JPH03204614A - Optical modulator - Google Patents

Optical modulator

Info

Publication number
JPH03204614A
JPH03204614A JP80790A JP80790A JPH03204614A JP H03204614 A JPH03204614 A JP H03204614A JP 80790 A JP80790 A JP 80790A JP 80790 A JP80790 A JP 80790A JP H03204614 A JPH03204614 A JP H03204614A
Authority
JP
Japan
Prior art keywords
electrode
optical modulator
signal electrode
signal
optical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP80790A
Other languages
Japanese (ja)
Other versions
JP2800339B2 (en
Inventor
Minoru Kiyono
實 清野
Takashi Yamane
隆志 山根
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP2000807A priority Critical patent/JP2800339B2/en
Publication of JPH03204614A publication Critical patent/JPH03204614A/en
Application granted granted Critical
Publication of JP2800339B2 publication Critical patent/JP2800339B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/03Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on ceramics or electro-optical crystals, e.g. exhibiting Pockels effect or Kerr effect
    • G02F1/035Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on ceramics or electro-optical crystals, e.g. exhibiting Pockels effect or Kerr effect in an optical waveguide structure
    • G02F1/0356Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on ceramics or electro-optical crystals, e.g. exhibiting Pockels effect or Kerr effect in an optical waveguide structure controlled by a high-frequency electromagnetic wave component in an electric waveguide structure

Abstract

PURPOSE:To drive an external optical modulator at high speed by covering at least the upper part of a signal electrode by an overhang part formed on an earth electrode across a gap-shaped space. CONSTITUTION:The signal electrode 3 is formed not so thickly, so the electrode can accurately be formed in its manufacture process. The signal electrode 3 has at least its upper part covered by the overhang part 40 formed on the earth electrode 4 across the gap-shaped space. The electric field distribution in the peripheral space is therefore improved and the number of lines of electric force increases to decrease the dielectric constant practically; and the speed matching between a microwave signal and a light wave which are propagated is improved greatly and the optical modulator which has a wide modulation frequency band is obtained. Consequently, fast operation characteristics are improved.

Description

【発明の詳細な説明】 〔概要〕 光変調器に関し、 外部光変調器を高速で駆動することを目的とし、平面に
加工した電気光学効果を有する基板上に、第1および第
2の分岐光導波路を有する先導波路を設け、前記第1の
分岐光導波路と第2の分岐光導波路を伝播する光に位相
差を生じさせるように信号電極および接地電極を配設し
てなるマツハツエンダ型光変調器において、前記信号電
極は少なくともその上部がギャップ状空間を挟んで、前
記接地電極に形成されたオーバハング部により覆われて
いるように光変調器を構成する。
Detailed Description of the Invention [Summary] Regarding an optical modulator, for the purpose of driving an external optical modulator at high speed, first and second branched light guides are mounted on a flat substrate having an electro-optic effect. A Matsuhatsu Enda type optical modulator comprising a leading waveguide having a waveguide, and a signal electrode and a ground electrode arranged so as to create a phase difference between the light propagating through the first branched optical waveguide and the second branched optical waveguide. In the optical modulator, at least the upper portion of the signal electrode is covered with an overhang portion formed on the ground electrode with a gap-like space in between.

〔産業上の利用分野〕[Industrial application field]

本発明は、高速・高安定に動作する光変調器。 The present invention is an optical modulator that operates at high speed and with high stability.

とくに、その電極構成に関する。In particular, it relates to its electrode configuration.

最近の光通信システムの光送信系において、たとえば、
1.6GHz程度までの光通信システムにおいては、レ
ーザダイオード(LD)を直接変調する方式を用いてき
たが、変調周波数がより高くなると変調光波長の時間的
微小変動、いわゆる、チャーピング現象が起こり高速化
と長距離通信への限界となる。
In the optical transmission system of recent optical communication systems, for example,
In optical communication systems up to about 1.6 GHz, a method of directly modulating a laser diode (LD) has been used, but as the modulation frequency becomes higher, small temporal fluctuations in the modulated light wavelength, the so-called chirping phenomenon, occur. This is the limit to high-speed and long-distance communication.

一方、今後ますます大容量・長距離通信の要求が強まっ
てくるので、より高速、かつ、高安定で動作する光変調
器の開発が求められている。
On the other hand, as the demand for large-capacity and long-distance communications will become stronger in the future, there is a need to develop optical modulators that operate at higher speeds and with higher stability.

〔従来の技術〕[Conventional technology]

高速光変調方式としては、半導体レーザ光を外部で変調
する外部変調方式、とくに、電気光学結晶基板上に分岐
光導波路を設け、進行波電極で駆動するマツハツエンダ
型光変調器が知られている。
As a high-speed optical modulation method, an external modulation method in which a semiconductor laser beam is externally modulated is known, and in particular, a Matsuhatsu Enda type optical modulator in which a branched optical waveguide is provided on an electro-optic crystal substrate and is driven by a traveling wave electrode is known.

第4図は光変調器の基本構成例を示す図(そのl)で、
同図(イ)は平面図、同図(ロ)はY−Y’断面図であ
る。
Figure 4 is a diagram (part 1) showing an example of the basic configuration of an optical modulator.
The figure (a) is a plan view, and the figure (b) is a YY' sectional view.

図中、】は平面に加工した電気光学効果を有する基板、
たとえば、LiNb0+基板である。2は光導波路で中
間に分岐光導波路2a、 2bが形成されている。この
先導波路は通常基板の表面にTiなとの金属を、光導波
路部分だけに選択的に拡散させ、その部分の屈折率を回
りの部分よりも少し大きくなるようにしである。3は信
号電極で、たとえば、進行波信号電極、4は接地電極で
ある。5は光導波路上の金属電極層への光の吸収を小さ
くするためのバッファ層で、通常、SiO□などの薄膜
が用いられている。信号電極3と接地電極4はバッファ
層5を介して光導波路上に、Auなどの金属を蒸着ある
いはメッキによって形成している。
In the figure, ] indicates a flat substrate with an electro-optic effect;
For example, a LiNb0+ substrate. 2 is an optical waveguide, and branched optical waveguides 2a and 2b are formed in the middle. This guide waveguide is usually made by selectively diffusing a metal such as Ti on the surface of the substrate only to the optical waveguide portion, so that the refractive index of that portion is slightly larger than that of the surrounding portions. 3 is a signal electrode, for example, a traveling wave signal electrode, and 4 is a ground electrode. Reference numeral 5 denotes a buffer layer for reducing absorption of light into the metal electrode layer on the optical waveguide, and a thin film such as SiO□ is usually used. The signal electrode 3 and the ground electrode 4 are formed on the optical waveguide via the buffer layer 5 by vapor deposition or plating of a metal such as Au.

いま、たとえば、図示してない半導体レーザから発した
直流光が左側の光導波路2から入り、分岐光導波路2a
、 2bで2つに分けられ、その間に、信号電極3に高
周波変調信号源6から信号電圧を印加すると、基板上に
設けられた前記分岐光導波路2a、 2bにおける電気
光学効果によって分岐された両光に位相差が生じる。こ
の両光を再び合流させて、右側の一本の光導波路2から
変調された光信号出力を取り出し、図示してない光検知
器で電気信号に変換するように構成されているっ前記分
岐光導波路2a、 2bにおける両光の位相差かπ、あ
るいは、0になるように駆動電圧を印加すれば。
Now, for example, direct current light emitted from a semiconductor laser (not shown) enters from the left optical waveguide 2, and enters the branch optical waveguide 2a.
, 2b, and when a signal voltage is applied from the high frequency modulation signal source 6 to the signal electrode 3 between them, the two branches are split by the electro-optic effect in the branched optical waveguides 2a and 2b provided on the substrate. A phase difference occurs in the light. The branched optical waveguide is configured to combine these two lights again, take out a modulated optical signal output from one optical waveguide 2 on the right side, and convert it into an electrical signal using a photodetector (not shown). If a driving voltage is applied so that the phase difference between the two lights in the wave paths 2a and 2b becomes π or 0.

たとえば、光信号出力は0N−OFFのパルス信号とし
て得られるっなお、Rアは終端抵抗である。
For example, the optical signal output is obtained as an ON-OFF pulse signal. Note that R is a terminating resistor.

この構成の光変調器においては、接地電極4は高周波電
気信号の伝達をよくするため、図に示したように、信号
電極3よりも大きくしてあり、したがって、分岐光導波
路2a、 2bに印加される電界分布は等しくな(、両
者の間には3〜6倍程度の差がある。したがって、プッ
シュプル動作による駆動が困難であり、結局、変調用の
駆動電圧を大きくしなければならないことになる。
In the optical modulator with this configuration, the ground electrode 4 is made larger than the signal electrode 3, as shown in the figure, in order to improve the transmission of high-frequency electrical signals. The electric field distributions generated are not equal (there is a difference of about 3 to 6 times between the two. Therefore, it is difficult to drive by push-pull operation, and in the end, the drive voltage for modulation must be increased. become.

さらに、信号電極3と接地電極4にか\る電界の非対称
性のために、分岐光導波路2a、 2bに温度差が生じ
、それに基づく歪みによって光変調特性の動作点がシフ
トしてしまうという欠点があった。
Furthermore, due to the asymmetry of the electric field between the signal electrode 3 and the ground electrode 4, a temperature difference occurs between the branched optical waveguides 2a and 2b, and the resulting distortion shifts the operating point of the optical modulation characteristics. was there.

一方、第5図は光変調器の基本構成例を示す図(その2
)で、上記欠点を改善するために提案された例であり、
同図(イ)は平面図、同図(ロ)はY−Y’断面図であ
る。
On the other hand, FIG. 5 is a diagram showing an example of the basic configuration of an optical modulator (part 2).
), this is an example proposed to improve the above drawbacks,
The figure (a) is a plan view, and the figure (b) is a YY' sectional view.

なお、前記図面で説明したものと同等の部分については
同一符号を付し、かつ、同等部分についての説明は省略
する。
Note that the same reference numerals are given to the same parts as those explained in the drawings, and the description of the same parts will be omitted.

この構成の光変調器においては、信号電極3と接地電極
4とは全く同一の巾で平行に形成されている。いわゆる
、対称電極配置であり、前記例のような歪みによって光
変調特性の動作点がシフトしてしまうという欠点がなく
、駆動電圧も低くすることができる。
In the optical modulator having this configuration, the signal electrode 3 and the ground electrode 4 are formed in parallel and have exactly the same width. This is a so-called symmetrical electrode arrangement, which does not have the disadvantage that the operating point of the optical modulation characteristic shifts due to distortion as in the above example, and the driving voltage can also be lowered.

しかし、この場合には、接地電極4の抵抗を充分低(で
きず信号電極3と接地電極4との間に誘導に基づ(相互
干渉が生じて高周波駆動に限界がある。
However, in this case, the resistance of the ground electrode 4 cannot be made sufficiently low, and mutual interference occurs between the signal electrode 3 and the ground electrode 4 due to induction, which limits high-frequency driving.

以上述べたごとき高速駆動に関連する問題は。The problems related to high-speed drive as described above are as follows.

結局、光とマイクロ波信号との整合をいかによくするか
と言う問題であり、従来からいくつかの提案がなされて
いる。
Ultimately, the problem is how to improve the matching between light and microwave signals, and several proposals have been made in the past.

第6図は従来の光波とマイクロ波信号の速度整合の例を
示す断面図(その1)で、図中、3°は信号電極、4゛
は接地電極、5゛はバッファ層である。
FIG. 6 is a cross-sectional view (part 1) showing an example of conventional speed matching of light waves and microwave signals. In the figure, 3° is a signal electrode, 4° is a ground electrode, and 5° is a buffer layer.

通常、先導波路中を伝播する光の速度は信号電極中を伝
播するマイクロ波信号の速度の2倍程度速(、すなわち
、速度整合がとれておらず、これが1つの原因となって
高速駆動の限界となる。
Normally, the speed of light propagating in the leading wavepath is about twice the speed of the microwave signal propagating in the signal electrode (i.e., the speeds are not matched, and this is one of the reasons why high-speed drive is not possible). It becomes a limit.

したがって、速度整合をとるには信号電極中を伝播する
マイクS波信号の速度を速くする。すなわち、実効的に
誘電率を下げてやればよく、この例では電極膜厚tEl
およびバッファ層の膜厚tBIの両方をともに、たとえ
ば、前記第4図の基本構成例のt、。およびtaoの3
倍程度に大きくすることによって変調周波数帯域巾を3
倍程度広げることが可能となっている。
Therefore, in order to achieve speed matching, the speed of the microphone S-wave signal propagating through the signal electrode is increased. In other words, it is sufficient to effectively lower the dielectric constant, and in this example, the electrode film thickness tEl
and the film thickness tBI of the buffer layer, for example, t in the basic configuration example of FIG. and tao's 3
By increasing the modulation frequency bandwidth by about 3 times,
It is possible to expand it by about twice as much.

また、第7図は従来の光波とマイクロ波信号の速度整合
の例を示す断面図(その2)であり、3”は信号電極て
その高さtE□だけを接地電極4“の高さtEIよりも
3倍程度さらに高くした場合である。
In addition, FIG. 7 is a cross-sectional view (part 2) showing an example of conventional speed matching of light waves and microwave signals, and 3" is a cross-sectional view showing an example of speed matching between light waves and microwave signals. 3" is a height tEI of the ground electrode 4" in which only the height tE□ of the signal electrode is This is a case where the value is increased to about 3 times higher than that of the original value.

これによって、より一層変調周波数帯域巾が広い光変調
器が得られている。
As a result, an optical modulator with a wider modulation frequency band width is obtained.

〔発明が解決しようとした課題〕[Problem that the invention sought to solve]

しかし、上記従来例(そのl)の場合には、信号電極3
′と接地電極4゛とのキャップdは15μm程度しかな
(、電極厚さtEIか10μm以上になってくると、ホ
トエツチングプロセス上の困難が生じてくる。また、バ
ッファ層の厚さを余り大きくすると動作電圧が高くなっ
てしまう。一方、従来例(その2)の場合には信号電極
3′だけを、たとえば、メッキ法で厚くすることが可能
であるが、この場合もt。2の高さを、たとえば、20
μm以上にした場合には信号電極線路の特性インピーダ
ンスに製造バラツキが生じてデバイスの歩留り低下を招
き、また、信号電極線路から周辺空間への電界分布が一
方側の横方向へ広く広がっており、速度整合にも限界が
生じるなどの問題があって、その解決が必要であった。
However, in the case of the above conventional example (part 1), the signal electrode 3
The cap d between '' and the ground electrode 4' is only about 15 μm (but if the electrode thickness tEI becomes more than 10 μm, difficulties arise in the photo-etching process. If it is made larger, the operating voltage will become higher.On the other hand, in the case of the conventional example (Part 2), it is possible to thicken only the signal electrode 3', for example, by plating, but in this case as well, t. For example, set the height to 20
If it is larger than μm, manufacturing variations will occur in the characteristic impedance of the signal electrode line, leading to a decrease in device yield, and the electric field distribution from the signal electrode line to the surrounding space will spread widely in the lateral direction on one side. There were also problems such as limitations in speed matching, which needed to be resolved.

〔課題を解決するための手段〕[Means to solve the problem]

上記の課題は、平面に加工した電気光学効果を有する基
板l上に、第1および第2の分岐光導波路2a、 2b
を有する光導波路2を設け、前記第1の分岐光導波路2
aと第2の分岐光導波路2bを伝播する光に位相差を生
じさせるように信号電極3および接地電極4を配設して
なるマツハツエンダ型光変調器において、前記信号電極
3は少なくともその上部がキャップ状空間を挟んで、前
記接地電極4に形成されたオーバハング部40により覆
われているように光変調器を構成することにより解決す
ることができるっまた、前記接地電極4のオーバハング
部40はメッキ法により形成することができる。
The above problem is solved by forming the first and second branched optical waveguides 2a and 2b on a substrate l having an electro-optic effect that is processed into a flat surface.
an optical waveguide 2 having the first branch optical waveguide 2 is provided;
In the Matsuhatsu Enda type optical modulator in which a signal electrode 3 and a ground electrode 4 are arranged so as to cause a phase difference between the light propagating through the second branch optical waveguide 2b and the signal electrode 3, at least the upper part of the signal electrode 3 is This can be solved by configuring the optical modulator so that it is covered by the overhang part 40 formed on the ground electrode 4 with a cap-shaped space in between. It can be formed by a plating method.

〔作用〕[Effect]

本発明の構成によれば、信号電極3の厚さは余り太き(
してないので製造プロサス上精度よく形成できるっ一方
、信号電極3は少な(ともその上部がギャップ状空間を
挟んで、接地電極4に形成されたオーバハング部40に
より広く覆われるように構成されているので、周辺空間
の電界分布かよくなり、電気力線の数が増加することに
より実効的に誘電率が減少して、伝播されるマイクロ波
信号と光波との速度整合が大巾に改善され変調周波数帯
域巾の広い光変調器が得られるのであるっ〔実施例〕 第1図は本発明の実施例を示す図で、同図(イ)は平面
図、同図(ロ)はY−Y’断面図である。
According to the configuration of the present invention, the thickness of the signal electrode 3 is too thick (
Since the signal electrode 3 is not formed in the ground electrode 4, the signal electrode 3 can be formed with high precision in terms of manufacturing process. As a result, the electric field distribution in the surrounding space improves, and the number of electric lines of force increases, which effectively reduces the permittivity and greatly improves the velocity matching between the propagated microwave signal and the light wave. An optical modulator with a wide modulation frequency bandwidth can be obtained. [Embodiment] Fig. 1 shows an embodiment of the present invention, where (A) is a plan view and (B) is a Y- It is a Y' sectional view.

図中、40は信号電極3の少なくとも上部をキャップ状
空間を挟んで覆うように形成された接地電極4のオーバ
ハング部である。
In the figure, 40 is an overhang portion of the ground electrode 4 formed to cover at least the upper part of the signal electrode 3 with a cap-shaped space in between.

なお、前記従来例の諸図面で説明したものと同等の部分
については同一符号を付し、かつ、同等部分についての
説明は省略する。
Note that the same reference numerals are given to the same parts as those explained in the drawings of the conventional example, and the explanation of the same parts will be omitted.

本実施例の場合、接地電極4のオーバハング部40が信
号電極3の上部を、たとえば、15μmのキャップgを
挟んで覆うように形成されているので、周辺空間の電界
分布がよくなり、電気力線の数が増加することにより実
効的に誘電率が減少して、光波とマイクロ波信号との速
度整合が大巾に改善され、たとえば、従来例(その1)
の場合に比較して変調周波数帯域巾が5倍以上の高速動
作可能な光変調器か得られる。さらに、信号電極3は余
り厚く形成しなくてもよいのでデバイス歩留りの低下を
招(ことはない。
In the case of this embodiment, since the overhang part 40 of the ground electrode 4 is formed to cover the upper part of the signal electrode 3 with, for example, a 15 μm cap g in between, the electric field distribution in the surrounding space is improved, and the electric field is As the number of wires increases, the dielectric constant effectively decreases, and the speed matching between light waves and microwave signals is greatly improved. For example, in the conventional example (Part 1)
An optical modulator capable of high-speed operation with a modulation frequency bandwidth five times or more can be obtained compared to the case of . Furthermore, since the signal electrode 3 does not have to be formed very thick, it does not cause a decrease in device yield.

第2図は本発明の他の実施例を示す図で、同図(イ)は
平面図、同図(ロ)はY−Y’断面図である。
FIG. 2 is a diagram showing another embodiment of the present invention, in which (a) is a plan view and (b) is a sectional view taken along Y-Y'.

本実施例は前記第1図の非対称電極配置に対して対称電
極配置の場合の実施例であろう本実施例の場合も前記実
施例の場合と全(同様の効果が得られることは言うまで
もない。
This example is an example in which the electrode arrangement is symmetrical compared to the asymmetric electrode arrangement shown in FIG. .

以上のごとき実施例を具体的に製造する主な工程を以下
に示す。
The main steps for specifically manufacturing the above examples are shown below.

第3図は本発明実施例の主な製造工程を示す断面図で、
同図(イ)は非対称電極型の場合、同図(ロ)は対称電
極型の場合を示した。
FIG. 3 is a cross-sectional view showing the main manufacturing process of the embodiment of the present invention.
Figure (A) shows the case of the asymmetric electrode type, and Figure (B) shows the case of the symmetric electrode type.

工程(1)厚さ1mmのL+NbO,、のZ板の表面を
鏡面研磨したウェーハIOの上にTiを約90nmの厚
さに真空蒸着し、分岐光導波路2aおよび2bを含む光
導波路2に相当する部分にTiが残るように通常のホト
エツチング法で処理したのち、約8008CでTiをL
iNbO5中に熱拡散して光導波路2を形成する。
Step (1) Ti is vacuum-deposited to a thickness of about 90 nm on the wafer IO, the surface of which is a mirror-polished L+NbO Z plate with a thickness of 1 mm, which corresponds to the optical waveguide 2 including the branch optical waveguides 2a and 2b. After processing with the usual photoetching method so that Ti remains in the exposed area, the Ti is removed by L at about 8008C.
Thermal diffusion is performed in iNbO5 to form an optical waveguide 2.

分岐光導波路部分の長さは25m m 、先導波路の幅
は全て7〜11μmになるように調整し、つエバlO上
に多数の光導波路2を含む光変調器部分が切断可能なよ
うに配置形成した。
The length of the branched optical waveguide part was adjusted to 25 mm, the width of all leading waveguides was adjusted to 7 to 11 μm, and the optical modulator part including a large number of optical waveguides 2 was arranged on the Eva 1O so that it could be cut. Formed.

工程(2):次いで、バッファ層としてSiO□を1μ
mの厚さにスパッタ法で形成する。
Step (2): Next, 1μ of SiO□ is used as a buffer layer.
It is formed by sputtering to a thickness of m.

工程(3):上記処理済み基板の上にAu/Ti2層膜
を蒸着したのち、電極巾10μm、信号電極と接地電極
間のギャップが15μmである所要の電極パターン形状
にホトエツチングし、その上に厚さ3μmのAuをメッ
キにより付着形成する。
Step (3): After depositing the Au/Ti two-layer film on the above-mentioned treated substrate, photoetching it into the required electrode pattern shape with an electrode width of 10 μm and a gap between the signal electrode and the ground electrode of 15 μm, and then Au with a thickness of 3 μm is deposited by plating.

工程(4):上記処理済み基板の上に、接地電極4の部
分が露出して残るようにレジストパターン7を通常の露
光・エツチング処理でパターン形成する。
Step (4): A resist pattern 7 is formed on the processed substrate by normal exposure and etching processes so that the ground electrode 4 portion remains exposed.

工程(5)上記処理済み基板の接地電極4の部分の露出
面に、たとえば、Auの電気メッキを行う。
Step (5) The exposed surface of the ground electrode 4 portion of the processed substrate is electroplated with, for example, Au.

Auメッキ層の厚さは、たとえば、30〜40μmとす
ればメッキ層の先端部はレジストパターン7の上にまで
成長してきて、図示したごときオーババンク部40とな
る張り出し部分が形成される。
If the thickness of the Au plating layer is, for example, 30 to 40 μm, the tip of the plating layer will grow up to the top of the resist pattern 7, forming an overhanging portion that will become the overbank portion 40 as shown.

工程(6)、レジストパターン7を除去剤、たとえば、
レジストリムーバで溶解除去してオーババンク部40を
形成する。
Step (6), remove the resist pattern 7 with a remover, for example,
The overbank portion 40 is formed by dissolving and removing it with a resist remover.

工程(7)、ウェーハlOをカッチインクマシンてダイ
シンクし、所定の大きさの多数の変調器素子に分離すれ
ば本発明の光変調器の素子が得られる。
Step (7): The wafer IO is die-sinked using a cut-ink machine and separated into a large number of modulator elements of a predetermined size, thereby obtaining the optical modulator elements of the present invention.

以上の構成により、従来5〜15GHzであった周波数
帯域か、30GHz以上まで動作可能な光変調器が得ら
れた。
With the above configuration, an optical modulator that can operate in a frequency band that was conventionally 5 to 15 GHz or more than 30 GHz was obtained.

なお、上記実施例では接地電極4のオーババンク部40
は、信号電極3の上部を覆うようにしたか、さらに、反
対側まで、すなわち、信号電極3の全体を覆うようにし
て一層効果を高めるようにすることができるっ また、接地電極4のオーバハング部40の形成にはメッ
キでな(スパッタ法やCVD法を用いてもよいことは勿
論である。
Note that in the above embodiment, the overbank portion 40 of the ground electrode 4
The overhang of the ground electrode 4 can be made to cover the upper part of the signal electrode 3 or even to the opposite side, that is, to cover the entire signal electrode 3 to further enhance the effect. The portion 40 may be formed by plating (of course, sputtering or CVD may also be used).

以上述へた実施例は数例を示したもので、本発明の趣旨
に添うものである限り、使用する素材や構成1寸法、製
作プロセスなと適宜好ましいもの、あるいはその組み合
わせを用いることができることは言うまでもないっ 〔発明の効果〕 以上説明したように、本発明の光変調器は信号電極3の
厚さは余り大きくしてないので製造プロサス上精度よく
形成できる。一方、信号電極3は少なくともその上部が
キャップ状空間を挟んで、接地電極4に形成されたオー
バハング部40により広く覆われるように構成されてい
るので、周辺空間の電界分布がよ(なり、電気力線の数
が増加することにより実効的に誘電率が減少して、伝播
されるマイクロ波信号と光波との速度整合が大巾に改善
され、光変調器の性能の向上、とくに、高速動作特性の
向上に寄与するところが極めて大きい。
The embodiments described above are just a few examples, and as long as they comply with the spirit of the present invention, it is possible to use suitable materials, configuration dimensions, manufacturing processes, or combinations thereof. Needless to say, [Effects of the Invention] As explained above, in the optical modulator of the present invention, since the thickness of the signal electrode 3 is not made too large, it can be formed with high precision in terms of manufacturing process. On the other hand, since at least the upper part of the signal electrode 3 is configured to be widely covered by the overhang part 40 formed on the ground electrode 4 with a cap-shaped space in between, the electric field distribution in the surrounding space is improved (the electric field is The increase in the number of field lines effectively reduces the dielectric constant, which greatly improves the velocity matching between the propagated microwave signal and the light wave, improving the performance of optical modulators, especially for high-speed operation. It greatly contributes to improving characteristics.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例を示す図、 第2図は本発明の他の実施例を示す図、第3図は本発明
実施例の主な製造工程を示す断面図、 第1図は光変調器の基本構成例を示す図(その 1)、 第5図は光変調器の基本構成例を示す図(その 2) 例を示す断面図 (その2) であるっ 図において、 本発明のに桁例と示T口 第1図 は基板、 は光導波路、 2aおよび2bは第1 および第2 の分岐光導波路、 は信号電極、 は接地電極、 はバッファ層、 40はオ ハハンク部である。 *を明の肋の足亮例え爪T図 第 2 図
Fig. 1 is a diagram showing an embodiment of the present invention, Fig. 2 is a diagram showing another embodiment of the invention, Fig. 3 is a sectional view showing the main manufacturing process of the embodiment of the present invention, FIG. 5 is a diagram showing an example of the basic configuration of an optical modulator (part 1); FIG. Figure 1 is the substrate, is the optical waveguide, 2a and 2b are the first and second branch optical waveguides, is the signal electrode, is the ground electrode, is the buffer layer, and 40 is the overhang hank. . * is likened to the feet of the Ming Dynasty. Figure 2.

Claims (2)

【特許請求の範囲】[Claims] (1)平面に加工した電気光学効果を有する基板(1)
上に、第1および第2の分岐光導波路(2a、2b)を
有する光導波路(2)を設け、前記第1の分岐光導波路
(2a)と第2の分岐光導波路(2b)を伝播する光に
位相差を生じさせるように信号電極(3)および接地電
極(4)を配設してなるマッハツェンダ型光変調器にお
いて、 前記信号電極(3)は少なくともその上部がギャップ状
空間を挟んで、前記接地電極(4)に形成されたオーバ
ハング部(40)により覆われていることを特徴とした
光変調器。
(1) Substrate with electro-optic effect processed into a flat surface (1)
An optical waveguide (2) having first and second branched optical waveguides (2a, 2b) is provided above, and the first branched optical waveguide (2a) and the second branched optical waveguide (2b) propagate. In a Mach-Zehnder optical modulator that includes a signal electrode (3) and a ground electrode (4) arranged so as to produce a phase difference in light, the signal electrode (3) has at least its upper part sandwiched by a gap-like space. . An optical modulator, characterized in that it is covered by an overhang (40) formed on the ground electrode (4).
(2)前記接地電極(4)のオーバハング部(40)が
メッキ法により形成されてなることを特徴とした請求項
(1)記載の光変調器。
(2) The optical modulator according to claim (1), wherein the overhang portion (40) of the ground electrode (4) is formed by a plating method.
JP2000807A 1990-01-06 1990-01-06 Method of manufacturing optical modulator Expired - Fee Related JP2800339B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000807A JP2800339B2 (en) 1990-01-06 1990-01-06 Method of manufacturing optical modulator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000807A JP2800339B2 (en) 1990-01-06 1990-01-06 Method of manufacturing optical modulator

Publications (2)

Publication Number Publication Date
JPH03204614A true JPH03204614A (en) 1991-09-06
JP2800339B2 JP2800339B2 (en) 1998-09-21

Family

ID=11483954

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000807A Expired - Fee Related JP2800339B2 (en) 1990-01-06 1990-01-06 Method of manufacturing optical modulator

Country Status (1)

Country Link
JP (1) JP2800339B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6111682A (en) * 1997-09-29 2000-08-29 Ngk Insulatros, Ltd. Light modulators
JP2002122834A (en) * 2000-10-19 2002-04-26 Sumitomo Osaka Cement Co Ltd Optical waveguide element
JP2008046573A (en) * 2006-08-21 2008-02-28 Fujitsu Ltd Optical modulator

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6111682A (en) * 1997-09-29 2000-08-29 Ngk Insulatros, Ltd. Light modulators
JP2002122834A (en) * 2000-10-19 2002-04-26 Sumitomo Osaka Cement Co Ltd Optical waveguide element
JP2008046573A (en) * 2006-08-21 2008-02-28 Fujitsu Ltd Optical modulator

Also Published As

Publication number Publication date
JP2800339B2 (en) 1998-09-21

Similar Documents

Publication Publication Date Title
US9746743B1 (en) Electro-optic optical modulator devices and method of fabrication
US6198855B1 (en) Velocity-matched, traveling-wave electro-optical devices using non-conductive and conductive polymer buffer layers
JP5879633B2 (en) Monolithic electro-optic TWE component structure
JPH05196902A (en) Traveling-wave optical modulator
JP2928129B2 (en) Optical modulator and method of manufacturing the same
US6646776B1 (en) Suppression of high frequency resonance in an electro-optical modulator
US11719964B2 (en) Optical device and optical communication device
JP2780400B2 (en) Light modulator
JP3570735B2 (en) Optical waveguide device
JPH03229214A (en) Optical modulation element
US6885780B2 (en) Suppression of high frequency resonance in an electro-optical modulator
JP2550730B2 (en) Optical waveguide device and manufacturing method thereof
US6768570B2 (en) Optical modulator
JPH03204614A (en) Optical modulator
JP2919132B2 (en) Light modulator
JPH04217226A (en) Manufacture of light guide path type device
JP2565002B2 (en) Signal electrode for optical waveguide device and method of forming the same
JP2734708B2 (en) Light modulator
JP2717980B2 (en) Integrated optical waveguide device
JPH10274758A (en) Waveguide type optical modulator
WO2001057586A1 (en) Optical components
JP2564999B2 (en) Light modulator
JP2817295B2 (en) Light modulator
JP3758812B2 (en) Optical waveguide device
JPH09297288A (en) Optical waveguide device

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees