JP2006251046A - Optical waveguide substrate, optical surface mounting waveguide element, and their manufacturing method - Google Patents

Optical waveguide substrate, optical surface mounting waveguide element, and their manufacturing method Download PDF

Info

Publication number
JP2006251046A
JP2006251046A JP2005064093A JP2005064093A JP2006251046A JP 2006251046 A JP2006251046 A JP 2006251046A JP 2005064093 A JP2005064093 A JP 2005064093A JP 2005064093 A JP2005064093 A JP 2005064093A JP 2006251046 A JP2006251046 A JP 2006251046A
Authority
JP
Japan
Prior art keywords
optical
substrate
waveguide
clad
core
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005064093A
Other languages
Japanese (ja)
Inventor
Hidetoshi Nanai
秀寿 七井
Hiromichi Sakamoto
浩道 坂本
Toru Tanaka
徹 田中
Yuji Yamamoto
雄二 山本
Shigeki Sakaguchi
茂樹 坂口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central Glass Co Ltd
Original Assignee
Central Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central Glass Co Ltd filed Critical Central Glass Co Ltd
Priority to JP2005064093A priority Critical patent/JP2006251046A/en
Publication of JP2006251046A publication Critical patent/JP2006251046A/en
Pending legal-status Critical Current

Links

Landscapes

  • Optical Couplings Of Light Guides (AREA)
  • Optical Integrated Circuits (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an optical waveguide substrate and an optical surface mounting waveguide element that cause no deterioration of optical connection efficiency through difference in positional accuracy or refractive index, in an optical path switching technology, and also to provide their manufacturing method. <P>SOLUTION: The manufacturing method of the optical waveguide substrate is characterized in that; by preparing a clad block composed of a clad material on a temporary substrate, coating the entire surface with a core material and removing unnecessary parts, a block is produced comprising the core material and the clad material; that, by further overcoating the clad material, a plurality of reverse U-shaped waveguides are formed in parallel on the temporary substrate, wherein two waveguide vertical parts are faced vertically to the temporary substrate; and that, by forming a mirror, sticking the substrate, and removing the temporary substrate, a plurality of U-shaped optical waveguides with the mirror are arranged in parallel on the substrate. The invention also refers to the optical waveguide substrate and the optical surface mounting waveguide element manufactured by the above method. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明はアレイ化された面発光素子と受光素子同士を光結合する光表面実装導波路素子の構造およびその製造方法に関するものである。   The present invention relates to a structure of an optical surface mount waveguide element for optically coupling arrayed surface light emitting elements and light receiving elements, and a method for manufacturing the same.

近年、情報通信機器の高速化や大容量化に伴い、装置内の電気配線の容量不足が問題になっている。そのため電気配線の一部を光ファイバーまたは光導波路への置き換えの検討が進められている。特にアレイ型の面発光素子や受光素子と光導波路との組み合わせは高密度化、高速化に有利であることから盛んに検討が進められている。この場合、アレイ型の面発光素子や受光素子と光導波路は同一光軸上にないため、高効率でかつ低コストでこれらを結合する素子および手法に対する要求が高まっている。   In recent years, with the increase in speed and capacity of information communication equipment, a shortage of capacity of electrical wiring in the apparatus has become a problem. Therefore, studies are underway to replace part of the electrical wiring with optical fibers or optical waveguides. In particular, an array type surface light emitting device or a combination of a light receiving device and an optical waveguide is advantageous for high density and high speed, and is being studied actively. In this case, since the array-type surface light-emitting element or light-receiving element and the optical waveguide are not on the same optical axis, there is an increasing demand for an element and method for coupling them with high efficiency and low cost.

この要求に対して光導波路の端面に45度ミラーを設け、90度の光路変換を行なうことで受発光素子と結合を可能とする手法が検討されている(例えば、非特許文献1参照)。しかしこの光路変換方法では数十ミクロン離れた導波路表面に面発光レーザを設置しているために45度ミラーの加工精度技術や導波路膜厚制御が不十分だと光信号が広がってしまい反射面以外への光洩れが多くなる。また反射面以外への光洩れを抑制するためにクラッド層を薄くすることで面発光素子と反射面との距離を短くして洩れ光を抑制する手法が考えられるが、導波路の特性から限界がある。さらに反射面と面発光素子間に屈折率の低いクラッド層があるため、モード変換が避けられなかった。   In response to this requirement, a technique has been studied in which a 45-degree mirror is provided on the end face of the optical waveguide and the light-receiving / emitting element can be coupled by performing a 90-degree optical path change (see, for example, Non-Patent Document 1). However, in this optical path conversion method, a surface emitting laser is installed on the surface of the waveguide several tens of microns away. Therefore, if the 45-degree mirror processing accuracy technique and the waveguide film thickness control are insufficient, the optical signal spreads and is reflected. More light leaks outside the surface. In addition, in order to suppress light leakage to other than the reflective surface, it is possible to reduce the distance between the surface light emitting element and the reflective surface by reducing the thickness of the cladding layer. There is. Furthermore, since there is a clad layer having a low refractive index between the reflective surface and the surface light emitting element, mode conversion cannot be avoided.

この問題を解決するための手段としてコア及びクラッドからなる伝送路構造を有する2以上の光学繊維に設けられた傾斜面同士を接合して、かつ、光学繊維の伝送路構造から他の光学繊維の伝送路構造へ光を伝搬するマイクロミラーを有することを特徴とする光路変換部品を光導波路のスルーホールに埋設し、光導波路を伝送する光信号を光電素子に到達させる技術が提案されている(例えば、特許文献1参照)。この従来の光路変換技術は、発光素子から空間に出射される光や光導波路から空間に出射する光が放射角を持って広がることに起因する発光素子と光導波路との光接続効率の低下や、光導波路と受光素子との光接続効率の低下を防止できる。さらに、マイクロミラーを介し面発光素子(光電変換素子)から光導波路に光を入射させる場合にも、受光素子(光電変換素子)に向かって光導波路から光を出射させる場合にも、同様の構造で光電変換素子と光導波路との光接続が行なえる。また、光路変換部品自体が光導波路屈折率に合わせた伝送路構造を有している為、モード変換を解消できる構造となっている。
特開2004−191903号公報 市村他「光表面実装向け45°ミラー付き高分子導波路」,回路実装学会誌,1998年 Vol.13,No2,p.97−102
As means for solving this problem, inclined surfaces provided on two or more optical fibers having a transmission path structure composed of a core and a clad are joined to each other, and the optical fiber transmission path structure is connected to another optical fiber. A technique has been proposed in which an optical path conversion component characterized by having a micromirror that propagates light to a transmission path structure is embedded in a through hole of an optical waveguide, and an optical signal transmitted through the optical waveguide reaches a photoelectric element ( For example, see Patent Document 1). This conventional optical path conversion technology is used to reduce the light connection efficiency between the light emitting element and the optical waveguide due to the light emitted from the light emitting element into the space and the light emitted from the optical waveguide into the space having a radiation angle. The optical connection efficiency between the optical waveguide and the light receiving element can be prevented from decreasing. Further, the same structure is used both when light is incident on the optical waveguide from the surface light emitting element (photoelectric conversion element) via the micromirror and when light is emitted from the optical waveguide toward the light receiving element (photoelectric conversion element). Thus, optical connection between the photoelectric conversion element and the optical waveguide can be performed. In addition, since the optical path conversion component itself has a transmission path structure that matches the refractive index of the optical waveguide, it has a structure that can eliminate mode conversion.
JP 2004-191903 A Ichimura et al. “Polymer waveguide with 45 ° mirror for optical surface mounting”, Journal of Circuit Packaging Society, 1998 Vol. 13, No2, p. 97-102

この従来の光路変換技術では、マイクロミラー付き光変換部品を光電変換素子の個々に対して作製する必要があり、製造プロセスが複雑化となるとともに、低価格化が図れない。また、光プリント配線板に形成するスルーホールの加工が困難であり、さらに縦、横および深さの方向で光路ずれを最小限にするにはスルーホールと光変換部品とのクリアランスは数十μmも必要なため、光導波路と光路変換部品との光接続効率が低下してしまう。さらに光路変換部品と導波路とが別々に作製されるため、屈折率の相違が生じ光接続効率の低下を引き起こす。また、光電変換素子が配列されている場合、アレイ型の光路変換部品が必要となるがそれぞれのコア位置およびミラー位置全てを精度良く作製することは困難であり、高コスト化してしまう。   In this conventional optical path conversion technique, it is necessary to manufacture a light conversion component with a micromirror for each photoelectric conversion element, which complicates the manufacturing process and cannot reduce the cost. In addition, it is difficult to process through holes formed in optical printed circuit boards, and the clearance between the through holes and optical conversion components is several tens of μm to minimize optical path deviation in the vertical, horizontal, and depth directions. Therefore, the optical connection efficiency between the optical waveguide and the optical path conversion component is lowered. Furthermore, since the optical path conversion component and the waveguide are separately manufactured, a difference in refractive index occurs, causing a decrease in optical connection efficiency. Further, when the photoelectric conversion elements are arranged, an array type optical path conversion component is required, but it is difficult to accurately manufacture all the core positions and mirror positions, resulting in an increase in cost.

本発明は、仮基板上にクラッド材からなるクラッドブロックを作製し、コア材を全面にコートし、不要部分を除去することでコア材とクラッド材からなるブロックを作製し、さらにクラッド材をオーバーコートすることで2本の導波路垂直部が前記仮基板に垂直に向いた複数の逆U字導波路を平行に仮基板上に形成し、ミラー形成、基板貼り合わせ、仮基板除去することで複数のミラー付きU字型光導波路を平行に基板上に配設することを特徴とした光導波路基板の作製方法である。   In the present invention, a clad block made of a clad material is produced on a temporary substrate, a core material is coated on the entire surface, and unnecessary portions are removed to produce a block made of the core material and the clad material. By coating, a plurality of inverted U-shaped waveguides in which two waveguide vertical portions are perpendicular to the temporary substrate are formed in parallel on the temporary substrate, mirror formation, substrate bonding, and temporary substrate removal are performed. A method of manufacturing an optical waveguide substrate, wherein a plurality of U-shaped optical waveguides with mirrors are arranged in parallel on a substrate.

また、上記の方法により作製された光導波路基板である。   Further, the optical waveguide substrate is manufactured by the above method.

さらに、上記の光導波路基板へ電極およびマーカを形成した後、素子状に切り出すことにより、複数のミラー付きU字型光導波路が平行に配設され、コアの両端面が同一平面に配列された多チャンネル導波路素子とコア端面部に面発光素子や受光素子がパッシブ実装を可能とするマーカおよび電極を備えていることを特徴とした光表面実装導波路素子の作製方法である。   Furthermore, after forming electrodes and markers on the above optical waveguide substrate, a plurality of U-shaped optical waveguides with mirrors are arranged in parallel by cutting out in an element shape, and both end faces of the core are arranged in the same plane An optical surface-mounting waveguide element manufacturing method comprising a multi-channel waveguide element and a core end face provided with markers and electrodes that enable surface-emitting elements and light-receiving elements to be passively mounted.

また、上記の方法により作製された光表面実装導波路素子である。   Further, it is an optical surface mount waveguide device manufactured by the above method.

本発明によれば、光導波路垂直部と水平部の全てのコアが一体に形成されているため、すなわち光路変換部分と光導波路とが一体で形成されているため、モード変換や導波路同士の光結合による損失が発生せず伝搬損失が低くい。また基板状で導波路部の光特性の評価および電極形成が可能なため、低コストで光表面実装導波路素子を提供するものである。   According to the present invention, all the cores of the optical waveguide vertical part and the horizontal part are integrally formed, that is, the optical path conversion part and the optical waveguide are integrally formed. Loss due to optical coupling does not occur and propagation loss is low. Further, since the optical characteristics of the waveguide portion and electrode formation can be formed in a substrate shape, an optical surface mount waveguide element is provided at a low cost.

本発明のポイントは基板上に複数のミラー付きU字型光導波路が平行にリソグラフィーの精度で基板上に配設された光導波路基板を作製できたことで、従来そこから誘導される光表面実装導波路素子1つ1つでの評価が必要であったものを基板上で複数の光表面実装導波路素子の光特性を一度に評価できること、またリソグラフィーの精度で電極やマーカも基板上で形成できるため、アレイ型面発光素子と受光素子を高効率で光結合を可能とする光表面実装導波路素子を低コストで提供できることにある。   The point of the present invention is that an optical waveguide substrate in which a plurality of U-shaped optical waveguides with mirrors are arranged on a substrate in parallel on the substrate with lithography accuracy can be manufactured. The optical characteristics of multiple optical surface mount waveguide elements can be evaluated at once on the substrate for what was required to be evaluated for each waveguide element, and electrodes and markers can be formed on the substrate with lithography accuracy. Therefore, it is possible to provide an optical surface mount waveguide element that enables optical coupling of an array type surface light emitting element and a light receiving element with high efficiency at a low cost.

以下に、この発明の実施の形態を図について説明する。   Embodiments of the present invention will be described below with reference to the drawings.

図1は、本発明の光導波路の作成法を示したものである。仮基板9上にクラッド材によるクラッド層4を形成し、加工してクラッドブロック4Aとする(a〜c)。その上にさらにコア材2をコートし、不要部分を除去してコア材とクラッド材からなるブロックを作製する(d,e)。さらにクラッド材4Bをオーバーコートすることで、2Aは逆U字型の導波路となる(f)。さらにこれを逆V字型に加工し、ミラー3を形成、クラッド材4Cをオーバーコートして基板1を貼り合わせ、仮基板9を除去することでミラー付きU字型光導波路を得る(g〜k)。初期にクラッドブロック4Aを平行に複数形成することで、複数のミラー付きU字型光導波路を平行に複数作成することができる。   FIG. 1 shows a method for producing an optical waveguide according to the present invention. A clad layer 4 made of a clad material is formed on the temporary substrate 9 and processed to form a clad block 4A (ac). The core material 2 is further coated thereon, and unnecessary portions are removed to produce a block made of the core material and the clad material (d, e). Further, by overcoating the clad material 4B, 2A becomes an inverted U-shaped waveguide (f). Further, this is processed into an inverted V shape, the mirror 3 is formed, the clad material 4C is overcoated, the substrate 1 is bonded, and the temporary substrate 9 is removed to obtain a U-shaped optical waveguide with a mirror (g˜). k). By forming a plurality of clad blocks 4A in parallel in the initial stage, a plurality of U-shaped optical waveguides with mirrors can be formed in parallel.

図2は、本発明のミラー付きU字型光導波路の光路変換操作を説明する図である。   FIG. 2 is a diagram for explaining the optical path changing operation of the U-shaped optical waveguide with a mirror according to the present invention.

図3は、本発明において複数のミラー付きU字型光導波路を平行に作成した光導波路基板を模式的に示す斜視図である。図3において光導波路基板の同一平面にコアの両端がリソグラフィーの精度で配列されているため基板上でコアの一端から光挿入し、もう一端のコアから出射される光強度を測定することで基板内に配設された複数の多チャンネル導波路素子の光挿入損失測定が可能である。例えば基板内に存在するコア数に相当するファイバを備え、そのピッチを光導波路基板のコアピッチにあわせたファイバアレイを用いれば一度に基板内全ての導波路の光特性が測定でき、非常に高効率な選別が可能となり、光表面実装導波路素子の低コスト化が達成できる。また同一平面にコアの両端がリソグラフィーの精度で配列されているため面発光素子アレイや受光素子アレイを実装するための電極やマーカを基板の状態でリソグラフィーの精度で一括形成が可能となる。   FIG. 3 is a perspective view schematically showing an optical waveguide substrate in which a plurality of U-shaped optical waveguides with mirrors are formed in parallel in the present invention. In FIG. 3, since both ends of the core are arranged with the lithography accuracy on the same plane of the optical waveguide substrate, light is inserted from one end of the core on the substrate, and the light intensity emitted from the core at the other end is measured. It is possible to measure the optical insertion loss of a plurality of multi-channel waveguide elements arranged inside. For example, it is possible to measure the optical characteristics of all the waveguides in the substrate at once by using a fiber array that has the number of cores corresponding to the number of cores in the substrate and that matches the core pitch of the optical waveguide substrate. Selection is possible, and the cost of the optical surface-mounted waveguide element can be reduced. Further, since both ends of the core are arranged on the same plane with lithography accuracy, electrodes and markers for mounting the surface light emitting element array and the light receiving element array can be collectively formed with lithography accuracy in the state of the substrate.

光導波路材料は無機材料、高分子材料どちらでもよいが、本発明では高分子導波路が好ましく、コアとクラッドの屈折率差が0.3乃至2.0%である。光導波路を構成するコアの形状は矩形であり、サイズは5〜100μmであることが好ましい。また導波路垂直部の距離は5〜100μmであることが好ましく、5μm以下であると導波路水平部の伝搬損失に悪影響する。また水平部の距離はリソグラフィーでのパターン形成が可能であれば特に限定するものではない。
上記の光導波路の材料としては、例えば、重水素化メタクリレート、エポキシ樹脂、シリコーン樹脂やフッ素化ポリイミド等が好ましく、特にエポキシ樹脂、シリコーン樹脂そしてフッ素化ポリイミドはそのハンダ耐熱性と光学特性から好ましい。
The optical waveguide material may be either an inorganic material or a polymer material. In the present invention, a polymer waveguide is preferable, and the difference in refractive index between the core and the clad is 0.3 to 2.0%. The shape of the core constituting the optical waveguide is rectangular, and the size is preferably 5 to 100 μm. The distance between the vertical portions of the waveguide is preferably 5 to 100 μm, and if it is 5 μm or less, the propagation loss of the horizontal portion of the waveguide is adversely affected. Further, the distance between the horizontal portions is not particularly limited as long as a pattern can be formed by lithography.
As the material of the optical waveguide, for example, deuterated methacrylate, epoxy resin, silicone resin, fluorinated polyimide, and the like are preferable, and epoxy resin, silicone resin, and fluorinated polyimide are particularly preferable in view of their solder heat resistance and optical characteristics.

