JP2009237326A - Optical integrated circuit module, optical bench used for optical integrated circuit module and method of manufacturing optical integrated circuit module - Google Patents

Optical integrated circuit module, optical bench used for optical integrated circuit module and method of manufacturing optical integrated circuit module Download PDF

Info

Publication number
JP2009237326A
JP2009237326A JP2008084061A JP2008084061A JP2009237326A JP 2009237326 A JP2009237326 A JP 2009237326A JP 2008084061 A JP2008084061 A JP 2008084061A JP 2008084061 A JP2008084061 A JP 2008084061A JP 2009237326 A JP2009237326 A JP 2009237326A
Authority
JP
Japan
Prior art keywords
optical
face
optical bench
waveguide element
integrated circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008084061A
Other languages
Japanese (ja)
Inventor
Takashi Akutsu
剛史 阿久津
Kazutaka Nara
一孝 奈良
Junichi Hasegawa
淳一 長谷川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP2008084061A priority Critical patent/JP2009237326A/en
Publication of JP2009237326A publication Critical patent/JP2009237326A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an optical integrated circuit module of which the yield is improved, an optical bench used for the module and a method of manufacturing the optical integrated circuit module. <P>SOLUTION: The optical integrated circuit module 1 is manufactured by optically connecting a plurality of semiconductor waveguides 8 of an LD array 2 and a plurality of optical waveguides 9 of a plane optical wave circuit 5 by abutting the end face 4 of an SOB (silicon optical bench) 3 as an optical bench on which the LD array 2 is mounted and the end face 7 of a PLC 6 as an optical waveguide element on which the plane optical wave circuit 5 is formed. In the optical integrated circuit module 1, the end face 4 of the SOB 3 is polished to a surface roughness smaller than the surface roughness cut with a dicer. Namely, by finishing by polishing the end face 4 of the SOB 3, the positional accuracy of the end face 4 is enhanced and the error ΔZ of the end face distance Z is reduced. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、半導体導波路素子が実装された光学ベンチの端面と平面光波回路(PLC;Planar Lightwave Circuit)が形成された光導波路素子の端面とを突き合わせて、半導体導波路素子の半導体導波路と平面光波回路の光導波路を光学的に接続した光集積回路モジュール、このモジュールに用いる光学ベンチ、及び光集積回路モジュールの作製方法に関する。   The present invention relates to an end face of an optical bench on which a semiconductor waveguide element is mounted and an end face of an optical waveguide element on which a planar lightwave circuit (PLC) is formed, The present invention relates to an optical integrated circuit module in which optical waveguides of a planar lightwave circuit are optically connected, an optical bench used in the module, and a method for manufacturing the optical integrated circuit module.

半導体導波路素子やシリカ系光導波路素子といった異種の導波路材(導波路素子)を光学的に接続したハイブリッドデバイス(光集積回路モジュール)の開発が試みられている。異種の導波路素子間の光結合部は、各導波路素子の導波路(半導体導波路素子の半導体導波路と光導波路素子の光導波路)のモード径が小さく、導波路の高さも異なるため、精度の高い導波路同士の位置合わせが必要となる。   Attempts have been made to develop hybrid devices (optical integrated circuit modules) in which different types of waveguide materials (waveguide elements) such as semiconductor waveguide elements and silica-based optical waveguide elements are optically connected. Since the optical coupling portion between different types of waveguide elements has a small mode diameter of the waveguide of each waveguide element (the semiconductor waveguide of the semiconductor waveguide element and the optical waveguide of the optical waveguide element), and the height of the waveguide is also different, It is necessary to align the waveguides with high accuracy.

従来、Si基板上にテラス型の基準部を設けて、半導体導波路素子の半導体導波路と平面光波回路の光導波路の高さを合わせる方法が検討されている(例えば、特許文献1参照)。
特開2002−031731号公報
Conventionally, a method has been studied in which a terrace-type reference portion is provided on a Si substrate so that the height of the semiconductor waveguide of the semiconductor waveguide device and the height of the optical waveguide of the planar lightwave circuit are matched (for example, see Patent Document 1).
JP 2002-031731 A

ところで、上記特許文献1に開示された従来技術のようにSi基板上にテラス型の基準部を形成するのは、構造的に作製が困難で、高い歩留まりを保証できないので、より簡便で高い歩留まりを保証できる技術が望まれている。   By the way, forming the terrace-type reference portion on the Si substrate as in the prior art disclosed in Patent Document 1 is structurally difficult to manufacture and cannot guarantee a high yield, so it is simpler and has a higher yield. A technology that can guarantee the above is desired.

また、Si基板などの光学ベンチに搭載された半導体導波路素子の端面と平面光波回路が形成された光導波路素子(PLC基板)の端面とを突き合わせて、半導体導波路素子の半導体導波路と平面光波回路の光導波路を光学的に接続する場合、光学ベンチの端面をダイサーでカットすることが考えられる。この場合、ダイサーの切削精度によって半導体導波路素子の端面と光導波路素子の端面との間の端面距離の精度に影響を及ぼすことが懸念される。   Further, the end face of the semiconductor waveguide element mounted on the optical bench such as the Si substrate and the end face of the optical waveguide element (PLC substrate) on which the planar lightwave circuit is formed are brought into contact with each other, so that the semiconductor waveguide and the plane of the semiconductor waveguide element are planar. When optical waveguides of a lightwave circuit are optically connected, it is conceivable to cut the end face of the optical bench with a dicer. In this case, there is a concern that the precision of the end face distance between the end face of the semiconductor waveguide element and the end face of the optical waveguide element may be affected by the cutting accuracy of the dicer.

本発明は、このような従来の問題点に鑑みて為されたもので、その目的は、歩留まりの向上を図ることができる光集積回路モジュール、このモジュールに用いる光学ベンチ、及び光集積回路モジュールの作製方法を提供することにある。   The present invention has been made in view of such conventional problems, and an object of the present invention is to provide an optical integrated circuit module capable of improving the yield, an optical bench used for the module, and an optical integrated circuit module. It is to provide a manufacturing method.

上記課題を解決するために、請求項1に記載の発明に係る光モジュールは、半導体導波路素子が実装された光学ベンチの端面と平面光波回路が形成された光導波路素子の端面とを突き合わせて、半導体導波路素子の半導体導波路と平面光波回路の光導波路を光学的に接続した光集積回路モジュールであって、前記光学ベンチの端面は、ダイサーで切削された表面粗さよりも小さい表面粗さに研磨された面であることを特徴とする。   In order to solve the above-described problem, an optical module according to the invention described in claim 1 is configured such that an end face of an optical bench on which a semiconductor waveguide element is mounted and an end face of an optical waveguide element on which a planar lightwave circuit is formed are brought into contact with each other. An optical integrated circuit module in which a semiconductor waveguide of a semiconductor waveguide element and an optical waveguide of a planar lightwave circuit are optically connected, wherein the end surface of the optical bench has a surface roughness smaller than the surface roughness cut by a dicer It is characterized by being a polished surface.

この構成によれば、(1)光導波路素子の端面と突き合わされる光学ベンチの端面が、ダイサーで切削された端面よりも加工精度の良い面になる。このため、光学ベンチの端面を光導波路素子の端面に突き合わせる際に、半導体導波路素子の端面、例えばレーザダイオードの光出射面或いはフォトダイオードの光入射面(受光面)と、光導波路素子の端面との間の端面距離Zの誤差ΔZを小さくすることができる。その結果、光学的に接続される半導体導波路素子の半導体導波路と平面光波回路の光導波路との結合損失のばらつきΔCを小さく抑えることができ、光集積回路モジュールを作製する際の歩留まりを向上することができる。(2)また、通常、ダイサーで切削された面は非常に荒れていて表面粗さが大きいため、ダイサーで切削された光学ベンチの端面と光導波路素子の端面とを突き合わせて、接着により光学ベンチと光導波路素子を結合する際に、接着の信頼性が悪い。また、その切削された面に塗布した接着剤にチッピングが起き、そこから傷やクラックが発生し易く、この点でも接着の信頼性が悪い。これに対して、この構成によれば、光学ベンチの端面は、ダイサーで切削された表面粗さよりも小さい表面粗さに研磨された面であるため、接着の信頼性が向上する。これと共に、その研磨された面に塗布した接着剤にチッピングが起きにくく、傷やクラックの発生を抑制できるので、この点でも接着の信頼性が向上する。   According to this configuration, (1) the end surface of the optical bench that is abutted with the end surface of the optical waveguide element is a surface with better processing accuracy than the end surface cut by the dicer. For this reason, when the end surface of the optical bench is abutted against the end surface of the optical waveguide element, the end surface of the semiconductor waveguide element, for example, the light emitting surface of the laser diode or the light incident surface (light receiving surface) of the photodiode, and the optical waveguide element The error ΔZ of the end face distance Z between the end faces can be reduced. As a result, variation in coupling loss ΔC between the semiconductor waveguide of the optically connected semiconductor waveguide element and the optical waveguide of the planar lightwave circuit can be reduced, and the yield when manufacturing the optical integrated circuit module is improved. can do. (2) In general, since the surface cut by the dicer is very rough and the surface roughness is large, the end surface of the optical bench cut by the dicer and the end surface of the optical waveguide element are brought into contact with each other and bonded to the optical bench. When connecting the optical waveguide element and the optical waveguide element, the reliability of adhesion is poor. Further, chipping occurs in the adhesive applied to the cut surface, and scratches and cracks are likely to occur from this, and the reliability of adhesion is also poor in this respect. On the other hand, according to this configuration, since the end surface of the optical bench is a surface polished to a surface roughness smaller than the surface roughness cut by the dicer, the reliability of adhesion is improved. At the same time, chipping does not easily occur in the adhesive applied to the polished surface, and the occurrence of scratches and cracks can be suppressed, so that the reliability of bonding is also improved in this respect.

上記課題を解決するために、請求項2に記載の発明に係る光集積回路モジュールに用いる光学ベンチは、半導体導波路素子が実装された光学ベンチの端面と平面光波回路が形成された光導波路素子の端面とを突き合わせて、半導体導波路素子の半導体導波路と平面光波回路の光導波路を光学的に接続した光集積回路モジュールに用いる光学ベンチであって、前記半導体導波路素子が実装される表面に、前記光学ベンチの端面から目標仕上がり位置までの残り寸法を視認して確認するための研磨用マーカーが形成されていることを特徴とする。   In order to solve the above problems, an optical bench used in an optical integrated circuit module according to the invention of claim 2 is an optical waveguide device in which an end surface of an optical bench on which a semiconductor waveguide device is mounted and a planar lightwave circuit are formed. An optical bench used for an optical integrated circuit module in which a semiconductor waveguide of a semiconductor waveguide device and an optical waveguide of a planar lightwave circuit are optically connected to each other, the surface on which the semiconductor waveguide device is mounted Further, a polishing marker for visually confirming the remaining dimension from the end face of the optical bench to the target finish position is formed.

この構成によれば、光導波路素子の端面と突き合わされる光学ベンチの端面を研磨する際に、光学ベンチの端面から目標仕上がり位置までの残り寸法を、研磨用マーカーを顕微鏡等で視認して確認できるので、光学ベンチの端面を目標仕上がり位置まで研磨により精度良く加工することができる。これにより、光学ベンチの端面を光導波路素子の端面に突き合わせる際に、半導体導波路素子の端面と光導波路素子の端面との間の端面距離Zの誤差ΔZを小さくすることができる。その結果、光学的に接続される半導体導波路素子の半導体導波路と平面光波回路の光導波路との結合損失のばらつきΔCを小さく抑えることができ、光集積回路モジュールを作製する際の歩留まりを向上することができる。   According to this configuration, when polishing the end face of the optical bench that is abutted with the end face of the optical waveguide element, the remaining dimensions from the end face of the optical bench to the target finish position are visually confirmed with a microscope or the like. As a result, the end face of the optical bench can be precisely processed by polishing to the target finish position. Thereby, when the end face of the optical bench is brought into contact with the end face of the optical waveguide element, the error ΔZ of the end face distance Z between the end face of the semiconductor waveguide element and the end face of the optical waveguide element can be reduced. As a result, variation in coupling loss ΔC between the semiconductor waveguide of the optically connected semiconductor waveguide element and the optical waveguide of the planar lightwave circuit can be reduced, and the yield when manufacturing the optical integrated circuit module is improved. can do.

請求項3に記載の発明に係る光学ベンチは、前記研磨用マーカーは、平面視で、研磨方向に一定の間隔ずつずれた複数の段が連続した階段状の部材であることを特徴とする。   The optical bench according to a third aspect of the invention is characterized in that the polishing marker is a step-like member in which a plurality of steps shifted by a predetermined interval in the polishing direction are continuous in a plan view.

この構成によれば、研磨用マーカーである階段状の部材を顕微鏡等で視認して、その部材の複数の段のうち、どの段までダイサーで切削されているかを確認することで、光学ベンチの端面から目標仕上がり位置までの残り寸法を知ることができる。この残り寸法の大きさに応じて、研磨に用いる砥粒の大きさや研磨速度を決めることができるので、研磨による端面の加工精度が向上すると共に、加工時間を短縮することができる。   According to this configuration, the stepped member that is a polishing marker is visually confirmed with a microscope or the like, and by checking to what level a plurality of steps of the member is cut with a dicer, The remaining dimensions from the end face to the target finish position can be known. Depending on the size of the remaining dimensions, the size and polishing rate of the abrasive grains used for polishing can be determined, so that the processing accuracy of the end face by polishing can be improved and the processing time can be shortened.

請求項4に記載の発明に係る光学ベンチは、前記研磨用マーカーは、平面視で、矩形状或いは線状の複数の部材が研磨方向に一定の間隔ずつずれて配置された集合体であることを特徴とする。   In the optical bench according to the invention described in claim 4, the polishing marker is an aggregate in which a plurality of rectangular or linear members are arranged with a certain interval shifted in the polishing direction in plan view. It is characterized by.

この構成によれば、研磨用マーカーである矩形状或いは線状の複数の部材の集合体を顕微鏡等で視認して、矩形状或いは線状の複数の部材のうち、どの部材までダイサーで切削されているかを確認することで、光学ベンチの端面から目標仕上がり位置までの残り寸法を知ることができる。この残り寸法の大きさに応じて、研磨に用いる砥粒の大きさや研磨速度を決めることができるので、研磨による端面の加工精度が向上すると共に、加工時間を短縮することができる。   According to this configuration, an assembly of a plurality of rectangular or linear members, which are polishing markers, is visually recognized with a microscope or the like, and up to which member of the plurality of rectangular or linear members is cut with a dicer. The remaining dimensions from the end surface of the optical bench to the target finish position can be known by confirming whether or not Depending on the size of the remaining dimensions, the size and polishing rate of the abrasive grains used for polishing can be determined, so that the processing accuracy of the end face by polishing can be improved and the processing time can be shortened.

請求項5に記載の発明に係る光学ベンチは、前記研磨用マーカーは、前記半導体導波路素子が実装される位置の左右両側に形成されていることを特徴とする。   An optical bench according to a fifth aspect of the invention is characterized in that the polishing markers are formed on both the left and right sides of the position where the semiconductor waveguide element is mounted.

この構成によれば、半導体導波路素子が実装される位置の左右両側にある研磨用マーカーを顕微鏡等で視認することで、半導体導波路素子が実装される位置の左右両側で光学ベンチの端面から目標仕上がり位置までの残り寸法を知ることができる。これにより、光学ベンチの端面と半導体導波路素子の端面との平行度が向上する。その結果、光学的に接続される半導体導波路素子の半導体導波路と平面光波回路の光導波路との結合損失のばらつきΔCを更に小さく抑えることができ、光集積回路モジュールを作製する際の歩留まりを更に向上することができる。   According to this configuration, by visually observing the polishing markers on both the left and right sides of the position where the semiconductor waveguide element is mounted with a microscope or the like, the left and right sides of the position where the semiconductor waveguide element is mounted are viewed from the end face of the optical bench. You can know the remaining dimensions to the target finish position. Thereby, the parallelism of the end surface of an optical bench and the end surface of a semiconductor waveguide element improves. As a result, the coupling loss variation ΔC between the semiconductor waveguide of the optically connected semiconductor waveguide element and the optical waveguide of the planar lightwave circuit can be further reduced, and the yield in manufacturing the optical integrated circuit module can be reduced. Further improvement can be achieved.

