JP7330367B2 - 熱源ユニット、冷凍サイクル装置および冷凍機 - Google Patents

熱源ユニット、冷凍サイクル装置および冷凍機 Download PDF

Info

Publication number
JP7330367B2
JP7330367B2 JP2022514898A JP2022514898A JP7330367B2 JP 7330367 B2 JP7330367 B2 JP 7330367B2 JP 2022514898 A JP2022514898 A JP 2022514898A JP 2022514898 A JP2022514898 A JP 2022514898A JP 7330367 B2 JP7330367 B2 JP 7330367B2
Authority
JP
Japan
Prior art keywords
oil
valve
refrigerant
compressor
heat source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2022514898A
Other languages
English (en)
Other versions
JPWO2021210064A1 (ja
JPWO2021210064A5 (ja
Inventor
悠介 有井
洋貴 佐藤
康太 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Publication of JPWO2021210064A1 publication Critical patent/JPWO2021210064A1/ja
Publication of JPWO2021210064A5 publication Critical patent/JPWO2021210064A5/ja
Application granted granted Critical
Publication of JP7330367B2 publication Critical patent/JP7330367B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B31/00Compressor arrangements
    • F25B31/002Lubrication
    • F25B31/004Lubrication oil recirculating arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B31/00Compressor arrangements
    • F25B31/006Cooling of compressor or motor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B43/00Arrangements for separating or purifying gases or liquids; Arrangements for vaporising the residuum of liquid refrigerant, e.g. by heat
    • F25B43/02Arrangements for separating or purifying gases or liquids; Arrangements for vaporising the residuum of liquid refrigerant, e.g. by heat for separating lubricants from the refrigerant
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/19Calculation of parameters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/28Means for preventing liquid refrigerant entering into the compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/02Compressor control
    • F25B2600/025Compressor control by controlling speed
    • F25B2600/0251Compressor control by controlling speed with on-off operation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2513Expansion valves

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Power Engineering (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)
  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Description

本開示は、熱源ユニット、冷凍サイクル装置および冷凍機に関する。
圧縮機の筐体の形態には低圧シェルと高圧シェルがある。低圧シェルでは、圧縮前の冷媒および潤滑油がケースに貯留される。高圧シェルでは、圧縮後の冷媒および潤滑油がケース貯留される。圧縮機が低圧シェルの場合、圧縮機の吸入管に油分離器から返油しているが、圧縮機が高圧シェルの場合、冷凍サイクル装置の性能アップを目的として圧縮機の中間圧ポートに油分離器から返油している機種もある。
国際公開第2019/026270号は、圧縮機の中間圧ポートに冷媒を注入するインジェクション流路に油分離器からの油を合流させる冷凍サイクル装置を開示する。
国際公開第2019/026270号
圧縮機が高圧シェルの場合では、中間ポートへのインジェクション流路に油分離器からの油を返油した場合、液冷媒の戻り時(いわゆる液バック時)などに圧縮機の吸入ポート側の油が希釈されて圧縮機スクロールの潤滑性が低下することがある。
しかし、液冷媒の戻りを防ぐことを優先させて、圧縮機の吸入ポートに油分離器の油を戻すと、油と一緒に戻される液冷媒が室内機を循環しないので、冷凍サイクル装置の性能を低下させてしまう。
本開示の冷凍サイクル装置の熱源ユニットは、上記課題を解決するものであり、冷凍サイクル装置の性能低下を最低限としつつ、圧縮機の油不足を解消することを目的とする。
本開示は、第1膨張装置および蒸発器を含む負荷装置に接続されるように構成された冷凍サイクル装置の熱源ユニットに関する。熱源ユニットは、負荷装置に接続されることによって、冷媒が循環する循環流路を形成する第1流路と、第1流路に配置され、吸入ポートおよび中間圧ポートから冷媒を吸入し吐出ポートから冷媒を吐出するように構成された圧縮装置と、第1流路の圧縮装置の下流に配置され、冷媒入口、冷媒出口および油出口を有する油分離器と、第1流路の油分離器の下流に配置される凝縮器と、冷媒が循環する方向において、凝縮器よりも下流の第1流路の分岐点から分岐し、凝縮器を通過した冷媒を中間圧ポートから圧縮装置に戻すように構成された第2流路と、第2流路に配置される第2膨張装置と、油分離器の油出口から排出される冷凍機油を中間圧ポートおよび吸入ポートを介して圧縮装置に戻すように構成された油分配部とを備える。油分配部は、冷凍機油が中間圧ポートと吸入ポートに分配される比率を変更可能に構成される。
本開示の熱源ユニット、冷凍サイクル装置および冷凍機によれば、液冷媒の戻り時等の異常運転モード時の信頼性向上と、液冷媒の戻りが生じていないときの通常運転時の性能向上を両立させることができる。
中間圧インジェクション流路を有する冷凍サイクル装置の返油経路の第1検討例の構成を示す図である。 中間圧インジェクション流路を有する冷凍サイクル装置の返油経路の第2検討例の構成を示す図である。 実施の形態1の冷凍サイクル装置1の全体構成図である。 実施の形態1における油分配部の電磁弁の制御状態を示す図である。 実施の形態1において制御装置が実行する油分配部の電磁弁の制御を説明するためのフローチャートである。 実施の形態2における油分配部の電磁弁の制御状態を示す図である。 実施の形態2において制御装置が実行する油分配部の電磁弁の制御を説明するためのフローチャートである。 実施の形態3の冷凍サイクル装置201の全体構成図である。 実施の形態3において制御装置が実行する油分配部の電磁弁の制御を説明するためのフローチャートである。 実施の形態4の冷凍サイクル装置301の全体構成図である。 実施の形態4における油分配部の流量調整弁の制御状態の第1例を示す図である。 実施の形態4における油分配部の流量調整弁の制御状態の第2例を示す図である。 実施の形態5の冷凍サイクル装置401の全体構成図である。 実施の形態5における油分配部の電磁弁の制御状態を示す図である。 実施の形態5において制御装置が実行する油分配部の電磁弁の制御を説明するためのフローチャートである。 実施の形態5の変形例の冷凍サイクル装置501の全体構成図である。
以下、本発明の実施の形態について、図面を参照しながら詳細に説明する。以下では、複数の実施の形態について説明するが、各実施の形態で説明された構成を適宜組合わせることは出願当初から予定されている。なお、図中同一又は相当部分には同一符号を付してその説明は繰返さない。
実施の形態1.
図1は、中間圧インジェクション流路を有する冷凍サイクル装置の返油経路の第1検討例の構成を示す図である。図1に示す冷凍サイクル装置は、圧縮装置10の吐出ポートG2、油分離器20、凝縮器30、受液器(レシーバ)40、第1膨張装置LEV1、蒸発器60、圧縮装置10の吸入ポートG1の順に冷媒が循環する主冷媒流路と、第2膨張装置LEV2を介して受液器40の出口部分から圧縮装置10の中間圧ポートG3に冷媒を注入するインジェクション流路とを備える。
この構成では、油分離器20において分離した油を、圧縮機の吸入ポートG1に戻している。そして、第2膨張装置LEV2によって、インジェクション流路を流れる冷媒の流量を調整することによって、圧縮装置10の吐出温度が制御される。
この場合のメリットとして、圧縮装置10内の摺動部の潤滑性が確保できる。一方で、油分離器20から圧縮装置10に返された油の中には冷媒も溶け込んでいる。このため、油に溶け込んだ冷媒の分だけ蒸発器60側を循環する冷媒量が低下し、冷凍サイクル装置の能力および性能が低下するというデメリットがある。
図2は、中間圧インジェクション流路を有する冷凍サイクル装置の返油経路の第2検討例の構成を示す図である。
図2に示す構成の冷凍サイクル装置のように、油分離器20から分離した油を圧縮装置10の中間圧ポートG3に返す場合もある。中間圧ポートG3に油を返す場合も油の中に冷媒が溶け込んでいる可能性はある。しかし、溶け込んだ冷媒は、吐出温度を下げるために圧縮装置10に注入する冷媒の一部として使える。結果的に圧縮装置10の吐出温度を同じとする場合、図1の構成よりも図2の構成の方が、第2膨張装置LEV2の開度を下げることができ、蒸発器60に循環させる液冷媒量を多くすることができる。このため、図1に示す返油構成よりも図2に示す構成の方が、エネルギーロスが少ない。
ただし、圧縮装置10の吸入ポートG1に液冷媒の戻りが発生している場合には、油の濃度が低下するため、油が入ってこない圧縮装置10の吸入ポートG1から中間圧ポートG3までの内部において潤滑不足が生じる可能性がある。
実施の形態1の冷凍サイクル装置1を用いれば上記のような検討例における問題を解決することができる。
図3は、実施の形態1の冷凍サイクル装置1の全体構成図である。なお、図1では、冷凍サイクル装置における各機器の接続関係および配置構成を機能的に示しており、物理的な空間における配置を必ずしも示すものではない。
図3を参照して、冷凍サイクル装置1は、熱源ユニット2と、負荷装置3と、延長配管84,88とを備える。熱源ユニット2は、通常、室外または屋外に配置されるので、室外ユニット、または、屋外ユニットと呼ばれることがある。また熱源ユニット2は、本実施の形態では、熱を屋外に排出する冷熱源として動作する。
冷凍サイクル装置1の熱源ユニット2は、延長配管84,88によって、負荷装置3に接続されるように構成される。
熱源ユニット2は、圧縮装置10と、油分離器20と、凝縮器30と、受液器40と、配管80~83、89とを備える。実施の形態1では、圧縮装置10は、3ポートを有する1台の圧縮機によって構成される。配管80は、圧縮装置10の吐出ポートG2と油分離器20とを接続する。配管81は、油分離器20と凝縮器30とを接続する。配管82は、凝縮器30と受液器40とを接続する。配管83は、受液器40と熱源ユニット2の冷媒出口とを接続する。受液器40は、配管82と配管83との間に配置され、冷媒を貯留するように構成される。
配管89から、圧縮装置10、配管80、油分離器20、配管81、凝縮器30、配管82、受液器40を経て配管83に至る流路は、負荷装置3と共に、冷媒が循環する循環流路を形成するように構成される。以下、この循環流路を冷凍サイクルの「メイン回路」とも言う。
熱源ユニット2は、配管91,93と、配管91と配管93との間に配置される第2膨張装置LEV2とをさらに備える。配管91は、循環流路の受液器40の出口に接続された配管83から第2膨張装置LEV2に冷媒を流すように構成される。配管93は、第2膨張装置LEV2から圧縮装置10に冷媒を流すように構成される。以下において、メイン回路から分岐して第2膨張装置LEV2を経由して圧縮装置10に冷媒を送るこの流路を、「インジェクション流路」と呼ぶ。
負荷装置3は、電磁弁70と、第1膨張装置LEV1と、蒸発器60と、配管85,86,87とを含む。第1膨張装置LEV1としては、たとえば、膨張弁を使用することができる。好ましくは、第1膨張装置LEV1は、熱源ユニット2と独立して制御される温度膨張弁である。電磁弁70は、負荷装置3側が冷媒不要な状態となった場合に閉止される。
圧縮装置10は、配管89および配管93から吸入される冷媒を圧縮して配管80へ吐出する。圧縮装置10は、吸入ポートG1、吐出ポートG2および中間圧ポートG3を有する。圧縮装置10は、蒸発器60を通過した冷媒を吸入ポートG1から吸入し、吐出ポートG2から凝縮器30に向けて冷媒を吐出するように構成される。
配管93は、第2膨張装置LEV2の出口から圧縮装置10の中間圧ポートG3に冷媒を流すように構成される。第2膨張装置LEV2としては、たとえば、膨張弁を使用することができる。好ましくは、第2膨張装置LEV2は、外部から与えられる信号に応じて開度が変更される電子膨張弁である。
圧縮装置10は、制御装置100からの制御信号に従って回転速度を調整するように構成される。圧縮装置10の回転速度を調整することによって冷媒の循環量が調整され、冷凍サイクル装置1の冷凍能力を調整することができる。圧縮装置10には種々のタイプのものを採用可能であり、たとえば、スクロールタイプ、ロータリータイプ、スクリュータイプ等のものを採用し得る。
凝縮器30は、圧縮装置10から吐出され油分離器20を通過した冷媒を凝縮して配管82へ流す。凝縮器30は、圧縮装置10から吐出された高温高圧のガス冷媒が外気と熱交換を行なうように構成される。この熱交換により、放熱した冷媒は凝縮して液相に変化する。図示しないファンは、凝縮器30において冷媒が熱交換を行なう外気を凝縮器30に供給する。ファンの回転数を調整することにより、圧縮装置10の吐出側の冷媒圧力PHを調整することができる。
熱源ユニット2は、さらに、圧力センサ110,111と、温度センサ121,122と、熱源ユニット2を制御する制御装置100と、油分離器20の油を分配する油分配部150とを備える。
圧力センサ110は、圧縮装置10の吸入冷媒の圧力PLを検出し、その検出値を制御装置100へ出力する。圧力センサ111は、圧縮装置10の吐出冷媒の圧力PHを検出し、その検出値を制御装置100へ出力する。
温度センサ121は、圧縮装置10から吐出された冷媒の温度T1を検出し、その検出値を制御装置100へ出力する。温度センサ122は、圧縮装置10に吸入される冷媒の温度T2を検出し、その検出値を制御装置100へ出力する。
油分配部150は、配管94と配管95と第1の弁SV1と第2の弁SV2とを含む。たとえば、第1の弁SV1と第2の弁SV2として、各々電磁弁を用いることができる。配管94は、油分離器20の油出口と配管93との間を接続する。配管95は、油分離器20の油出口と配管89との間を接続する。第1の弁SV1は、配管94に設けられ、油および冷媒の流通経路を開閉する。第2の弁SV2は、配管95に設けられ、油および冷媒の流通経路を開閉する。
制御装置100は、CPU(Central Processing Unit)102と、メモリ104(ROM(Read Only Memory)およびRAM(Random Access Memory))と、各種信号を入出力するための入出力バッファ(図示せず)等を含んで構成される。CPU102は、ROMに格納されているプログラムをRAM等に展開して実行する。ROMに格納されるプログラムは、制御装置100の処理手順が記されたプログラムである。制御装置100は、これらのプログラムに従って、熱源ユニット2における各機器の制御を実行する。この制御については、ソフトウェアによる処理に限られず、専用のハードウェア(電子回路)で処理することも可能である。
本実施の形態では、油分配部150は、冷凍機油が中間圧ポートG3と吸入ポートG1に分配される比率を変更可能に構成される。油分配部150は、第1の弁SV1、第2の弁SV2によって分配を変更するため、分配比率は、(中間圧ポートG3の比率%、吸入ポートG1の比率%)の組み合わせで(100%、0%)、(0%、100%)、(0%、0%)の3通りに変更可能である。たとえば、圧縮機の油量過多の場合に、第1の弁SV1、第2の弁SV2をともに閉じて、油分離器20に冷凍機油を溜めることもできる。
以上説明したように、冷凍サイクル装置1の熱源ユニット2には、油分離器20からの返油管として、圧縮装置10の吸入管につながる配管95と圧縮装置10の中間圧ポートG3につながる配管94の2つが設けられる。配管94、配管95にそれぞれ第1の弁SV1、第2の弁SV2が設けられ、油分配部150は、油を返す流路を切り替えられるよう構成される。
図4は、実施の形態1における油分配部の電磁弁の制御状態を示す図である。図4に示すように、通常時は第1の弁SV1を開、第2の弁SV2を閉とし、冷凍サイクル装置1の性能を優先させる。一方、液冷媒の圧縮装置10への戻りを検知した場合は、第1の弁SV1を閉、第2の弁SV2を開とする。これにより、液冷媒戻りを検知した場合は、圧縮装置10の潤滑性が向上するとともに、高温の油および冷媒が圧縮装置10の吸入側に戻ることになるため、吸入過熱度の上昇すなわち液冷媒戻りの解消につながる。
図5は、実施の形態1において制御装置が実行する油分配部の電磁弁の制御を説明するためのフローチャートである。ステップS1において、制御装置100は、液冷媒戻りが検出されているか否かを判断する。
液冷媒戻りは、圧縮装置10が吸入する冷媒の過熱度(吸入加熱度)の低下を見て検出することができる。吸入加熱度は、圧縮装置10が吐出する冷媒の過熱度(吐出加熱度)とも連動するので、吐出過熱度の低下を見て検出しても良い。
具体的には、制御装置100は、ステップS1において、吸入加熱度または吐出過熱度があるしきい値を下回った場合に、液冷媒戻り有りと判断する。
なお、吐出過熱度(T1-CT)は、圧縮装置10の吐出管に設けられた圧力センサ111の検出する圧力PHに対応する飽和温度CTと同じく圧縮機吐出管に設けられた温度センサ121の検出温度T1から得られる。また、吸入加熱度(T2-ET)は、圧縮装置10の吸入ポートG1に接続された配管89に設けられた圧力センサ110の検出圧力Plに対応する飽和温度ETと同じく圧縮機吸入管に設けられた温度センサ122の検出温度T2から得られる。
液戻り検出無しと判断された場合(S1でNO)、制御装置100は、ステップS3において、第1の弁SV1を開とし、第2の弁SV2を閉とするように制御する。逆に、液戻り検出有りと判断された場合(S1でYES)、制御装置100は、ステップS2において、第1の弁SV1を閉とし、第2の弁SV2を開とするように制御する。
このように、油分配部150を制御することによって、通常は冷凍サイクル装置1の能力および性能を重視した運転が行なわれる一方で、液冷媒戻り発生時などは圧縮装置10の信頼性を優先する運転に切り替えることができる。
なお、油分配部150は、図3のように第1の弁SV1、第2の弁SV2設ける代わりに、三方弁のようなものを設けて、流路を切り替えるように構成されても良い。
実施の形態2.
冷凍倉庫などに使用される冷凍機の場合、図1に示すように、負荷装置3と熱源ユニット2は冷媒の延長配管84,88で接続されている。しかし、負荷装置3と熱源ユニット2は必ずしも同じメーカーで製造されるわけではなく、これらの間は通信線などでは接続されていない場合が多い。したがって、負荷装置3側で十分に庫内が冷えた場合、冷えすぎないようにするためには、負荷装置3において電磁弁70が閉止され冷媒の流通が遮断される。
すると、圧縮装置10の運転が続くことによって、蒸発器60および配管86,87中の冷媒が圧縮装置10に吸入され受液器40に貯留される。そして、圧力センサ110が検出する圧力PLがしきい値よりも低くなると、制御装置100は圧縮装置10の運転を停止させる。このような運転をポンプダウン運転ともいう。圧縮装置10が停止される場合は、このように圧力PLが通常よりも低下し、圧縮装置10の吸入ポートG1と吐出ポートG2の差圧が大きくなる。圧縮機は、停止中は各ポートが内部で遮断された状態となるので、停止中も差圧は維持される。
負荷装置3側で温度が上昇したなどによって圧縮装置10の再起動が必要になった場合には、負荷装置3が電磁弁70を開く。すると、圧力PLが上昇するので、これに応じて制御装置100は、圧縮装置10を起動させる。
ただし、圧縮機によっては吸入ポートと吐出ポートの差圧が大きいときに起動しづらい場合がある。冷媒が受液器40から第1膨張装置LEV1および蒸発器60を通過して圧力PLを上昇させるには、ある程度の時間を要する。そこで、実施の形態2に示す冷凍サイクル装置では、返油路を利用して圧縮機の起動性を向上させる。
図6は、実施の形態2における油分配部の電磁弁の制御状態を示す図である。図6に示すように、通常時には、制御装置100は、性能を向上させるために、第1の弁SV1を開き、第2の弁SV2を閉じる。一方、圧縮装置10の起動時には、制御装置100は、第1の弁SV1を閉じ、第2の弁SV2を開く。これにより、圧縮装置10の吐出側の冷媒が吸入側に移動するため、圧力PHは低下し、圧力PLは上昇する。圧縮装置10の吸入側と吐出側の圧力差が小さくなると、圧縮装置10を回転させるのに必要なトルクも小さくて済むため、圧縮装置10の機動性が向上する。例えば、起動前の圧力PHと圧力PLとの差がしきい値より大きい場合などに図6の起動時の制御を行なう。
図7は、実施の形態2において制御装置が実行する油分配部の電磁弁の制御を説明するためのフローチャートである。
制御装置100は、圧縮装置10を停止させる場合には、同時に第2の弁SV2を閉じている。まずステップS11において、制御装置100は、圧縮装置10の起動時であるか否かを判断する。例えば、電源が投入された場合、停止の判定しきい値以下となっていた圧力PLが判定しきい値よりも上昇した場合、および庫内温度がしきい値よりも上昇した場合などに、制御装置100は、圧縮装置10の起動時であると判断する。
起動時であると判断した場合(S11でYES)、ステップS12において、制御装置100は、圧力PHと圧力PLの差がしきい値Pthよりも大きいか否かを判断する。
|PH-PL|>Pthが成立した場合(S12でYES)、ステップS13において、制御装置100は、第1の弁SV1を閉じ、第2の弁SV2を開く。これにより、圧縮装置10の吐出側の冷媒が吸入側に移動するため、圧力PHは低下し、圧力PLは上昇する。
続いて、ステップS14において、制御装置100は、圧力PHと圧力PLの差がしきい値Pth以下となったか否かを判断する。差がしきい値Pth以下にならない間は、ステップS14に処理が留まり、時間待ちが行なわれる。
ステップS12またはステップS14において圧力PHと圧力PLの差がしきい値Pth以下であると判断された場合(S12でNOまたはS14でYES)には、ステップS15において、制御装置100は、第1の弁SV1を開き、第2の弁SV2を閉じる。そして、ステップS16において制御装置100は、圧縮装置10を起動させる。なお、第2の弁SV2については、必ずしも閉じてから圧縮装置10を起動させる必要はなく、第2の弁SV2を開いた状態で圧縮装置10を起動させても良い。
このように、油分配部150の制御を圧縮装置10の起動時に実行することにより、圧縮装置10の起動時間が早くなるとともに、起動に必要なトルクも低減し圧縮装置10が起動しやすくなる。
実施の形態3.
実施の形態3では、圧縮機を2台直列につなげて使用する場合の応用例を示す。低圧側圧力に対する高圧側圧力の比が高い条件などの高圧縮比条件で使用する場合、圧縮機を2台直列に接続して使用する場合がある。このような構成を2段圧縮構成という。たとえば、魚の冷凍倉庫など超低温状態で使用する場合の熱源ユニット、CO冷媒を使用する熱源ユニットなどに2段圧縮構成が採用される。
図8は、実施の形態3の冷凍サイクル装置201の全体構成図である。冷凍サイクル装置201は、熱源ユニット202と、負荷装置3と、延長配管84,88とを備える。
熱源ユニット202は、延長配管84,88によって、負荷装置3に接続されるように構成される。負荷装置3および延長配管84,88については、図3に示した構成と同様であるので説明は繰返さない。
熱源ユニット202は、図3に示した熱源ユニット2の構成において、圧縮装置10に代えて圧縮装置10Aを備える。圧縮装置10Aは、直列に接続された第1圧縮機11および第2圧縮機12と圧力センサ112とを備える。第1圧縮機11は、配管89から冷媒を吸入し第2圧縮機12に吐出する。第2圧縮機12は吸入した冷媒を配管80に吐出する。インジェクション流路である配管93は、第1圧縮機11と第2圧縮機12の接続部分に接続される。圧力センサ112は、この接続部分の圧力PMを検出する。
第1圧縮機11と第2圧縮機12は、別々の筐体を有する。各筐体には、モータおよび圧縮部が内蔵されている。なお、2段圧縮を行なうために、1つの筐体および1つのモータを有する圧縮機を用いても良い。この場合は、吐出口および吸入口が低圧用と高圧用の2つずつある。
このような2段圧縮の構成とするのは、1台の圧縮機で高圧力比の圧縮をした場合には、圧縮機の吐出温度が非常に高くなり、圧縮機を損傷させる場合があるからである。このため、2台の圧縮機を直列につなげて、間に冷媒を注入することで、吐出温度を下げている。
図8のような構成の場合、第1圧縮機11内の油の量と第2圧縮機12内の油の量との間に偏りが生じる可能性がある。そこで、第1圧縮機11および第2圧縮機12に、筐体の底部に溜まる油の油面の高さを検出する油量センサ131,132をそれぞれ設ける。そして、第1圧縮機11の油量OL1を油量センサ131によって検知し、第2圧縮機12の油量OL2を油量センサ132によって検知する。
第1圧縮機11の油量が少ない場合には、第2の弁SV2を開き、第1の弁SV1を閉じる。一方、第2圧縮機12の油量が少ない場合には、第1の弁SV1を開き、第2の弁SV2を閉じることによって、油量の偏りを抑制する。
図9は、実施の形態3において制御装置が実行する油分配部の電磁弁の制御を説明するためのフローチャートである。まずステップS21において、制御装置100は、第1圧縮機11の油量OL1が判定しきい値Th1よりも少ないか否かを判断する。
油量OL1が判定しきい値Th1よりも少ない場合(S21でYES)、制御装置100は、ステップS22において第1の弁SV1を閉じ、第2の弁SV2を開く。これにより、油分離器から冷凍機油が第1圧縮機11の吸入ポート側に供給されるので、油量OL1が増加する。
一方、油量OL1が判定しきい値Th1以上である場合(S21でNO)、制御装置100は、ステップS23において第2圧縮機12の油量OL2が判定しきい値Th2よりも少ないか否かを判断する。
油量OL2が判定しきい値Th2よりも少ない場合(S23でYES)、制御装置100は、ステップS24において第1の弁SV1を開き、第2の弁SV2を閉じる。これにより、油分離器から冷凍機油が第2圧縮機12の吸入ポート側に供給されるので、油量OL2が増加する。
一方、油量OL2が判定しきい値Th2以上である場合(S23でNO)、制御装置100は、ステップS24の処理を行なわずに、現在の第1の弁SV1、第2の弁SV2の状態を維持する。
なお、冷凍機油の封入量は一定量であるので、油量OL1が減っている場合には、油量OL2は増えているという関係にある。このため、ステップS23の判定を行なわずに、ステップS21でNOと判定されたら、ステップS24の処理を実行するようにしても良い。また、逆にステップS21の判定を行なわずにステップS23の判定を行ない、ステップS23でNOと判定されたらステップS22の処理を行なうようにしても良い。
このように油分配部の制御を行なうことによって、第1圧縮機11および第2圧縮機12に対する冷凍機油の偏りを軽減することができる。
実施の形態4.
実施の形態4では、圧縮機を2台直列につなげて使用する場合の他の応用例を説明する。図8に示した構成において、第2の弁SV2の前に電子膨張弁またはキャピラリチューブなどを用いれば、第1の弁SV1および第2の弁SV2をともに開にして運転し、より細かな油量調整を行なうことが可能である。
図10は、実施の形態4の冷凍サイクル装置301の全体構成図である。図10に示す冷凍サイクル装置301は、熱源ユニット302と、負荷装置3と、延長配管84,88とを備える。
熱源ユニット302は、延長配管84,88によって、負荷装置3に接続されるように構成される。負荷装置3および延長配管84,88については、図3に示した構成と同様であるので説明は繰返さない。
熱源ユニット302は、図8に示した熱源ユニット202の構成において、油分配部150に代えて油分配部150Aを備える。熱源ユニット302の他の構成は、図8に示した熱源ユニット202の構成と同様であるので、説明は繰返さない。
油分配部150Aは、油分配部150の構成に加えて、流量調整弁LEV3をさらに備える。流量調整弁LEV3と第2の弁SV2とは、配管95に直列に配置される。図10では、流量調整弁LEV3の方が第2の弁SV2よりも上流側に配置されているが、これらの配置は逆であっても良い。また、流量調整弁LEV3が全閉可能であれば、第2の弁SV2を省略しても良い。
流量調整弁LEV3としては、電子膨張弁を用いることができる。流量調整弁LEV3を用いれば、第1圧縮機11および第2圧縮機12への油の分配比率を細かく制御することが可能となる。たとえば、第1圧縮機11および第2圧縮機12に等量の返油を行なうことも可能である。
図11は、実施の形態4における油分配部の流量調整弁の制御状態の第1例を示す図である。第1例では、第1の弁SV1、第2の弁SV2を開状態とし、図11に示すように第1圧縮機11の油量OL1が多いときは流量調整弁LEV3の開度を小さく、第1圧縮機11の油量OL1が少ないときは流量調整弁LEV3の開度を大きくする。
冷凍サイクル装置に封入されている油の量は一定であるので、第1圧縮機11の油量を調整することによって、第2圧縮機12の油量も適量に調整される。
図12は、実施の形態4における油分配部の流量調整弁の制御状態の第2例を示す図である。図11に示した第1例では、第1圧縮機11の油量OL1に応じて流量調整弁LEV3の開度を変化させたが、逆に、第2圧縮機12の油量OL2に応じて流量調整弁LEV3の開度を変化させてもよい。第2例では、第1の弁SV1、第2の弁SV2を開状態とし、図12に示すように第2圧縮機12の油量OL2が少ないときは流量調整弁LEV3の開度を小さく、第2圧縮機12の油量OL2が多いときは流量調整弁LEV3の開度を大きくする。
冷凍サイクル装置に封入されている油の量は一定であるので、第2圧縮機12の油量を調整することによって、第1圧縮機11の油量も適量に調整される。
実施の形態4では、このように油分配部150Aの流量調整弁LEV3を制御することにより、2台の圧縮機の油量を適量に制御することができる。
実施の形態5.
室外機と室内機を接続する配管長が長いときなどは配管長を考慮して油を多めに封入する場合がある。しかし、運転状態によっては油量が過剰になって圧縮機に溜まる量が多くなる場合がある。その場合、アキュムレータを油溜めとして使用し、余剰冷媒をためる場合がある。
図13は、実施の形態5の冷凍サイクル装置401の全体構成図である。図13に示す冷凍サイクル装置401は、熱源ユニット402と、負荷装置3と、延長配管84,88とを備える。
熱源ユニット402は、延長配管84,88によって、負荷装置3に接続されるように構成される。負荷装置3および延長配管84,88については、図3に示した構成と同様であるので説明は繰返さない。
熱源ユニット402は、図3に示した熱源ユニット2の構成において、アキュムレータ22と、配管96と、第3の弁SV3と、油量センサ130とをさらに備える。熱源ユニット402の他の構成は、図3に示した熱源ユニット2の構成と同様であるので、説明は繰返さない。たとえば、第3の弁SV3として電磁弁を用いることができる。
アキュムレータ22は、配管89の途中に配置される。油量センサ130は、圧縮装置10の油量OLを検出する。
実施の形態5では、油分配部150Cが用いられる。油分配部150Cは、配管94~96と第1の弁SV1、第2の弁SV2、第3の弁SV3とを含む。配管94は、油分離器20の油出口と配管93との間を接続する。第1の弁SV1は、配管94に設けられ、油および冷媒の流通経路を開閉する。第2の弁SV2は、配管95に設けられ、油および冷媒の流通経路を開閉する。配管96は、配管95の第1の弁SV1の上流部から分岐してアキュムレータ22の入口側の配管89に合流する。第3の弁SV3は、配管96の途中に配置される。
実施の形態5では、第2の弁SV2に加えて第3の弁SV3を設けて、圧縮装置10に直接油を返す場合と、アキュムレータ22に油をためる場合を切り替える。
図14は、実施の形態5における油分配部の電磁弁の制御状態を示す図である。図14に示すように、通常の場合は性能を優先して第1の弁SV1を開き、第2の弁SV2、第3の弁SV3を閉じる。液冷媒戻りを検知している場合は、圧縮機の潤滑不足の可能性があるので第2の弁SV2を開き、第1の弁SV1、第3の弁SV3を閉じる。液冷媒戻り非検出の通常の場合でも圧縮装置10内の油量OLが判定しきい値よりも多い場合は、第3の弁SV3を開き、第1の弁SV1、第2の弁SV2を閉じて、アキュムレータに油をためる。
これにより、冷凍サイクル装置の能力および性能と、圧縮機内油の潤滑と、余剰油の圧縮機からの排出とのバランスをとることができる。
図15は、実施の形態5において制御装置が実行する油分配部の電磁弁の制御を説明するためのフローチャートである。まずステップS31において、制御装置100は、液冷媒戻りが検出されているか否かを判断する。
液冷媒戻りは、実施の形態1と同様に、圧縮装置10が吸入する冷媒の過熱度(吸入加熱度)の低下または吐出過熱度の低下を見て検出することができる。
液戻り検出有りと判断された場合(S31でYES)、制御装置100は、ステップS32において、第2の弁SV2を開き、第1の弁SV1、第3の弁SV3を閉じる。
一方、液戻り検出無しと判断された場合(S31でNO)、制御装置100は、ステップS33において、圧縮装置10の油量OLが判定しきい値Thよりも多いか否かを判断する。
油量OLが判定しきい値Thよりも多い場合(S33でYES)、制御装置100は、ステップS34において第3の弁SV3を開き、第1の弁SV1、第2の弁SV2を閉じる。これにより、圧縮装置10の吸入ポートに供給されていた油分離器20から冷凍機油が、アキュムレータ22の入口側に供給されるように変わるので、油量OLが減少する。
一方、油量OLが判定しきい値Thよりも少ない場合(S33でNO)、制御装置100は、ステップS35において第1の弁SV1を開き、第2の弁SV2、第3の弁SV3を閉じる。
このように、油分配部150Cを制御することによって、通常は冷凍サイクル装置1の能力および性能を重視した運転が行なわれる一方で、液冷媒戻り発生時、圧縮機の油量過剰時などは圧縮装置10の信頼性を優先する運転に切り替えることができる。
図16は、実施の形態5の変形例の冷凍サイクル装置501の全体構成図である。冷凍サイクル装置501は、熱源ユニット502と、負荷装置3と、延長配管84,88とを備える。
熱源ユニット502は、延長配管84,88によって、負荷装置3に接続されるように構成される。負荷装置3および延長配管84,88については、図3に示した構成と同様であるので説明は繰返さない。
熱源ユニット502は、図13に示した熱源ユニット402の構成において、圧縮装置10に代えて圧縮装置10Aを備える。熱源ユニット502の他の構成は、図13に示した熱源ユニット402の構成と同様であり、また圧縮装置10Aは、図8と同様な構成である。
制御装置100は、第1圧縮機11の油量OL1が不足を示す場合には、第2の弁SV2を開き、第1の弁SV1、第3の弁SV3を閉じる。また、第2圧縮機12の油量OL2が不足を示す場合には、第1の弁SV1を開き、第2の弁SV2、第3の弁SV3を閉じる。油量OL1,OL2がいずれも不足を示さない場合には、第3の弁SV3を開き、第1の弁SV1、第2の弁SV2を閉じる。
このように制御することにより、圧縮機を2台直列に接続して使用する構成においても、過剰な油をアキュムレータ22に貯留することができる。
なお、アキュムレータ22にも油量センサを設けてアキュムレータの油量も制御のパラメータとして追加しても良い。冷凍サイクル装置501に封入されている冷凍機油の量は一定であるので、第1圧縮機11、第2圧縮機12、アキュムレータ22のうちの少なくとも2つの油量を検出すれば、同様な制御が可能である。
また、以上の油量センサの検出精度を向上させるために、液冷媒が吸入された場合を除くために、温度センサおよび圧力センサを用いて圧縮機の吸入過熱度または吐出過熱度を併せて検出して、油量センサの出力と組み合わせて油量の判定を行なっても良い。
(まとめ)
以上説明した実施の形態について、再び図面を参照して説明する。
図3に示すように、本開示は、第1膨張装置LEV1および蒸発器60を含む負荷装置3に接続されるように構成された冷凍サイクル装置1の熱源ユニット2に関する。熱源ユニット2は、負荷装置3に接続されることによって、冷媒が循環する循環流路を形成する第1流路(80~83,89)と、第1流路に配置され、吸入ポートG1および中間圧ポートG3から冷媒を吸入し吐出ポートG2から冷媒を吐出するように構成された圧縮装置10と、第1流路の圧縮装置10の下流に配置され、冷媒入口、冷媒出口および油出口を有する油分離器20と、第1流路の油分離器の下流に配置される凝縮器30と、冷媒が循環する方向において、凝縮器30よりも下流の第1流路の分岐点から分岐し、凝縮器30を通過した冷媒を中間圧ポートG3から圧縮装置10に戻すように構成された第2流路(91,93)と、第2流路に配置される第2膨張装置LEV2と、油分離器20の油出口から排出される冷凍機油を中間圧ポートG3および吸入ポートG1を介して圧縮装置10に戻すように構成された油分配部150とを備える。油分配部150は、冷凍機油が中間圧ポートG3と吸入ポートG1に分配される比率を変更可能に構成される。
油分配部150は、油分離器20の油出口と中間圧ポートG3とを連通させる第1の弁SV1と、油分離器20の油出口と吸入ポートG1とを連通させる第2の弁SV2とを含む。
熱源ユニット2は、第1の弁SV1および第2の弁SV2を制御する制御装置100をさらに備える。図4、図5に示すように、制御装置100は、吸入ポートG1に対する液冷媒の戻り量が判定値よりも増加した場合に、第2の弁SV2を開き、第1の弁SV1を閉じる。
熱源ユニット2は、第1の弁SV1および第2の弁SV2を制御する制御装置100をさらに備える。図6、図7に示すように、制御装置100は、圧縮装置10を起動する場合において、吐出ポートG2と吸入ポートG1の圧力差|PH-PL|が判定値Pthよりも大きい場合には、第2の弁SV2を開いて圧力差を小さくする。
図8に示すように、圧縮装置10Aは、吸入ポートから冷媒を吸入し中間圧ポートに接続された配管に吐出する第1圧縮機11と、中間圧ポートに接続された配管から冷媒を吸入し吐出ポートに吐出する第2圧縮機12とを含む。
図10に示すように、油分配部150Aは、油分離器20の油出口と中間圧ポートとを連通させる第1の弁SV1と、油分離器20の油出口と吸入ポートとを連通させる流量調整弁LEV3とを含む。
図13に示すように、熱源ユニット402は、第1流路の圧縮装置10の上流に配置されるアキュムレータ22をさらに備える。油分配部150Cは、油分離器20の油出口と中間圧ポートG3とを連通させる第1の弁SV1と、油分離器20の油出口と吸入ポートG1とを連通させる第2の弁SV2と、油分離器20の油出口とアキュムレータ22の入口とを連通させる第3の弁SV3とを含む。
本開示は、他の局面では、上記のいずれかの熱源ユニット2,202,302,402,502と、負荷装置3とを備える冷凍サイクル装置1,201,301,401,501に関する。
本開示は、他の局面では、上記冷凍サイクル装置1,201,301,401,501を備える冷凍機に関する。
今回開示された実施の形態は、すべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は、上記した実施の形態の説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味及び範囲内でのすべての変更が含まれることが意図される。
1,201,301,401,501 冷凍サイクル装置、2,202,302,402,502 熱源ユニット、3 負荷装置、10,10A 圧縮装置、11 第1圧縮機、12 第2圧縮機、20 油分離器、22 アキュムレータ、30 凝縮器、40 受液器、60 蒸発器、70 電磁弁、80~83,85~87,89,91,93~96 配管、84,88 延長配管、100 制御装置、104 メモリ、110~112 圧力センサ、121,122 温度センサ、130~132 油量センサ、150,150A,150C 油分配部、G1 吸入ポート、G2 吐出ポート、G3 中間圧ポート、LEV1 第1膨張装置、LEV2 第2膨張装置、LEV3 流量調整弁、SV1 第1の弁、SV2 第2の弁、SV3 第3の弁。

Claims (7)

  1. 第1膨張装置および蒸発器を含む負荷装置に接続されるように構成された冷凍サイクル装置の熱源ユニットであって、
    前記負荷装置に接続されることによって、冷媒が循環する循環流路を形成する第1流路と、
    前記第1流路に配置され、吸入ポートおよび中間圧ポートから前記冷媒を吸入し吐出ポートから前記冷媒を吐出するように構成された圧縮装置と、
    前記第1流路の前記圧縮装置の下流に配置され、冷媒入口、冷媒出口および油出口を有する油分離器と、
    前記第1流路の前記油分離器の下流に配置される凝縮器と、
    前記冷媒が循環する方向において、前記凝縮器よりも下流の前記第1流路の分岐点から分岐し、前記凝縮器を通過した冷媒を前記中間圧ポートから前記圧縮装置に戻すように構成された第2流路と、
    前記第2流路に配置される第2膨張装置と、
    前記油分離器の前記油出口から排出される冷凍機油を前記中間圧ポートおよび前記吸入ポートを介して前記圧縮装置に戻すように構成された油分配部とを備え、
    前記油分配部は、前記冷凍機油が前記中間圧ポートと前記吸入ポートに分配される比率を変更可能に構成され
    前記油分配部は、
    前記油分離器の前記油出口と前記中間圧ポートとを連通させる第1の弁と、
    前記油分離器の前記油出口と前記吸入ポートとを連通させる第2の弁とを含み、
    前記第1の弁および前記第2の弁を制御する制御装置をさらに備え、
    前記制御装置は、前記圧縮装置を起動する場合において、前記吐出ポートと前記吸入ポートの圧力差が判定値よりも大きい場合には、前記第2の弁を開いて前記圧力差を小さくする、熱源ユニット。
  2. 記制御装置は、前記吸入ポートに対する液冷媒の戻り量が判定値よりも増加した場合に、前記第2の弁を開き、前記第1の弁を閉じる、請求項に記載の熱源ユニット。
  3. 前記圧縮装置は、
    前記吸入ポートから冷媒を吸入し前記中間圧ポートに接続された配管に吐出する第1圧縮機と、
    前記中間圧ポートに接続された配管から冷媒を吸入し前記吐出ポートに吐出する第2圧縮機とを含む、請求項1に記載の熱源ユニット。
  4. 前記第2の弁は、前記油分離器の前記油出口と前記吸入ポートとを連通させる流量調整弁である、請求項に記載の熱源ユニット。
  5. 前記第1流路の前記圧縮装置の上流に配置されるアキュムレータをさらに備え、
    前記油分配部は、
    記油分離器の前記油出口と前記アキュムレータの入口とを連通させる第3の弁をさらに含む、請求項1に記載の熱源ユニット。
  6. 請求項1~のいずれか1項に記載の熱源ユニットと、前記負荷装置とを備える冷凍サイクル装置。
  7. 請求項に記載の冷凍サイクル装置を備える冷凍機。
JP2022514898A 2020-04-14 2020-04-14 熱源ユニット、冷凍サイクル装置および冷凍機 Active JP7330367B2 (ja)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/016420 WO2021210064A1 (ja) 2020-04-14 2020-04-14 熱源ユニット、冷凍サイクル装置および冷凍機

Publications (3)

Publication Number Publication Date
JPWO2021210064A1 JPWO2021210064A1 (ja) 2021-10-21
JPWO2021210064A5 JPWO2021210064A5 (ja) 2022-10-26
JP7330367B2 true JP7330367B2 (ja) 2023-08-21

Family

ID=78083843

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022514898A Active JP7330367B2 (ja) 2020-04-14 2020-04-14 熱源ユニット、冷凍サイクル装置および冷凍機

Country Status (3)

Country Link
EP (1) EP4137756A4 (ja)
JP (1) JP7330367B2 (ja)
WO (1) WO2021210064A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7342780B2 (ja) 2020-05-01 2023-09-12 住友電気工業株式会社 ガラス母材の製造装置

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2024011228A (ja) * 2022-07-14 2024-01-25 三菱重工業株式会社 冷凍システム
WO2024023988A1 (ja) * 2022-07-27 2024-02-01 三菱電機株式会社 冷凍サイクル装置
JP2024052348A (ja) * 2022-09-30 2024-04-11 ダイキン工業株式会社 冷凍サイクル装置
WO2024106478A1 (ja) * 2022-11-17 2024-05-23 パナソニックIpマネジメント株式会社 冷凍システム及びアキュムレータ

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001289519A (ja) 2000-04-06 2001-10-19 Mitsubishi Electric Corp 冷凍装置
JP2012247134A (ja) 2011-05-27 2012-12-13 Sanyo Electric Co Ltd 超低温冷凍装置
WO2016079859A1 (ja) 2014-11-20 2016-05-26 三菱電機株式会社 冷凍サイクル装置
JP2017116136A (ja) 2015-12-22 2017-06-29 パナソニックIpマネジメント株式会社 空気調和装置
JP6229634B2 (ja) 2014-10-24 2017-11-15 トヨタ自動車株式会社 燃料電池システムと車両および開閉バルブの駆動不良判定方法
WO2019021360A1 (ja) 2017-07-25 2019-01-31 三菱電機株式会社 冷凍サイクル装置
WO2019026270A1 (ja) 2017-08-04 2019-02-07 三菱電機株式会社 冷凍サイクル装置および熱源ユニット

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0452466A (ja) * 1990-06-18 1992-02-20 Daikin Ind Ltd 冷凍装置及び冷凍装置の運転制御装置
JP3238973B2 (ja) * 1993-02-01 2001-12-17 三洋電機株式会社 冷凍装置
CN106052178A (zh) * 2016-05-29 2016-10-26 湖南大学 一种带经济器和油冷却压缩两级制冷循环系统
CN110966202A (zh) * 2018-09-30 2020-04-07 广东美芝精密制造有限公司 压缩机组件、压缩机组件的控制方法和制冷设备

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001289519A (ja) 2000-04-06 2001-10-19 Mitsubishi Electric Corp 冷凍装置
JP2012247134A (ja) 2011-05-27 2012-12-13 Sanyo Electric Co Ltd 超低温冷凍装置
JP6229634B2 (ja) 2014-10-24 2017-11-15 トヨタ自動車株式会社 燃料電池システムと車両および開閉バルブの駆動不良判定方法
WO2016079859A1 (ja) 2014-11-20 2016-05-26 三菱電機株式会社 冷凍サイクル装置
JP2017116136A (ja) 2015-12-22 2017-06-29 パナソニックIpマネジメント株式会社 空気調和装置
WO2019021360A1 (ja) 2017-07-25 2019-01-31 三菱電機株式会社 冷凍サイクル装置
WO2019026270A1 (ja) 2017-08-04 2019-02-07 三菱電機株式会社 冷凍サイクル装置および熱源ユニット

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7342780B2 (ja) 2020-05-01 2023-09-12 住友電気工業株式会社 ガラス母材の製造装置

Also Published As

Publication number Publication date
EP4137756A1 (en) 2023-02-22
EP4137756A4 (en) 2023-08-16
JPWO2021210064A1 (ja) 2021-10-21
WO2021210064A1 (ja) 2021-10-21

Similar Documents

Publication Publication Date Title
JP7330367B2 (ja) 熱源ユニット、冷凍サイクル装置および冷凍機
JP5329078B2 (ja) 空気調和装置に用いられる高圧シェル圧縮機の均油システム
WO2010013392A1 (ja) 冷凍装置
JP4013261B2 (ja) 冷凍装置
CN109595846B (zh) 热泵机组及控制热泵机组的方法
US20090077985A1 (en) Refrigerating Apparatus
EP3954947B1 (en) Outdoor unit, refrigeration cycle device, and refrigerating machine
CN100443824C (zh) 制冷剂系统中的回油控制
JP6814974B2 (ja) 冷凍装置
JP2015148407A (ja) 冷凍装置
JP7224480B2 (ja) 室外ユニットおよび冷凍サイクル装置
CN111365874A (zh) 冷媒循环系统
JP2013024538A (ja) 冷凍装置
JP2010002173A (ja) 冷凍装置
WO2021177429A1 (en) Heat pump system and method for controlling the same
JP4868049B2 (ja) 冷凍装置
JP7378561B2 (ja) 室外ユニットおよび冷凍サイクル装置
CN115371308B (zh) 一种防回液空调系统及控制方法
US11892216B2 (en) Refrigeration system with direct expansion refrigeration mode and refrigerant pumping energy-efficiency mode and control method of refrigeration system
CN112665222B (zh) 制冷系统及其供油控制方法、装置和控制器
JP7412639B2 (ja) 熱源ユニット
EP4030117B1 (en) Outdoor unit and refrigeration cycle device
JP2009293887A (ja) 冷凍装置
CN112361685B (zh) 双级压缩机控制方法、双级压缩机制冷系统及制冷设备
WO2024023993A1 (ja) 冷凍サイクル装置

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220818

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220818

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230711

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230808

R150 Certificate of patent or registration of utility model

Ref document number: 7330367

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150