導波路パターンの作製方法は導波路材料上にアルミニウムを成膜した後、リソグラフィー技術でパターニングし、その後、反応性イオンエッチイング等で導波路パターンを得る方法、導波路材料自体に感光性を付与しリソグラフィー技術により直接導波路パターンを形成する方法および導波路材料上にレジストをリソグラフィーでパターニングしたのち、それを指標にダイサー等で導波路パターンを作製する方法等が考えられるが、リソグラフィー技術を利用する方法であれば特に限定するものではない。   The waveguide pattern is made by depositing aluminum on the waveguide material, then patterning with lithography technology, and then obtaining the waveguide pattern by reactive ion etching, etc., and imparting photosensitivity to the waveguide material itself A method of directly forming a waveguide pattern by a lithography technique and a method of patterning a resist on a waveguide material by lithography and then using that as an index to create a waveguide pattern can be considered. If it is a method to do, it will not specifically limit.

また上記仮基板および基板材料は安定にリソグラフィーの位置精度を達成するには無機材料が好ましく、特にシリコン、石英、一般的な板ガラスがその加工性から好ましい。   Further, the temporary substrate and the substrate material are preferably inorganic materials in order to stably achieve the positional accuracy of lithography, and in particular, silicon, quartz, and general plate glass are preferable because of their workability.

図4は本発明の光表面実装導波路素子を模式的に示す斜視図である。図5は図4に示す素子へアレイ型面発光素子および受光素子を実装する模式図を示している。図4において、光表面実装導波路素子は、光路となる4本のU字状のコア2Aが、クラッド内に埋め込まれて作製されている。コアおよびクラッドの端面および光路変換用のミラー面3によって形成されている。コア端面は同一端目に形成されそのピッチは面発光素子アレイや受光素子アレイのピッチにリソグラフィーの精度で配列されている。またコアの導波路垂直部と導波路水平部とは一括に形成されているためモード変換や導波路間での結合損失が生じない。また電気配線およびアレイ型面発光素子や受光素子を実装するためのマーカ6がリソグラフィーの位置精度で形成されているため面発光素子や受光素子をパッシブ実装のみでそれらを高効率での光結合を達成する。   FIG. 4 is a perspective view schematically showing an optical surface mount waveguide device of the present invention. FIG. 5 is a schematic view of mounting the array type surface light emitting element and the light receiving element on the element shown in FIG. In FIG. 4, the optical surface mount waveguide element is manufactured by embedding four U-shaped cores 2 </ b> A serving as optical paths in a clad. It is formed by the end faces of the core and clad and the mirror surface 3 for optical path conversion. The core end face is formed at the same end, and the pitch is arranged with the accuracy of lithography at the pitch of the surface light emitting element array and the light receiving element array. Further, since the waveguide vertical portion and the waveguide horizontal portion of the core are formed at a time, mode conversion and coupling loss between the waveguides do not occur. Moreover, since the marker 6 for mounting the electric wiring and the array type surface light emitting element and the light receiving element is formed with the positional accuracy of lithography, the surface light emitting element and the light receiving element can be optically coupled with high efficiency only by passive mounting. Achieve.

図4で示す形態を、既存技術のように単独のU字型導波路チップを複数貼り合わせて作製することも考えられるが、導波路を精度良く貼り合わせるのは非常に困難であり、例え貼り合わせを実施できても素子の光特性評価は1素子ずつ評価する必要があり、高コスト化してしまう。   It is conceivable that the form shown in FIG. 4 is produced by bonding a plurality of single U-shaped waveguide chips as in the existing technology, but it is very difficult to bond the waveguides with high accuracy, for example, pasting Even if the matching can be carried out, it is necessary to evaluate the optical characteristics of the elements one by one, which increases the cost.

以下、実施例により説明する。   Hereinafter, an example explains.

4インチBK7の仮基板上に、クラッド層を成膜した。クラッド材にはエポキシ系樹脂を用い、成膜はスピンコート法を用いた。実施したクラッド材の厚さは70μmである。成膜後、研削、研磨等にて平坦化処理を行い、クラッド材を用いたブロックを形成したクラッドブロックを作製した。ブロック作製はクラッド材上にマスク材を成膜し、フォトリソグラフィーでパターニングを行った。マスク材にはAlを使用し、O―RIEによりクラッド材の不要部分を除去した。次にコア層の成膜をスピンコート法で行った。コア材にはエポキシ系樹脂を用いた。実施したコア材の厚さはクラッドブロック上部から40μmである。成膜後に研削、研磨等にて平坦化処理を行った。その後、クラッド材上にマスク材を成膜しフォトリソグラフィーでパターニングを行った。マスク材にはAlを使用した。さらにO―RIEによりクラッド材の不要部分を除去し、コア材とクラッド材で出来たブロックを作製した。その後クラッド材を基板全面に充填した。充填にはスピンコート法を用い、研削、研磨の平坦化処理を行った。その後ダイシングソーでV溝を形成しミラー膜を形成した。ミラーはマグネトロンスパッタでV溝部分にのみAu膜が形成されるように実施した。ミラー面成膜後、V溝にクラッド層を充填し、充填後、研削、研磨の平坦化処理を行った。その後BK7を基板上面にエポキシ系の接着剤を用い貼り付け、研摩により仮基板を除去して複数個の多チャンネル導波路が配設された光導波路基板を作製した。 A cladding layer was formed on a 4-inch BK7 temporary substrate. Epoxy resin was used for the clad material, and spin coating was used for film formation. The thickness of the clad material implemented is 70 μm. After film formation, a flattening process was performed by grinding, polishing, etc., and a clad block in which a block using a clad material was formed was produced. For the block production, a mask material was formed on the clad material and patterned by photolithography. Al was used as the mask material, and unnecessary portions of the cladding material were removed by O 2 -RIE. Next, the core layer was formed by spin coating. Epoxy resin was used for the core material. The thickness of the implemented core material is 40 μm from the top of the cladding block. After film formation, planarization was performed by grinding, polishing, or the like. Thereafter, a mask material was formed on the clad material and patterned by photolithography. Al was used for the mask material. Further, unnecessary portions of the clad material were removed by O 2 -RIE, and a block made of the core material and the clad material was produced. Thereafter, the entire surface of the substrate was filled with a clad material. A spin coat method was used for filling, and a flattening process of grinding and polishing was performed. Thereafter, a V groove was formed with a dicing saw to form a mirror film. The mirror was formed by magnetron sputtering so that an Au film was formed only in the V-groove portion. After forming the mirror surface, the V-groove was filled with a clad layer, and after filling, a flattening process of grinding and polishing was performed. Thereafter, BK7 was attached to the upper surface of the substrate using an epoxy adhesive, and the temporary substrate was removed by polishing to produce an optical waveguide substrate on which a plurality of multichannel waveguides were disposed.

作製した光導波路基板は基板の状態で光挿入損失等が測定でき、マルチモードファイバーアレイによるバットジョイント法による結果は測定波長850nmの場合4±1dBであり、優れた特性で且つ基板内の分布が小さいことを確認した。またコア位置精度も基板内で全て±2.5dBであり、実用上問題ないことを確認した。   The produced optical waveguide substrate can measure the optical insertion loss and the like in the state of the substrate, and the result by the butt joint method using the multimode fiber array is 4 ± 1 dB at the measurement wavelength of 850 nm, and has excellent characteristics and distribution in the substrate. I confirmed it was small. In addition, the core position accuracy was all ± 2.5 dB in the substrate, and it was confirmed that there was no problem in practical use.

引き続きリフトオフ法およびスパッタリングにより電気配線およびマーカを形成した。その後、ダイサーによりチップ化することにより、光表面実装導波路素子を作製した。光表面実装導波路基板へマイクロポンチを用いて金錫バンプを形成し、アレイ型面発光素子および受光素子をパッシブ実装し、ワイヤーボンディングによりドライバーおよびレシーバとそれぞれ接続し伝送実験を行なったところ7bpsの伝送速度を達成し、この発明で作製した低コストな光表導波路素子がアレイ型の面発光素子と受光素子とを高効率で光接続することを実証できた。   Subsequently, electrical wiring and markers were formed by the lift-off method and sputtering. Then, the optical surface mount waveguide element was produced by chip-izing with a dicer. A gold-tin bump was formed on the optical surface mount waveguide substrate using micro punches, and the array type surface light emitting element and the light receiving element were passively mounted and connected to a driver and a receiver by wire bonding. The transmission speed was achieved, and it was proved that the low-cost optical surface waveguide device manufactured by the present invention optically connects the array type surface light emitting device and the light receiving device with high efficiency.

本発明の光導波路基板の作成法を示す模式図である。It is a schematic diagram which shows the preparation methods of the optical waveguide board | substrate of this invention. 本発明の光導波路の光路変換操作を説明する図である。It is a figure explaining optical path changing operation of the optical waveguide of the present invention. 本発明において複数のミラー付きU字型光導波路を平行に作成した光導波路基板を模式的に示す斜視図である。It is a perspective view showing typically an optical waveguide board which created a plurality of U-shaped optical waveguides with a mirror in parallel in the present invention. 光表面実装導波路素子を模式的に示す斜視図である。It is a perspective view which shows an optical surface mount waveguide element typically. 図4に示す素子へ、アレイ型面発光素子および受光素子を実装する模式図である。It is a schematic diagram which mounts an array type surface light emitting element and a light receiving element to the element shown in FIG.

符号の説明Explanation of symbols

1 基板
2 コア層
2A 導波路コア
3 ミラー
4 クラッド層
4A クラッドブロック
4B クラッド層
4C クラッド層
5 電極
6 マーカ
7 アレイ型面発光素子
8 アレイ型受光素子
9 仮基板
10 V溝
DESCRIPTION OF SYMBOLS 1 Substrate 2 Core layer 2A Waveguide core 3 Mirror 4 Clad layer 4A Clad block 4B Clad layer 4C Clad layer 5 Electrode 6 Marker 7 Array type surface light emitting element 8 Array type light receiving element 9 Temporary substrate 10 V groove

Claims (4)

仮基板上にクラッド材からなるクラッドブロックを作製し、コア材を全面にコートし、不要部分を除去することでコア材とクラッド材からなるブロックを作製し、さらにクラッド材をオーバーコートすることで2本の導波路垂直部が前記仮基板に垂直に向いた複数の逆U字導波路を平行に仮基板上に形成し、ミラー形成、基板貼り合わせ、仮基板除去することで複数のミラー付きU字型光導波路を平行に基板上に配設することを特徴とした光導波路基板の作製方法。 A clad block made of a clad material is produced on a temporary substrate, a core material is coated on the entire surface, unnecessary portions are removed to produce a block made of a core material and a clad material, and further, the clad material is overcoated. A plurality of inverted U-shaped waveguides whose two waveguide vertical portions are perpendicular to the temporary substrate are formed on the temporary substrate in parallel, mirrors are formed, the substrates are bonded together, and the temporary substrate is removed to provide a plurality of mirrors. A method of manufacturing an optical waveguide substrate, comprising arranging U-shaped optical waveguides in parallel on a substrate. 請求項1に記載された方法により作製された光導波路基板。 An optical waveguide substrate produced by the method according to claim 1. 請求項1の光導波路基板へ電極およびマーカを形成した後、素子状に切り出すことにより、複数のミラー付きU字型光導波路が平行に配設され、コアの両端面が同一平面に配列された多チャンネル導波路素子とコア端面部に面発光素子や受光素子がパッシブ実装を可能とするマーカおよび電極を備えていることを特徴とした光表面実装導波路素子の作製方法。 After forming electrodes and markers on the optical waveguide substrate according to claim 1, a plurality of U-shaped optical waveguides with mirrors are arranged in parallel by cutting out in an element shape, and both end faces of the core are arranged in the same plane A method for producing an optical surface-mounted waveguide element, comprising: a multi-channel waveguide element; and a marker and an electrode that enable passive mounting of a surface light-emitting element and a light-receiving element on a core end surface portion. 請求項3に記載された方法により作製された光表面実装導波路素子。
An optical surface mount waveguide device manufactured by the method according to claim 3.
JP2005064093A 2005-03-08 2005-03-08 Optical waveguide substrate, optical surface mounting waveguide element, and their manufacturing method Pending JP2006251046A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005064093A JP2006251046A (en) 2005-03-08 2005-03-08 Optical waveguide substrate, optical surface mounting waveguide element, and their manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005064093A JP2006251046A (en) 2005-03-08 2005-03-08 Optical waveguide substrate, optical surface mounting waveguide element, and their manufacturing method

Publications (1)

Publication Number Publication Date
JP2006251046A true JP2006251046A (en) 2006-09-21

Family

ID=37091673

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005064093A Pending JP2006251046A (en) 2005-03-08 2005-03-08 Optical waveguide substrate, optical surface mounting waveguide element, and their manufacturing method

Country Status (1)

Country Link
JP (1) JP2006251046A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008081727A1 (en) * 2006-12-28 2008-07-10 Central Glass Company, Limited Multichannel optical path converting element and method for manufacturing the same
JP2008233700A (en) * 2007-03-23 2008-10-02 Ngk Insulators Ltd Method for manufacturing waveguide substrate for optical surface mount
WO2008126653A1 (en) * 2007-03-22 2008-10-23 Ngk Insulators, Ltd. Method for manufacturing optical surface mounting waveguide substrate
JP2009300562A (en) * 2008-06-11 2009-12-24 Central Glass Co Ltd Multi-channel right-angled optical path converting element
JP2012034314A (en) * 2010-08-03 2012-02-16 Nippon Telegr & Teleph Corp <Ntt> Multi-channel optical receiver

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003315578A (en) * 2002-04-23 2003-11-06 Mitsubishi Electric Corp Optical path converting device and manufacturing method thereof

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003315578A (en) * 2002-04-23 2003-11-06 Mitsubishi Electric Corp Optical path converting device and manufacturing method thereof

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008081727A1 (en) * 2006-12-28 2008-07-10 Central Glass Company, Limited Multichannel optical path converting element and method for manufacturing the same
WO2008126653A1 (en) * 2007-03-22 2008-10-23 Ngk Insulators, Ltd. Method for manufacturing optical surface mounting waveguide substrate
US8062449B2 (en) 2007-03-22 2011-11-22 Ngk Insulators, Ltd. Method for manufacturing optical surface mounting waveguide substrate
JP5309016B2 (en) * 2007-03-22 2013-10-09 日本碍子株式会社 Method for manufacturing waveguide substrate for optical surface mounting
JP2008233700A (en) * 2007-03-23 2008-10-02 Ngk Insulators Ltd Method for manufacturing waveguide substrate for optical surface mount
JP4573274B2 (en) * 2007-03-23 2010-11-04 日本碍子株式会社 Method for manufacturing waveguide substrate for optical surface mounting
JP2009300562A (en) * 2008-06-11 2009-12-24 Central Glass Co Ltd Multi-channel right-angled optical path converting element
JP2012034314A (en) * 2010-08-03 2012-02-16 Nippon Telegr & Teleph Corp <Ntt> Multi-channel optical receiver

Similar Documents

Publication Publication Date Title
KR100720854B1 (en) Photoelectric wiring board, packaging board, and photoelectric wiring board producing method
JP3302458B2 (en) Integrated optical device and manufacturing method
US6907173B2 (en) Optical path changing device
US9671574B2 (en) Optical integrated circuit comprising light path turning micro-mirror inside the optical waveguide and method of manufacturing the same
JP2006209068A (en) Optical waveguide, optical waveguide module, and method for manufacturing optical waveguide module
KR20100102698A (en) Manufacturing method of optical wiring printed board and optical wiring printed circuit board
JP3748528B2 (en) Optical path conversion device and manufacturing method thereof
JP2007178852A (en) Optical wiring board and optical module using the same
JP2005195651A (en) Optical connection substrate, optical transmission system, and manufacturing method
JP2009288614A (en) Planar optical waveguide array module and method of fabricating the same
JPH09304663A (en) Optical coupling circuit and its manufacture
JP2006267502A (en) Optical waveguide module
JP2006251046A (en) Optical waveguide substrate, optical surface mounting waveguide element, and their manufacturing method
JP2008102283A (en) Optical waveguide, optical module and method of manufacturing optical waveguide
US7407595B2 (en) Optical member, manufacturing method of the optical member, waveguide substrate, and photo-electric integrated substrate
JP5244585B2 (en) OPTICAL TRANSMISSION BOARD, MANUFACTURING METHOD THEREOF, AND OPTICAL TRANSMISSION DEVICE
JP5819874B2 (en) Method for producing optical functional element
JP4288604B2 (en) Optical coupling device
JPH1152198A (en) Optical connecting structure
JP2008164943A (en) Multichannel optical path conversion element and its manufacturing method
JP2009300562A (en) Multi-channel right-angled optical path converting element
JP2006030224A (en) Optical waveguide and optical coupling device
JP2006058327A (en) Optical waveguide device and optical coupling device
JP3440090B1 (en) Optical communication component, laminated optical communication module, and method of manufacturing the same
JP2009098432A (en) Device for converting laminated multi-channel optical path and method of manufacturing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071112

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091027

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091208

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100331