請求項6に記載の発明に係る光学ベンチは、前記半導体導波路素子が実装される表面には、前記半導体導波路素子と電子素子の間で電気信号を伝送するための伝送路である配線パターンと、前記半導体導波路素子が実装されるハンダ膜とが設けられていることを特徴とする。   The optical bench according to claim 6 is a wiring pattern which is a transmission path for transmitting an electrical signal between the semiconductor waveguide element and the electronic element on a surface on which the semiconductor waveguide element is mounted. And a solder film on which the semiconductor waveguide element is mounted.

上記課題を解決するために、請求項7に記載の発明に係る光集積回路モジュールの作製方法は、半導体導波路素子が実装された光学ベンチの端面と平面光波回路が形成された光導波路素子の端面とを突き合わせて、半導体導波路素子と平面光波回路の光導波路を光学的に接続した光集積回路モジュールの作製方法であって、前記光学ベンチの端面をダイサーで切削し、前記切削の後、切削された前記光学ベンチの端面を目標仕上がり位置まで研磨することを特徴とする。   In order to solve the above-mentioned problem, an optical integrated circuit module manufacturing method according to the invention described in claim 7 is an optical waveguide element in which an end face of an optical bench on which a semiconductor waveguide element is mounted and a planar lightwave circuit is formed. A method for producing an optical integrated circuit module in which a semiconductor waveguide element and an optical waveguide of a planar lightwave circuit are optically connected to each other by matching an end surface, and the end surface of the optical bench is cut with a dicer, and after the cutting, The cut end surface of the optical bench is polished to a target finish position.

この構成によれば、(1)光学ベンチの端面をダイサーで切削した後、切削された光学ベンチの端面を目標仕上がり位置まで研磨するので、光導波路素子の端面と突き合わされる光学ベンチの端面が、ダイサーで切削された端面よりも加工精度の良い面になる。このため、光学ベンチの端面を光導波路素子の端面に突き合わせて、接着する際に、半導体導波路素子の端面と光導波路素子の端面との間の端面距離Zの誤差ΔZを小さくすることができる。その結果、光学的に接続される半導体導波路素子の半導体導波路と平面光波回路の光導波路との結合損失のばらつきΔCを小さく抑えることができ、光集積回路モジュールを作製する際の歩留まりを向上することができる。(2)また、研磨した光学ベンチの端面は、ダイサーで切削された表面粗さよりも小さい表面粗さになるため、接着の信頼性が向上する。これと共に、その研磨された面に塗布した接着剤にチッピングが起きにくく、傷やクラックの発生を抑制できるので、この点でも。接着の信頼性が向上する。   According to this configuration, (1) the end surface of the optical bench that is abutted with the end surface of the optical waveguide element is polished since the end surface of the optical bench is polished to a target finish position after the end surface of the optical bench is cut with a dicer. The surface becomes better in processing accuracy than the end surface cut by the dicer. For this reason, when the end face of the optical bench is brought into contact with the end face of the optical waveguide element and bonded, the error ΔZ of the end face distance Z between the end face of the semiconductor waveguide element and the end face of the optical waveguide element can be reduced. . As a result, variation in coupling loss ΔC between the semiconductor waveguide of the optically connected semiconductor waveguide element and the optical waveguide of the planar lightwave circuit can be reduced, and the yield when manufacturing the optical integrated circuit module is improved. can do. (2) Since the polished end face of the optical bench has a surface roughness smaller than the surface roughness cut by the dicer, the reliability of adhesion is improved. At the same time, chipping is unlikely to occur in the adhesive applied to the polished surface, and the occurrence of scratches and cracks can be suppressed. Adhesion reliability is improved.

請求項8に記載の発明に係る光集積回路モジュールの作製方法は、前記光学ベンチの端面をダイサーで切削した後、切削された前記光学ベンチの端面から目標仕上がり位置までの残り寸法を、前記半導体導波路素子が実装される前記光学ベンチの表面に形成された研磨用マーカーを視認して把握し、その後、把握した前記残り寸法だけ前記光学ベンチの端面を研磨することを特徴とする。   An optical integrated circuit module manufacturing method according to an eighth aspect of the present invention is the semiconductor integrated circuit module, wherein after the end surface of the optical bench is cut with a dicer, the remaining dimension from the cut end surface of the optical bench to a target finish position is determined by the semiconductor. The polishing marker formed on the surface of the optical bench on which the waveguide element is mounted is visually recognized and grasped, and then the end face of the optical bench is polished by the grasped remaining dimension.

この構成によれば、光学ベンチの端面をダイサーで切削した後、光導波路素子の端面と突き合わされる光学ベンチの端面を研磨する際に、光学ベンチの端面から目標仕上がり位置までの残り寸法を、研磨用マーカーを視認して確認できるので、光学ベンチの端面を目標仕上がり位置まで研磨により精度良く加工することができる。これにより、光学ベンチの端面を光導波路素子の端面に突き合わせて接着する際に、半導体導波路素子の端面と光導波路素子の端面との間の端面距離Zの誤差ΔZを小さくすることができる。その結果、光学的に接続される半導体導波路素子の半導体導波路と平面光波回路の光導波路との結合損失のばらつきΔCを小さく抑えることができる。   According to this configuration, after cutting the end face of the optical bench with a dicer, when polishing the end face of the optical bench that is abutted with the end face of the optical waveguide element, the remaining dimension from the end face of the optical bench to the target finish position is Since the polishing marker can be visually confirmed, the end surface of the optical bench can be accurately processed by polishing to the target finish position. Thereby, when the end face of the optical bench is brought into contact with the end face of the optical waveguide element and bonded, the error ΔZ of the end face distance Z between the end face of the semiconductor waveguide element and the end face of the optical waveguide element can be reduced. As a result, the variation ΔC in coupling loss between the semiconductor waveguide of the optically connected semiconductor waveguide element and the optical waveguide of the planar lightwave circuit can be reduced.

本発明によれば、歩留まりの向上を図ることができる光集積回路モジュールを実現することができる。   According to the present invention, it is possible to realize an optical integrated circuit module capable of improving the yield.

次に、本発明を具体化した各実施形態を図面に基づいて説明する。
(第1実施形態)
まず、本発明の第1実施形態に係る光集積回路モジュール1を図1に基づいて説明する。
Next, embodiments embodying the present invention will be described with reference to the drawings.
(First embodiment)
First, an optical integrated circuit module 1 according to a first embodiment of the present invention will be described with reference to FIG.

この光集積回路モジュール1は、半導体導波路素子としての半導体レーザダイオードアレイ(LDアレイ)2が実装された光学ベンチとしてのシリコン(Si)オプチカルベンチ(SOB)3の端面4と、平面光波回路5が形成された光導波路素子としてのシリカ系光導波路素子(PLC)6の端面7とを突き合わせて、LDアレイ2の複数の半導体導波路8と平面光波回路5の複数の光導波路9を光学的に接続した光モジュールである。LDアレイ2は、例えば、複数の分布帰還型(Distributed Feedback:DFB)半導体レーザダイオードを1列に並べた半導体レーザダイオードアレイである。   The optical integrated circuit module 1 includes an end face 4 of a silicon (Si) optical bench (SOB) 3 as an optical bench on which a semiconductor laser diode array (LD array) 2 as a semiconductor waveguide element is mounted, and a planar lightwave circuit 5. A plurality of semiconductor waveguides 8 of the LD array 2 and a plurality of optical waveguides 9 of the planar lightwave circuit 5 are optically matched with an end face 7 of a silica-based optical waveguide element (PLC) 6 as an optical waveguide element formed with Is an optical module connected to The LD array 2 is, for example, a semiconductor laser diode array in which a plurality of distributed feedback (DFB) semiconductor laser diodes are arranged in a line.

