JP3570735B2 - Optical waveguide device - Google Patents

Optical waveguide device Download PDF

Info

Publication number
JP3570735B2
JP3570735B2 JP02235693A JP2235693A JP3570735B2 JP 3570735 B2 JP3570735 B2 JP 3570735B2 JP 02235693 A JP02235693 A JP 02235693A JP 2235693 A JP2235693 A JP 2235693A JP 3570735 B2 JP3570735 B2 JP 3570735B2
Authority
JP
Japan
Prior art keywords
optical waveguide
electrode
substrate
ground electrode
waveguide device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP02235693A
Other languages
Japanese (ja)
Other versions
JPH06235891A (en
Inventor
菅又徹
箕輪純一郎
下津臣一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Osaka Cement Co Ltd
Original Assignee
Sumitomo Osaka Cement Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Osaka Cement Co Ltd filed Critical Sumitomo Osaka Cement Co Ltd
Priority to JP02235693A priority Critical patent/JP3570735B2/en
Publication of JPH06235891A publication Critical patent/JPH06235891A/en
Application granted granted Critical
Publication of JP3570735B2 publication Critical patent/JP3570735B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【産業上の利用分野】
本発明は、光通信用の超高速の外部変調器、スイッチ、電界センサに利用する光導波路デバイスに関する。特に、チャーピングを抑制でき、低駆動電圧を容易にできる光導波路デバイスの構造に関する。
【0002】
【従来の技術】
一般的に、高速光通信システムにおいて、例えば1.6GHzの周波数までのシステムでは、レーザダイオードを直接変調させる方式を用いている。そこで、変調周波数がより高くなってくると、レーザダイオードの出力光の波長が、時間的に微小変動するチャーピング現象が目だってくる。これが、光ファイバーの分散特性により長距離通信の限界となっていた。これに対して、レーザダイオードを、一定の出力光にし、外部に変調器を設置する外部変調方式が本質的にチャーピングを少なくでき、超高速長距離光通信に向いていると考えられ、多くの実験が行なわれるようになってきた。LiNbO 基板にマッハ・ツェンダ型の導波路を形成した外部変調器は、その代表例である。
【0003】
然し、本質的にチャーピングの少ない外部変調器であっても、僅かながらチャーピングがあり、超高速長距離通信システムに用いるためには、チャーピングの少ない外部変調器が望まれている。また同時に超高速の電気信号を光信号に変換するため、より駆動電圧の低い外部変調器が望まれている。
【0004】
また、高速の光変調方式としては、先にも述べたように、レーザダイオードの直接変調の他に、レーザ光を外部で変調する外部変調方式が知られる。特に、電気光学効果を持つ基板、例えばLiNbO にTiを熱拡散させ、分岐光導波路を形成したマッハ・ツェンダ型光変調器が外部変調器として良く知られる。図1は、マッハ・ツェンダ型光変調器の例を示す。光導波路4は、分岐導波路2、3に一度分岐し、各々の導波路上に信号電極5と接地電極6が設けられる。そして、超高速で変調を行なう場合には、電極はメッキ等により厚く形成され、進行波電極として取り扱う。電極と導波路の間には、電極による導波路の吸収を抑えるため、SiO などのバッファー層が設けられる。分岐導波路2、3を伝搬した光波は、合波して光導波路4に結合するようになっている。光導波路中を伝搬した光波は、信号電極5に印加されたマイクロ波の電界(図2参照)により各々の分岐導波路2、3を伝搬する光波の位相が変化し、導波路4において合波することにより強度変調が行なえるようになっている。
【0005】
通常、この種の変調器に印加する電気信号は、マイクロ波帯の高周波信号を使用するのは普通であり、このような高周波で電気的な安定性をとるため接地電極6が図示のように信号電極5より十分に大きくなっている。信号電極5の幅は、導波路中を伝搬する光波の電界分布と、電気信号の電気力線との相互作用を効率良く行なうため、導波路の幅とほぼ同じにする。
このような変調器では、前記のように、また、図2、3に示すように、信号電極5と接地電極6の大きさが異なるため、基板1内に電気信号により形成される電気力線は、図2の7で示すように、分岐導波路2、3に対して非対称になっている。このように、各々の分岐導波路にかかる電気力線が非対称であると、各々の分岐導波路2、3での変調効率が等しくなくなり、変調効率の非対称性に起因するチャーピングが発生する。また、接地電極下の電気力線は、導波光の電界分布に比べ広がってしまうため、変調効率が低くなり、変調器の駆動電圧が高くなってしまう。
【0006】
そこで、図5に示すように、分岐導波路2、3の各々の真上に各々信号電極5を設置し、各々の外側に接地電極6を配した構造が提案されている(特開平2−196212号)。このような構造にすれば、変調効率の非対称性に起因するチャーピングは少なくなり、また導波光と光導波路にかかる電気力線との相互作用も改善され、変調器の駆動電圧を低く抑えることができる。
然し乍ら、このように信号電極を2本或いはそれ以上にすると、各々の光導波路のための信号電極に印加するマイクロ波信号を各々逆電位にし、且つ、信号発生タイミングを極めて高い精度で制御する必要があり、実際上大変困難であり、変調器の駆動系が非常に複雑になる等の問題点がある。
【0007】
また、図2に示すような従来の電極構成では、分岐導波路2、3に対して、電気力線7が非対称になり、各々の導波路における変調効率が異なり、チャーピングが大きくなってしまうという問題があった。更に、接地電極下の導波路における変調効率が低く、駆動電圧が高くなってしまう問題もあった。
【0008】
【発明が解決しようとする課題】
従って、本発明は、前記のような、従来の光導波路デバイスにおける、特に非常に高い周波数帯域でのチャーピング発生を抑制し、同時に、変調効率の低下を防止でき、駆動電圧の抑制が可能な光導波路デバイスを提供することを目的とする。また、本発明は、そのようなチャーピングの抑制が、電極構造を複雑にしないで、また駆動系の複雑化を避けて、容易に達成できる光導波路デバイスを提供することを目的とする。
【0009】
【課題を解決するための手段】
従って、本発明は、前記のような、上記の技術的課題の解決のために成されたもので、電気光学効果を有する基板の上に、形成された分岐導波路と導波光を制御する信号電極および接地電極からなる光導波路デバイスであって、前記信号電極および接地電極の間の中心線と前記分岐導波路の中心線とが、該基板の中心線と一致するように配置され、且つ、該分岐導波路が、該中心線に対して対称に配置され、基板の形状も、該中心線に対して対称な形状であり、前記信号電極に電気信号を与えることにより生じる前記基板内における電気力線が、該中心線に対して、対称に生じるように、前記接地電極の底面の一部と基板の相当部分の間にギャップを設けたことを特徴とする前記光導波路デバイスを提供する。
前記ギャップは、誘導体で構成されているものが好適である。また、前記ギャップは、空気で構成されてものが好適である。
【0010】
【作用】
本発明によるLiNbO 光導波路素子デバイスでは、光導波路の接地電極に、図3、4に示すように接地電極の底面の一部と基板の相当部分の間にギャップを持たせた構造にする。すると、接地電極に生じる電界は、接地電極下のギャップ部分の誘電率が、基板LiNbO に比べて非常に小さいものになるので、導波路真上にある電極部に集中する。従って、基板(1)内における電気力線が分岐導波路(2、3)上に関して対称になり、各々の導波路における変調効率が等しくなり、変調効率の非対称性に基づくチャーピングが無くなる。また、接地電極の大きさは、従来と変わらず、マイクロ波等の高周波でも従来と同様に電気的に安定に使用することができる。
