JP2800339B2 - Method of manufacturing optical modulator - Google Patents

Method of manufacturing optical modulator

Info

Publication number
JP2800339B2
JP2800339B2 JP2000807A JP80790A JP2800339B2 JP 2800339 B2 JP2800339 B2 JP 2800339B2 JP 2000807 A JP2000807 A JP 2000807A JP 80790 A JP80790 A JP 80790A JP 2800339 B2 JP2800339 B2 JP 2800339B2
Authority
JP
Japan
Prior art keywords
electrode
optical
signal electrode
signal
optical modulator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000807A
Other languages
Japanese (ja)
Other versions
JPH03204614A (en
Inventor
實 清野
隆志 山根
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP2000807A priority Critical patent/JP2800339B2/en
Publication of JPH03204614A publication Critical patent/JPH03204614A/en
Application granted granted Critical
Publication of JP2800339B2 publication Critical patent/JP2800339B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/03Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on ceramics or electro-optical crystals, e.g. exhibiting Pockels effect or Kerr effect
    • G02F1/035Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on ceramics or electro-optical crystals, e.g. exhibiting Pockels effect or Kerr effect in an optical waveguide structure
    • G02F1/0356Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on ceramics or electro-optical crystals, e.g. exhibiting Pockels effect or Kerr effect in an optical waveguide structure controlled by a high-frequency electromagnetic wave component in an electric waveguide structure

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Electromagnetism (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)

Description

【発明の詳細な説明】 〔概要〕 光変調器に関し、 外部光変調器を高速で駆動することを目的とし、 電気光学効果を有する基板上に、二つに分岐した分岐
光導波路を有する光導波路を設ける工程と、 前記分岐光導波路のそれぞれを覆うようにバッファ層
を設ける工程と、 前記バッファ層を介して、前記分岐光導波路の一方の
上に信号電極と、少なくとも前記分岐光導波路の他方の
上に接地電極とのそれぞれを設ける工程と、 前記信号電極をレジスト膜で覆う工程と、 前記接地電極の上に導体からなるオーバハング部を設
ける工程と、 前記オーバハング部と前記信号電極との間に介在する
前記レジスト膜を除去する工程と を含むように光変調器の製造方法を構成する。
DETAILED DESCRIPTION OF THE INVENTION [Summary] Regarding an optical modulator, which aims at driving an external optical modulator at a high speed, an optical waveguide having a bifurcated optical waveguide on a substrate having an electro-optic effect Providing a buffer layer so as to cover each of the branch optical waveguides, and a signal electrode on one of the branch optical waveguides via the buffer layer, and at least the other of the other of the branch optical waveguides Providing each of a ground electrode thereon; covering the signal electrode with a resist film; providing an overhang portion made of a conductor on the ground electrode; and between the overhang portion and the signal electrode. And a step of removing the intervening resist film.

〔産業上の利用分野〕[Industrial applications]

本発明は、高速・高安定に動作する光変調器,とく
に、その電極構成に関する。
The present invention relates to an optical modulator that operates at high speed and high stability, and particularly to an electrode configuration thereof.

最近の光通信システムの光送信系において、たとえ
ば、1.6GHz程度までの光通信システムにおいては、レー
ザダイオード(LD)を直接変調する方式を用いてきた
が、変調周波数がより高くなると変調光波長の時間的微
小変動,いわゆる、チャーピング現象が起こり高速化と
長距離通信への限界となる。
In an optical transmission system of a recent optical communication system, for example, in an optical communication system up to about 1.6 GHz, a method of directly modulating a laser diode (LD) has been used, but as the modulation frequency becomes higher, the modulation light wavelength becomes longer. A minute fluctuation in time, a so-called chirping phenomenon, occurs, which limits the speed up and long-distance communication.

一方、今後ますます大容量・長距離通信の要求が強ま
ってくるので、より高速,かつ、高安定で動作する光変
調器の開発が求められている。
On the other hand, since demands for large-capacity and long-distance communication are increasing in the future, development of an optical modulator that operates at higher speed and with higher stability is required.

〔従来の技術〕[Conventional technology]

高速光変調方式としては、半導体レーザ光を外部で変
調する外部変調方式,とくに、電気光学結晶基板上に分
岐光導波路を設け、進行波電極で駆動するマッハツェン
ダ型光変調器が知られている。
As a high-speed light modulation method, there is known an external modulation method for modulating a semiconductor laser beam externally, in particular, a Mach-Zehnder type optical modulator in which a branch optical waveguide is provided on an electro-optic crystal substrate and driven by a traveling wave electrode.

第4図は光変調器の基本構成例を示す図(その1)
で、同図(イ)は平面図、同図(ロ)はY−Y′断面図
である。
FIG. 4 shows a basic configuration example of an optical modulator (part 1).
(A) is a plan view, and (b) is a cross-sectional view taken along the line YY '.

図中、1は平面に加工した電気光学効果を有する基
板,たとえば、LiNbO3基板である。2は光導波路で中間
に分岐光導波路2a,2bが形成されている。光導波路は通
常基板の表面にTiなどの金属を、光導波路部分だけに選
択的に拡散させ、その部分の屈折率を回りの部分よりも
少し大きくなるようにしてある。3は信号電極で,たと
えば、進行波信号電極、4は接地電極である。5は光導
波路上の金属電極層への光の吸収を小さくするためのバ
ッファ層で、通常、SiO2などの薄膜が用いられている。
信号電極3と接地電極4はバッファ層5を介して光導波
路上に、Auなどの金属を蒸着あるいはメッキによって形
成している。
In the drawing, reference numeral 1 denotes a substrate processed into a plane and having an electro-optical effect, for example, a LiNbO 3 substrate. Reference numeral 2 denotes an optical waveguide in which branch optical waveguides 2a and 2b are formed in the middle. In an optical waveguide, a metal such as Ti is usually selectively diffused only into the optical waveguide portion on the surface of the substrate so that the refractive index of the portion is slightly larger than that of the surrounding portion. 3 is a signal electrode, for example, a traveling wave signal electrode, and 4 is a ground electrode. Reference numeral 5 denotes a buffer layer for reducing the absorption of light into the metal electrode layer on the optical waveguide, and is usually made of a thin film such as SiO 2 .
The signal electrode 3 and the ground electrode 4 are formed by depositing or plating metal such as Au on the optical waveguide via the buffer layer 5.

いま,たとえば、図示してない半導体レーザから発し
た直流光が左側の光導波路2から入り、分岐光導波路2
a,2bで2つに分けられ、その間に、信号電極3に高周波
変調信号源6から信号電圧を印加すると、基板上に設け
られた前記分岐光導波路2a,2bにおける電気光学効果に
よって分岐された両光に位相差が生じる。この両光を再
び合流させて、右側の一本の光導波路2から変調された
光信号出力を取り出し、図示してない光検知器で電気信
号に変換するように構成されている。前記分岐光導波路
2a,2bにおける両光の位相差がπ,あるいは、0になる
ように駆動電圧を印加すれば,たとえば、光信号出力は
ON−OFFのパルス信号として得られる。なお、RTは終端
抵抗である。
Now, for example, a DC light emitted from a semiconductor laser (not shown) enters from the left optical waveguide 2 and enters the branch optical waveguide 2.
When the signal voltage is applied to the signal electrode 3 from the high-frequency modulation signal source 6, the signal is branched by the electro-optic effect in the branch optical waveguides 2a and 2b provided on the substrate. A phase difference occurs between the two lights. The two lights are combined again, a modulated optical signal output is taken out from one optical waveguide 2 on the right side, and is converted into an electric signal by a photodetector (not shown). The branch optical waveguide
If a drive voltage is applied so that the phase difference between the two lights in 2a and 2b becomes π or 0, for example, the optical signal output becomes
Obtained as ON-OFF pulse signals. Note that RT is a terminating resistor.

