WO2022130671A1 - 統合ポンプ装置 - Google Patents

統合ポンプ装置 Download PDF

Info

Publication number
WO2022130671A1
WO2022130671A1 PCT/JP2021/027431 JP2021027431W WO2022130671A1 WO 2022130671 A1 WO2022130671 A1 WO 2022130671A1 JP 2021027431 W JP2021027431 W JP 2021027431W WO 2022130671 A1 WO2022130671 A1 WO 2022130671A1
Authority
WO
WIPO (PCT)
Prior art keywords
oil
hydraulic
rotation
suction
hydraulic chamber
Prior art date
Application number
PCT/JP2021/027431
Other languages
English (en)
French (fr)
Inventor
知寛 ▲高▼橋
和義 内田
元良 安藤
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Priority to KR1020237019447A priority Critical patent/KR20230098669A/ko
Priority to EP21906038.1A priority patent/EP4265920A4/en
Priority to CN202180084698.8A priority patent/CN116601062A/zh
Priority to JP2022569698A priority patent/JP7409525B2/ja
Publication of WO2022130671A1 publication Critical patent/WO2022130671A1/ja
Priority to US18/335,022 priority patent/US20230323949A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H63/00Control outputs from the control unit to change-speed- or reversing-gearings for conveying rotary motion or to other devices than the final output mechanism
    • F16H63/02Final output mechanisms therefor; Actuating means for the final output mechanisms
    • F16H63/30Constructional features of the final output mechanisms
    • F16H63/34Locking or disabling mechanisms
    • F16H63/3416Parking lock mechanisms or brakes in the transmission
    • F16H63/3483Parking lock mechanisms or brakes in the transmission with hydraulic actuating means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T1/00Arrangements of braking elements, i.e. of those parts where braking effect occurs specially for vehicles
    • B60T1/005Arrangements of braking elements, i.e. of those parts where braking effect occurs specially for vehicles by locking of wheel or transmission rotation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T17/00Component parts, details, or accessories of power brake systems not covered by groups B60T8/00, B60T13/00 or B60T15/00, or presenting other characteristic features
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C13/00Adaptations of machines or pumps for special use, e.g. for extremely high pressures
    • F04C13/001Pumps for particular liquids
    • F04C13/002Pumps for particular liquids for homogeneous viscous liquids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C15/00Component parts, details or accessories of machines, pumps or pumping installations, not provided for in groups F04C2/00 - F04C14/00
    • F04C15/06Arrangements for admission or discharge of the working fluid, e.g. constructional features of the inlet or outlet
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B15/00Fluid-actuated devices for displacing a member from one position to another; Gearing associated therewith
    • F15B15/08Characterised by the construction of the motor unit
    • F15B15/12Characterised by the construction of the motor unit of the oscillating-vane or curved-cylinder type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B15/00Fluid-actuated devices for displacing a member from one position to another; Gearing associated therewith
    • F15B15/18Combined units comprising both motor and pump
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B15/00Fluid-actuated devices for displacing a member from one position to another; Gearing associated therewith
    • F15B15/20Other details, e.g. assembly with regulating devices
    • F15B15/26Locking mechanisms
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D63/00Brakes not otherwise provided for; Brakes combining more than one of the types of groups F16D49/00 - F16D61/00
    • F16D63/006Positive locking brakes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D65/00Parts or details
    • F16D65/14Actuating mechanisms for brakes; Means for initiating operation at a predetermined position
    • F16D65/28Actuating mechanisms for brakes; Means for initiating operation at a predetermined position arranged apart from the brake
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H63/00Control outputs from the control unit to change-speed- or reversing-gearings for conveying rotary motion or to other devices than the final output mechanism
    • F16H63/02Final output mechanisms therefor; Actuating means for the final output mechanisms
    • F16H63/30Constructional features of the final output mechanisms
    • F16H63/34Locking or disabling mechanisms
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H63/00Control outputs from the control unit to change-speed- or reversing-gearings for conveying rotary motion or to other devices than the final output mechanism
    • F16H63/40Control outputs from the control unit to change-speed- or reversing-gearings for conveying rotary motion or to other devices than the final output mechanism comprising signals other than signals for actuating the final output mechanisms
    • F16H63/48Signals to a parking brake or parking lock; Control of parking locks or brakes being part of the transmission
    • F16H63/483Circuits for controlling engagement of parking locks or brakes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2210/00Fluid
    • F04C2210/20Fluid liquid, i.e. incompressible
    • F04C2210/206Oil
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B21/00Common features of fluid actuator systems; Fluid-pressure actuator systems or details thereof, not covered by any other group of this subclass
    • F15B21/04Special measures taken in connection with the properties of the fluid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B21/00Common features of fluid actuator systems; Fluid-pressure actuator systems or details thereof, not covered by any other group of this subclass
    • F15B21/04Special measures taken in connection with the properties of the fluid
    • F15B21/042Controlling the temperature of the fluid
    • F15B21/0423Cooling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/20Fluid pressure source, e.g. accumulator or variable axial piston pump
    • F15B2211/205Systems with pumps
    • F15B2211/20507Type of prime mover
    • F15B2211/20515Electric motor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/60Circuit components or control therefor
    • F15B2211/61Secondary circuits
    • F15B2211/611Diverting circuits, e.g. for cooling or filtering
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/60Circuit components or control therefor
    • F15B2211/62Cooling or heating means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2121/00Type of actuator operation force
    • F16D2121/02Fluid pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/0021Generation or control of line pressure
    • F16H2061/0037Generation or control of line pressure characterised by controlled fluid supply to lubrication circuits of the gearing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/0021Generation or control of line pressure
    • F16H61/0025Supply of control fluid; Pumps therefore
    • F16H61/0031Supply of control fluid; Pumps therefore using auxiliary pumps, e.g. pump driven by a different power source than the engine

Definitions

  • This disclosure relates to an integrated pump device.
  • a hydraulic system that integrates a motor, an electric oil pump, and a hydraulic actuator is known.
  • a motor, an electric oil pump, a hydraulic parking lock actuator, and a clutch engagement control oil passage are integrated.
  • the hydraulic parking lock actuator and the clutch operate.
  • oil for cooling the motor generator is supplied from the oil pump.
  • An object of the present disclosure is to provide an integrated pump device in which a hydraulic actuator integrally configured with a motor and an electric oil pump is miniaturized.
  • the integrated pump device of the present disclosure is a module in which a motor, an oil pump, and a hydraulic actuator are integrally configured.
  • the "integrally configured module” is not necessarily limited to one delivered to an automobile manufacturer as a single component. It is interpreted that the "integrated module” includes the ones that are delivered for each part and are integrated after being attached to the automobile.
  • the oil pump rotates by the driving force of the motor and discharges the oil sucked from the oil pan.
  • the hydraulic actuator operates to switch between a forward state and a return state by the hydraulic pressure supplied from the oil pump.
  • a hydraulic actuator is a parking lock actuator that activates a parking lock mechanism of an automobile.
  • the hydraulic actuator includes a housing having one or more vane chambers and a vane rotor housed in the housing and provided with one or more vanes corresponding to the vane chambers.
  • the vane can rotate in the circumferential direction in the corresponding vane chamber.
  • the advancing side hydraulic chamber is formed in one of the vane circumferential directions in the vane chamber, and the returning hydraulic chamber is formed in the other of the vane circumferential direction.
  • the vane rotor rotates in one direction to advance, and when oil is supplied to the returning hydraulic chamber, the vane rotor rotates in the other direction to return.
  • the operating force of the hydraulic actuator is determined by the product of the pressure receiving area and the hydraulic pressure.
  • the pressure receiving area can be secured by one or more vanes and the hydraulic actuator can be miniaturized. .. Therefore, it is particularly effectively applied as a hydraulic actuator such as a parking lock actuator in which the mounting space is restricted.
  • FIG. 1 is a basic configuration diagram of an integrated pump device according to the present embodiment.
  • FIG. 2 is a configuration diagram of an integrated pump device and a parking lock mechanism according to the first to sixth embodiments.
  • FIG. 3 is a diagram showing the appearance of the rotary hydraulic actuator according to the first, third, and fifth embodiments and the flow of oil.
  • FIG. 4 is a sectional view taken along line IV-IV of FIG. 3 when the lock is released (returned state) and locked (advanced state) according to the first, third, and fifth embodiments.
  • FIG. 5 is a hydraulic pressure path diagram at the time of unlocking (returning state) according to the first embodiment.
  • FIG. 6 is a hydraulic pressure path diagram at the time of locking (advanced state) according to the first embodiment.
  • FIG. 7 is a diagram showing the appearance of the rotary hydraulic actuator according to the second, fourth, and sixth embodiments and the flow of oil.
  • FIG. 8 is a sectional view taken along line VIII-VIII of FIG. 7 when the second, fourth, and sixth embodiments are unlocked (returned state) and locked (advanced state).
  • FIG. 9 is a hydraulic pressure path diagram at the time of unlocking (returning state) according to the second embodiment.
  • FIG. 10 is a hydraulic pressure path diagram at the time of locking (advanced state) according to the second embodiment.
  • FIG. 11 is a hydraulic pressure path diagram at the time of unlocking (returning state) according to the third embodiment.
  • FIG. 12 is a hydraulic pressure path diagram at the time of locking (advanced state) according to the third embodiment.
  • FIG. 13 is a hydraulic pressure path diagram at the time of unlocking (returning state) according to the fourth embodiment.
  • FIG. 14 is a hydraulic pressure path diagram at the time of locking (advanced state) according to the fourth embodiment.
  • FIG. 15 is a hydraulic pressure path diagram at the time of unlocking (returning state) according to the fifth embodiment.
  • FIG. 11 is a hydraulic pressure path diagram at the time of locking (advanced state) according to the second embodiment.
  • FIG. 11 is a hydraulic pressure path diagram at the time of unlocking (returning state) according to the third embodiment.
  • FIG. 12 is a hydraulic pressure path diagram
  • FIG. 16 is a hydraulic pressure path diagram at the time of locking (advanced state) according to the fifth embodiment.
  • FIG. 17 is a hydraulic pressure path diagram at the time of unlocking (returning state) according to the sixth embodiment.
  • FIG. 18 is a hydraulic pressure path diagram at the time of locking (advanced state) according to the sixth embodiment.
  • FIG. 19 is a configuration diagram of an integrated pump device and a parking lock mechanism using a cylinder type hydraulic actuator according to a reference embodiment.
  • the integrated pump device of the present embodiment forms a module in which a motor, an electric oil pump, and a hydraulic actuator are integrally configured.
  • FIG. 1 shows a basic configuration common to the integrated pump device 90 of the present embodiment.
  • the integrated pump device 90 is integrally composed of a motor 10, an oil pump 30, and a hydraulic actuator 60.
  • the motor is referred to as "M” and the electric oil pump is referred to as "EOP”.
  • the oil pump 30 is an electric oil pump that rotates by the driving force of the motor 10 and discharges the oil sucked from the oil pan.
  • the hydraulic actuator 60 operates so as to switch between the advancing state and the returning state by the hydraulic pressure supplied from the oil pump 30.
  • the "advanced state” and the “returned state” are merely terms for distinguishing the opposing bipolar states for convenience, and any of the states may be defined as the advanced state or the returned state.
  • the hydraulic actuator 60 of the present embodiment is a parking lock actuator that operates the parking lock mechanism 80 of the automobile.
  • the hydraulic actuator 60 locks the parking lock mechanism 80 in the advancing state, and applies an operating force to unlock the parking lock mechanism in the returning state.
  • the shift range is operated to the P range, it corresponds to the time of locking, and when it is operated to the notP range, it corresponds to the time of unlocking.
  • the notP range is one range in the two-position configuration. Further, in a configuration including a multi-speed range and the like, a plurality of ranges other than the P range may be comprehensively interpreted as a notP range.
  • FIG. 2 shows the integrated pump device 901 and the parking lock mechanism 80 of the first embodiment.
  • the integrated pump device 901 uses a rotary hydraulic actuator 60 having a columnar outer shape, and the motor 10, the oil pump 30, and the hydraulic actuator 60 are integrally configured.
  • the three are coaxially and in series and integrally configured, but they may be arranged in series and integrally in a state where the axes are deviated, or they may be arranged in parallel and integrally configured. good.
  • the parking lock mechanism 80 includes a detent shaft 81, a detent plate 82, a detent spring 83, a switching rod 84, a parking rod 85, a cone 86, a parking lock pole 87, a parking gear 88, and the like.
  • the detent shaft 81 is an output shaft of the hydraulic actuator 60, and is rotated in both directions within a predetermined angle range by the operation of the hydraulic actuator 60.
  • the detent plate 82 is fixed to the detent shaft 81 and rotates together with the detent shaft 81.
  • a plurality of recesses 823 are formed on the detent spring 83 side of the detent plate 82.
  • the detent spring 83 is elastically deformed, and the detent roller 833 provided at the tip is fitted into one of the recesses 823, thereby restricting the rotation of the detent plate 82.
  • the pin 824 protruding from the plate surface of the detent plate 82 engages with the groove formed at the tip of the switching rod 84.
  • the pin 824 and the switching rod 84 are used in the reference embodiment shown in FIG. 19, and may not be the first embodiment.
  • the parking rod 85 is formed in a substantially L shape, and one end 851 side is fixed to the detent plate 82. On the other end 852 side of the parking rod 85, a conical body 86 whose diameter decreases as it approaches the other end 852 is provided.
  • the detent plate 82 rotates in the direction in which the detent roller 833 fits into the recess corresponding to the P range, the conical body 86 moves in the direction of the arrow P.
  • the parking lock pole 87 abuts on the conical surface of the conical body 86 and can swing around the shaft portion 877.
  • the parking lock pole 87 is provided with a convex portion 878 that can mesh with the parking gear 88.
  • the conical body 86 moves in the direction of the arrow P
  • the parking lock pole 87 is pushed up, the convex portion 878 and the parking gear 88 mesh with each other, and the lock state is set.
  • the convex portion 878 is separated from the parking gear 88, and the locked state is released.
  • FIGS. 3 and 4 show the operation completion state at the time of unlocking when the shift range is operated from the P range to the notP range
  • the lower part of FIG. 4 shows the lock when the shift range is operated from the notP range to the P range. Indicates the operation completion state at the time.
  • the hydraulic actuator 60 includes a cylindrical housing 61 centered on the rotation axis O, and a vane rotor 63 coaxially housed in the housing 61.
  • the housing 61 has, for example, four vane chambers 621-624 in the circumferential direction.
  • the vane chamber 621-624 has a fan shape in which the inner wall on the outer side in the radial direction is formed in an arc shape. In the figure, the leader wire of the code of the vane chamber 621-624 is drawn from the inner wall on the outer side in the radial direction.
  • the vane rotor 63 is provided with, for example, four vanes 641-644 corresponding to the vane chambers 621-624 on the outer periphery.
  • One of the four vanes 641-644 has stoppers 645 and 646 for restricting the rotation limit at both ends in the circumferential direction, and is formed larger than the other three vanes 642, 643 and 644. There is.
  • the other three vanes 642, 643, and 644 are formed relatively small in order to secure the volume of the hydraulic chamber.
  • a sealing material is provided on the sliding portion of the radial outer wall of each vane 641-644.
  • Each vane 641-644 is rotatable in the circumferential direction in the corresponding vane chamber 621-624.
  • the advancing side hydraulic chambers 651-654 are formed in one of the circumferential directions of the vanes 641-644 in the vane chambers 621-624.
  • a return-side hydraulic chamber 661-664 is formed on the other side of the vane 641-644 in the circumferential direction.
  • the leading hydraulic chambers 651-654 are connected to a common leading port via a distribution oil passage.
  • the return hydraulic chamber 661-664 is connected to a common return port via a distribution oil passage.
  • the oil pump 30 is connected to the motor generator 39 via direct supply oil passages 35 and 38 branched from the oil passage that supplies hydraulic pressure to the hydraulic actuator 60.
  • the motor generator is referred to as "MG”.
  • MG 39 corresponds to an "oil consumer” to which oil is supplied from the oil pump 30. Specifically, oil is sprayed in an open space so as to cool the coil that generates heat by energization in the stator of MG39.
  • the following first to sixth embodiments are a combination of a configuration of three patterns relating to switching of the operating direction of the hydraulic actuator 60 and a configuration of two patterns relating to the oil supply path to the MG 39.
  • the rotation direction of the oil pump 30 is constant, and the oil sucked from the oil pan 31 via the suction oil passage 32 is the suction port 342. Flows from to the discharge port 343 in only one direction.
  • a direction switching valve 56 for switching the flow of oil from the oil pump 30 to the advancing side hydraulic chamber 651-654 and the returning side hydraulic chamber 661-664 is provided.
  • the port shown in the middle is connected to the discharge port 343 of the oil pump 30 via the actuator oil passage 360.
  • Two of the three IN ports shown on both sides are connected to the suction oil passage 32 via the actuator oil passage 365 and 366, respectively.
  • a supply switching valve that switches the communication or cutoff of the direct supply oil passages 35 and 38 in the middle of the direct supply oil passages 35 and 38. 50 is provided.
  • the oil pump 30 side that is, the upstream side
  • the MG39 side that is, the downstream side
  • the circulating oil passage 37 shown by the broken line between the supply switching valve 50 and the suction oil passage 32 is basically not assumed to be used in the first, third, and fifth embodiments. That is, the lowest mode among the three switching modes constituting the supply switching valve 50 is not used.
  • the discharge oil passage 35 communicates with or is cut off from the reaching oil passage 38.
  • the supply switching valve 50 may be integrally configured as a module of the integrated pump device 901.
  • the supply switching valve 50 When the lock is released as shown in FIG. 5, the supply switching valve 50 is operated at a position where the supply oil passages 35 and 38 communicate directly with each other.
  • the direction switching valve 56 is operated at a position where the actuator oil passage 360 is connected to the return side hydraulic chamber 661-664 and the actuator oil passage 365 is connected to the advance side hydraulic chamber 651-654.
  • the oil discharged from the discharge port 343 of the oil pump 30 is directly supplied to the MG 39 via the supply oil passages 35 and 38, and the return side hydraulic chamber 661 of the hydraulic actuator 60 via the actuator oil passage 360. It is supplied to 664. Further, oil is returned from the advancing hydraulic chamber 651-654 of the hydraulic actuator 60 to the suction oil passage 32 via the actuator oil passage 365. In this way, the hydraulic actuator 60 is returned to the returned state, and the parking lock mechanism 80 is unlocked.
  • the supply switching valve 50 When locked as shown in FIG. 6, the supply switching valve 50 is operated at a position where the supply oil passages 35 and 38 are directly shut off.
  • the direction switching valve 56 is operated at a position where the actuator oil passage 360 is connected to the advancing side hydraulic chamber 651-654 and the actuator oil passage 366 is connected to the return side hydraulic chamber 661-664.
  • the oil discharged from the discharge port 343 of the oil pump 30 is supplied to the advancing hydraulic chambers 651-654 of the hydraulic actuator 60 via the actuator oil passage 360. Further, oil is returned from the return side hydraulic chamber 661-664 of the hydraulic actuator 60 to the suction oil passage 32 via the actuator oil passage 366. In this way, the hydraulic actuator 60 is in the advanced state, and the parking lock mechanism 80 is locked.
  • the operating force of the hydraulic actuator is determined by the product of the pressure receiving area and the hydraulic pressure.
  • the pressure receiving area can be secured by a plurality of vanes 641-644, and the hydraulic actuator 60 can be miniaturized. .. Therefore, it is particularly effectively applied as a hydraulic actuator such as a parking lock actuator in which the mounting space is restricted. This effect is common to the first to sixth embodiments.
  • the hydraulic actuator 60 can be reliably switched by using the direction switching valve 56 for switching the operating direction. Further, in the first embodiment, regarding the oil supply path to the MG 39, by using the supply switching valve 50 provided in the direct supply oil passages 35 and 38, the oil is supplied to the MG 39 independently of the operation of the hydraulic actuator 60. The supply of cooling oil can be switched at any time.
  • the integrated pump device 902 of the second embodiment has a different route for supplying oil to the MG 39 as an "oil consumer" from the first embodiment.
  • FIGS. 7 and 8 A configuration example of the rotary hydraulic actuator 60 of the second embodiment will be described with reference to FIGS. 7 and 8.
  • the configurations of FIGS. 7 and 8 are also common to the fourth and sixth embodiments described later. 7 and 8 correspond to FIGS. 3 and 4, respectively, of the first embodiment.
  • a communication port 67 is formed at an intermediate portion between the advancing side hydraulic chamber 651 and the returning hydraulic chamber 661 in the rotation direction.
  • the communication port 67 is not limited to one vane chamber 621, and may be formed in a plurality of vane chambers.
  • the communication port 67 is connected to the MG 39 via the indirect supply oil passage 68.
  • a consumption side backflow prevention valve 69 for preventing backflow of oil from the MG 39 to the hydraulic actuator 60 is provided.
  • the number of the consumption-side check valve 69 is not limited to one, and a plurality of consumption-side check valves 69 may be provided.
  • the "unlocked" state shown on the upper side of FIG. 8 is the initial rotation state of the vane rotor 63 at the time of locking.
  • the “locked” state shown on the lower side of FIG. 8 is the initial rotation state of the vane rotor 63 at the time of unlocking.
  • the two-dot chain arrow in FIG. 7 schematically represents the flow of oil during the transition from the locked state to the unlocked state.
  • the alternate long and short dash arrow schematically represents the flow of oil during the transition from the unlocked state to the locked state.
  • the vane 641 closes the communication port 67 in the return side hydraulic chamber 661, which is the “hydraulic pressure chamber on the side where hydraulic pressure is supplied from the oil pump 30”. There is. After the rotation of the vane rotor 63 starts, the communication port 67 is opened in the return hydraulic pressure chamber 661 at a certain rotation position. Then, at least a part of the oil supplied from the oil pump 30 to the return hydraulic pressure chamber 661 flows out from the communication port 67 and is supplied to the MG 39 via the indirect supply oil passage 68.
  • the vane 641 closes the communication port 67 in the advancing side hydraulic chamber 651, which is the “hydraulic pressure chamber on the side where hydraulic pressure is supplied from the oil pump 30”. ..
  • the communication port 67 is opened in the advancing hydraulic chamber 651 at a certain rotation position. Then, at least a part of the oil supplied from the oil pump 30 to the oil pressure chamber 651 on the advancing side flows out from the communication port 67 and is supplied to the MG 39 via the indirect supply oil passage 68.
  • the oil passage from the oil pump 30 to the MG 39 and the oil passage from the oil pump 30 to the hydraulic actuator 60 are configured in parallel.
  • the oil passages are configured in a series so as to be connected from the oil pump 30 to the MG 39 via the hydraulic actuator 60. By combining them into one route, the configuration of the oil channel can be simplified. Further, the supply switching valve 50 can be reduced by switching the supply of oil to the MG 39 by utilizing the rotation of the vane rotor 63. Therefore, the system including the integrated pump device can be further miniaturized.
  • the integrated pump device 903 of the third embodiment has a different configuration of a hydraulic circuit for switching the operating direction of the hydraulic actuator 60 from the first embodiment.
  • the oil pump 30 can rotate forward and reverse together with the motor 10, and the suction port and the discharge port alternate between the normal rotation and the reverse rotation. That is, the normal rotation suction port 342 is a reverse rotation discharge port, and the reverse rotation suction port 343 is a normal rotation discharge port.
  • the rotation direction of the first embodiment that is, the rotation direction of the oil pump 30 in which oil is supplied to the MG 39 directly from the discharge port 343 during normal rotation via the supply oil passages 35 and 38.
  • the rotation is normal.
  • the supply switching valve 50 switches the communication or shutoff of the direct supply oil passages 35 and 38 as in the first embodiment.
  • the suction port 342 at the time of normal rotation is connected to the advancing hydraulic chamber 651-654 of the hydraulic actuator 60 via the actuator oil passage 367.
  • the suction side backflow prevention valve 57 for preventing backflow from the oil pump 30 side to the oil pan 31 side is provided in the normal rotation suction oil passage 32 connected to the normal rotation suction port 342.
  • the reverse suction port 343 is connected to the return side hydraulic chamber 661-664 of the hydraulic actuator 60 via the actuator oil passage 368.
  • the reverse rotation suction oil passage 33 connected to the reverse rotation suction port 343 is provided with a suction side backflow prevention valve 58 for preventing backflow from the oil pump 30 side to the oil pan 31 side.
  • one end of both the forward rotation suction oil passage 32 and the reverse rotation suction oil passage 33 is connected to the oil pan 30.
  • the suction oil passage 32 at the time of normal rotation and the suction oil passage 33 at the time of reverse rotation may branch from the common suction oil passage connected to the oil pan 30.
  • the supply switching valve 50 is operated at a position where the supply oil passages 35 and 38 communicate directly with each other.
  • the oil pump 30 rotates in the normal direction, oil is sucked from the oil pan 31 to the suction port 342 in the normal rotation via the suction oil passage 32 in the normal rotation.
  • the oil discharged from the discharge port 343 at the time of normal rotation is directly supplied to the MG 39 via the supply oil passages 35 and 38, and is also supplied to the MG 39 via the actuator oil passage 368, and the return side hydraulic chamber 661-664 of the hydraulic actuator 60. Is supplied to.
  • the suction side check valve 58 prevents oil from flowing back to the oil pan 31 side through the suction oil passage 33 at the time of reverse rotation, as indicated by the “x” mark. Further, oil is returned from the advancing hydraulic chamber 651-654 of the hydraulic actuator 60 to the suction oil passage 32 at the time of normal rotation via the actuator oil passage 367. In this way, the hydraulic actuator 60 is returned to the returned state, and the parking lock mechanism 80 is unlocked.