このようにSOB3の端面4とPLC6の端面7とを突き合わせて、LDアレイ2の複数の半導体導波路8と平面光波回路5の複数の光導波路9を光学的に接続した光集積回路モジュール1を作製する際には、工程上、PLC6の端面7とSOB3の端面4とを突き合わせて(L=0)、基準点を出す必要がある。   In this way, the optical integrated circuit module 1 in which the end surface 4 of the SOB 3 and the end surface 7 of the PLC 6 are abutted and the plurality of semiconductor waveguides 8 of the LD array 2 and the plurality of optical waveguides 9 of the planar lightwave circuit 5 are optically connected. When manufacturing, it is necessary to bring the end face 7 of the PLC 6 and the end face 4 of the SOB 3 into contact with each other (L = 0) in order to obtain a reference point.

したがって、この光集積回路モジュール1を作製する際には、PLC6の端面7とLDアレイ2の端面10との間の端面距離ZはZ=D+Lで決定されるが、SOB3の端面4の位置に誤差ΔLが発生すると、端面距離Zの誤差に影響する。   Therefore, when the optical integrated circuit module 1 is manufactured, the end face distance Z between the end face 7 of the PLC 6 and the end face 10 of the LD array 2 is determined by Z = D + L, but at the position of the end face 4 of the SOB 3. When the error ΔL occurs, the error of the end face distance Z is affected.

そこで、第1実施形態に係る光集積回路モジュール1では、SOB3の端面4は、ダイサーで切削された表面粗さよりも小さい表面粗さに研磨された面になっている。つまり、この光集積回路モジュール1では、SOB3の端面4を研磨で仕上げることによって、端面4の位置精度を上げ、端面距離Zの誤差ΔZを小さくしている。   Therefore, in the optical integrated circuit module 1 according to the first embodiment, the end surface 4 of the SOB 3 is a surface polished to a surface roughness smaller than the surface roughness cut by the dicer. That is, in the optical integrated circuit module 1, the end face 4 of the SOB 3 is finished by polishing, thereby increasing the positional accuracy of the end face 4 and reducing the error ΔZ of the end face distance Z.

図2は、端面距離Zの誤差ΔZと結合損失CのばらつきΔCの関係を示している。図2から、端面4の位置精度を上げて端面距離Zの誤差ΔZを小さくすることで、光学的に接続されるLDアレイ2の複数の半導体導波路8と平面光波回路5の複数の光導波路9との結合損失CのばらつきΔCを小さく抑えることができることが分かる。   FIG. 2 shows the relationship between the error ΔZ of the end face distance Z and the variation ΔC of the coupling loss C. From FIG. 2, by increasing the positional accuracy of the end face 4 and reducing the error ΔZ of the end face distance Z, a plurality of semiconductor waveguides 8 of the LD array 2 optically connected and a plurality of optical waveguides of the planar lightwave circuit 5 are obtained. It can be seen that the variation ΔC in the coupling loss C with respect to 9 can be kept small.

PLC6は、次のようにして作製される。
火炎堆積(Flame Hydrolysis Deposition, FHD)法により、Si基板上に、下部クラッド層およびコア層となるシリカ材料(SiO2系のガラス粒子)を堆積し、加熱してガラス膜を溶融透明化する。この後、フォトリソグラフィと反応性イオンエッチングで所望の複数の光導波路9を形成し、再びFHD法により上部クラッドを形成する。
The PLC 6 is manufactured as follows.
A silica material (SiO 2 -based glass particles) serving as a lower cladding layer and a core layer is deposited on a Si substrate by flame deposition (FHD), and heated to melt and transparentize the glass film. Thereafter, a desired plurality of optical waveguides 9 are formed by photolithography and reactive ion etching, and an upper cladding is formed again by the FHD method.

次に、図1に示す光集積回路モジュール1に用いる第1実施形態に係る光学ベンチを図3に基づいて説明する。   Next, the optical bench according to the first embodiment used in the optical integrated circuit module 1 shown in FIG. 1 will be described with reference to FIG.

図3に示す光学ベンチとしてのSOB3においては、LDアレイ2が実装される表面3aに、SOB3の端面から目標仕上がり位置までの残り寸法を視認して確認するための研磨用マーカー20,21が形成されている。目標仕上がり位置は、図3の研磨目標線30で示す位置である。   In the SOB 3 as the optical bench shown in FIG. 3, polishing markers 20 and 21 for visually confirming the remaining dimensions from the end surface of the SOB 3 to the target finish position are formed on the surface 3a on which the LD array 2 is mounted. Has been. The target finish position is the position indicated by the polishing target line 30 in FIG.

またSOB3の表面3aには、LDアレイ2の各DFB半導体レーザダイオード(LD)と図示を省略した電子素子としてのドライバICとの間で電気信号を伝送するための伝送路である配線パターン22,23と、LDアレイ2が実装されるハンダ膜24とが形成されている。なお、図3において、符号「31」は、1枚のシリコン(Si)ウェハから1チップのSOB3を、ダイサーで切削して分離するためのダイシング線である。   Further, on the surface 3a of the SOB 3, a wiring pattern 22, which is a transmission path for transmitting an electric signal between each DFB semiconductor laser diode (LD) of the LD array 2 and a driver IC as an electronic element (not shown), 23 and a solder film 24 on which the LD array 2 is mounted. In FIG. 3, reference numeral “31” denotes a dicing line for separating one chip of SOB 3 from one silicon (Si) wafer by a dicer.

研磨用マーカー20,21は、LDアレイ2が実装されるハンダ膜24の左右両側に形成されている。左側の研磨用マーカー20は、図4(A)に示すように、平面視で、図3の矢印25で示す研磨方向に一定の間隔dずつずれた複数の段が連続した階段状の部材である。同様に、右側の研磨用マーカー21は、図4(B)に示すように、平面視で、研磨方向に一定の間隔dずつずれた複数の段が連続した階段状の部材である。一定の間隔dは、例えば、1μm、或いは数μmである。各研磨用マーカー20,21は、SOB3の表面3a上に、スパッタ法などの金属蒸着法により形成されている。   The polishing markers 20 and 21 are formed on the left and right sides of the solder film 24 on which the LD array 2 is mounted. As shown in FIG. 4A, the left polishing marker 20 is a step-like member in which a plurality of steps shifted by a predetermined distance d in the polishing direction indicated by an arrow 25 in FIG. is there. Similarly, as shown in FIG. 4B, the right polishing marker 21 is a step-like member in which a plurality of steps shifted by a fixed distance d in the polishing direction are continuous in a plan view. The constant interval d is, for example, 1 μm or several μm. Each of the polishing markers 20 and 21 is formed on the surface 3a of the SOB 3 by a metal vapor deposition method such as a sputtering method.

複数の配線パターン22,23はそれぞれ、例えば、SOB3の表面3a側から順にTi,NIおよびAuをそれぞれ積層した電極膜(Ti/Ni/Au)である。ハンダ膜24は、SOB3の表面3a側から順にAuとSnを積層して形成されている。ハンダ膜24のAu層の両端部は、2つの配線パターン22と電気的に接続されている。   Each of the plurality of wiring patterns 22 and 23 is, for example, an electrode film (Ti / Ni / Au) in which Ti, NI, and Au are sequentially stacked from the surface 3a side of the SOB 3. The solder film 24 is formed by stacking Au and Sn sequentially from the surface 3a side of the SOB 3. Both end portions of the Au layer of the solder film 24 are electrically connected to the two wiring patterns 22.

LDアレイ2は、例えば、その基板の裏面電極(コモン電極)をハンダ膜24のSn層とハンダ接合して実装(フリップチップ実装)される。これにより、LDアレイ2の裏面電極が2つの配線パターン22を介して電源(図示省略)の負極と電気的に接続される。   For example, the LD array 2 is mounted (flip chip mounting) by soldering the back electrode (common electrode) of the substrate to the Sn layer of the solder film 24. As a result, the back electrode of the LD array 2 is electrically connected to the negative electrode of the power source (not shown) via the two wiring patterns 22.

一方、LDアレイ2の表面には、複数のLDにそれぞれ対応する独立した複数の上部電極が形成されている。複数の上部電極は、対応する複数の配線パターン23とそれぞれワイヤ(図示省略)で電気的に接続される。これにより、LDアレイ2を駆動するドライバICからLDアレイ2の複数のLDには、複数の配線パターン23および複数のワイヤ(図示省略)をそれぞれ介して変調信号が入力され、各LDから変調信号により変調された光信号が出射されて、PLC6の複数の光導波路9にそれぞれ光結合するようになっている。   On the other hand, a plurality of independent upper electrodes respectively corresponding to a plurality of LDs are formed on the surface of the LD array 2. The plurality of upper electrodes are electrically connected to the corresponding plurality of wiring patterns 23 by wires (not shown). As a result, the modulation signal is input from the driver IC that drives the LD array 2 to the plurality of LDs of the LD array 2 via the plurality of wiring patterns 23 and the plurality of wires (not shown), respectively. The optical signal modulated by is emitted and optically coupled to the plurality of optical waveguides 9 of the PLC 6.

次に、図1に示す光集積回路モジュール1の作製方法について説明する。
この光集積回路モジュール1は、次のようにして作製される。
(工程1)まず、LDアレイ2をSOB3のハンダ膜24上に実装する(図1参照)。
(工程2)次に、SOB3の端面をダイサーで切削する。
(工程3)次に、切削されたSOB3の端面を、図3の研磨目標線30で示す目標仕上がり位置まで研磨する。
Next, a manufacturing method of the optical integrated circuit module 1 shown in FIG. 1 will be described.
The optical integrated circuit module 1 is manufactured as follows.
(Step 1) First, the LD array 2 is mounted on the solder film 24 of SOB 3 (see FIG. 1).
(Step 2) Next, the end face of the SOB 3 is cut with a dicer.
(Step 3) Next, the end face of the cut SOB 3 is polished to the target finish position indicated by the polishing target line 30 in FIG.

この工程3では、まず、ダイサーで切削されたSOB3の端面から目標仕上がり位置までの残り寸法を、SOB3の表面3aに形成された研磨用マーカー20,21を顕微鏡で視認して把握する。この後、把握した残り寸法だけSOB3の端面を研磨する。
この研磨により、SOB3の端面は、ダイサーで切削された表面粗さよりも小さい表面粗さに研磨された端面4(図1参照)になる。
In this step 3, first, the remaining dimensions from the end face of the SOB 3 cut by the dicer to the target finish position are grasped by visually observing the polishing markers 20 and 21 formed on the surface 3a of the SOB 3 with a microscope. Thereafter, the end surface of the SOB 3 is polished by the remaining dimension ascertained.
By this polishing, the end surface of the SOB 3 becomes the end surface 4 (see FIG. 1) polished to a surface roughness smaller than the surface roughness cut by the dicer.

(工程4)次に、LDアレイ2に対してPLC6を動かして、LDアレイ2の複数の半導体導波路8に対してPLC6の複数の光導波路9をアクティブ調芯する。   (Step 4) Next, the PLC 6 is moved with respect to the LD array 2 to actively align the plurality of optical waveguides 9 of the PLC 6 with respect to the plurality of semiconductor waveguides 8 of the LD array 2.

(工程5)この調芯後、SOB3の端面4とPLC6の端面7の間にUV硬化接着剤を塗布し、UV硬化接着剤にUV光を照射してUV硬化接着剤全体を硬化させる。   (Step 5) After this alignment, a UV curable adhesive is applied between the end face 4 of the SOB 3 and the end face 7 of the PLC 6, and the UV curable adhesive is irradiated with UV light to cure the entire UV curable adhesive.

これにより、LDアレイ2が実装されたSOB3とPLC6とが結合されて光集積回路モジュール1が完成する。なお、結合されたSOB3とPLC6を補強のための基板上に固定するようにしても良い。   As a result, the SOB 3 on which the LD array 2 is mounted and the PLC 6 are combined to complete the optical integrated circuit module 1. The combined SOB 3 and PLC 6 may be fixed on a substrate for reinforcement.

以上のように構成された第1実施形態によれば、以下の作用効果を奏する。
○第1実施形態に係る光集積回路モジュール1では、SOB3の端面4は、ダイサーで切削された表面粗さよりも小さい表面粗さに研磨された面になっている。つまり、この光集積回路モジュール1では、SOB3の端面4を研磨で仕上げることによって、端面4の位置精度を上げ、端面距離Zの誤差ΔZを小さくしている。これにより、光導波路素子としてのPLC6の端面7と突き合わされる光学ベンチとしてのSOB3の端面4が、ダイサーで切削された端面よりも加工精度の良い面になる。このため、SOB3の端面4をPLC6の端面7に突き合わせる際に、各LDの光出射面であるLDアレイ2の端面10と、PLC6の端面7との間の端面距離Zの誤差ΔZを小さくすることができる。その結果、光学的に接続されるLDアレイ2の複数の半導体導波路8と平面光波回路5の複数の光導波路9との結合損失のばらつきΔCを小さく抑えることができ、光集積回路モジュール1を作製する際の歩留まりを向上することができる。
According to 1st Embodiment comprised as mentioned above, there exist the following effects.
In the optical integrated circuit module 1 according to the first embodiment, the end surface 4 of the SOB 3 is a surface polished to a surface roughness smaller than the surface roughness cut by the dicer. That is, in the optical integrated circuit module 1, the end face 4 of the SOB 3 is finished by polishing, thereby increasing the positional accuracy of the end face 4 and reducing the error ΔZ of the end face distance Z. As a result, the end surface 4 of the SOB 3 as the optical bench that is abutted against the end surface 7 of the PLC 6 as the optical waveguide element becomes a surface with better processing accuracy than the end surface cut by the dicer. Therefore, when the end face 4 of the SOB 3 is abutted against the end face 7 of the PLC 6, the error ΔZ of the end face distance Z between the end face 10 of the LD array 2 that is the light emission face of each LD and the end face 7 of the PLC 6 is reduced. can do. As a result, variation in coupling loss ΔC between the plurality of semiconductor waveguides 8 of the optically connected LD array 2 and the plurality of optical waveguides 9 of the planar lightwave circuit 5 can be suppressed, and the optical integrated circuit module 1 can be reduced. The yield at the time of manufacturing can be improved.

○SOB3の端面4は、ダイサーで切削された表面粗さよりも小さい表面粗さに研磨された面であるため、SOB3の端面4とPLC6の端面7とを突き合わせて、UV硬化接着剤を用いた接着により光学ベンチと光導波路素子を結合する際に、接着の信頼性が向上する。   ○ Since the end surface 4 of SOB3 is a surface polished to a surface roughness smaller than the surface roughness cut by a dicer, the end surface 4 of SOB3 and the end surface 7 of PLC 6 were brought into contact with each other, and a UV curing adhesive was used. When bonding the optical bench and the optical waveguide element by bonding, the reliability of bonding is improved.

○研磨されたSOB3の端面4に塗布したUV硬化接着剤にチッピングが起きにくく、傷やクラックの発生を抑制できるので、この点でも接着の信頼性が向上する。   ○ Chipping is unlikely to occur in the UV curable adhesive applied to the polished end face 4 of SOB3, and the occurrence of scratches and cracks can be suppressed. This also improves the reliability of bonding.

○第1実施形態に係る光学ベンチとしてのSOB3では、LDアレイ2が実装される表面3aに、SOB3の端面4から図3の研磨目標線30で示す目標仕上がり位置までの残り寸法を視認して確認するための研磨用マーカー20,21が形成されている。この構成により、PLC6の端面7と突き合わされるSOB3の端面を研磨する際に、SOB3の端面から目標仕上がり位置までの残り寸法を、研磨用マーカー20,21を顕微鏡等で視認して確認できるので、SOB3の端面4を目標仕上がり位置まで研磨により精度良く加工することができる。これにより、SOB3の端面4をPLC6の端面7に突き合わせる際に、LDアレイ2の端面10とPLC6の端面7との間の端面距離Zの誤差ΔZを小さくすることができる。その結果、光学的に接続されるLDアレイ2の各半導体導波路8と平面光波回路5の各光導波路9との結合損失のばらつきΔCを小さく抑えることができ、光集積回路モジュール1を作製する際の歩留まりを向上することができる。   In the SOB 3 as the optical bench according to the first embodiment, the remaining dimension from the end surface 4 of the SOB 3 to the target finish position indicated by the polishing target line 30 in FIG. Polishing markers 20 and 21 for confirmation are formed. With this configuration, when polishing the end surface of the SOB 3 that is abutted against the end surface 7 of the PLC 6, the remaining dimensions from the end surface of the SOB 3 to the target finish position can be confirmed by visually observing the polishing markers 20 and 21 with a microscope or the like. The end face 4 of the SOB 3 can be accurately processed by polishing to the target finish position. Thus, when the end face 4 of the SOB 3 is abutted against the end face 7 of the PLC 6, the error ΔZ of the end face distance Z between the end face 10 of the LD array 2 and the end face 7 of the PLC 6 can be reduced. As a result, variation in coupling loss ΔC between each semiconductor waveguide 8 of the optically connected LD array 2 and each optical waveguide 9 of the planar lightwave circuit 5 can be suppressed, and the optical integrated circuit module 1 is manufactured. The yield at the time can be improved.

○SOB3の研磨用マーカー20,21は、平面視で、研磨方向に一定の間隔ずつずれた複数の段が連続した階段状の部材である。この構成により、研磨用マーカー20,21である階段状の部材を顕微鏡等で視認して、その部材の複数の段のうち、どの段までダイサーで切削されているかを確認することで、SOB3の端面4から目標仕上がり位置までの残り寸法を知ることができる。この残り寸法の大きさに応じて、研磨に用いる砥粒の大きさや研磨速度を決めることができるので、研磨による端面4の加工精度が向上すると共に、加工時間を短縮することができる。   ○ The polishing markers 20 and 21 of SOB3 are step-like members in which a plurality of steps shifted by a predetermined interval in the polishing direction are continuous in a plan view. With this configuration, the stepped members that are the polishing markers 20 and 21 are visually confirmed with a microscope or the like, and by checking to what level the plurality of steps of the members are cut with a dicer, the SOB3 The remaining dimensions from the end face 4 to the target finish position can be known. Depending on the size of the remaining dimensions, the size and polishing rate of the abrasive grains used for polishing can be determined, so that the processing accuracy of the end face 4 by polishing can be improved and the processing time can be shortened.

○SOB3の研磨用マーカー20,21は、LDアレイ2が実装される位置(ハンダ膜24)の左右両側に形成されている。この構成により、研磨用マーカー20,21を顕微鏡等で視認することで、LDアレイ2が実装されるハンダ膜24の左右両側でSOB3の端面4から目標仕上がり位置までの残り寸法を知ることができる。これにより、SOB3の端面4とLDアレイ2の端面10との平行度が向上する。その結果、光学的に接続されるLDアレイ2の複数の半導体導波路8と平面光波回路5の複数の光導波路9との結合損失のばらつきΔCを更に小さく抑えることができ、光集積回路モジュール1を作製する際の歩留まりを更に向上することができる。   ○ The polishing markers 20 and 21 of SOB3 are formed on the left and right sides of the position (solder film 24) where the LD array 2 is mounted. With this configuration, by visually observing the polishing markers 20 and 21 with a microscope or the like, the remaining dimensions from the end face 4 of the SOB 3 to the target finish position can be known on both the left and right sides of the solder film 24 on which the LD array 2 is mounted. . Thereby, the parallelism between the end face 4 of the SOB 3 and the end face 10 of the LD array 2 is improved. As a result, the variation ΔC in coupling loss between the plurality of semiconductor waveguides 8 of the optically connected LD array 2 and the plurality of optical waveguides 9 of the planar lightwave circuit 5 can be further reduced, and the optical integrated circuit module 1 The yield in manufacturing can be further improved.

○第1実施形態に係る光集積回路モジュール1の作製方法では、SOB3の端面をダイサーで切削し、この切削後、SOB3の端面を目標仕上がり位置まで研磨する。この構成により、SOB3の端面4が、ダイサーで切削された端面よりも加工精度の良い面になる。このため、光学的に接続されるLDアレイ2の複数の半導体導波路8と平面光波回路5の複数の光導波路9との結合損失のばらつきΔCを小さく抑えることができ、光集積回路モジュール1を作製する際の歩留まりを向上することができる。   In the method of manufacturing the optical integrated circuit module 1 according to the first embodiment, the end surface of the SOB 3 is cut with a dicer, and after the cutting, the end surface of the SOB 3 is polished to the target finish position. With this configuration, the end surface 4 of the SOB 3 becomes a surface with better processing accuracy than the end surface cut by the dicer. For this reason, the dispersion loss ΔC between the plurality of semiconductor waveguides 8 of the optically connected LD array 2 and the plurality of optical waveguides 9 of the planar lightwave circuit 5 can be suppressed, and the optical integrated circuit module 1 can be reduced. The yield at the time of manufacturing can be improved.

また、この作製方法により、SOB3の端面4は、ダイサーで切削された表面粗さよりも小さい表面粗さに研磨された面であるため、SOB3の端面4とPLC6の端面7とを突き合わせて、UV硬化接着剤を用いた接着により光学ベンチと光導波路素子を結合する際に、接着の信頼性が向上する。さらに、この作製方法により、研磨されたSOB3の端面4に塗布したUV硬化接着剤にチッピングが起きにくく、傷やクラックの発生を抑制できるので、この点でも接着の信頼性が向上する。   Further, by this manufacturing method, the end surface 4 of the SOB 3 is a surface polished to a surface roughness smaller than the surface roughness cut by the dicer, so the end surface 4 of the SOB 3 and the end surface 7 of the PLC 6 are brought into contact with each other, and the UV When the optical bench and the optical waveguide element are bonded by bonding using a hardened adhesive, the reliability of bonding is improved. Furthermore, this manufacturing method makes it difficult for chipping to occur in the UV curable adhesive applied to the end face 4 of the polished SOB 3 and suppresses the occurrence of scratches and cracks, so that the reliability of adhesion is improved in this respect as well.

(第2実施形態)
次に、図1に示す光集積回路モジュール1に用いる第2実施形態に係る光学ベンチを図5に基づいて説明する。
(Second Embodiment)
Next, an optical bench according to the second embodiment used in the optical integrated circuit module 1 shown in FIG. 1 will be described with reference to FIG.

本実施形態に係る光学ベンチでは、図3に示す左右の研磨用マーカー20,21のうち、左側の研磨用マーカー20に対応する左側の研磨用マーカー20Aは、図5に示すように、平面視で、矩形状或いは線状の複数の部材40が図3の矢印25で示す研磨方向に一定の間隔ずつずれて配置された集合体である。同様に、研磨用マーカー20,21のうち、右側の研磨用マーカー21に対応する右側の研磨用マーカー(図示省略)も、平面視で、複数の矩形状或いは線状の部材が研磨方向に一定の間隔ずつずれて配置された集合体である。   In the optical bench according to the present embodiment, the left polishing marker 20A corresponding to the left polishing marker 20 among the left and right polishing markers 20 and 21 shown in FIG. Thus, a plurality of rectangular or linear members 40 are aggregates arranged at regular intervals in the polishing direction indicated by the arrow 25 in FIG. Similarly, among the polishing markers 20 and 21, the right polishing marker (not shown) corresponding to the right polishing marker 21 also has a plurality of rectangular or linear members fixed in the polishing direction in plan view. It is an aggregate arranged with an interval of.