この構成の光変調器においては、接地電極4は高周波
電気信号の伝達をよくするため、図に示したように、信
号電極3よりも大きくしてあり,したがって、分岐光導
波路2a,2bに印加される電界分布は等しくなく、両者の
間には3〜6倍程度の差がある。したがって、プッシュ
プル動作による駆動が困難であり,結局、変調用の駆動
電圧を大きくしなければならないことになる。
In the optical modulator having this configuration, the ground electrode 4 is larger than the signal electrode 3 as shown in the figure to improve the transmission of high-frequency electric signals, and therefore, the ground electrode 4 is applied to the branch optical waveguides 2a and 2b. Electric field distributions are not equal, and there is a difference of about 3 to 6 times between the two. Therefore, driving by the push-pull operation is difficult, and eventually, the driving voltage for modulation must be increased.

さらに、信号電極3と接地電極4にかゝる電界の非対
称性のために、分岐光導波路2a,2bに温度差が生じ、そ
れに基づく歪みによって光変調特性の動作点がシフトし
てしまうという欠点があった。
Furthermore, a temperature difference occurs between the branch optical waveguides 2a and 2b due to the asymmetry of the electric field applied to the signal electrode 3 and the ground electrode 4, and the operating point of the optical modulation characteristic shifts due to distortion due to the temperature difference. was there.

一方、第5図は光変調器の基本構成例を示す図(その
2)で、上記欠点を改善するために提案された例であ
り、同図(イ)は平面図、同図(ロ)はY−Y′断面図
である。
On the other hand, FIG. 5 is a diagram (part 2) showing an example of the basic configuration of an optical modulator, which is an example proposed to improve the above-mentioned disadvantages. FIG. 5 (a) is a plan view and FIG. Is a YY 'sectional view.

なお、前記図面で説明したものと同等の部分について
は同一符号を付し、かつ、同等部分についての説明は省
略する。
The same parts as those described in the drawings are denoted by the same reference numerals, and the description of the same parts will be omitted.

この構成の光変調器においては、信号電極3と接地電
極4とは全く同一の巾で平行に形成されている,いわゆ
る、対称電極配置であり、前記例のような歪みによって
光変調特性の動作点がシフトしてしまうという欠点がな
く、駆動電圧も低くすることができる。
In the optical modulator having this configuration, the signal electrode 3 and the ground electrode 4 are formed in parallel with exactly the same width, that is, a so-called symmetric electrode arrangement. There is no disadvantage that the points are shifted, and the driving voltage can be reduced.

しかし、この場合には、接地電極4の抵抗を充分低く
できず信号電極3と接地電極4との間に誘導に基づく相
互干渉が生じて高周波駆動に限界がある。
However, in this case, the resistance of the ground electrode 4 cannot be sufficiently reduced, and mutual interference based on induction occurs between the signal electrode 3 and the ground electrode 4, so that there is a limit to high-frequency driving.

以上述べたごとき高速駆動に関連する問題は,結局、
光とマイクロ波信号との整合をいかによくするかと言う
問題であり、従来からいくつかの提案がなされている。
The problems related to high-speed driving as described above are, after all,
The problem is how to improve the matching between light and a microwave signal, and several proposals have been made.

第6図は従来の光波とマイクロ波信号の速度整合の例
を示す断面図(その1)で、図中、3′は信号電極、
4′は接地電極、5′はバッファ層である。
FIG. 6 is a cross-sectional view (part 1) showing an example of conventional speed matching between a light wave and a microwave signal, in which 3 'is a signal electrode,
4 'is a ground electrode and 5' is a buffer layer.

通常、光導波路中を伝播する光の速度は信号電極中を
伝播するマイクロ波信号の速度の2倍程度速く,すなわ
ち、速度整合がとれておらず、これが1つの原因となっ
て高速駆動の限界となる。
Usually, the speed of light propagating in an optical waveguide is about twice as fast as the speed of a microwave signal propagating in a signal electrode, that is, speed matching is not achieved. Becomes

したがって、速度整合をとるには信号電極中を伝播す
るマイクロ波信号の速度を速くする,すなわち、実効的
に誘電率を下げてやればよく、この例では電極膜厚tE1
およびバッファ層の膜厚tB1の両方をともに,たとえ
ば、前記第4図の基本構成例のtE0およびtB0の3倍程度
に大きくすることによって変調周波数帯域巾を3倍程度
広げることが可能となっている。
Therefore, to achieve speed matching, the speed of the microwave signal propagating in the signal electrode may be increased, that is, the dielectric constant may be effectively reduced. In this example, the electrode thickness t E1
For example, by increasing both the buffer layer thickness t B1 and t E0 and t B0 of the basic configuration example of FIG. 4 to about three times, the modulation frequency bandwidth can be extended about three times. It has become.

