WO2022130454A1 - Metal layer for protecting vicinity of light input/output portion of optical waveguide - Google Patents

Metal layer for protecting vicinity of light input/output portion of optical waveguide Download PDF

Info

Publication number
WO2022130454A1
WO2022130454A1 PCT/JP2020/046532 JP2020046532W WO2022130454A1 WO 2022130454 A1 WO2022130454 A1 WO 2022130454A1 JP 2020046532 W JP2020046532 W JP 2020046532W WO 2022130454 A1 WO2022130454 A1 WO 2022130454A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical waveguide
metal layer
optical
substrate
waveguide substrate
Prior art date
Application number
PCT/JP2020/046532
Other languages
French (fr)
Japanese (ja)
Inventor
貴 山田
清史 菊池
Original Assignee
日本電信電話株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電信電話株式会社 filed Critical 日本電信電話株式会社
Priority to PCT/JP2020/046532 priority Critical patent/WO2022130454A1/en
Publication of WO2022130454A1 publication Critical patent/WO2022130454A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/30Optical coupling means for use between fibre and thin-film device

Definitions

  • the present disclosure relates to a technique for protecting the vicinity of an optical input / output portion of an optical waveguide formed in the vicinity of the surface of an optical waveguide substrate.
  • a SiO 2 layer and a Si layer are sequentially deposited on a Si substrate, and the Si layer is etched into a desired pattern by photolithography to form a waveguide, and further. It is formed by covering a pattern formed by depositing two layers of SiO.
  • electrical wiring for driving a photodiode and the like and a pad for fixing the substrate are provided by a metal layer containing Au as a main component.
  • An optical waveguide substrate for inputting and outputting optical signals to an optical waveguide substrate (hereinafter, also referred to as a silicon photonics optical waveguide substrate) having a silicon waveguide (thin wire waveguide) formed by using silicon photonics, which is a fine processing technology. It is necessary to optically polish the end face of the optical fiber and connect one or more optical fibers (see, for example, Patent Document 1).
  • the optical polishing step is usually carried out through a rough polishing step using coarse abrasive grains, a polishing step using medium abrasive grains, and a finish polishing step using fine silica particles.
  • the layer above the Si layer on which the optical waveguide is formed in the silicon photonics optical waveguide substrate is very thin, about several ⁇ m, there is a problem if chipping that occurs during the optical polishing process causes chips or cracks in the upper layer. There is. If this chip hangs on the optical waveguide, a large optical connection loss will be caused when the optical fiber is connected.
  • a lid formed by arranging the optical fibers on a glass substrate (hereinafter referred to as V-groove substrate) that has been subjected to V-groove processing with high precision and arranging the optical fibers directly above the optical fibers.
  • V-groove substrate a glass substrate
  • An optical fiber array having a structure in which the optical fiber is pressed so as to be in close contact with the slope of the V-groove is used.
  • the layer above the Si layer on which the optical waveguide of the silicon photonics optical waveguide is formed is very thin, the thickness of the glass substrate for holding the optical fiber array when the optical fiber array is connected is very thin.
  • the connection structure is asymmetric with respect to the thickness direction of the Si substrate.
  • an ultraviolet curable adhesive is used when connecting such an optical fiber array, but in the above-mentioned asymmetric structure, the ultraviolet curable adhesive accumulates in a slope shape on the stepped portion, and when irradiated with ultraviolet light, the ultraviolet curable adhesive is cured and shrunk.
  • the optical fiber array is tilted in the direction perpendicular to the optical waveguide substrate, and optical loss occurs due to the angular deviation of the fiber.
  • the present disclosure has been made in view of such a problem, and an object thereof is to provide a technique for protecting the vicinity of an optical input / output portion of an optical waveguide formed near the surface of an optical waveguide substrate. To do.
  • one embodiment of the present invention is a metal layer for protecting the vicinity of the optical input / output portion of the optical waveguide formed near the surface of the optical waveguide substrate.
  • the optical input / output portion of the optical waveguide is on the end surface of the optical waveguide substrate, and the metal layer is provided on the optical waveguide on the surface of the optical waveguide substrate and adjacent to the end surface of the optical waveguide substrate.
  • the metal layer includes a protective pattern, which is formed on the optical waveguide along the optical waveguide.
  • the width of the protection pattern is larger than the width of the optical waveguide, and the material of the metal layer is the same as the material of the electric wiring layer formed on the surface of the optical waveguide substrate.
  • the present invention it is possible to protect the vicinity of the optical input / output portion of the optical waveguide formed near the surface of the optical waveguide substrate.
  • the above-mentioned silicon photonics optical waveguide board will be exemplified as the optical waveguide board
  • the above-mentioned optical fiber array will be exemplified as the connection target with the optical waveguide board.
  • the structure of the connection portion between the conventional optical waveguide substrate and the optical fiber array will be described, and then the structure of the connection portion between the optical waveguide substrate having a metal layer and the optical fiber array according to the embodiment of the present invention will be described. do.
  • FIG. 1 shows the structure of a connection portion between a conventional silicon photonics optical waveguide substrate 100 and an optical fiber array 110.
  • the optical waveguide substrate 100 covers the SiO 2 layer 102 laminated on the Si substrate 101, the optical waveguide 104 formed by processing the Si layer 103 laminated on the SiO 2 layer 102, and the optical waveguide 104. It is provided with SiO 2 (not shown) deposited in. Further, the optical waveguide substrate 100 is provided with electrical wiring and a pad for fixing the substrate (not shown) on the surface (for example, a position above the optical waveguide 104).
  • the optical fiber array 110 includes a V-groove substrate 111 in which a V-groove is formed, an optical fiber 112, and a lid 113.
  • a part of the optical fiber 112 is pressed and fixed by the lid 113 so as to be in close contact with the slope of the V groove of the V groove substrate 111.