【0011】
また、更に従来では、接地電極下での変調効率が低かったが、本発明の構造の電極により、接地電極下であっても、電気力線と光導波路を伝搬する光波との相互作用が効率的に行なうことができ、より駆動電圧の低い変調器を実現することができる。また、本発明の構成の光導波路デバイスでは、信号電極を2本或いはそれ以上にする必要性はなく、従って、駆動系が複雑になるなどの問題点もない。以上のように、本発明の光導波路デバイスでは、駆動系を複雑にすることなしに、駆動電圧をより低くでき、且つチャーピングを抑えた光変調器を提供することができる。
【0012】
次に、本発明を具体的に実施例により説明するが、本発明はそれらによって限定されるものではない。
【0013】
【実施例1】
図3は、本発明による光導波路デバイスを、マッハ・ツェンダ型光変調器を例にして、説明するための断面図である。
即ち、図3のaに示すように、電気光学効果を有する基板:LiNbO 基板1の上に、形成された分岐導波路2を形成し、その上に導波光を制御する信号電極5を形成し、そして、接地電極6を形成した光導波路デバイスで、その接地電極6の底面の一部:即ち、信号電極5と反対側の一部と基板の相当部分の間にギャップ8を設けた構造である。即ち、接地電極6の基板と接する部分の面積或いは幅が、信号電極5の面積或いは幅とほとんど同じになるようにすると、図示のように電気力線7が、対称形に形成され、導波路2中での変調効率が等しくなり、チャーピングを抑制することができる。
【0014】
図3のbでは、基体の中心線に関して非対称であるので、本発明の範囲ではない。
【0015】
この光導波路は、ZーカットのLiNbO 基板1に、フォトプロセスにより金属Tiを、厚、約800Å、幅7μmでパターン(2’、3’)蒸着し(図6の1)、リフトオフした後、約1000℃、20時間空気中で、熱拡散させることにより、直線導波路及び光導波路2、3を形成している(図6の2)。
この後、電極による光の吸収損失を防ぐために、SiO バッファー層10を0.1〜1.0μm成膜した(図6の3)。ここで、接地電極の一部の底部分に、ギャップ8を形成するため、フォトレジストにより図6の4に示すようにパターン11形成し、この上からSiO を1〜4μm成膜(12)した(図6の5)。この後、リフトオフを行ない、接地電極部分のギャップ部分(12)だけを残し(図6の6)、図示にはないが、電極形成のために、全面にTi、Auの順に蒸着した後、再びフォトプロセスにより電極(13)のパターン形成を行なった(図6の7)。このとき、信号電極5の幅は、約7μmで、接地電極6と信号電極5の間隔は15μmである。
【0016】
ここで、従来からある電気メッキ法により信号電極5及び接地電極6の厚は、少なくとも10μmになるように形成した(図6の8)。このような光導波路の構造の作成により、接地電極6下にSiO によるギャップ8(12)を1〜4μm幅に作ることができる。以上、図3のaに示す構造の光導波路デバイスを作製したものである。
【0017】
【実施例2】
図4は他の本発明の実施例を示す断面図である。即ち、図6に示すような作成方法において、SiO の代わりに、MgOを0.1〜1μm蒸着した構造の電極を製作した。そして、前記のように、図6で説明した工程で作製した後、酢酸で、MgOをエッチング除去して、図4に示すようなエアギャップ(ギャップ間隔0.1〜1μm)を有する光導波路デバイスを作製した。即ち、図4に示すように、電気光学効果を有する基板:LiNbO 基板1の上に、形成された分岐導波路2を形成し、その上に導波光を制御する信号電極5を形成し、そして、接地電極6を形成した光導波路デバイスで、その接地電極6の底面の一部:即ち、信号電極5と反対側の一部と基板の相当部分の間に空気ギャップ8を設けた構造である。
【0018】
以上の実施例1、2の構造の光導波路デバイスをケ−スに固定し、信号電極と接地電極を各々配線し、光の入出力のためのファイバーを取り付け、光導波路モジュールを完成することができる。このモジュールの入射ファイバー側に、例えば1.55μmのDFBレーザ光を接続し、レーザ光の出力強度は一定にしておく。ここで、信号電極に例えば高周波である10Gbit/秒のデジタル信号を印加すると、この電気信号によりLiNbO 基板1内に電界が発生する。この電界の状態を分かり易く電気力線で図3、4に示した。従来の図2、5と較べると、接地電極下において導波路真上の電極に電気力線が集中し、分岐導波路2、3に関して、その分布が対称になる。
【0019】
このため従来の接地電極下での変調効率が低くなっていたものが、改善され駆動電圧のより低い変調器を実現することができる。また、各々の分岐導波路における変調効率の非対称性に基づくチャーピングも、この構成をとることにより改善されることが分かる。一方、接地電極は信号電極に比べて従来通り十分大きくとることができるので、高周波でも電気的に安定して使用することができる。
【0020】
以上の実施例では、マッハ・ツェンダ型光変調器を用いて説明したが、光スイッチ等にも、同様に、利用することができることは、明らかである。また、基板材料としては、LiNbO結晶の他にLiTaOやPLZTなどの電気光学効果を有するものならば、どれでも使用できることは言うまでもない。また、PLZT等、光導波路を形成することができる材料すべてに対しても利用することができる。また、実施例で説明した製作工程は、一例であって、本発明の目的にかなうものであれば、使用する材料、構成、製作過程など種々組合わせたり、異なるものを用いても良い。
【0021】
【発明の効果】
以上説明したように、本発明の光導波路デバイスの構造により、次のような顕著な技術的効果が得られた。
第1に、光変調器の駆動系を複雑にすることなく、駆動電圧をより低くし且つチャーピングを抑制した光導波路デバイスを提供することができる。
第2に、従って、光ファイバーを用いた超高速長距離通信を実現することができる。
【図面の簡単な説明】
【図1】従来のマッハ・ツェンダ型変調器の1例の構造を示す平面図である。
【図2】従来のマッハ・ツェンダ型変調器の構造を示す断面図である。
【図3】本発明の光導波路デバイスの構造の具体例を示す断面図である。
【図4】本発明の光導波路デバイスの構造の他の具体例を示す断面図である。
【図5】従来のマッハ・ツェンダ型変調器の例を示す断面図である。
【図6】本発明の光導波路デバイスの製作過程を各々の工程順に示す断面図である。
【符号の説明】
1 LiNbO 基板
2、3 分岐光導波路
5 制御電極
6 接地電極
7 電気力線
8 ギャップ
[0001]
[Industrial applications]
The present invention relates to an optical waveguide device used for an ultra-high-speed external modulator, switch, and electric field sensor for optical communication. In particular, the present invention relates to a structure of an optical waveguide device capable of suppressing chirping and facilitating a low driving voltage.
[0002]
[Prior art]
Generally, in a high-speed optical communication system, for example, in a system up to a frequency of 1.6 GHz, a method of directly modulating a laser diode is used. Then, as the modulation frequency becomes higher, a chirping phenomenon in which the wavelength of the output light of the laser diode slightly fluctuates with time becomes remarkable. This has been the limit of long-distance communication due to the dispersion characteristics of optical fibers. On the other hand, an external modulation method in which a laser diode is set to a constant output light and an external modulator is installed can substantially reduce chirping, and is considered to be suitable for ultra-high-speed long-distance optical communication. Experiments have begun. An external modulator in which a Mach-Zehnder waveguide is formed on a LiNbO 3 substrate is a typical example.
[0003]
However, even if the external modulator is essentially low in chirping, there is slight chirping, and an external modulator with low chirping is desired for use in an ultra-high-speed long-distance communication system. At the same time, an external modulator having a lower driving voltage is desired to convert an ultra-high-speed electric signal into an optical signal.
[0004]
As a high-speed light modulation method, as described above, an external modulation method for modulating laser light externally is known in addition to the direct modulation of the laser diode. In particular, a Mach-Zehnder optical modulator in which Ti is thermally diffused into a substrate having an electro-optical effect, for example, LiNbO 3 to form a branch optical waveguide, is well known as an external modulator. FIG. 1 shows an example of a Mach-Zehnder type optical modulator. The optical waveguide 4 branches once into the branch waveguides 2 and 3, and a signal electrode 5 and a ground electrode 6 are provided on each waveguide. When modulation is performed at an ultra-high speed, the electrode is formed thick by plating or the like and is treated as a traveling wave electrode. A buffer layer such as SiO 2 is provided between the electrode and the waveguide in order to suppress absorption of the waveguide by the electrode. Light waves that have propagated through the branch waveguides 2 and 3 are combined and coupled to the optical waveguide 4. The phase of the light wave propagating in each of the branch waveguides 2 and 3 is changed by the microwave electric field (see FIG. 2) applied to the signal electrode 5, and the light wave propagated in the optical waveguide is multiplexed in the waveguide 4. By doing so, intensity modulation can be performed.
[0005]
Usually, an electric signal applied to this type of modulator uses a microwave band high frequency signal, and in order to obtain electrical stability at such a high frequency, a ground electrode 6 is provided as shown in the figure. It is sufficiently larger than the signal electrode 5. The width of the signal electrode 5 is made substantially equal to the width of the waveguide in order to efficiently interact with the electric field distribution of the light wave propagating in the waveguide and the lines of electric force of the electric signal.
In this type of modulator, as described above and as shown in FIGS. Is asymmetrical with respect to the branch waveguides 2 and 3 as indicated by 7 in FIG. As described above, when the electric lines of force applied to the respective branch waveguides are asymmetric, the modulation efficiencies in the respective branch waveguides 2 and 3 are not equal, and chirping due to the asymmetry of the modulation efficiency occurs. Further, since the electric lines of force below the ground electrode are wider than the electric field distribution of the guided light, the modulation efficiency is reduced and the driving voltage of the modulator is increased.
[0006]
Therefore, as shown in FIG. 5, there has been proposed a structure in which a signal electrode 5 is provided directly above each of the branching waveguides 2 and 3, and a ground electrode 6 is provided outside each of the branch waveguides 2 and 3 (Japanese Patent Laid-Open No. Hei. 196212). With such a structure, chirping caused by the asymmetry of the modulation efficiency is reduced, and the interaction between the guided light and the electric flux lines applied to the optical waveguide is improved, so that the driving voltage of the modulator can be reduced. Can be.
However, when two or more signal electrodes are used in this way, it is necessary to control the microwave signal applied to the signal electrode for each optical waveguide to the opposite potential and to control the signal generation timing with extremely high precision. However, there is a problem that the driving system of the modulator becomes very complicated.
[0007]
Further, in the conventional electrode configuration as shown in FIG. 2, the electric flux lines 7 are asymmetric with respect to the branch waveguides 2 and 3, the modulation efficiency in each waveguide is different, and chirping becomes large. There was a problem. Further, there is a problem that the modulation efficiency in the waveguide below the ground electrode is low and the driving voltage is high.
[0008]
[Problems to be solved by the invention]
Therefore, the present invention suppresses the occurrence of chirping, particularly in a very high frequency band, in the conventional optical waveguide device as described above, and at the same time, can prevent a decrease in modulation efficiency and suppress a drive voltage. It is an object to provide an optical waveguide device. Another object of the present invention is to provide an optical waveguide device in which such suppression of chirping can be easily achieved without complicating the electrode structure and avoiding complication of the driving system.
[0009]
[Means for Solving the Problems]
Accordingly, the present invention has been made to solve the above-mentioned technical problems, and has been made on the substrate having the electro-optic effect, and has a branch waveguide formed thereon and a signal for controlling guided light. An optical waveguide device comprising an electrode and a ground electrode , wherein a center line between the signal electrode and the ground electrode and a center line of the branch waveguide are arranged so as to coincide with a center line of the substrate, and The branch waveguides are arranged symmetrically with respect to the center line, and the shape of the substrate is also symmetrical with respect to the center line, and an electric signal generated in the substrate by applying an electric signal to the signal electrode. The optical waveguide device according to claim 1, wherein a gap is provided between a part of the bottom surface of the ground electrode and a substantial part of the substrate so that a force line is generated symmetrically with respect to the center line .
The gap is preferably made of a derivative. Preferably, the gap is made of air.
[0010]
[Action]
The LiNbO 3 optical waveguide device according to the present invention has a structure in which the ground electrode of the optical waveguide has a gap between a part of the bottom surface of the ground electrode and a substantial part of the substrate as shown in FIGS. Then, the electric field generated at the ground electrode concentrates on the electrode portion immediately above the waveguide because the dielectric constant of the gap portion below the ground electrode is much smaller than that of the substrate LiNbO 3 . Accordingly, the lines of electric force in the substrate (1) are symmetric with respect to the branch waveguides (2, 3), the modulation efficiency in each waveguide is equal, and chirping based on the asymmetry of the modulation efficiency is eliminated. In addition, the size of the ground electrode is the same as that of the related art, and it can be used electrically stably even at a high frequency such as a microwave as in the related art.
[0011]
Further, in the past, the modulation efficiency under the ground electrode was low, but the electrode of the structure of the present invention allows the interaction between the electric flux lines and the light wave propagating through the optical waveguide to be efficient even under the ground electrode. And a modulator having a lower driving voltage can be realized. Further, in the optical waveguide device having the configuration of the present invention, it is not necessary to use two or more signal electrodes, and therefore, there is no problem such as a complicated driving system. As described above, with the optical waveguide device of the present invention, it is possible to provide an optical modulator that can lower the driving voltage and suppress chirping without complicating the driving system.
[0012]
Next, the present invention will be specifically described with reference to examples, but the present invention is not limited thereto.
[0013]
Embodiment 1
FIG. 3 is a cross-sectional view for explaining an optical waveguide device according to the present invention using a Mach-Zehnder type optical modulator as an example.
That is, as shown in FIG. 3A, a formed branch waveguide 2 is formed on a substrate having an electro-optical effect: LiNbO 3 substrate 1, and a signal electrode 5 for controlling guided light is formed thereon. And a structure in which a gap 8 is provided between a part of the bottom surface of the ground electrode 6: a part opposite to the signal electrode 5 and a substantial part of the substrate. It is. That is, if the area or width of the portion of the ground electrode 6 which is in contact with the substrate is made substantially the same as the area or width of the signal electrode 5, the electric lines of force 7 are formed symmetrically as shown in FIG. 2, the modulation efficiency becomes equal, and chirping can be suppressed.
[0014]
FIG. 3b is not within the scope of the present invention because it is asymmetric with respect to the center line of the substrate.
[0015]
In this optical waveguide, metal Ti is vapor-deposited on a Z-cut LiNbO 3 substrate 1 by a photo process in a pattern (2 ′, 3 ′) with a thickness of about 800 ° and a width of 7 μm (1 in FIG. 6), and after lift-off, The linear waveguide and the optical waveguides 2 and 3 are formed by thermal diffusion in air at about 1000 ° C. for 20 hours (2 in FIG. 6).
Thereafter, in order to prevent absorption loss of light by the electrodes, a SiO 2 buffer layer 10 was formed in a thickness of 0.1 to 1.0 μm (3 in FIG. 6). Here, the part of the bottom portion of the ground electrode, to form a gap 8, the pattern 11 is formed as shown in 4 of FIG. 6 with a photoresist, 1 to 4 [mu] m deposited SiO 2 from above the (12) (5 in FIG. 6). Thereafter, lift-off is performed to leave only the gap portion (12) of the ground electrode portion (6 in FIG. 6). Although not shown in the drawing, Ti and Au are vapor-deposited on the entire surface in order to form an electrode. The pattern of the electrode (13) was formed by a photo process (7 in FIG. 6). At this time, the width of the signal electrode 5 is about 7 μm, and the interval between the ground electrode 6 and the signal electrode 5 is 15 μm.
[0016]
Here, the thickness of the signal electrode 5 and the ground electrode 6 was formed to be at least 10 μm by a conventional electroplating method (8 in FIG. 6). By creating such an optical waveguide structure, a gap 8 (12) made of SiO 2 can be formed under the ground electrode 6 to have a width of 1 to 4 μm. As described above, the optical waveguide device having the structure shown in FIG. 3A is manufactured.
[0017]
Embodiment 2
FIG. 4 is a sectional view showing another embodiment of the present invention. That is, an electrode having a structure in which MgO was vapor-deposited at 0.1 to 1 μm instead of SiO 2 in the production method as shown in FIG. 6 was produced. Then, as described above, after being manufactured in the steps described with reference to FIG. 6, MgO is removed by etching with acetic acid, and an optical waveguide device having an air gap (gap interval of 0.1 to 1 μm) as shown in FIG. Was prepared. That is, as shown in FIG. 4, a substrate having an electro-optic effect: a formed branch waveguide 2 is formed on a LiNbO 3 substrate 1, and a signal electrode 5 for controlling guided light is formed thereon. The optical waveguide device having the ground electrode 6 formed thereon has a structure in which an air gap 8 is provided between a part of the bottom surface of the ground electrode 6: a part opposite to the signal electrode 5 and a substantial part of the substrate. is there.
[0018]
The optical waveguide device having the structure of the first and second embodiments is fixed to the case, the signal electrode and the ground electrode are respectively wired, and fibers for inputting and outputting light are attached to complete the optical waveguide module. it can. A DFB laser beam of, for example, 1.55 μm is connected to the incident fiber side of this module, and the output intensity of the laser beam is kept constant. Here, when a digital signal of, for example, a high frequency of 10 Gbit / sec is applied to the signal electrode, an electric field is generated in the LiNbO 3 substrate 1 by the electric signal. The state of this electric field is shown in FIGS. Compared to the conventional FIGS. 2 and 5, the lines of electric force concentrate on the electrode directly above the waveguide under the ground electrode, and the distribution becomes symmetric with respect to the branch waveguides 2 and 3.
[0019]
For this reason, the modulation efficiency under the conventional ground electrode is reduced, but a modulator with a lower driving voltage can be realized. Further, it can be seen that chirp based on the asymmetry of the modulation efficiency in each branch waveguide is also improved by adopting this configuration. On the other hand, the ground electrode can be made sufficiently large as compared with the signal electrode as before, so that it can be used electrically stably even at high frequencies.
[0020]
In the above embodiments, the description has been made using the Mach-Zehnder type optical modulator, but it is apparent that the present invention can be similarly applied to an optical switch and the like. Further, it goes without saying that any material having an electro-optical effect such as LiTaO 3 or PLZT can be used as the substrate material in addition to the LiNbO 3 crystal. Further, the present invention can be used for all materials that can form an optical waveguide, such as PLZT. Further, the manufacturing process described in the embodiment is an example, and various combinations, such as materials to be used, configurations, and manufacturing processes, or different processes may be used as long as the objects of the present invention are satisfied.
[0021]
【The invention's effect】
As described above, the following remarkable technical effects were obtained by the structure of the optical waveguide device of the present invention.
First, it is possible to provide an optical waveguide device with a lower driving voltage and reduced chirping without complicating the driving system of the optical modulator.
Second, therefore, it is possible to realize ultra-high-speed long-distance communication using an optical fiber.
[Brief description of the drawings]
FIG. 1 is a plan view showing a structure of an example of a conventional Mach-Zehnder modulator.
FIG. 2 is a sectional view showing the structure of a conventional Mach-Zehnder modulator.
FIG. 3 is a cross-sectional view showing a specific example of the structure of the optical waveguide device of the present invention.
FIG. 4 is a sectional view showing another specific example of the structure of the optical waveguide device of the present invention.
FIG. 5 is a sectional view showing an example of a conventional Mach-Zehnder modulator.
FIG. 6 is a cross-sectional view showing a manufacturing process of the optical waveguide device of the present invention in the order of each process.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 LiNbO 3 board | substrate 2, 3 Branch optical waveguide 5 Control electrode 6 Ground electrode 7 Electric field line 8 Gap

Claims (3)

電気光学効果を有する基板の上に、形成された分岐導波路と導波光を制御する信号電極および接地電極からなる光導波路デバイスであって、
前記信号電極および接地電極の間の中心線と前記分岐導波路の中心線とが、該基板の中心線と一致するように配置され、且つ、該分岐導波路が、該中心線に対して対称に配置され、基板の形状も、該中心線に対して対称な形状であり、前記信号電極に電気信号を与えることにより生じる前記基板内における電気力線が、該中心線に対して、対称に生じるように、前記接地電極の底面の一部と基板の相当部分の間にギャップを設けたことを特徴とする前記光導波路デバイス。
An optical waveguide device comprising a signal electrode and a ground electrode for controlling branched light and guided light formed on a substrate having an electro-optic effect,
The center line between the signal electrode and the ground electrode and the center line of the branch waveguide are arranged so as to coincide with the center line of the substrate, and the branch waveguide is symmetric with respect to the center line. The shape of the substrate is also symmetrical with respect to the center line, and lines of electric force in the substrate generated by applying an electric signal to the signal electrode are symmetrical with respect to the center line. The optical waveguide device according to claim 1, wherein a gap is provided between a part of the bottom surface of the ground electrode and a substantial part of the substrate so as to generate a gap .
前記ギャップは、誘導体で構成されていることを特徴とする請求項1に記載の前記光導波路デバイス。The optical waveguide device according to claim 1, wherein the gap is made of a dielectric. 前記ギャップは、空気で構成されていることを特徴とする請求項1に記載の前記光導波路デバイス。The optical waveguide device according to claim 1, wherein the gap is made of air.
JP02235693A 1993-02-10 1993-02-10 Optical waveguide device Expired - Lifetime JP3570735B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP02235693A JP3570735B2 (en) 1993-02-10 1993-02-10 Optical waveguide device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP02235693A JP3570735B2 (en) 1993-02-10 1993-02-10 Optical waveguide device

Publications (2)

Publication Number Publication Date
JPH06235891A JPH06235891A (en) 1994-08-23
JP3570735B2 true JP3570735B2 (en) 2004-09-29

Family

ID=12080368

Family Applications (1)

Application Number Title Priority Date Filing Date
JP02235693A Expired - Lifetime JP3570735B2 (en) 1993-02-10 1993-02-10 Optical waveguide device

Country Status (1)

Country Link
JP (1) JP3570735B2 (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2825056B2 (en) * 1994-02-24 1998-11-18 日本電気株式会社 Light control device
DE69737430T2 (en) * 1996-06-14 2007-11-29 Sumitomo Osaka Cement Co., Ltd. Optical waveguide modulator with traveling wave electrodes
US6381379B1 (en) 2000-02-10 2002-04-30 Codeon Corporation Optical modulator having coplanar electrodes for controlling chirp
JP3362126B2 (en) 2000-03-09 2003-01-07 住友大阪セメント株式会社 Optical waveguide device
WO2002097521A1 (en) 2001-05-25 2002-12-05 Anritsu Corporation Optical modulation device having excellent electric characteristics by effectively restricting heat drift
JP2004046283A (en) * 2001-05-25 2004-02-12 Anritsu Corp Optical modulation device provided with excellent electrical characteristics by effectively suppressing thermal drift and its manufacturing method
JP3851825B2 (en) 2002-02-07 2006-11-29 富士通株式会社 Optical modulator module and optical modulator
CN104122680A (en) * 2013-04-29 2014-10-29 鸿富锦精密工业(深圳)有限公司 Electrooptical modulator
CN109073920B (en) * 2016-04-21 2021-10-22 Tdk株式会社 Optical modulator
JP7115483B2 (en) 2017-08-24 2022-08-09 Tdk株式会社 optical modulator
JP7027787B2 (en) * 2017-10-13 2022-03-02 Tdk株式会社 Optical modulator
JP2020134874A (en) 2019-02-25 2020-08-31 Tdk株式会社 Light modulator

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05173099A (en) * 1991-12-17 1993-07-13 Hikari Keisoku Gijutsu Kaihatsu Kk Optical control element

Also Published As

Publication number Publication date
JPH06235891A (en) 1994-08-23

Similar Documents

Publication Publication Date Title
JP3929814B2 (en) Mach-Zehnder electro-optic modulator
JP2603437B2 (en) Periodic domain inversion electro-optic modulator
US6867901B2 (en) Optical modulator and design method therefor
JP2001154164A (en) Optical modulator and optical modulating method
JP3570735B2 (en) Optical waveguide device
US5283842A (en) Operating point trimming method for optical waveguide modulator and switch
US6600843B2 (en) Optical modulator
JPH0652342B2 (en) Electro-optic modulator
WO2007020924A1 (en) Optical modulator
US6646776B1 (en) Suppression of high frequency resonance in an electro-optical modulator
JP2780400B2 (en) Light modulator
US6885780B2 (en) Suppression of high frequency resonance in an electro-optical modulator
WO2020202596A1 (en) Optical modulator
JP2946630B2 (en) Light modulator
JPH05173099A (en) Optical control element
JP4376795B2 (en) Waveguide type optical modulator
JPH04172316A (en) Wave guide type light control device
JPH04217226A (en) Manufacture of light guide path type device
JP2000131658A (en) Optical waveguide device
JP2564999B2 (en) Light modulator
KR100207599B1 (en) Low electric power optical switch and the production method thereof
JP2734708B2 (en) Light modulator
JP2817295B2 (en) Light modulator
JP2800339B2 (en) Method of manufacturing optical modulator
WO2023005924A1 (en) Electro-optic modulator and electro-optic device

Legal Events

Date Code Title Description
A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040622

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080702

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090702

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090702

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100702

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110702

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110702

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120702

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130702

Year of fee payment: 9

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130702

Year of fee payment: 9