第2実施形態に係る光学ベンチによれば、研磨用マーカー20Aである複数の部材40の集合体を顕微鏡等で視認して、複数の部材40のうち、どの部材40までダイサーで切削されているかを確認することで、SOB3の端面から目標仕上がり位置までの残り寸法を知ることができる。この残り寸法の大きさに応じて、研磨に用いる砥粒の大きさや研磨速度を決めることができるので、研磨によるSOB3の端面の加工精度が向上すると共に、加工時間を短縮することができる。   According to the optical bench according to the second embodiment, an assembly of a plurality of members 40 that are polishing markers 20A is visually recognized with a microscope or the like, and up to which member 40 of the plurality of members 40 is cut with a dicer. By confirming, it is possible to know the remaining dimension from the end face of the SOB 3 to the target finish position. Depending on the size of the remaining dimensions, the size and polishing rate of the abrasive grains used for polishing can be determined, so that the processing accuracy of the end face of the SOB 3 by polishing can be improved and the processing time can be shortened.

なお、この発明は以下のように変更して具体化することもできる。
・上記各実施形態では、半導体導波路素子としてLDアレイ2を用いているが、「半導体導波路素子」には、半導体レーザダイオード以外に、半導体光増幅器(Semiconductor Optical Amplifier:SOA)、半導体の電界吸収効果を用いた電界吸収型(Elcctro Absorption: EA)変調器、半導体受光素子などが含まれる。
In addition, this invention can also be changed and embodied as follows.
In each of the above embodiments, the LD array 2 is used as the semiconductor waveguide element. However, in addition to the semiconductor laser diode, the “semiconductor waveguide element” includes a semiconductor optical amplifier (SOA), a semiconductor electric field, and the like. It includes an electro-absorption type (Elcctro Absorption: EA) modulator using an absorption effect, a semiconductor light receiving element, and the like.

・上記各実施形態では、半導体導波路素子としてLDアレイ2を用いた光集積回路モジュールについて説明したが、半導体導波路素子として一つの半導体レーザダイオード、或いは一つの半導体光増幅器、一つの電界吸収型(Elcctro Absorption: EA)変調器、或いは一つの半導体受光素子を用いた構成の光集積回路モジュール、この光集積回路モジュールに用いる光学ベンチ、および光集積回路モジュールの作製方法にも本発明は適用可能である。   In each of the above embodiments, the optical integrated circuit module using the LD array 2 as the semiconductor waveguide element has been described. However, as the semiconductor waveguide element, one semiconductor laser diode or one semiconductor optical amplifier, one electroabsorption type is used. (Elcctro Absorption: EA) The present invention can also be applied to an optical integrated circuit module having a configuration using a modulator or one semiconductor light receiving element, an optical bench used in the optical integrated circuit module, and a method of manufacturing the optical integrated circuit module. It is.

第1実施形態に係る光集積回路モジュールの概略構成を示す側面図。1 is a side view showing a schematic configuration of an optical integrated circuit module according to a first embodiment. 図1に示す光集積回路モジュールにおける端面距離Zの誤差ΔZと結合損失CのばらつきΔCの関係を示すグラフ。2 is a graph showing a relationship between an error ΔZ of an end face distance Z and a variation ΔC in coupling loss C in the optical integrated circuit module shown in FIG. 第1実施形態に係る光学ベンチであるSOBを示す平面図。The top view which shows SOB which is the optical bench which concerns on 1st Embodiment. (A)は図3に示す左側の研磨用マーカーを示す拡大図、(B)は図3に示す右側の研磨用マーカーを示す拡大図。(A) is an enlarged view showing the left polishing marker shown in FIG. 3, (B) is an enlarged view showing the right polishing marker shown in FIG. 第2実施形態に係る光学ベンチであるSOBの左側の研磨用マーカーを示す拡大図。The enlarged view which shows the marker for grinding | polishing on the left side of SOB which is an optical bench which concerns on 2nd Embodiment.

符号の説明Explanation of symbols

1:光集積回路モジュール
2:半導体レーザダイオードアレイ(LDアレイ)
3:光学ベンチとしてのSOB(シリコンオプチカルベンチ)
3a:表面
4:SOBの端面
5:平面光波回路
6:光導波路素子としてのPLC
7:PLCの端面
8:半導体導波路
9:光導波路
10:LDアレイの端面
20,21:研磨用マーカー
22,23:配線パターン
24:ハンダ膜
30:目標仕上がり位置を示す研磨目標線
40:矩形状或いは線状の部材
1: Optical integrated circuit module 2: Semiconductor laser diode array (LD array)
3: SOB (silicon optical bench) as an optical bench
3a: surface 4: SOB end face 5: planar lightwave circuit 6: PLC as an optical waveguide device
7: PLC end face 8: Semiconductor waveguide 9: Optical waveguide 10: LD array end face 20, 21: Polishing marker 22, 23: Wiring pattern 24: Solder film 30: Polishing target line 40 indicating the target finish position: rectangular Shaped or linear member

Claims (8)

半導体導波路素子が実装された光学ベンチの端面と平面光波回路が形成された光導波路素子の端面とを突き合わせて、半導体導波路素子の半導体導波路と平面光波回路の光導波路を光学的に接続した光集積回路モジュールであって、
前記光学ベンチの端面は、ダイサーで切削された表面粗さよりも小さい表面粗さに研磨された面であることを特徴とする光集積回路モジュール。
The end face of the optical bench on which the semiconductor waveguide element is mounted and the end face of the optical waveguide element on which the planar lightwave circuit is formed are brought into contact with each other to optically connect the semiconductor waveguide of the semiconductor waveguide element and the optical waveguide of the planar lightwave circuit. An optical integrated circuit module,
The optical integrated circuit module according to claim 1, wherein an end surface of the optical bench is a surface polished to a surface roughness smaller than a surface roughness cut by a dicer.
半導体導波路素子が実装された光学ベンチの端面と平面光波回路が形成された光導波路素子の端面とを突き合わせて、半導体導波路素子の半導体導波路と平面光波回路の光導波路を光学的に接続した光集積回路モジュールに用いる光学ベンチであって、
前記半導体導波路素子が実装される表面に、前記光学ベンチの端面から目標仕上がり位置までの残り寸法を視認して確認するための研磨用マーカーが形成されていることを特徴とする光学ベンチ。
The end face of the optical bench on which the semiconductor waveguide element is mounted and the end face of the optical waveguide element on which the planar lightwave circuit is formed are brought into contact with each other to optically connect the semiconductor waveguide of the semiconductor waveguide element and the optical waveguide of the planar lightwave circuit. An optical bench used for an optical integrated circuit module,
An optical bench, wherein a polishing marker for visually confirming a remaining dimension from an end surface of the optical bench to a target finish position is formed on a surface on which the semiconductor waveguide element is mounted.
前記研磨用マーカーは、平面視で、研磨方向に一定の間隔ずつずれた複数の段が連続した階段状の部材であることを特徴とする請求項2に記載の光学ベンチ。   3. The optical bench according to claim 2, wherein the polishing marker is a stepped member in which a plurality of steps shifted by a predetermined interval in the polishing direction are continuous in a plan view. 前記研磨用マーカーは、平面視で、矩形状或いは線状の複数の部材が研磨方向に一定の間隔ずつずれて配置された集合体であることを特徴とする請求項2に記載の光学ベンチ。   3. The optical bench according to claim 2, wherein the polishing marker is an assembly in which a plurality of rectangular or linear members are arranged with a certain interval shifted in the polishing direction in a plan view. 前記研磨用マーカーは、前記半導体導波路素子が実装される位置の左右両側に形成されていることを特徴とする請求項2乃至4のいずれか一つに記載の光学ベンチ。   The optical bench according to any one of claims 2 to 4, wherein the polishing markers are formed on both left and right sides of a position where the semiconductor waveguide element is mounted. 前記半導体導波路素子が実装される表面には、前記半導体導波路素子と電子素子の間で電気信号を伝送するための伝送路である配線パターンと、前記半導体導波路素子が実装されるハンダ膜とが設けられていることを特徴とする請求項2乃至5のいずれか一つに記載の光学ベンチ。   On the surface on which the semiconductor waveguide element is mounted, a wiring pattern which is a transmission path for transmitting an electrical signal between the semiconductor waveguide element and the electronic element, and a solder film on which the semiconductor waveguide element is mounted The optical bench according to claim 2, wherein the optical bench is provided. 半導体導波路素子が実装された光学ベンチの端面と平面光波回路が形成された光導波路素子の端面とを突き合わせて、半導体導波路素子と平面光波回路の光導波路を光学的に接続した光集積回路モジュールの作製方法であって、
前記光学ベンチの端面をダイサーで切削し、
前記切削の後、切削された前記光学ベンチの端面を目標仕上がり位置まで研磨することを特徴とする光集積回路モジュールの作製方法。
An optical integrated circuit in which an end face of an optical bench on which a semiconductor waveguide element is mounted and an end face of an optical waveguide element on which a planar lightwave circuit is formed are connected to each other and the semiconductor waveguide element and the optical waveguide of the planar lightwave circuit are optically connected A module manufacturing method,
Cutting the end face of the optical bench with a dicer,
After the cutting, the cut end surface of the optical bench is polished to a target finish position.
前記光学ベンチの端面をダイサーで切削した後、切削された前記光学ベンチの端面から目標仕上がり位置までの残り寸法を、前記半導体導波路素子が実装される前記光学ベンチの表面に形成された研磨用マーカーを視認して把握し、
その後、把握した前記残り寸法だけ前記光学ベンチの端面を研磨することを特徴とする請求項7に記載の光集積回路モジュールの作製方法。
After cutting the end face of the optical bench with a dicer, the remaining dimension from the cut end face of the optical bench to the target finish position is used for polishing formed on the surface of the optical bench on which the semiconductor waveguide element is mounted. Visually grasp the marker,
8. The method of manufacturing an optical integrated circuit module according to claim 7, wherein the end face of the optical bench is polished by the grasped remaining dimension.
JP2008084061A 2008-03-27 2008-03-27 Optical integrated circuit module, optical bench used for optical integrated circuit module and method of manufacturing optical integrated circuit module Pending JP2009237326A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008084061A JP2009237326A (en) 2008-03-27 2008-03-27 Optical integrated circuit module, optical bench used for optical integrated circuit module and method of manufacturing optical integrated circuit module

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008084061A JP2009237326A (en) 2008-03-27 2008-03-27 Optical integrated circuit module, optical bench used for optical integrated circuit module and method of manufacturing optical integrated circuit module

Publications (1)

Publication Number Publication Date
JP2009237326A true JP2009237326A (en) 2009-10-15

Family

ID=41251326

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008084061A Pending JP2009237326A (en) 2008-03-27 2008-03-27 Optical integrated circuit module, optical bench used for optical integrated circuit module and method of manufacturing optical integrated circuit module

Country Status (1)

Country Link
JP (1) JP2009237326A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011186171A (en) * 2010-03-08 2011-09-22 Nippon Telegr & Teleph Corp <Ntt> Waveguide optical element
JP2014022522A (en) * 2012-07-17 2014-02-03 Furukawa Electric Co Ltd:The Optical element module
WO2022210852A1 (en) * 2021-03-30 2022-10-06 住友大阪セメント株式会社 Optical waveguide element, optical modulation device using optical waveguide element, and optical transmission device using optical waveguide element

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0229913A (en) * 1988-04-06 1990-01-31 Sanyo Electric Co Ltd Marker for worked quantity detection and manufacture of thin film magnetic head using the marker
JPH06251327A (en) * 1993-02-27 1994-09-09 Sony Corp Thin film magnetic head
JPH09197457A (en) * 1995-11-16 1997-07-31 Matsushita Electric Ind Co Ltd Light generator and its production
JP2001042373A (en) * 1999-05-25 2001-02-16 Fuji Photo Film Co Ltd Wavelength conversion device
JP2001196683A (en) * 2000-01-17 2001-07-19 Fuji Photo Film Co Ltd Semiconductor laser module and its manufacturing method
JP2001196684A (en) * 2000-01-12 2001-07-19 Fuji Photo Film Co Ltd Semiconductor laser module
JP2004103792A (en) * 2002-09-09 2004-04-02 Ricoh Co Ltd Compound optical device and method of manufacturing the same
JP2007264470A (en) * 2006-03-29 2007-10-11 Furukawa Electric Co Ltd:The Optical circuit module

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0229913A (en) * 1988-04-06 1990-01-31 Sanyo Electric Co Ltd Marker for worked quantity detection and manufacture of thin film magnetic head using the marker
JPH06251327A (en) * 1993-02-27 1994-09-09 Sony Corp Thin film magnetic head
JPH09197457A (en) * 1995-11-16 1997-07-31 Matsushita Electric Ind Co Ltd Light generator and its production
JP2001042373A (en) * 1999-05-25 2001-02-16 Fuji Photo Film Co Ltd Wavelength conversion device
JP2001196684A (en) * 2000-01-12 2001-07-19 Fuji Photo Film Co Ltd Semiconductor laser module
JP2001196683A (en) * 2000-01-17 2001-07-19 Fuji Photo Film Co Ltd Semiconductor laser module and its manufacturing method
JP2004103792A (en) * 2002-09-09 2004-04-02 Ricoh Co Ltd Compound optical device and method of manufacturing the same
JP2007264470A (en) * 2006-03-29 2007-10-11 Furukawa Electric Co Ltd:The Optical circuit module

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011186171A (en) * 2010-03-08 2011-09-22 Nippon Telegr & Teleph Corp <Ntt> Waveguide optical element
JP2014022522A (en) * 2012-07-17 2014-02-03 Furukawa Electric Co Ltd:The Optical element module
WO2022210852A1 (en) * 2021-03-30 2022-10-06 住友大阪セメント株式会社 Optical waveguide element, optical modulation device using optical waveguide element, and optical transmission device using optical waveguide element

Similar Documents

Publication Publication Date Title
JP4559327B2 (en) Alignment method of optical module using lens and optical module created by the method
JP5323646B2 (en) Hybrid integrated optical module
EP2413171A1 (en) Laterally coupled optical fiber component and processing method thereof
KR19980030121A (en) Optical module with lens aligned in V-groove and manufacturing method thereof
US20090087155A1 (en) Planar lightwave circuit, manufacturing method thereof, and light waveguide device
CN103890625A (en) Lens array optical coupling to photonic chip
US20190170953A1 (en) Axial alignment of a lensed fiber in a grooved assembly
CN111492281A (en) Passive optical fiber coupler with UV window
US20210018679A1 (en) Optical system, carrier substrate, and method for manufacturing an optical system
JP2020533632A (en) Hybrid integration of photonic chips that combine on a single side
JP2002169042A (en) Optical waveguide coupling structure, optical waveguide and its manufacturing method, and optical device part having optical waveguide and its manufacturing method
CN103797392A (en) Optical interposer with common angled surface
JP4361024B2 (en) Optical circuit
JP2009008769A (en) Method of manufacturing photoelectronic transducer
JP2009237326A (en) Optical integrated circuit module, optical bench used for optical integrated circuit module and method of manufacturing optical integrated circuit module
JPH05304306A (en) Electrooptic module and manufacture thereof
JP5449041B2 (en) Optical device manufacturing method
JP2004233687A (en) Optical waveguide substrate and optical module
JP7138744B1 (en) Optical device connection method, optical device connection structure, and optical device connection system
JP2006251046A (en) Optical waveguide substrate, optical surface mounting waveguide element, and their manufacturing method
JP6268918B2 (en) Optical fiber connection structure, optical fiber connection method, and optical module
JP4288604B2 (en) Optical coupling device
JPS6360413A (en) Coupling method for light emitting element and optical fiber and optical waveguide type coupling device
JP2005292379A (en) Optical coupling device and manufacturing method therefor
JP2007309987A (en) Optical module and manufacturing method therefor

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120824

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121019

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130510

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130913