JPS5977413A - Formation of optical waveguide - Google Patents

Formation of optical waveguide

Info

Publication number
JPS5977413A
JPS5977413A JP18742682A JP18742682A JPS5977413A JP S5977413 A JPS5977413 A JP S5977413A JP 18742682 A JP18742682 A JP 18742682A JP 18742682 A JP18742682 A JP 18742682A JP S5977413 A JPS5977413 A JP S5977413A
Authority
JP
Japan
Prior art keywords
substrate
optical waveguide
stripes
connection
electrodes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18742682A
Other languages
Japanese (ja)
Inventor
Koji Ishida
宏司 石田
Hiroyoshi Matsumura
宏善 松村
Yasuo Suganuma
菅沼 庸雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP18742682A priority Critical patent/JPS5977413A/en
Publication of JPS5977413A publication Critical patent/JPS5977413A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/03Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on ceramics or electro-optical crystals, e.g. exhibiting Pockels effect or Kerr effect
    • G02F1/035Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on ceramics or electro-optical crystals, e.g. exhibiting Pockels effect or Kerr effect in an optical waveguide structure

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Integrated Circuits (AREA)

Abstract

PURPOSE:To facilitate the connection with an external circuit by etching away a part of a stripe electrode for voltage application after an optical waveguide is formed on a substrate, and then forming a bonding pad for the connection with the external circuit by a lift-off method. CONSTITUTION:A high-resistance Ga-As layer 23 is grown on a Ga-As substrate 24, etc., by a liquid phase epitaxial method. A metallic film of Al, etc., is vapor- deposited on the phase 23 and then two metallic stripes 21 and 22 are formed by photolithography. The phase 23 is etched by using those stripes 21 and 22 as protection films to form ridge type optical waveguides 31 and 32. Then, metallic parts at one-side end 33 and 34 of the stripes 21 and 24 are removed by photolithography. Then, electrodes 28 and 29 for bonding pads are formed by the lift- off method. Thus, the connection between a reverse-surface electrode 25 and electrodes 28 and 29 is made easily and securely and two close optical waveguides 31 and 32 are driven independently and easily.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は光集積回路などに用いられる光薄膜導波路のう
ち、リッジ型と呼ばれる3次元光導波路の形成に係り、
特に電気光学効果を用いる光変調器などに好適な光導波
路の形成方法に関する。
[Detailed Description of the Invention] [Field of Application of the Invention] The present invention relates to the formation of a three-dimensional optical waveguide called a ridge type among optical thin film waveguides used in optical integrated circuits, etc.
In particular, the present invention relates to a method of forming an optical waveguide suitable for an optical modulator using an electro-optic effect.

〔従来技術〕[Prior art]

光導波路にはいくつかの種類があるが、その中の第1図
のような構成を持つリッジ型導波路は、電気光学効果を
利用した変調器やスイッチなどに良く用いられている。
There are several types of optical waveguides, one of which is a ridge-type waveguide having the configuration shown in FIG. 1, which is often used in modulators, switches, etc. that utilize electro-optic effects.

第1図は従来のこの種の光導波路の構成を示す図で、2
4はガリウム砒素基板、23は高抵抗のガリウム砒素エ
ピタキシャル成長膜、11,12はエピタキシャル膜の
部分エツチングによって形成されたストライプバタンで
ある。このストライプバタンの下部では実効的に屈折率
が高くなるために入射した光は横方向に拡散することな
く効率良く光を伝搬できる。
Figure 1 is a diagram showing the configuration of a conventional optical waveguide of this type.
4 is a gallium arsenide substrate, 23 is a high-resistance gallium arsenide epitaxially grown film, and 11 and 12 are striped patterns formed by partial etching of the epitaxial film. Since the refractive index effectively increases in the lower part of the stripe batten, the incident light can efficiently propagate without being diffused in the lateral direction.

なお以下の説明ではガリウム砒素を用いた場合を例にと
って進める。
Note that the following explanation will proceed by taking as an example a case where gallium arsenide is used.

このような導波路のストライプの表面と基板裏面とに電
極を形成し、両者に電圧を印加し、導波層の電気光学効
果による屈折率変化によって、光変調、あるいは光スィ
ッチなどの各種の能動的な動作を行わせることができる
。このためには電極印加のための外部回路と、図中の2
1.22および25などの電極とを結ぶ必要がある。し
かし導波路部分11あるいは12の幅は、一般に数ミク
ロンのオーダーであり、しかも表面に凹凸があるため、
このような極小部の電極と外部との配線を行うことは困
難である。
Electrodes are formed on the front surface of such waveguide stripes and the back surface of the substrate, and a voltage is applied to both.The change in refractive index due to the electro-optic effect of the waveguide layer enables various active functions such as optical modulation and optical switches. It is possible to perform certain actions. For this purpose, an external circuit for electrode application and 2
1. It is necessary to connect electrodes such as 22 and 25. However, the width of the waveguide portion 11 or 12 is generally on the order of several microns, and the surface is uneven.
It is difficult to conduct wiring between the electrodes in such a small portion and the outside.

以上のような困難さのために従来はストライプ電極上に
針を立てて外部と接続を行っていた。しかしこのような
方法は接続の手順が複雑であり、また安定性に欠けるた
め実用的なデバイスに用いることは難かしい。
Due to the above-mentioned difficulties, conventionally a needle was placed on the striped electrode to connect it to the outside. However, this method requires complicated connection procedures and lacks stability, making it difficult to use in practical devices.

また外部回路と接続するための電極をマスク蒸着によっ
て形成する方法も行われている。しかしマスク蒸着で形
成するバタンの寸法精度あるいは合わせ精度を10μm
以下にすることは非常に困難である。したがって光集積
回路のような複数の部品を同一基板上に形成するような
場合に(4部精度の点からとうてい上記方法は用いるこ
とができない。
There is also a method of forming electrodes for connection to external circuits by mask vapor deposition. However, the dimensional accuracy or alignment accuracy of the battens formed by mask vapor deposition is 10 μm.
It is very difficult to do the following. Therefore, when a plurality of components such as an optical integrated circuit are formed on the same substrate, the above method cannot be used because of the accuracy of the four parts.

〔発明の目的〕[Purpose of the invention]

本発明の目的は上記のような難点を克服す由りめに導波
路形成後、電圧印加用のストライプ電極の1部をエツチ
ングによって除去し、しかる後に外部回路とワイヤーボ
ンディングを行うためのボンディングバンドをリフトオ
フによって形成することによって、外部回路との接続を
格段に容易にすることにある。
The purpose of the present invention is to overcome the above-mentioned difficulties by removing a part of the striped electrode for voltage application by etching after forming a waveguide, and then forming a bonding band for wire bonding with an external circuit. The purpose is to make connection with an external circuit much easier by forming it by lift-off.

〔発明の概要〕[Summary of the invention]

上記目的を達成するため、本発明の光導波路の形成方法
は、誘電体あるいは半導体などの電気光学結晶またはガ
ラスなどの非晶質基板上に形成された3次元光導波路に
おいて、金属膜を堆積させた後、フォトレジストによっ
てストライプバタンを形成し、その金属ストライプを保
護膜として基板のエツチングを行い、その後金属ストラ
イプの1部をエツチングによって除去し、次に電圧印加
・宅 のための%極をリフトオフによって形成する工程を有す
るものである。
In order to achieve the above object, the method for forming an optical waveguide of the present invention involves depositing a metal film in a three-dimensional optical waveguide formed on an electro-optic crystal such as a dielectric or semiconductor, or an amorphous substrate such as glass. After that, a stripe pattern is formed using photoresist, and the substrate is etched using the metal stripe as a protective film. After that, a part of the metal stripe is removed by etching, and then the % electrode for voltage application/reduction is lifted off. It has a process of forming by.

〔発明の実施例〕[Embodiments of the invention]

以下本発明の一実施例を第2図ビ用いて説明する。本図
はガリウム砒素基板上に形成された2本の薄膜導波路か
ら成る光スィッチであシ、以下のようにして作製された
。厚さ約400μmのガリウム砒素基板24上に高抵抗
ガリウム砒素層23を液層エピタキシャル法によって4
μm成長させ、その上に金あるいはアルミニウムなどの
金属膜を0.2μm蒸着した。この金属膜を通常のフォ
トリソグラフ工程によって巾4μm1間隔8μmの2本
のストライプ21.22を形成した。次にこの金属膜を
保護膜としてガリウム砒素膜を1μmエツチングしてリ
ッジ型導波路31.32を形成した。この後、通常のフ
ォトリングラフ技術を用いて33.34の金属をエツチ
ングによって除去し、しかる後にポンディングパッド用
電極28.29をリフトオフ法によって形成した。
An embodiment of the present invention will be described below with reference to FIG. 2B. This figure shows an optical switch consisting of two thin film waveguides formed on a gallium arsenide substrate, and was manufactured as follows. A high-resistance gallium arsenide layer 23 is formed on a gallium arsenide substrate 24 with a thickness of approximately 400 μm by a liquid layer epitaxial method.
A metal film of gold or aluminum was deposited thereon to a thickness of 0.2 μm. Two stripes 21 and 22 having a width of 4 μm and an interval of 8 μm were formed on this metal film by a normal photolithography process. Next, using this metal film as a protective film, the gallium arsenide film was etched by 1 μm to form ridge-type waveguides 31 and 32. Thereafter, the metal portions 33 and 34 were removed by etching using a conventional photolithography technique, and then electrodes 28 and 29 for bonding pads were formed by a lift-off method.

以上のような方法で形成された導波路31゜32は約1
00X100μm2の大きさを持つボンディングバンド
と外部回路とを金属のワイヤーによって容易に接続でき
る。しかも電極の端部を1部エツチングによって除去し
た後にボンディングバンド用電極を形成するために導波
路間の絶縁が非常に容易になシ、シたがって図2に示し
たような接近した2本の導波路を独立に駆動することが
容易となる。
The waveguides 31 and 32 formed by the above method have a diameter of about 1
A bonding band having a size of 00×100 μm 2 and an external circuit can be easily connected with a metal wire. Moreover, since the electrode for the bonding band is formed after removing a portion of the end of the electrode by etching, insulation between the waveguides is very easy. It becomes easy to drive the waveguides independently.

本実施例では2本の導波路の場合について説明を行った
が、よシ複雑な構造を持つ光回路においても本方法はそ
のまま適用できる。
Although the case of two waveguides has been described in this embodiment, the present method can also be applied as is to an optical circuit having a more complicated structure.

また本実施例においてはGaA S基板を例にとって述
べたが、本発明は上記材料に限るものでは無い。
Furthermore, although this embodiment has been described using a GaAs substrate as an example, the present invention is not limited to the above materials.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、基板上に形成された凹凸を有する光導
波路と他の部分とを容易に接続できる。
According to the present invention, it is possible to easily connect the uneven optical waveguide formed on the substrate to other parts.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来のリッジ型光導波路の外観図、第2図は本
発明の一実施例における光導波路の平面図および正面図
(ボンディングバンド28.29の図示は省略)である
。 10・・・外部回路接続用端子、21.22・・・スト
ライプ電極、23・・・高抵抗ガリウム砒素エピタキシ
ャル層、24・・・ガリウム砒素基板、25・・・裏面
電極、28.29・・・ポンディングパッド、31゜3
2・・・光導波路。 代理人 弁理士 薄田利幸
FIG. 1 is an external view of a conventional ridge-type optical waveguide, and FIG. 2 is a plan view and a front view of an optical waveguide according to an embodiment of the present invention (bonding bands 28 and 29 are not shown). 10... External circuit connection terminal, 21.22... Stripe electrode, 23... High resistance gallium arsenide epitaxial layer, 24... Gallium arsenide substrate, 25... Back electrode, 28.29...・Pounding pad, 31°3
2... Optical waveguide. Agent Patent Attorney Toshiyuki Usuda

Claims (1)

【特許請求の範囲】[Claims] 基板−ヒに形成された3次元光導波路において、金属膜
を堆積させた後、フォトレジストによってストライプバ
タン全形成し、その金属ストライプを保護膜として基板
のエツチングを行い、その後って形成する工程を有する
ことを特徴とする光導波路の形成方法。
In the three-dimensional optical waveguide formed on the substrate, after depositing a metal film, the entire stripe pattern is formed using photoresist, the substrate is etched using the metal stripe as a protective film, and the subsequent forming process is carried out. A method for forming an optical waveguide, comprising:
JP18742682A 1982-10-27 1982-10-27 Formation of optical waveguide Pending JPS5977413A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18742682A JPS5977413A (en) 1982-10-27 1982-10-27 Formation of optical waveguide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18742682A JPS5977413A (en) 1982-10-27 1982-10-27 Formation of optical waveguide

Publications (1)

Publication Number Publication Date
JPS5977413A true JPS5977413A (en) 1984-05-02

Family

ID=16205841

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18742682A Pending JPS5977413A (en) 1982-10-27 1982-10-27 Formation of optical waveguide

Country Status (1)

Country Link
JP (1) JPS5977413A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022130454A1 (en) * 2020-12-14 2022-06-23 日本電信電話株式会社 Metal layer for protecting vicinity of light input/output portion of optical waveguide

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022130454A1 (en) * 2020-12-14 2022-06-23 日本電信電話株式会社 Metal layer for protecting vicinity of light input/output portion of optical waveguide

Similar Documents

Publication Publication Date Title
US6055342A (en) Integrated optical intensity modulator and method for fabricating the same
US4087315A (en) Method for producing light conductor structures with interlying electrodes
JP2928129B2 (en) Optical modulator and method of manufacturing the same
JP2721030B2 (en) Manufacturing method of integrated optical waveguide
JPH1039266A (en) Optical control device
KR100288150B1 (en) Method of Fabricating Liquid Crystal Display
JPS5977413A (en) Formation of optical waveguide
JP2550730B2 (en) Optical waveguide device and manufacturing method thereof
JP2565002B2 (en) Signal electrode for optical waveguide device and method of forming the same
WO2022042229A1 (en) Traveling wave electrode modulator and photonic integrated chip
JP2581486B2 (en) Optical waveguide device and method of manufacturing the same
JP2001004967A (en) Optical waveguide element
JP2005043402A (en) Optical waveguide device and its manufacturing method
JP2755048B2 (en) Method for manufacturing optical waveguide device
JPS608820A (en) Formation of optical waveguide
JP4754670B2 (en) Optical waveguide device
JPH03204614A (en) Optical modulator
JPS5830186A (en) Manufacture of optical semiconductor element
JPS61198106A (en) Optical waveguide forming method
JPH0251124A (en) Optical waveguide progressive wave electrode
JPH01217987A (en) Semiconductor laser and manufacture thereof
JPH02114243A (en) Optical control device and its manufacture
JPS608821A (en) Optical waveguide
JPS60222819A (en) Optical integrated circuit and its production
JP3275888B2 (en) Optical waveguide device