  • the connection portion between the connection end surface of the optical waveguide substrate 100 and the connection end surface of the optical fiber array 110 is bonded and fixed by an ultraviolet curing adhesive 120 for connection after aligning the optical waveguide 104 and the optical fiber 112.
  • the fixing of the V-groove substrate 111, the optical fiber 112, and the lid 113 can be reinforced by the reinforcing resin 121.
  • the light propagating through the three optical fibers 112 is coupled to each of the three optical waveguides 104 at the connection portion.
  • the light propagating in the central optical fiber of the three optical fibers 112 is coupled to the central optical waveguide 104 of the three optical waveguides 104 and then two according to the optical waveguide pattern. It branches to the optical waveguide 104 and propagates.
  • connection end face of the optical waveguide substrate 100 including the end face of the optical waveguide 104 is optically polished before being adhesively fixed to the connection end face of the optical fiber array 110. Since the layer above the Si layer 103 on which the optical waveguide 104 is formed is very thin, chipping in the optical polishing step causes chips and cracks in the vicinity of the optical waveguide 104, which causes connection loss.
  • the metal layer of the electric wiring and the pad for fixing the substrate is not provided in the upper layer of the optical waveguide 104. Since the upper layer of the optical waveguide 104 is very thin, the pattern of the optical waveguide 104 can be confirmed from the surface of the optical waveguide substrate 100. On the other hand, the V-groove is formed on the surface of the V-groove substrate 111.
  • a surplus of the UV-curing adhesive 120 for connection is accumulated in a slope shape on a step portion generated at a connection portion between the optical waveguide substrate 100 and the optical fiber array 110 to form a fillet.
  • the optical fiber array 110 is tilted in a direction perpendicular to the optical waveguide substrate 100 due to the curing shrinkage of the excess of the ultraviolet curing adhesive 120 for connection (or the normal of the connection end face of the optical fiber array 110 is the optical waveguide. (Inclined from the normal of the substrate 100), optical loss occurs due to the angular deviation of the optical axis at the connection portion.
  • FIG. 2 shows the structure of the connection portion between the optical waveguide substrate 100 having the protective metal layer 200 and the optical fiber array 110 according to the embodiment of the present invention.
  • the protective metal layer 200 is provided in the vicinity of the end face of the optical waveguide 104 on the surface layer of the optical waveguide substrate 100, and includes a protection pattern 300.
  • the protective metal layer 200 is, for example, a metal layer on a SiO 2 layer (not shown) deposited so as to cover the optical waveguide 104, and can be formed by using a metal material such as Au.
  • the electric wiring layer and the protective metal layer 200 can be efficiently combined in one process. Can be made.
  • FIG. 3 illustrates the configuration of the protective metal layer 200 according to the embodiment of the present invention.
  • the protection pattern 300 is formed directly above each optical waveguide 104 along the optical waveguide 104, and is the width of the optical waveguide 104 (the length in the direction parallel to the main surface of the optical waveguide substrate 100 and orthogonal to the light propagation direction). ), And has a length of about several mm (length from the connection end) in the same direction as the optical waveguide 104.
  • the length of the protective metal layer 200 in the lateral direction may be the same as or different from the length of the protection pattern 300.
  • the protective pattern 300 included in the protective metal layer 200 is manufactured by using a metal process such as wiring in silicon photonics technology. By making the width of the protection pattern 300 larger than the mode diameter in the plane direction of the light propagating through the optical waveguide 104, chips and cracks generated in the polishing process reach the mode of light propagating through the optical waveguide 104. You can prevent that.
  • the protective metal layer 200 may include ladder-shaped patterns 301 arranged on both sides of the protective pattern 300.
  • the ladder-shaped pattern 301 is formed along the optical waveguide 104 and serves as a scale when monitoring the polishing amount in the polishing process, and the protection pattern 300 on the optical waveguide 104 is defective in a manufacturing process such as a surface cleaning process. It has the effect of preventing it from happening.
  • the protective metal layer 200 may include guide patterns 302 arranged on both sides of the ladder-shaped pattern 301.
  • the guide pattern 302 may be arranged so as to continue from the ladder-shaped pattern 301 to the chip end face (that is, the end face of the optical waveguide substrate 100).
  • the guide pattern 302 may be arranged so as to be symmetrical with respect to the ladder-shaped pattern 301.
  • FIG. 3 shows, as an example, a case where the guide pattern 302 has an arc shape.
  • the surplus of the UV curable adhesive 120 for connection used when connecting the optical fiber array 110 and the optical waveguide substrate 100 is applied to the end face side from the surface of the optical waveguide substrate 100. Guide to.
  • the guide pattern 302 prevents the surplus of the UV-curing adhesive 120 for connection from remaining on the stepped portion at the joint between the surface of the optical waveguide substrate 100 and the optical fiber array 110 to form a fillet, and UV-curing for connection. It has the effect of suppressing the angular deviation of the fiber due to the curing shrinkage of the adhesive 120.
  • the protective metal layer 200 is a metal film having good visibility
  • an image recognition marker 303 may be arranged.
  • the connection between the optical waveguide substrate 100 and the optical fiber array 110 can be facilitated particularly with respect to the plane direction of the optical waveguide substrate 100.
  • the connection between the silicon photonics optical waveguide board and the optical fiber array has been described above as an example.
  • the optical waveguide substrate is not limited to the silicon photonics optical waveguide substrate, and the present invention can be carried out by using other types of optical waveguide substrates as long as the gist of the present invention is not deviated.
  • the connection target with the optical waveguide board is not limited to the optical fiber array, and an optical waveguide board having various functions may be used.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Optical Couplings Of Light Guides (AREA)
  • Optical Integrated Circuits (AREA)

Abstract

The present disclosure provides a technology for protecting the vicinity of an optical input/output portion of an optical waveguide formed in the vicinity of a surface of an optical waveguide substrate. The optical input/output portion of the optical waveguide is on an end surface of the optical waveguide substrate, and a metal layer is provided to the optical waveguide on the surface of the optical waveguide substrate and adjacent to the end surface of the optical waveguide substrate. The metal layer includes a protective pattern, and the protective pattern is formed on the optical waveguide and follows the optical waveguide. The width of the protective pattern is greater than the width of the optical waveguide , and the material of the metal layer is the same as the material of an electric wiring layer formed on the surface of the optical waveguide substrate.

Description

光導波路の光入出力部分の付近を保護するための金属層Metal layer to protect the vicinity of the optical input / output part of the optical waveguide
 本開示は、光導波路基板の表面の近傍に形成された光導波路の光入出力部分の付近を保護する技術に関する。 The present disclosure relates to a technique for protecting the vicinity of an optical input / output portion of an optical waveguide formed in the vicinity of the surface of an optical waveguide substrate.
 従来、シリコンフォトニクス技術を用いた光導波路構造は、Si基板上にSiO層及びSi層を順に堆積し、Si層をフォトリソグラフィにより所望のパターンにエッチング加工することにより導波路を形成し、さらにSiO層を堆積し形成したパターンを覆うことで形成される。その基板の表面にはフォトダイオード等の駆動用の電気配線や基板固定用のパッドが、Auを主剤とする金属層により設けられている。 Conventionally, in the optical waveguide structure using silicon photonics technology, a SiO 2 layer and a Si layer are sequentially deposited on a Si substrate, and the Si layer is etched into a desired pattern by photolithography to form a waveguide, and further. It is formed by covering a pattern formed by depositing two layers of SiO. On the surface of the substrate, electrical wiring for driving a photodiode and the like and a pad for fixing the substrate are provided by a metal layer containing Au as a main component.
 微細加工技術であるシリコンフォトニクスを用いて形成されたシリコン導波路(細線導波路)を備える光導波路基板(以下、シリコンフォトニクス光導波路基板ともいう)に光信号を入出力するためには光導波路基板の端面を光学研磨し、1つ又は複数の光ファイバを接続する必要がある(例えば、特許文献1参照)。 An optical waveguide substrate for inputting and outputting optical signals to an optical waveguide substrate (hereinafter, also referred to as a silicon photonics optical waveguide substrate) having a silicon waveguide (thin wire waveguide) formed by using silicon photonics, which is a fine processing technology. It is necessary to optically polish the end face of the optical fiber and connect one or more optical fibers (see, for example, Patent Document 1).
 一般的に光学研磨工程は、通常、粗い砥粒を用いた荒研磨工程、中程度の砥粒を用いた研磨工程、及び微細なシリカ粒子を用いた仕上げ研磨工程を経て実施される。 Generally, the optical polishing step is usually carried out through a rough polishing step using coarse abrasive grains, a polishing step using medium abrasive grains, and a finish polishing step using fine silica particles.
特開平09-090161号公報Japanese Unexamined Patent Publication No. 09-090161
 シリコンフォトニクス光導波路基板における光導波路が形成されたSi層より上側の層は数μm程度と非常に薄いため、光学研磨工程の際に発生するチッピングにより当該上側の層にカケやヒビが生じると問題がある。このカケが光導波路に掛かると光ファイバを接続した際に大きな光接続損失をもたらすことになる。 Since the layer above the Si layer on which the optical waveguide is formed in the silicon photonics optical waveguide substrate is very thin, about several μm, there is a problem if chipping that occurs during the optical polishing process causes chips or cracks in the upper layer. There is. If this chip hangs on the optical waveguide, a large optical connection loss will be caused when the optical fiber is connected.
 また、光学研磨工程においては研磨量の制御が重要になる。研磨量に過不足が生じると光ファイバ接続部付近の光導波路の構造及び光のモード形状が変化するため、光ファイバとの光接続損失が増大することになる。 In addition, it is important to control the amount of polishing in the optical polishing process. If the amount of polishing is excessive or insufficient, the structure of the optical waveguide near the optical fiber connection portion and the mode shape of the light change, so that the optical connection loss with the optical fiber increases.
 複数の光ファイバを接続する際には、V溝加工を施したガラス基板(以下、V溝基板という)に光ファイバを高精度に配置し、光ファイバの直上に配置したガラス基板で形成したリッドによりV溝の法面に光ファイバが密着するように押え付ける構造を有する光ファイバアレイを用いる。前述のように、シリコンフォトニクス光導波路基板の光導波路が形成されたSi層より上側の層は非常に薄いため、光ファイバアレイを接続した際には光ファイバアレイの押え用のガラス基板の厚さの分だけはみ出すことになり接続構造はSi基板の厚み方向に対して非対称となる。一般的にこうした光ファイバアレイを接続する際には紫外線硬化接着剤を用いるが、前述の非対称構造では段差部分に紫外線硬化接着剤がスロープ状に溜まり、紫外線照射時には紫外線硬化接着剤の硬化収縮により光ファイバアレイが光導波路基板に垂直な方向に傾けられ、ファイバの角度ズレによる光損失が生じてしまう。 When connecting a plurality of optical fibers, a lid formed by arranging the optical fibers on a glass substrate (hereinafter referred to as V-groove substrate) that has been subjected to V-groove processing with high precision and arranging the optical fibers directly above the optical fibers. An optical fiber array having a structure in which the optical fiber is pressed so as to be in close contact with the slope of the V-groove is used. As described above, since the layer above the Si layer on which the optical waveguide of the silicon photonics optical waveguide is formed is very thin, the thickness of the glass substrate for holding the optical fiber array when the optical fiber array is connected is very thin. The connection structure is asymmetric with respect to the thickness direction of the Si substrate. Generally, an ultraviolet curable adhesive is used when connecting such an optical fiber array, but in the above-mentioned asymmetric structure, the ultraviolet curable adhesive accumulates in a slope shape on the stepped portion, and when irradiated with ultraviolet light, the ultraviolet curable adhesive is cured and shrunk. The optical fiber array is tilted in the direction perpendicular to the optical waveguide substrate, and optical loss occurs due to the angular deviation of the fiber.
 本開示は、このような問題に鑑みてなされたもので、その目的とするところは、光導波路基板の表面近傍に形成された光導波路の光入出力部分の付近を保護するための技術を提供することにある。 The present disclosure has been made in view of such a problem, and an object thereof is to provide a technique for protecting the vicinity of an optical input / output portion of an optical waveguide formed near the surface of an optical waveguide substrate. To do.
 このような目的を達成するために、本発明の一実施形態は、光導波路基板の表面近傍に形成された光導波路の光入出力部分の付近を保護するための金属層である。光導波路の光入出力部分は光導波路基板の端面にあり、金属層は、光導波路基板の表面の光導波路の上、且つ光導波路基板の端面に隣接して設けられている。金属層は、保護パターンを含み、保護パターンは、光導波路の上に、光導波路に沿って形成されている。保護パターンの幅は光導波路の幅よりも大きく、金属層の材料は光導波路基板の表面に形成された電気配線層の材料と同じである。 In order to achieve such an object, one embodiment of the present invention is a metal layer for protecting the vicinity of the optical input / output portion of the optical waveguide formed near the surface of the optical waveguide substrate. The optical input / output portion of the optical waveguide is on the end surface of the optical waveguide substrate, and the metal layer is provided on the optical waveguide on the surface of the optical waveguide substrate and adjacent to the end surface of the optical waveguide substrate. The metal layer includes a protective pattern, which is formed on the optical waveguide along the optical waveguide. The width of the protection pattern is larger than the width of the optical waveguide, and the material of the metal layer is the same as the material of the electric wiring layer formed on the surface of the optical waveguide substrate.
 本発明の一実施形態によれば、光導波路基板の表面近傍に形成された光導波路の光入出力部分の付近を保護することが可能となる。 According to one embodiment of the present invention, it is possible to protect the vicinity of the optical input / output portion of the optical waveguide formed near the surface of the optical waveguide substrate.
シリコンフォトニクス光導波路基板と光ファイバアレイとの接続を示す図である。It is a figure which shows the connection between a silicon photonics optical waveguide board and an optical fiber array. 本発明の一実施形態にかかる保護用金属層を有するシリコンフォトニクス光導波路基板と光ファイバアレイとの接続を示す図である。It is a figure which shows the connection of the silicon photonics optical waveguide substrate which has the protective metal layer which concerns on one Embodiment of this invention, and an optical fiber array. 本発明の一実施形態にかかる保護用金属層の構成を示す図である。It is a figure which shows the structure of the protective metal layer which concerns on one Embodiment of this invention.
 以下、図面を参照して、光導波路基板の表面近傍に形成された光導波路の光入出力部分の付近を保護するための技術の実施形態を説明する。同一又は類似の符号は同一又は類似の要素を示し、繰り返しの説明を省略する場合がある。以下の説明において、光導波路基板として上述したシリコンフォトニクス光導波路基板を例示し、また光導波路基板との接続対象として上述した光ファイバアレイを例示する。まず、従来の光導波路基板と光ファイバアレイとの接続部の構造について説明し、次いで、本発明の一実施形態にかかる金属層を有する光導波路基板と光ファイバアレイとの接続部の構造について説明する。 Hereinafter, an embodiment of a technique for protecting the vicinity of the optical input / output portion of the optical waveguide formed near the surface of the optical waveguide substrate will be described with reference to the drawings. The same or similar reference numerals indicate the same or similar elements, and the repeated description may be omitted. In the following description, the above-mentioned silicon photonics optical waveguide board will be exemplified as the optical waveguide board, and the above-mentioned optical fiber array will be exemplified as the connection target with the optical waveguide board. First, the structure of the connection portion between the conventional optical waveguide substrate and the optical fiber array will be described, and then the structure of the connection portion between the optical waveguide substrate having a metal layer and the optical fiber array according to the embodiment of the present invention will be described. do.
 図1は、従来のシリコンフォトニクス光導波路基板100と光ファイバアレイ110との接続部の構造を示す。光導波路基板100は、Si基板101上に積層されたSiO層102と、SiO層102上に積層されたSi層103を加工して形成された光導波路104と、光導波路104を覆うように堆積されたSiO(不図示)とを備える。また、光導波路基板100は、表面(例えば、光導波路104の上方の位置)に電気配線や基板固定用のパッド(不図示)を備える。一方、光ファイバアレイ110は、V溝が形成されたV溝基板111と、光ファイバ112と、リッド113とを備える。光ファイバ112の一部は、リッド113によりV溝基板111のV溝の法面に密着するよう押さえつけられ固定されている。光導波路基板100の接続端面と光ファイバアレイ110の接続端面との接続部は、光導波路104と光ファイバ112とを調心した後に接続用紫外線硬化接着剤120により接着固定される。V溝基板111、光ファイバ112、及びリッド113の固定は補強用樹脂121により補強され得る。 FIG. 1 shows the structure of a connection portion between a conventional silicon photonics optical waveguide substrate 100 and an optical fiber array 110. The optical waveguide substrate 100 covers the SiO 2 layer 102 laminated on the Si substrate 101, the optical waveguide 104 formed by processing the Si layer 103 laminated on the SiO 2 layer 102, and the optical waveguide 104. It is provided with SiO 2 (not shown) deposited in. Further, the optical waveguide substrate 100 is provided with electrical wiring and a pad for fixing the substrate (not shown) on the surface (for example, a position above the optical waveguide 104). On the other hand, the optical fiber array 110 includes a V-groove substrate 111 in which a V-groove is formed, an optical fiber 112, and a lid 113. A part of the optical fiber 112 is pressed and fixed by the lid 113 so as to be in close contact with the slope of the V groove of the V groove substrate 111. The connection portion between the connection end surface of the optical waveguide substrate 100 and the connection end surface of the optical fiber array 110 is bonded and fixed by an ultraviolet curing adhesive 120 for connection after aligning the optical waveguide 104 and the optical fiber 112. The fixing of the V-groove substrate 111, the optical fiber 112, and the lid 113 can be reinforced by the reinforcing resin 121.
 たとえば、図1に示す構成において、3つの光ファイバ112を伝搬した光は、接続部において、3つの光導波路104にそれぞれ結合する。図1に示す例では、3つの光ファイバ112の内の中央の光ファイバを伝搬した光は、3つの光導波路104の内の中央の光導波路104に結合した後、光導波路パターンにしたがって2つの光導波路104に分岐されて伝搬する。 For example, in the configuration shown in FIG. 1, the light propagating through the three optical fibers 112 is coupled to each of the three optical waveguides 104 at the connection portion. In the example shown in FIG. 1, the light propagating in the central optical fiber of the three optical fibers 112 is coupled to the central optical waveguide 104 of the three optical waveguides 104 and then two according to the optical waveguide pattern. It branches to the optical waveguide 104 and propagates.
 光導波路104の端面を含む光導波路基板100の接続端面は、光ファイバアレイ110の接続端面と接着固定される前に、光学研磨される。光導波路104が形成されたSi層103よりも上側の層は非常に薄いので、光学研磨工程ではチッピングにより、光導波路104の近傍にカケやヒビが生じ、接続損失の要因となる。 The connection end face of the optical waveguide substrate 100 including the end face of the optical waveguide 104 is optically polished before being adhesively fixed to the connection end face of the optical fiber array 110. Since the layer above the Si layer 103 on which the optical waveguide 104 is formed is very thin, chipping in the optical polishing step causes chips and cracks in the vicinity of the optical waveguide 104, which causes connection loss.
 また、光導波路104の端面の近傍において、光導波路104の上側の層に電気配線や基板固定用のパッドの金属層は設けられていない。光導波路104の上側の層は非常に薄いので、光導波路基板100の表面から光導波路104のパターンが確認できる。一方、V溝は、V溝基板111の表面に形成されている。光導波路基板100の接続端面と光ファイバアレイ110の接続端面とを突き合わせて光導波路104と光ファイバ112とが調心された状態(位置合わせされた状態)では、光導波路基板100の表面の位置と光ファイバアレイ110の表面の位置と間に、リッド113の厚さ分の段差が生じる。すなわち、光導波路基板100と光ファイバアレイ110との接続部は階段状になる。 Further, in the vicinity of the end face of the optical waveguide 104, the metal layer of the electric wiring and the pad for fixing the substrate is not provided in the upper layer of the optical waveguide 104. Since the upper layer of the optical waveguide 104 is very thin, the pattern of the optical waveguide 104 can be confirmed from the surface of the optical waveguide substrate 100. On the other hand, the V-groove is formed on the surface of the V-groove substrate 111. In a state where the optical waveguide 104 and the optical fiber 112 are aligned (aligned) by abutting the connection end surface of the optical waveguide substrate 100 and the connection end surface of the optical fiber array 110, the position of the surface of the optical waveguide substrate 100 And the position of the surface of the optical fiber array 110, a step corresponding to the thickness of the lid 113 is generated. That is, the connection portion between the optical waveguide board 100 and the optical fiber array 110 is stepped.
 図1に示すように光導波路基板100と光ファイバアレイ110との接続部に生じる段差の部分に、接続用紫外線硬化接着剤120の余剰分がスロープ状に溜まりフィレットを形成する。紫外線照射時には接続用紫外線硬化接着剤120の余剰分の硬化収縮により光ファイバアレイ110が光導波路基板100に垂直な方向に傾けられ(又は、光ファイバアレイ110の接続端面の法線が、光導波路基板100の法線から傾けられ)、接続部における光軸の角度ズレによる光損失が生じてしまう。 As shown in FIG. 1, a surplus of the UV-curing adhesive 120 for connection is accumulated in a slope shape on a step portion generated at a connection portion between the optical waveguide substrate 100 and the optical fiber array 110 to form a fillet. At the time of irradiation with ultraviolet rays, the optical fiber array 110 is tilted in a direction perpendicular to the optical waveguide substrate 100 due to the curing shrinkage of the excess of the ultraviolet curing adhesive 120 for connection (or the normal of the connection end face of the optical fiber array 110 is the optical waveguide. (Inclined from the normal of the substrate 100), optical loss occurs due to the angular deviation of the optical axis at the connection portion.
 図2は、本発明の一実施形態にかかる保護用金属層200を有する光導波路基板100と光ファイバアレイ110との接続部の構造を示す。保護用金属層200は、光導波路基板100の表層の光導波路104の端面の近傍に設けられ、保護パターン300を含む。保護用金属層200は、たとえば、光導波路104を覆うように堆積されたSiO層(不図示)の上の金属層であり、Au等の金属材料を用いて形成され得る。保護用金属層200は、光導波路基板100の表面に形成された電気配線層(不図示)と同じ金属材料を用いることで、電気配線層及び保護用金属層200を1つのプロセスで効率的に作製することができる。 FIG. 2 shows the structure of the connection portion between the optical waveguide substrate 100 having the protective metal layer 200 and the optical fiber array 110 according to the embodiment of the present invention. The protective metal layer 200 is provided in the vicinity of the end face of the optical waveguide 104 on the surface layer of the optical waveguide substrate 100, and includes a protection pattern 300. The protective metal layer 200 is, for example, a metal layer on a SiO 2 layer (not shown) deposited so as to cover the optical waveguide 104, and can be formed by using a metal material such as Au. By using the same metal material as the electric wiring layer (not shown) formed on the surface of the optical waveguide substrate 100 for the protective metal layer 200, the electric wiring layer and the protective metal layer 200 can be efficiently combined in one process. Can be made.
 図3は、本発明の一実施形態にかかる保護用金属層200の構成を例示する。保護パターン300は、各光導波路104の直上に光導波路104に沿って形成されており、光導波路104の幅(光導波路基板100の主面に平行で光の伝搬方向に直交する方向の長さ)よりもやや大きい幅、及び光導波路104と同じ方向の数mm程度の長さ(接続端部からの長さ)を有する。保護用金属層200の短手方向の長さは、保護パターン300の長さと同じであっても異なってもよい。 FIG. 3 illustrates the configuration of the protective metal layer 200 according to the embodiment of the present invention. The protection pattern 300 is formed directly above each optical waveguide 104 along the optical waveguide 104, and is the width of the optical waveguide 104 (the length in the direction parallel to the main surface of the optical waveguide substrate 100 and orthogonal to the light propagation direction). ), And has a length of about several mm (length from the connection end) in the same direction as the optical waveguide 104. The length of the protective metal layer 200 in the lateral direction may be the same as or different from the length of the protection pattern 300.
 保護用金属層200に含まれる保護パターン300は、シリコンフォトニクス技術における配線等の金属プロセスを用いて作製される。保護パターン300の幅を、光導波路104を伝搬する光の面方向のモード径よりも大きくしておくことで、研磨工程で発生するカケやヒビが、光導波路104を伝搬する光のモードに達することを防ぐことができる。 The protective pattern 300 included in the protective metal layer 200 is manufactured by using a metal process such as wiring in silicon photonics technology. By making the width of the protection pattern 300 larger than the mode diameter in the plane direction of the light propagating through the optical waveguide 104, chips and cracks generated in the polishing process reach the mode of light propagating through the optical waveguide 104. You can prevent that.
 また、保護用金属層200は、保護パターン300の両側に配置された梯子状パターン301を含んでもよい。梯子状パターン301は、光導波路104に沿って形成され、研磨工程の研磨量をモニタする際の目盛りの役割を果たすとともに、光導波路104上の保護パターン300が表面洗浄工程等の作製プロセスにおいて欠損するのを防ぐ作用がある。 Further, the protective metal layer 200 may include ladder-shaped patterns 301 arranged on both sides of the protective pattern 300. The ladder-shaped pattern 301 is formed along the optical waveguide 104 and serves as a scale when monitoring the polishing amount in the polishing process, and the protection pattern 300 on the optical waveguide 104 is defective in a manufacturing process such as a surface cleaning process. It has the effect of preventing it from happening.
 さらに、保護用金属層200は、梯子状パターン301の両脇に配置されたガイドパターン302を含んでもよい。ガイドパターン302は、梯子状パターン301からチップ端面(すなわち、光導波路基板100の端面)へと続くように配置され得る。ガイドパターン302は、梯子状パターン301に対して対称になるように配置してもよい。図3は、一例として、ガイドパターン302を円弧形状とした場合を示す。図2に示すように、ガイドパターン302は、光ファイバアレイ110と光導波路基板100とを接続する際に使用する接続用紫外線硬化接着剤120の余剰分を、光導波路基板100の表面から端面側へと誘導する。ガイドパターン302により、接続用紫外線硬化接着剤120の余剰分が光導波路基板100の表面と光ファイバアレイ110との接合部における段差の部分に残存しフィレットを形成することを防ぎ、接続用紫外線硬化接着剤120の硬化収縮によるファイバの角度ズレを抑制する作用がある。 Further, the protective metal layer 200 may include guide patterns 302 arranged on both sides of the ladder-shaped pattern 301. The guide pattern 302 may be arranged so as to continue from the ladder-shaped pattern 301 to the chip end face (that is, the end face of the optical waveguide substrate 100). The guide pattern 302 may be arranged so as to be symmetrical with respect to the ladder-shaped pattern 301. FIG. 3 shows, as an example, a case where the guide pattern 302 has an arc shape. As shown in FIG. 2, in the guide pattern 302, the surplus of the UV curable adhesive 120 for connection used when connecting the optical fiber array 110 and the optical waveguide substrate 100 is applied to the end face side from the surface of the optical waveguide substrate 100. Guide to. The guide pattern 302 prevents the surplus of the UV-curing adhesive 120 for connection from remaining on the stepped portion at the joint between the surface of the optical waveguide substrate 100 and the optical fiber array 110 to form a fillet, and UV-curing for connection. It has the effect of suppressing the angular deviation of the fiber due to the curing shrinkage of the adhesive 120.
 さらにまた、保護用金属層200は、視認性のよい金属膜であるため、画像認識用マーカ303を配置してもよい。画像認識用マーカ303及び画像認識技術を用いることにより、光導波路基板100と光ファイバアレイ110との接続を、特に光導波路基板100の面方向に対して容易にすることができる。
 以上、シリコンフォトニクス光導波路基板と光ファイバアレイとの接続を例に説明した。しかし、光導波路基板はシリコンフォトニクス光導波路基板に限定されず、本発明の要旨を逸脱しない限り、本発明は、他の種類の光導波路基板を用いても実施することができる。また、光導波路基板との接続対象は、光ファイバアレイに限定されず、様々な機能を実装した光導波路基板であってもよい。
Furthermore, since the protective metal layer 200 is a metal film having good visibility, an image recognition marker 303 may be arranged. By using the image recognition marker 303 and the image recognition technique, the connection between the optical waveguide substrate 100 and the optical fiber array 110 can be facilitated particularly with respect to the plane direction of the optical waveguide substrate 100.
The connection between the silicon photonics optical waveguide board and the optical fiber array has been described above as an example. However, the optical waveguide substrate is not limited to the silicon photonics optical waveguide substrate, and the present invention can be carried out by using other types of optical waveguide substrates as long as the gist of the present invention is not deviated. Further, the connection target with the optical waveguide board is not limited to the optical fiber array, and an optical waveguide board having various functions may be used.
 上述したように、本開示によれば、光導波路基板の接続部付近保護することが可能になる。 As described above, according to the present disclosure, it is possible to protect the vicinity of the connection portion of the optical waveguide board.

Claims (6)

  1.  光導波路基板の表面の近傍に形成された光導波路の光入出力部分の付近を保護するための金属層であって、
     前記光導波路の前記光入出力部分は前記光導波路基板の端面にあり、
     前記金属層は、光導波路基板の表面の前記光導波路の上、且つ前記光導波路基板の前記端面に隣接して設けられており、
     前記金属層は、保護パターンを含み、
     前記保護パターンは、前記光導波路の上に、前記光導波路に沿って形成されており、
     前記保護パターンの幅は、前記光導波路の幅よりも大きく、
     前記金属層の材料は、前記光導波路基板の前記表面に形成された電気配線層の材料と同じである
    、金属層。
    A metal layer for protecting the vicinity of the optical input / output portion of the optical waveguide formed near the surface of the optical waveguide substrate.
    The optical input / output portion of the optical waveguide is on the end face of the optical waveguide substrate.
    The metal layer is provided on the optical waveguide on the surface of the optical waveguide substrate and adjacent to the end surface of the optical waveguide substrate.
    The metal layer contains a protective pattern and
    The protection pattern is formed on the optical waveguide along the optical waveguide.
    The width of the protection pattern is larger than the width of the optical waveguide,
    The material of the metal layer is the same as the material of the electric wiring layer formed on the surface of the optical waveguide substrate.
  2.  前記保護パターンの幅は、前記光導波路を伝搬する光の前記光導波路基板の面方向のモード径よりも大きい、請求項1に記載の金属層。 The metal layer according to claim 1, wherein the width of the protection pattern is larger than the mode diameter of the light propagating through the optical waveguide in the plane direction of the optical waveguide substrate.
  3.  前記保護パターンの両側に配置された、前記光導波路に沿って形成された梯子状パターンをさらに含む、請求項1に記載の金属層。 The metal layer according to claim 1, further comprising a ladder-like pattern formed along the optical waveguide arranged on both sides of the protection pattern.
  4.  前記梯子状パターンから前記光導波路基板の前記端面へと続くように配置されガイドパターンをさらに含む、請求項3に記載の金属層。 The metal layer according to claim 3, further comprising a guide pattern arranged so as to continue from the ladder-shaped pattern to the end face of the optical waveguide substrate.
  5.  画像認識用マーカをさらに含む、請求項1に記載の金属層。 The metal layer according to claim 1, further comprising an image recognition marker.
  6.  前記光導波路基板は、Si基板上に順に堆積されたSiOSi層、及びSiO層を備え、前記光導波路は前記Si層に形成されている、請求項1に記載の金属層。 The metal layer according to claim 1, wherein the optical waveguide substrate includes a SiO 2 layer , a Si layer, and a SiO 2 layer sequentially deposited on the Si substrate, and the optical waveguide is formed on the Si layer.
PCT/JP2020/046532 2020-12-14 2020-12-14 Metal layer for protecting vicinity of light input/output portion of optical waveguide WO2022130454A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/046532 WO2022130454A1 (en) 2020-12-14 2020-12-14 Metal layer for protecting vicinity of light input/output portion of optical waveguide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/046532 WO2022130454A1 (en) 2020-12-14 2020-12-14 Metal layer for protecting vicinity of light input/output portion of optical waveguide

