WO2022130637A1 - 冷熱源ユニット、および冷凍サイクル装置 - Google Patents

冷熱源ユニット、および冷凍サイクル装置 Download PDF

Info

Publication number
WO2022130637A1
WO2022130637A1 PCT/JP2020/047521 JP2020047521W WO2022130637A1 WO 2022130637 A1 WO2022130637 A1 WO 2022130637A1 JP 2020047521 W JP2020047521 W JP 2020047521W WO 2022130637 A1 WO2022130637 A1 WO 2022130637A1
Authority
WO
WIPO (PCT)
Prior art keywords
compressor
pressure
control device
oil
flow rate
Prior art date
Application number
PCT/JP2020/047521
Other languages
English (en)
French (fr)
Inventor
耕平 上田
悠介 有井
素 早坂
隆 池田
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2020/047521 priority Critical patent/WO2022130637A1/ja
Priority to EP20966023.2A priority patent/EP4265980A1/en
Priority to JP2022569678A priority patent/JPWO2022130637A1/ja
Publication of WO2022130637A1 publication Critical patent/WO2022130637A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/20Disposition of valves, e.g. of on-off valves or flow control valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B31/00Compressor arrangements
    • F25B31/002Lubrication
    • F25B31/004Lubrication oil recirculating arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/03Oil level
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/19Pressures
    • F25B2700/193Pressures of the compressor
    • F25B2700/1931Discharge pressures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/19Pressures
    • F25B2700/193Pressures of the compressor
    • F25B2700/1933Suction pressures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2115Temperatures of a compressor or the drive means therefor
    • F25B2700/21152Temperatures of a compressor or the drive means therefor at the discharge side of the compressor

Definitions

  • This disclosure relates to a cold heat source unit and a refrigeration cycle device.
  • Some refrigeration cycle devices that use refrigerant are equipped with an oil return path in order to avoid a shortage of refrigerating machine oil in the compressor.
  • the oil return path provided in the refrigeration cycle device separates the refrigerating machine oil discharged from the compressor together with the refrigerant with an oil separator and returns the oil to the compressor.
  • Patent Document 1 As an oil return mechanism including an oil return path provided in a conventional refrigeration cycle device, as disclosed in Japanese Patent Application Laid-Open No. 3-73880 (Patent Document 1), an on-off valve on the oil return path is opened and closed. By doing so, there was something that adjusted the amount of oil in the compressor.
  • the cold heat source unit of the refrigeration cycle device of the present disclosure solves the above-mentioned problems, and aims to stabilize the oil return state to the compressor.
  • the present disclosure relates to a cold heat source unit of a refrigeration cycle device configured to be connected to a load device.
  • the cold heat source unit is a cold heat source unit of a refrigerating cycle device configured to be connected to a load device, and is connected to a load device to form a circulation flow path through which the refrigerant circulates.
  • the compressor arranged in the refrigerant flow path, the oil separator arranged on the discharge port side of the compressor in the refrigerant flow path, the oil return path for returning the refrigerating machine oil from the oil separator to the compressor, and the oil return path.
  • a flow rate adjuster whose opening is adjusted so that the flow rate of the fluid flowing in the oil return path can be adjusted, a first pressure sensor that detects the pressure on the suction side of the compressor, and the pressure on the discharge side of the compressor.
  • a second pressure sensor and a control device are provided, and the control device controls the opening degree of the flow rate adjusting device based on the pressure detected by the first pressure sensor and the pressure detected by the second pressure sensor. do.
  • the cooling heat source unit and the refrigerating cycle apparatus of the present disclosure is based on the pressure on the suction side of the compressor detected by the first pressure sensor and the pressure on the discharge side of the compressor detected by the second pressure sensor. Since the opening degree of the flow rate adjusting device is controlled, it is possible to return the refrigerating machine oil in just proportion to the compressor, and it is possible to stabilize the state of returning the oil to the compressor.
  • FIG. It is a flowchart in which the control device 100 controls the flow rate adjusting device LEV2 in order to adjust the return oil amount based on the compressor differential pressure Pd of the compressor 10. It is a flowchart of the control which opens the flow rate adjustment apparatus LEV2 in order to adjust the compressor differential pressure Pd at the time of starting of a compressor 10. It is a flowchart of the control which the control apparatus 100 executes when the clogging occurs in the oil return path F2. It is a flowchart in which the control device 100 controls the opening degree of the flow rate adjusting device LEV2 when the liquid back occurs. It is an overall block diagram of the refrigerating cycle apparatus 1A of Embodiment 2.
  • FIG. It is a flowchart in which the control device 100 controls the solenoid valve 40 in the open state when the amount of oil returned to the compressor 10 is insufficient even when the valve opening degree of the flow rate adjusting device LEV2 is fully opened. It is a flowchart in which a control device 100 controls a solenoid valve 40 in order to adjust a compressor differential pressure Pd at the time of starting a compressor 10. It is a flowchart in which the control device 100 controls the solenoid valve 40 in an open state when a liquid back occurs.
  • FIG. 1 is an overall configuration diagram of the refrigeration cycle device 1 of the first embodiment. Note that FIG. 1 functionally shows the connection relationship and the arrangement configuration of each device in the refrigeration cycle apparatus, and does not necessarily show the arrangement in the physical space.
  • the refrigeration cycle device 1 includes a cold heat source unit 2 and a load device 3.
  • the cold heat source unit 2 is usually arranged outdoors or outdoors.
  • the cold heat source unit 2 may be referred to as an outdoor unit or an outdoor unit.
  • the cold heat source unit 2 operates as a cold heat source that discharges heat to the outside.
  • the cold heat source unit 2 includes a compressor 10, an oil separator 20, a gas cooler 30, and pipes 80 to 85.
  • the pipe 80 connects the discharge port G2 of the compressor 10 and the oil separator 20.
  • the pipe 81 connects the oil separator 20 and the gas cooler 30.
  • the pipe 82 connects the gas cooler 30 and the expansion device LEV1.
  • the refrigerant flow path F1 of the cold heat source unit 2 reaches the refrigerant outlet of the cold heat source unit 2 from the pipe 84 through the compressor 10, the pipe 80, the oil separator 20, the pipe 81, the gas cooler 30, and the pipe 82 in this order.
  • the refrigerant flow path F1 is configured to form a circulation flow path through which the refrigerant circulates together with the load device 3.
  • the refrigerant for example, a carbon dioxide refrigerant is used.
  • the cold heat source unit 2 further includes pipes 91 and 92, a flow rate adjusting device LEV2 arranged between the pipes 91 and the pipes 92, and a control device 100.
  • the pipe 91 is configured to flow refrigerating machine oil from the oil outlet of the oil separator 20 in the circulation flow path to the flow rate adjusting device LEV2.
  • the pipe 92 is configured to flow refrigerating machine oil from the flow rate adjusting device LEV2 to the suction port G1 of the compressor 10.
  • branching from the oil separator 20 in the circulation flow path and sending refrigerating machine oil or the like to the compressor 10 via the flow rate adjusting device LEV2 is referred to as "returning oil", and the flow path for returning the oil is referred to as "returning oil”. It is called "return route F2".
  • the load device 3 includes an expansion device LEV 1, an evaporator 60, and pipes 83, 84, 85.
  • the expansion device LEV1 for example, a temperature expansion valve or an electronic expansion valve is used.
  • the expansion device LEV1 is a temperature expansion valve controlled independently of the cold heat source unit 2.
  • the compressor 10 compresses the refrigerant sucked from the pipe 85 and discharges it to the pipe 80.
  • the compressor 10 has a suction port G1 and a discharge port G2.
  • the compressor 10 is configured to suck the refrigerant that has passed through the evaporator 60 from the suction port G1 and discharge the compressed refrigerant from the discharge port G2 toward the gas cooler 30.
  • the oil separator 20 is composed of a cyclone type oil separator that can handle the use of a refrigerant having a relatively large design pressure such as a carbon dioxide refrigerant.
  • the flow rate adjusting device LEV2 is an electronic expansion valve whose opening degree is adjusted according to a signal given from the control device 100.
  • the flow rate adjusting device LEV2 is provided for the following reasons. Assuming that the capillary tube is provided on the oil outlet side of the oil separator 20, the throttle amount cannot be adjusted with the capillary tube. As a result, when the capillary tube is provided, the amount of oil returned cannot be adjusted to an appropriate amount according to the operating state of the refrigerating cycle device 1. Therefore, when the capillary tube is provided, the compressor 10 may break down, and further, if the refrigerating machine oil and the refrigerant are excessively returned to the compressor 10, the refrigerating capacity of the refrigerating cycle device 1 may be lowered. For this reason, a flow rate adjusting device LEV2 including an electronic expansion valve is provided on the oil outlet side of the oil separator 20.
  • the compressor 10 is configured to adjust the operating rotation speed Nc according to a control signal from the control device 100.
  • the control device 100 can adjust the circulation amount of the refrigerant by adjusting the operating rotation speed Nc of the compressor 10, and can adjust the refrigerating capacity of the refrigerating cycle device 1.
  • Various types of compressors 10 can be adopted, and for example, scroll type, rotary type, screw type and the like can be adopted. Further, the compressor 10 may be a constant speed compressor whose operating rotation speed Nc cannot be adjusted.
  • the gas cooler 30 condenses the refrigerant discharged from the compressor 10 and passed through the oil separator 20 and flows it to the pipe 82.
  • the gas cooler 30 is configured such that a high-temperature and high-pressure gas refrigerant discharged from the compressor 10 exchanges heat with the outside air. By this heat exchange, the radiated refrigerant condenses and changes into a liquid phase.
  • a fan (not shown) supplies the gas cooler 30 with outside air through which the refrigerant exchanges heat in the gas cooler 30.
  • the control device 100 can adjust the pressure PH of the refrigerant on the discharge side of the compressor 10 by adjusting the rotation speed of the fan.
  • the cold heat source unit 2 further includes pressure sensors 131 and 132 and temperature sensors 121, 122 and 123.
  • the pressure sensor 131 is provided in the pipe 85 on the suction side of the compressor 10, detects the pressure PL on the suction side of the compressor 10, and outputs a detection signal indicating the detected value to the control device 100.
  • the pressure sensor 132 is provided in the pipe 81 on the outlet side of the oil separator 20, detects the pressure PH on the discharge side of the compressor 10, and outputs a detection signal indicating the detected value to the control device 100.
  • the pressure sensor 132 may be provided in the pipe 80 on the inlet side of the oil separator 20. That is, the pressure sensor 132 may be provided at any position as long as it can detect the pressure PH on the discharge side of the compressor 10. Further, the pressure sensor 131 may be provided at any position as long as it can detect the pressure PL on the suction side of the compressor 10.
  • the temperature sensor 121 detects the temperature T1 of the pipe 91 on the upstream side of the flow rate adjusting device LEV2 in the oil return path F2 in order to detect the temperature of the refrigerating machine oil returned from the oil separator 20, and indicates the detected value. It is a thermistor that outputs a detection signal to the control device 100.
  • the temperature sensor 122 detects the temperature T2 of the pipe 80 on the discharge side of the compressor 10 in order to detect the temperature of the refrigerant discharged from the compressor 10, and outputs a detection signal indicating the detected value to the control device 100. It is a thermistor.
  • the temperature sensor 123 is a thermistor that detects the temperature T3 on the lower surface of the compressor 10 and outputs a detection signal indicating the detected value to the control device 100.
  • the "shell” of the compressor is a common name for the outer container of the compressor. "Under the shell” is a lower part of the “shell” of the compressor, and a refrigerating machine oil storage section for storing refrigerating machine oil is provided inside.
  • the temperature T1 corresponds to the temperature of the return oil in the return oil path F2.
  • the temperature T2 corresponds to the temperature of the refrigerant at the outlet of the compressor 10.
  • the temperature T3 corresponds to the temperature of the refrigerating machine oil stored under the shell of the compressor 10.
  • the control device 100 includes a CPU (Central Processing Unit) 102, a memory 104 (ROM (Read Only Memory) and RAM (Random Access Memory)), an input / output buffer (not shown) for inputting / outputting various signals, and the like. Consists of including.
  • the CPU 102 expands the program stored in the ROM into a RAM or the like and executes the program.
  • the program stored in the ROM is a program in which the processing procedure of the control device 100 is described.
  • the control device 100 executes control of each device in the cold heat source unit 2 according to these programs. This control is not limited to software processing, but can also be processed by dedicated hardware (electronic circuit).
  • the flow rate of the refrigerating machine oil in the oil return path F2 increases as the pressure difference Pd (hereinafter referred to as the compressor differential pressure Pd) between the pressure PH on the discharge side and the pressure PL on the suction side in the compressor 10 increases.
  • the flow rate of the refrigerating machine oil in the oil return path F2 decreases as the compressor differential pressure Pd decreases.
  • the flow rate adjusting device is such that the amount of the refrigerating machine oil returned to the compressor 10 during the operation of the refrigerating cycle device 1 is the amount of oil required to maintain the normal operating state.
  • the oil return valve opening degree control for adjusting the valve opening degree of LEV2 is executed.
  • the valve opening of the flow rate adjusting device LEV2 is calculated using the valve opening calculation formula based on the compressor differential pressure Pd, and the calculated valve opening is used.
  • the valve opening degree of the flow rate adjusting device LEV2 is controlled so as to be.
  • the valve opening calculation formula is a compressor difference so that the amount of refrigerating machine oil returned to the compressor 10 during the operation of the refrigerating cycle device 1 is the amount of oil required to maintain a normal operating state. It is intended to produce an appropriate valve opening degree of the flow rate adjusting device LEV2 based on the pressure Pd.
  • the valve opening degree calculation formula is stored in the memory 104 in advance, is read out from the memory 104 during the operation of the refrigerating cycle device 1, and is used for the oil return valve opening degree control.
  • FIG. 2 is a flowchart in which the control device 100 controls the flow rate adjusting device LEV2 in order to adjust the return oil amount based on the compressor differential pressure Pd of the compressor 10.
  • step S1 the CPU 102 reads out the valve opening degree effect expression from the memory 104 during the operation of the refrigeration cycle device 1.
  • step S2 the detected value of the pressure PL on the suction side of the compressor 10 input from the pressure sensor 131 and the detected value of the pressure PH on the discharge side of the compressor 10 input from the pressure sensor 132.
  • the compressor differential pressure Pd is calculated based on the above.
  • control device 100 a process of calculating the valve opening degree of the flow rate adjusting device LEV2 from the compressor differential pressure Pd calculated in step S2 by using the above-mentioned valve opening degree effect formula is executed in step S3.
  • control for adjusting the valve opening degree of the flow rate adjusting device LEV2 is executed in step S4 so that the valve opening degree is the valve opening degree calculated in step S3.
  • valve opening calculation formula in addition to the compressor differential pressure Pd, the amount of refrigerating machine oil required to maintain a normal operating state changes according to the operating frequency (operating rotation speed) of the compressor 10.
  • An arithmetic expression capable of calculating the valve opening may be used.
  • the reason why the valve opening degree of the flow rate adjusting device LEV2 is calculated based on the operating frequency of the compressor 10 in addition to the differential pressure Pd of the compressor is that the valve opening of the flow rate adjusting device 10 is taken out from the compressor 10 when the operating frequency of the compressor 10 changes. This is because the amount of refrigerating machine oil that needs to be returned to the compressor 10 changes according to the change in the amount of refrigerating machine oil.
  • the valve opening so that the amount of refrigerating machine oil returned to the compressor 10 during the operation of the refrigerating cycle device 1 is the amount of oil required to maintain a normal operating state is the differential pressure of the compressor.
  • a data table showing the relationship between Pd and the valve opening for maintaining the normal operating state is stored in the memory 104 in advance, and the data table is used as described above.
  • the corresponding valve opening may be determined from the obtained compressor differential pressure Pd.
  • a data table capable of determining the valve opening degree of the flow rate adjusting device LEV2 based on the operating frequency of the compressor 10 in addition to the compressor differential pressure Pd may be used.
  • the compressor 10 is provided with a refrigerating machine oil storage unit for storing the refrigerating machine oil described above.
  • a liquid level sensor for detecting the liquid level of the refrigerating machine oil may be provided in the refrigerating machine oil storage unit.
  • the detection signal indicating the detected value of the liquid level height by the liquid level sensor is input to the control device 100.
  • the control device 100 controls the valve opening degree of the flow rate adjusting device LEV2 so that the liquid level height of the refrigerating machine oil detected by the liquid level sensor provided in the refrigerating machine oil storage portion of the compressor 10 becomes a constant value. You may.
  • the control device 100 may control the valve opening degree of the flow rate adjusting device LEV2 so that the detected value of the liquid level height by the liquid level sensor does not fall below a certain liquid level height.
  • the oil separator 20 may be provided with a liquid level sensor for detecting the liquid level height of the refrigerating machine oil.
  • a detection signal indicating the detected value of the liquid level by the liquid level sensor is input to the control device 100.
  • the control device 100 may control the valve opening degree of the flow rate adjusting device LEV2 so that the liquid level height of the refrigerating machine oil detected by the liquid level sensor provided in the oil separator 20 becomes a constant value.
  • the control device 100 may control the valve opening degree of the flow rate adjusting device LEV2 so that the detected value of the liquid level height by the liquid level sensor does not exceed a constant liquid level height.
  • the compressor 10 may be difficult to start when the compressor differential pressure Pd, which is the pressure difference between the pressure PL on the suction side and the pressure PH on the discharge side, is too high at the time of starting. In such a case, the startability of the compressor 10 may decrease. In order to prevent such a decrease in startability, the control device 100 executes control to open the flow rate adjusting device LEV2 in order to make the compressor differential pressure Pd smaller than the threshold value at the time of starting the compressor 10 as follows. do.
  • FIG. 3 is a flowchart of control in which the control device 100 opens the flow rate adjusting device LEV2 in order to adjust the compressor differential pressure Pd when the compressor 10 is started.
  • the control device 100 determines in step S11 whether or not the current time is when the compressor 10 is started. The control device 100 returns when it is determined in step S11 that it is not at the time of activation. When it is determined in step S11 that the control device 100 is at startup, the control device 100 is input from the pressure sensor 132 and the detection value of the pressure PL on the suction side of the compressor 10 input from the pressure sensor 131. The compressor differential pressure Pd is calculated based on the detected value of the pressure PH on the discharge side of the compressor 10.
  • the control device 100 determines in step S13 whether or not the compressor differential pressure Pd calculated in step S12 is equal to or greater than the differential pressure threshold Pt.
  • the control device 100 returns when it is determined in step S13 that the compressor differential pressure Pd is not equal to or greater than the threshold value Pt.
  • the control device 100 determines in step S13 that the compressor differential pressure Pd is equal to or greater than the threshold value Pt
  • the control device 100 adjusts the flow rate so that the compressor differential pressure Pd becomes less than the threshold value Pt in step S14.
  • the control to open LEV2 is executed.
  • the threshold value Pt is set to a value that does not at least reduce the startability of the compressor 10.
  • the control of the flow rate adjusting device LEV2 by the control device 100 may be stopped at the timing when the compressor differential pressure Pd is slightly lower than the threshold value Pt, or may be stopped at the timing when the compressor differential pressure Pd disappears. good.
  • the control to open the flow rate adjusting device LEV2 is executed in order to make the pressure difference between the pressure PL on the suction side and the pressure PH on the discharge side smaller than the reference value.
  • the startability of the compressor 10 can be improved.
  • the control device 100 includes a detected value of the temperature T1 of the pipe 91 upstream of the flow rate adjusting device LEV2 and a detected value of the temperature T2 of the pipe 80 on the discharge side of the compressor 10. Based on the above, it is determined whether or not the return oil return path F2 is clogged, and various controls for preventing the compressor 10 from failing are executed as follows.
  • the amount of oil returned is not insufficient, and the temperature T1 of the pipe 91 is changed by the calorific value of the refrigerating machine oil flowing through the oil return path F2. Hard to drop.
  • the calorific value of the refrigerating machine oil flowing through the oil return path F2 decreases, so that the temperature T1 of the pipe 91 tends to decrease.
  • the temperature difference between the temperature T2 and the temperature T1 is larger when the oil return path F2 is clogged than when the oil return path F2 is not clogged.
  • the compressor 10 may fail due to the clogging of the oil return path F2 and the depletion of the refrigerating machine oil used in the compressor 10.
  • the control device 100 executes the following control in order to prevent a malfunction such as a failure of the compressor 10.
  • FIG. 4 is a flowchart of control executed by the control device 100 when a blockage occurs in the oil return path F2.
  • the control device 100 calculates the temperature difference Td between the temperature T2 and the temperature T1 based on the temperature T2 detected by the temperature sensor 122 and the temperature T1 detected by the temperature sensor 121 in step S21.
  • the control device 100 determines in step S22 whether or not the temperature difference Td calculated in step S21 is equal to or greater than the temperature difference threshold Tta.
  • the threshold value Tta is set to a value of a temperature difference Td that can occur at least when the compressor 10 is clogged so as to cause a malfunction.
  • the control device 100 returns when it is determined in step S22 that the temperature difference Td is not equal to or greater than the threshold value Tta. On the other hand, when the control device 100 determines in step S22 that the temperature difference Td is equal to or greater than the threshold value Tta, the control device 100 determines that the oil return path F2 is clogged, indicating that the clog has occurred. Execute control to notify the alarm. Such a clogging alarm is notified using both the display device and the alarm connected to the control device 100, or at least one of them.
  • the display device is capable of performing alarm display. The alarm can output an alarm sound.
  • the control device 100 executes a control for notifying a clogging alarm and then a control for stopping the compressor 10.
  • control device 100 executes the control for notifying the clogging alarm described above
  • the control device 100 may not execute the control for stopping the compressor 10 described above.
  • the reason is that when the clogging alarm is notified, a person can determine the situation and take various measures such as stopping the compressor 10.
  • the control device 100 controls to stop the compressor 10 described above, but may not execute the control to notify the clogging alarm described above. The reason is that, at least if the compressor 10 is stopped, it is possible to suppress the occurrence of failure of the compressor 10 due to the clogging of the oil return path F2.
  • control device 100 may simultaneously execute the control for notifying the alarm described above and the control for stopping the compressor 10 described above.
  • the control device 100 may execute the control for stopping the compressor 10 described above after executing the control for notifying the alarm described above.
  • the control device 100 may execute the control for notifying the alarm described above after executing the control for stopping the compressor 10 described above.
  • control device 100 may execute the control for reducing the operating frequency of the compressor 10 before executing the control for stopping the compressor 10 described above.
  • the control device 100 may execute a control for increasing the opening degree of the flow rate adjusting device LEV2 provided in the oil return path F2 before executing the control for stopping the compressor 10 described above.
  • the temperature sensor 121 provided in the oil return path F2 for detecting the temperature T1 of the refrigerating machine oil returned from the oil separator 20 is located at a position where the temperature of the pipe 92 on the downstream side of the flow rate adjusting device LEV2 is detected. It may be provided.
  • the temperature of the oil return path F2 is detected, and it is determined whether or not the return oil path F2 is clogged based on the detected temperature. Therefore, it is determined that the refrigerating machine oil used in the compressor 10 has been exhausted. It can be recognized with certainty. Then, when it is determined that the oil return path F2 is clogged, the compressor 10 is stopped, thereby preventing the compressor 10 from failing due to the exhaustion of the refrigerating machine oil used in the compressor 10. be able to.
  • the liquid back means a phenomenon in which all the refrigerant is not evaporated by the evaporator 60 and the liquid refrigerant returns to the compressor 10.
  • the refrigerating machine oil is taken out from the compressor 10 and accumulated in the oil separator 20. Then, when the refrigerating machine oil overflows in the oil separator 20, the refrigerating machine oil is taken out to the gas cooler 30 side or the like. In such a state, the compressor oil may be depleted in the compressor 10 and the compressor 10 may break down.
  • control device 100 controls to increase the opening degree of the flow rate adjusting device LEV2 provided in the oil return path F2, thereby refrigerating the oil separator 20 to the compressor 10. Promote the return of machine oil and prevent the refrigerating machine oil from running out. Specifically, the control device 100 executes the following control corresponding to the liquid bag.
  • FIG. 5 is a flowchart in which the control device 100 controls the opening degree of the flow rate adjusting device LEV2 when the liquid back occurs.
  • the control device 100 calculates the PL saturation temperature T4 corresponding to the detected value of the pressure PL based on the detected value of the pressure PL on the suction side of the compressor 10 detected by the pressure sensor 131 in step S31.
  • the control device 100 calculates the PH saturation temperature T6 corresponding to the detected value of the pressure PH based on the detected value of the pressure PH on the discharge side of the compressor 10 detected by the pressure sensor 132 in step S33.
  • the discharge super heat T7 is calculated using the calculation formula "super heat T7".
  • At least one of the subshell super heat T5 calculated in step S32 and the discharge super heat T7 calculated in step S34 in step S35 is the threshold Ttb of the subshell super heat T5 and the discharge super heat. It is determined whether or not the threshold value Ttc of T7 has been exceeded.
  • the threshold value Ttb is set to a predetermined value that the super heat T5 under the shell is at a temperature at which liquid back is surely generated.
  • the threshold value Ttc is set to a predetermined value that the discharge super heat T7 is at a temperature at which liquid back is surely generated.
  • the control device 100 returns when neither the super heat T5 under the shell nor the discharge super heat T7 is below the threshold Ttb and the threshold Ttc. On the other hand, when at least one of the super heat T5 under the shell and the discharge super heat T7 is below the threshold Ttb and the threshold Ttc, the control device 100 determines that liquid back has occurred in step S36. Control to increase the valve opening degree of the flow rate adjusting device LEV2 is executed.
  • the control device 100 uses the temperature of either the super heat T5 under the shell or the discharge super heat T7, and determines that liquid backing has occurred when the detected value of the temperature falls below the threshold value. In both cases, it may be determined that liquid backing has occurred when the detected value of the temperature falls below the threshold value.
  • control device 100 may determine whether or not liquid backing has occurred by using parameters other than the super heat T5 under the shell and the discharge super heat T7. For example, the liquid level of the refrigerating machine oil stored in the compressor 10 may be detected, and when the detected liquid level falls below the reference level, it may be determined that liquid backing has occurred. Further, the temperature of the refrigerating machine oil stored in the compressor 10 itself may be detected, and when the detected temperature falls below the reference value, it may be determined that liquid backing has occurred.
  • control device 100 when either the under-shell super heat T5 calculated as described above and the discharge super heat T7 are below the threshold Ttb and the threshold Ttc, or both of them are When it falls below the threshold values Ttb and Ttc, it can be determined that liquid backing has occurred. Then, the control device 100 executes control to increase the valve opening degree of the flow rate adjusting device LEV2 when it is determined that the liquid back has occurred, so that when the liquid back occurs, the oil separator 20 can be used. It is possible to promote the return of the refrigerating machine oil to the compressor 10 and prevent the refrigerating machine oil from being exhausted.
  • FIGS. 2, 3, 4, and 5 In the refrigeration cycle apparatus 1 of the first embodiment, an example of executing all the controls shown in FIGS. 2, 3, 4, and 5 is shown. However, in the refrigeration cycle apparatus 1 of the first embodiment, only the control shown in FIG. 2 may be executed. In the refrigeration cycle apparatus 1 of the first embodiment, in addition to the control shown in FIG. 2, any one of the controls shown in FIGS. 3, 4, and 5 is controlled, or any of the controls is performed. A plurality of types of combined controls may be executed.
  • refrigerating cycle apparatus 1 of the first embodiment an example of using a carbon dioxide gas refrigerant is shown, but other types of refrigerants may be used.
  • Embodiment 2 [Control of flow rate regulator LEV2 and solenoid valve 40] Next, the control of the flow rate adjusting device LEV2 and the solenoid valve 40 executed by the control device 100 will be described.
  • FIG. 6 is an overall configuration diagram of the refrigeration cycle device 1A of the second embodiment.
  • the part where the refrigerating cycle device 1A of FIG. 6 is different from the refrigerating cycle device 1 of FIG. 1 is as an oil return path F2 between the outlet side of the oil separator 20 and the suction side of the compressor 10 in the cold heat source unit 2A.
  • the first oil return path F21 for returning the refrigerating machine oil via the flow rate adjusting device LEV2 and the second oil returning path F21 for returning the refrigerating machine oil via the solenoid valve 40 provided in parallel with the first oil return path.
  • the route F22 is provided.
  • the part where the refrigerating cycle device 1A of FIG. 6 is different from the refrigerating cycle device 1 of FIG. 1 is the refrigerating machine oil provided in the refrigerating machine oil storage section of the compressor 10 as described in "Embodiment 1.".
  • the liquid level sensor 141 is shown. The liquid level sensor 141 detects the liquid level height L of the refrigerating machine oil in the refrigerating machine oil storage portion of the compressor 10, and outputs a detection signal indicating the detected value to the control device 100.
  • the solenoid valve 40 is controlled to either a fully open state or a fully closed state according to a signal given from the control device 100.
  • the "open state” of the solenoid valve 40 means the “fully open state”
  • the "closed state” of the solenoid valve 40 means the “fully closed state”.
  • the solenoid valve 40 is closed by the control device 100 when the amount of oil returned to the compressor 10 via the flow rate adjusting device LEV2 is not insufficient.
  • the control device 100 controls the solenoid valve 40 to be in the open state when the amount of oil returned to the compressor 10 is insufficient even when the valve opening degree of the flow rate adjusting device LEV2 is fully opened.
  • FIG. 7 is a flowchart in which the control device 100 controls the solenoid valve 40 to the open state when the amount of oil returned to the compressor 10 is insufficient even when the valve opening of the flow rate adjusting device LEV2 is fully opened. be.
  • the control device 100 performs the processing as shown in FIG. 2 as in the case of "Embodiment 1", whereby the compressor difference of the compressor 10 is executed.
  • the flow rate adjusting device LEV2 is controlled to adjust the amount of oil return based on the pressure Pd. Further, the control device 100 is based on monitoring the valve opening degree of the flow rate adjusting device LEV2 and the detected value of the liquid level height L detected by the liquid level sensor 141 of the refrigerating machine oil provided in the compressor 10. Then, the following control is executed.
  • the control device 100 determines in step S41 whether or not the valve opening degree of the current flow rate adjusting device LEV2 is the maximum opening degree. The control device 100 returns when it is determined in step S41 that the valve opening degree is not the maximum opening degree.
  • step S41 When the control device 100 determines in step S41 that the valve opening is the maximum opening, the liquid level L of the refrigerating machine oil of the compressor 10 detected by the liquid level sensor 141 in step S42 is increased. , It is determined whether or not the level of the threshold value Lt necessary for maintaining the normal operating state of the compressor 10 has been exceeded. The control device 100 returns when it is determined in step S42 that the liquid level height L of the refrigerating machine oil of the compressor 10 is not below the level of the threshold value Lt.
  • the control device 100 determines in step S42 that the liquid level height L of the refrigerating machine oil of the compressor 10 is below the level of the threshold value Lt, the control device 100 sends a control signal to the solenoid valve 40 to open the solenoid valve 40. Control. In such control of the solenoid valve 40 by the control device 100, after the execution of S43, the solenoid valve 40 may be closed after a certain period of time based on the data set in the data table stored in advance in the memory 104. The solenoid valve 40 may be closed immediately after the execution of S43.
  • control device 100 When the control device 100 has insufficient capacity to supply oil return to the compressor 10 via the flow rate adjusting device LEV2, the control device 100 executes such solenoid valve return oil control to perform the compressor via the solenoid valve 40. Returning oil to 10 becomes feasible. As a result, it is possible to reduce the occurrence of a situation in which the amount of oil returned is insufficient. Then, the stability of the operation of the compressor 10 can be ensured.
  • Whether or not the amount of oil returned to the compressor 10 is insufficient even when the valve opening of the flow rate adjusting device LEV2 is fully opened is detected by using the liquid level sensor 141 provided in the compressor 10.
  • the detection may be performed using a liquid level sensor provided in the oil separator 20.
  • control device 100 is a data table showing the relationship between the compressor differential pressure Pd and the amount of return oil of the refrigerating machine oil necessary for maintaining the normal operating state of the compressor 10 during the operation of the refrigerating cycle device 1. May be stored in the memory 104 in advance, and a data table showing the relationship between the valve opening degree of the flow rate adjusting device LEV2 and the amount of the refrigerating machine oil returned to the compressor 10 may be stored in the memory 104 in advance. Then, using these data tables, the control device 100 uses the refrigerating machine oil required for returning the refrigerating machine oil necessary for maintaining the normal operating state of the compressor 10 corresponding to the compressor differential pressure PD.
  • a control signal is sent to the solenoid valve 40 to close the solenoid valve 40 from the closed state. It may be controlled to the open state. Further, as such a data table, a data table showing the relationship between the compressor differential pressure Pd and the operating frequency of the compressor 10 and the amount of oil returned from the refrigerating machine oil may be used.
  • the compressor 10 may be difficult to start when the compressor differential pressure Pd, which is the pressure difference between the pressure PL on the suction side and the pressure PH on the discharge side, is too high at the time of starting. In such a case, the startability of the compressor 10 may decrease.
  • the control device 100 controls the solenoid valve 40 to be opened from the closed state in order to make the compressor differential pressure Pd smaller than the reference value when the compressor 10 is started. Is executed as follows.
  • FIG. 8 is a flowchart in which the control device 100 controls the solenoid valve 40 in order to adjust the compressor differential pressure Pd when the compressor 10 is started.
  • the control device 100 determines in step S51 whether or not the current time is when the compressor 10 is started. The control device 100 returns when it is determined in step S51 that it is not at the time of activation. When it is determined in step S51 that the control device 100 is at the time of activation, the detection value of the pressure PL on the suction side of the compressor 10 input from the pressure sensor 131 and the detected value of the pressure PL on the suction side are input from the pressure sensor 132 in step S52. The compressor differential pressure Pd is calculated based on the detected value of the pressure PH on the discharge side of the compressor 10.
  • the control device 100 determines in step S53 whether or not the compressor differential pressure Pd calculated in step S52 is equal to or greater than the differential pressure threshold Pt.
  • the control device 100 returns when it is determined in step S53 that the compressor differential pressure Pd is not equal to or greater than the threshold value Pt.
  • the solenoid valve 40 is set so that the compressor differential pressure Pd is less than the threshold value Pt in step S54. Executes the control to open the state. In the state where such control is executed, the flow rate adjusting device LEV2 keeps the closed state.
  • the threshold value Pt is set to a value that does not at least reduce the startability of the compressor 10.
  • the control of the solenoid valve 40 by the control device 100 may be stopped at the timing when the compressor differential pressure Pd is slightly lower than the threshold value Pt, or may be stopped at the timing when the compressor differential pressure Pd disappears. ..
  • the control to open the solenoid valve 40 is executed in order to make the pressure difference between the pressure PL on the suction side and the pressure PH on the discharge side smaller than the reference value. Therefore, the startability of the compressor 10 can be improved.
  • control device 100 controls the flow rate adjusting device LEV2 and the flow rate adjusting device LEV2 in order to make the compressor differential pressure Pd between the pressure PL on the suction side and the pressure PH on the discharge side smaller than the differential pressure threshold Pt. Control may be performed to open both of the solenoid valves 40.
  • the control device 100 may execute control to open the one selected from the flow rate adjusting device LEV2 and the electromagnetic valve 40. For example, the control device 100 sets the pressure difference of the differential pressure threshold value Pt or more that can be detected when the compressor 10 is started by dividing it into a first pressure difference and a second pressure difference larger than the first pressure difference. I'll keep it.
  • the control device 100 has a pressure among the flow rate adjusting device LEV2 and the solenoid valve 40. Executes the control to open the one with the lower adjustment ability.
  • the control device 100 executes control to open the flow rate adjusting device LEV2 and the solenoid valve 40, whichever has the higher pressure adjusting ability, when the pressure difference detected at the start of the compressor 10 is equal to or larger than the second pressure difference. ..
  • the refrigerating machine oil is taken out from the compressor 10 and accumulated in the oil separator 20. Then, when the refrigerating machine oil overflows in the oil separator 20, the refrigerating machine oil is taken out to the gas cooler 30 side or the like. In such a state, the compressor oil may be depleted in the compressor 10 and the compressor 10 may break down.
  • control device 100 controls the solenoid valve 40 provided in the oil return path F2 from the closed state to the open state, thereby moving the oil separator 20 to the compressor 10. Promote the return of refrigerating machine oil and prevent the refrigerating machine oil from running out. Specifically, the control device 100 executes the following control corresponding to the liquid bag.
  • FIG. 9 is a flowchart in which the control device 100 controls the solenoid valve 40 to be in the open state when liquid backing occurs.
  • the control device 100 calculates the PL saturation temperature T4 corresponding to the detected value of the pressure PL based on the detected value of the pressure PL on the suction side of the compressor 10 detected by the pressure sensor 131 in step S61.
  • the control device 100 calculates the PH saturation temperature T6 corresponding to the detected value of the pressure PH based on the detected value of the pressure PH on the discharge side of the compressor 10 detected by the pressure sensor 132 in step S63.
  • the discharge super heat T7 is calculated using the calculation formula "super heat T7".
  • At least one of the subshell super heat T5 calculated in step S62 and the discharge super heat T7 calculated in step S64 is the threshold Ttb of the subshell super heat T5 and the discharge super heat in step S65. It is determined whether or not the threshold value Ttc of T7 has been exceeded.
  • the threshold value Ttb is set to a predetermined value that the super heat T5 under the shell is at a temperature at which liquid back is surely generated.
  • the threshold value Ttc is set to a predetermined value that the discharge super heat T7 is at a temperature at which liquid back is surely generated.
  • the control device 100 returns when neither the super heat T5 under the shell nor the discharge super heat T7 is below the threshold Ttb and the threshold Ttc. On the other hand, when at least one of the super heat T5 under the shell and the discharge super heat T7 is below the threshold Ttb and the threshold Ttc, the control device 100 determines that liquid backing has occurred in step S66. Control is performed to change the solenoid valve 40 from the closed state to the open state. In such control of the solenoid valve 40 by the control device 100, after the execution of S66, the solenoid valve 40 may be closed after a certain period of time based on the data set in the data table stored in advance in the memory 104. The solenoid valve 40 may be closed immediately after the execution of S66.
  • the control device 100 uses the temperature of either the super heat T5 under the shell or the discharge super heat T7, and determines that liquid backing has occurred when the detected value of the temperature falls below the threshold value. In both cases, it may be determined that liquid backing has occurred when the detected value of the temperature falls below the threshold value.
  • control device 100 may determine whether or not liquid backing has occurred by using parameters other than the super heat T5 under the shell and the discharge super heat T7. For example, the liquid level of the refrigerating machine oil stored in the compressor 10 may be detected, and when the detected liquid level falls below the threshold value, it may be determined that liquid backing has occurred. Further, the temperature of the refrigerating machine oil stored in the compressor 10 itself may be detected, and when the detected temperature falls below the threshold value, it may be determined that liquid backing has occurred.
  • FIGS. 7, 8 and 9 In the refrigeration cycle apparatus 1A of the second embodiment, an example of executing all the controls shown in FIGS. 7, 8 and 9 is shown. However, in the refrigeration cycle device 1A of the second embodiment, only the control shown in FIG. 7 may be executed. In the refrigeration cycle apparatus 1 of the first embodiment, in addition to the control shown in FIG. 2, any one of the controls shown in FIGS. 8 and 9 may be executed.
  • the present disclosure relates to a cold heat source unit 2 of a refrigeration cycle device configured to be connected to a load device 3.
  • the cold heat source unit 2 is connected to the load device 3 in a refrigerant flow path F1 that forms a circulation flow path through which the fluid circulates, a compressor 10 arranged in the refrigerant flow path F1, and a refrigerant flow path F1.
  • the oil separator 20 arranged on the discharge port side of the compressor 10, the oil return path F2 for returning the refrigerating machine oil from the oil separator 20 to the compressor 10, and the oil return path F2 arranged and flowing to the oil return path F2.
  • a flow rate adjusting device LEV2 configured to be able to adjust the flow rate of the fluid, a pressure sensor 131 arranged in the oil return path F2 to detect the pressure PL on the suction side of the compressor 10, and a pressure sensor 131 arranged in the oil return path F2 for compression. It is provided with a pressure sensor 132 that detects the pressure PH on the discharge side of the machine 10.
  • the control device controls the opening degree of the flow rate adjusting device LEV2 based on the pressure detected by the pressure sensor 131 and the pressure detected by the pressure sensor 132.
  • the opening degree of the flow rate adjusting device LEV2 is controlled based on the pressure PL on the suction side of the compressor 10 detected by the pressure sensor 131 and the pressure PH detected by the pressure sensor 132. Therefore, the state of returning oil to the compressor 10 can be stabilized.
  • the control device 100 sets the flow rate adjusting device LEV2 based on the pressure difference between the pressure PL detected by the pressure sensor 131 and the pressure PH detected by the pressure sensor 132. Control to open.
  • the pressure difference between the pressure PL on the suction side and the pressure PH on the discharge side can be made smaller than the reference value, and the startability of the compressor 10 can be reduced. Can be improved.
  • the control device 100 further includes a temperature sensor 121 arranged in the oil return path F2 and detecting the temperature T1 of the oil return path F2, and the control device 100 bases the oil return path F2 based on the temperature detected by the temperature sensor 121. Determine if there is a blockage. More specifically, was the oil return path F2 clogged based on the temperature difference between the temperature T1 of the pipe 91 on the upstream side of the flow rate adjusting device LEV2 and the temperature T2 of the pipe 80 on the discharge side of the compressor 10? Judge whether or not. With such a configuration, the temperature of the oil return path F2 is detected, and it is determined whether or not the return oil path F2 is clogged based on the detected temperature. Therefore, the refrigerating machine oil used in the compressor 10 is used. Can be reliably recognized as being depleted.
  • control device 100 executes control to increase the opening degree of the flow rate adjusting device LEV2 in response to the occurrence of liquid backing in which the liquid refrigerant returns from the oil return path F2 to the compressor 10.
  • control device 100 executes control to increase the opening degree of the flow rate adjusting device LEV2 in response to the occurrence of liquid backing in which the liquid refrigerant returns from the oil return path F2 to the compressor 10.
  • control device 100 further includes an electromagnetic valve 40 that is arranged in parallel with the flow rate adjusting device LEV2 in the oil return path F2 and is opened and closed so that the flow rate of the fluid flowing in the oil return path F2 can be adjusted, and the control device 100 is a pressure sensor 131. Based on the pressure PL on the suction side of the compressor 10 detected by the 40 is controlled. With such a configuration, oil can be returned to the compressor 10 via the solenoid valve 40, so that it is possible to reduce the occurrence of a situation where the amount of oil returned is insufficient. Thereby, the stability of the operation of the compressor 10 can be ensured.
  • the electromagnetic valve 40 is controlled to be opened based on the pressure difference between the pressure PL detected by the pressure sensor 131 and the pressure PH detected by the pressure sensor 132.
  • control device 100 executes control to open the solenoid valve 40 in response to the occurrence of a liquid back in which the liquid refrigerant returns from the oil return path F2 to the compressor 10.
  • the present disclosure relates to a refrigeration cycle device 1 including any of the above-mentioned cold heat source units 2 and a load device 3 in another aspect.
  • the flow rate adjusting device LEV2 is based on the pressure PL on the suction side of the compressor 10 detected by the pressure sensor 131 and the pressure PH detected by the pressure sensor 132. Since the opening degree of is controlled, the state of returning oil to the compressor 10 can be stabilized.
  • 1,1A refrigeration cycle device 1,2A cold heat source unit, 3 load device, 10 compressor, 20 oil separator, 30 gas cooler, F2 oil return path, LEV2 flow control device, 131, 132 pressure sensor, 100 control device, 121,122 temperature sensor.

Abstract

冷熱源ユニット(2)は、負荷装置(3)に接続されることによって、冷媒が循環する循環流路を形成する冷媒流路(F1)と、冷媒流路(F1)に配置される圧縮機(10)と、冷媒流路(F1)において圧縮機(10)の吐出口側に配置される油分離器(20)と、油分離器(20)から圧縮機(10)に冷凍機油を戻す返油経路(F2)と、返油経路(F2)に配置され、返油経路(F2)に流れる流体の流量を調整可能に構成される流量調整装置(LEV2)と、圧縮機(10)の吸入側の圧力を検出する第1圧力センサ(131)と、圧縮機の吐出側の圧力を検出する第2圧力センサ(132)と、制御装置(100)とを備え、制御装置(100)は、第1圧力センサ(131)により検出された圧力(PL)および第2圧力センサにより検出された圧力(PH)に基づいて、流量調整装置(LEV2)の開度を制御する。

Description

冷熱源ユニット、および冷凍サイクル装置
 本開示は、冷熱源ユニット、および冷凍サイクル装置に関する。
 冷媒を使用する冷凍サイクル装置には、圧縮機の冷凍機油不足を回避するために、返油経路を備えるものがある。冷凍サイクル装置に設けられた返油経路は、圧縮機から冷媒と一緒に吐出される冷凍機油をオイルセパレータで分離して圧縮機に戻す返油を行なう。
 従来の冷凍サイクル装置に設けられた返油経路を含む返油機構としては、実開平3-73880号公報(特許文献1)に開示されたように、返油経路上にある開閉弁を開閉することによって圧縮機内の油量を調整するものがあった。
実開平3-73880号公報(第1図)
 しかし、特許文献1に記載された従来の返油機構では、返油経路の開閉弁の開閉を時間で制御している。しかし、この方式では正確な返油量を確認できないため、返油量を冷凍サイクル装置の運転状態に応じた適切な返油量に調整することができない。これにより、このような返油機構は、運転状態によっては返油量の不足に起因する圧縮機の故障、および、冷凍機油と冷媒とが過剰に圧縮機に戻ることに起因する冷凍能力の低下等の不具合が発生するという問題があった。
 本開示の冷凍サイクル装置の冷熱源ユニットは、上記課題を解決するものであり、圧縮機への返油状態を安定化することを目的とする。
 本開示は、負荷装置に接続されるように構成された冷凍サイクル装置の冷熱源ユニットに関する。冷熱源ユニットは、負荷装置に接続されるように構成された冷凍サイクル装置の冷熱源ユニットであって、負荷装置に接続されることによって、冷媒が循環する循環流路を形成する冷媒流路と、冷媒流路に配置される圧縮機と、冷媒流路において圧縮機の吐出口側に配置される油分離器と、油分離器から圧縮機に冷凍機油を戻す返油経路と、返油経路に配置され、返油経路に流れる流体の流量を調整可能に開度が調整される流量調整装置と、圧縮機の吸入側の圧力を検出する第1圧力センサと、圧縮機の吐出側の圧力を検出する第2圧力センサと、制御装置とを備え、制御装置は、第1圧力センサにより検出された圧力および第2圧力センサにより検出された圧力に基づいて、流量調整装置の開度を制御する。
 本開示の冷熱源ユニット、および、冷凍サイクル装置によれば、第1圧力センサにより検出された圧縮機の吸入側の圧力および第2圧力センサにより検出された圧縮機の吐出側の圧力に基づいて流量調整装置の開度が制御されるので、過不足がない冷凍機油を圧縮機に戻すことが可能となり、圧縮機への返油状態を安定化することができる。
実施の形態1の冷凍サイクル装置1の全体構成図である。 制御装置100が圧縮機10の圧縮機差圧Pdに基づいて返油量を調整するために流量調整装置LEV2を制御するフローチャートである。 圧縮機10の起動時において制御装置100が圧縮機差圧Pdを調整するために流量調整装置LEV2を開く制御のフローチャートである。 返油経路F2において詰まりが生じた場合に制御装置100が実行する制御のフローチャートである。 液バックが生じた場合に制御装置100が流量調整装置LEV2の開度を制御するフローチャートである。 実施の形態2の冷凍サイクル装置1Aの全体構成図である。 流量調整装置LEV2の弁開度が全開状態となっても圧縮機10への返油量が不足している場合に、制御装置100が電磁弁40を開状態に制御するフローチャートである。 圧縮機10の起動時において制御装置100が圧縮機差圧Pdを調整するために電磁弁40を制御するフローチャートである。 液バックが生じた場合に制御装置100が電磁弁40を開状態に制御するフローチャートである。
 以下、本開示の実施の形態について、図面を参照しながら詳細に説明する。以下では、複数の実施の形態について説明するが、各実施の形態で説明された構成を適宜組み合わせることは出願当初から予定されている。なお、図中同一又は相当部分には同一符号を付してその説明は繰返さない。
 実施の形態1.
 図1は、実施の形態1の冷凍サイクル装置1の全体構成図である。なお、図1では、冷凍サイクル装置における各機器の接続関係および配置構成を機能的に示しており、物理的な空間における配置を必ずしも示すものではない。
 図1を参照して、冷凍サイクル装置1は、冷熱源ユニット2と負荷装置3とを備える。冷熱源ユニット2は、通常、室外または屋外に配置される。これにより、冷熱源ユニット2は、室外ユニット、または、屋外ユニットと呼ばれることがある。冷熱源ユニット2は、本実施の形態では、熱を屋外に排出する冷熱源として動作する。
 冷熱源ユニット2は、圧縮機10と、油分離器20と、ガスクーラ30と、配管80~85とを備える。配管80は、圧縮機10の吐出ポートG2と油分離器20とを接続する。配管81は、油分離器20とガスクーラ30とを接続する。配管82は、ガスクーラ30と膨張装置LEV1とを接続する。
 冷熱源ユニット2の冷媒流路F1は、配管84から、圧縮機10、配管80、油分離器20、配管81、ガスクーラ30、配管82を順に経て冷熱源ユニット2の冷媒出口に至る。冷媒流路F1は、負荷装置3とともに、冷媒が循環する循環流路を形成するように構成される。冷媒としては、例えば二酸化炭素冷媒が用いられる。
 冷熱源ユニット2は、配管91,92と、配管91と配管92との間に配置される流量調整装置LEV2と、制御装置100とをさらに備える。配管91は、循環流路の油分離器20の油出口から流量調整装置LEV2に冷凍機油を流すように構成される。配管92は、流量調整装置LEV2から圧縮機10の吸入ポートG1に冷凍機油を流すように構成される。以下において、循環流路の油分離器20から分岐して流量調整装置LEV2を経由して圧縮機10に冷凍機油等を送ることを「返油」と呼び、その返油をする流路を「返油経路F2」と呼ぶ。
 負荷装置3は、膨張装置LEV1と、蒸発器60と、配管83,84,85とを含む。膨張装置LEV1としては、たとえば、温度膨張弁または電子膨張弁を使用する。好ましくは、膨張装置LEV1は、冷熱源ユニット2と独立して制御される温度膨張弁である。
 圧縮機10は、配管85から吸入される冷媒を圧縮して配管80へ吐出する。圧縮機10は、吸入ポートG1および吐出ポートG2を有する。圧縮機10は、蒸発器60を通過した冷媒を吸入ポートG1から吸入し、吐出ポートG2からガスクーラ30に向けて圧縮した冷媒を吐出するように構成される。油分離器20は、二酸化炭素冷媒のように設計圧が比較的大きくなる冷媒を使用する場合でも対応可能なサイクロン式の油分離器により構成される。
 流量調整装置LEV2は、制御装置100から与えられる信号に応じて開度が調整される電子膨張弁である。流量調整装置LEV2は、次のような理由により設けられている。キャピラリチューブを油分離器20の油出口側に設けることを仮定した場合、キャピラリチューブでは、絞り量を調整できない。これにより、キャピラリチューブを設けた場合は、返油量を冷凍サイクル装置1の運転状態に応じた適切な量に調整することができない。したがって、キャピラリチューブを設けた場合は、圧縮機10が故障するおそれがあり、さらに、冷凍機油および冷媒が過剰に圧縮機10に返ると冷凍サイクル装置1の冷凍能力が低下するおそれがある。このような理由により、油分離器20の油出口側には、電子膨張弁よりなる流量調整装置LEV2が設けられている。
 圧縮機10は、制御装置100からの制御信号に従って運転回転速度Ncを調整するように構成される。制御装置100は、圧縮機10の運転回転速度Ncを調整することによって冷媒の循環量が調整され、冷凍サイクル装置1の冷凍能力を調整することができる。圧縮機10には種々のタイプのものを採用可能であり、たとえば、スクロールタイプ、ロータリータイプ、スクリュータイプ等のものを採用し得る。また、圧縮機10は、運転回転速度Ncを調整できない一定速圧縮機であってもよい。
 ガスクーラ30は、圧縮機10から吐出され油分離器20を通過した冷媒を凝縮して配管82へ流す。ガスクーラ30は、圧縮機10から吐出された高温高圧のガス冷媒が外気と熱交換を行なうように構成される。この熱交換により、放熱した冷媒は凝縮して液相に変化する。図示しないファンは、ガスクーラ30において冷媒が熱交換を行なう外気をガスクーラ30に供給する。制御装置100は、ファンの回転数を調整することにより、圧縮機10の吐出側における冷媒の圧力PHを調整することができる。
 冷熱源ユニット2は、さらに、圧力センサ131,132と、温度センサ121,122,123とを備える。
 圧力センサ131は、圧縮機10の吸入側の配管85に設けられ、圧縮機10の吸入側の圧力PLを検出し、その検出値を示す検出信号を制御装置100へ出力する。圧力センサ132は、油分離器20の出口側の配管81に設けられ、圧縮機10の吐出側の圧力PHを検出し、その検出値を示す検出信号を制御装置100へ出力する。
 なお、圧力センサ132は、油分離器20の入口側の配管80に設けられてもよい。つまり、圧力センサ132は、圧縮機10の吐出側の圧力PHを検出可能であれば、どのような位置に設けられてもよい。また、圧力センサ131は、圧縮機10の吸入側の圧力PLを検出可能であれば、どのような位置に設けられてもよい。
 温度センサ121は、油分離器20から返油される冷凍機油の温度を検出するために返油経路F2における流量調整装置LEV2の上流側の配管91の温度T1を検出し、その検出値を示す検出信号を制御装置100へ出力するサーミスタである。温度センサ122は、圧縮機10から吐出された冷媒の温度を検出するために圧縮機10の吐出側の配管80の温度T2を検出し、その検出値を示す検出信号を制御装置100へ出力するサーミスタである。温度センサ123は、圧縮機10のシェル下表面の温度T3を検出し、その検出値を示す検出信号を制御装置100へ出力するサーミスタである。圧縮機の「シェル」は、圧縮機の外装容器の通称名である。「シェル下」には、圧縮機の「シェル」の下部であって、内部に冷凍機油が貯留される冷凍機油貯留部が設けられている。
 温度T1は、返油経路F2における返油の温度に相当する。温度T2は、圧縮機10の出口の冷媒の温度に相当する。温度T3は、圧縮機10のシェル下に貯留された冷凍機油の温度に相当する。
 制御装置100は、CPU(Central Processing Unit)102と、メモリ104(ROM(Read Only Memory)およびRAM(Random Access Memory))と、各種信号を入出力するための入出力バッファ(図示せず)等を含んで構成される。CPU102は、ROMに格納されているプログラムをRAM等に展開して実行する。ROMに格納されるプログラムは、制御装置100の処理手順が記されたプログラムである。制御装置100は、これらのプログラムに従って、冷熱源ユニット2における各機器の制御を実行する。この制御については、ソフトウェアによる処理に限られず、専用のハードウェア(電子回路)で処理することも可能である。
 [圧縮機10の吸入吐出圧力差に基づく流量調整装置LEV2の開度制御]
 次に、制御装置100が圧縮機10における吸入側の圧力PLと吐出側の圧力PHとに基づいて返油量を調整するために流量調整装置LEV2の開度を制御する返油弁開度制御を説明する。
 返油経路F2における冷凍機油の流量は、圧縮機10における吐出側の圧力PHと吸入側の圧力PLとの圧力差Pd(以下、圧縮機差圧Pdと呼ぶ)が増加するにしたがって増加する。一方、返油経路F2における冷凍機油の流量は、圧縮機差圧Pdが減少するにしたがって減少する。
 したがって、制御装置100では、冷凍サイクル装置1の運転中において圧縮機10に返油される冷凍機油の油量が正常な運転状態を維持するために必要な油量となるように、流量調整装置LEV2の弁開度を調整する返油弁開度制御を実行する。制御装置100では、このような返油弁開度制御において、圧縮機差圧Pdに基づき、弁開度演算式を用いて流量調整装置LEV2の弁開度を算出し、算出した弁開度となるように流量調整装置LEV2の弁開度を制御する。弁開度演算式は、冷凍サイクル装置1の運転中において圧縮機10に返油される冷凍機油の油量が正常な運転状態を維持するために必要な油量となるように、圧縮機差圧Pdに基づいて適切な流量調整装置LEV2の弁開度を演出するものである。弁開度演算式は、メモリ104に予め記憶され、冷凍サイクル装置1の運転中にメモリ104から読出されて、返油弁開度制御に用いられる。
 図2は、制御装置100が圧縮機10の圧縮機差圧Pdに基づいて返油量を調整するために流量調整装置LEV2を制御するフローチャートである。
 制御装置100では、ステップS1により、冷凍サイクル装置1の運転中において、CPU102がメモリ104から前述の弁開度演出式を読み出す。制御装置100では、ステップS2により、圧力センサ131から入力される圧縮機10の吸入側の圧力PLの検出値と、圧力センサ132から入力される圧縮機10の吐出側の圧力PHの検出値とに基づいて圧縮機差圧Pdを算出する。
 制御装置100では、ステップS3により、ステップS2で算出した圧縮機差圧Pdから前述の弁開度演出式を用いて流量調整装置LEV2の弁開度を算出する処理を実行する。制御装置100では、ステップS4により、ステップS3で算出した弁開度となるように流量調整装置LEV2の弁開度を調整する制御を実行する。
 このように、圧縮機10の吸入吐出圧力差に基づく流量調整装置LEV2の弁開度調整制御が実行されることにより、返油経路F2から圧縮機10に、過不足がない冷凍機油が返油することが可能となる。これにより、圧縮機10に返る冷凍機油の油量が不足することによる圧縮機10の故障を防ぐことができる。さらに、圧縮機10に返る冷凍機油および冷媒の量が過剰となることによる冷凍能力の低下を防ぐことができる。このように、圧縮機10の吸入吐出圧力差に基づく流量調整装置LEV2の弁開度調整制御が実行されることにより、圧縮機10への返油状態を安定化することができる。
 前述の弁開度演算式は、圧縮機差圧Pdに加え、圧縮機10の運転周波数(運転回転速度)に応じて、正常な運転状態の維持に必要な冷凍機油の油量が変化するように弁開度を算出可能な演算式を用いてもよい。圧縮機差圧Pdに加え圧縮機10の運転周波数にも基づいて流量調整装置LEV2の弁開度を算出するようにする理由は、圧縮機10の運転周波数が変化すると、圧縮機10から持ち出される冷凍機油の油量が変化することに応じて、圧縮機10に返油する必要がある冷凍機油の油量が変化するためである。
 なお、冷凍サイクル装置1の運転中において圧縮機10に返油される冷凍機油の油量が、正常な運転状態の維持に必要な油量となるようにする弁開度は、圧縮機差圧Pdと、正常な運転状態の維持に必要な油量になるようにする弁開度との関係を示すデータテーブルをメモリ104に予め記憶しておき、そのデータテーブルを用いて、前述のように求められる圧縮機差圧Pdから、対応する弁開度を決定するようにしてもよい。このようなデータテーブルとしては、圧縮機差圧Pdに加え圧縮機10の運転周波数にも基づいて流量調整装置LEV2の弁開度を決定可能なデータテーブルを用いてもよい。
 また、圧縮機10には、前述した冷凍機油を貯留する冷凍機油貯留部が備えられている。冷凍機油貯留部に冷凍機油の液面高さを検出する液面センサを設けてもよい。冷凍機油貯留部に液面センサを設けた場合、液面センサによる液面高さの検出値を示す検出信号は、制御装置100に入力される。制御装置100は、圧縮機10の冷凍機油貯留部に設けられた液面センサにより検出される冷凍機油の液面高さが一定値となるように、流量調整装置LEV2の弁開度を制御してもよい。例えば、液面センサによる液面高さの検出値が一定の液面高さを下回らないように、制御装置100が流量調整装置LEV2の弁開度を制御してもよい。
 また、油分離器20に冷凍機油の液面高さを検出する液面センサを設けてもよい。油分離器20に冷凍機油の液面高さを検出する液面センサを設けた場合、液面センサによる液面高さの検出値を示す検出信号は、制御装置100に入力される。制御装置100は、油分離器20に設けられた液面センサにより検出される冷凍機油の液面高さが一定値となるように、流量調整装置LEV2の弁開度を制御してもよい。例えば、液面センサによる液面高さの検出値が一定の液面高さを上回らないように、制御装置100が流量調整装置LEV2の弁開度を制御してもよい。
 [圧縮機10の起動時における流量調整装置LEV2の制御]
 次に、圧縮機10の起動時において圧縮機差圧Pdを調整するために流量調整装置LEV2を開く制御を説明する。
 圧縮機10では、起動時において、吸入側の圧力PLと吐出側の圧力PHとの圧力差である圧縮機差圧Pdが高過ぎるときに、起動しにくくなる場合がある。このような場合は、圧縮機10の起動性が低下するおそれがある。このような起動性の低下を防ぐために、制御装置100は、圧縮機10の起動時において、圧縮機差圧Pdを閾値よりも小さくするために流量調整装置LEV2を開く制御を次のように実行する。
 図3は、圧縮機10の起動時において制御装置100が圧縮機差圧Pdを調整するために流量調整装置LEV2を開く制御のフローチャートである。
 制御装置100は、ステップS11により、現在が圧縮機10の起動時であるか否かを判断する。制御装置100は、ステップS11で起動時でないと判断された場合にリターンする。制御装置100は、ステップS11で起動時であると判断された場合に、ステップS12により、圧力センサ131から入力される圧縮機10の吸入側の圧力PLの検出値と、圧力センサ132から入力される圧縮機10の吐出側の圧力PHの検出値とに基づいて圧縮機差圧Pdを算出する。
 制御装置100は、ステップS13により、ステップS12で算出した圧縮機差圧Pdが差圧の閾値Pt以上であるか否かを判断する。
 制御装置100は、ステップS13で圧縮機差圧Pdが閾値Pt以上でないと判断された場合にリターンする。一方、制御装置100は、ステップS13で圧縮機差圧Pdが閾値Pt以上であると判断された場合に、ステップS14により、当該圧縮機差圧Pdが閾値Pt未満となるように、流量調整装置LEV2を開く制御を実行する。その閾値Ptは、少なくとも圧縮機10の起動性が低下しないような値に設定される。このような制御装置100による流量調整装置LEV2の制御は、圧縮機差圧Pdが閾値Ptを少しでも下回ったタイミングで停止してもよく、圧縮機差圧Pdがなくなったタイミングで停止してもよい。
 このように、圧縮機10の起動時において、吸入側の圧力PLと吐出側の圧力PHとの圧力差を基準値よりも小さくするために流量調整装置LEV2を開く制御が実行されることにより、圧縮機10の起動性を向上させることができる。
 [返油経路F2に詰まりが生じたか否かを判断する制御]
 次に、返油経路F2に詰まりが生じたか否かを判断し、圧縮機10の故障を防ぐ各種の制御を説明する。
 圧縮機10においては、返油経路F2に詰まりが生じると、圧縮機10に返る冷凍機油の油量である返油量が不足することにより、圧縮機10で使用する冷凍機油が枯渇して圧縮機10が故障する場合がある。このような圧縮機10の故障を防ぐために、制御装置100は、流量調整装置LEV2の上流の配管91の温度T1の検出値と、圧縮機10の吐出側の配管80の温度T2の検出値とに基づいて、返油経路F2に詰まりが生じか否かを判断し、圧縮機10の故障を防ぐ各種の制御を次のように実行する。
 返油経路F2において、詰まりが生じておらず冷凍機油が正常に流れている場合は、返油量が不足していないので、返油経路F2を流れる冷凍機油の熱量により配管91の温度T1が低下しにくい。一方、返油経路F2において、詰まりが生じており冷凍機油が正常に流れていない場合は、返油量が不足しているので、詰まりが生じておらず冷凍機油が正常に流れている場合と比べて、返油経路F2を流れる冷凍機油の熱量が低下するので配管91の温度T1が低下しやすい。したがって、温度T2と温度T1との温度差は、返油経路F2に詰まりが生じている場合の方が、返油経路F2に詰まりが生じていない場合と比べて大きくなる。このような場合は、返油経路F2に詰まりが生じ圧縮機10で使用する冷凍機油が枯渇したことに基づき圧縮機10が故障するおそれがある。制御装置100は、返油経路F2において詰まりが生じた場合に、圧縮機10の故障等の不具合を防ぐために、次のような制御を実行する。
 図4は、返油経路F2において詰まりが生じた場合に制御装置100が実行する制御のフローチャートである。
 制御装置100は、ステップS21により、温度センサ122により検出された温度T2と、温度センサ121により検出された温度T1とに基づいて、温度T2と温度T1との温度差Tdを算出する。制御装置100は、ステップS22により、ステップS21で算出した温度差Tdが温度差の閾値Tta以上であるか否かを判断する。その閾値Ttaは、少なくとも圧縮機10に不具合が生じ得るような詰まりが生じたときになり得る温度差Tdの値に設定される。
 制御装置100は、ステップS22で温度差Tdが閾値Tta以上でないと判断された場合にリターンする。一方、制御装置100は、ステップS22で温度差Tdが閾値Tta以上であると判断された場合は、返油経路F2に詰まりが生じていると判断し、当該詰まりが生じていることを示す詰まり警報を報知する制御を実行する。このような詰まり警報は、制御装置100に接続された表示装置とアラームとの両方、または、少なくとも一方を用いて報知される。表示装置は、警報表示を実行可能である。アラームは、警報音を出力可能である。
 制御装置100は、詰まり警報を報知する制御を実行した後、圧縮機10を停止させる制御を実行する。
 なお、制御装置100は、前述した詰まり警報を報知する制御を実行するが、前述した圧縮機10を停止させる制御を実行しないようにしてもよい。その理由は、詰まり警報が報知された場合は、人が状況を判断して圧縮機10を停止させる等、各種の対応を行なうことが可能となるからである。また、制御装置100は、前述した圧縮機10を停止させる制御をするが、前述した詰まり警報を報知する制御を実行しないようにしてもよい。その理由は、少なくとも圧縮機10が停止されれば、返油経路F2に詰まりが生じたことによる圧縮機10の故障の発生を抑制することができるからである。
 また、制御装置100は、前述した警報を報知する制御と、前述した圧縮機10を停止させる制御とを同時に実行してもよい。制御装置100は、前述した警報を報知する制御を実行した後に、前述した圧縮機10を停止させる制御を実行するようにしてもよい。制御装置100は、前述した圧縮機10を停止させる制御を実行した後に、前述した警報を報知する制御を実行するようにしてもよい。
 また、制御装置100は、前述した圧縮機10を停止させる制御を実行する前に、圧縮機10の運転周波数を減少させる制御を実行するようにしてもよい。制御装置100は、前述した圧縮機10を停止させる制御を実行する前に、返油経路F2に設けられた流量調整装置LEV2の開度を増加させる制御を実行するようにしてもよい。
 また、油分離器20から返油される冷凍機油の温度T1を検出するために返油経路F2に設けられる温度センサ121は、流量調整装置LEV2の下流側の配管92の温度を検出する位置に設けられてもよい。
 このように、返油経路F2の温度を検出し、検出された温度に基づいて返油経路F2に詰まりが生じたか否かを判断するので、圧縮機10で使用する冷凍機油が枯渇したことを確実に認識することができる。そして、返油経路F2に詰まりが生じたと判断したときに、圧縮機10を停止させる制御を実行することにより、圧縮機10で使用する冷凍機油が枯渇したことに基づく圧縮機10の故障を防ぐことができる。
 [圧縮機10に液バックが生じた場合の流量調整装置LEV2の開度制御]
 次に、圧縮機10に液バックが生じたことに応じて、流量調整装置LEV2の開度を増加させる液バック対策制御を説明する。液バックとは、蒸発器60で冷媒がすべて蒸発されず、液冷媒が圧縮機10に戻ってくる現象をいう。
 液バックが発生した場合は、冷凍機油が、圧縮機10から持ち出されて油分離器20に溜まる。そして、油分離器20において冷凍機油がオーバーフローすると、ガスクーラ30側等に冷凍機油が持ち出される。このような状態になることにより、圧縮機10において冷凍機油が枯渇して圧縮機10が故障するおそれがある。
 制御装置100は、このような液バックが発生した場合、返油経路F2に設けた流量調整装置LEV2の開度を増加させる制御を実行することにより、油分離器20から圧縮機10への冷凍機油の返油を促進して、冷凍機油が枯渇することを防ぐ。具体的に、制御装置100は、次のような液バックに対応する制御を実行する。
 図5は、液バックが生じた場合に制御装置100が流量調整装置LEV2の開度を制御するフローチャートである。
 制御装置100は、ステップS31により、圧力センサ131により検出された圧縮機10の吸入側の圧力PLの検出値に基づいて、圧力PLの検出値に対応するPL飽和温度T4を算出する。制御装置100は、ステップS32により、ステップS31で算出したPL飽和温度T4と、温度センサ123により検出された圧縮機10のシェル下の温度T3とに基づいて、「T3-T4=シェル下スーパーヒートT5」という演算式を用いて、シェル下スーパーヒートT5を算出する。
 制御装置100は、ステップS33により、圧力センサ132により検出された圧縮機10の吐出側の圧力PHの検出値に基づいて、圧力PHの検出値に対応するPH飽和温度T6を算出する。制御装置100は、ステップS34により、ステップS33で算出したPH飽和温度T6と、温度センサ122により検出された圧縮機10の吐出側の配管80の温度T2とに基づいて、「T2-T6=吐出スーパーヒートT7」という演算式を用いて、吐出スーパーヒートT7を算出する。
 制御装置100は、ステップS35により、ステップS32で算出されたシェル下スーパーヒートT5と、ステップS34で算出された吐出スーパーヒートT7との少なくともいずれかがシェル下スーパーヒートT5の閾値Ttb、吐出スーパーヒートT7の閾値Ttcを下回ったか否かを判断する。閾値Ttbは、シェル下スーパーヒートT5が確実に液バックが生じる場合の温度になっていると予め定められた値に設定される。閾値Ttcは、吐出スーパーヒートT7が、確実に液バックが生じる場合の温度になっていると予め定められた値に設定される。
 制御装置100は、シェル下スーパーヒートT5と、吐出スーパーヒートT7とのいずれもが閾値Ttb、閾値Ttcを下回っていない場合は、リターンする。一方、制御装置100は、シェル下スーパーヒートT5と、吐出スーパーヒートT7との少なくともいずれかが閾値Ttb、閾値Ttcを下回っている場合は、ステップS36により、液バックが生じていると判断し、流量調整装置LEV2の弁開度を増加させる制御を実行する。
 なお、制御装置100は、シェル下スーパーヒートT5と吐出スーパーヒートT7とのいずれか一方の温度を用いて、その温度の検出値が閾値を下回った場合に、液バックが生じていると判断してもよいし、その両方について、温度の検出値が閾値を下回った場合に、液バックが生じていると判断してもよい。
 また、制御装置100は、シェル下スーパーヒートT5および吐出スーパーヒートT7以外のパラメータを用いて液バックが生じているか否かを判断してもよい。例えば、圧縮機10に貯留されている冷凍機油の液面レベルを検出し、検出した液面レベルが基準レベルを下回った場合に、液バックが生じていると判断してもよい。また、圧縮機10に貯留されている冷凍機油の温度そのものを検出し、その検出された温度が基準値を下回った場合に、液バックが生じていると判断してもよい。
 以上に説明したように、制御装置100は、前述のように算出されたシェル下スーパーヒートT5と、吐出スーパーヒートT7とのいずれかが閾値Ttb、閾値Ttcを下回った場合、または、その両方が閾値Ttb、閾値Ttcを下回った場合に、液バックが生じていると判断することができる。そして、制御装置100は、液バックが生じていると判断した場合に、流量調整装置LEV2の弁開度を増加させる制御を実行することにより、液バックが生じた場合に、油分離器20から圧縮機10への冷凍機油の返油を促進して、冷凍機油が枯渇することを防ぐことができる。
 実施の形態1の冷凍サイクル装置1においては、図2、図3、図4、および、図5に示すすべての制御を実行する例を示した。しかし、実施の形態1の冷凍サイクル装置1においては、図2に示す制御のみを実行してもよい。実施の形態1の冷凍サイクル装置1においては、図2に示す制御に加えて、図3、図4、および、図5に示す制御のうち、いずれか1種類の制御、または、いずかを組み合わせた複数種類の制御を実行してもよい。
 実施の形態1の冷凍サイクル装置1においては、二酸化ガス冷媒を用いる例を示したが、その他の種類の冷媒を用いてもよい。
 実施の形態2.
 [流量調整装置LEV2および電磁弁40の制御]
 次に、制御装置100により実行される流量調整装置LEV2および電磁弁40の制御を説明する。
 図6は、実施の形態2の冷凍サイクル装置1Aの全体構成図である。図6の冷凍サイクル装置1Aが図1の冷凍サイクル装置1と異なる部分は、冷熱源ユニット2Aにおいて、油分離器20の出口側と圧縮機10の吸入側との間の返油経路F2として、流量調整装置LEV2を介して冷凍機油の返油をする第1返油経路F21と、当該第1返油経路と並列に設けられ電磁弁40を介して冷凍機油の返油をする第2返油経路F22とが設けられていることである。これにより、油分離器20から圧縮機10への返油は、流量調整装置LEV2を介して実行可能であるとともに、電磁弁40を介して実行可能である。
 その他に、図6の冷凍サイクル装置1Aが図1の冷凍サイクル装置1と異なる部分は、「実施の形態1.」で説明したような、圧縮機10の冷凍機油貯留部に設けられた冷凍機油の液面センサ141が示されていることである。液面センサ141は、圧縮機10の冷凍機油貯留部における冷凍機油の液面高さLを検出し、その検出値を示す検出信号を制御装置100へ出力する。
 電磁弁40は、制御装置100から与えられる信号に応じて全開状態と全閉状態とのいずれかに制御される。以下の説明において、電磁弁40の「開状態」は「全開状態」を意味し、電磁弁40の「閉状態」は「全閉状態」を意味している。電磁弁40が全開状態に制御された場合は、油分離器20から電磁弁40を介した第2返油経路での圧縮機10への冷凍機油の返油が行われる。
 電磁弁40は、流量調整装置LEV2を介した圧縮機10への返油量が不足していない場合に、制御装置100によって弁開度が閉状態とされている。制御装置100は、流量調整装置LEV2の弁開度が全開状態となっても圧縮機10への返油量が不足している場合に、電磁弁40を開状態に制御する。このような制御が実行されることにより、流量調整装置LEV2を介した圧縮機10への返油の供給能力が不足する場合に、電磁弁40を介した圧縮機10への返油が実行可能となるので、返油量が不足する状況の発生を低減することができる。これにより、圧縮機10の動作の安定性を確保することができる。
 図7は、流量調整装置LEV2の弁開度が全開状態となっても圧縮機10への返油量が不足している場合に、制御装置100が電磁弁40を開状態に制御するフローチャートである。
 具体的に、「実施の形態2」において、制御装置100は、「実施の形態1」の場合と同様に、図2に示したような処理を実行することにより、圧縮機10の圧縮機差圧Pdに基づいて返油量を調整するために流量調整装置LEV2を制御する。さらに、制御装置100は、流量調整装置LEV2の弁開度と、圧縮機10に設けられた冷凍機油の液面センサ141により検出された液面高さLの検出値とを監視することに基づいて、次のような制御を実行する。
 制御装置100は、ステップS41により、現在の流量調整装置LEV2の弁開度が最大の開度であるか否かを判断する。制御装置100は、ステップS41で弁開度が最大の開度ではないと判断された場合にリターンする。
 制御装置100は、ステップS41で弁開度が最大の開度であると判断された場合に、ステップS42により、液面センサ141により検出された圧縮機10の冷凍機油の液面高さLが、圧縮機10の正常な運転状態の維持に必要な閾値Ltのレベルを下回ったか否かを判断する。制御装置100は、ステップS42で圧縮機10の冷凍機油の液面高さLが閾値Ltのレベルを下回っていないと判断された場合にリターンする。
 制御装置100は、ステップS42で圧縮機10の冷凍機油の液面高さLが閾値Ltのレベルを下回ったと判断された場合は、電磁弁40に制御信号を送って電磁弁40を開状態に制御する。このような制御装置100による電磁弁40の制御は、S43の実行後、メモリ104に予め記憶したデータテーブルに設定されたデータに基づいて一定時間経過後に電磁弁40を閉状態にしてもよく、S43の実行後、即時に電磁弁40を閉状態にしてもよい。
 制御装置100は、流量調整装置LEV2を介した圧縮機10への返油の供給能力が不足する場合に、このような電磁弁返油制御を実行することにより、電磁弁40を介した圧縮機10への返油が実行可能となる。これにより、返油量が不足する状況の発生を低減することができる。そして、圧縮機10の動作の安定性を確保することができる。
 なお、流量調整装置LEV2の弁開度が全開状態となっても圧縮機10への返油量が不足しているか否かは、圧縮機10に設けられた液面センサ141を用いて検出する代わりに、油分離器20に設けられた液面センサを用いて検出するようにしてもよい。
 また、制御装置100は、圧縮機差圧Pdと、冷凍サイクル装置1の運転中において圧縮機10の正常な運転状態の維持に必要な冷凍機油の返油の油量との関係を示すデータテーブルをメモリ104に予め記憶するともに、流量調整装置LEV2の弁開度と圧縮機10に返油される冷凍機油の油量との関係を示すデータテーブルをメモリ104に予め記憶してもよい。そして、制御装置100は、これらのデータテーブルを用いて、圧縮機差圧PDに対応して圧縮機10の正常な運転状態の維持に必要な冷凍機油の返油に必要とされる冷凍機油の油量が、流量調整装置LEV2の弁開度が最大状態になっても不足するか否かを判断し、不足する場合において、電磁弁40に制御信号を送って、電磁弁40を閉状態から開状態に制御してもよい。また、このようなデータテーブルとしては、圧縮機差圧Pdおよび圧縮機10の運転周波数と、冷凍機油の返油の油量との関係を示すデータテーブルを用いてもよい。
 [圧縮機10の起動時における電磁弁40の制御]
 次に、圧縮機10の起動時において圧縮機差圧Pdを調整するために電磁弁40を制御する起動時電磁弁制御を説明する。その場合は、「実施の形態1」で説明したような圧縮機差圧Pdを調整するために流量調整装置LEV2を開く制御を実行しない。
 圧縮機10では、起動時において、吸入側の圧力PLと吐出側の圧力PHとの圧力差である圧縮機差圧Pdが高過ぎるときに、起動しにくくなる場合がある。このような場合は、圧縮機10の起動性が低下するおそれがある。このような起動性の低下を防ぐために、制御装置100は、圧縮機10の起動時において、圧縮機差圧Pdを基準値よりも小さくするために電磁弁40を閉状態から開状態にする制御を次のように実行する。
 図8は、圧縮機10の起動時において制御装置100が圧縮機差圧Pdを調整するために電磁弁40を制御するフローチャートである。
 制御装置100は、ステップS51により、現在が圧縮機10の起動時であるか否かを判断する。制御装置100は、ステップS51で起動時でないと判断された場合にリターンする。制御装置100は、ステップS51で起動時であると判断された場合に、ステップS52により、圧力センサ131から入力される圧縮機10の吸入側の圧力PLの検出値と、圧力センサ132から入力される圧縮機10の吐出側の圧力PHの検出値とに基づいて圧縮機差圧Pdを算出する。
 制御装置100は、ステップS53により、ステップS52で算出した圧縮機差圧Pdが差圧の閾値Pt以上であるか否かを判断する。
 制御装置100は、ステップS53で圧縮機差圧Pdが閾値Pt以上でないと判断された場合にリターンする。一方、制御装置100は、ステップS53で圧縮機差圧Pdが閾値Pt以上であると判断された場合に、ステップS54により、当該圧縮機差圧Pdが閾値Pt未満となるように、電磁弁40を開状態にする制御を実行する。そのような制御が実行される状態において、流量調整装置LEV2は、閉状態を維持している。閾値Ptは、少なくとも圧縮機10の起動性が低下しないような値に設定される。このような制御装置100による電磁弁40の制御は、圧縮機差圧Pdが閾値Ptを少しでも下回ったタイミングで停止してもよく、圧縮機差圧Pdがなくなったタイミングで停止してもよい。
 このように、圧縮機10の起動時において、吸入側の圧力PLと吐出側の圧力PHとの圧力差を基準値よりも小さくするために電磁弁40を開状態にする制御が実行されることにより、圧縮機10の起動性を向上させることができる。
 なお、圧縮機10の起動時においては、吸入側の圧力PLと吐出側の圧力PHとの圧縮機差圧Pdを差圧の閾値Ptよりも小さくするために制御装置100が流量調整装置LEV2および電磁弁40の両方を開く制御を実行してもよい。
 また、圧縮機10の起動時においては、吸入側の圧力PLと吐出側の圧力PHとの圧縮機差圧Pdを差圧の閾値Ptよりも小さくするために、圧縮機10の起動時に検出された圧縮機差圧Pdの大きさに応じて、制御装置100が流量調整装置LEV2と電磁弁40とから選択した方を開く制御を実行してもよい。例えば、制御装置100は、圧縮機10の起動時に検出され得る差圧の閾値Pt以上の圧力差を、第1圧力差と、当該第1圧力差よりも大きい第2圧力差とに分けて設定しておく。そして、制御装置100は、圧縮機10の起動時に検出された圧縮機差圧Pdが第1圧力差以上で第2圧力差未満のときに、流量調整装置LEV2と電磁弁40とのうち、圧力調整能力が低い方を開く制御を実行する。制御装置100は、圧縮機10の起動時に検出された圧力差が第2圧力差以上のときに、流量調整装置LEV2と電磁弁40とのうち、圧力調整能力が高い方を開く制御を実行する。
 [圧縮機10に液バックが生じた場合の電磁弁40の制御]
 次に、圧縮機10に液バックが生じたことに応じて、電磁弁40を開状態にする液バック対応電磁弁制御を説明する。その場合は、「実施の形態1」で説明したような液バックが生じたことに応じて流量調整装置LEV2の開度を増加させる制御を実行しない。
 液バックが発生した場合は、冷凍機油が、圧縮機10から持ち出されて油分離器20に溜まる。そして、油分離器20において冷凍機油がオーバーフローすると、ガスクーラ30側等に冷凍機油が持ち出される。このような状態になることにより、圧縮機10において冷凍機油が枯渇して圧縮機10が故障するおそれがある。
 制御装置100は、このような液バックが発生した場合、返油経路F2に設けた電磁弁40を閉状態から開状態にする制御を実行することにより、油分離器20から圧縮機10への冷凍機油の返油を促進して、冷凍機油が枯渇することを防ぐ。具体的に、制御装置100は、次のような液バックに対応する制御を実行する。
 図9は、液バックが生じた場合に制御装置100が電磁弁40を開状態に制御するフローチャートである。
 制御装置100は、ステップS61により、圧力センサ131により検出された圧縮機10の吸入側の圧力PLの検出値に基づいて、圧力PLの検出値に対応するPL飽和温度T4を算出する。制御装置100は、ステップS62により、ステップS31で算出したPL飽和温度T4と、温度センサ123により検出された圧縮機10のシェル下の温度T3とに基づいて、「T3-T4=シェル下スーパーヒートT5」という演算式を用いて、シェル下スーパーヒートT5を算出する。
 制御装置100は、ステップS63により、圧力センサ132により検出された圧縮機10の吐出側の圧力PHの検出値に基づいて、圧力PHの検出値に対応するPH飽和温度T6を算出する。制御装置100は、ステップS64により、ステップS63で算出したPH飽和温度T6と、温度センサ122により検出された圧縮機10の吐出側の配管80の温度T2とに基づいて、「T2-T6=吐出スーパーヒートT7」という演算式を用いて、吐出スーパーヒートT7を算出する。
 制御装置100は、ステップS65により、ステップS62で算出されたシェル下スーパーヒートT5と、ステップS64で算出された吐出スーパーヒートT7との少なくともいずれかがシェル下スーパーヒートT5の閾値Ttb、吐出スーパーヒートT7の閾値Ttcを下回ったか否かを判断する。閾値Ttbは、シェル下スーパーヒートT5が確実に液バックが生じる場合の温度になっていると予め定められた値に設定される。閾値Ttcは、吐出スーパーヒートT7が、確実に液バックが生じる場合の温度になっていると予め定められた値に設定される。
 制御装置100は、シェル下スーパーヒートT5と、吐出スーパーヒートT7とのいずれもが閾値Ttb、閾値Ttcを下回っていない場合は、リターンする。一方、制御装置100は、シェル下スーパーヒートT5と、吐出スーパーヒートT7との少なくともいずれかが閾値Ttb、閾値Ttcを下回っている場合は、ステップS66により、液バックが生じていると判断し、電磁弁40を閉状態から開状態にする制御を実行する。このような制御装置100による電磁弁40の制御は、S66の実行後、メモリ104に予め記憶したデータテーブルに設定されたデータに基づいて一定時間経過後に電磁弁40を閉状態にしてもよく、S66の実行後、即時に電磁弁40を閉状態にしてもよい。
 なお、制御装置100は、シェル下スーパーヒートT5と吐出スーパーヒートT7とのいずれか一方の温度を用いて、その温度の検出値が閾値を下回った場合に、液バックが生じていると判断してもよいし、その両方について、温度の検出値が閾値を下回った場合に、液バックが生じていると判断してもよい。
 また、制御装置100は、シェル下スーパーヒートT5および吐出スーパーヒートT7以外のパラメータを用いて液バックが生じているか否かを判断してもよい。例えば、圧縮機10に貯留されている冷凍機油の液面レベルを検出し、検出した液面レベルが閾値を下回った場合に、液バックが生じていると判断してもよい。また、圧縮機10に貯留されている冷凍機油の温度そのものを検出し、その検出された温度が閾値下回った場合に、液バックが生じていると判断してもよい。
 実施の形態2の冷凍サイクル装置1Aにおいては、図7、図8、および、図9に示すすべての制御を実行する例を示した。しかし、実施の形態2の冷凍サイクル装置1Aにおいては、図7に示す制御のみを実行してもよい。実施の形態1の冷凍サイクル装置1においては、図2に示す制御に加えて、図8、および、図9に示す制御のうち、いずれか1種類の制御を実行してもよい。
 [実施の形態のまとめ]
 以上説明した実施の形態について、再び図面を参照して説明する。
 本開示は、負荷装置3に接続されるように構成された冷凍サイクル装置の冷熱源ユニット2に関する。冷熱源ユニット2は、負荷装置3に接続されることによって、冷媒が循環する循環流路を形成する冷媒流路F1と、冷媒流路F1に配置される圧縮機10と、冷媒流路F1において圧縮機10の吐出口側に配置される油分離器20と、油分離器20から圧縮機10に冷凍機油を戻す返油経路F2と、返油経路F2に配置され、返油経路F2に流れる流体の流量を調整可能に構成される流量調整装置LEV2と、返油経路F2に配置され、圧縮機10の吸入側の圧力PLを検出する圧力センサ131と、返油経路F2に配置され、圧縮機10の吐出側の圧力PHを検出する圧力センサ132とを備える。制御装置は、圧力センサ131により検出された圧力および圧力センサ132により検出された圧力に基づいて、流量調整装置LEV2の開度を制御する。
 このような構成とすることによって、圧力センサ131により検出された圧縮機10の吸入側の圧力PLおよび圧力センサ132により検出された圧力PHに基づいて、流量調整装置LEV2の開度が制御されるので、圧縮機10への返油状態を安定化することができる。
 好ましくは、制御装置100は、圧縮機10を起動するときに、圧力センサ131により検出された圧力PLと、圧力センサ132により検出された圧力PHとの圧力差に基づいて、流量調整装置LEV2を開く制御をする。このような構成とすることによって、圧縮機10の起動時において、吸入側の圧力PLと吐出側の圧力PHとの圧力差を基準値よりも小さくすることが可能となり、圧縮機10の起動性を向上させることができる。
 より好ましくは、返油経路F2に配置され、返油経路F2の温度T1を検出する温度センサ121をさらに備え、制御装置100は、温度センサ121により検出された温度に基づいて、返油経路F2に詰まりが生じたか否かを判断する。より具体的には、流量調整装置LEV2の上流側の配管91の温度T1と、圧縮機10の吐出側の配管80の温度T2との温度差に基づいて、返油経路F2に詰まりが生じたか否かを判断する。このような構成とすることによって、返油経路F2の温度を検出し、検出された温度に基づいて返油経路F2に詰まりが生じたか否かを判断するので、圧縮機10で使用する冷凍機油が枯渇したことを確実に認識することができる。
 より好ましくは、制御装置100は、返油経路F2から圧縮機10に液状の冷媒が戻る液バックが生じたことに応じて、流量調整装置LEV2の開度を増加させる制御を実行する。このような構成とすることによって、液バックが生じた場合に、油分離器20から圧縮機10への冷凍機油の返油を促進して、冷凍機油が枯渇することを防ぐことができる。
 より好ましくは、返油経路F2において流量調整装置LEV2と並列に配置され、返油経路F2に流れる流体の流量を調整可能に開閉される電磁弁40をさらに備え、制御装置100が、圧力センサ131により検出された圧縮機10の吸入側の圧力PLおよび圧力センサ132により検出された圧力PHに基づいて、流量調整装置LEV2を開いても圧縮機10に戻す冷凍機油が不足する場合に、電磁弁40を制御する。このような構成とすることによって、電磁弁40を介した圧縮機10への返油が実行可能となるので、返油量が不足する状況の発生を低減することができる。これにより、圧縮機10の動作の安定性を確保することができる。
 より好ましくは、圧縮機を起動するときに、圧力センサ131により検出された圧力PLと、圧力センサ132により検出された圧力PHとの圧力差に基づいて、電磁弁40を開く制御をする。このような構成とすることによって、圧縮機10の起動時において、吸入側の圧力PLと吐出側の圧力PHとの圧力差を低減することが可能となり、圧縮機10の起動性を向上させることができる。
 より好ましくは、制御装置100は、返油経路F2から圧縮機10に液状の冷媒が戻る液バックが生じたことに応じて、電磁弁40を開く制御を実行する。このような構成とすることによって、液バックが生じた場合に、油分離器20から圧縮機10への冷凍機油の返油を促進して、冷凍機油が枯渇することを防ぐことができる。
 本開示は、他の局面では、上記いずれかの冷熱源ユニット2と、負荷装置3とを備える冷凍サイクル装置1に関する。
 以上説明したように、本実施の形態の冷凍サイクル装置では、圧力センサ131により検出された圧縮機10の吸入側の圧力PLおよび圧力センサ132により検出された圧力PHに基づいて、流量調整装置LEV2の開度が制御されるので、圧縮機10への返油状態を安定化することができる。
 今回開示された実施の形態は、すべての点で例示であって制限的なものではないと考えられるべきである。本開示の範囲は、上記した実施の形態の説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味及び範囲内でのすべての変更が含まれることが意図される。
 1,1A 冷凍サイクル装置、2,2A 冷熱源ユニット、3 負荷装置、10 圧縮機、20 油分離器、30 ガスクーラ、F2 返油経路、LEV2 流量調整装置、131,132 圧力センサ、100 制御装置、121,122 温度センサ。

Claims (8)

  1.  負荷装置に接続されるように構成された冷凍サイクル装置の冷熱源ユニットであって、
     前記負荷装置に接続されることによって、冷媒が循環する循環流路を形成する冷媒流路と、
     前記冷媒流路に配置される圧縮機と、
     前記冷媒流路において前記圧縮機の吐出口側に配置される油分離器と、
     前記油分離器から前記圧縮機に冷凍機油を戻す返油経路と、
     前記返油経路に配置され、前記返油経路に流れる流体の流量を調整可能に開度が調整される流量調整装置と、
     前記圧縮機の吸入側の圧力を検出する第1圧力センサと、
     前記圧縮機の吐出側の圧力を検出する第2圧力センサと、
     制御装置とを備え、
     前記制御装置は、前記第1圧力センサにより検出された圧力および前記第2圧力センサにより検出された圧力に基づいて、前記流量調整装置の開度を制御する、冷熱源ユニット。
  2.  前記制御装置は、前記圧縮機を起動するときに、前記第1圧力センサにより検出された圧力と前記第2圧力センサにより検出された圧力との圧力差に基づいて、前記流量調整装置を開く制御をする、請求項1に記載の冷熱源ユニット。
  3.  前記返油経路の温度を検出する温度センサをさらに備え、
     前記制御装置は、前記温度センサにより検出された温度に基づいて、前記返油経路に詰まりが生じたか否かを判断する、請求項1または請求項2に記載の冷熱源ユニット。
  4.  前記制御装置は、前記返油経路から前記圧縮機に液状の冷媒が戻る液バックが生じたことに応じて、前記流量調整装置の開度を増加させる、請求項1~3のいずれか1項に記載の冷熱源ユニット。
  5.  前記返油経路において前記流量調整装置と並列に配置され、前記返油経路に流れる流体の流量を調整可能に開閉される電磁弁をさらに備え、
     前記制御装置は、前記第1圧力センサにより検出された圧力および前記第2圧力センサにより検出された圧力に基づいて前記流量調整装置を開いても前記圧縮機に戻す冷凍機油が不足する場合に、前記電磁弁を制御する、請求項1に記載の冷熱源ユニット。
  6.  前記制御装置は、前記圧縮機を起動するときに、前記第1圧力センサにより検出された圧力と前記第2圧力センサにより検出された圧力との圧力差に基づいて、前記電磁弁を開く制御をする、請求項5に記載の冷熱源ユニット。
  7.  前記制御装置は、前記返油経路から前記圧縮機に液状の冷媒が戻る液バックが生じたことに応じて、前記電磁弁を開く、請求項5または請求項6に記載の冷熱源ユニット。
  8.  請求項1~7のいずれか1項に記載の冷熱源ユニットと、前記負荷装置とを備える冷凍サイクル装置。
PCT/JP2020/047521 2020-12-18 2020-12-18 冷熱源ユニット、および冷凍サイクル装置 WO2022130637A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/JP2020/047521 WO2022130637A1 (ja) 2020-12-18 2020-12-18 冷熱源ユニット、および冷凍サイクル装置
EP20966023.2A EP4265980A1 (en) 2020-12-18 2020-12-18 Cold heat source unit and refrigeration cycle device
JP2022569678A JPWO2022130637A1 (ja) 2020-12-18 2020-12-18

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/047521 WO2022130637A1 (ja) 2020-12-18 2020-12-18 冷熱源ユニット、および冷凍サイクル装置

Publications (1)

Publication Number Publication Date
WO2022130637A1 true WO2022130637A1 (ja) 2022-06-23

Family

ID=82059301

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/047521 WO2022130637A1 (ja) 2020-12-18 2020-12-18 冷熱源ユニット、および冷凍サイクル装置

Country Status (3)

Country Link
EP (1) EP4265980A1 (ja)
JP (1) JPWO2022130637A1 (ja)
WO (1) WO2022130637A1 (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0373880U (ja) 1989-11-17 1991-07-25
JPH0674579A (ja) * 1992-08-26 1994-03-15 Daikin Ind Ltd 冷凍装置
JP2001082815A (ja) * 1999-09-14 2001-03-30 Mitsubishi Electric Corp 冷凍空調サイクル装置
JP2003202146A (ja) * 2002-01-10 2003-07-18 Sanyo Electric Co Ltd 空気調和装置
JP2011208860A (ja) * 2010-03-29 2011-10-20 Hitachi Appliances Inc 空気調和機
JP2014115062A (ja) * 2012-12-12 2014-06-26 Yanmar Co Ltd 空調機
WO2015045011A1 (ja) * 2013-09-24 2015-04-02 三菱電機株式会社 冷凍サイクル装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0373880U (ja) 1989-11-17 1991-07-25
JPH0674579A (ja) * 1992-08-26 1994-03-15 Daikin Ind Ltd 冷凍装置
JP2001082815A (ja) * 1999-09-14 2001-03-30 Mitsubishi Electric Corp 冷凍空調サイクル装置
JP2003202146A (ja) * 2002-01-10 2003-07-18 Sanyo Electric Co Ltd 空気調和装置
JP2011208860A (ja) * 2010-03-29 2011-10-20 Hitachi Appliances Inc 空気調和機
JP2014115062A (ja) * 2012-12-12 2014-06-26 Yanmar Co Ltd 空調機
WO2015045011A1 (ja) * 2013-09-24 2015-04-02 三菱電機株式会社 冷凍サイクル装置

Also Published As

Publication number Publication date
JPWO2022130637A1 (ja) 2022-06-23
EP4265980A1 (en) 2023-10-25

Similar Documents

Publication Publication Date Title
US7775057B2 (en) Operational limit to avoid liquid refrigerant carryover
US7905102B2 (en) Control system
CN111895630B (zh) 一种空调运行控制方法、空调及存储介质
JP2011117626A (ja) 空気調和機
CN105910357B (zh) 空调系统及其阀体控制方法
JP7330367B2 (ja) 熱源ユニット、冷凍サイクル装置および冷凍機
JP2008309437A (ja) 空気調和機
JP3270706B2 (ja) 多元冷凍装置
JP4082435B2 (ja) 冷凍装置
WO2022130637A1 (ja) 冷熱源ユニット、および冷凍サイクル装置
CN111981719B (zh) 制冷机组压缩制冷循环控制方法、装置和制冷机组
JP2001311567A (ja) 冷凍装置およびそれを用いた環境試験装置
CN112303972A (zh) 电子膨胀阀控制方法、系统及制冷系统
JPH07305921A (ja) 空気調和装置
US20220146165A1 (en) Air conditioning apparatus
JP7342269B2 (ja) 冷熱源ユニット、および冷凍サイクル装置
JPH04103968A (ja) マルチ空調機の冷凍サイクル制御方法
JPH07294073A (ja) 冷凍装置
JP2008032391A (ja) 冷凍装置
JP2007147274A (ja) 冷凍装置
JP7412639B2 (ja) 熱源ユニット
JP2001091064A (ja) 冷凍装置
JP2001289519A (ja) 冷凍装置
CN217979374U (zh) 一种电子膨胀阀喷气增焓控制系统
JP4111241B2 (ja) 冷凍装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20966023

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022569678

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020966023

Country of ref document: EP

Effective date: 20230718