  • the supply switching valve 50 When locked as shown in FIG. 12, the supply switching valve 50 is operated at a position where the supply oil passages 35 and 38 are directly shut off.
  • the oil pump 30 reverses, oil is sucked from the oil pan 31 to the reverse suction suction port 343 via the reverse suction suction passage 33.
  • the oil discharged from the reverse discharge port 342 is supplied to the advancing hydraulic chambers 651-654 of the hydraulic actuator 60 via the actuator oil passage 367.
  • the suction side check valve 57 prevents oil from flowing back to the oil pan 31 side through the suction oil passage 32 at the time of normal rotation, as indicated by the “x” mark. Further, oil is returned from the return side hydraulic chamber 661-664 of the hydraulic actuator 60 to the suction oil passage 33 at the time of reversal via the actuator oil passage 368. In this way, the hydraulic actuator 60 is in the advanced state, and the parking lock mechanism 80 is locked.
  • the integrated pump device 904 of the fourth embodiment is a combination of the operation direction switching configuration of the hydraulic actuator 60 according to the third embodiment and the oil supply configuration to the MG 39 according to the second embodiment. That is, the operating direction of the hydraulic actuator 60 is switched by the function of the forward rotation or the reverse rotation of the oil pump 30 and the functions of the suction side backflow prevention valves 57 and 58. Further, oil is supplied to MG 39 from the communication port 67 formed in the hydraulic actuator 60 via the indirect supply oil passage 68.
  • the indirect supply oil passage 68 is provided with a consumption side check valve 69.
  • the oil discharged from the discharge port 343 in the normal rotation is supplied to the return side hydraulic chamber 661-664 of the hydraulic actuator 60 via the actuator oil passage 368. Will be done.
  • the communication port 67 is closed, and the connection between the oil pump 30 and the MG 39 is cut off.
  • the communication port 67 is opened and the oil pump 30 and the MG 39 are conducted with each other.
  • the oil discharged from the reverse discharge port 342 is supplied to the advancing hydraulic chamber 651-654 of the hydraulic actuator 60 via the actuator oil passage 367.
  • the communication port 67 is closed, and the connection between the oil pump 30 and the MG 39 is cut off.
  • the communication port 67 is opened and the oil pump 30 and the MG 39 are conducted with each other.
  • the direction switching valve 56 can be reduced because the flow of oil in the working direction of the hydraulic actuator 60 is switched by switching the forward rotation or the reverse rotation of the oil pump 30. Further, by preventing the backflow of oil to the suction side by the suction side backflow prevention valves 57 and 58, the hydraulic pressure supplied to the hydraulic actuator 60 is secured.
  • the suction side check valves 57 and 58 are not limited to one in each of the suction oil passages 32 and 33, and a plurality of suction side check valves 57 and 58 may be provided.
  • the integrated pump device 905 of the fifth embodiment has a different configuration of the hydraulic circuit for switching the operating direction of the hydraulic actuator 60 from the first and third embodiments. Similar to the third embodiment, the oil pump 30 can rotate forward and reverse together with the motor 10, and the suction port and the discharge port alternate between the normal rotation and the reverse rotation. Further, the connection configuration of the suction port 342 at the time of normal rotation and the suction port 343 at the time of reverse rotation of the oil pump 30 and the hydraulic actuator 60 is the same as that of the third embodiment.
  • the suction oil passage 32 at the time of normal rotation and the suction oil passage 33 at the time of reverse rotation are provided with a selection shutoff valve 59 instead of the suction side backflow prevention valves 57 and 58 of the third embodiment.
  • the selective isolation valve 59 conducts the suction passage 32 at the time of normal rotation to shut off the suction oil passage 33 at the time of reverse rotation when the oil pump 30 rotates forward, and conducts the suction passage 33 at the time of reverse rotation at the time of reverse rotation of the oil pump 30 to rotate forward.
  • the selective isolation valve 59 may be integrally configured as a module of the integrated pump device 905.
  • the selective isolation valve 59 is not limited to the solenoid valve, and may be composed of a hydraulic switching valve that switches the spool depending on the operating pressure.
  • the supply switching valve 50 is operated at a position where the supply oil passages 35 and 38 communicate directly with each other.
  • the selective isolation valve 59 conducts the suction oil passage 32 during normal rotation.
  • oil pump 30 rotates in the normal direction
  • oil is sucked from the oil pan 31 to the suction port 342 in the normal rotation via the suction oil passage 32 in the normal rotation.
  • the oil discharged from the discharge port 343 at the time of normal rotation is directly supplied to the MG 39 via the supply oil passages 35 and 38, and is also supplied to the MG 39 via the actuator oil passage 368, and the return side hydraulic chamber 661-664 of the hydraulic actuator 60. Is supplied to.
  • the selective shutoff valve 59 shuts off the suction oil passage 33 at the time of reverse rotation, as indicated by the “x” mark. Further, oil is returned from the advancing hydraulic chamber 651-654 of the hydraulic actuator 60 to the suction oil passage 32 at the time of normal rotation via the actuator oil passage 367. In this way, the hydraulic actuator 60 is returned to the returned state, and the parking lock mechanism 80 is unlocked.
  • the supply switching valve 50 When locked as shown in FIG. 16, the supply switching valve 50 is operated at a position where the supply oil passages 35 and 38 are directly shut off.
  • the selective isolation valve 59 conducts the suction oil passage 33 at the time of reverse rotation.
  • oil pump 30 reverses, oil is sucked from the oil pan 31 to the reverse suction suction port 343 via the reverse suction suction passage 33.
  • the oil discharged from the reverse discharge port 342 is supplied to the advancing hydraulic chambers 651-654 of the hydraulic actuator 60 via the actuator oil passage 367.
  • the selective shutoff valve 59 shuts off the suction oil passage 32 at the time of normal rotation, as indicated by the “x” mark. Further, oil is returned from the return side hydraulic chamber 661-664 of the hydraulic actuator 60 to the suction oil passage 33 at the time of reversal via the actuator oil passage 368. In this way, the hydraulic actuator 60 is in the advanced state, and the parking lock mechanism 80 is locked.
  • the integrated pump device 906 of the sixth embodiment is a combination of the operation direction switching configuration of the hydraulic actuator 60 according to the fifth embodiment and the oil supply configuration to the MG 39 according to the second embodiment. That is, the operating direction of the hydraulic actuator 60 is switched by switching the forward rotation or the reverse rotation of the oil pump 30 and the switching of the selective isolation valve 59 accompanying the switching. Further, oil is supplied to MG 39 from the communication port 67 formed in the hydraulic actuator 60 via the indirect supply oil passage 68.
  • the indirect supply oil passage 68 is provided with a consumption side check valve 69.
  • the oil discharged from the discharge port 343 in the normal rotation is supplied to the return side hydraulic chamber 661-664 of the hydraulic actuator 60 via the actuator oil passage 368. Will be done.
  • the communication port 67 is closed, and the connection between the oil pump 30 and the MG 39 is cut off.
  • the communication port 67 is opened and the oil pump 30 and the MG 39 are conducted with each other.
  • the oil discharged from the reverse discharge port 342 is supplied to the advancing hydraulic chamber 651-654 of the hydraulic actuator 60 via the actuator oil passage 367.
  • the communication port 67 is closed, and the connection between the oil pump 30 and the MG 39 is cut off.
  • the communication port 67 is opened and the oil pump 30 and the MG 39 are conducted with each other.
  • the operating direction of the hydraulic actuator 60 is switched by switching the forward rotation or the reverse rotation of the oil pump 30 and the selection shutoff valve 59 accompanying the switching, so that the direction switching valve 56 can be reduced. can. Further, the hydraulic pressure supplied to the hydraulic actuator 60 is secured by preventing the backflow of oil to the suction side by the selective isolation valve 59.
  • the cylinder type hydraulic actuator 70 includes a cylinder 71 and a piston 73 that reciprocates in the cylinder 71.
  • the advancing side hydraulic chamber 75 is formed in one of the axial directions of the piston 73 in the cylinder 71, and the returning side hydraulic chamber 76 is formed in the other in the axial direction of the piston 73.
  • the piston 73 is linked to the switching rod 84 of the parking lock mechanism 80.
  • the tip of the switching rod 84 is engaged with a pin 824 provided on the detent plate 82.
  • the switching rod 84 reciprocates with the reciprocating movement of the piston 73, the detent plate 82 rotates via the pin 824, and the parking rod 85 moves to switch between the P range and the notP range.
  • the oil pump 30 can supply oil to the traveling side hydraulic chamber 75 and the returning side hydraulic chamber 76 via the ports 721 and 722.
  • the flow of oil to each of the hydraulic chambers 75 and 76 is switched according to the first or second embodiment of the rotary hydraulic actuator 60.
  • the oil in the hydraulic chamber on the discharge side is returned to the suction side of the oil pump 30.
  • FIG. 19 omits the illustration of the oil flow switching path.
  • the same operation of the hydraulic actuator as in the first to sixth embodiments is realized. However, it differs from the first to sixth embodiments in that it is not intended to reduce the size of the integrated pump device.
  • the hydraulic actuator 60 is not limited to the parking lock actuator, and may be applied to an actuator for any purpose such as a speed change drum shift. Further, depending on the actuator to be applied, what kind of state is to be the advanced state and the returned state may be appropriately set.
  • the number of vanes of the vane rotor in the hydraulic actuator 60 is not limited to the four illustrated in FIG. 4, and may be one or more as long as the pressure receiving area can be secured.
  • the vane chamber of the housing is set according to the number of vanes. Further, instead of providing the stopper portion for restricting the rotation limit on the vane, it may be provided between the vane rotor main body and the housing.
  • the "oil consumer" to which the oil is supplied from the oil pump 30 is not limited to MG39, and may be any device that consumes oil. Further, in the case where the backflow prevention function is provided inside the oil consumer in the second, fourth, and sixth embodiments, the consumption side backflow prevention valve 69 may not be provided in the indirect supply oil passage 68.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Transportation (AREA)
  • Control Of Transmission Device (AREA)
  • Valve Device For Special Equipments (AREA)
  • Gear-Shifting Mechanisms (AREA)

Abstract

統合ポンプ装置は、モータ(10)と、モータ(10)の駆動力により回転するオイルポンプ(30)と、オイルポンプ(30)から供給される油圧により作動する油圧アクチュエータ(60)とが一体に構成されたモジュールをなしている。油圧アクチュエータ(60)は、一つ以上のベーン室(621-624)を有するハウジング(61)と、ハウジング(61)に収容され、ベーン室に対応する一つ以上のベーン(641-644)が設けられたベーンロータ(63)とを備える。ベーン室におけるベーンの周方向の一方に進み側油圧室(651-654)が形成され、ベーンの周方向の他方に戻し側油圧室(661-664)が形成される。進み側油圧室(651-654)に油圧が供給されたときベーンロータ(63)が一方向に回転して進み状態となり、戻し側油圧室(661-664)に油圧が供給されたときベーンロータ(63)が他方向に回転して戻し状態となる。

Description

統合ポンプ装置 関連出願の相互参照
 本出願は、2020年12月17日に出願された特許出願番号2020-209129号に基づくものであり、ここにその記載内容を援用する。
 本開示は、統合ポンプ装置に関する。
 従来、モータ及び電動オイルポンプと油圧アクチュエータとを統合した油圧システムが知られている。例えば特許文献1に開示された自動車用の油圧システムは、モータ及び電動オイルポンプと油圧パーキングロックアクチュエータとクラッチ係合制御油路とが統合されている。モータの正転時、油圧パーキングロックアクチュエータ及びクラッチが作動する。モータの逆転時、オイルポンプからモータジェネレータ冷却用の油が供給される。
国際公開第2020/043235号
 特許文献1の油圧システムでは、シリンダ内をピストンが往復移動するシリンダ式の油圧パーキングロックアクチュエータが用いられている。そのため、受圧面積やストローク長を確保するための体格が大きくなる。
 本開示の目的は、モータ及び電動オイルポンプと一体に構成された油圧アクチュエータを小型化した統合ポンプ装置を提供することにある。
 本開示の統合ポンプ装置は、モータと、オイルポンプと、油圧アクチュエータとが一体に構成されたモジュールをなしている。ここで、例えば自動車に搭載される統合ポンプ装置において「一体に構成されたモジュール」とは、必ずしも一部品として自動車メーカーに納入されるものに限らない。パーツ毎に納入され、自動車に取り付けられた後に一体構成をなすものも「一体に構成されたモジュール」に含まれると解釈する。
 オイルポンプは、モータの駆動力により回転し、オイルパンから吸入した油を吐出する。油圧アクチュエータは、オイルポンプから供給される油圧により、進み状態と戻し状態とを切り替えるように作動する。例えば油圧アクチュエータは、自動車のパーキングロック機構を作動させるパーキングロックアクチュエータである。
 油圧アクチュエータは、一つ以上のベーン室を有するハウジングと、ハウジングに収容され、ベーン室に対応する一つ以上のベーンが設けられたベーンロータと、を備える。
 ベーンは、対応するベーン室において周方向に回動可能である。ベーン室におけるベーンの周方向の一方に進み側油圧室が形成され、ベーンの周方向の他方に戻し側油圧室が形成される。進み側油圧室に油が供給されたときベーンロータが一方向に回転して進み状態となり、戻し側油圧室に油が供給されたときベーンロータが他方向に回転して戻し状態となる。
 油圧アクチュエータの作動力は受圧面積と油圧との積で決まるところ、本開示では回転式油圧アクチュエータを用いることで、一つ以上のベーンにより受圧面積を確保し、油圧アクチュエータを小型化することができる。したがって、搭載スペースが制約されるパーキングロックアクチュエータ等の油圧アクチュエータとして特に有効に適用される。
 本開示についての上記目的及びその他の目的、特徴や利点は、添付の図面を参照しながら下記の詳細な記述により、より明確になる。その図面は、
図1は、本実施形態による統合ポンプ装置の基本構成図であり、 図2は、第1~第6実施形態による統合ポンプ装置及びパーキングロック機構の構成図であり、 図3は、第1、3、5実施形態による回転式油圧アクチュエータの外観、及び、油の流れを示す図であり、 図4は、第1、3、5実施形態のロック解除時(戻し状態)、及びロック時(進み状態)における図3のIV-IV線断面図であり、 図5は、第1実施形態によるロック解除時(戻し状態)の油圧経路図であり、 図6は、第1実施形態によるロック時(進み状態)の油圧経路図であり、 図7は、第2、4、6実施形態による回転式油圧アクチュエータの外観、及び、油の流れを示す図であり、 図8は、第2、4、6実施形態のロック解除時(戻し状態)、及びロック時(進み状態)における図7のVIII-VIII線断面図であり、 図9は、第2実施形態によるロック解除時(戻し状態)の油圧経路図であり、 図10は、第2実施形態によるロック時(進み状態)の油圧経路図であり、 図11は、第3実施形態によるロック解除時(戻し状態)の油圧経路図であり、 図12は、第3実施形態によるロック時(進み状態)の油圧経路図であり、 図13は、第4実施形態によるロック解除時(戻し状態)の油圧経路図であり、 図14は、第4実施形態によるロック時(進み状態)の油圧経路図であり、 図15は、第5実施形態によるロック解除時(戻し状態)の油圧経路図であり、 図16は、第5実施形態によるロック時(進み状態)の油圧経路図であり、 図17は、第6実施形態によるロック解除時(戻し状態)の油圧経路図であり、 図18は、第6実施形態によるロック時(進み状態)の油圧経路図であり、 図19は、参考形態によるシリンダ式油圧アクチュエータを用いた統合ポンプ装置及びパーキングロック機構の構成図である。
 以下、本開示による統合ポンプ装置の複数の実施形態を図面に基づいて説明する。複数の実施形態において実質的に同一の構成には同一の符号を付して説明を省略する。第1~第6実施形態を包括して「本実施形態」という。本実施形態の統合ポンプ装置は、モータ及び電動オイルポンプと油圧アクチュエータとが一体に構成されたモジュールをなしている。
 図1に、本実施形態の統合ポンプ装置90に共通する基本構成を示す。統合ポンプ装置90は、モータ10、オイルポンプ30及び油圧アクチュエータ60が一体に構成されている。図中、モータを「M」、電動オイルポンプを「EOP」と記す。
 オイルポンプ30は、モータ10の駆動力により回転する電動オイルポンプであり、オイルパンから吸入した油を吐出する。
 油圧アクチュエータ60は、オイルポンプ30から供給される油圧により、進み状態と戻し状態とを切り替えるように作動する。ここで、「進み状態」及び「戻し状態」は、相対する二極状態を便宜上区別する用語に過ぎず、いずれの状態を進み状態又は戻し状態と定義してもよい。
 本実施形態の油圧アクチュエータ60は、自動車のパーキングロック機構80を作動させるパーキングロックアクチュエータである。油圧アクチュエータ60は、進み状態でパーキングロック機構80をロックし、戻し状態でパーキングロック機構をロック解除するように作動力を与える。シフトレンジがPレンジに操作されたときがロック時に相当し、notPレンジに操作されたときがロック解除時に相当する。ここでnotPレンジは、2ポジション構成では一つのレンジである。また、多段変速レンジ等を含む構成ではPレンジ以外の複数のレンジを包括してnotPレンジと解釈すればよい。
 (第1実施形態)
 以下、各実施形態の統合ポンプ装置の符号は、実施形態の番号に対応して「901」~「906」とする。まず図2~図6を参照し、第1実施形態について説明する。図2に、第1実施形態の統合ポンプ装置901及びパーキングロック機構80を示す。統合ポンプ装置901は、外形が円柱状の回転式油圧アクチュエータ60が用いられており、モータ10、オイルポンプ30及び油圧アクチュエータ60の三つが一体に構成されている。図2の例では三つが同軸且つ直列に並んで一体に構成されているが、軸がずれた状態で直列に並んで一体に構成されてもよいし、並列に並んで一体に構成されてもよい。
 パーキングロック機構80は、ディテントシャフト81、ディテントプレート82、ディテントスプリング83、切替ロッド84、パーキングロッド85、円錐体86、パーキングロックポール87、パーキングギヤ88等を有する。ディテントシャフト81は油圧アクチュエータ60の出力軸であり、油圧アクチュエータ60の作動により所定角度範囲で両方向に回転する。ディテントプレート82は、ディテントシャフト81に固定されており、ディテントシャフト81と共に回転する。
 ディテントプレート82のディテントスプリング83側には、複数の凹部823が形成されている。ディテントプレート82に所定以上の回転力が加わると、ディテントスプリング83が弾性変形し、先端に設けられたディテントローラ833がいずれかの凹部823に嵌まり込むことで、ディテントプレート82の回転が規制される。ディテントプレート82の板面から突出するピン824は、切替ロッド84の先端に形成された溝に係合する。なお、ピン824及び切替ロッド84は、図19に示す参考形態で用いられるものであり、第1実施形態では無くてもよい。
 パーキングロッド85は、略L字形状に形成され、一端851側がディテントプレート82に固定されている。パーキングロッド85の他端852側には、他端852に近づくに従って縮径する円錐体86が設けられている。ディテントローラ833がPレンジに対応する凹部に嵌まり込む方向にディテントプレート82が回転すると、円錐体86が矢印Pの方向に移動する。
 パーキングロックポール87は、円錐体86の円錐面と当接し、軸部877を中心に揺動可能である。パーキングロックポール87には、パーキングギヤ88と噛み合い可能な凸部878が設けられている。円錐体86が矢印P方向に移動すると、パーキングロックポール87が押し上げられ、凸部878とパーキングギヤ88とが噛み合い、ロック状態となる。円錐体86が矢印notP方向に移動すると、凸部878がパーキングギヤ88から離れ、ロック状態が解除される。
 次に図3、図4を参照し、回転式油圧アクチュエータ60の構成例について説明する。図3、図4の構成は、後述の第3、第5実施形態にも共通する。図4の上側には、シフトレンジがPレンジからnotPレンジに操作されたロック解除時における作動完了状態を示し、図4の下側には、シフトレンジがnotPレンジからPレンジに操作されたロック時における作動完了状態を示す。
 油圧アクチュエータ60は、回転軸Oを中心とする円筒状のハウジング61と、ハウジング61に同軸に収容されたベーンロータ63とを備える。ハウジング61は、周方向に例えば四つのベーン室621-624を有する。ベーン室621-624は、径方向外側の内壁が円弧状に形成された扇形状を呈している。図ではベーン室621-624の符号の引き出し線を径方向外側の内壁から引き出している。
 ベーンロータ63は、ベーン室621-624に対応する例えば四つのベーン641-644が外周に設けられている。四つのベーン641-644のうち一つのベーン641は、回転限界を規制するストッパ部645、646が周方向両端に設けられており、他の三つのベーン642、643、644よりも大きく形成されている。他の三つのベーン642、643、644は、油圧室の容積を確保するため、比較的小さく形成されている。各ベーン641-644の径方向外壁の摺動部にはシール材が設けられている。
 各ベーン641-644は、対応するベーン室621-624において周方向に回動可能である。ベーン室621-624におけるベーン641-644の周方向の一方に進み側油圧室651-654が形成される。また、ベーン641-644の周方向の他方に戻し側油圧室661-664が形成される。図示しないが、進み側油圧室651-654は、分配油路を経由して共通の進み側ポートに接続されている。同様に戻し側油圧室661-664は、分配油路を経由して共通の戻し側ポートに接続されている。
 図4の上側に示すロック解除時には、破線ハッチングを付した戻し側油圧室661-664に油圧が供給される。これにより、ベーンロータ63が図の反時計回り方向に回転して戻し状態となり、パーキングロック機構80がロック解除される。進み側油圧室651-654からは油が排出される。図3の二点鎖線矢印は、このときの油の流れを模式的に表す。
 図4の下側に示すロック時には、破線ハッチングを付した進み側油圧室651-654に油圧が供給される。これにより、ベーンロータ63が図の時計回り方向に回転して進み状態となり、パーキングロック機構80がロックされる。戻し側油圧室661-664からは油が排出される。図3の一点鎖線矢印は、このときの油の流れを模式的に表す。
 次に図5、図6を参照する。オイルポンプ30は、油圧アクチュエータ60へ油圧を供給する油路から分岐した直接供給油路35、38を介してモータジェネレータ39に接続されている。図中及び以下の明細書中でモータジェネレータを「MG」と記す。MG39は、オイルポンプ30からの油の供給対象である「オイル消費器」に相当する。具体的にはMG39のステータにおいて通電により発熱するコイルを冷却するように開放空間で油が吹き付けられる。
 以下の第1~第6実施形態は、油圧アクチュエータ60の作動方向の切り替えに関する3パターンの構成、及び、MG39への油の供給経路に関する2パターンの構成を組み合わせたものである。油圧アクチュエータ60の作動方向の切り替えに関し、第1、第2実施形態ではオイルポンプ30の回転方向は一定であり、オイルパン31から吸入油路32を経由して吸入された油は、吸入口342から吐出口343への一方向にのみ流れる。
 オイルポンプ30と油圧アクチュエータ60との間には、オイルポンプ30から進み側油圧室651-654及び戻し側油圧室661-664への油の流れを切り替える方向切替弁56が設けられている。方向切替弁56の三つのINポートのうち真ん中に図示されたポートは、アクチュエータ油路360を経由してオイルポンプ30の吐出口343に接続されている。三つのINポートのうち両側に図示された二つのポートは、それぞれアクチュエータ油路365、366を経由して吸入油路32に接続されている。
 また、MG39への油の供給経路に関し、第1、第3、第5実施形態では、直接供給油路35、38の途中に、直接供給油路35、38の連通又は遮断を切り替える供給切替弁50が設けられている。直接供給油路35、38のうち供給切替弁50よりもオイルポンプ30側(すなわち上流側)を「吐出油路35」とし、供給切替弁50よりもMG39側(すなわち下流側)を「到達油路38」とする。なお、供給切替弁50と吸入油路32との間に破線で図示されている循環油路37は、第1、第3、第5実施形態では基本的に使用を想定しない。つまり、供給切替弁50を構成する3つの切替モードのうち一番下のモードは使用されない。吐出油路35は、到達油路38と連通されるか、又は遮断される。供給切替弁50は、統合ポンプ装置901のモジュールとして一体に構成されてもよい。
 図5に示すロック解除時、供給切替弁50は、直接供給油路35、38を連通する位置に操作される。方向切替弁56は、アクチュエータ油路360が戻し側油圧室661-664に接続され、アクチュエータ油路365が進み側油圧室651-654に接続される位置に操作される。オイルポンプ30の吐出口343から吐出された油は、直接供給油路35、38を経由してMG39に供給されると共に、アクチュエータ油路360を経由して油圧アクチュエータ60の戻し側油圧室661-664に供給される。また、油圧アクチュエータ60の進み側油圧室651-654からアクチュエータ油路365を経由して吸入油路32に油が戻される。こうして油圧アクチュエータ60は戻し状態となり、パーキングロック機構80がロック解除される。
 図6に示すロック時、供給切替弁50は、直接供給油路35、38を遮断する位置に操作される。方向切替弁56は、アクチュエータ油路360が進み側油圧室651-654に接続され、アクチュエータ油路366が戻し側油圧室661-664に接続される位置に操作される。オイルポンプ30の吐出口343から吐出された油は、アクチュエータ油路360を経由して油圧アクチュエータ60の進み側油圧室651-654に供給される。また、油圧アクチュエータ60の戻し側油圧室661-664からアクチュエータ油路366を経由して吸入油路32に油が戻される。こうして油圧アクチュエータ60は進み状態となり、パーキングロック機構80がロックされる。
 油圧アクチュエータの作動力は受圧面積と油圧との積で決まるところ、回転式油圧アクチュエータ60を用いることで、複数のベーン641-644により受圧面積を確保し、油圧アクチュエータ60を小型化することができる。したがって、搭載スペースが制約されるパーキングロックアクチュエータ等の油圧アクチュエータとして特に有効に適用される。この効果は、第1~第6実施形態に共通である。
 第1実施形態では、油圧アクチュエータ60の作動方向の切り替えに関して、方向切替弁56を用いることで確実な切り替えができる。また第1実施形態では、MG39への油の供給経路に関して、直接供給油路35、38に設けられた供給切替弁50を用いることで、油圧アクチュエータ60の作動とは独立して、MG39への冷却油の供給を任意のタイミングで切り替えることができる。
 (第2実施形態)
 図7~図10を参照し、第2実施形態について説明する。第2実施形態の統合ポンプ装置902は、第1実施形態に対し、「オイル消費器」としてのMG39に油を供給する経路が異なる。第2実施形態では、オイルポンプ30とMG39との間に、第1実施形態のような直接供給油路35、38が無い。また第2実施形態では、供給切替弁50が設けられていない。
 図7、図8を参照し、第2実施形態の回転式油圧アクチュエータ60の構成例について説明する。図7、図8の構成は、後述の第4、第6実施形態にも共通する。図7、図8は、それぞれ第1実施形態の図3、図4に対応する。図8に示すように、例えばベーン641が作動するベーン室621は、進み側油圧室651と戻し側油圧室661との回転方向の中間部に連通口67が形成されている。連通口67は、一つのベーン室621に限らず、複数のベーン室に形成されてもよい。
 図9、図10に示すように、連通口67は間接供給油路68を介してMG39に接続されている。間接供給油路68の途中には、MG39から油圧アクチュエータ60への油の逆流を防止する消費側逆流防止弁69が設けられている。消費側逆流防止弁69は、一つに限らず、複数設けられてもよい。
 ここで、図8の上側に示す「ロック解除時」の状態は、ロック時におけるベーンロータ63の回転初期状態である。図8の下側に示す「ロック時」の状態は、ロック解除時におけるベーンロータ63の回転初期状態である。図7の二点鎖線矢印は、ロック状態からロック解除状態に移行するときの油の流れを模式的に表す。一点鎖線矢印は、ロック解除状態からロック状態に移行するときの油の流れを模式的に表す。
 図9に示すロック解除時、ベーンロータ63の回転初期には、「オイルポンプ30から油圧が供給される側の油圧室」である戻し側油圧室661において、ベーン641が連通口67を閉塞している。ベーンロータ63の回転開始後、ある回転位置で、戻し側油圧室661において連通口67が開放される。すると、オイルポンプ30から戻し側油圧室661に供給された油の少なくとも一部は連通口67から流出し、間接供給油路68を経由してMG39に供給される。
 図10に示すロック時、ベーンロータ63の回転初期には、「オイルポンプ30から油圧が供給される側の油圧室」である進み側油圧室651において、ベーン641が連通口67を閉塞している。ベーンロータ63の回転開始後、ある回転位置で、進み側油圧室651において連通口67が開放される。すると、オイルポンプ30から進み側油圧室651に供給された油の少なくとも一部は連通口67から流出し、間接供給油路68を経由してMG39に供給される。
 第1実施形態では、オイルポンプ30からMG39への油路と、オイルポンプ30から油圧アクチュエータ60への油路とがパラレルに構成されている。それに対し第2実施形態では、オイルポンプ30から油圧アクチュエータ60を経由してMG39へ接続されるように油路をシリーズに構成する。一経路にまとめることで、油路の構成を簡素化することができる。また、ベーンロータ63の回転を利用してMG39への油の供給を切り替えることで、供給切替弁50を削減することができる。したがって、統合ポンプ装置を含むシステムをより小型化することができる。
 (第3実施形態)
 図11、図12を参照し、第3実施形態について説明する。第3実施形態の統合ポンプ装置903は、第1実施形態に対し、油圧アクチュエータ60の作動方向を切り替える油圧回路の構成が異なる。オイルポンプ30はモータ10と共に正転及び逆転可能であり、正転時と逆転時とで吸入口と吐出口とが交替する。すなわち、正転時吸入口342は逆転時吐出口であり、逆転時吸入口343は正転時吐出口である。
 図11、図12では便宜上、第1実施形態の回転方向、すなわち、正転時吐出口343から直接供給油路35、38を経由してMG39に油が供給されるオイルポンプ30の回転方向を正転とする。供給切替弁50は、第1実施形態と同様に直接供給油路35、38の連通又は遮断を切り替える。
 正転時吸入口342は、アクチュエータ油路367を経由して油圧アクチュエータ60の進み側油圧室651-654に接続されている。正転時吸入口342に接続される正転時吸入油路32には、オイルポンプ30側からオイルパン31側への逆流を防止する吸入側逆流防止弁57が設けられている。
 逆転時吸入口343は、アクチュエータ油路368を経由して油圧アクチュエータ60の戻し側油圧室661-664に接続されている。逆転時吸入口343に接続される逆転時吸入油路33には、オイルポンプ30側からオイルパン31側への逆流を防止する吸入側逆流防止弁58が設けられている。図示例では、正転時吸入油路32及び逆転時吸入油路33は、いずれも一端がオイルパン30に接続されている。これに限らず、オイルパン30に接続された共通の吸入油路から正転時吸入油路32及び逆転時吸入油路33が分岐してもよい。
 図11に示すロック解除時、供給切替弁50は、直接供給油路35、38を連通する位置に操作される。オイルポンプ30が正転すると、オイルパン31から正転時吸入油路32を経由して正転時吸入口342に油が吸入される。正転時吐出口343から吐出された油は、直接供給油路35、38を経由してMG39に供給されると共に、アクチュエータ油路368を経由して油圧アクチュエータ60の戻し側油圧室661-664に供給される。
 このとき吸入側逆流防止弁58は、「×」印で示すように、逆転時吸入油路33を通ってオイルパン31側に油が逆流することを防止する。また、油圧アクチュエータ60の進み側油圧室651-654からアクチュエータ油路367を経由して正転時吸入油路32に油が戻される。こうして油圧アクチュエータ60は戻し状態となり、パーキングロック機構80がロック解除される。
 図12に示すロック時、供給切替弁50は、直接供給油路35、38を遮断する位置に操作される。オイルポンプ30が逆転すると、オイルパン31から逆転時吸入油路33を経由して逆転時吸入口343に油が吸入される。逆転時吐出口342から吐出された油は、アクチュエータ油路367を経由して油圧アクチュエータ60の進み側油圧室651-654に供給される。
 このとき吸入側逆流防止弁57は、「×」印で示すように、正転時吸入油路32を通ってオイルパン31側に油が逆流することを防止する。また、油圧アクチュエータ60の戻し側油圧室661-664からアクチュエータ油路368を経由して逆転時吸入油路33に油が戻される。こうして油圧アクチュエータ60は進み状態となり、パーキングロック機構80がロックされる。
 (第4実施形態)
 図13、図14を参照し、第4実施形態について説明する。第4実施形態の統合ポンプ装置904は、第3実施形態による油圧アクチュエータ60の作動方向切り替え構成と、第2実施形態によるMG39への油供給構成とが組み合わされている。つまり、オイルポンプ30の正転又は逆転の切り替え、及び、吸入側逆流防止弁57、58の機能により、油圧アクチュエータ60の作動方向が切り替えられる。また、油圧アクチュエータ60に形成された連通口67から間接供給油路68を経由してMG39に油が供給される。間接供給油路68には消費側逆流防止弁69が設けられている。
 図13に示すロック解除時、オイルポンプ30が正転すると、正転時吐出口343から吐出された油は、アクチュエータ油路368を経由して油圧アクチュエータ60の戻し側油圧室661-664に供給される。ベーンロータ63の回転初期には連通口67が閉塞され、オイルポンプ30とMG39との間が遮断される。ベーンロータ63の回転開始後、連通口67が開放され、オイルポンプ30とMG39との間が導通される。
 図14に示すロック時、オイルポンプ30が逆転すると、逆転時吐出口342から吐出された油は、アクチュエータ油路367を経由して油圧アクチュエータ60の進み側油圧室651-654に供給される。ベーンロータ63の回転初期には連通口67が閉塞され、オイルポンプ30とMG39との間が遮断される。ベーンロータ63の回転開始後、連通口67が開放され、オイルポンプ30とMG39との間が導通される。
 第3、第4実施形態では、オイルポンプ30の正転又は逆転の切り替えにより油圧アクチュエータ60の作動方向油の流れを切り替えるため、方向切替弁56を削減することができる。また、吸入側逆流防止弁57、58により吸入側への油の逆流を防止することにより、油圧アクチュエータ60へ供給される油圧が確保される。なお、吸入側逆流防止弁57、58は、各吸入油路32、33に一つに限らず、複数設けられてもよい。
 (第5実施形態)
 図15、図16を参照し、第5実施形態について説明する。第5実施形態の統合ポンプ装置905は、第1、第3実施形態に対し、油圧アクチュエータ60の作動方向を切り替える油圧回路の構成が異なる。第3実施形態と同様に、オイルポンプ30はモータ10と共に正転及び逆転可能であり、正転時と逆転時とで吸入口と吐出口とが交替する。また、オイルポンプ30の正転時吸入口342及び逆転時吸入口343と、油圧アクチュエータ60との接続構成についても第3実施形態と同様である。
 正転時吸入油路32及び逆転時吸入油路33には、第3実施形態の吸入側逆流防止弁57、58の代わりに選択遮断弁59が設けられている。選択遮断弁59は、オイルポンプ30の正転時に正転時吸入通路32を導通して逆転時吸入油路33を遮断し、オイルポンプ30の逆転時に逆転時吸入通路33を導通して正転時吸入油路32を遮断する。選択遮断弁59は、統合ポンプ装置905のモジュールとして一体に構成されてもよい。なお、選択遮断弁59は電磁弁に限らず、操作圧によりスプールが切り替わる油圧切替弁で構成されてもよい。
 図15に示すロック解除時、供給切替弁50は、直接供給油路35、38を連通する位置に操作される。選択遮断弁59は正転時吸入油路32を導通する。オイルポンプ30が正転すると、オイルパン31から正転時吸入油路32を経由して正転時吸入口342に油が吸入される。正転時吐出口343から吐出された油は、直接供給油路35、38を経由してMG39に供給されると共に、アクチュエータ油路368を経由して油圧アクチュエータ60の戻し側油圧室661-664に供給される。
 このとき選択遮断弁59は、「×」印で示すように、逆転時吸入油路33を遮断する。また、油圧アクチュエータ60の進み側油圧室651-654からアクチュエータ油路367を経由して正転時吸入油路32に油が戻される。こうして油圧アクチュエータ60は戻し状態となり、パーキングロック機構80がロック解除される。
 図16に示すロック時、供給切替弁50は、直接供給油路35、38を遮断する位置に操作される。選択遮断弁59は逆転時吸入油路33を導通する。オイルポンプ30が逆転すると、オイルパン31から逆転時吸入油路33を経由して逆転時吸入口343に油が吸入される。逆転時吐出口342から吐出された油は、アクチュエータ油路367を経由して油圧アクチュエータ60の進み側油圧室651-654に供給される。
 このとき選択遮断弁59は、「×」印で示すように、正転時吸入油路32を遮断する。また、油圧アクチュエータ60の戻し側油圧室661-664からアクチュエータ油路368を経由して逆転時吸入油路33に油が戻される。こうして油圧アクチュエータ60は進み状態となり、パーキングロック機構80がロックされる。
 (第6実施形態)
 図17、図18を参照し、第6実施形態について説明する。第6実施形態の統合ポンプ装置906は、第5実施形態による油圧アクチュエータ60の作動方向切り替え構成と、第2実施形態によるMG39への油供給構成とが組み合わされている。つまり、オイルポンプ30の正転又は逆転の切り替え、及び、それに伴う選択遮断弁59の切り替えにより、油圧アクチュエータ60の作動方向が切り替えられる。また、油圧アクチュエータ60に形成された連通口67から間接供給油路68を経由してMG39に油が供給される。間接供給油路68には消費側逆流防止弁69が設けられている。
 図17に示すロック解除時、オイルポンプ30が正転すると、正転時吐出口343から吐出された油は、アクチュエータ油路368を経由して油圧アクチュエータ60の戻し側油圧室661-664に供給される。ベーンロータ63の回転初期には連通口67が閉塞され、オイルポンプ30とMG39との間が遮断される。ベーンロータ63の回転開始後、連通口67が開放され、オイルポンプ30とMG39との間が導通される。
 図18に示すロック時、オイルポンプ30が逆転すると、逆転時吐出口342から吐出された油は、アクチュエータ油路367を経由して油圧アクチュエータ60の進み側油圧室651-654に供給される。ベーンロータ63の回転初期には連通口67が閉塞され、オイルポンプ30とMG39との間が遮断される。ベーンロータ63の回転開始後、連通口67が開放され、オイルポンプ30とMG39との間が導通される。
 第5、第6実施形態では、オイルポンプ30の正転又は逆転の切り替え、及び、それに伴う選択遮断弁59の切り替えにより油圧アクチュエータ60の作動方向を切り替えるため、方向切替弁56を削減することができる。また、選択遮断弁59により吸入側への油の逆流を防止することにより、油圧アクチュエータ60へ供給される油圧が確保される。
 (参考形態)
 図19を参照し、シリンダ式油圧アクチュエータ70を備える参考形態の統合ポンプ装置907について説明する。シリンダ式油圧アクチュエータ70は、シリンダ71と、シリンダ71内を往復移動するピストン73とを備える。シリンダ71内におけるピストン73の軸方向の一方に進み側油圧室75が形成され、ピストン73の軸方向の他方に戻し側油圧室76が形成されている。
 太線矢印で示すように、ピストン73は、パーキングロック機構80の切替ロッド84にリンクされている。切替ロッド84の先端部は、ディテントプレート82に設けられたピン824に係合している。ピストン73の往復移動に伴って切替ロッド84が往復移動すると、ピン824を介してディテントプレート82が回転し、パーキングロッド85が移動することで、PレンジとnotPレンジとが切り替えられる。
 オイルポンプ30は、ポート721、722を介して進み側油圧室75及び戻し側油圧室76に油を供給可能である。各油圧室75、76への油の流れは、回転式油圧アクチュエータ60の第1又は第2実施形態に準じて切り替えられる。排出側の油圧室の油はオイルポンプ30の吸入側に戻される。図19には油の流れの切り替え経路の図示を省略する。
 ロック解除時、オイルポンプ30から戻し側油圧室76に油圧が供給され、ピストン73が図19の左方向に移動して戻し状態となる。すると切替ロッド84の移動に伴ってパーキングロッド85がnotP方向に移動し、パーキングロック機構80がロック解除される。ロック時、オイルポンプ30から進み側油圧室75に油圧が供給され、ピストン71が図19の右方向に移動して進み状態となる。すると切替ロッド84の移動に伴ってパーキングロッド85がP方向に移動し、パーキングロック機構80がロックされる。
 参考形態では、第1~第6実施形態と同様の油圧アクチュエータの作動が実現される。ただし、統合ポンプ装置の小型化を目的とするものではない点で第1~第6実施形態と異なる。
 (その他の実施形態)
 (1)油圧アクチュエータ60はパーキングロックアクチュエータ以外に限らず、変速用ドラムシフト等、どのような用途のアクチュエータに適用されてもよい。また、適用されるアクチュエータに応じて、どのような状態を進み状態及び戻し状態とするかは、適宜設定されてよい。
 (2)油圧アクチュエータ60におけるベーンロータのベーンの数は、図4に例示した四つに限らず、受圧面積を確保することができれば一つ以上いくつでもよい。ハウジングのベーン室はベーンの数に対応して設定される。また、回転限界を規制するストッパ部をベーンに設けるのでなく、ベーンロータ本体とハウジングとの間に設けてもよい。
 (3)オイルポンプ30からの油の供給対象である「オイル消費器」はMG39に限らず、油を消費するどのような装置であってもよい。また、第2、第4、第6実施形態においてオイル消費器の内部に逆流防止機能を有する場合等には、間接供給油路68に消費側逆流防止弁69が設けられなくてもよい。
 以上、本開示は、上記実施形態になんら限定されるものではなく、その趣旨を逸脱しない範囲において種々の形態で実施可能である。
 本開示は実施形態に準拠して記述された。しかしながら、本開示は当該実施形態および構造に限定されるものではない。本開示は、様々な変形例および均等の範囲内の変形をも包含する。また、様々な組み合わせおよび形態、さらには、それらに一要素のみ、それ以上、あるいはそれ以下、を含む他の組み合わせおよび形態も本開示の範疇および思想範囲に入るものである。

Claims (8)

  1.  モータ(10)と、
     前記モータの駆動力により回転し、オイルパン(31)から吸入した油を吐出するオイルポンプ(30)と、
     前記オイルポンプから供給される油圧により、進み状態と戻し状態とを切り替えるように作動する油圧アクチュエータ(60)と、
     が一体に構成されたモジュールをなしており、
     前記油圧アクチュエータは、
     一つ以上のベーン室(621-624)を有するハウジング(61)と、
     前記ハウジングに収容され、前記ベーン室に対応する一つ以上のベーン(641-644)が設けられたベーンロータ(63)と、を備え、
     前記ベーン室における前記ベーンの周方向の一方に進み側油圧室(651-654)が形成され、前記ベーンの周方向の他方に戻し側油圧室(661-664)が形成され、
     前記進み側油圧室に油圧が供給されたとき前記ベーンロータが一方向に回転して前記進み状態となり、前記戻し側油圧室に油圧が供給されたとき前記ベーンロータが他方向に回転して前記戻し状態となる統合ポンプ装置。
  2.  前記オイルポンプから前記進み側油圧室及び前記戻し側油圧室への油の流れを切り替える方向切替弁(56)が設けられている請求項1に記載の統合ポンプ装置。
  3.  前記オイルポンプは正転及び逆転可能であり、正転時と逆転時とで吸入口と吐出口とが交替し、逆転時吐出口である正転時吸入口(342)は前記進み側油圧室に接続され、正転時吐出口である逆転時吸入口(343)は前記戻し側油圧室に接続されており、
     前記正転時吸入口に接続される正転時吸入油路(32)、及び、前記逆転時吸入口に接続される逆転時吸入油路(33)には、それぞれ前記オイルポンプ側から前記オイルパン側への逆流を防止する吸入側逆流防止弁(57、58)が設けられており、
     前記オイルポンプの正転又は逆転の切り替えにより、前記オイルポンプから前記進み側油圧室又は前記戻し側油圧室への油の流れを切り替える請求項1に記載の統合ポンプ装置。
  4.  前記オイルポンプは正転及び逆転可能であり、正転時と逆転時とで吸入口と吐出口とが交替し、逆転時吐出口である正転時吸入口(342)は前記進み側油圧室に接続され、正転時吐出口である逆転時吸入口(343)は前記戻し側油圧室に接続されており、
     前記オイルパンと前記正転時吸入口とを接続する正転時吸入油路(32)、及び、前記オイルパンと前記逆転時吸入口とを接続する逆転時吸入油路(33)に対し、前記オイルポンプの正転時に前記正転時吸入通路を導通して前記逆転時吸入油路を遮断し、前記オイルポンプの逆転時に前記逆転時吸入通路を導通して前記正転時吸入油路を遮断する選択遮断弁(59)が設けられており、
     前記オイルポンプの正転又は逆転の切り替え、及び、それに伴う前記選択遮断弁の切り替えにより、前記オイルポンプから前記進み側油圧室又は前記戻し側油圧室への油の流れを切り替える請求項1に記載の統合ポンプ装置。
  5.  前記オイルポンプは、前記油圧アクチュエータへ油圧を供給する油路から分岐した直接供給油路(35、38)を介してオイル消費器(39)に接続されており、
     前記直接供給油路の途中に、前記直接供給油路の連通又は遮断を切り替える供給切替弁(50)が設けられている請求項2~4のいずれか一項に記載の統合ポンプ装置。
  6.  前記油圧アクチュエータは、間接供給油路(68)を介してオイル消費器(39)に接続されており、
     少なくとも一つの前記ベーン室は、前記進み側油圧室と前記戻し側油圧室との回転方向の中間部に、前記間接供給油路に連通する連通口(67)が形成されており、
     前記ベーンロータの回転初期には、前記オイルポンプから油圧が供給される側の油圧室において前記ベーンが前記連通口を閉塞しており、
     前記ベーンロータの回転開始後、前記オイルポンプから油圧が供給される側の油圧室において前記連通口が開放されると、前記オイルポンプから前記油圧アクチュエータに供給された油が前記間接供給油路を経由して前記オイル消費器に供給される請求項2~4のいずれか一項に記載の統合ポンプ装置。
  7.  前記間接供給油路の途中に、前記オイル消費器から前記油圧アクチュエータへの油の逆流を防止する消費側逆流防止弁(69)が設けられている請求項6に記載の統合ポンプ装置。
  8.  前記油圧アクチュエータは、自動車のパーキングロック機構(80)を作動させるパーキングロックアクチュエータであり、
     前記進み状態で前記パーキングロック機構をロックし、前記戻し状態で前記パーキングロック機構をロック解除する請求項1~7のいずれか一項に記載の統合ポンプ装置。
PCT/JP2021/027431 2020-12-17 2021-07-22 統合ポンプ装置 WO2022130671A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020237019447A KR20230098669A (ko) 2020-12-17 2021-07-22 통합 펌프장치
EP21906038.1A EP4265920A4 (en) 2020-12-17 2021-07-22 INTEGRATED PUMP DEVICE
CN202180084698.8A CN116601062A (zh) 2020-12-17 2021-07-22 集成泵装置
JP2022569698A JP7409525B2 (ja) 2020-12-17 2021-07-22 統合ポンプ装置
US18/335,022 US20230323949A1 (en) 2020-12-17 2023-06-14 Integrated pump device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020209129 2020-12-17
JP2020-209129 2020-12-17

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/335,022 Continuation US20230323949A1 (en) 2020-12-17 2023-06-14 Integrated pump device

Publications (1)

Publication Number Publication Date
WO2022130671A1 true WO2022130671A1 (ja) 2022-06-23

Family

ID=82057511

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/027431 WO2022130671A1 (ja) 2020-12-17 2021-07-22 統合ポンプ装置

Country Status (6)

Country Link
US (1) US20230323949A1 (ja)
EP (1) EP4265920A4 (ja)
JP (1) JP7409525B2 (ja)
KR (1) KR20230098669A (ja)
CN (1) CN116601062A (ja)
WO (1) WO2022130671A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT202100004052A1 (it) * 2021-02-22 2022-08-22 Raicam Driveline S R L Attuatore per freno di stazionamento

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09217610A (ja) * 1996-02-14 1997-08-19 Denso Corp 内燃機関用バルブタイミング制御装置
JP2001271616A (ja) * 2000-01-18 2001-10-05 Unisia Jecs Corp 可変動弁機構の制御装置
US20100313834A1 (en) * 2007-11-24 2010-12-16 Schaeffler Technologies Gmbh & Co. Kg Apparatus for variably adjusting the control times of gas exchange valves in an internal combustion engine
JP2016217499A (ja) * 2015-05-22 2016-12-22 マツダ株式会社 ロータリー弁付き自動変速機及びロータリー弁
WO2020043235A1 (de) 2018-08-28 2020-03-05 Schaeffler Technologies AG & Co. KG Hydrauliksystem und antriebseinheit

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10052259B4 (de) 2000-10-19 2009-10-15 Deere & Company, Moline Notentriegelungseinrichtung für die Parksperre eines Kraftfahrzeugs
JP2005180620A (ja) 2003-12-19 2005-07-07 Toyota Motor Corp 車両用無段変速機の潤滑・冷却装置
JP2011080430A (ja) * 2009-10-08 2011-04-21 Hitachi Automotive Systems Ltd 制御弁と該制御弁が用いられた可変容量形ポンプ、並びに内燃機関の油圧回路
DE102016115925B4 (de) 2016-08-26 2022-08-11 Gkn Automotive Ltd. System zur hydraulischen Betätigung einer Parksperre
JP2020043235A (ja) 2018-09-11 2020-03-19 豊田合成株式会社 発光装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09217610A (ja) * 1996-02-14 1997-08-19 Denso Corp 内燃機関用バルブタイミング制御装置
JP2001271616A (ja) * 2000-01-18 2001-10-05 Unisia Jecs Corp 可変動弁機構の制御装置
US20100313834A1 (en) * 2007-11-24 2010-12-16 Schaeffler Technologies Gmbh & Co. Kg Apparatus for variably adjusting the control times of gas exchange valves in an internal combustion engine
JP2016217499A (ja) * 2015-05-22 2016-12-22 マツダ株式会社 ロータリー弁付き自動変速機及びロータリー弁
WO2020043235A1 (de) 2018-08-28 2020-03-05 Schaeffler Technologies AG & Co. KG Hydrauliksystem und antriebseinheit

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4265920A4

Also Published As

Publication number Publication date
US20230323949A1 (en) 2023-10-12
CN116601062A (zh) 2023-08-15
EP4265920A1 (en) 2023-10-25
JP7409525B2 (ja) 2024-01-09
EP4265920A4 (en) 2024-06-19
KR20230098669A (ko) 2023-07-04
JPWO2022130671A1 (ja) 2022-06-23

Similar Documents

Publication Publication Date Title
EP2250068B1 (en) Fluid controller with multiple fluid meters
WO2022130671A1 (ja) 統合ポンプ装置
CN108625920B (zh) 可变阀正时控制装置
EP1184573B1 (en) Hydraulic motor having multiple speed ratio capability
US7143729B2 (en) Valve timing regulating apparatus with improved phase control response
US7695259B2 (en) Rotary fluid pressure device with modular multi-speed control mechanism
WO2023120507A1 (ja) 統合ポンプ装置
WO2022130672A1 (ja) 統合ポンプ装置
EP2843200B1 (en) Control valve
WO2015098858A1 (ja) 制御弁
JP6705185B2 (ja) オイル供給装置
JPWO2022130671A5 (ja)
JP5464275B2 (ja) 油圧モータ用制御装置
JP6187313B2 (ja) ソレノイドバルブ
JP6187312B2 (ja) ソレノイドバルブ
WO2015129484A1 (ja) ソレノイドバルブ
EP1416121B1 (en) Anti cavitation system for a gerotor-type two-speed motor
WO2022130995A1 (ja) 統合ポンプ装置
JPH10220412A (ja) シリンダ装置の油圧制御回路
CN118661064A (zh) 用于螺杆压缩机的可变容量旁通阀
KR20000009537A (ko) 자동변속기용 토크 컨버터
JP2002206505A (ja) 旋回用油圧回路

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21906038

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022569698

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20237019447

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 202180084698.8

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021906038

Country of ref document: EP

Effective date: 20230717