Publications (1)

Publication Number Publication Date
WO2022130454A1 true WO2022130454A1 (en) 2022-06-23

Family

ID=82057512

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/046532 WO2022130454A1 (en) 2020-12-14 2020-12-14 Metal layer for protecting vicinity of light input/output portion of optical waveguide

Country Status (1)

Country Link
WO (1) WO2022130454A1 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5977413A (en) * 1982-10-27 1984-05-02 Hitachi Ltd Formation of optical waveguide
JPH08136749A (en) * 1994-11-09 1996-05-31 Nec Corp Semiconductor pin type optical waveguide and its production
JP2001318254A (en) * 2000-05-12 2001-11-16 Sumitomo Electric Ind Ltd Optical waveguide device and method for manufacturing optical waveguide device
JP2010224280A (en) * 2009-03-24 2010-10-07 Furukawa Electric Co Ltd:The Optical integrated circuit
US20130153757A1 (en) * 2011-12-14 2013-06-20 Electronic And Telecommunications Research Institute Waveguide photomixer
JP2015087741A (en) * 2013-09-27 2015-05-07 日東電工株式会社 Opto-electric hybrid substrate, and manufacturing method thereof
JP2018017880A (en) * 2016-07-27 2018-02-01 富士通オプティカルコンポーネンツ株式会社 Optical modulator
JP2020068286A (en) * 2018-10-24 2020-04-30 富士通株式会社 Optical device and method of manufacturing the same

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5977413A (en) * 1982-10-27 1984-05-02 Hitachi Ltd Formation of optical waveguide
JPH08136749A (en) * 1994-11-09 1996-05-31 Nec Corp Semiconductor pin type optical waveguide and its production
JP2001318254A (en) * 2000-05-12 2001-11-16 Sumitomo Electric Ind Ltd Optical waveguide device and method for manufacturing optical waveguide device
JP2010224280A (en) * 2009-03-24 2010-10-07 Furukawa Electric Co Ltd:The Optical integrated circuit
US20130153757A1 (en) * 2011-12-14 2013-06-20 Electronic And Telecommunications Research Institute Waveguide photomixer
JP2015087741A (en) * 2013-09-27 2015-05-07 日東電工株式会社 Opto-electric hybrid substrate, and manufacturing method thereof
JP2018017880A (en) * 2016-07-27 2018-02-01 富士通オプティカルコンポーネンツ株式会社 Optical modulator
JP2020068286A (en) * 2018-10-24 2020-04-30 富士通株式会社 Optical device and method of manufacturing the same

Similar Documents

Publication Publication Date Title
US8983252B2 (en) Optical circuit and optical signal processing apparatus using the same
KR20070024440A (en) Optical waveguide substrate and method of fabricating the same
US20100272385A1 (en) Optical waveguide device and method of manufacturing optical waveguide device
JP2015191110A (en) Optical waveguide coupling structure and manufacturing method of optical waveguide coupling structure
WO2022130454A1 (en) Metal layer for protecting vicinity of light input/output portion of optical waveguide
JP2003202452A (en) Optical fiber block having auxiliary block for reinforcement
JP4934565B2 (en) Optical module
JP5039523B2 (en) Optical waveguide circuit chip
JP2001051142A (en) Optical integrating device and its manufacture
JP7364929B2 (en) How to connect optical fiber array
US20220390670A1 (en) Optical Module
WO2004109354A1 (en) Optical device
WO2024047727A1 (en) Optical component, optical module, and optical module manufacturing method
JP3931940B2 (en) Optical fiber array element and manufacturing method thereof
JP2009237326A (en) Optical integrated circuit module, optical bench used for optical integrated circuit module and method of manufacturing optical integrated circuit module
JP7185165B2 (en) optical waveguide chip
JP4498978B2 (en) Planar optical circuit assembly and manufacturing method thereof
JP3402007B2 (en) Method for manufacturing optical waveguide device
WO2022249313A1 (en) Optical component
US10795099B2 (en) Optical connecting device, method for fabricating optical connecting device
WO2024105846A1 (en) Optical element and method for manufacturing same
WO2023275990A1 (en) Method for manufacturing optical waveguide device and optical waveguide device
US7076136B1 (en) Method of attaching optical fibers to integrated optic chips that excludes all adhesive from the optical path
JP7244788B2 (en) Optical fiber connection structure
JPH10133053A (en) Optical waveguide module

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20965842

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20965842

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP