric Bragg reflector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/62Arrangements for conducting electric current to or from the semiconductor body, e.g. lead-frames, wire-bonds or solder balls

Definitions

  • the present disclosure relates to a semiconductor light emitting device as a whole, and more particularly to a semiconductor light emitting device that prevents an electrode from bursting.
  • the semiconductor light emitting device refers to a semiconductor optical device that generates light through recombination of electrons and holes, for example, a group III nitride semiconductor light emitting device.
  • the group III nitride semiconductor consists of a compound of Al (x) Ga (y) In (1-x-y) N (0 ⁇ x ⁇ 1, 0 ⁇ y ⁇ 1, 0 ⁇ x + y ⁇ 1).
  • GaAs type semiconductor light emitting elements used for red light emission, etc. are mentioned.
  • the group III nitride semiconductor light emitting device includes a substrate 10 (eg, a sapphire substrate), a buffer layer 20 grown on the substrate 10, an n-type group III nitride semiconductor layer 30 grown on the buffer layer 20, and an n-type 3 Current diffusion conductive film formed on the active layer 40 grown on the group nitride semiconductor layer 30, the p-type group III nitride semiconductor layer 50 grown on the active layer 40, and the p-type group III nitride semiconductor layer 50.
  • a substrate 10 eg, a sapphire substrate
  • a buffer layer 20 grown on the substrate 10
  • an n-type group III nitride semiconductor layer 30 grown on the buffer layer 20
  • an n-type 3 Current diffusion conductive film formed on the active layer 40 grown on the group nitride semiconductor layer 30, the p-type group III nitride semiconductor layer 50 grown on the active layer 40, and the p-type group III nitride semiconductor layer 50 e.g,
  • the p-side bonding pad 70, the p-type group III nitride semiconductor layer 50 and the active layer 40 formed on the current diffusion conductive film 60 are mesa-etched and exposed n-type group III nitride semiconductor layer And an n-side bonding pad 80 and a passivation layer 90 formed over the 30.
  • the current spreading conductive film 60 is provided so that the current is well supplied to the entire p-type group III nitride semiconductor layer 50.
  • the current spreading conductive film 60 is formed over almost the entire surface of the p-type group III nitride semiconductor layer 50, and is formed of a translucent conductive film using, for example, ITO, ZnO or Ni / Au, or using Ag. To form a reflective conductive film.
  • the p-side bonding pad 70 and the n-side bonding pad 80 are electrodes for supplying current and wire bonding to the outside.
  • the passivation layer 90 is formed of a material such as silicon dioxide and may be omitted.
  • FIG. 2 is a view showing an example of the electrode structure described in US Pat. No. 6,307,218. As the semiconductor light emitting device becomes larger in area, between the p-side bonding pad 710 and the n-side bonding pad 810, and the like. Techniques for improving current spreading by having branch electrodes 910 at intervals are described.
  • metal electrodes such as bonding pads and branch electrodes have a thick thickness and have a large light absorption loss, there is a problem in that light extraction efficiency of the semiconductor light emitting device is reduced.
  • a first semiconductor layer having a first conductivity type, a second semiconductor layer having a second conductivity type different from the first conductivity type, and a first semiconductor is provided.
  • a first electrode having a reflection layer formed on the contact layer so as to face and reflecting light, and a burst prevention layer formed on the reflection layer, wherein the reflection layer has a higher reflectance than the burst prevention layer and a thickness of 500 A or more, and the burst prevention layer has a thermal expansion coefficient of the reflection layer.
  • a semiconductor light emitting device having a smaller coefficient of thermal expansion to prevent bursting of the reflective layer upon application of power.
  • FIG. 1 is a view showing an example of a conventional group III nitride semiconductor light emitting device
  • FIG. 2 is a view showing an example of an electrode structure described in US Patent No. 6,307,218;
  • FIG. 3 is a view illustrating an example of a semiconductor light emitting device 300 according to the present disclosure
  • FIG. 4 is a cross-sectional view of the semiconductor light emitting device 300 illustrated in FIG. 3 taken along line A-A,
  • FIG. 5 is a diagram illustrating a cross section taken along line B-B of the semiconductor light emitting device illustrated in FIG. 3, illustrating a manufacturing process of the semiconductor light emitting device;
  • FIG. 6 is a cross-sectional view of the semiconductor light emitting device 300 illustrated in FIG. 3 taken along a line C-C.
  • FIG. 8 is a photograph illustrating the stability of the electrode according to the thickness of the reflective layer and the anti-burst layer
  • FIG 9 illustrates another example of the semiconductor light emitting device according to the present disclosure.
  • FIG. 3 is a diagram illustrating an example of a semiconductor light emitting device 300 according to the present disclosure
  • FIG. 4 is a view illustrating a cross section taken along line A-A of the semiconductor light emitting device 300 illustrated in FIG. 3.
  • the semiconductor light emitting device 300 includes a substrate 310, a plurality of semiconductor layers, a first electrode 380, a transparent conductive film 360, and a second electrode 370.
  • the plurality of semiconductor layers includes a buffer layer 320, a first semiconductor layer 330, an active layer 340, and a second semiconductor layer 350 stacked on the substrate 310.
  • the buffer layer 320 may be omitted.
  • the first semiconductor layer 330, the second semiconductor layer 350, and the active layer 340 are formed of a III-V group compound semiconductor, and are Al (x) Ga (y) In (1-xy) N.
  • a group III nitride semiconductor represented by (0 ⁇ x ⁇ 1, 0 ⁇ y ⁇ 1, 0 ⁇ x + y ⁇ 1) will be described.
  • the substrate 310 may be a GaN-based substrate as a homogeneous substrate, a sapphire substrate, a SiC substrate, or a Si substrate as a heterogeneous substrate. Any substrate may be used as long as the group III nitride semiconductor layer can be grown.
  • the first semiconductor layer 330 has a first conductivity type
  • the second semiconductor layer 350 is provided to have a second conductivity type different from the first conductivity type.
  • the semiconductor light emitting device 300 may include a buffer layer 320, an n-type nitride semiconductor layer 330 (first semiconductor layer; for example, an n-type GaN layer), and a p-type nitride semiconductor layer 350 as a plurality of semiconductor layers.
  • a second semiconductor layer eg, a p-type GaN layer
  • an n-side electrode 380 first electrode
  • a p-side electrode 370 second electrode
  • FIG. 5 is a cross-sectional view of the semiconductor light emitting device shown in FIG. 3 taken along a line BB, illustrating a manufacturing process of the semiconductor light emitting device
  • FIG. 6 is a view illustrating the semiconductor light emitting device 300 shown in FIG. It is a figure which shows the cross section cut along the line.
  • an n-type nitride semiconductor layer 330, an active layer 340, and a p-type nitride semiconductor layer 350 are formed on the substrate 310.
  • the semiconductor layers epitaxially grown on the substrate 310 are mainly grown by organometallic vapor phase growth (MOCVD), and each layer may further include detailed layers as necessary.
  • a portion of the p-type nitride semiconductor layer 350, the active layer 340, and the n-type nitride semiconductor layer 330 are etched in mesa form, as illustrated in FIG. 5A. As described above, a portion of the n-type nitride semiconductor layer 330 is exposed, including a region corresponding to the n-side electrode 380.
  • a dry etching method for example, an inductively coupled plasma (ICP) may be used.
  • the transparent conductive film 360 is formed.
  • the mesa etching process may be performed after the light-transmissive conductive film 360 is formed.
  • the transparent conductive film 360 improves the current density uniformity of the p-type nitride semiconductor layer 350 as a whole.
  • the transparent conductive film 360 is mainly formed of ITO, ZnO, or Ni / Au.
  • the transparent conductive film 360 may be formed in most of the light emitting regions.
  • the 380 may be formed, and the p-side electrode 370 may be formed on the transparent conductive film 360.
  • the n-side electrode 380 includes an n-side bonding pad 381 and an n-side branch electrode 385
  • the p-side electrode 370 includes a p-side bonding pad 371 and a p-side branch electrode 375.
  • the semiconductor light emitting device 300 illustrated in FIG. 3 is formed to be long to one side to increase in size, and has a substantially rectangular planar shape. Therefore, the semiconductor light emitting device 300 has a long side and a short side.
  • the n-side bonding pad 381 and the p-side bonding pad 371 are located on opposite short sides.
  • the n-side branch electrode 385 extends from the n-side bonding pad 381 toward the p-side bonding pad 371 along the center of the semiconductor light emitting device 300.
  • the two p-side branch electrodes 375 extend from the p-side bonding pad 371 and extend to both sides of the n-side branch electrode 385.
  • the shape and arrangement of the electrodes can be variously changed.
  • at least one of the n-side bonding pad 381 and the p-side bonding pad 371 may be formed on the substrate 310 outside of the plurality of semiconductor layers, and the n-side branch electrode may be different from that shown in FIG. 3.
  • the number and arrangement of the 385 and p-side branch electrodes 375 may be changed according to the size and shape of the semiconductor light emitting device 300.
  • the technical idea according to the present disclosure may be applied to a semiconductor light emitting device having no n-side branch electrode 385 and / or p-side branch electrode 375.
  • a large area and high-power chip may include a plurality of bonding pads and a plurality of branch electrodes, the technical idea according to the present disclosure is more effective when applied to a large area and a high strategy chip. Can be.
  • an n-type nitride semiconductor layer 330 may be formed on the active layer 340, and a p-type nitride semiconductor layer 350 may be formed below the active layer 340, in which case the p-side electrode 370 and n The vertical position of the side electrode 380 is also changed.
  • the light generated in the active layer 340 is emitted to the top and bottom and side surfaces of the plurality of semiconductor layers.
  • a significant amount of light is emitted to the sides of the plurality of semiconductor layers (sides include mesa etched surfaces).
  • a part of light is reflected upward by the substrate 310.
  • the n-side electrode 380 and the p-side electrode 380 are made of a metal having good bonding properties, good electrical properties, and generally made of a plurality of metal layers.
  • the amount of light emitted through the mesa etched surfaces of the plurality of semiconductor layers and incident on the side of the n-side bonding pad 381 and the n-side branch electrode 385 is not negligible.
  • the size of the electrode occupies a substantial portion of the semiconductor light emitting device 300, and the metal has a light absorption as well as reflectivity.
  • the reflective layer is formed thicker than other layers of the electrode so that the light from the mesa etched surfaces of the plurality of semiconductor layers can be well reflected.
  • it is characterized in that it comprises a configuration to prevent the bursting phenomenon of the reflective layer that can occur when the thickness of the reflective layer is thick. This will be described later.
  • the n-side electrode 385 directly faces the side of the p-type nitride semiconductor layer 350, the side of the active layer 340, and the side of the n-type nitride semiconductor layer 330 exposed by mesa etching, and thus the n-side bonding pad 381.
  • the n-side branch electrode 385 enters not only the light reflected from the substrate 310 but also the light from the mesa visualized side (side) of the plurality of semiconductor layers. Therefore, in order to reduce light absorption by the electrode, it is effective to reduce light absorption by the n-side bonding pad 381 or the n-side branch electrode 385.
  • the p-side electrode 370 is briefly shown and a detailed layer structure is not shown.
  • the present disclosure includes both the p-side electrode 370 having the same layer structure as the n-side electrode 380 or a different layer structure.
  • the n-side bonding pad 381 and the n-side branch electrode 385 include a contact layer 382, a reflective layer 383, a burst prevention layer 384, and a bonding layer 386 (FIGS. 5 and FIG. 5). 6).
  • the contact layer 382 may be made of a metal (eg, Cr or Ti) having good adhesion and electrical contact properties with the n-type nitride semiconductor layer 330.
  • the thickness of the contact layer 382 may be 5A to 500A.
  • the reflective layer 383 may be made of a metal having excellent reflectance (for example, Al or Ag).
  • the reflective layer 383 may have a thickness of 500 A or more for reflecting light.
  • the reflective layer 383 may be formed to have a thickness of 1000A to 10000A or more to face the active layer 340.
  • FIG. 5C the heights of the n-side bonding pad 381 and the n-side branch electrode 385 are shown for convenience.
  • the reflective layer 383 When the reflective layer 383 is formed as described above, light from the mesa-etched surfaces of the plurality of semiconductor layers may be sufficiently reflected, thereby increasing the output of the semiconductor light emitting device.
  • the burst prevention layer 384 prevents the phenomenon that the reflective layer 383 bursts when the current is applied (see FIG. 7) when the reflective layer 383 is formed thick as described above. This is further described below.
  • the bonding layer 386 may be made of a metal having good bonding properties (eg, Au or Al) for wire bonding of the n-side bonding pad 381.
  • FIG. 7 is a photograph illustrating that the reflective layer has burst when a current is applied for a long time.
  • a portion of the reflective layer 383 protrudes to the side to push out the uppermost bonding layer 384 (for example, an Au layer).
  • the thickness of the reflective layer 383 is formed to be thick as described above, when a high current is applied to the semiconductor light emitting device 300 and the high temperature is operated, a defect may occur in which the reflective layer 383 bursts sideways. In this example, such a defect is prevented by providing a burst prevention layer 384 for suppressing the burst of the reflective layer 383 at the n-side bonding pad 381 and the n-side branch electrode 385.
  • the anti-burst layer 384 is made of a material that maintains a good bond between the reflective layer 383 and the bonding layer 386, and may function as a diffusion barrier (eg, Ni, Ti, Cr, Pt, TiW) is preferable.
  • a diffusion barrier eg, Ni, Ti, Cr, Pt, TiW
  • the burst prevention layer 384 is made of a material having a linear coefficient of thermal expansion smaller than that of the reflective layer 383.
  • the reflective layer 383 may be made of Al or Ag
  • the anti-burst layer 384 may be made of Ni or Ti.
  • the linear coefficient of thermal expansion is Al: 22.2, Ag: 19.5, Ni: 13, Ti: 8.6, and the unit is 10 -6 m / mK.
  • the reflective layer 383 When a current is applied to the semiconductor light emitting device 300 and a current flows through the reflective layer 383, the reflective layer 383 is formed by heat generated from an electrode such as the active layer 340, the n-side bonding pad 381, and the n-side branch electrode 385. ) Can be thermally expanded.
  • the linear thermal expansion coefficient of the burst prevention layer 384 is smaller than the linear thermal expansion coefficient of the reflective layer 383, thereby suppressing deformation (thermal expansion) of the reflective layer 383. As a result, the reflective layer 383 is prevented from bursting by thermal expansion.
  • the n-side bonding pad 381 and the n-side branch electrode 385 are made of Cr (382) / Al (383) / Ti (384) / Au as shown in Figs. 4, 5C and 6. (386), in addition to Cr / Ag / Ti / Au, Cr / Al / Ni / Au, Cr / Ag / Ni / Au, Ti / Al / Ti / Au, Ti / Ag / Ti / Au, Ti / Al / Ni / Au, Ti / Ag / Ni / Au, Ti / Ag / Ni / Au, Ti / Ag / Ni / Au can be composed of various combinations.
  • the thickness of the anti-burst layer 384 should also be thick.
  • the reflective layer 383 and the anti-burst layer Alternately, repeated 384 may result in a more stable electrode structure.
  • Examples of such a contact layer, a repeated deposition structure, and a bonding layer include a structure such as Cr (20A) / Al (3kA) / Ni (3kA) / Al (3kA) / Ni (3kA) / Au (10kA).
  • the thickness of the anti-burst layer 384 is also important as an important factor, and a suitable thickness relationship between the reflective layer 383 and the anti-burst layer 384 is described in FIG. 8.
  • FIG. 8 is a photograph illustrating the stability of the electrode according to the thickness of the reflective layer and the burst prevention layer.
  • FIG. 8 (a) shows two repeated alternating layers of reflective layer 383 in Al (3kA) and burst prevention layer 384 in Ni (200A), such as 2 x [Al (3kA) / Ni (200A)].
  • the photo shows the bursting of the reflective layer in the structure.
  • FIG. 8 (a) it can be seen that the reflective layer has popped out to the side.
  • Fig. 8 (b) shows two repeated alternating layers of alternating reflection layer 383 as Al (3kA) and burst prevention layer 384 as Ni (3kA) as 2 ⁇ [Al (3kA) / Ni (3kA)]. It is a photograph showing that the reflection of the reflective layer 383 does not occur in one structure. In FIG. 8B, it can be seen that the reflective layer 383 has not burst and protrudes to the side.
  • the anti-burst layer 384 is used to prevent the reflective layer 383 from bursting. It was found that forming a thickness of 20% or more to 200% or less of the thickness of the reflective layer 383 has a good anti-burst effect. These results have been found to be valid and meaningful criteria whether the reflective layer / burst prevention layer is formed in a single pair or in multiple pairs.
  • the thickness of the anti-burst layer 384 is less than 20% of the thickness of the reflective layer 383, a burst defect may occur.
  • the amount of the anti-burst layer 384 exceeds 200%, the stability of the electrode may be impaired by the crack of the anti-burst layer 384 itself.
  • the thickness of the reflective layer 383 is suitably about 1000A to 10,000A, and the anti-burst layer 384 is preferably formed to have 20% to 200% of the thickness of the reflective layer 383.
  • the reflective layer 383 and the anti-burst layer 384 are alternately laminated a plurality of times within the reference of 20% or more and 200% or less of the thickness ratio between the reflective layer 383 and the anti-burst layer 384 is described. It seems more preferable from the viewpoint of increasing the reflecting area and preventing the reflecting layer from bursting.
  • the reflective layer 383 having a predetermined thickness or more is formed to increase the amount of reflected light emitted from the mesa etching surface. It is preferable to prevent the bursting of the reflective layer 383 by forming the thickness of the bursting prevention layer 384 in a specific ratio range relative to the thickness of the reflective layer 383 and increasing or decreasing the number of times of repeated deposition of the reflective layer / burst prevention layer.
  • FIG 9 is a diagram illustrating another example of the semiconductor light emitting device 700 according to the present disclosure.
  • the semiconductor light emitting device 700 is the semiconductor described in FIGS. 3 to 8 except that the n-side branch electrode 785 and the side surfaces of the n-side bonding pad are formed to have an inclination with respect to the direction perpendicular to the substrate 705. It is substantially the same as the light emitting device 300. Therefore, duplicate descriptions are omitted.
  • the n-side bonding pad and the n-side branch electrode 785 are made of Cr / Al / Ti / Au and have their sides tilted with respect to the direction perpendicular to the substrate 705 as shown in FIG. 9.
  • the cross section is trapezoidal in shape.
  • the semiconductor light emitting device includes a burst prevention layer that forms a reflective layer to increase the amount of light incident on the side (for example, on the mesa etched surface of the plurality of semiconductor layers) and prevents the thick reflective layer from bursting.
  • a burst prevention layer that forms a reflective layer to increase the amount of light incident on the side (for example, on the mesa etched surface of the plurality of semiconductor layers) and prevents the thick reflective layer from bursting.
  • Such a semiconductor light emitting device is applied regardless of size, but when applied to a large area and high power semiconductor light emitting device (for example, the semiconductor light emitting device shown in Figure 2) is particularly effective in improving the output of the semiconductor light emitting device.
  • the burst prevention layer has a thickness of 0.2 times or more and 2 times or less of the thickness of the reflective layer.
  • the reflective layer may be prevented from bursting laterally upon application of current.
  • a semiconductor light emitting device comprising: at least one selected from reflective layers Al and Ag, wherein the anti-burst layer is formed from at least one selected from Ni, Ti, Cr, Pt, and TiW.
  • a semiconductor light emitting element characterized in that a reflection layer and a burst prevention layer are alternately stacked a plurality of times.
  • a semiconductor light emitting element wherein the reflective layer has a thickness of 5000 A or more and 10000 A or less.
  • a semiconductor light emitting element characterized in that the burst prevention layer has a thickness not less than 0.2 times and not more than twice the thickness of the reflective layer which is stacked a plurality of times.
  • the first electrode includes: a first bonding pad having a contact layer, a reflection layer, a burst prevention layer, and a bonding layer formed on the burst prevention layer and electrically connected to the outside; And a bonding layer extending over the exposed mesa-etched semiconductor layer and electrically connected to the first bonding pad and formed on the contact layer, the reflective layer, the anti-burst layer, and the anti-burst layer.
  • a semiconductor light emitting device characterized in that.
  • the n-side bonding pad 381 and the n-side branch electrode 385 have the same layer structure, but the n-side bonding pad 381 and the n-side branch electrode 385 have a layer structure. It does not necessarily need to be the same, and it is sufficient to form a reflective layer higher than other layers such as a bonding layer because light absorption loss is a problem.
  • the n-side bonding pad 381 is formed of Cr / Al / Ti / Au.
  • the n-side branch electrode 385 may be made of Cr / Al or Cr / Ag, the Al layer (branch electrode reflective layer) of the n-side branch electrode 385 may be higher than each of the other layers of the n-side bonding pad 381. It may be formed.
  • the technical idea according to the present disclosure also applies to a semiconductor light emitting device having no branching electrodes and only bonding pads.
  • a semiconductor light emitting element characterized in that the side surface of the reflective layer is formed to have an inclination with respect to the direction perpendicular to the first semiconductor layer.
  • the semiconductor includes a Group III nitride semiconductor, the second electrode electrically connected with the second semiconductor layer, wherein the reflective layer has a thickness of 1000A or more and 10000A or less, and the reflective layer / burst prevention layer is Al (or Ag).
  • a semiconductor light emitting device characterized in that the anti-burst layer has a thickness of 0.2 times or more and twice or less of the thickness of the reflective layer in a plurality of alternating layers of / Ni (or Ti) and alternately stacked a plurality of times.
  • the amount of reflection of light by the electrode is increased to improve the output of the semiconductor light emitting device.
  • the electrode is prevented from bursting due to the applied current, thereby improving the reliability of the semiconductor light emitting device.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Led Devices (AREA)

Abstract

본 개시는 복수의 반도체층; 그리고 제2 반도체층, 활성층 및 제1 반도체층의 일부가 메사 식각되어 노출되는 제1 반도체층 위에 형성되는 제1 전극;으로서, 제1 반도체층과 접촉하는 접촉층, 메사 식각되어 노출된 활성층과 대면하여 빛을 반사하도록 접촉층 위에 형성된 반사층 및 반사층 위에 형성된 터짐 방지층을 구비하는 제1 전극;을 포함하며, 반사층은 터짐 방지층보다 높은 반사율과, 500A 이상의 두께를 가지며, 터짐 방지층은 반사층의 열팽창 계수보다 작은 열팽창 계수를 가져서 전원 인가시 반사층의 터짐을 방지하는 것을 특징으로 하는 반도체 발광소자(SEMICONDUCTOR LIGHT EMITTING DEVICE)에 관한 것이다.

Description

반도체 발광소자
본 개시(Disclosure)는 전체적으로 반도체 발광소자(SEMICONDUCTOR LIGHT EMITTING DEVICE)에 관한 것으로, 특히 전극의 터짐 현상을 방지한 반도체 발광소자에 관한 것이다.
여기서, 반도체 발광소자는 전자와 정공의 재결합을 통해 빛을 생성하는 반도체 광소자를 의미하며, 3족 질화물 반도체 발광소자를 예로 들 수 있다. 3족 질화물 반도체는 Al(x)Ga(y)In(1-x-y)N (0≤x≤1, 0≤y≤1, 0≤x+y≤1)로 된 화합물로 이루어진다. 이외에도 적색 발광에 사용되는 GaAs계 반도체 발광소자 등을 예로 들 수 있다.
여기서는, 본 개시에 관한 배경기술이 제공되며, 이들이 반드시 공지기술을 의미하는 것은 아니다(This section provides background information related to the present disclosure which is not necessarily prior art).
도 1은 종래의 3족 질화물 반도체 발광소자의 일 예를 나타내는 도면이다. 3족 질화물 반도체 발광소자는 기판(10; 예; 사파이어 기판), 기판(10) 위에 성장되는 버퍼층(20), 버퍼층(20) 위에 성장되는 n형 3족 질화물 반도체층(30), n형 3족 질화물 반도체층(30) 위에 성장되는 활성층(40), 활성층(40) 위에 성장되는 p형 3족 질화물 반도체층(50), p형 3족 질화물 반도체층(50) 위에 형성되는 전류확산 도전막(60), 전류확산 도전막(60) 위에 형성되는 p측 본딩 패드(70), p형 3족 질화물 반도체층(50)과 활성층(40)이 메사 식각되어 노출된 n형 3족 질화물 반도체층(30) 위에 형성되는 n측 본딩 패드(80), 그리고 보호막(90)을 포함한다.
전류확산 도전막(60)은 p형 3족 질화물 반도체층(50) 전체로 전류가 잘 공급되도록 하기 위해 구비된다. 전류확산 도전막(60)은 p형 3족 질화물 반도체층(50)의 거의 전면에 걸쳐서 형성되며, 예를 들어, ITO, ZnO 또는 Ni/Au를 사용하여 투광성 도전막으로 형성되거나, Ag를 사용하여 반사형 도전막으로 형성될 수 있다.
p측 본딩 패드(70)와 n측 본딩 패드(80)는 전류의 공급과 외부로의 와이어 본딩을 위한 전극이다.
보호막(90)은 이산화규소와 같은 물질로 형성되며, 생략될 수도 있다.
반도체 발광소자의 대면적화 및 고전력화(high-power)에 따라, 반도체 발광소자 내에서 원활한 전류확산을 위해 가지 전극과 복수의 본딩 패드가 도입되고 있다. 예를 들어, 도 2는 미국특허 제6,307,218호에 기재된 전극 구조의 일 예를 나타내는 도면으로서, 반도체 발광소자가 대면적화됨에 따라 p측 본딩 패드(710)와 n측 본딩 패드(810) 사이에 등간격을 가지는 가지 전극(910)을 구비하여 전류 확산을 개선하는 기술이 기재되어 있다.
그러나 본딩 패드 및 가지 전극 같은 금속 재질의 전극은 두께가 두껍고, 빛흡수 손실(Light Absorption Loss)이 크기 때문에 반도체 발광소자의 광추출효율을 저하하는 문제점이 있다.
특히, p형 3족 질화물 반도체층(50), 활성층(40) 및 n형 3족 질화물 반도체층(30)의 메사 식각된 면으로부터 나오는 상당한 양의 빛이 전극의 옆면에 흡수되거나, 빛의 진행 방향이 측면 방향이어서 유효한 출사광이 되지 못하여 손실되는 문제점이 있다.
이에 대하여 '발명의 실시를 위한 구체적인 내용'의 후단에 기술한다.
여기서는, 본 개시의 전체적인 요약(Summary)이 제공되며, 이것이 본 개시의 외연을 제한하는 것으로 이해되어서는 아니된다(This section provides a general summary of the disclosure and is not a comprehensive disclosure of its full scope or all of its features).
본 개시에 따른 일 태양에 의하면(According to one aspect of the present disclosure), 제1 도전형을 가지는 제1 반도체층, 제1 도전형과 다른 제2 도전형을 가지는 제2 반도체층, 제1 반도체층과 제2 반도체층의 사이에 위치하며 전자와 정공의 결합에 의해 빛을 생성하는 활성층을 포함하는 복수의 반도체층; 그리고 제2 반도체층, 활성층 및 제1 반도체층의 일부가 메사 식각되어 노출되는 제1 반도체층 위에 형성되는 제1 전극;으로서, 제1 반도체층과 접촉하는 접촉층, 메사 식각되어 노출된 활성층과 대면하여 빛을 반사하도록 접촉층 위에 형성된 반사층 및 반사층 위에 형성된 터짐 방지층을 구비하는 제1 전극;을 포함하며, 반사층은 터짐 방지층보다 높은 반사율과, 500A 이상의 두께를 가지며, 터짐 방지층은 반사층의 열팽창 계수보다 작은 열팽창 계수를 가져서 전원 인가시 반사층의 터짐을 방지하는 것을 특징으로 하는 반도체 발광소자가 제공된다.
이에 대하여 '발명의 실시를 위한 구체적인 내용'의 후단에 기술한다.
도 1은 종래의 3족 질화물 반도체 발광소자의 일 예를 나타내는 도면,
도 2는 미국특허 제6,307,218호에 기재된 전극 구조의 일 예를 나타내는 도면,
도 3은 본 개시에 따른 반도체 발광소자(300)의 일 예를 나타내는 도면,
도 4는 도 3에 도시된 반도체 발광소자(300)를 A-A 선을 따라 절단한 단면을 나타내는 도면,
도 5는 도 3에 도시된 반도체 발광소자를 B-B 선을 따라 절단한 단면을 나타내는 도면으로서 반도체 발광소자의 제조공정을 나타내는 도면,
도 6은 도 3에 도시된 반도체 발광소자(300)를 C-C 선을 따라 절단한 단면을 나타내는 도면,
도 7은 전류가 인가됨에 따라 반사층이 터진 것을 설명하는 사진,
도 8은 반사층과 터짐 방지층의 두께에 따른 전극의 안정성을 설명하는 사진,
도 9는 본 개시에 따른 반도체 발광소자의 다른 예를 나타내는 도면.
이하, 본 개시를 첨부된 도면을 참고로 하여 자세하게 설명한다(The present disclosure will now be described in detail with reference to the accompanying drawing(s)).
도 3은 본 개시에 따른 반도체 발광소자(300)의 일 예를 나타내는 도면이고, 도 4는 도 3에 도시된 반도체 발광소자(300)를 A-A 선을 따라 절단한 단면을 나타내는 도면이다.
반도체 발광소자(300)는 기판(310), 복수의 반도체층, 제1 전극(380), 투광성 도전막(360) 및 제2 전극(370)을 포함한다. 복수의 반도체층은 기판(310) 위에 적층된 버퍼층(320), 제1 반도체층(330), 활성층(340), 제2 반도체층(350)을 포함한다. 버퍼층(320)은 생략될 수 있다.
본 예에서는 제1 반도체층(330), 제2 반도체층(350) 및 활성층(340)이 III-V족 화합물 반도체로 형성된 경우로서, Al(x)Ga(y)In(1-x-y)N (0≤x≤1, 0≤y≤1, 0≤x+y≤1)으로 표현되는 3족 질화물 반도체로 형성된 경우를 설명한다.
기판(310)은 동종기판으로 GaN계 기판, 이종기판으로 사파이어 기판, SiC 기판 또는 Si 기판 등이 이용되지만, 3족 질화물 반도체층이 성장될 수 있는 기판이라면 어떠한 형태이어도 좋다.
제1 반도체층(330)은 제1 도전형을 가지며, 제2 반도체층(350)은 제1 도전형과 다른 제2 도전형을 갖도록 구비된다. 본 예에서 반도체 발광소자(300)는 복수의 반도체층으로서 버퍼층(320), n형 질화물 반도체층(330; 제1 반도체층; 예: n형 GaN층), p형 질화물 반도체층(350; 제2 반도체층; 예: p형 GaN층)을 포함하며, n측 전극(380; 제1 전극) 및 p측 전극(370; 제2 전극)을 포함한다.
미설명 번호(382, 383, 384, 386)는 후술된다.
도 5는 도 3에 도시된 반도체 발광소자를 B-B 선을 따라 절단한 단면을 나타내는 도면으로서 반도체 발광소자의 제조공정을 나타내는 도면이고, 도 6은 도 3에 도시된 반도체 발광소자(300)를 C-C 선을 따라 절단한 단면을 나타내는 도면이다.
먼저, 기판(310) 위에 n형 질화물 반도체층(330), 활성층(340) 및 p형 질화물 반도체층(350)이 형성된다. 기판(310) 위에 에피성장되는 반도체층들은 주로 유기금속기상성장법(MOCVD)에 의해 성장되며, 필요에 따라서 각 층들은 다시 세부 층들을 포함할 수 있다.
기판(310) 위에 복수의 반도체층이 형성된 이후, 메사(mesa) 형태로 p형 질화물 반도체층(350), 활성층(340) 및 n형 질화물 반도체층(330) 일부를 식각하여, 도 5a에 도시된 것과 같이, n측 전극(380)에 대응하는 영역을 포함하여 n형 질화물 반도체층(330)의 일부가 노출된다. 여러 개의 반도체층을 제거하는 방법으로 건식식각 방법, 예를 들어 ICP(Inductively Coupled Plasma)이 사용될 수 있다.
다음으로, 스퍼터링(Sputtering)법, 전자빔 증작법(E-beam Evaporation), 열증착법(Thermal Evaporation) 등을 이용하여, 도 5b에 도시된 것과 같이, 바람직하게는 p형 질화물 반도체층(350) 위에 투광성 도전막(360)이 형성된다. 이와 다르게, 투광성 도전막(360)을 형성한 후에 메사 식각 공정을 할 수도 있다. 투광성 도전막(360)은 p형 질화물 반도체층(350) 전체적으로 전류밀도 균일성을 향상시킨다. 투광성 도전막(360)은 주로 ITO, ZnO 또는 Ni/Au로 형성된다. 투광성 도전막(360)은 발광영역의 대부분에 형성될 수 있다.
계속해서, 스퍼터링(Sputtering)법, 전자빔 증착법(Ebeam Evaporation), 열증착법(Thermal Evaporation) 등의 방법을 이용하여, 도 5c에 도시된 것과 같이, n형 질화물 반도체층(330) 위에 n측 전극(380)이 형성되며, 투광성 도전막(360) 위에 p측 전극(370)이 형성될 수 있다.
예를 들어 n측 전극(380)은 n측 본딩 패드(381) 및 n측 가지 전극(385)을 포함하며, p측 전극(370)은 p측 본딩 패드(371) 및 p측 가지 전극(375)를 포함한다.
도 3에 예시된 반도체 발광소자(300)는 사이즈 증가를 위해 일측으로 길게 형성되어 대략 직사각형의 평면 형상을 갖는다. 따라서 반도체 발광소자(300)는 장변 및 단변을 가진다.
n측 본딩 패드(381) 및 p측 본딩 패드(371)는 대향하는 단변측에 위치한다. n측 가지 전극(385)은 n측 본딩 패드(381)로부터 p측 본딩 패드(371)를 향하여 반도체 발광소자(300)의 가운데를 따라 뻗어 있다. 2개의 p측 가지 전극(375)은 p측 본딩 패드(371)로부터 연장되어 n측 가지 전극(385) 양측으로 뻗어 있다.
전극의 형상 및 배치는 다양하게 변경될 수 있다. 예를 들어, 도 3에 도시된 것과 다르게 n측 본딩 패드(381) 및 p측 본딩 패드(371) 중 적어도 하나는 복수의 반도체층 바깥의 기판(310) 위에 형성될 수 있으며, n측 가지 전극(385) 및 p측 가지 전극(375)의 개수 및 배치는 반도체 발광소자(300)의 사이즈 및 형상 등에 따라 변경될 수 있다. 본 개시에 따른 기술 사상은 n측 가지 전극(385) 및/또는 p측 가지 전극(375)이 없는 반도체 발광소자에 적용되어도 좋다. 또한, 대면적 및 고전력화(high-power) 칩은 다수의 본딩 패드와 다수의 가지 전극을 구비할 수 있으므로, 본 개시에 따른 기술사상은 대면적 및 고전략화 칩에 적용되면 그 효과가 더 클 수 있다.
또한, n형 질화물 반도체층(330)이 활성층(340) 위에 형성되고, p형 질화물 반도체층(350)이 활성층(340) 아래에 형성되는 것도 가능하며, 이 경우 p측 전극(370) 및 n측 전극(380)의 상하 위치도 변경된다.
한편, 활성층(340)에서 생성된 빛은 복수의 반도체층의 상하 및 측면으로 방출된다. 상당한 양의 빛이 복수의 반도체층의 측면(측면은 메사 식각된 면을 포함한다)으로 방출된다. 또한, 기판(310)에 의해 일부의 빛이 상측으로 반사된다.
n측 전극(380) 및 p측 전극(380)은 박리 방지를 위해 접합성이 좋고, 전기적 특성이 좋은 금속으로 이루어지며 복수의 금속층으로 이루어지는 것이 일반적이다.
복수의 반도체층의 메사 식각된 면을 통해 방출되어 n측 본딩 패드(381) 및 n측 가지 전극(385)의 옆으로 입사하는 빛의 양이 무시하지 못할 만큼 상당하다. 이런 관점에서 빛흡수 감소를 위해서는 전극의 높이를 낮추는 것을 일응 고려할 수 있다. 그러나 본 예에서는 전극의 사이즈가 반도체 발광소자(300)에서 상당한 부분을 차지하고 있고, 금속이 빛흡수뿐만 아니라 반사성도 가짐에 착안하여 전극의 높이를 낮추는 것과는 반대로 전극에 반사율이 우수한 반사층을 도입하고 반사층의 두께를 증가시키고 있다. 즉, 복수의 반도체층의 메사 식각된 면으로부터 나온 빛을 잘 반사할 수 있도록 본 예에서는 반사층이 전극의 다른 층보다 두껍게 형성된다. 본 예에서는 반사층의 두께가 두꺼울 때 발생할 수 있는 반사층의 터짐 현상을 방지하는 구성을 구비하는 것을 특징으로 한다. 이에 대해서는 후술된다.
n측 전극(385)은 메사 식각되어 노출된 p형 질화물 반도체층(350)의 측면, 활성층(340)의 측면 및 n형 질화물 반도체층(330)의 측면과 직접 대면하므로 n측 본딩 패드(381) 또는 n측 가지 전극(385)은 기판(310)에서 반사된 빛뿐만 아니라 복수의 반도체층의 메사 시각된 면(측면)으로부터의 빛도 입사한다. 따라서 전극에 의한 빛흡수를 줄이기 위해서는 n측 본딩 패드(381) 또는 n측 가지 전극(385)에 의한 빛흡수를 감소시키는 것이 효과적이다.
도 4 및 도 5에서 p측 전극(370)은 간략히 도시되어 있고, 상세한 층구조는 나타내지 않았다. 본 개시는 p측 전극(370)이 n측 전극(380)과 동일한 층구조를 가지거나 다른 층구조를 가지는 것을 모두 포함한다.
예를 들어, n측 본딩 패드(381) 및 n측 가지 전극(385)은 접촉층(382), 반사층(383), 터짐 방지층(384) 및 본딩층(386)을 포함한다(도 5 및 도 6 참조).
접촉층(382)은 n형 질화물 반도체층(330)과의 접합성 및 전기적 접촉 특성이 좋은 금속(예: Cr 또는 Ti)으로 이루어질 수 있다. 접촉층(382)의 두께는 5A~ 500A일 수 있다.
반사층(383)은 반사율이 우수한 금속(예: Al 또는 Ag)으로 이루어질 수 있다. 빛의 반사를 위해 반사층(383)은 500A 이상의 두께를 가질 수 있다. 빛의 반사량 증가를 더 크게 하기 위해 반사층(383)이 활성층(340)과 대면하도록 1000A~10000A 이상의 두께로 형성되는 것이 좋다. 도 5c에서 n측 본딩 패드(381) 및 n측 가지 전극(385)의 높이는 편의상 도시한 것이다.
이렇게 반사층(383)이 형성되면 복수의 반도체층의 메사 식각된 면으로부터 나온 빛을 충분히 잘 반사할 수 있고, 이로 인해 반도체 발광소자의 출력이 증가된다.
터짐 방지층(384)은 상기와 같이 반사층(383)을 두껍게 형성한 경우 전류 인가시 반사층(383)이 터지는 현상(도 7 참조)을 방지한다. 이에 대해서는 더 후술된다.
본딩층(386)은 n측 본딩 패드(381)의 와이어 본딩을 위해 본딩 특성이 좋은 금속(예: Au 또는 Al)으로 이루어질 수 있다.
도 7은 장시간 전류를 인가한 경우 반사층이 터진 것을 설명하는 사진이다.
반사층(383)의 일부가 옆으로 삐져나와서 가장 상층인 본딩층(384; 예: Au층)을 밀어내고 있는 모습을 보여 주고 있다. 위와 같이 반사층(383)의 두께를 두껍게 형성하는 경우, 반도체 발광소자(300)에 고전류를 인가하고 고온 동작 시에는, 반사층(383)이 옆으로 터지는 결함이 발생할 수 있다. 본 예에서는 n측 본딩 패드(381) 및 n측 가지 전극(385)에서 반사층(383)의 터짐을 억제하는 터짐 방지층(384)을 구비하여 이러한 결함을 방지한다.
터짐 방지층(384)은 반사층(383)과 본딩층(386) 간의 접합을 잘 유지하는 재질로 이루어지며, 확산 방지층(difussion barrier)으로 기능할 수 있는 재질(예: Ni, Ti, Cr, Pt, TiW)로 이루어지는 것이 바람직하다.
터짐 방지층(384)은 반사층(383)보다 선형 열팽창 계수가 작은 재질로 이루어진다. 예를 들어, 반사층(383)은 Al 또는 Ag로 이루어고 터짐 방지층(384)이 Ni 또는 Ti로 이루어질 수 있다. 선형 열팽창계수는 Al: 22.2, Ag: 19.5, Ni: 13, Ti: 8.6 이고, 단위는 10-6 m/mK이다.
반도체 발광소자(300)에 전류가 인가되어 반사층(383)에 전류가 흐르면 활성층(340)과 n측 본딩 패드(381) 및 n측 가지 전극(385)과 같은 전극에서 발생하는 열에 의해서 반사층(383)이 열팽창될 수 있다. 터짐 방지층(384)의 선형 열팽창 계수가 반사층(383)의 선형 열팽창 계수보다 작아서 반사층(383)의 변형(열팽창)을 억제한다. 그 결과 반사층(383)이 열팽창에 의해 터지는 것이 방지된다.
전술된 것과 같이, n측 본딩 패드(381) 및 n측 가지 전극(385)은 도 4, 도 5c 및 도 6에 도시된 것과 같이 Cr(382)/Al(383)/Ti(384)/Au(386)로 구성될 수 있으며, 이외에도 Cr/Ag/Ti/Au, Cr/Al/Ni/Au, Cr/Ag/Ni/Au, Ti/Al/Ti/Au, Ti/Ag/Ti/Au, Ti/Al/Ni/Au, Ti/Ag/Ni/Au 등 다양한 조합으로 구성될 수가 있다.
그러나 반사층(383)의 두께가 0.5um이상으로 두꺼워 지는 경우에는 터짐 방지층(384)의 두께 역시 두꺼워 져야 하는데, 이러한 경우 터짐 방지층(384) 자체에 크랙이 발생할 수도 있기 때문에 반사층(383)과 터짐 방지층(384)이 교대로 반복 증착되면 좀 더 안정적인 전극 구조가될 수 있다. 이러한 접촉층, 반복 증착 구조및 본딩층으로서 Cr(20A)/Al(3kA)/Ni(3kA)/Al(3kA)/Ni(3kA)/Au(10kA) 등과 같은 구조를 예로 들 수 있다. 이때 중요한 인자로는 터짐 방지층(384)의 두께 역시 중요한데, 반사층(383)과 터짐 방비층(384)의 적합한 두께 관계는 도 8에서 설명된다.
도 8은 반사층과 터짐 방지층의 두께에 따른 전극의 안정성을 설명하는 사진이다.
도 8(a)는 2 x [Al(3kA)/Ni(200A)]와 같이 반사층(383)을 Al(3kA)로, 터짐 방지층(384)를 Ni(200A)로 교대로 2회 반복 적층한 구조에서 반사층의 터짐 현상을 보여주는 사진이다. 도 8(a)에서 반사층이 터져서 옆으로 삐져나온 것을 알 수 있다.
도 8(b)는 2 x [Al(3kA)/Ni(3kA)]와 같이 반사층(383)을 Al(3kA)로, 터짐 방지층(384)를 Ni(3kA)로 하여 교대로 2회 반복 적층한 구조에서 반사층(383)의 터짐이 발생하지 않는 것을 보여주는 사진이다. 도 8(b)에서 반사층(383)이 터져서 옆으로 삐져나온 것이 없는 것을 알 수 있다.
이와 같이, 반사층(383)과 터짐 방지층(384)의 두께 비율과 반사층/터짐 방지층의 반복 적층 회수를 변경하면서 다수의 실험을 한 결과, 반사층(383)의 터짐을 방지하기 위해 터짐 방지층(384)의 두께가 반사층(383) 두께의 20% 이상 200% 이하로 형성하는 것이 터짐 방지 효과가 좋은 것을 발견할 수 있었다. 이러한 결과는 반사층/터짐 방지층이 단일쌍으로 형성되든 복수쌍으로 형성되든 유효하고 의미있는 기준이 되는 것을 발견하였다.
터짐 방지층(384)의 두께가 반사층(383) 두께의 20% 미만인 경우 터짐 결함이 발생할 수 있고, 200%를 초과하는 경우 터짐 방지층(384)자체의 크랙에 의해서 전극의 안정도가 훼손될 수 있다. 이때, 반사층(383)의 두께는 1000A ~ 10,000A 정도가 적당하며, 터짐 방지층(384)은 반사층(383) 두께의 20% ~ 200%를 가지도록 형성되는 것이 바람직하다. 여기서 상술한 바와 같이 상기 반사층(383)과 터짐 방지층(384) 간의 두께 비율의 상기 20% 이상 200% 이하의 기준 내에서 반사층(383)과 터짐 방지층(384)가 교대로 복수 회 적층되는 구조가 반사 면적을 증대하는 동시에 반사층의 터짐 방지를 하는 관점에서 좀 더 바람직한 것으로 보인다.
이와 같이, 본 예에서는 n측 본딩 패드(381) 및 n측 가지 전극(383)의 형성시에 일정 두께 이상의 반사층(383)을 형성함으로 해서 메사 식각면으로 부터의 방출된 빛의 반사량을 증가시키되, 터짐 방지층(384)의 두께를 반사층(383)의 두께 대비 특정한 비율 범위로 형성하고, 반사층/터짐 방지층의 반복 증착의 회수를 증감시킴으로써 반사층(383)의 터짐을 방지하는 것이 바람직하다.
도 9는 본 개시에 따른 반도체 발광소자(700)의 다른 예를 나타내는 도면이다.
반도체 발광소자(700)는 n측 가지 전극(785) 및 n측 본딩 패드의 측면이 기판(705)에 수직한 방향에 대해 기울기를 가지도록 형성된 것을 제외하고는 도 3 내지 도 8에서 설명된 반도체 발광소자(300)와 실질적으로 동일하다. 따라서 중복된 설명은 생략한다.
예를 들어, n측 본딩 패드 및 n측 가지 전극(785)는 Cr/Al/Ti/Au로 이루어지고, 측면을 도 9에 도시된 것과 같이 기판(705)에 수직방향에 대해 기울기를 가지도록 형성하여 단면이 사다리꼴 형상을 가진다. 따라서 복수의 반도체층으로부터 나온 빛이 n측 본딩 패드 및 n측 가지 전극(785)에 의해 더 많이 상측으로 반사된다.
반도체 발광소자는 반사층을 두껍게 형성하여 옆에서(예; 복수의 반도체층의 메사 식각된 면에서) 전극으로 입사하는 빛의 반사량을 증가시며, 두꺼운 반사층의 터짐을 방지하는 터짐 방지층을 구비한다. 이와 같은 반도체 발광소자는 사이즈에 상관없이 적용되지만, 대면적화 및 고전력화된 반도체 발광소자(예: 도 2에 도시된 반도체 발광소자)에 적용되면 반도체 발광소자의 출력 향상에 특히 효과적이다.
이하, 본 개시의 다양한 실시 형태에 대하여 설명한다.
(1) 터짐 방지층은 반사층의 두께의 0.2배 이상 2배 이하의 두께를 가지는 것을 특징으로 하는 반도체 발광소자.
터짐 방지층과 반사층 간의 접합력으로 인해 전류 인가시 반사층이 옆으로 터지는 것이 방지될 수 있다.
(2) 반사층은 1000A 이상 10000A 이하의 두께를 가지는 것을 특징으로 하는 반도체 발광소자.
(3) 반사층 Al 및 Ag 중 선택된 적어도 하나로 이루어지며, 터짐 방지층은 Ni, Ti, Cr, Pt, 및 TiW 중 선택된 적어도 하나로 이루어진 것을 특징으로 하는 반도체 발광소자.
(4) 반사층 및 터짐 방지층이 교대로 복수 회 적층된 것을 특징으로 하는 반도체 발광소자.
(5) 반사층은 5000A 이상 10000A 이하의 두께를 가지는 것을 특징으로 하는 반도체 발광소자.
(6) 복수 회 적층된 반사층/터짐 방지층 쌍에서 터짐 방지층은 반사층의 두께의 0.2배 이상 2배 이하의 두께를 가지는 것을 특징으로 하는 반도체 발광소자.
(7) 제1 전극은: 접촉층, 반사층, 터짐 방지층 및 터짐 방지층 위에 형성되어 외부와 전기적으로 연결되는 본딩층;을 구비하는 제1 본딩 패드; 그리고 메사 식각되어 노출된 제1 반도체층 위에서 뻗으며 제1 본딩 패드와 전기적으로 연결되고, 접촉층, 반사층, 터짐 방지층 및 터짐 방지층 위에 형성된 본딩층;을 구비하는 제1 가지 전극;을 포함하는 것을 특징으로 하는 반도체 발광소자.
도 3 내지 도 8에서는 n측 본딩 패드(381)와 n측 가지 전극(385)이 동일한 층구성을 가지는 예를 들었지만, n측 본딩 패드(381)와 n측 가지 전극(385)의 층구성이 반드시 동일할 필요는 없으며, 빛흡수 손실이 문제되는 것에 반사층을 본딩층 등 다른 층보다 높게 형성하면 된다. 예를 들어, n측 본딩 패드(381)에 의한 빛흡수보다 n측 가지 전극(385)에 의한 빛흡수가 특히 문제되는 경우에는 n측 본딩 패드(381)가 Cr/Al/Ti/Au로 형성되더라도 n측 가지 전극(385)는 Cr/Al 또는 Cr/Ag로 이루어질 수 있고, n측 가지 전극(385)의 Al층(가지 전극 반사층)을 n측 본딩 패드(381)의 다른 층들 각각보다 높게 형성할 수도 있다.
본 개시에 따른 기술사상은 가지 전극이 없고 본딩 패드만 구비한 반도체 발광소자에도 적용된다.
(8) 반사층의 측면은 제1 반도체층에 수직한 방향에 대해 기울기를 가지도록 형성된 것을 특징으로 하는 반도체 발광소자.
(9) 반도체는 3족 질화물 반도체를 포함하며, 제2 반도체층과 전기적으로 연결된 제2 전극;을 포함하며, 반사층은 1000A 이상 10000A 이하의 두께를 가지고, 반사층/터짐 방지층이 Al(또는 Ag)/Ni(또는 Ti) 쌍으로 교대로 복수 회 적층되며, 복수 회 적층된 반사층/터짐 방지층 쌍에서 터짐 방지층은 반사층의 두께의 0.2배 이상 2배 이하의 두께를 가지는 것을 특징으로 하는 반도체 발광소자.
본 개시에 따른 하나의 반도체 발광소자에 의하면, 전극에 의한 빛의 반사량이 증가하여 반도체 발광소자의 출력이 향상된다.
본 개시에 따른 다른 하나의 반도체 발광소자에 의하면, 전극이 인가된 전류로 인해 터지는 것이 방지되어 반도체 발광소자의 신뢰성이 향상된다.

Claims (10)

  1. 제1 도전형을 가지는 제1 반도체층, 제1 도전형과 다른 제2 도전형을 가지는 제2 반도체층, 제1 반도체층과 제2 반도체층의 사이에 위치하며 전자와 정공의 결합에 의해 빛을 생성하는 활성층을 포함하는 복수의 반도체층; 그리고
    제2 반도체층, 활성층 및 제1 반도체층의 일부가 메사 식각되어 노출되는 제1 반도체층 위에 형성되는 제1 전극;으로서, 제1 반도체층과 접촉하는 접촉층, 메사 식각되어 노출된 활성층과 대면하여 빛을 반사하도록 접촉층 위에 형성된 반사층 및 반사층 위에 형성된 터짐 방지층을 구비하는 제1 전극;을 포함하며,
    반사층은 터짐 방지층보다 높은 반사율과, 500A 이상의 두께를 가지며, 터짐 방지층은 반사층의 열팽창 계수보다 작은 열팽창 계수를 가져서 전류 인가시 반사층의 터짐을 방지하는 것을 특징으로 하는 반도체 발광소자.
  2. 청구항 1에 있어서,
    터짐 방지층은 반사층의 두께의 0.2배 이상 2배 이하의 두께를 가지는 것을 특징으로 하는 반도체 발광소자.
  3. 청구항 1에 있어서,
    반사층은 1000A 이상 10000A 이하의 두께를 가지는 것을 특징으로 하는 반도체 발광소자.
  4. 청구항 1에 있어서,
    반사층은 Al 및 Ag 중 선택된 적어도 하나로 이루어지며, 터짐 방지층은 Ni, Ti, Cr, Pt, 및 TiW 중 선택된 적어도 하나로 이루어진 것을 특징으로 하는 반도체 발광소자.
  5. 청구항 1에 있어서,
    반사층 및 터짐 방지층이 교대로 복수 회 적층된 것을 특징으로 하는 반도체 발광소자.
  6. 청구항 5에 있어서,
    반사층은 5000A 이상 10000A 이하의 두께를 가지는 것을 특징으로 하는 반도체 발광소자.
  7. 청구항 5에 있어서,
    복수 회 적층된 반사층/터짐 방지층 쌍에서 터짐 방지층은 반사층의 두께의 0.2배 이상 2배 이하의 두께를 가지는 것을 특징으로 하는 반도체 발광소자.
  8. 청구항 1에 있어서,
    제1 전극은:
    접촉층, 반사층, 터짐 방지층 및 터짐 방지층 위에 형성되어 외부와 전기적으로 연결되는 본딩층;을 구비하는 제1 본딩 패드; 그리고
    메사 식각되어 노출된 제1 반도체층 위에서 뻗으며 제1 본딩 패드와 전기적으로 연결되고, 접촉층, 반사층, 터짐 방지층 및 터짐 방지층 위에 형성된 본딩층;을 구비하는 제1 가지 전극;을 포함하는 것을 특징으로 하는 반도체 발광소자.
  9. 청구항 1에 있어서,
    반사층의 측면은 제1 반도체층에 수직한 방향에 대해 기울기를 가지도록 형성된 것을 특징으로 하는 반도체 발광소자.
  10. 청구항 1에 있어서,
    반도체는 3족 질화물 반도체를 포함하며,
    제2 반도체층과 전기적으로 연결된 제2 전극;을 포함하며,
    반사층은 1000A 이상 10000A 이하의 두께를 가지고, 반사층/터짐 방지층이 Al(또는 Ag)/Ni(또는 Ti) 쌍으로 교대로 복수 회 적층되며, 복수 회 적층된 반사층/터짐 방지층 쌍에서 터짐 방지층은 반사층의 두께의 0.2배 이상 2배 이하의 두께를 가지는 것을 특징으로 하는 반도체 발광소자.
PCT/KR2014/010858 2013-11-12 2014-11-12 반도체 발광소자 WO2015072746A1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/036,134 US9748447B2 (en) 2013-11-12 2014-11-12 Semiconductor light emitting device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2013-0136889 2013-11-12
KR1020130136889A KR101561198B1 (ko) 2013-11-12 2013-11-12 반도체 발광소자

Publications (1)

Publication Number Publication Date
WO2015072746A1 true WO2015072746A1 (ko) 2015-05-21

Family

ID=53057626

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2014/010858 WO2015072746A1 (ko) 2013-11-12 2014-11-12 반도체 발광소자

Country Status (3)

Country Link
US (1) US9748447B2 (ko)
KR (1) KR101561198B1 (ko)
WO (1) WO2015072746A1 (ko)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017078368A1 (ko) * 2015-11-05 2017-05-11 서울바이오시스주식회사 자외선 발광 소자 및 그것을 제조하는 방법
WO2017135763A1 (ko) * 2016-02-05 2017-08-10 엘지이노텍 주식회사 발광소자 및 이를 포함하는 발광소자 패키지
CN108172669A (zh) * 2018-02-06 2018-06-15 佛山市国星半导体技术有限公司 一种铝电极led芯片及其制作方法
JP7345261B2 (ja) * 2019-02-26 2023-09-15 ローム株式会社 電極構造および半導体発光装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20070041506A (ko) * 2004-07-29 2007-04-18 쇼와 덴코 가부시키가이샤 반도체 발광소자용 양전극
KR20100133997A (ko) * 2008-03-13 2010-12-22 쇼와 덴코 가부시키가이샤 반도체 발광 소자 및 그 제조 방법
KR20130071834A (ko) * 2011-12-21 2013-07-01 주식회사 세미콘라이트 반도체 발광소자
JP2013214426A (ja) * 2012-04-03 2013-10-17 Nippon Electric Glass Co Ltd 波長変換部材及び発光デバイス

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10242006B4 (de) * 2002-09-11 2006-04-27 Siemens Ag Leuchtstoffplatte
US8115212B2 (en) 2004-07-29 2012-02-14 Showa Denko K.K. Positive electrode for semiconductor light-emitting device
US7456046B2 (en) * 2005-02-23 2008-11-25 International Business Machines Corporation Method to create flexible connections for integrated circuits
CN102484185B (zh) * 2009-09-07 2015-01-21 首尔伟傲世有限公司 半导体发光二极管及其制造方法
EP3361517B1 (en) * 2011-09-16 2021-06-23 Seoul Viosys Co., Ltd. Light emitting diode

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20070041506A (ko) * 2004-07-29 2007-04-18 쇼와 덴코 가부시키가이샤 반도체 발광소자용 양전극
KR20100133997A (ko) * 2008-03-13 2010-12-22 쇼와 덴코 가부시키가이샤 반도체 발광 소자 및 그 제조 방법
KR20130071834A (ko) * 2011-12-21 2013-07-01 주식회사 세미콘라이트 반도체 발광소자
JP2013214426A (ja) * 2012-04-03 2013-10-17 Nippon Electric Glass Co Ltd 波長変換部材及び発光デバイス

Also Published As

Publication number Publication date
KR20150054444A (ko) 2015-05-20
US20160343914A1 (en) 2016-11-24
KR101561198B1 (ko) 2015-10-19
US9748447B2 (en) 2017-08-29

Similar Documents

Publication Publication Date Title
US8624287B2 (en) Light emitting diode and method of fabricating the same
US7592633B2 (en) Semiconductor light emitting device
TWI532161B (zh) 發光結構
KR101017394B1 (ko) 발광 소자 및 그것을 제조하는 방법
WO2010095781A1 (ko) 발광소자 및 그 제조방법
KR102357188B1 (ko) 발광 소자
WO2017057978A1 (ko) 발광소자
KR20120002894A (ko) 발광 소자, 발광 소자 제조방법, 발광 소자 패키지 및 조명 시스템
CN111433921B (zh) 一种发光二极管
KR20150142327A (ko) 발광 소자 및 발광 소자 패키지
WO2015072746A1 (ko) 반도체 발광소자
EP2362438A2 (en) Light emitting device and method of manufacturing the same
WO2016068643A1 (ko) 반도체 발광소자
WO2013141421A1 (ko) 수평형 파워 led 소자 및 그 제조방법
TW202029521A (zh) 發光元件
WO2013137554A1 (ko) 발광 소자 및 그 제조 방법
KR101863543B1 (ko) 반도체 발광소자
US8455882B2 (en) High efficiency LEDs
WO2017057977A1 (ko) 발광소자
KR102362306B1 (ko) 발광 소자
KR101643688B1 (ko) 반도체 발광소자
JP4995432B2 (ja) 半導体発光装置
KR101858540B1 (ko) 반도체 발광소자
KR102529364B1 (ko) 반도체 소자, 발광 소자 및 이를 구비한 조명 장치
KR20160046010A (ko) 반도체 발광소자

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14862974

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 15036134

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 14862974

Country of ref document: EP

Kind code of ref document: A1