また、第7図は従来の光波とマイクロ波信号の速度整
合の例を示す断面図(その2)であり、3″は信号電極
でその高さtE2だけを接地電極4′の高さtE1よりも3倍
程度さらに高くした場合である。これによって、より一
層変調周波数帯域巾が広い光変調器が得られている。
FIG. 7 is a cross-sectional view (part 2) showing an example of conventional speed matching between a light wave and a microwave signal, and 3 ″ is a signal electrode, and only its height t E2 is used as the height t of the ground electrode 4 ′. In this case, the optical modulator is set to be about three times higher than E1 , thereby obtaining an optical modulator having a wider modulation frequency bandwidth.

〔発明が解決しようとする課題〕[Problems to be solved by the invention]

しかし、上記従来例(その1)の場合には、信号電極
3′と接地電極4′とのギャップdは15μm程度しかな
く、電極厚さtE1が10μm以上になってくると、ホトエ
ッチングプロセス上の困難が生じてくる。また、バッフ
ァ層の厚さを余り大きくすると動作電圧が高くなってし
まう。一方、従来例(その2)の場合には信号電極3″
だけを,たとえば、メッキ法で厚くすることが可能であ
るが、この場合もtE2の高さを,たとえば、20μm以上
にした場合には信号電極線路の特性インピーダンスに製
造バラツキが生じてデバイスの歩留り低下を招き,ま
た、信号電極線路から周辺空間への電界分布が一方側の
横方向へ広く広がっており、速度整合にも限界が生じる
などの問題があって、その解決が必要であった。
However, in the case of the above conventional example (Part 1), the gap d between the signal electrode 3 'and the ground electrode 4' is only about 15 μm, and when the electrode thickness t E1 becomes 10 μm or more, the photo etching process is performed. The above difficulties arise. If the thickness of the buffer layer is too large, the operating voltage will increase. On the other hand, in the case of the conventional example (No. 2), the signal electrode 3 ″
Can be made thicker, for example, by a plating method. In this case, however, if the height of t E2 is set to, for example, 20 μm or more, the characteristic impedance of the signal electrode line will produce a manufacturing variation, and There was a problem that the yield was reduced, and the electric field distribution from the signal electrode line to the surrounding space was widened to one side in the horizontal direction. .

〔課題を解決するための手段〕[Means for solving the problem]

上記の課題は、第1図と第3図において、電気光学効
果を有する基板1の上に、二つに分岐した分岐光導波路
2a、2bを有する光導波路2を設ける工程と、前記分岐光
導波路2a、2bのそれぞれを覆うようにバッファ層5を設
ける工程と、前記バッファ層5を介して、前記分岐光導
波路2a、2bの一方の上に信号電極3と、少なくとも前記
分岐光導波路2a、2bの他方の上に接地電極4とのそれぞ
れを設ける工程と、前記信号電極3をレジスト膜7で覆
う工程と、前記接地電極4の上に導体からなるオーバハ
ング部40を設ける工程と、前記オーバハング部40と前記
信号電極3との間に介在する前記レジスト膜7を除去す
る工程とを含むように構成された光変調器の製造方法に
よって解決される。
The above-mentioned problem is caused by the problem that the branched optical waveguide shown in FIGS. 1 and 3 is branched on a substrate 1 having an electro-optical effect.
Providing the optical waveguide 2 having 2a and 2b; providing a buffer layer 5 so as to cover each of the branch optical waveguides 2a and 2b; Providing a signal electrode 3 on one side and a ground electrode 4 on at least the other of the branch optical waveguides 2a and 2b; covering the signal electrode 3 with a resist film 7; Manufacturing an optical modulator configured to include a step of providing an overhang portion 40 made of a conductor on the substrate and a step of removing the resist film 7 interposed between the overhang portion 40 and the signal electrode 3. Solved by the method.

〔作用〕[Action]

本発明の構成によれば、信号電極3の厚さは余り大き
くしてないので製造プロセス上精度よく形成できる。一
方、信号電極3は少なくともその上部がギャップ状空間
を挟んで、接地電極4に形成されたオーバハング部40に
より広く覆われるように構成されているので、周辺空間
の電界分布がよくなり、電気力線の数が増加することに
より実効的に誘電率が減少して、伝播されるマイクロ波
信号と光波との速度整合が大巾に改善され変調周波数帯
域巾の広い光変調器が得られるのである。
According to the configuration of the present invention, since the thickness of the signal electrode 3 is not so large, it can be formed with high precision in the manufacturing process. On the other hand, the signal electrode 3 is configured so that at least its upper portion is widely covered by the overhang portion 40 formed on the ground electrode 4 with the gap-shaped space interposed therebetween, so that the electric field distribution in the peripheral space is improved, and Increasing the number of lines effectively reduces the dielectric constant, greatly improving the speed matching between the transmitted microwave signal and the lightwave, and providing an optical modulator with a wide modulation frequency bandwidth. .

〔実施例〕〔Example〕

第1図は本発明の実施例を示す図で、同図(イ)は平
面図、同図(ロ)はY−Y′断面図である。
FIG. 1 is a view showing an embodiment of the present invention. FIG. 1A is a plan view, and FIG. 1B is a sectional view taken along the line YY '.

図中、40は信号電極3の少なくとも上部をギャップ状
空間を挟んで覆うように形成された接地電極4のオーバ
ハング部である。
In the figure, reference numeral 40 denotes an overhang portion of the ground electrode 4 formed so as to cover at least the upper portion of the signal electrode 3 with a gap-shaped space therebetween.

なお、前記従来例の諸図面で説明したものと同等の部
分については同一符号を付し、かつ、同等部分について
の説明は省略する。
The same parts as those described in the drawings of the conventional example are denoted by the same reference numerals, and the description of the same parts will be omitted.

本実施例の場合、接地電極4のオーバハング部40が信
号電極3の上部を,たとえば、15μmのギャップgを挟
んで覆うように形成されているので、周辺空間の電界分
布がよくなり、電気力線の数が増加することにより実効
的に誘電率が減少して、光波とマイクロ波信号との速度
整合が大巾に改善され,たとえば、従来例(その1)の
場合に比較して変調周波数帯域巾が5倍以上の高速動作
可能な光変調器が得られる。さらに、信号電極3は余り
厚く形成しなくてもよいのでデバイス歩留りの低下を招
くことはない。
In the case of the present embodiment, the overhang portion 40 of the ground electrode 4 is formed so as to cover the upper portion of the signal electrode 3 with a gap g of, for example, 15 μm therebetween. As the number of lines increases, the dielectric constant effectively decreases, and the speed matching between the light wave and the microwave signal is greatly improved. For example, the modulation frequency is lower than that of the conventional example (part 1). An optical modulator having a bandwidth of 5 times or more and capable of high-speed operation can be obtained. Further, the signal electrode 3 does not need to be formed so thick that the device yield does not decrease.

第2図は本発明の他の実施例を示す図で、同図(イ)
は平面図、同図(ロ)はY−Y′断面図である。
FIG. 2 shows another embodiment of the present invention.
1 is a plan view, and FIG. 1B is a sectional view taken along line YY '.

本実施例は前記第1図の非対称電極配置に対して対称
電極配置の場合の実施例である。
This embodiment is an embodiment in the case of a symmetric electrode arrangement with respect to the asymmetric electrode arrangement of FIG.

本実施例の場合も前記実施例の場合と全く同様の効果
が得られることは言うまでもない。
Needless to say, the same effects as in the above embodiment can be obtained in this embodiment.

以上のごとき実施例を具体的に製造する主な工程を以
下に示す。
The main steps for specifically manufacturing the above-described embodiment will be described below.

第3図は本発明実施例の主な製造工程を示す断面図
で、同図(イ)は非対称電極型の場合、同図(ロ)は対
称電極型の場合を示した。
FIG. 3 is a cross-sectional view showing main manufacturing steps of the embodiment of the present invention. FIG. 3A shows a case of an asymmetric electrode type, and FIG. 3B shows a case of a symmetric electrode type.

工程(1):厚さ1mmのLiNbO3のZ板の表面を鏡面研磨
したウェーハ10の上にTiを約90nmの厚さに真空蒸着し、
分岐光導波路2aおよび2bを含む光導波路2に相当する部
分にTiが残るように通常のホトエッチング法で処理した
のち、約800℃でTiをLiNbO3中に熱拡散して光導波路2
を形成する。
Step (1): Ti is vacuum-deposited to a thickness of about 90 nm on a wafer 10 having a mirror-polished surface of a 1 mm-thick LiNbO 3 Z plate,
After processing by a usual photoetching method so that Ti remains in a portion corresponding to the optical waveguide 2 including the branched optical waveguides 2a and 2b, Ti is thermally diffused into LiNbO 3 at about 800 ° C.
To form

分岐光導波路部分の長さは25mm,光導波路の幅は全て
7〜11μmになるように調整し、ウェーハ10上に多数の
光導波路2を含む光変調器部分が切断可能なように配置
形成した。
The length of the branch optical waveguide was adjusted to 25 mm, the width of the optical waveguide was adjusted to 7 to 11 μm, and the optical modulator including a large number of optical waveguides 2 was arranged and formed on the wafer 10 so as to be cut. .

工程(2):次いで、バッファ層としてSiO2を1μmの
厚さにスパッタ法で形成する。
Step (2): Next, SiO 2 is formed as a buffer layer to a thickness of 1 μm by sputtering.

工程(3):上記処理済み基板の上にAu/Ti2層膜を蒸着
したのち、電極巾10μm,信号電極と接地電極間のギャッ
プが15μmである所要の電極パターン形状にホトエッチ
ングし、その上に厚さ3μmのAuをメッキにより付着形
成する。
Step (3): After depositing an Au / Ti2 layer film on the processed substrate, photoetching is performed into a required electrode pattern shape having an electrode width of 10 μm and a gap between the signal electrode and the ground electrode of 15 μm. Then, Au having a thickness of 3 μm is formed by plating.

工程(4):上記処理済み基板の上に、接地電極4の部
分が露出して残るようにレジストパターン7を通常の露
光・エッチング処理でパターン形成する。
Step (4): A resist pattern 7 is formed on the processed substrate by a normal exposure / etching process so that a portion of the ground electrode 4 remains exposed.

工程(5):上記処理済み基板の接地電極4の部分の露
出面に,たとえば、Auの電気メッキを行う。Auメッキ層
の厚さは,たとえば、30〜40μmとすればメッキ層の先
端部はレジストパターン7の上にまで成長してきて、図
示したごときオーバハング部40となる張り出し部分が形
成される。
Step (5): Electroplating of Au, for example, is performed on the exposed surface of the ground electrode 4 of the processed substrate. If the thickness of the Au plating layer is, for example, 30 to 40 μm, the tip of the plating layer grows on the resist pattern 7 to form an overhanging portion 40 as shown in the figure.

工程(6):レジストパターン7を除去剤,たとえば、
レジストリムーバで溶解除去してオーバハング部40を形
成する。
Step (6): Remove resist pattern 7 with a remover, for example,
The overhang portion 40 is formed by dissolving and removing with a registry mover.

工程(7):ウェーハ10をカッティングマシンでダイシ
ングし、所定の大きさの多数の変調器素子に分離すれば
本発明の光変調器の素子が得られる。
Step (7): If the wafer 10 is diced by a cutting machine and separated into a number of modulator elements of a predetermined size, the elements of the optical modulator of the present invention can be obtained.

以上の構成により、従来5〜15GHzであった周波数帯
域が、30GHz以上まで動作可能な光変調器が得られた。
With the above configuration, an optical modulator that can operate from the conventional frequency band of 5 to 15 GHz to 30 GHz or more is obtained.

なお、上記実施例では接地電極4のオーバハング部40
は、信号電極3の上部を覆うようにしたが、さらに、反
対側まで,すなわち、信号電極3の全体を覆うようにし
て一層効果を高めるようにすることができる。
In the above embodiment, the overhang portion 40 of the ground electrode 4 is used.
Covers the upper part of the signal electrode 3, however, the effect can be further enhanced to the opposite side, that is, to cover the entire signal electrode 3.

また、接地電極4のオーバハング部40の形成にはメッ
キでなくスパッタ法やCVD法を用いてもよいことは勿論
である。
In addition, it goes without saying that the overhang portion 40 of the ground electrode 4 may be formed by sputtering or CVD instead of plating.

以上述べた実施例は数例を示したもので、本発明の趣
旨に添うものである限り、使用する素材や構成,寸法,
製作プロセスなど適宜好ましいもの、あるいはその組み
合わせを用いることができることは言うまでもない。
The embodiment described above shows only a few examples, and the material, configuration, dimensions,
Needless to say, it is possible to use a preferable one such as a manufacturing process or a combination thereof.

〔発明の効果〕〔The invention's effect〕

以上説明したように、本発明の光変調器は信号電極3
の厚さは余り大きくしてないので製造プロサス上精度よ
く形成できる。一方、信号電極3は少なくともその上部
がギャップ状空間を挟んで、接地電極4に形成されたオ
ーバハング部40により広く覆われるように構成されてい
るので、周辺空間の電界分布がよくなり、電気力線の数
が増加することにより実効的に誘電率が減少して、伝播
されるマイクロ波信号と光波との速度整合が大巾に改善
され、光変調器の性能の向上,とくに、高速動作特性の
向上に寄与するところが極めて大きい。
As described above, the optical modulator according to the present invention includes the signal electrode 3
Since the thickness is not so large, it can be formed with high accuracy on the production process. On the other hand, the signal electrode 3 is configured such that at least its upper part is widely covered by the overhang portion 40 formed on the ground electrode 4 with the gap-shaped space interposed therebetween, so that the electric field distribution in the peripheral space is improved, and the electric force is improved. Increasing the number of lines effectively reduces the dielectric constant, greatly improving the speed matching between the transmitted microwave signal and the lightwave, and improving the performance of the optical modulator, especially high-speed operation characteristics. It is extremely large that contributes to the improvement of the quality.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明の実施例を示す図、 第2図は本発明の他の実施例を示す図、 第3図は本発明実施例の主な製造工程を示す断面図、 第4図は光変調器の基本構成例を示す図(その1)、 第5図は光変調器の基本構成例を示す図(その2)、 第6図は従来の光波とマイクロ波信号の速度整合の例を
示す断面図(その1)、 第7図は従来の光波とマイクロ波信号の速度整合の例を
示す断面図(その2)である。 図において、 1は基板、 2は光導波路、 2aおよび2bは第1および第2の分岐光導波路、 3は信号電極、 4は接地電極、 5はバッファ層、 40はオーバハング部である。
FIG. 1 is a view showing an embodiment of the present invention, FIG. 2 is a view showing another embodiment of the present invention, FIG. 3 is a sectional view showing main manufacturing steps of the embodiment of the present invention, FIG. FIG. 1 shows an example of a basic configuration of an optical modulator (No. 1), FIG. 5 is a diagram showing an example of a basic configuration of an optical modulator (No. 2), and FIG. FIG. 7 is a sectional view (part 2) showing an example of conventional speed matching between a lightwave and a microwave signal. In the figure, 1 is a substrate, 2 is an optical waveguide, 2a and 2b are first and second branch optical waveguides, 3 is a signal electrode, 4 is a ground electrode, 5 is a buffer layer, and 40 is an overhang portion.

フロントページの続き (56)参考文献 特開 平1−204020(JP,A) 特開 昭64−48021(JP,A) 特開 昭64−91111(JP,A) 特開 平2−51124(JP,A) 特開 昭56−17321(JP,A) 特開 平1−210928(JP,A) (58)調査した分野(Int.Cl.6,DB名) G02F 1/00 - 1/035 G02F 1/29 - 1/313Continuation of the front page (56) References JP-A-1-204020 (JP, A) JP-A-64-48021 (JP, A) JP-A-64-91111 (JP, A) JP-A-2-51124 (JP) , A) JP-A-56-17321 (JP, A) JP-A-1-210928 (JP, A) (58) Fields investigated (Int. Cl. 6 , DB name) G02F 1/00-1/035 G02F 1/29-1/313

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】電気光学効果を有する基板上に、二つに分
岐した分岐光導波路を有する光導波路を設ける工程と、 前記分岐光導波路のそれぞれを覆うようにバッファ層を
設ける工程と、 前記バッファ層を介して、前記分岐光導波路の一方の上
に信号電極と、少なくとも前記分岐光導波路の他方の上
に接地電極とのそれぞれを設ける工程と、 前記信号電極をレジスト膜で覆う工程と、 前記接地電極の上に導体からなるオーバハング部を設け
る工程と、 前記オーバハング部と前記信号電極との間に介在する前
記レジスト膜を除去する工程と を含むことを特徴とする光変調器の製造方法。
A step of providing an optical waveguide having two branched optical waveguides on a substrate having an electro-optical effect; a step of providing a buffer layer so as to cover each of the branched optical waveguides; Providing a signal electrode on one of the branch optical waveguides and a ground electrode on at least the other of the branch optical waveguides via a layer; covering the signal electrode with a resist film; A method of manufacturing an optical modulator, comprising: providing an overhang portion made of a conductor on a ground electrode; and removing the resist film interposed between the overhang portion and the signal electrode.
【請求項2】前記オーバハング部を、前記接地電極上へ
の電気メッキによって形成する請求項1記載の光変調器
の製造方法。
2. The method of manufacturing an optical modulator according to claim 1, wherein said overhang portion is formed by electroplating on said ground electrode.
JP2000807A 1990-01-06 1990-01-06 Method of manufacturing optical modulator Expired - Fee Related JP2800339B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000807A JP2800339B2 (en) 1990-01-06 1990-01-06 Method of manufacturing optical modulator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000807A JP2800339B2 (en) 1990-01-06 1990-01-06 Method of manufacturing optical modulator

Publications (2)

Publication Number Publication Date
JPH03204614A JPH03204614A (en) 1991-09-06
JP2800339B2 true JP2800339B2 (en) 1998-09-21

Family

ID=11483954

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000807A Expired - Fee Related JP2800339B2 (en) 1990-01-06 1990-01-06 Method of manufacturing optical modulator

Country Status (1)

Country Link
JP (1) JP2800339B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3723333B2 (en) * 1997-09-29 2005-12-07 日本碍子株式会社 Light modulator
JP2002122834A (en) * 2000-10-19 2002-04-26 Sumitomo Osaka Cement Co Ltd Optical waveguide element
JP2008046573A (en) * 2006-08-21 2008-02-28 Fujitsu Ltd Optical modulator

Also Published As

Publication number Publication date
JPH03204614A (en) 1991-09-06

Similar Documents

Publication Publication Date Title
US9746743B1 (en) Electro-optic optical modulator devices and method of fabrication
JPWO2005019913A1 (en) Optical waveguide device and traveling wave optical modulator
JP2001209018A (en) Optical modulator with monitor
JPH05196902A (en) Traveling-wave optical modulator
US6700691B2 (en) Electro-optic modulator having high bandwidth and low drive voltage
JPH1090638A (en) Optical control element
JP2780400B2 (en) Light modulator
JP5166450B2 (en) Optical waveguide device
JP2011164388A (en) Mach-zehnder optical modulator
JP3570735B2 (en) Optical waveguide device
JP4771451B2 (en) Traveling wave type optical modulator
JP2800339B2 (en) Method of manufacturing optical modulator
JP2550730B2 (en) Optical waveguide device and manufacturing method thereof
JP3995537B2 (en) Light modulator
US6950218B2 (en) Optical modulator
JP2793562B2 (en) Waveguide type optical modulator
JP2004219600A (en) Electrode for optical modulation and optical modulator
JP2734708B2 (en) Light modulator
JPH0713711B2 (en) High speed optical modulator
JP2565002B2 (en) Signal electrode for optical waveguide device and method of forming the same
JPH05241115A (en) Waveguide type optical device
JP2564999B2 (en) Light modulator
JPH04217226A (en) Manufacture of light guide path type device
JP2001004967A (en) Optical waveguide element
JP2817295B2 (en) Light modulator

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees